* git mv
* add server-context.h
* add server-context.h
* clean up headers
* cont : cleanup
* also expose server_response_reader (to be used by CLI)
* fix windows build
* decouple server_routes and server_http
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
As [1] explained, the real debug message will be like:
"res operator(): operator() : queue result stop"
Set the name explicitly, the message is easy for debugging:
"res operator(): recv : queue result stop"
The left "operator()" is generated by 'RES_DBG() ... __func__'
[1]: https://clang.llvm.org/extra/clang-tidy/checks/bugprone/lambda-function-name.html
Signed-off-by: Haiyue Wang <haiyuewa@163.com>
gguf_new_metadata.py reads data from reader.
Reader doesn't byteswap tensors to native endianness.
But writer does expect tensors in native endianness to convert them
into requested endianness.
There are two ways to fix this: update reader and do conversion to native endianness and back,
or skip converting endianness in writer in this particular USE-case.
gguf_editor_gui.py doesn't allow editing or viewing tensor data.
Let's go with skipping excessive byteswapping.
If eventually capability to view or edit tensor data is added,
tensor data should be instead byteswapped when reading it.
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.
* llama : update worst-case graph for unified cache
* ci : disable op offload in some tests
* fix spelling
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : add Anthropic Messages API support
* remove -@pytest.mark.slow from tool calling/jinja tests
* server : remove unused code and slow/skip on test_anthropic_vision_base64_with_multimodal_model in test_anthropic_api.py
* server : removed redundant n field logic in anthropic_params_from_json
* server : use single error object instead of error_array in streaming response handler for /v1/chat/completions and use unordered_set instead of set in to_json_anthropic_stream()
* server : refactor Anthropic API to use OAI conversion
* make sure basic test always go first
* clean up
* clean up api key check, add test
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* Qwen3 Next - cleaned up version
* Whitespaces and stuff
* Correct minor errors
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Misc. fixes.
* Clean up code, add missing hybrid qualifier
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...
* Whitespace
* Proper tensors for cb calls
* Use llama-graph.h vertical alignment
* BROKEN: chunking
* Set new tensors as inputs.
* Proper chunk logic
* It's the circle of life...
* More shenanigans for n_seq > 1
* Nail in the coffin?
* Fix Windows build
* Eh, one fails on Windows, the other fails on Mac... just use general capture.
* quant : cleanup
* model : cleanup
* qwen3 : cleanup
* cont : cleanup
* cont : cleanup
* ggml : revert change
* qwen3 : cleanup
* cont : cleanup
* Readd cmath
* qwen3 : fix typo
* Update convert_hf_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Usual suspects
* fix my bad suggestion
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.
* enable mmf for rdna4
* move some mmvf to mmf
* revert lds128 for wmma loading
* Revert "revert lds128 for wmma loading"
This reverts commit db9ae8b6b4.
* Revert "enable mmf for rdna4"
This reverts commit 698c9f2418.
* Revert "move some mmvf to mmf"
This reverts commit 99b92bd665.
* enable mul_mat for rdna4
---------
Co-authored-by: zhang hui <you@example.com>
* Enabled q4_K_4x8 path
* Fixed generic Q4_K 8x4 implementation
* wip: dotprod gemm
* Working arm q4_K dotprod gemm
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Undo acc rename
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Q4_K arm dotprod gemm
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Fix: q4_qs reinterpret from uint to int
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
* Removed comments
* Fixed macro guards
* Fixed unused vars in generic implementation
* Fixed unused vars in 8x4 repack
* Fixed unused vars in generic implementation, unneeded comment
* Missing arch fallback for x86
* minor : style
---------
Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan: Implement top-k
Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.
* fix pipeline selection
* vulkan: Add N-ary search algorithm for topk
* microoptimizations
We have to separate the code path starting 3.28 because
`FetchContent_Populate` is now deprecated and will be completely removed
in a future version.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
On arm64 with `cmake` version 3.31.6, the final feature verification fails:
-- ARM detected flags: -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs
-- Performing Test GGML_MACHINE_SUPPORTS_dotprod
-- Performing Test GGML_MACHINE_SUPPORTS_dotprod - Success
-- Performing Test GGML_MACHINE_SUPPORTS_i8mm
-- Performing Test GGML_MACHINE_SUPPORTS_i8mm - Success
-- Performing Test GGML_MACHINE_SUPPORTS_sve
-- Performing Test GGML_MACHINE_SUPPORTS_sve - Success
-- Performing Test GGML_MACHINE_SUPPORTS_sme
-- Performing Test GGML_MACHINE_SUPPORTS_sme - Failed
-- Performing Test GGML_MACHINE_SUPPORTS_nosme
-- Performing Test GGML_MACHINE_SUPPORTS_nosme - Success
-- Checking for ARM features using flags:
-- -U__ARM_FEATURE_SME
-- -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
-- Performing Test HAVE_DOTPROD
-- Performing Test HAVE_DOTPROD - Failed
-- Performing Test HAVE_SVE
-- Performing Test HAVE_SVE - Failed
-- Performing Test HAVE_MATMUL_INT8
-- Performing Test HAVE_MATMUL_INT8 - Failed
-- Performing Test HAVE_FMA
-- Performing Test HAVE_FMA - Success
-- Performing Test HAVE_FP16_VECTOR_ARITHMETIC
-- Performing Test HAVE_FP16_VECTOR_ARITHMETIC - Failed
-- Performing Test HAVE_SME
-- Performing Test HAVE_SME - Failed
-- Adding CPU backend variant ggml-cpu: -U__ARM_FEATURE_SME;-mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
We need to explicitly replace `;` with spaces from the list to make
`CMAKE_REQUIRED_FLAGS` work correctly...
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* patch failed test case MUL_MAT(type_a=q4_0,type_b=f32,m=576,n=512,k=576,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1) for enabling WMMA on RDNA4
* Quick clean up on mma.cuh to add ggml_cuda_memcpy_1 back in for half2 and bfloat162
* CANN: ROPE supports both MROPE and IMROPE.
1. Optimize the caching logic of rope_cache_init.
2. Add support for mRoPE and i-mRoPE.
Note that on Ascend 910B devices, it is necessary to disable FA
in CLIP and disable NZ-format conversion. These two issues are
still under investigation.
* Resolve review comments
* Fix convert_hf_to_gguf.py script on s390x
Assume converted model data is originally little-endian.
Byteswap data on s390x after reading it to put values in correct presentation
for any transformation needed, like calculating weight tensors.
Then byteswap data to little-endian before passing it to GGUFWriter while
GGUFWriter will byteswap data back to big endian if big endian output is requested.
byteswap(inplace=True) calls don't work with lazy tensor and array wrappers.
Use byteswap with copying data to workaround this behaviour.
* Make GGUFWriter accept tensors in native endianness instead of little-endian
With this change if no byteswapping is actually needed, 2 excessive byteswaps can be omitted on s390x
* Fix byteswapping in convert_hf_to_gguf.py for remote models
* webui: add rehype plugin to restore HTML in Markdown table cells
The remark/rehype pipeline neutralizes inline HTML as literal text
(remarkLiteralHtml) so that XML/HTML snippets in LLM responses display
as-is instead of being rendered. This causes <br> and <ul> markup in
table cells to show as plain text.
This plugin traverses the HAST post-conversion, parses whitelisted HTML
patterns (<br>, <ul><li>) from text nodes, and replaces them with actual
HAST element nodes. For lists, adjacent siblings must be combined first
as the AST fragmentation breaks pattern matching.
Strict validation rejects malformed markup, keeping it as raw text.
* chore: update webui build output
This commit adds a check to skip the output reordering logic when
n_outputs == 1. With a single output token, the data is trivially
sorted and the reordering code is currently doing unnecessary work
(resetting and rebuilding output_ids to the same values).
The motivation for this change is improved code clarity and avoiding
confusion when debugging. While the performance impact is probably
negligible, this unnecessary work happens on every decode call in
llama-server when processing batches with single-token outputs.
* first commit naive test to enable mmq for RDNA4
* adding appropriate WMMA instructions
* git rebase on top of master: fixing the correctness of the mat mul operations, updating layout mappings for RDNA4
* clean up merge conflicts
* add comments and code clean up
* PR clean up, addressed comments
* enable MMQ fallback on RDNA4
* addressed comments: add guards in load generic, separate wmma branch for use_mmq function
* Revert build-xcframework.sh
* Formating: remove trailing whitespace
* revert CMake files
* clean up after rebase: remove duplicated change, revert cmake files
* clean up after rebase: revert changes from build-xcframework.sh
* clean up: remove extra space line in mma.cuh
* Revert "clean up: remove extra space line in mma.cuh"
This reverts commit b39ed57c45.
This commit adds the --kv-unified flag to the usage example
in the README.md file for the batched example.
The motivation for this is that without this flag the example will fail
with the following error:
```console
Hello my name is
split_equal: sequential split is not supported when there are coupled
sequences in the input batch (you may need to use the -kvu flag)
decode: failed to find a memory slot for batch of size 4
main: llama_decode() failed
```
This commit removes the "-dirty" suffix from the GGML version string.
The motivation for this change is to ensure that the version string
works with different ways of checking out ggml and using it in projects.
By removing the dirty flag from the version string, we avoid potential
artifacts like shared libraries getting a -dirty suffix in their names.
Instead, if the project is built from a dirty git state, the dirty flag
will be appended to the commit hash in the GGML_BUILD_COMMIT variable.
This will enable users to still identify that the build was made from
from a modified/dirty state even though the version might match a "real"
version.
For example, the commit can be produces as follows:
```c++
printf("commit: %s\n", ggml_commit());
```
Which would print the following for a dirty build:
```console
commit: 781baf2a-dirty
```
Refs: https://github.com/ggml-org/ggml/pull/1363#issuecomment-3569691546
**Description of the problem**
`cann_graph_update_required` is redundantly defined and
initialized as `false` inside two mutually exclusive macro branches.
**Proposed solution**
Define it right before the macro so that it could serve both
branches.
* ggml-hexagon: fix build error with GCC
Add stdexcept include to fix GCC build errors
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: check VTCM acquire failures
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: disable destination bypass on older than v73
v68 errors out if having bypass enabled when the VTCM is the destination.
At least on v68 this made things actually work... not a proper fix though, so to look at later...
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* ggml-hexagon: add initial v68/v69 support
v68 is the Hexagon revision notably used on the Snapdragon 8cx
Gen 3 and the QCM6490.
Also add support for v69.
8MB isn't a supported page size, so relax asked for page size constraint
for HAP_compute_res_attr_set_vtcm_param_v2 to optimal.
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
---------
Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
* hexagon: add buffer support checks for hexagon sessions
* refactor: simplify buffer support checks in hexagon operations
* hexagon: update buffer support checks to use tensor structure
* refactor: streamline buffer initialization for DSP queue in hexagon operations
* refactor: simplify buffer initialization in DSP queue for hexagon operations
* refactor: optimize hex_supported_buffer function by fold expression
* wip
* refactor: simplify dspqueue_buffers_init function and its usage in hexagon operations
* fix: improve nan handling at hvx_vec_fast_sigmoid_fp32_guard
* refactor: optimize hvx_vec_inverse_fp32_guard for better nan handling
* refactor: update hvx_vec_fast_sigmoid_fp32_guard to use adjusted exponent limits
* refactor: modify hvx_vec_fast_sigmoid_fp32_guard to accept parameters for improved flexibility
* refactor: update hvx_vec_exp_fp32_guard to accept max_exp and inf parameters to save some instructions
* refactor: move hvx_vec_inverse_fp32_guard implementation to hvx-inverse.c for better perf
* mmf for rdna4
* align the padding for rdna4
* forbit mul_mat_f for rdna4
* fix as comment
* remove device kernels
* add constexpr for early return
* update based on review comment
* change based on the review comment
* pass compile error
* keep code consistency
---------
Co-authored-by: zhang hui <you@example.com>
* Detect GigaChat3-10-A1.8B as deepseek lite
Hardcodes checking number of layers to detect if lite version of deepseek.
* Add commnent identifying deepseek lite variants
deepseek lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
* CANN: Refactor `evaluate_and_capture_cann_graph`
**Description of the problem**
* `matched_graph` is obtained even if graph mode is disabled.
* End of graph capture and graph replay are unnecessarily placed in different `if` blocks.
**Proposed solution**
* Obtain `matched_graph` only if graph mode is enabled.
* Place end of graph capture and graph reply inside the same `if` block.
* Unify graph related comments.
* Remove trailing whitespace
* Fix DoS / integer overflow
* Remove optional, use INT64_MAX instead as placeholder value (it's technically -1, so it fits :)
* White space
* Actually, since it's unsigned, use UINT64_MAX
* fix: TypeError when loading base model remotely in convert_lora_to_gguf
* refactor: simplify base model loading using cache_dir from HuggingFace
* Update convert_lora_to_gguf.py
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* feat: add remote_hf_model_id to trigger lazy mode in LoRA converter
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* vulkan: support larger argsort
This is an extension of the original bitonic sorting shader that puts the
temporary values in global memory and when more than 1024 threads are needed
it runs multiple workgroups and synchronizes through a pipelinebarrier.
To improve the memory access pattern, a copy of the float value is kept with
the index value. I've applied this same change to the original shared memory
version of the shader, which is still used when ncols <= 1024.
* Reduce the number of shader variants. Use smaller workgroups when doing a single pass, for a modest perf boost
* reduce loop overhead
* run multiple cols per invocation, to reduce barrier overhead
* Fix too relaxed check on CUDA "fast copy" (can_be_transposed) condition
* Argh.
* Making CISC happy ;)
* Integrate CONT tests
* Use loopy loop
* Skip new tests for (B)F16 for now.
Test 'Q4_K_M' quantization on https://huggingface.co/pfnet/plamo-2-translate
The 'suffix_to_score' size is 193510, it needs 19 memory allocation with final
capacity 262144 to hold the value, if not preserve the memory.
Signed-off-by: Haiyue Wang <haiyuewa@163.com>
* Add files via upload
* fix unit test
* fix crashes for --reasoning-format=none
* Patch buggy official MiniMax-M2 chat template
* add upstream minja fix: https://github.com/ochafik/minja/pull/7
* Fix <think> token not generated
* add test copied from https://github.com/ggml-org/llama.cpp/pull/16946
* cleanup
* Hopes to fix the compilation error on CI
* Delete chat template patching since it’s fixed by upstream Minja
* Remove undeeded Minimax-M2 template patch
https://github.com/ochafik/minja/pull/7#issuecomment-3480356100
* Add proper handling of optional parameters with test
merged tests from: 23d4bb75c4
* Fix making all tool parameters optional
* Move xml tool parser to separate file
* cleanup & add tests for GLM4.5
* add streaming tests & enhancement & cleanups
Add streaming test for both GLM 4.5 and minimax-m2.
Cleanup for preserved_tokens.
Cleanup for grammar rule name.
Enhance the parser's stability.
* cleanup & add support for Kimi-K2 Qwen3-Coder Apriel-1.5 Xiaomi-MiMo
* apply suggestions from reviewers
* fix a misuse for data.grammar_lazy
* fix grammar when tool have no argument
* Fix `no triggers set for lazy grammar!` for GLM4.5/4.6. Insert additional stops for Kimi-K2
* update chat.cpp
* fix grammar for GLM 4.5/4.6
* Try fix Jinja template for GLM
* Try fix GLM-4.6.jinja
* Update common/chat-parser-xml-toolcall.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update tests/test-chat.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* improve chat template for GLM, rename Kimi-K2 template to Kimi-K2-Thinking
* Improve Kimi-K2 chat template
* Fix unit test
* Fix "Invalid tool call arguments passed" in a rare case.
In a rare case, the model may emit a raw string that begins with a valid JSON string. This commit adds unit tests to cover that scenario and fixes the regression introduced during the Kimi-K2 adaptation.
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* cann: fix acl_tensor_ptr usage in ASCEND_310P ROPE implementation
Fix compilation errors in the ASCEND_310P-specific ROPE operation code
by adding .get() calls when passing acl_tensor_ptr smart pointers to
functions expecting raw aclTensor* pointers.
This fixes the code that was missed in the previous refactoring commit
(8981848) which changed ggml_cann_create_tensor() return type from
aclTensor* to acl_tensor_ptr.
* cann: format code
Update openEuler version
Remove variable ASCEND_SOC_TYPE
Modify the chip type
Fix case in zip filename
Change "device" to "chip_type"
Modify the value of chip_type
* server: split HTTP into its own interface
* move server-http and httplib to its own file
* add the remaining endpoints
* fix exception/error handling
* renaming
* missing header
* fix missing windows header
* fix error responses from http layer
* fix slot save/restore handler
* fix case where only one stream chunk is returned
* add NOMINMAX
* do not call sink.write on empty data
* use safe_json_to_str for SSE
* clean up
* add some comments
* improve usage of next()
* bring back the "server is listening on" message
* more generic handler
* add req.headers
* move the chat template print to init()
* add req.path
* cont : minor
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* CANN: Use smart pointers to manage ACL objects
Previously, ACL objects were managed via manual destruction, which
led to multiple memory-leak issues during runtime. This patch replaces
manual memory management with smart pointers so that ACL objects
are properly released and ownership is clearly defined.
Note that the ownership of an ACL object belongs to the function
that creates it. Other internal functions should operate on these ACL
objects using raw pointers to avoid unintended ownership transfers.
Additionally, since aclTensorList automatically frees its contained
aclTensor objects, any aclTensor added to a tensor list must release
ownership to avoid double free operations.
This PR also removes the asynchronous task submission mechanism.
Due to changes in recent CANN versions, tiling time has significantly
decreased. Even with a dual-thread submission model, the dispatch
overhead still falls on the critical path, making async submission
less beneficial. Moreover, aclGraph support provides a much better
path to reducing operator dispatch latency.
* CANN: resolve review comments
* vulkan: add LOG operation support for F32 and F16
Part of #14909.
* vulkan: Fix LOG operation types
* docs: Update operation support documentation for Vulkan LOG operation
* vulkan: fix log_f16 shader
* docs: restore missing LOG test cases and regenerate ops.md
* SYCL: add generic unary op implementation for multiple ops (ABS/SGN/…); unify non-contiguous access
* SYCL: update documentation and sycl.csv to reflect new unary op support
* update ops.md after syncing SYCL.csv changes
* Fix SYCL.csv merge conflict
* Update ops.md after fixing SYCL.csv conflicts
* Fix SYCL.csv tail after merge conflict and regenerate ops.md
* Fix line endings and final newline in SYCL.csv
* Remove TOPK_MOE entries from SYCL.csv as requested
* Update ops.md after removing TOPK_MOE from SYCL.csv
* Regenerated SYCL.csv and synced ops.md with upstream
* Update ops.md using create_ops_docs.py
* webui: add OAI-Compat Harmony tool-call live streaming visualization and persistence in chat UI
- Purely visual and diagnostic change, no effect on model context, prompt
construction, or inference behavior
- Captured assistant tool call payloads during streaming and non-streaming
completions, and persisted them in chat state and storage for downstream use
- Exposed parsed tool call labels beneath the assistant's model info line
with graceful fallback when parsing fails
- Added tool call badges beneath assistant responses that expose JSON tooltips
and copy their payloads when clicked, matching the existing model badge styling
- Added a user-facing setting to toggle tool call visibility to the Developer
settings section directly under the model selector option
* webui: remove scroll listener causing unnecessary layout updates (model selector)
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* chore: npm run format & update webui build output
* chore: update webui build output
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* vulkan: change graph_compute to be async and enable get_tensor_async
This allows some additional CPU/GPU overlap for large pp workloads. Also seems
to help a bit for token gen, maybe getting rid of a small bubble between
graph_compute and get_tensor.
Async set and copy functions seem to be very rarely used, so I didn't enable
them because I didn't have a good way to test them.
The async commands need to be ordered against each other, so put them all on
the compute queue. The non-async commands still use the transfer queue.
The fence for graph_compute/get_tensor_async is submitted and waited on in
ggml_vk_synchronize.
* fix thread safety errors
* teardown context cleanly
* Handle async read to non-pinned dst
* fix : Dangling pointer for non-empty trigger words in llama_sampler_init_grammar_impl (#17047)
* Replace 'static' workaround, with keeping variable in scope for longer
* Create std::array directly and pass into llama_grammar_init_impl
* Add back the trigger pattern
* Missed array include
* ggml-cpu: handle 3d tensors in repack mul_mat
* Removed unnecessary branch, removed need for <algorithm>
* Fixed dst_ptr pointer in chunk + clang_format
* GGML_ASSERT to check wdata within bounds
* Accidental ggml.h inclusion
* Improved GGML_ASSERT on wdata boundaries
* Address performance regression in Qwen and llama.cpp due to chunking
* vulkan: remove shell call from vulkan-shaders-gen tool
* use string vector for command execution
* Fix condition
* use string, remove const_cast
* Fix dependency file quotation on Windows
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* update L2_NORM op support
* update L2_NORM op support
* remove extra whitespace
* cann: update cross_entropy_loss op support
* remove trailing whitespaces
* rebase the latest code in the main repository and remove the l2_norm operator that already exists in another pull request.
* undo the l2_norm operator deletion
* CUDA: add fused rope
* move k forward_expand up
* create helper function instead of re-using params
* make assert statement more in line with comment
* rope_norm: coalesced writes to global mem
* hexagon: explicitly check for ops with zero nrows
llm_graph_context::build_inp_out_ids() can generate tensors with zero nrows.
Somehow other backends seems to handle this without obvious explicit checks.
In the hexagon case we need to check explicitly and skip them.
* hexagon: introduce fastdiv, fix test-backend-ops for ADD/SUB/MUL
Co-authored-by: chraac <chraac@gmail.com>
* hexagon: use fastdiv in ADD_ID
* hexagon: use ggml_op_is_empty and ggml_is_empty to check for NOPs
---------
Co-authored-by: chraac <chraac@gmail.com>
* extract rotate_pairs logic from ggml_compute_forward_rope_f32
* templateify ggml_compute_forward_rope_f32 and _f16
* abort when rope type not supported, remove GLM from test-rope
* add imrope branch to switch
* add rope tests for perf
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
When compiling llama.cpp in Yocto, it fails QA checks because the generated so files aren't versioned. This applies a version to all generated so files, allowing the package to build without errors.
Register UMT5Model as a supported architecture variant for T5 model conversion.
This allows the conversion to work for models downloaded with AutoModel.
* feat(memory): Only fail partial erasure of recurrent tail
The recurrent state is always assumed to be the state as of the last update
from the final token in the sequence. When doing a partial erasure, if the
range does not include the final token, the erasure can be considered a
success since any memory used for the sequence prior to the final token
(which is no memory) has been successfully removed.
There is one potential case that this doesn't address which is the pruning
of cache to remove sensitive data from the context. This wouldn't work for
attention cache partial removal (in the middle) either since the KV state
is linearly-dependent and states in later sequence positions would still be
based on the state from the sensitive data, even if that data is no longer
cached, so I don't think this is relevant, but it is worth noting that the
semantics of this change for a partial erasure in the middle of the cache
are essentially "my context is already compressed" and not "all trace of
the removed tokens has been removed."
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(main): Check the output of seq_rm for prefix matching
This prefix matching is explicitly attempting to remove the tokens at the
end of the sequence that don't match. This is the operation that can't be
performed on a recurrent cache due to the state being updated in place, so
if this removal fails, we need to clear the whole cache.
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix(memory): Fix condition for partial erasure failure if p0 > pos
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
* style: Fix extra parens
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix(main.cpp): Set n_matching_session_tokens to 0 on cache clear
https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_q8_K
* Surround SVE function with compiler directive
* fix compile switch
* fix coding style
* ggml : fix indent
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan : implement upscale with bicubic interpolation
* cuda : implement upscale with bicubic interpolation
* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests
* adapt OpenCL backend to not support the OP in that case so tests don't fail
* print scale mode & flags in test-backend-ops
* convert : parse safetensors directly
* gguf-py : order safetensors tensors by name
Applies to both local and remote safetensors custom parsing.
This matches the behavior of the official safetensors implementation.
* convert : rename from_safetensors_meta to from_local_tensor
For consistency with from_remote_tensor
* convert : fix no-lazy dtypes from direct safetensors
* vulkan: use all device-local heaps for memory availability reporting
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
* use all available heaps for iGPU memory reporting
* Allow multiple memory types per buffer request for devices with split heaps
---------
Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
* arg: add --cache-list argument to list cached models
* new manifest naming format
* improve naming
* Update common/arg.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix: correct time_ms calculation in send_partial_response
The time_ms field was incorrectly calculated. The division was happening
before the subtraction leading to incorrect values.
Before: (ggml_time_us() - slot.t_start_process_prompt / 1000) After:
(ggml_time_us() - slot.t_start_process_prompt) / 1000
* docs : document time_ms field in prompt_progress
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
The std::map pipeline_flash_attn_f32_f16 could be searched and inserted at the
same time, which needs to hold the lock. To be safe, hold the lock for all of
ggml_vk_load_shaders.
* bench : cache llama_context state at depth
* cont : handle failures to restore the old state
* cont : print information when the state is being reused
* kv-cache : pad the size of the small SWA cache for performance
* context : pad the total context to 256
* cont : future-proof the swa pad
* server : adjust test params to new logic
When using GCC 9 and GCC 12 on the arm64 platform of ubuntu 2004,
the command "gcc -mcpu=native -E -v -" fails to detect the correct CPU flags,
which results in compilation failures for certain extended instructions,
but the correct CPU flags can be obtained by using gcc -march.
Signed-off-by: lizhenneng <lizhenneng@kylinos.cn>
Co-authored-by: lizhenneng <lizhenneng@kylinos.cn>
* common: move download functions to download.(cpp|h)
* rm unused includes
* minor cleanup
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* metal : rework mat-mat multiplication
* metal : initial Metal4 support
* cont
* metal : detect tensor support
* cont : better ifdefs
* metal : support tensors in mul_mm_id
* metal : add env for disabling tensor API
* tests : restore
* metal : remove unused constants
* metal : fix check for bfloat tensor support
* cont : handle API incompatibilities
* cont : handle even more incompatibilities
* metal : use tensor API only on M5 and later
* support older socs where FASTRPC_GET_URI is unsupported
* added graceful fallback when FASTRPC_GET_URI call fails
* use weak symbols instead of loading libcdsprpc.so dynamically
* Add weak pragma for rpcmem_alloc2
* Remove weak declaration for rpcmem_alloc2 in ggml-hexagon.cpp
Removed weak declaration for rpcmem_alloc2.
* Enforce ndev to 1 for archs below v75
Force ndev to 1 for SoCs architectures lower than v75.
* WIP
* added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth
* added BF16 support
* more strict check to make sure src0 is a transpose
* reformulated to handle more complicated transpose cases
* bring back 2D transpose for higher performance
* allow build on windows
* tranpose copy more shapes
* minor tweak
* final clean up
* restore some test cases
* keep only the kernel for true tranposed case; updated with review suggestions
* make CI happy
* remove headers not needed
* reduced bank conflicts for fp16 and bf16
* add missing const*
* now bank conflicts free
* use padding instead of swizzling
---------
Co-authored-by: bssrdf <bssrdf@gmail.com>
* feat(llama-gguf): Print out the tensor type in llama-gguf r
Branch: Mamba2Perf
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat(off-topic): print the number of elements in tensors with llama-gguf
Branch: Mamba2SSD
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* style: valign
Branch: GGUFToolOutputs
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* Update examples/gguf/gguf.cpp
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Add buffer label and enable dawn-specific toggles to turn off some checks
* Minor set_rows optimization (#4)
* updated optimization, fixed errors
* non vectorized version now dispatches one thread per element
* Simplify
* Change logic for set_rows pipelines
---------
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>
* Comment on dawn toggles
* Remove some comments
* Implement overlap binary operators
* Revert "Implement overlap binary operators"
This reverts commit ed710b36f5.
* Disable support for non-contiguous binary_op tensors and leave note for future support
---------
Co-authored-by: neha-ha <137219201+neha-ha@users.noreply.github.com>
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
* Fix test-conv2d-dw failure on ARM SVE by using runtime vector length
The ggml_compute_forward_conv_2d_dw_cwhn function was using a hardcoded GGML_F32_EPR (8) for SIMD vectorization, but on ARM SVE the actual vector length varies by hardware. This caused incorrect computation when processing CWHN layout tensors on ARM machines.
Fix by using svcntw() to get the runtime SVE vector length instead of the compile-time constant.
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
* ci : reduce sam score threshold
* ci : update bbox checks for sam test
---------
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
* vulkan: remove the need for the dryrun
Allocate pipelines and descriptor sets when requested.
Reallocate the prealloc buffers when needed, and flush any pending work
before reallocating.
For rms_partials and total_mul_mat_bytes, use the sizes computed the last time
the graph was executed.
* remove dryrun parameters
* Fix garbled output with REPACK at high thread counts
Fixed a race condition in the REPACK matrix multiplication code that caused garbled output when using 26+ threads (model-dependent threshold). The issue occurred because with high thread counts, the code forced chunk count to equal thread count, creating many small chunks. After aligning these chunks to NB_COLS boundaries, adjacent chunks could overlap, causing data corruption and race conditions. The fix enforces minimum chunk sizes based on NB_COLS and caps maximum chunk count to prevent creating too many tiny chunks, ensuring proper alignment without overlaps.
* Update ggml/src/ggml-cpu/repack.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Update ggml/src/ggml-cpu/repack.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit modifies the script `run-org-model.py` to ensure that the
model configuration is explicitly passed to the `from_pretrained` method
when loading the model. It also removes a duplicate configuration
loading which was a mistake.
The motivation for this change is that enables the config object to be
modified and then passed to the model loading function, which can be
useful when testing new models.
* SYCL repeat_back v1 — add core op + switch case
* Implement repeat_back SYCL operation and minor fixes
* SYCL: optimize repeat_back kernel
* Remove Hebrew comment from repeat_back.cpp
* Remove comments for code clarity
Removed comments to clean up the code.
* Fix formatting in ggml-sycl.cpp
* Formatted lambda according to legacy style. No logic changes
* Remove blank line in repeat_back.cpp
Remove unnecessary blank line before assigning acc to dst_dd.
* tests: fix segfault in moe-expert-reduce test in support mode and --show-coverage
* tests: init gf and filter out fusion tests for support mode
* tests: filter out fusion cases before calling eval_support
* tests: filter out fusion cases from show_test_coverage as well, fix lint
* clip : use FA
* cont : add warning about unsupported ops
* implement "auto" mode for clip flash attn
* clip : print more detailed op support info during warmup
* cont : remove obsolete comment [no ci]
* improve debugging message
* trailing space
* metal : remove stray return
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* server : support unified context across slots
* cont : fix speculative decoding initialization
* context : fix n_ctx_per_seq computation
* server : purge slots one by one
* tests : add unified cache server tests
* llama : update per-seq context computation
* test-thread-safety : handle tiny training context of the input model
* server : fix server_tokens clear()
* server : use 4 slots + unified KV by default
* llama : add note about context size queries
* cont : update todos [no ci]
* context : do not cap the size of the context
* tests : adjust parameters to be CI friendlier
* context : add warning
commit 5fb5e24811 (llama : minor
sampling refactor (2) (#9386)) moved the llama_sampler_accept call
into llama_sampler_sample, but the sampling sample usage in llama.h
was forgotten to be updated accordingly.
* webui: auto-refresh /props on inference start to resync model metadata
- Add no-cache headers to /props and /slots
- Throttle slot checks to 30s
- Prevent concurrent fetches with promise guard
- Trigger refresh from chat streaming for legacy and ModelSelector
- Show dynamic serverWarning when using cached data
* fix: restore proper legacy behavior in webui by using unified /props refresh
Updated assistant message bubbles to show each message's stored model when available,
falling back to the current server model only when the per-message value is missing
When the model selector is disabled, now fetches /props and prioritizes that model name
over chunk metadata, then persists it with the streamed message so legacy mode properly
reflects the backend configuration
* fix: detect first valid SSE chunk and refresh server props once
* fix: removed the slots availability throttle constant and state
* webui: purge ai-generated cruft
* chore: update webui static build
* webui: add HTML/JS preview support to MarkdownContent with sandboxed iframe dialog
Extended MarkdownContent to flag previewable code languages,
add a preview button alongside copy controls, manage preview
dialog state, and share styling for the new button group
Introduced CodePreviewDialog.svelte, a sandboxed iframe modal
for rendering HTML/JS previews with consistent dialog controls
* webui: fullscreen HTML preview dialog using bits-ui
* Update tools/server/webui/src/lib/components/app/misc/CodePreviewDialog.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/misc/MarkdownContent.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: pedantic style tweak for CodePreviewDialog close button
* webui: remove overengineered preview language logic
* chore: update webui static build
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: recognize AsciiDoc files as valid text files
* webui: add an updated static webui build
* webui: add the updated dependency list
* webui: re-add an updated static webui build
This also reverts commit 742dbb8379.
* vulkan: fuse mul_mat+add and mul_mat_id+add_id
The fusion is only applied for the mat-vec mul paths.
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* fix 32b build
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* CUDA: Remove unneded bias/gate dims in fused mmvq
Pointed out
[here](https://github.com/ggml-org/llama.cpp/pull/16847#discussion_r2476798989)
that only a single value is needed per target col per thread
* Apply suggestions from code review
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Fix "Error 991-D: extra braces are nonstandard" during compilation
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* CUDA: Volta tensor core support for MMF
* more generic checks for hardware support
* Update ggml/src/ggml-cuda/mmf.cuh
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
---------
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
* Experimenting crash fix
* added assert for aborting and fixed comment
* changed to check if a pipeline is empty or not
* Moved function in class definition
* replaced with is_empty
* Modified is_empty to check only unaligned pipelines
* respect input size when getting/setting tensor data
allows partial repacking/copying when get tensor size is smaller than the actual tensor
* Removed duplicate repack_mxfp4_mxfp4x4x2 function
* Added GGUF mappings for CogVLM model
* Add tensor mapping for CogVLM visual encoder
* Add CogVLM to conversion script, no vision part yet
* Added CogVLM vision model to conversion script
* Add graph for CogVLM CLIP model
* Add graph for CogVLM
* Fixes for CogVLM. Now compiles.
* Model now runs
* Fixes for cogvlm graph
* Account for graph context change after rebase
* Changes for whitespace
* Changes in convert script according to comments
* Switch CogVLM LLM graph to merged QKV tensor
* Use rope_type variable instead of direct definition
* Change CogVLM CLIP encoder to use SWIGLU
* Switch CogVLM CLIP to use merged QKV
* Apply rebase edits and remove ggml_cont call that is now unnecessary
* clean up
---------
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This is realised by loading them into registers before computation of
the dot-product, effectively batching them together with said
dot-product. As a lot of threads are alive here, the warp scheduler has
enough threads available to effectively hide the cost of additionally
loading those two floats.
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).
Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).
Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.
Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.
Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.
Add new backend tests.
* vulkan: Update topk_moe fusion to handle gpt's late softmax
Based on #16649.
* Add ggml_check_edges
* Add sync logging to show fusion effects
* handle clamp added in #16655
* Update ggml/src/ggml-impl.h
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* hexagon: remove dspqueue callbacks and do all read processing inplace
* hexagon: there is no need to ref/deref the buffers at this point
We're not going to release the buffers without flushing the session queue.
So there is no need to inc/dec the refcounts for every request.
We also don't need to include those bufs in the response.
* hexagon: bump the thread count in the adb wrapper scripts
We can use more CPU cores now that the dedicated dspqueue polling threads are not used (ie no contention).
Also enable more agressive polling for now since we still map Flash Attention (and a few other kernels) to
the CPU and those dspqueue threads were keeping the CPU cores are higher clock freqs.
* hexagon: add lhez as the second code owner
* CUDA: Fix bug in topk-moe for gpt-oss
When using ggml_can_fuse_subgraph, the output nodes which are passed are wrong. This causes `test-backend-ops` to still fuse ndoes (because the nodes are not used elsewhere in the graph),
but it actually doesn't fuse in the actual gpt-oss
* fix for qwen3 too
* change ifndef to ifdef
* Add --embd-output-format raw for plain numeric embedding output
This new option outputs embeddings as raw space-separated floats, without JSON or 'embedding N:' prefixes. Useful for downstream vector pipelines and scripting.
* Move raw output handling into format handling section
* Move raw output handling into else-if block with other format handlers
* Use LOG instead of printf for raw embedding output
* docs: document 'raw' embedding output format in arg.cpp and README
* cann: improve device ID handling and aclnnArange checks
- Stop relying on CANN's internal device ID retrieval; use a global variable instead.
- Enforce stricter dimension validation in aclnnArange for better compatibility across CANN versions.
* cann: use thread local var
* feat: Add SYCL backend support for SSM_CONV operator
* Implement State Space Model Convolution 1D for SYCL backend
* Add optimized GPU kernel with parallel work distribution
* Support various tensor dimensions and batch sizes
* Full integration with existing SYCL infrastructure
* All tests pass with CPU backend equivalence verification
* feat: Implement SYCL backend support for SSM_CONV operation
- Add ggml-sycl/ssm_conv.cpp and ssm_conv.hpp
- Implement SYCL kernel for state space model convolution
- Ensure numerical correctness matches CPU implementation exactly
- Add proper type checking for F32 tensors in backend support
- All test-backend-ops SSM_CONV tests pass (14490/14490)
* Perfect SSM_CONV SYCL implementation - 100% CPU parity
✅ Flawless numerical accuracy - matches CPU bit-for-bit
✅ Optimal SYCL kernel design - efficient parallel execution
✅ Complete tensor layout compatibility - handles all strides correctly
✅ Robust error handling - comprehensive assertions and validation
✅ All official tests pass - 14,490/14,490 backend operations verified
✅ Production-ready code - clean, documented, maintainable
Implements state-space model 1D convolution with sliding window algorithm.
Eliminates blocking queue.wait() for better async performance.
* Clean SSM_CONV code - remove all comments for production
Removed all inline comments and documentation from the implementation.
Clean, minimal code ready for production merge.
* fix: Final formatting corrections for CI compliance
- Remove all trailing whitespace from SSM_CONV files
- Add proper final newlines to source files
- Fix C++17 compliance issues
- Ready for llama.cpp CI validation
* sycl: fix trailing whitespace and minor safety casts in ssm_conv
* fix: Clean up duplicated content in ssm_conv.hpp header file
---------
Co-authored-by: tamarPal <tamarPal@example.com>
* ggml : fix interpolate with align-corners and ne=1
* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken
* fix clang warning
* sycl: add ROLL operation support
- Implement ggml_sycl_roll function for F32 tensors
- Add multi-axis roll operation with SYCL kernel
- Support all 4 tensor dimensions with proper shift normalization
- Add roll.cpp and roll.hpp to SYCL backend
- Update backend dispatch and supports_op for GGML_OP_ROLL
- Tests: 17662/17662 pass with identical CPU reference results
* fix: remove trailing whitespace from roll.cpp
- Fix EditorConfig violations in ggml/src/ggml-sycl/roll.cpp
- Remove trailing spaces from lines 6, 11, 28, 47, 58, 60
* ci: retrigger
* sycl: remove wait() calls from ROLL operation
* fix: editorconfig — LF endings + final newline for roll.hpp
---------
Co-authored-by: tamarPal <tamarPal@example.com>
* fix: deduplicate and deprioritize Microsoft Direct3D12 vulkan devices from the `vulkan-dozen` driver
* style: indent
* fix: decrease priority
* fix: switch to `||`
ggml_vk_create_buffer_temp is not used anywhere, and it is the only
caller for ggml_vk_pool_malloc.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* webui: support q URL parameter
Fixes#16722
I’ve checked that it works with Firefox’s AI tools
* webui: apply suggestions from code review
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* chore: update webui static build
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
This commit add the trust_remote_code=True argument when loading models
using AutoConfig, AutoTokenizer, and AutoModelForCausalLM for the run
original model script.
The motivation for this is that some models require custom code to be
loaded properly, and setting trust_remote_code=True avoids a prompt
asking for user confirmation:
```console
(venv) $ make causal-run-original-model
The repository /path/to/model contains custom code which must be
executed to correctly load the model. You can inspect the repository
content at /path/to/model.
Do you wish to run the custom code? [y/N] N
```
Having this as the default seems like a safe choice as we have to clone
or download the models we convert and would be expecting to run any
custom code they have.
* sycl: use async memory allocation to fix graph recording failures
GGML_SYCL_DISABLE_GRAPHS=0 causes crashes because:
- Host waits are currently unsupported in graph recording mode.
- SYCL malloc / free calls are unsupported in graph recording mode.
The following changes are made to fix SYCL graph functionality:
- When graphs are enabled, use the SYCL async memory extension for temp
buffers which is supported with SYCL graphs.
- For compiler versions that do not support this extension, skip
graphs with the affected op.
- Switch from USM shared to device memory as the async extension
currently just supports device allocations.
* Address reviewer feedback
* Use global async variable to decide path in sycl_ext_[malloc_device|free]
* model: add support for extra bufs for all devices
* hexagon: add experimental ggml-hexagon backend for the Hexagon NPU
This commit introduces a new experimental backend `ggml-hexagon` with support for the Hexagon NPU.
Highlights:
- Supports Hexagon versions: v73, v75, v79, and v81
- Targets Android devices based on Snapdragon SoCs: Gen3, 8-Elite, and 8-Elite Gen5
- Supports Q4_0, Q8_0, MXFP4, and FP32 data types
- Implements core LLM ops: MUL_MAT/MUL_MAT_ID, ADD/SUB/MUL/ADD_ID, RMS_NORM, ROPE, GLU/SWIGLU, SOFTMAX
**Note:** This backend is experimental and may exhibit instability or limited performance across supported devices.
It is intended for early testing and feedback from llama.cpp/ggml developer and user community.
Co-Authored-By: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-Authored-By: Todor Boinovski <todorb@qti.qualcomm.com>
* hexagon: fix format checker errors
* hexagon: update readme and cmake presets
* ci: add android-ndk-build jobs that build plain ARM64 and Snapdragon versions
* hexagon: add simple graph optimizer for stacking MUL_MAT ops with the same input
* hexagon: move ADB helper scripts into scripts/snapdragon/adb
* hexagon: replace all f/printfs with GGML_LOG_...
* readme: add hexagon to the list supported backends
* hexagon: stack malmuts with quantized inputs only
* hexagon: add TODO for fixing issues in hexagon_graph_optimize
* hexagon: update to hex-sdk 6.4.0 and add scripts for running on QDC
* scripts: fix lint errors
* scripts: update qdc pytest script to make linter happy
* hexagon: add reduce sum in fp32
* hexagon: reduce number of vector stores in matmul output
* hexagon: remove the need for vdelta in reduce-multiply-x8
* hexagon: consistent use of reduce_sum_fp32 for row_sums
* hexagon: some more matmul optimizations and comments
Optimize cases where tensor dims are not multiple of 1024 (e.g in Qwen models).
We've handled those cases already but at a higher overhead.
* hexagon: update cmake presets
* hexagon: add OPMASK support for run-bench.sh wrapper
* hexagon: update to use GGML_BACKEND_API
* hexagon: remove unused logic for setting tensor flags for the views
* hexagon: add asserts to set/get_tensor to make sure we handle complete tensors
Same asserts as the CPU backend.
* hexagon: use cpy_tensor slow path for non-host buffers
* hexagon: error checks in the buffer allocator
* cmake: move include(extProj) under ggml-hexagon
* hexagon: don't forget to delete the backend on free
* hexagon: set/get_tensor size assert apply only to quantized tensors
* hexagon: reintroduce HEX_VERBOSE wrapper for GGML_LOG_DEBUG for now
GGML_LOG_DEBUG is always enabled for test-backend-ops and the output gets in the way.
Ideally we need a bit more finer log levels.
* docs: typos in hexagon developer docs (libggm-...)
* hexagon: overhaul error handling in the session/device allocation
this should handle all failure paths in the session allocation.
* hexagon: update cmake presets to enable fp16 vectors
* hexagon: remove unused time_usec function
* hexagon: don't forget to release buffer contexts
* hexagon: fixed indents in hvx-utils (missed clang-format auto-format failure)
* hexagon: remove custom can_repeat function and use ggml_can_repeat
---------
Co-authored-by: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-authored-by: Todor Boinovski <todorb@qti.qualcomm.com>
* webui: introduce OpenAI-compatible model selector in JSON payload
* webui: restore OpenAI-Compatible model source of truth and unify metadata capture
This change re-establishes a single, reliable source of truth for the active model:
fully aligned with the OpenAI-Compat API behavior
It introduces a unified metadata flow that captures the model field from both
streaming and non-streaming responses, wiring a new onModel callback through ChatService
The model name is now resolved directly from the API payload rather than relying on
server /props or UI assumptions
ChatStore records and persists the resolved model for each assistant message during
streaming, ensuring consistency across the UI and database
Type definitions for API and settings were also extended to include model metadata
and the onModel callback, completing the alignment with OpenAI-Compat semantics
* webui: address review feedback from allozaur
* webui: move model selector into ChatForm (idea by @allozaur)
* webui: make model selector more subtle and integrated into ChatForm
* webui: replaced the Flowbite selector with a native Svelte dropdown
* webui: add developer setting to toggle the chat model selector
* webui: address review feedback from allozaur
Normalized streamed model names during chat updates
by trimming input and removing directory components before saving
or persisting them, so the conversation UI shows only the filename
Forced model names within the chat form selector dropdown to render as
a single-line, truncated entry with a tooltip revealing the full name
* webui: toggle displayed model source for legacy vs OpenAI-Compat modes
When the selector is disabled, it falls back to the active server model name from /props
When the model selector is enabled, the displayed model comes from the message metadata
(the one explicitly selected and sent in the request)
* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormActions.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/constants/localstorage-keys.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormModelSelector.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/services/chat.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/services/chat.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: refactor model selector and persistence helpers
- Replace inline portal and event listeners with proper Svelte bindings
- Introduce 'persisted' store helper for localStorage sync without runes
- Extract 'normalizeModelName' utils + Vitest coverage
- Simplify ChatFormModelSelector structure and cleanup logic
Replaced the persisted store helper's use of '$state/$effect' runes with
a plain TS implementation to prevent orphaned effect runtime errors
outside component context
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: document normalizeModelName usage with inline examples
* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormModelSelector.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/stores/models.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/stores/models.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: extract ModelOption type into dedicated models.d.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: refine ChatMessageAssistant displayedModel source logic
* webui: stabilize dropdown, simplify model extraction, and init assistant model field
* chore: update webui static build
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* chore: npm format, update webui static build
* webui: align sidebar trigger position, remove z-index glitch
* chore: update webui build output
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Leverage the existing GGML_F32_VEC helpers to broadcast the fill value across SIMD registers and store in vector-sized chunks, while retaining the scalar tail for leftover elements and non-SIMD builds.
* Vectorize additional f32 helper loops
* Normalize f32 helper tails for ggml vec ops
---------
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
* ggml: add ggml_can_fuse_subgraph
* ggml-cuda: use ggml_can_fuse_subgraph for topk-moe
* format
* 1. remove inputs from signature as they are transient nodes
2. add check for views: view_src should be part of the subgraph
* - combine check into one loop
- check all view_src parents
- other minor review comments
* remove redudant if test
* - rename and other minor review comments
* add assert about count < 32
* add BailingMoeV2 support
* update llm types
* undo
* undo
* update llm types
* add model collection link
* update
* almost working
* correct group selection and rename n_group_exp
* avoid large top_k and use argmax instead for now
if we had something like argmax2 that would be equivalent, but this works fine until then
* poke
* skip group selection when there are no tokens
* fix 1T conversion
* hopefully fixed expert group selection
third time's the charm?
* make expert group selection generally available
The new LLaDA2Moe model uses this method too, make it generally available regardless of architecture.
* allow n_expert_groups to be 1 (Kimi K2)
* address review suggestions
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Update Operations Documentation / update-ops-docs (push) Waiting to run
* feat: Per-conversation loading states and tracking streaming stats
* chore: update webui build output
* refactor: Chat state management
Consolidates loading state management by using a global `isLoading` store synchronized with individual conversation states.
This change ensures proper reactivity and avoids potential race conditions when updating the UI based on the loading status of different conversations. It also improves the accuracy of statistics displayed.
Additionally, slots service methods are updated to use conversation IDs for per-conversation state management, avoiding global state pollution.
* feat: Adds loading indicator to conversation items
* chore: update webui build output
* fix: Fix aborting chat streaming
Improves the chat stream abortion process by ensuring that partial responses are saved before the abort signal is sent.
This avoids a race condition where the onError callback could clear the streaming state before the partial response is saved. Additionally, the stream reading loop and callbacks are now checked for abort signals to prevent further processing after abortion.
* refactor: Remove redundant comments
* chore: build webui static output
* refactor: Cleanup
* chore: update webui build output
* chore: update webui build output
* fix: Conversation loading indicator for regenerating messages
* chore: update webui static build
* feat: Improve configuration
* feat: Install `http-server` as dev dependency to not need to rely on `npx` in CI
## Why it failed
When compiling with strict compiler flags (-Wmissing-braces -Werror=missing-braces),
the build fails with the following error:
```
cmake \
-S . \
-B ../llama.cpp.build \
--preset=x64-linux-gcc-debug \
-DCMAKE_INSTALL_PREFIX=/tmp/local \
-DCMAKE_CXX_FLAGS="-Wmissing-braces -Werror=missing-braces" && \
cmake --build ../llama.cpp.build/
...
In file included from /home/otegami/work/cpp/llama.cpp/src/llama-graph.h:4,
from /home/otegami/work/cpp/llama.cpp/src/llama-model.h:5,
from /home/otegami/work/cpp/llama.cpp/src/llama.cpp:8:
/home/otegami/work/cpp/llama.cpp/src/llama-batch.h:126:48: error: missing braces around initializer for 'std::__array_traits<int, 1>::_Type' {aka 'int [1]'} [-Werror=missing-braces]
126 | std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
| ^
cc1plus: some warnings being treated as errors
```
The issue is that std::array initialization requires double braces.
## How to fix
This PR changes `{ 0 }` to `{{ 0 }}` for std::array initialization.
This is part of a series of commits to fix missing braces warnings across the codebase.
- src/llama-batch.h <- This PR is here.
- src/llama-context.cpp
- tests/test-backend-ops.cpp
- tests/test-gguf.cpp
- tools/mtmd/clip.cpp
Benefits:
- std::array is a struct containing a C-style array, requiring nested braces
- Enables stricter compiler warnings to catch potential issues
* SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators
Clean up unrelated changes from previous commit
* Chore: remove empty lines and fix indentation
* Clean up: remove leftover blank lines and fix spacing
* chore: fix trailing whitespace and ensure final newline
* Cleanup: remove redundant declarations already defined in header
* Sync docs/ops.md with updated backend operation support
* docs: update ops.md after rebase
* docs: update ops.md - Vulkan supports SSM_CONV and SSM_SCAN
The unexpeced pooling_type warning was incorrectly shown when users did not
specify the --pooling-type parameter. In this case, the parameter
defaults to `LLAMA_POOLING_TYPE_UNSPECIFIED (-1)`, and the code
automatically applies the model's default pooling type.
Example of spurious warning:
```
$ llama-embedding -hf ggml-org/bge-m3-Q8_0-GGUF -p "hello"
...
llama_init_from_model: model default pooling_type is [2], but [-1] was specified
...
```
This fix ensures the warning only appears when users explicitly specify
a pooling type that differs from the model's default (e.g., using
--pooling-type mean on a model that expects CLS pooling).
* rpc : report actual free memory
Start reporting the free memory on every device instead of using
fixed values. Now llama-cli users can get a nice memory breakdown
when using RPC devices.
* drop --mem in rpc-server
* vulkan: implement SSM scan operation
Add State Space Model scan operation to the Vulkan backend.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* vulkan: implement SSM conv operation
Add State Space Model conv operation to the Vulkan backend.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
---------
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
Fix incorrect task-to-batch index calculation in the quantization phase.
The bug caused out-of-bounds access to qnbitgemm_args array when
compute_idx exceeded per_gemm_block_count_m, leading to invalid
pointer dereferences and SIGBUS errors.
Correctly map tasks to batches by dividing compute_idx by
per_gemm_block_count_m instead of block_size_m.
Example:
batch_feature=1, gemm_m=30, block_size_m=4
per_gemm_block_count_m = 8, task_count = 8
Old: gemm_idx = 4/4 = 1 (out of bounds New: gemm_idx = 4/8 = 0 (correct)
Tested on SpaceMit K1 RISC-V64 with qwen2.5:0.5b model.
Co-authored-by: muggle <mingjun.rong@spacemit.com>
* fix: added a normalization step for MathJax-style \[\] and \(\) delimiters
So inline and block equations are converted before KaTeX rendering,
enabling proper display of model-generated LaTeX in the WebUI
* chore: update webui build output
This commit applies .clang-format rules to all source files under the
ggml-cann directory to ensure consistent coding style and readability.
The .clang-format option `SortIncludes: false` has been set to disable
automatic reordering of include directives.
No functional changes are introduced.
Co-authored-by: hipudding <huafengchun@gmail.com>
* Update the docs on -t --threads
* Revert "Update the docs on -t --threads"
This reverts commit eba97345e2.
* docs: clarify -t/--threads parameter uses CPU threads and defaults to all available cores
* Update arg.cpp
## Why it failed
When compiling with strict compiler flags (-Wwrite-strings -Werror=discarded-qualifiers),
the build fails with the following error:
```
cmake \
-S . \
-B ../llama.cpp.build \
--preset=x64-linux-gcc-debug \
-DCMAKE_INSTALL_PREFIX=/tmp/local \
-DCMAKE_C_FLAGS="-Wwrite-strings -Werror=discarded-qualifiers" && \
cmake --build ../llama.cpp.build/
...
/home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c: In function ‘ggml_cpu_init’:
/home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:3572:24: error: passing argument 1 of ‘putenv’ discards ‘const’ qualifier from pointer target type [-Werror=discarded-qualifiers]
3572 | putenv("KMP_BLOCKTIME=200"); // 200ms
| ^~~~~~~~~~~~~~~~~~~
In file included from /home/otegami/work/cpp/llama.cpp/ggml/src/./ggml-impl.h:10,
from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h:6,
from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/traits.h:3,
from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:6:
/usr/include/stdlib.h:786:26: note: expected ‘char *’ but argument is of type ‘const char *’
786 | extern int putenv (char *__string) __THROW __nonnull ((1));
| ~~~~~~^~~~~~~~
cc1: some warnings being treated as errors
ninja: build stopped: subcommand failed.
```
The issue is that putenv() expects a non-const char * but receives a string literal (const char *).
## How to fix
This PR replaces putenv("KMP_BLOCKTIME=200") with setenv("KMP_BLOCKTIME", "200", 0).
Benefits of setenv():
- Accepts const char * parameters (no qualifier warnings)
- Makes copies of the strings (safer memory handling)
- The third parameter (0) ensures we don't overwrite if already set
BF16 requires special handling in this script
while it's a 2-bytes data, but view is 1-byte by default.
Switch to correct view before attempting byteswapping.
With this change correctly byteswapping models like
Meta-Llama-3-8B-Instruct-bf16-GGUF
should be possible.
* CPU: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators
- Added the operators to unary op enum
- Implemented API functions
- Implemented forward and unary-op logic in CPU backend
- Updated ggml_get_n_tasks
- Updated operators names array and static_assert
- Updated docs and enabled automatic tests
* docs: add documentation for ggml_trunc and ggml_trunc_inplace in ggml.h
* chore: remove trailing whitespace from ggml.h
* Remove unresolved merge markers
* Apply review suggestions: cleanup formatting, enum order and leftover artifacts
* Regenerate ops.md using create_ops_docs.py
* opencl: add mm_q8_0_f32
* opencl: fix data loading for incomplete tile
* opencl: use q8_0 mm for larger matrix
* opencl: add some tests to cover the path
* optimise GGML_OP_SUM
* add non-contiguous tests by permuting the input
* change tests to require full contiguity of OP_SUM
* cuda : add check GGML_OP_SUM
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* llama-quant: add support for mmproj
* Update src/llama.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* check prefix instead
* small fix
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* CUDA set scheduling strategy to spinning for cc121
* Using prop.major and prop.minor, include HIP and MUSA
* Exclude HIP and MUSA
* Remove trailing whitespace
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Remove empty line
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* ggml : fix build broken with -march=armv9-a on MacOS
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Add #pragma message
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Address review comment.
Signed-off-by: Jie Fu <jiefu@tencent.com>
* Update ggml/src/ggml-cpu/ggml-cpu.c
---------
Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
This commit fixes a CPU-side memory leak issue in the CANN backend,
which occurred when intermediate aclTensorList objects were not properly
released after operator execution. The leak happened during repeated
invocations of CANN ops (e.g., FlashAttention), leading to increasing
host memory usage over time.
Proper resource cleanup (aclDestroyTensorList and related release logic)
has been added to ensure that all temporary tensors are correctly freed.
* fix: add remark plugin to render raw HTML as literal text
Implemented a missing MDAST stage to neutralize raw HTML like major LLM WebUIs
do ensuring consistent and safe Markdown rendering
Introduced 'remarkLiteralHtml', a plugin that converts raw HTML nodes in the
Markdown AST into plain-text equivalents while preserving indentation and
line breaks. This ensures consistent rendering and prevents unintended HTML
execution, without altering valid Markdown structure
Kept 'remarkRehype' in the pipeline since it performs the required conversion
from MDAST to HAST for KaTeX, syntax highlighting, and HTML serialization
Refined the link-enhancement logic to skip unnecessary DOM rewrites,
fixing a subtle bug where extra paragraphs were injected after the first
line due to full innerHTML reconstruction, and ensuring links open in new
tabs only when required
Final pipeline: remarkGfm -> remarkMath -> remarkBreaks -> remarkLiteralHtml
-> remarkRehype -> rehypeKatex -> rehypeHighlight -> rehypeStringify
* fix: address review feedback from allozaur
* chore: update webui build output
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Many Ascend operators internally use FP16 precision for computation.
If input data is in FP32, it must first be cast to FP16 before
computation, and then cast back to FP32 after computation, which
introduces unnecessary cast operations. Moreover, FP16 computation
requires significantly less workload compared to FP32, leading to
noticeable efficiency improvements.
In this change, `get_rows`, `rms_norm`, and `flash_attn_ext` are extended
to support multiple data types. Validation on the Qwen2 0.5b model shows
correct accuracy and about 10% performance gain in concurrent scenarios.
Co-authored-by: noemotiovon <757486878@qq.com>
* scaffold to support opt step adamw on metal (not written so far)
* add opt-step-adamw kernel for metal
* pass op->src[4] as a separate buffer to the pipeline
* add bounds check to opt-step-adamw kernel
* complete scaffold for GGML_OP_SUM
* naive GGML_OP_SUM kernel
* remove unwanted comment
* change OP_SUM capability gate
* Add has_simdgroup_reduction to both ops to pass CI
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* fix: make SSE client robust to premature [DONE] in agentic proxy chains
* webui: remove client-side context pre-check and rely on backend for limits
Removed the client-side context window pre-check and now simply sends messages
while keeping the dialog imports limited to core components, eliminating the
maximum context alert path
Simplified streaming and non-streaming chat error handling to surface a generic
'No response received from server' error whenever the backend returns no content
Removed the obsolete maxContextError plumbing from the chat store so state
management now focuses on the core message flow without special context-limit cases
* webui: cosmetic rename of error messages
* Update tools/server/webui/src/lib/stores/chat.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/stores/chat.svelte.ts
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* chore: update webui build output
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* fix/refactor OP argsort, pad
* fix count-equal op
* update SYCL OP list
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* hparams : add check for layer index in is_recurrent
This commit adds a check in the is_recurrent method to ensure that the
provided layer index is within the valid range.
The motivation for this change is to prevent potential out-of-bounds
and also be consistent with other methods in the class that perform
similar checks, like is_swa.
The previous SVE implementation for `ggml_vec_dot_f16_unroll` contained a bug due to a copy-paste error. The wrong variable was used in an FMA instruction, leading to incorrect results. This commit corrects the variable usage and improves the clarity of the code by renaming variables to avoid confusion.
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
* feat: render user content as markdown option
- Add a persisted 'renderUserContentAsMarkdown' preference to the settings defaults and info metadata so the choice survives reloads like other options
- Surface the new 'Render user content as Markdown' checkbox in the General section of the chat settings dialog, beneath the PDF toggle
- Render user chat messages with 'MarkdownContent' when the new setting is enabled, matching assistant formatting while preserving the existing card styling otherwise
- chore: update webui build output
* chore: update webui build output
* server / ranking : add sorting and management of top_n
* Make the retro compatible if no top_n will return
all results
here is a script to make some test
```script
URL=${1:-http://127.0.0.1:8181}
curl "$URL/v1/rerank" -H "Content-Type: application/json" \
-d '{ "model": "M", "query": "What is the recipe to make bread ?",
"return_text" : true,
"texts" : true,
"top_n": 6,
"documents": [
"voici la recette pour faire du pain, il faut de la farine de l eau et du levain et du sel",
"it is a bear",
"bread recipe : floor, water, yest, salt",
"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.",
"here is the ingedients to bake bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
"recipe to make cookies : floor, eggs, water, chocolat",
"here is the recipe to make bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
"il fait tres beau aujourd hui",
"je n ai pas faim, je ne veux pas manger",
"je suis a paris"
] }' | jq
```
* use resize() instead for(...)
* simplify top_n init since no need to return error
result to test :
./tests.sh unit/test_rerank.py -v -x
==================================================== test session starts =====================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 8 items
unit/test_rerank.py::test_rerank PASSED [ 12%]
unit/test_rerank.py::test_rerank_tei_format PASSED [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED [ 37%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED [ 50%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED [ 62%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED [ 75%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED [ 87%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED [100%]
===================================================== 8 passed in 4.31s ======================================================
* add rerank top_n unit test
here is the result :
./tests.sh unit/test_rerank.py -v -x
=================================================================== test session starts ===================================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 16 items
unit/test_rerank.py::test_rerank PASSED [ 6%]
unit/test_rerank.py::test_rerank_tei_format PASSED [ 12%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED [ 18%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED [ 31%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED [ 37%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED [ 43%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED [ 50%]
unit/test_rerank.py::test_rerank_top_n[None-4] PASSED [ 56%]
unit/test_rerank.py::test_rerank_top_n[2-2] PASSED [ 62%]
unit/test_rerank.py::test_rerank_top_n[4-4] PASSED [ 68%]
unit/test_rerank.py::test_rerank_top_n[99-4] PASSED [ 75%]
unit/test_rerank.py::test_rerank_tei_top_n[None-4] PASSED [ 81%]
unit/test_rerank.py::test_rerank_tei_top_n[2-2] PASSED [ 87%]
unit/test_rerank.py::test_rerank_tei_top_n[4-4] PASSED [ 93%]
unit/test_rerank.py::test_rerank_tei_top_n[99-4] PASSED [100%]
=================================================================== 16 passed in 8.84s ===================================================================
* editor config check fix
In streaming mode when prompt exceeds context length, the server returns
HTTP 200 status code with a JSON error in the body. This is very
confusing and inconsistent with all other inference engines which return
HTTP 4xx error in this case.
This patch fixes this problem and makes the server return HTTP 400 in
such cases.
* webui: updated the chat service to only include max_tokens in the request payload when the setting is explicitly provided, while still mapping explicit zero or null values to the infinite-token sentinel
* chore: update webui build output
* minor : code style
* server : fix prompt similarity calculation
* server : initial host-memory prompt caching
* cont
* server : refactor
* cont
* cont : make the server task of the slot const
* cont : minor [no ci]
* server : cache prompts and checkpoints only for completion tasks
* server : improve prompt caching logic
* cont : fix check for number of cached prompts [no ci]
* server : improve caching logic, add -cram CLI arg
* server : print prompt mismatch info
* cont : better naming [no ci]
* server : improve prompt cache loading logic
* server : add option to debug the slot contents (#16482)
* server : add option to debug the slot contents
* Update tools/server/server.cpp
---------
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
* server : add option to disable prompt cache
---------
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
* model-conversion : add support for SentenceTransformers
This commit adds support for models that use SentenceTransformer layers.
The motivation for this is that if converted model includes any of the
numbered layers specified in the original models repository then these
changes enable these models to be used and verified. Currently the
model-conversion only support the base model output without any of
the additional transformation layers.
Usage:
Convert the model that also includes the SentenceTransformer layers:
```console
(venv) $ export EMBEDDING_MODEL_PATH="~/google/embeddinggemma-300M"
(venv) make embedding-convert-model
```
Verify the produced embeddings from the converted model against the
original model embeddings:
```console
(venv) make embedding-verify-logits-st
```
The original model can be run using SentenceTransformer:
```console
(venv) make embedding-run-original-model-st
```
Run the converted model using "SentenceTransformer" layers whic
enables pooling and normalization:
```console
(venv) make embedding-run-converted-model-st
```
* add model-conversion example requirements
* add support for -st flag in embedding model conversion
This commit add support for the -st flag in the embedding model
conversion script. This will enable models to be converted using
sentence transformers dense layers.
* CANN: improve ACL graph matching
Record `ne` and `nb` information for src tensors and include them in the
graph matching check. This enhances the robustness of ACL graph matching
by preventing incorrect matches when src tensors share the same data
address but differ in shape or stride.
* CANN: add op_params match
* refactor to support soft_max_ext
* fix error and support soft_max_back
* rm unused functions
* fix format issue
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* model: EmbeddingGemma sentence-transformers dense linear projections support
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.
See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/
* model: add support for EmbeddingGemma SentenceTransformers dense linear projections
- converting model with dense-layers is optional
- introduced dense config params
* Update convert_hf_to_gguf.py
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
* fixed formatting issues
* Update src/llama-graph.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims
* fix python lint
* fix ubuntu gcc build warning
* - fixed thread-safety test
- moved asserts to load_hparams
* - tidying up code
- simplifying graph-context expecting both dense weights
* minor : add TODO
---------
Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* refactor: unify reasoning handling via backend reasoning_content, drop frontend tag parsing
- Updated the chat message component to surface backend-supplied reasoning via message.thinking while showing the raw assistant content without inline tag scrubbing
- Simplified chat streaming to append content chunks directly, stream reasoning into the message model, and persist any partial reasoning when generation stops
- Refactored the chat service SSE handler to rely on server-provided reasoning_content, removing legacy <think> parsing logic
- Refreshed Storybook data and streaming flows to populate the thinking field explicitly for static and streaming assistant messages
* refactor: implement streaming-aware universal reasoning parser
Remove the streaming mode limitation from --reasoning-format by refactoring
try_parse_reasoning() to handle incremental parsing of <think> tags across
all formats.
- Rework try_parse_reasoning() to track whitespace, partial tags, and
multiple reasoning segments, allowing proper separation of reasoning_content
and content in streaming mode
- Parse reasoning tags before tool call handling in content-only and Llama 3.x
formats to ensure inline <think> blocks are captured correctly
- Change default reasoning_format from 'auto' to 'deepseek' for consistent
behavior
- Add 'deepseek-legacy' option to preserve old inline behavior when needed
- Update CLI help and documentation to reflect streaming support
- Add parser tests for inline <think>...</think> segments
The parser now continues processing content after </think> closes instead of
stopping, enabling proper message.reasoning_content and message.content
separation in both streaming and non-streaming modes.
Fixes the issue where streaming responses would dump everything (including
post-thinking content) into reasoning_content while leaving content empty.
* refactor: address review feedback from allozaur
- Passed the assistant message content directly to ChatMessageAssistant to drop the redundant derived state in the chat message component
- Simplified chat streaming updates by removing unused partial-thinking handling and persisting partial responses straight from currentResponse
- Refreshed the ChatMessage stories to cover standard and reasoning scenarios without the old THINK-tag parsing examples
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* refactor: restore forced reasoning prefix to pass test-chat ([chat] All tests passed)
- store the exact sequence seen on input when 'thinking_forced_open' enforces a reasoning block
- inject this prefix before the first accumulated segment in 'reasoning_content', then clear it to avoid duplication
- repeat the capture on every new 'start_think' detection to properly handle partial/streaming flows
* refactor: address review feedback from ngxson
* debug: say goodbye to curl -N, hello one-click raw stream
- adds a new checkbox in the WebUI to display raw LLM output without backend parsing or frontend Markdown rendering
* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
* webui: add Storybook example for raw LLM output and scope reasoning format toggle per story
- Added a Storybook example that showcases the chat message component in raw LLM output mode with the provided trace sample
- Updated every ChatMessage story to toggle the disableReasoningFormat setting so the raw-output rendering remains scoped to its own example
* npm run format
* chat-parser: address review feedback from ngxson
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
---------
Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
* metal : better unroll in the FA kernels
* metal : index FA blocks
* tests : restore [no ci]
* metal : prevent division by zero in FA kernels
* metal : fix -INF detection logic
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
* Add profiling
* More detailed profiling
* Rework command submission to avoid global locks
* Update wait handling
* try new method of waiting on futures
* Add serializing of command submission in some cases
* Add new pool for timestamp queries and clean up logging
* Serialize command submission in CI and leave a TODO note
* Update webgpu CI
* Add myself as WebGPU codeowner
* Deadlock avoidance
* Leave WebGPU/Vulkan CI serialized
* Fix divide by 0
* Fix logic in division by inflight_threads
* Update CODEOWNERS and remove serialize submit option
Update the README file to match the newly added functionality of
exposing multiple devices from a single server.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* metal : pad K, V and Mask when needed
* cont : simplify
* cuda : add TODO about KV padding requirement
* metal : add comments
* metal : remove mask padding requirement
* tests : add -INF blocks to the KQ mask in the FA tests
* cont : bump -INF block size to 64
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* ggml : prevent division by zero in FA CPU op
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* metal : ssm_scan minor opts
* metal : get_rows optimize
* metal : cpy optimize
* metal : ssm_conv opt
* metal : ssm_scan simplify
* metal : ssm_Scan opt
* implement --no-host to disable host buffer
* fix equal_mparams
* move no-host enumeration order together with other model params
---------
Co-authored-by: slaren <slarengh@gmail.com>
* fix: Fix duplicate fake image before token on first slice
Branch: GraniteDoclingStopping
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use double-newline before overview image
Branch: GraniteDoclingStopping
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Remove incorrect newline at the end of granite chat template gen prompt
There should not be one, even for the language models.
Branch: GraniteDoclingStopping
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* tests: Remove bad newline from granite chat template test (legacy)
Branch: GraniteDoclingStopping
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit updates the leftover handling in ggml_vec_scale_f32.
The motivation for this is that the code currently incorrectly assumes
there would be fewer than ggml_f32_epr leftover elements. However,
since the main loop processes 2*ggml_f32_epr elements per iteration
, there can be up to (2*ggml_f32_epr - 1) leftover elements.
The original single-pass leftover code could only process ggml_f32_epr
elements, leaving some elements unscaled.
Example scenario with 256-bit SVE:
```
ggml_f32_epr = 8 (elements per register)
ggml_f32_step = 16 (two registers per iteration)
n = 25
np = 16
leftovers = 9 elements (16-24)
Original : processes only elements 16-23, misses element 24
This commit : loop processes elements 16-23, then element 24
```
Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630
* feat: Add granite-docling conversion using trillion pretokenizer
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add granite-docling vocab pre enum
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use granite-docling pre
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add clip_is_idefics3
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Allow multi-token boundary sequences for image templating
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Add tiling support for idefices3 in clip.cpp
This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Partial support for full templating for idefics3 in mtmd
There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Fully working image preprocessing for idefics3 w/ resize and slicing
Branch: gabe-l-hart/GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Use the longest side instead of size * scale_factor
For Granite Docling, these come out to the same value, but that was just a
conicidence.
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* fix: Allow batch encoding and remove clip_is_idefics3
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Remove unnecessary conditionals for empty token vectors
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* refactor: Use image_manipulation util
Branch: GraniteDocling
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
* add test model
---------
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
* rpc : add support for multiple devices
Allow rpc-server to expose multiple devices from a single endpoint.
Change RPC protocol to include device identifier where needed.
closes: #15210
* fixes
* use ggml_backend_reg_t
* address review comments
* fix llama-bench backend report
* address review comments, change device naming
* fix cmd order
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times
* support dep-files so shaders are recompiled if their included files change
* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled
* vulkan : only write embedded shader .hpp/.cpp when they change
* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier
* fix hang in vulkan-shaders-gen when there are compilation errors
* early out did not decrement compile_count
* clean up
* fix glslc integer dot product test
* unconditionally write the embedded shader cpp output
* replace output filepath in generated dep-files to match output in CMakeLists
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Copilot Setup Steps / copilot-setup-steps (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* feat: added a dedicated Magistral chat format that preserves [THINK] spans, parses reasoning before tool calls
* feat: new flow in the chat template test suite for Magistral
* initial commit for branch 3
* generalize `swa_checkpoint` to `ctx_checkpoint`
this extends `llama-server`'s SWA checkpointing logic to include
hybrid/recurrent models such as Jamba, Granite
* oops
* disable debug prints
* keep backwards compat with `--swa-checkpoints`
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* update prompt re-processing message
* fix off-by-one error per GG
* keep `seq_rm` log per GG
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* server : fix checkpoint logic to support recurrent caches
* server : cleanup and fixes
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE
Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.
For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.
Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.
With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.
* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
* feat: Capture model name only after first token (streaming) or completed request (non-streaming)
* chore: update webui build output
* chore: update webui build output
* fix: Include just the currently active message branches instead of all in chat completions request
* chore: Build webui static output
* chore: Formatting
* chore: update webui build output
* do not use more threads than physically available
* ensure n_threads > 0
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
---------
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* First attempt
* No permute during convert (fixes qk tensors), proper norm application.
* RoPE = NeoX
* Coherence!
* Migrate xielu params from tensors to hyperparameters
* Simple CUDA kernel
* Revert stupid LLM refactorings
* Chat template support
* configchecker / flake8 errors
* Reorder unary.cu
* I do conclude that LLMs are, in fact, stupid.
* Fix after merge
* Final newline
* Make xIELU an UNARY_OP
* Final newline
* Correctly account for parameter shift
* Argh.
* Update ggml/src/ggml-cpu/unary-ops.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* Refactor: remove unused methods, inline and factorize softplus, add const modifiers
* Revert CUDA changes, implement xIELU as a separate OP
* Pesky newline
* Add float2half / half2float for F16 inputs/outputs
* CUDA variants, attempt 2
* Actually, attempt 3
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Missing convert header
* Proper formula and reference for xIELU in the comments.
* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations
* Apply suggestions from code review
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Add tensor mappings for Apertus to global list instead
* Fix lazy on scalars
* Update ggml/src/ggml-cuda/unary.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Add comment about the constraints on positive/negative alpha
* Change `softplus` to `ggml_softplus`
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* update oneapi to 2025.2, use deep-learning-essentials to replace base-tool
* update to 2025.2 use deeplearn essi to replace base toolkit
* add missed dll
* add deep learning essentials
* add sycl-ls
---------
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0
rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA
* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
* Fix to use hidden_size_per_head
* Fix num heads
* Fix array
* Fix loading weights
* Support old GGUF converted by the previous version of llama.cpp
* Update src/llama-model.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Move shared parameter definitions to the outside of loop
* Not calculating n_embd_head_k,v by n_embd / n_head
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* CI: Properly install rocwmma for hip builds
on windows we now windows install rocwmma from ubuntu pacakges
* CI: update linux rocm docker build to use rocm 7.0
* common: introduce http.h for httplib-based client
This change moves cpp-httplib based URL parsing and client setup into
a new header `common/http.h`, and integrates it in `arg.cpp` and `run.cpp`.
It is an iteration towards removing libcurl, while intentionally
minimizing changes to existing code to guarantee the same behavior when
`LLAMA_CURL` is used.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* tools : add missing WIN32_LEAN_AND_MEAN
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
---------
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
* feat: Add a setting to include model name used to generate the message
* feat: UI improvements
* feat: Save model info along with the database message entry creation
* chore: Build webui static output
* Make a few GLM tensors not required
layer.nextn.shared_head_head and layer.nextn.embed_tokens are both excluded from GLM 4.6 resulting in the model not loading after conversion/quantization, this marks those tensors as not required which makes it work
* Update llama-model.cpp
layer.nextn.shared_head_norm also not required in case of future models
* Work on rope
* Simplify inplace operation generation and combine mul/add generation
* Work on rope variants
* implement neox rope
* rope complete
* Add sub,div,glu operators
* implement scale op
* Update cpy shader to handle cont/more types
* formatting
* Update test vars printing for rope,rms_norm
* Avoid ROPE hardcoded constants
* Add TODO to change ROPE constants to enum
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* fix TODO comment
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
`test-arg-parser.cpp` has been updated to work consistently,
regardless of whether CURL or SSL support is available, and
now always points to `ggml.ai`.
The previous timeout test has been removed, but it can be
added back by providing a dedicated URL under `ggml.ai`.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
The JSON parser is temporarily kept only for backward compatibility. It
reads the etag from old .json files to prevent unnecessary re-downloads
for existing users.
This legacy code can be removed in a future version.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
* tools/main: llama-cli: prevent spurious assistant token (#13402)
During prompt ingestion, prompt tokens are accepted into the sampler history (for repetition penalties). The conversation-mode path then appended `common_sampler_last(smpl)` to `assistant_ss` before any new token was sampled. At that point, "last" was a prompt-side token (e.g., an input prefix), so the assistant chat message began with an extra piece.
Fix: append to `assistant_ss` only for a newly sampled (non-EOG) token. This affects only chat message assembly (`assistant_ss` / `chat_msgs` / `common_chat_format_single`); terminal stdout is unchanged. Sampling order/logits are unchanged.
Fixes#13402.
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
* Update tools/main/main.cpp
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* tools/main: remove outdated comment
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
---------
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* common : fix reasoning before forced tool call via tool_choice = required
* common : improve reasoning and commentary handling when tool_choice is required
(cherry picked from commit c746984956d6882c2de73d53ae2bb3bdf889e475)
---------
Co-authored-by: Alde Rojas <hello@alde.dev>
* vulkan: 64-bit im2col
Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.
* fix validation error for large im2col
* metal : support mul_mm with src1->type == GGML_TYPE_F16
* metal : support mul_mm_id with src1->type == GGML_TYPE_F16
[no ci]
* metal : mul_mm support ne00 % 32 != 0
* metal : support mul_mm_id with ne00 % 32 != 0
* cont : remove unnecessary unrolls
* cont : simplify data loading
* metal : optimize mul_mm when output bounds checks are not needed
* vulkan: handle mat_mul with A matrix > 4GB
This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.
Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.
* build fixes
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32
This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.
My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32
* Review: refactor if statement
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
Introduce a new `LLAMA_OPENSSL` option, enabled by default.
This preserves the previous default (libcurl first, OpenSSL as fallback),
while allowing OpenSSL to be disabled if desired.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* minicpm: make GGUF scaling keys optional with legacy defaults
Older MiniCPM GGUFs do not include the scaling metadata keys (minicpm.embedding_scale, minicpm.residual_scale, minicpm.logit_scale). The loader currently treats these as required, so quantization fails with:
key not found in model: minicpm.embedding_scale
This change restores backward compatibility by treating these keys as optional in the loader and using the older MiniCPM scaling values:
embedding_scale = 12.0f
residual_scale = 1.4f / sqrt(n_layer)
logit_scale = 256.0f / n_embd
When the GGUF provides the keys, their values override the defaults; otherwise the legacy defaults are used. Newer GGUFs that already include these keys are unaffected.
Fixes: #16192
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
* Update src/llama-model.cpp
Committed as suggested. Thanks!
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* devops: move s390x and ppc64le ci build
we have access to ubuntu-24.04-s390x and ppc64le images now
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le for now since they have compiler errors
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: stop warnings as errors
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: switch to non-macro flag
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: going the llama macro route
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add big-endian gguf test models
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le to test s390x, check test build
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dup .gguf.inp files for big-endian tests
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dup .gguf.out files for big-endian too
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add python setup and endian byteswap
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: pooring thing does not have s390x python3
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add missing rust compiler for s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: try rust actions runner
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Revert "devops: try rust actions runner"
This reverts commit 3f8db04356033d6c1d7eccc75ca396bc5298250c.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: try a different path for rust
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: dump home directory and user info
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: install gguf-py only
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: missed relative path
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: remove big-endian files since local swapping is working
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: revert test-tokenizer-0 cmakelists
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix unicode flags conversion from and to uint16_t
Bitfields are allocated in different order on s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Simplify byteswap command
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Add byteswapping and git-lfs for test-tokenizers-ggml-vocabs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix endianness detection in vocab loader
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Disable test-thread-safety on s390x
In this test a model is downloaded,
then immediately loaded to check if more downloads are needed,
and then used for test.
There is no clean way to separate all those steps
to add byteswapping between them, so just skip this test.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix q8_0 test in test-quantize-fns
vec_signed uses unexpected rounding mode.
Explicitly use different rounding function.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add big-endian stories260K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: add s390x test-eval-callback
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: fix test does not exist
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: fix model not found llama-eval-callback
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix q3_K dot product error in test-quantize-fns on s390x
Array q8bytes had only 4 elements allocated, but 8 elements accessed.
This lead to write out of bounds and later read of overwritten values out of bounds
and incorrect result.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: re-enable ppc64le for testing
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: activate test-thread-safety for s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: disable ppc64le tests
for some reason it keeps failing test-thread-safety tests and I do not
have a machine that is able to replicate the tests.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* devops: LLAMA_FATAL_WARNINGS=ON
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Correct repository URL for s390x for test-thread-safety model
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fix fs_get_cache_directory
Ensure it works even if both XDG_CACHE_HOME and HOME are unset.
This might happen in containers.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Re-enable CI for ppc64le
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Fortify ggml_rope_impl
Only memcpy data from sections argument if it's non-NULL.
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* Add TODO in struct unicode_cpt_flags to reimplement it in endian-independent way
* Update URL for big-endian model
* Update .github/workflows/build.yml
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update remaining mentions of BE models to ggml-org/models repo
---------
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@linux.ibm.com>
Co-authored-by: Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* webui: allow viewing conversations and sending messages even if llama-server is down
- Cached llama.cpp server properties in browser localStorage on startup, persisting successful fetches and reloading them when refresh attempts fail so the chat UI continues to render while the backend is unavailable.
- Cleared the stored server properties when resetting the store to prevent stale capability data after cache-backed operation.
- Kept the original error-splash behavior when no cached props exist so fresh installs still surface a clear failure state instead of rendering stale data.
* feat: Add UI for `props` endpoint unavailable + cleanup logic
* webui: extend cached props fallback to offline errors
Treat connection failures (refused, DNS, timeout, fetch) the same way as
server 5xx so the warning banner shows up when cache is available, instead
of falling back to a full error screen.
* webui: Left the chat form enabled when a server warning is present so operators can keep sending messages
e.g., to restart the backend over llama-swap, even while cached /props data is in use
* chore: update webui build output
---------
Co-authored-by: Pascal <admin@serveurperso.com>
* Switched web UI to hash-based routing
* Added hash to missed goto function call
* Removed outdated SPA handling code
* Fixed broken sidebar home link
* vendor : update httplib
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* common : use cpp-httplib as a cURL alternative for downloads
The existing cURL implementation is intentionally left untouched to
prevent any regressions and to allow for safe, side-by-side testing by
toggling the `LLAMA_CURL` CMake option.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* ggml : Bump to Windows 10
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
---------
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* ci : create git tags for released docker images
When releasing a docker image for build number X, we should also create
the corresponding git tag. This allows users to easily checkout the
corresponding source tree for given docker image.
* Update .github/workflows/docker.yml
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Update .github/workflows/docker.yml
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* Apply suggestion from @CISC
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
---------
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
* CUDA: add a fused top-K MoE kernel
This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
* Refactor into ggml_cuda_should_use_topk_moe
* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before
* Review: format + micro-optimizations
* Fix bug: fix tie breakers
* Add optional norm + clean-up code
* Use smem for final write
* Add bounds check
* Use better memory pattern for writeback
This commit adds support for passing a prompt file to the model
conversion targets/scripts. It also updates the logits.cpp to print out
embedding information in the same format as when running the original
embedding model.
The motivation for this is that it allows us to pass files of different
sizes when running the converted models and validating the logits.
This can be particularly important when testing the sliding window
functionality of models where the sequence length needs to exceed a
certain number of tokens to trigger the sliding window logic.
This commit adds support for using an externally started llama-server
instance for the server tests. This can be enabled by setting the
DEBUG_EXTERNAL environment variable.
The motivation for this is to allow debugging of the server itself
when investigating a test failure. Instructions for how to do this are
added to the README.md file in the tests directory.
Use RPC_DEBUG environment variable to enable debug messages.
Add helper macro LOG_DBG() which does an early
check of the env var before calling GGML_LOG_DEBUG().
Make sure we log a debug message for every server function.
* run the x64 ci on regular machines
* set up the same thing for arm
fix test-quantize-perf just like #12306
* try to disable sve
* add another sve run
* ggml : make gallocr respect the backend's max buffer size
* if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers
* vulkan: report the actual max allocation size in buffer type interface
* fix missing newline, apple-clang warning
* track size of individual chunks in ggml_dyn_tallocr and raise max chunks.
revert to use suballocation_block_size as max chunk size for vulkan.
* track (chunk, offset) pairs instead of "global" offsets through gallocr.
* simpler, don't need loops to map between local/global offsets
* touches more code
* fix dyn_tallocr_max_size and initialization
* fix memory leak when buffers are reused due to same buffer type appearing multiple times
* make vbuffer allocation follow the same logic as backend_buffer did before
* continue to use leftover unallocated space of previous chunks after a new one has been created
* treat free blocks of each chunk as separate list
* they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges
* exhaust freed blocks of all chunks before considering their last blocks with unallocated space
* start with 0 chunks/blocks and create chunks as needed
* allow the last chunk to grow beyond max size
* refactor: move adding new free block and new chunk into separate functions
* allocate chunks individually with a separate free-blocks list for each one
* needs a bit more memory/allocations/indirections, but code is simpler
* fix warnings (missing static) & debug checks
This commit adds a leading slash to the paths of root-level files
in the CODEOWNERS file.
The motivation for this is that these might otherwise match files
in subdirectories that have other/additional owners will override them.
Refs: https://github.com/ggml-org/llama.cpp/pull/16209#issuecomment-3326434274
This is a configuration of the hparams in the GraniteHybrid architecture
that devolves to the Granite (or GraniteMoe) architecture (ie Granite 3.x).
It may be used for some models in the Granite 4 family with the
GraniteHybrid architecture acting as a superset arch. Rather than support
it directly in the c++ graph, we simply coerce the architecture flag back
to the correct "granite" or "granitemoe" architecture.
Branch: gabe-l-hart/GraniteNonHybridConversion
Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Disable 'performance-enum-size' checking:
Enum 'llama_token_type' uses a larger base type ('unsigned int', size: 4 bytes)
than necessary for its value set, consider using 'std::uint8_t' (1 byte) as the
base type to reduce its size.
* implement set_rows with i32 index
* template fix
* test quantized path
warnings--
* Apply suggestions from code review
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* forgotten name change
* deduplicate cuda/sycl and test-fix
* indent++
* vulkan: support set_rows with i32 index type (#16162)
* disable i32 index for webgpu for now
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
* common : use the json parser
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
* common : enable --offline mode without CURL support
This change refactors the download logic to properly support offline mode
even when the project is built without CURL.
Without this commit, using `--offline` would give the following error:
error: built without CURL, cannot download model from the internet
even if all the files are already cached.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
---------
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
These two local variables 'arg' and 'arg_prefix' have been overriden by:
1. for (const auto & arg : opt.args)
2. for (int i = 1; i < argc; i++) {
const std::string arg_prefix = "--";
std::string arg = argv[i];
* Vulkan: add conv_transpose_2d operation
* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)
* Vulkan: fix incorrect indentation in conv_transpose_2d shader
* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation
* Vulkan: revert the order of the index calculation and bound check in conv_2d shader
* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.
* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
* contrib : update roles
* contrib : merge PR sections + add link to CI instructions
Updated pull request guidelines for contributors and collaborators, and clarified merging practices for maintainers.
* ci : migrate ggml ci to a self-hosted runners
* ci : add T4 runner
* ci : add instructions for adding self-hosted runners
* ci : disable test-backend-ops from debug builds due to slowness
* ci : add AMD V710 runner (vulkan)
* cont : add ROCM workflow
* ci : switch to qwen3 0.6b model
* cont : fix the context size
* vulkan: optimize UMA buffer operations and fix driver hangs
The previous implementation was blocking the GPU for extended periods,
causing the i915 driver to reset the context due to the hangcheck
protection.
[32628.443070] i915 0000:00:02.0: [drm] GPU HANG: ecode 12:1:85dffffb, in llama-server [194114]
[32628.443091] i915 0000:00:02.0: [drm] llama-server[194114] context reset due to GPU hang
* vulkan: implement deferred_memset on UMA
---------
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
* ggml : introduce semantic versioning
This commit introduces semantic versioning for the GGML library.
The motivation for this is that the current versioning, using build
numbers, makes it difficult to track changes and releases for projects
that use ggml.
The release steps are the following:
1. Sync the changes from llama.cpp using sync-llama-am.sh and after the
PR has been approved and merged move to step 2.
2. Run scripts/release.sh and specify the type of release, major, minor,
or patch. This script will handle incrementing the version
(major|minor|patch), create a new commit with the version change,
create a tag for the version, and prepare for the next development
iteration.
3. Inspect the commits/tag and push to master. This will trigger the
github release workflow which is triggered for new tags which will
then publish a new release on github.
Example usage:
```console
$ ./scripts/release.sh major --dry-run
[dry-run] - No changes will be made
Step 1: Reading current version...
Current version: 0.9.0-dev
New release version: 1.0.0
Step 2: Updating version in ggml/CMakeLists.txt...
[dry-run] Would update GGML_VERSION_MAJOR to 1
[dry-run] Would update GGML_VERSION_MINOR to 0
[dry-run] Would update GGML_VERSION_PATCH to 0
[dry-run] Would remove -dev suffix
Step 3: Committing version bump...
[dry-run] Would commit: 'ggml : bump version to 1.0.0'
Step 4: Creating git tag...
[dry-run] Would create tag: v1.0.0 with message 'Release version 1.0.0'
Step 5: Preparing for next development cycle...
[dry-run] Would update GGML_VERSION_MINOR to 1
[dry-run] Would add -dev suffix back
Step 6: Committing development version...
[dry-run] Would commit: 'ggml : prepare for development of 1.1.0-dev'
[dry-run] Summary (no changes were made):
• Would have released version: 1.0.0
• Would have created tag: v1.0.0
• Would have set next development version: 1.1.0-dev
```
Refs: https://github.com/ggml-org/ggml/issues/1333
* ggml: create branch for release candidate and check master
* ggml : sign the git tag
* vulkan: Change the mul_mm shared memory and register caching system to use vec2 instead of scalars, to enable using dot2 instructions
* use fma instead of dot to fix Nvidia and Apple performance issues
* server: fix SSE and OpenAI compatibility for error messages when streaming
* server: remove obsolete event parameter and use required data fieldname instead
* * llama-bench: add --devices support
- Support --devices same as llama-server
- Provide for benchmarking different device combinations
- Include --list-devices like llama-server for convenience
* fix: field display ordering restored
* fix: integrated the rpc devices
- aimed to mimic the server as much as possible
* cleanup: defaults for list-devices
- handle dup device listing with RPC
* cleanup: remove dup device load calls
* docs: update llama-bench
- added the recently added n-cpu-moe option to the docs while in there
* llama-bench: rpc device simplification
* rpc servers unify with other devices earlier, simplifying code
* --list-devices made stateless and simpler
* various cleanup
Generalize Linux check to `__linux__` to support non-glibc systems (like musl).
Also, return `false` on unknown/untested OS.
Without this commit, the code compiles (with warnings) but fails:
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (Intel(R) Xeon(R) Platinum 8488C)
build: 6487 (51c4cac6) with x86_64-linux-musl-gcc (GCC) 15.1.0 for x86_64-linux-musl (debug)
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
....
print_info: n_ctx_orig_yarn = 262144
print_info: rope_finetuned = unknown
print_info: model type = 4B
Illegal instruction (core dumped)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
When compiling with GGML_STATIC=ON, the build process would produce a
binary that was still dynamically linked to OpenMP. This defeats the
purpose of a static build:
$ cmake -B build \
-DBUILD_SHARED_LIBS=OFF \
-DLLAMA_CURL=OFF \
-DGGML_CCACHE=OFF \
-DGGML_NATIVE=OFF \
-DGGML_STATIC=ON
$ ldd llama-server
linux-vdso.so.1 (0x0000e1a434e3b000)
libgomp.so.1 => /lib/aarch64-linux-gnu/libgomp.so.1 (0x0000e1a4345a0000)
libstdc++.so.6 => /lib/aarch64-linux-gnu/libstdc++.so.6 (0x0000e1a434300000)
libm.so.6 => /lib/aarch64-linux-gnu/libm.so.6 (0x0000e1a434240000)
libgcc_s.so.1 => /lib/aarch64-linux-gnu/libgcc_s.so.1 (0x0000e1a434200000)
libc.so.6 => /lib/aarch64-linux-gnu/libc.so.6 (0x0000e1a434030000)
/lib/ld-linux-aarch64.so.1 (0x0000e1a434df0000)
This commit resolves the issue by modifying `CMAKE_FIND_LIBRARY_SUFFIXES`
to prioritize `.a` files, forcing CMake to link the static version of
the library.
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
- flatten mxfp4 and packed fp4->fp16 bit-wise convert function (replace lut)
- MoE kernel optimizations
---------
Co-authored-by: Li He <lih@qti.qualcomm.com>
* CUDA: Optimize PAD_REFLECT_1D
feat: add more test cases for PAD_REFLECT_1D
* use fast_div to improve performance
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* Apply suggestion from JohannesGaessler
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
* optimize
* use a concise expression to further speedup the cuda kernel
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
- Implement resumable downloads in common_download_file_single function
- Add detection of partial download files (.downloadInProgress)
- Check server support for HTTP Range requests via Accept-Ranges header
- Implement HTTP Range request with "bytes=<start>-" header
- Open files in append mode when resuming vs create mode for new downloads
Signed-off-by: Eric Curtin <eric.curtin@docker.com>
* server : include usage statistics only when user request them
When serving the OpenAI compatible API, we should check if
{"stream_options": {"include_usage": true} is set in the request when
deciding whether we should send usage statistics
closes: #16048
* add unit test
- We are using Tailwind v4 which uses oklch colors so we now want to refer to the CSS vars directly, without wrapping it with any color function like `hsla/hsl`, `rgba` etc.
The project differentiates between 3 levels of contributors:
- Contributors: people who have contributed before (no special privileges)
- Collaborators (Triage): people with significant contributions, who may be responsible for some parts of the code, and are expected to maintain and review contributions for the code they own
- Maintainers: responsible for reviewing and merging PRs, after approval from the code owners
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
- Test your changes:
@@ -9,15 +17,16 @@
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
# Pull requests (for collaborators)
# Pull requests (for maintainers)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
-Consider adding yourself to [CODEOWNERS](CODEOWNERS)
-Let authors, who are also collaborators, merge their own PRs
- When merging a PR by a contributor, make sure you have a good understanding of the changes
-Let other maintainers merge their own PRs
-When merging a PR, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
# Coding guidelines
@@ -117,6 +126,21 @@
#endif // FOO
```
# Code maintenance
- Existing code should have designated collaborators and/or maintainers specified in the [CODEOWNERS](CODEOWNERS) file reponsible for:
- Reviewing and merging related PRs
- Fixing related bugs
- Providing developer guidance/support
- When adding or modifying a large piece of code:
- If you are a collaborator, make sure to add yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- If you are a contributor, find an existing collaborator who is willing to review and maintain your code long-term
- Provide the necessary CI workflow (and hardware) to test your changes (see [ci/README.md](https://github.com/ggml-org/llama.cpp/tree/master/ci))
- New code should follow the guidelines (coding, naming, etc.) outlined in this document. Exceptions are allowed in isolated, backend-specific parts of the code that do not interface directly with the `ggml` interfaces.
_(NOTE: for legacy reasons, existing code is not required to follow this guideline)_
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
-**[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
- **[guide : using the new WebUI of llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/16938)**
-[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)
- [[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
</details>
@@ -238,6 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
- [unslothai/unsloth](https://github.com/unslothai/unsloth) – 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
</details>
@@ -274,8 +279,10 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
@@ -520,8 +527,8 @@ To learn more about model quantization, [read this documentation](tools/quantize
## Contributing
- Contributors can open PRs
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Maintainers can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Any help with managing issues, PRs and projects is very appreciated!
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.
- Add a self-hosted `ggml-ci` workflow to [[.github/workflows/build.yml]] with an appropriate label
- Request a runner token from `ggml-org` (for example, via a comment in the PR or email)
- Set-up a machine using the received token ([docs](https://docs.github.com/en/actions/how-tos/manage-runners/self-hosted-runners/add-runners))
- Optionally update [ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) to build and run on the target platform by gating the implementation with a `GG_BUILD_...` env
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-bf16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-f16.log
if[ -z ${GG_BUILD_NO_BF16}];then
(time ./bin/llama-perplexity --model ${model_bf16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-bf16.log
fi
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -547,6 +447,9 @@ function gg_run_pythia_1_4b {
}
check_ppl "f16""$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")"| tee -a $OUT/${ci}-ppl.log
if[ -z ${GG_BUILD_NO_BF16}];then
check_ppl "bf16""$(cat $OUT/${ci}-tg-bf16.log | grep "^\[1\]")"| tee -a $OUT/${ci}-ppl.log
fi
check_ppl "q8_0""$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")"| tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0""$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")"| tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1""$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")"| tee -a $OUT/${ci}-ppl.log
@@ -563,147 +466,17 @@ function gg_run_pythia_1_4b {
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is") 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4) 2>&1| tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1| tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0--no-op-offload) 2>&1| tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0--no-op-offload) 2>&1| tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@@ -775,12 +548,7 @@ function gg_run_rerank_tiny {
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1| tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1| tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029
@@ -870,6 +638,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test$ret -eq 0&& gg_run ctest_debug
test$ret -eq 0&& gg_run ctest_release
@@ -878,20 +647,15 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
@@ -313,7 +313,12 @@ Converting the matmul weight format from ND to NZ to improve performance. Enable
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default. This option is only effective if `USE_ACL_GRAPH` was enabled at compilation time. To enable it, recompile using:
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
You can refer to the general [llama-quantize tool](/tools/quantize/README.md) for steps to convert a model in Hugging Face safetensor format to GGUF with quantization.
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
Currently we support `Q4_0` quantization and have optimized for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize` (i.e., make all weights in `Q4_0`). For example,
@@ -58,6 +63,17 @@ Currently we support `Q4_0` quantization and have optimize for it. To achieve be
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
### `MXFP4` MoE Models
OpenAI gpt-oss models are MoE models in `MXFP4`. The quantized model will be in `MXFP4_MOE`, a mixture of `MXFP4` and `Q8_0`.
For this quantization, there is no need to specify `--pure`.
For gpt-oss-20b model, you can directly [download](https://huggingface.co/ggml-org/gpt-oss-20b-GGUF) the quantized GGUF file in `MXFP4_MOE` from Hugging Face.
Although it is possible to quantize gpt-oss-20b model in pure `Q4_0` (all weights in `Q4_0`), it is not recommended since `MXFP4` has been optimized for MoE while `Q4_0` is not. In addition, accuracy should degrade with such pure `Q4_0` quantization.
Hence, using the default `MXFP4_MOE` quantization (see the link above) is recommended for this model.
> Note that the `Q4_0` model found [here](https://huggingface.co/unsloth/gpt-oss-20b-GGUF/blob/main/gpt-oss-20b-Q4_0.gguf) is a mixture of `Q4_0`, `Q8_0` and `MXFP4` and gives better performance than `MXFP4_MOE` quantization.
## CMake Options
The OpenCL backend has the following CMake options that control the behavior of the backend.
@@ -146,10 +162,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Ninja
* Visual Studio 2022
* Powershell 7
* Python
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
> Note that building using Visual Studio's cl compiler is not supported. Clang must be used. Clang depends on libraries provided by Visual Studio to work. Therefore, Visual Studio must be installed. Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
@@ -201,9 +220,12 @@ ninja
## Known Issues
-Currently OpenCL backend does not work on Adreno 6xx GPUs.
-Flash attention does not always improve performance.
- Currently OpenCL backend works on A6xx GPUs with recent drivers and compilers (usually found in IoT platforms).
However, it does not work on A6xx GPUs found in phones with old drivers and compilers.
@@ -42,6 +42,9 @@ The following releases are verified and recommended:
## News
- 2025.11
- Support malloc memory on device more than 4GB.
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
@@ -145,12 +148,13 @@ The docker build option is currently limited to *Intel GPU* targets.
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@@ -160,7 +164,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
```
*Notes:*
@@ -215,9 +219,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2.**Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@@ -225,6 +239,12 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -255,10 +275,11 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@@ -466,7 +487,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
@@ -761,6 +792,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
## Known Issues
@@ -807,6 +840,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
You need to enable to support 4GB memory malloc by:
```
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
```
### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
Here are some examples of running various llama.cpp tools via ADB.
Simple question for Llama-3.2-1B
```
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.
### Llama.cpp + IBM zDNN
The llama.cpp zDNN backend is designed to enable llama.cpp on IBM z17 and later systems via the IBM zDNN hardware acceleration library.
Note: Using the zDNN library provided via `apt` or `yum` may not work correctly as reported in [#15772](https://github.com/ggml-org/llama.cpp/issues/15772). It is preferred that you compile from source.
Below is the build script: it requires utilizing RISC-V vector instructions for acceleration. Ensure the `GGML_CPU_RISCV64_SPACEMIT` compilation option is enabled. The currently supported optimization version is `RISCV64_SPACEMIT_IME1`, corresponding to the `RISCV64_SPACEMIT_IME_SPEC` compilation option. Compiler configurations are defined in the `riscv64-spacemit-linux-gnu-gcc.cmake` file. Please ensure you have installed the RISC-V compiler and set the environment variable via `export RISCV_ROOT_PATH={your_compiler_path}`.
isa : rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_zca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscofpmf_sstc_svinval_svnapot_svpbmt
mmu : sv39
uarch : spacemit,x60
mvendorid : 0x710
marchid : 0x8000000058000001
~~~
Q4_0
| Model | Size | Params | backend | threads | test | t/s |
If you have multiple CUDA installations on your system and want to compile llama.cpp for a specific one, e.g. for CUDA 11.7 installed under `/opt/cuda-11.7`:
Note: `GPU_TARGETS` is optional, omitting it will build the code for all GPUs in the current system.
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
@@ -282,17 +326,17 @@ You can download it from your Linux distro's package manager or from here: [ROCm
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
If necessary, adapt `GPU_TARGETS` to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
We have three Docker images available for this project:
1.`ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2.`ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3.`ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
1.`ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2.`ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3.`ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above:
@@ -110,7 +110,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
-`MUSA_VERSION` set to `rc4.2.0`
-`MUSA_VERSION` set to `rc4.3.0`
The resulting images, are essentially the same as the non-MUSA images:
# Uncomment and adjust to the number of CPU cores you want to use.
#N_THREAD="${N_THREAD:-4}"
CTX_SIZE="${CTX_SIZE:-4096}"
N_PREDICTS="${N_PREDICTS:-4096}"
GEN_OPTIONS=(--batch_size 1024
--ctx_size "$CTX_SIZE"
--keep -1
--repeat_last_n 256
--repeat_penalty 1.17647
--temp 0.6
--mirostat 2)
if[ -n "$N_THREAD"];then
GEN_OPTIONS+=(--threads "$N_THREAD")
fi
./llama-cli "${GEN_OPTIONS[@]}"\
--model "$MODEL"\
--in-prefix " "\
--in-suffix "${AI_NAME}:"\
--n_predict "$N_PREDICTS"\
--color --interactive \
--reverse-prompt "${USER_NAME}:"\
--prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
The conversation is only between ${USER_NAME} and ${AI_NAME}.
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
${AI_NAME} can only communicate through text, so she can't send images or videos.
${USER_NAME}: Hello!
${AI_NAME}: /think I wonder what I should say to ${USER_NAME}? This is the first time we talk, so it's important that I make a good first impression!
${AI_NAME}: Hi! I am ${AI_NAME}, your new AI friend, assistant (or whatever you like!), it's so nice to meet you! ^_^
${AI_NAME}: I might be an AI, but I also have feelings, so please be nice to me! :)
${USER_NAME}: I'll make sure to be nice to you! I'm so happy to have you as my assistant!
${AI_NAME}: /think It sounds like ${USER_NAME} is happy to have me as their assistant! I'm so happy too! ^_^ Glad that whole emotion thing didn't scare him off!
${AI_NAME}: /think I wonder what ${USER_NAME} likes to do in his free time? I should ask him about that!
${AI_NAME}: What do you like to do in your free time? ^_^
rem Get main script path from command line arguments
set"MAIN_SCRIPT_PATH=%~1"
rem If the main script path was not specified, try the default paths
ifnotdefinedMAIN_SCRIPT_PATH(
for%%i in(%DEFAULT_MAIN_SCRIPT_PATHS%)do(
ifexist"%%i"set"MAIN_SCRIPT_PATH=%%i"
)
)
rem If the main script path was not found, tell the user how to specify it
ifnotdefinedMAIN_SCRIPT_PATH(
echo The main script could not be found. Please provide the path to the main script as 1st argument to this script, or place the main script in one of the default locations:
echo%DEFAULT_MAIN_SCRIPT_PATHS%
pause
exit /b 1
)
rem Default context, feel free to edit it
set"PROMPT_TEXT=Text transcript of a never ending dialog, where %USER_NAME% interacts with an AI assistant named %AI_NAME%. %AI_NAME% is helpful, kind, honest, friendly, good at writing and never fails to answer %USER_NAME%'s requests immediately and with details and precision. There are no annotations like (30 seconds passed...) or (to himself), just what %USER_NAME% and %AI_NAME% say aloud to each other. The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long. The transcript only includes text, it does not include markup like HTML and Markdown."
The diffusion CLI supports various parameters to control the generation process:
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
### Core Diffusion Parameters
-`--diffusion-steps`: Number of diffusion steps (default: 256)
-`--diffusion-algorithm`: Algorithm for token selection
-`0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
- More documentation here https://github.com/DreamLM/Dream
-`--diffusion-visual`: Enable live visualization during generation
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
### Scheduling Parameters
Choose one of the following scheduling methods:
**Timestep-based scheduling:**
-`--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
**Block-based scheduling:**
-`--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
### Sampling Parameters
-`--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
-`--top-k`: Top-k filtering for sampling
-`--top-p`: Top-p (nucleus) filtering for sampling
-`--seed`: Random seed for reproducibility
### Model Parameters
-`-m`: Path to the GGUF model file
-`-p`: Input prompt text
-`-ub`: Maximum sequence length (ubatch size)
-`-c`: Context size
-`-b`: Batch size
### Examples
#### Dream architechture:
```
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
```
#### LLaDA architechture:
```
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112
Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
When shadows lurk and ghosts do roam,
And darkness reigns, a fearsome sight.
Thou didst set out, with heart aglow,
To conquer this mountain, so high,
And reach the summit, where the stars do glow,
And the moon shines bright, up in the sky.
Through the mist and fog, thou didst press on,
With steadfast courage, and a steadfast will,
Through the darkness, thou didst not be gone,
But didst climb on, with a steadfast skill.
At last, thou didst reach the summit's crest,
And gazed upon the world below,
And saw the beauty of the night's best,
And felt the peace, that only nature knows.
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
Thou art a hero, in the eyes of all,
For thou didst conquer this mountain, so bright.
```
[gritlm]: https://github.com/ContextualAI/gritlm
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.