Compare commits

..

168 Commits
b6514 ... b6682

Author SHA1 Message Date
Acly
638d330246 ggml : fix graph reallocation with multiple chunks (#16396)
reallocation is needed if a single chunk grows in size,
even if total allocation size stays the same or is lower
2025-10-03 13:49:08 +02:00
Aleksander Grygier
84c8e305e8 Fix missing messages on sibling navigation (#16408)
* fix: resolve message disappearing issue when navigating between regenerated siblings by using current leaf nodes instead of cached sibling IDs

* chore: update webui build output

* chore: update webui build output
2025-10-03 12:51:40 +02:00
Jeff Bolz
2aaf0a2a20 vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE (#16354)
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE

Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.

For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.

Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.

With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.

* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
2025-10-03 12:50:46 +02:00
Jeff Bolz
0e1f838556 vulkan: Fix FA coopmat1 invalid array indexing (#16365)
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
2025-10-03 11:52:46 +02:00
Daniel Bevenius
ad126479c2 ci : change macos-13 to macos-15-intel (#16401)
This commit updates the macos-13 runners to macos-15-intel.

The motivation for this changes is the macos-13 runners are scheduled
to be retired on 2025-12-04.

Refs: https://github.blog/changelog/2025-09-19-github-actions-macos-13-runner-image-is-closing-down/
2025-10-03 11:45:16 +02:00
Aleksander Grygier
77233277c9 Capture model name only after first token (streaming) or completed request (#16405)
* feat: Capture model name only after first token (streaming) or completed request (non-streaming)

* chore: update webui build output

* chore: update webui build output
2025-10-03 11:30:39 +02:00
Jeff Bolz
e308efda8e vulkan: in flash attention, bounds check against nem1 (don't rely on GGML_KQ_MASK_PAD) (#16316) 2025-10-03 10:33:08 +02:00
Aleksander Grygier
136bda78c5 webui : Fix messages payload sent to chat completions (#16402)
* fix: Include just the currently active message branches instead of all in chat completions request

* chore: Build webui static output

* chore: Formatting

* chore: update webui build output
2025-10-03 10:11:34 +03:00
Pascal
5113efd34c fix: track viewportHeight via window.innerHeight to avoid unwanted scrolling (#16356)
Use <svelte:window bind:innerHeight> instead of manual resize listener

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-03 08:01:31 +02:00
Sigbjørn Skjæret
d64c8104f0 test-barrier : do not use more threads than physically available (#16389)
* do not use more threads than physically available

* ensure n_threads > 0

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-02 20:10:12 +02:00
Reese Levine
ef07a40906 ggml webgpu: add support for soft_max, optimize rms_norm (#16357)
* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-02 11:00:31 -07:00
Piotr Wilkin (ilintar)
34fcc5a4ac model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
R0CKSTAR
91a2a56556 musa: update compile flags (#16265)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-10-02 16:29:56 +03:00
Sigbjørn Skjæret
72ee736c44 ci : fix ubuntu-latest-cmake-rpc (disable ccache) (#16388) 2025-10-02 13:51:36 +02:00
Eve
f09aefaa84 ci: update vulkan ci (#16294) 2025-10-02 10:10:07 +02:00
Georgi Gerganov
bbd32bc038 ci : fix clean-up of old logs (#16381) 2025-10-02 10:35:43 +03:00
Neo Zhang Jianyu
2be72c2b12 SYCL: Update to oneAPI 2025.2 (#16371)
* update oneapi to 2025.2, use deep-learning-essentials to replace base-tool

* update to 2025.2 use deeplearn essi to replace base toolkit

* add missed dll

* add deep learning essentials

* add sycl-ls

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-02 10:16:25 +03:00
uvos
95ce098544 HIP: add IMbackK to codeowner (#16375) 2025-10-02 05:52:59 +02:00
uvos
c8dedc9999 CI: reenable cdna in rocm docker builds (#16376) 2025-10-01 23:32:39 +02:00
uvos
e95fec640f HIP: Disable ROCWMMA fattn on CDNA when compiled against ROCWMMA 2.0.0 (#16221)
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0

rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA

* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
2025-10-01 23:09:25 +02:00
Shunta Saito
ded67b9444 llama : parameter conversion and loading fixes for PLaMo2 variants (#16075)
* Fix to use hidden_size_per_head

* Fix num heads

* Fix array

* Fix loading weights

* Support old GGUF converted by the previous version of llama.cpp

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Move shared parameter definitions to the outside of loop

* Not calculating n_embd_head_k,v by n_embd / n_head

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-01 23:08:15 +02:00
uvos
1fe4e38cc2 ci: Properly install rocwmma for hip builds (#16305)
* CI: Properly install rocwmma for hip builds

on windows we now windows install rocwmma from ubuntu pacakges

* CI: update linux rocm docker build to use rocm 7.0
2025-10-01 20:18:03 +02:00
Adrien Gallouët
4201deae9c common: introduce http.h for httplib-based client (#16373)
* common: introduce http.h for httplib-based client

This change moves cpp-httplib based URL parsing and client setup into
a new header `common/http.h`, and integrates it in `arg.cpp` and `run.cpp`.

It is an iteration towards removing libcurl, while intentionally
minimizing changes to existing code to guarantee the same behavior when
`LLAMA_CURL` is used.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* tools : add missing WIN32_LEAN_AND_MEAN

Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-10-01 20:22:18 +03:00
Aleksander Grygier
764799279f Conversation action dialogs as singletons from Chat Sidebar + apply conditional rendering for Actions Dropdown for Chat Conversation Items (#16369)
* fix: Render Conversation action dialogs as singletons from Chat Sidebar level

* chore: update webui build output

* fix: Render Actions Dropdown conditionally only when user hovers conversation item + remove unused markup

* chore: Update webui static build

* fix: Always truncate conversation names

* chore: Update webui static build
2025-10-01 18:18:10 +02:00
Aleksander Grygier
2a9b63383a Improve code block color theming (#16325)
* feat: Improve code block theming

* chore: update webui build output

* chore: Update webui static build
2025-10-01 15:54:42 +02:00
Sigbjørn Skjæret
1104ca1a1c ci : use registry cache for docker builds (#16366) 2025-10-01 14:09:52 +02:00
Aleksander Grygier
4f1575921c Add optional setting for showing "Model used:" information (#16337)
* feat: Add a setting to include model name used to generate the message

* feat: UI improvements

* feat: Save model info along with the database message entry creation

* chore: Build webui static output
2025-10-01 12:08:16 +02:00
Eve
132d673554 vulkan: make ggml_vk_default_dispatcher support older vulkan headers (#16345)
* make ggml_vk_default_dispatcher support older vulkan headers

* simpilfy with using
2025-10-01 09:56:36 +02:00
Aleksander Grygier
aa9538a63a webui: Remove running llama-server within WebUI dev.sh script (#16363) 2025-10-01 08:40:26 +03:00
Bartowski
e74c92e842 model : support GLM 4.6 (make a few NextN/MTP tensors not required) (#16359)
* Make a few GLM tensors not required

layer.nextn.shared_head_head and layer.nextn.embed_tokens are both excluded from GLM 4.6 resulting in the model not loading after conversion/quantization, this marks those tensors as not required which makes it work

* Update llama-model.cpp

layer.nextn.shared_head_norm also not required in case of future models
2025-09-30 22:24:36 +02:00
Sigbjørn Skjæret
b2ba81dbe0 ci : fix ccache key for ubuntu-cpu-cmake (#16355)
* fix ccache key for ubuntu-cpu-cmake

* set it for release as well [no ci]
2025-09-30 21:41:42 +02:00
Adrien Gallouët
bf6f3b3a19 common : disable progress bar without a tty (#16352)
* common : disable progress bar without a tty

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add missing headers

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 20:52:41 +03:00
lhez
7c156df414 opencl: support pad_ext (#15888) 2025-09-30 10:45:45 -07:00
Pascal
16b0ca0d2e Chatapi ignore empty sampling (#16330)
* fix: skip empty sampling fields instead of coercing to 0 in chat API options

* chore: update webui build output
2025-09-30 19:18:54 +02:00
Reese Levine
8d78cd2613 ggml webgpu: support for rope,div,sub,glu,scale,cont operators (#16187)
* Work on rope

* Simplify inplace operation generation and combine mul/add generation

* Work on rope variants

* implement neox rope

* rope complete

* Add sub,div,glu operators

* implement scale op

* Update cpy shader to handle cont/more types

* formatting

* Update test vars printing for rope,rms_norm

* Avoid ROPE hardcoded constants

* Add TODO to change ROPE constants to enum

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix TODO comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-30 09:57:51 -07:00
lhez
d1c84a662d opencl: support ne3 in get_rows (#15866) 2025-09-30 09:55:13 -07:00
Adrien Gallouët
364a7a6d4a common : remove common_has_curl() (#16351)
`test-arg-parser.cpp` has been updated to work consistently,
regardless of whether CURL or SSL support is available, and
now always points to `ggml.ai`.

The previous timeout test has been removed, but it can be
added back by providing a dedicated URL under `ggml.ai`.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 17:39:44 +03:00
Sigbjørn Skjæret
2df5bcf357 ci : disable ccache for android (#16348) 2025-09-30 15:38:01 +02:00
Georgi Gerganov
075c01567b ggml : bump version to 0.9.4 (ggml/1363) 2025-09-30 13:53:55 +03:00
anavp-nvidia
a014310374 cuda : Enable CUDA Graph usage for Nemotron Nano v2 (NemotronH) (#16328)
* Fix Nemotron Nano v2 9B not executing as CUDA Graph on NVIDIA GPUs

* fix to ensure test-backend-ops check passes
2025-09-30 11:13:22 +03:00
Georgi Gerganov
35fb82497e metal : dynamic simdgroups for MV kernels (#16340)
* metal : dynamic simdgroups for MV kernels

* cont : minor
2025-09-30 11:03:23 +03:00
Adrien Gallouët
3c62aed89f common : simplify etag tracking by removing json (#16342)
The JSON parser is temporarily kept only for backward compatibility. It
reads the etag from old .json files to prevent unnecessary re-downloads
for existing users.

This legacy code can be removed in a future version.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 10:36:33 +03:00
Charles Xu
f1eb1cb1eb kleidiai : fix work size and threads sync for fp16 (#16246) 2025-09-30 10:07:20 +03:00
lhez
de41f2b7bf codeowners: add codeowners for opencl backend (#16344) 2025-09-30 08:30:16 +03:00
Jeff Bolz
a74a0d69f3 tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences (#16295)
* tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences

* apply similar error bounds to test_cpy
2025-09-29 19:26:34 -05:00
Pascal
5f7e166cbf Fix thinking blocks with quotes + add handling [THINK]...[/THINK] blocks (#16326)
* fix: prevent reasoning blocks with quotes from being truncated

* chore: update webui build output

* feat: Improve thinking content parsing

* test: Adds ChatMessage component stories for different thinking blocks

* chore: update webui build output

* fix: ChatMessage story fix

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-09-29 18:49:47 +02:00
Georgi Gerganov
d72f5f7ba2 ci : add AMD runners and workflows (#16249)
* ci : add AMD runners and workflows

* ci : move AMD jobs to separate workflow

* cont : fix paths
2025-09-29 17:51:48 +03:00
alex-spacemit
b77e6c18e1 ggml: riscv: add riscv spacemit backend (#15288)
* ggml: add spacemit backend

Change-Id: I249bdc043485d815a9c351867137bc1e27cc2e23

* add new line at end of file

Change-Id: I889ed1c85fb45e62350ecde0c06f70450cadfbe2

* add riscv zba extension limit

Change-Id: I321eb200f859751727afe5cae13074dfce2bb0ce

* fixed for review comments, file renamed and format

Change-Id: Ia20b6ec24a36638e62e0fe07cf100916a7cce3ce

* fixed for code format, after clang-format

Change-Id: I5dc33a0412da3d3f2d77075d8939185d3009eca2

* use _Float16 instead of __fp16

Change-Id: I039fb02bb95270e641bc4442204e658735859d43

* add ci for riscv64-spacemit-ime-native

Change-Id: I711c1033061df1a289ea77891b2997599dfe8279

* update debian-13-riscv64-spacemit-ime-native ci label

Change-Id: Ifb2b891e2fca57b5da604fce2ac255f27731179a

* remove license comment for spacemit ime

Change-Id: If0dc3ca30a958631ccca0a28b62e0b825f9fb0c3

* upgrade binutils for gcc ime

Change-Id: Ibf2fa74c1064408974cb5b45f044d40987e5fb45

* add spacemit ime cross jobs

Change-Id: I80d74909941d41cb9cd09e51d8baf01c985cbfc6

* remove native compile for riscv64-spacemit-ime

Change-Id: I01920afafdc73fa7424014fd648d243f8ec9e25e

* ci : add caching for spacemit ime cross toolchain

Change-Id: Ic54a192019a2fd982bbd58225ce3bbc38f4053de

* ci: bug fixed for cache path and env

Change-Id: I28c42e10b6fff053bb6580926ca2353448cb042a

* Update .github/workflows/build-linux-cross.yml for cache path

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* bugfixed for  build-linux-cross.yml,  syntax error

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: cailinxi <linxi.cai@spacemit.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 17:50:44 +03:00
Georgi Gerganov
2ddd3f2356 sync : ggml 2025-09-29 17:43:58 +03:00
Georgi Gerganov
4d3d455d3c sync : whisper.cpp (ggml/1359)
* ggml : Fix MKL detection by quoting BLAS_INCLUDE_DIRS (whisper/3426)

* sync : whisper.cpp
2025-09-29 17:43:58 +03:00
Daniel Bevenius
c9b1c06467 ggml : remove -dev suffix from release version (ggml/1355)
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
2025-09-29 17:43:58 +03:00
Daniel Bevenius
b6ae75afb4 ggml : bump version to 0.9.3 (ggml/1353) 2025-09-29 17:43:58 +03:00
Georgi Gerganov
b6dff20e2f ggml : prepare for development of 0.9.2-dev 2025-09-29 17:43:58 +03:00
Georgi Gerganov
2db78c75e4 ggml : bump version to 0.9.1 2025-09-29 17:43:58 +03:00
Rafal Lewczuk
02463ab27b ggml-backend : add root cause in error message if loading backend library fails (#16172)
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
2025-09-29 13:17:09 +02:00
Sigbjørn Skjæret
adc76347d7 ggml : check cuda and metal argsort limits and add test (#16323)
* check cuda argsort limits and add test

* add metal check
2025-09-29 11:09:00 +02:00
Aleksander Grygier
3a2bdcda0b Improve Mobile UI for dialogs and action dropdowns (#16222)
* fix: Always show conversation item actions

* feat: Improve Alert Dialog and Dialog mobile UI

* feat: Add settings reset to default confirmation

* fix: Close Edit dialog on save

* chore: update webui build output

* webui: implement proper z-index system and scroll management

- Add CSS variable for centralized z-index control
- Fix dropdown positioning with Settings dialog conflicts
- Prevent external scroll interference with proper event handling
- Clean up hardcoded z-index values for maintainable architecture

* webui: ensured the settings dialog enforces dynamic viewport height on mobile while retaining existing desktop sizing overrides

* feat: Use `dvh` instead of computed px height for dialogs max height on mobile

* chore: update webui build output

* feat: Improve Settings fields UI

* chore: update webui build output

* chore: update webui build output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-09-29 10:37:20 +02:00
Pascal
66bb7985c3 fix: preserved zero values in chat settings inputs and textareas by switching to nullish coalescing for field values and default placeholders (#16312) 2025-09-29 09:08:41 +02:00
Vinkal
2f61c0f5bf llama-cli: prevent spurious assistant token (#16202)
* tools/main: llama-cli: prevent spurious assistant token (#13402)

During prompt ingestion, prompt tokens are accepted into the sampler history (for repetition penalties). The conversation-mode path then appended `common_sampler_last(smpl)` to `assistant_ss` before any new token was sampled. At that point, "last" was a prompt-side token (e.g., an input prefix), so the assistant chat message began with an extra piece.

Fix: append to `assistant_ss` only for a newly sampled (non-EOG) token. This affects only chat message assembly (`assistant_ss` / `chat_msgs` / `common_chat_format_single`); terminal stdout is unchanged. Sampling order/logits are unchanged.

Fixes #13402.

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update tools/main/main.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* tools/main: remove outdated comment

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 10:03:12 +03:00
ddh0
3ffd0fae47 perplexity : show more kl-divergence data (#16321)
Adds additional percentile data for displayed in the output of `llama-perplexity --kl-divergence`:
- Added 95 percentile (mirroring existing 5 percentile)
- Added 0.1 percentile (mirroring existing 99.9 percentile)
2025-09-29 09:30:45 +03:00
Georgi Gerganov
a4a0aa5ea2 ggml : fix dependencies for ggml_set_rows (#16318) 2025-09-29 08:41:28 +03:00
Jeff Bolz
92cd103f62 vulkan: Fix validation failure in quantized flash attention (#16292) 2025-09-29 06:50:37 +02:00
Sigbjørn Skjæret
b887d2f341 ggml : fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32 (#16307)
* fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32

* add test that fails on simd
2025-09-28 23:15:03 +02:00
crat0z
bd0af02fc9 common : fix reasoning before forced tool call via tool_choice = required (#16264)
* common : fix reasoning before forced tool call via tool_choice = required

* common : improve reasoning and commentary handling when tool_choice is required

(cherry picked from commit c746984956d6882c2de73d53ae2bb3bdf889e475)

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2025-09-28 21:13:50 +03:00
R0CKSTAR
d9e0e7c819 ci : fix musa docker build (#16306)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-09-28 16:38:15 +02:00
Aaron Teo
0124ac989f devops: switch to using ubuntu-22.04-s390x image (#16302)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-28 19:25:58 +08:00
Imad Saddik
2811c65286 Fixed a few typos in the README of the LLaMA.cpp HTTP Server [no ci] (#16297) 2025-09-28 13:04:46 +02:00
Jeff Bolz
d8359f5fde vulkan: 64-bit im2col (#16135)
* vulkan: 64-bit im2col

Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.

* fix validation error for large im2col
2025-09-28 08:38:37 +02:00
Georgi Gerganov
6a2c6145a0 metal : extend mat-mat multiplication support (#16225)
* metal : support mul_mm with src1->type == GGML_TYPE_F16

* metal : support mul_mm_id with src1->type == GGML_TYPE_F16

[no ci]

* metal : mul_mm support ne00 % 32 != 0

* metal : support mul_mm_id with ne00 % 32 != 0

* cont : remove unnecessary unrolls

* cont : simplify data loading

* metal : optimize mul_mm when output bounds checks are not needed
2025-09-28 09:34:44 +03:00
Georgi Gerganov
3b53634fe3 metal : fuse non-sequential nodes (#16102)
* metal : fuse non-sequential nodes

* cont : add comment

* cont : simplify bounds checks
2025-09-28 09:34:05 +03:00
Jeff Bolz
1384abf8b8 vulkan: handle mat_mul with A matrix > 4GB (#16176)
* vulkan: handle mat_mul with A matrix > 4GB

This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.

Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.

* build fixes
2025-09-27 20:36:34 -05:00
Jeff Bolz
e6d65fb02d vulkan: support arbitrary KV dimension in flash attention (#16160)
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
2025-09-27 22:43:39 +02:00
Acly
8656f5de68 vulkan : make the vulkan.hpp dynamic dispatcher instance private (#16224)
* don't use VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE which can cause conflicts if application or other libraries do the same
2025-09-27 22:41:03 +02:00
Aleksander Grygier
4807e8f96a Show message actions by default (#16289) 2025-09-27 19:56:40 +02:00
Aman Gupta
c0bfc57af4 CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32 (#16277)
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32

This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.

My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32

* Review: refactor if statement
2025-09-27 18:49:32 +02:00
Johannes Gäßler
75a3a6c2cd CUDA: refactor and deduplicate vector FA kernels (#16208)
* CUDA: refactor and deduplicate vector FA kernels
2025-09-27 18:45:07 +02:00
Dmytro Minochkin
0499b29c6f vulkan: throw system error instead of SIGABRT during init on older devices (#16156)
* Throw system error on old Vulkan driver rather than SIGABRT

* Optionally handle any potential error in vulkan init
2025-09-27 18:26:46 +02:00
Adrien Gallouët
234e2ff8ed server : remove old LLAMA_SERVER_SSL (#16290)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 19:17:08 +03:00
Jeff Bolz
3f81b4e91c vulkan: support GET_ROWS for k-quants (#16235)
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
2025-09-27 12:36:11 +02:00
Adrien Gallouët
ace6a54565 build : add LLAMA_OPENSSL option (#16287)
Introduce a new `LLAMA_OPENSSL` option, enabled by default.

This preserves the previous default (libcurl first, OpenSSL as fallback),
while allowing OpenSSL to be disabled if desired.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 12:12:46 +03:00
Vinkal
72b24d96c6 model : make minicpm embedding_scale, residual_scale and logit_scale optional with legacy defaults (#16273)
* minicpm: make GGUF scaling keys optional with legacy defaults

Older MiniCPM GGUFs do not include the scaling metadata keys (minicpm.embedding_scale, minicpm.residual_scale, minicpm.logit_scale). The loader currently treats these as required, so quantization fails with:

    key not found in model: minicpm.embedding_scale

This change restores backward compatibility by treating these keys as optional in the loader and using the older MiniCPM scaling values:

    embedding_scale = 12.0f
    residual_scale  = 1.4f / sqrt(n_layer)
    logit_scale     = 256.0f / n_embd

When the GGUF provides the keys, their values override the defaults; otherwise the legacy defaults are used. Newer GGUFs that already include these keys are unaffected.

Fixes: #16192
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update src/llama-model.cpp

Committed as suggested. Thanks!

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 23:28:29 +02:00
Aaron Teo
624207e676 devops: add s390x & ppc64le CI (#15925)
* devops: move s390x and ppc64le ci build

we have access to ubuntu-24.04-s390x and ppc64le images now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le for now since they have compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: stop warnings as errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: switch to non-macro flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: going the llama macro route

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian gguf test models

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le to test s390x, check test build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.inp files for big-endian tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.out files for big-endian too

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add python setup and endian byteswap

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: pooring thing does not have s390x python3

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add missing rust compiler for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try rust actions runner

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "devops: try rust actions runner"

This reverts commit 3f8db04356033d6c1d7eccc75ca396bc5298250c.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try a different path for rust

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dump home directory and user info

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: install gguf-py only

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: missed relative path

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove big-endian files since local swapping is working

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: revert test-tokenizer-0 cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix unicode flags conversion from and to uint16_t

Bitfields are allocated in different order on s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Simplify byteswap command

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add byteswapping and git-lfs for test-tokenizers-ggml-vocabs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix endianness detection in vocab loader

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Disable test-thread-safety on s390x

In this test a model is downloaded,
then immediately loaded to check if more downloads are needed,
and then used for test.

There is no clean way to separate all those steps
 to add byteswapping between them, so just skip this test.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q8_0 test in test-quantize-fns

vec_signed uses unexpected rounding mode.
Explicitly use different rounding function.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian stories260K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add s390x test-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix test does not exist

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix model not found llama-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q3_K dot product error in test-quantize-fns on s390x

Array q8bytes had only 4 elements allocated, but 8 elements accessed.
This lead to write out of bounds and later read of overwritten values out of bounds
and incorrect result.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: re-enable ppc64le for testing

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: activate test-thread-safety for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le tests

for some reason it keeps failing test-thread-safety tests and I do not
    have a machine that is able to replicate the tests.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: LLAMA_FATAL_WARNINGS=ON

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Correct repository URL for s390x for test-thread-safety model

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix fs_get_cache_directory

Ensure it works even if both XDG_CACHE_HOME and HOME are unset.
This might happen in containers.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Re-enable CI for ppc64le

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fortify ggml_rope_impl

Only memcpy data from sections argument if it's non-NULL.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add TODO in struct unicode_cpt_flags to reimplement it in endian-independent way

* Update URL for big-endian model

* Update .github/workflows/build.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update remaining mentions of BE models to ggml-org/models repo

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@linux.ibm.com>
Co-authored-by: Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-27 02:03:33 +08:00
Aleksander Grygier
807e8c6d31 Enhance text file detection logic for file attachments (#16199)
* feat: Enhances text file detection logic

* chore: Build static `webui` output

* chore: update webui build output
2025-09-26 19:25:29 +02:00
Aleksander Grygier
1a18927894 Allow viewing conversations even when llama server is down (#16255)
* webui: allow viewing conversations and sending messages even if llama-server is down

- Cached llama.cpp server properties in browser localStorage on startup, persisting successful fetches and reloading them when refresh attempts fail so the chat UI continues to render while the backend is unavailable.
- Cleared the stored server properties when resetting the store to prevent stale capability data after cache-backed operation.
- Kept the original error-splash behavior when no cached props exist so fresh installs still surface a clear failure state instead of rendering stale data.

* feat: Add UI for `props` endpoint unavailable + cleanup logic

* webui: extend cached props fallback to offline errors

Treat connection failures (refused, DNS, timeout, fetch) the same way as
server 5xx so the warning banner shows up when cache is available, instead
of falling back to a full error screen.

* webui: Left the chat form enabled when a server warning is present so operators can keep sending messages

e.g., to restart the backend over llama-swap, even while cached /props data is in use

* chore: update webui build output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-09-26 18:35:42 +02:00
Isaac McFadyen
e0539eb6ae webui: switch to hash-based routing (alternative of #16079) (#16157)
* Switched web UI to hash-based routing

* Added hash to missed goto function call

* Removed outdated SPA handling code

* Fixed broken sidebar home link
2025-09-26 18:36:48 +03:00
Aleksander Grygier
5d0a40f390 Always show message actions for mobile UI + improvements for user message sizing (#16076) 2025-09-26 15:59:07 +02:00
Radoslav Gerganov
d12a983659 codeowners : add rgerganov as owner of RPC [no ci] (#16279) 2025-09-26 16:09:34 +03:00
Aleksei Nikiforov
cc1cfa277b mtmd : fix uninitialized variable in bicubic_resize (#16275)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-26 15:00:44 +02:00
Georgi Gerganov
54dbc37053 metal : report OOM errors (#16274) 2025-09-26 14:14:28 +03:00
Adrien Gallouët
b995a10760 common : use cpp-httplib as a cURL alternative for downloads (#16185)
* vendor : update httplib

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* common : use cpp-httplib as a cURL alternative for downloads

The existing cURL implementation is intentionally left untouched to
prevent any regressions and to allow for safe, side-by-side testing by
toggling the `LLAMA_CURL` CMake option.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml : Bump to Windows 10

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-26 14:12:19 +03:00
Adrien Gallouët
4710dd31bb build : fix build-ios-device (#16257)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-26 13:39:35 +03:00
Aaron Teo
9b26511857 ggml-cpu: implement MXFP4 SIMD for s390x (#16193)
* ggml-cpu: impl mxfp4 s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: missing s = sumf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix incorrect kval_mxfp4 type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework mxfp4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: missing delta calc

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo for vec_splats

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: expand to 2 blocks per loop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add unroll to boost perf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: back to 1 block per loop to test perf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: back to 1 block per loop to test perf"

This reverts commit 1fe55724e2.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rm unroll from single block

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-26 13:27:25 +03:00
Radoslav Gerganov
00217cd413 ci : create git tags for released docker images (#16008)
* ci : create git tags for released docker images

When releasing a docker image for build number X, we should also create
the corresponding git tag. This allows users to easily checkout the
corresponding source tree for given docker image.

* Update .github/workflows/docker.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update .github/workflows/docker.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 10:19:23 +00:00
Daniel Bevenius
3b337b01a1 codeowners : add danbev as owner of build-xcframework.sh [no ci] (#16268) 2025-09-26 08:53:36 +03:00
R0CKSTAR
a86a580a66 musa: upgrade musa sdk to 4.3.0 (#16240)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-09-26 02:56:38 +02:00
R0CKSTAR
0f7c69689f musa: fix build warnings (#15611)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-09-26 02:56:10 +02:00
Sigbjørn Skjæret
835b2b915c model : add GroveMoE support (#15510)
* add GroveMoE support

* remove constexpr that fails on certain compilers

* revert crude scalar div implementation, use cast

* build_attn_inp_kv_unified -> build_attn_inp_kv

* fix build_attn

* re-apply ffn_exps regex changes
2025-09-25 19:50:28 +02:00
Aaron Teo
b05a9d650f vendors: update miniaudio version (#16212)
* vendor: update miniaudio.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* vendor: update miniaudio.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 23:38:10 +08:00
rtaluyev
27052978e4 readme : update bindings (#16144)
Link to Java JNA bindings to llama.cpp native libraries
2025-09-25 18:20:34 +03:00
Aman Gupta
077c94d0ca CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel

This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory

It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models

* Refactor into ggml_cuda_should_use_topk_moe

* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before

* Review: format + micro-optimizations

* Fix bug: fix tie breakers

* Add optional norm + clean-up code

* Use smem for final write

* Add bounds check

* Use better memory pattern for writeback
2025-09-25 16:35:05 +02:00
Daniel Bevenius
aa3ee0eb0b model-conversion : add embedding prompt file support (#15871)
This commit adds support for passing a prompt file to the model
conversion targets/scripts. It also updates the logits.cpp to print out
embedding information in the same format as when running the original
embedding model.

The motivation for this is that it allows us to pass files of different
sizes when running the converted models and validating the logits.

This can be particularly important when testing the sliding window
functionality of models where the sequence length needs to exceed a
certain number of tokens to trigger the sliding window logic.
2025-09-25 12:02:36 +02:00
Daniel Bevenius
d0991da39d server : add support for external server for tests (#16243)
This commit adds support for using an externally started llama-server
instance for the server tests. This can be enabled by setting the
DEBUG_EXTERNAL environment variable.

The motivation for this is to allow debugging of the server itself
when investigating a test failure. Instructions for how to do this are
added to the README.md file in the tests directory.
2025-09-25 11:36:47 +02:00
junchao-zhao
aa719c2f88 ggml : fix loongarch lsx compilation error (#15864) 2025-09-25 12:22:55 +03:00
Johannes Gäßler
4cdd0bb453 docs: fix typo [no ci] (#16244) 2025-09-25 12:12:27 +03:00
Douglas Hanley
b5bd037832 llama : add support for qwen3 reranker (#15824) 2025-09-25 11:53:09 +03:00
Georgi Gerganov
dfcd53f7ec metal : fuse NORM + MUL + ADD, support non-multiples of 4 (#16220)
* metal : fuse NORM + MUL + ADD

* metal : support norms of non-multiple of 4

* cont : fix comment [no ci]
2025-09-25 11:30:16 +03:00
Georgi Gerganov
4ea00794b8 metal : relax reorder conditions (#16216) 2025-09-25 11:29:42 +03:00
Georgi Gerganov
02a6a82ae7 metal : restore im2col perf (#16219) 2025-09-25 11:29:08 +03:00
Radoslav Gerganov
c498fc82fe rpc : use ggml logging facilities
Use RPC_DEBUG environment variable to enable debug messages.
Add helper macro LOG_DBG() which does an early
check of the env var before calling GGML_LOG_DEBUG().
Make sure we log a debug message for every server function.
2025-09-25 07:20:02 +00:00
Aaron Teo
e7a5130a20 codeowners: add ownership of zdnn backend [no ci] (#16232)
add @Andreas-Krebbel to owners of zDNN backend

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 08:06:30 +03:00
Eve
bee378e098 ci: run the x64 and arm ci on the github machines instead (#16183)
* run the x64 ci on regular machines

* set up the same thing for arm

fix test-quantize-perf just like #12306

* try to disable sve

* add another sve run
2025-09-25 08:06:06 +03:00
Aaron Teo
5fb557653b devops: fix s390x docker release failure (#16231) 2025-09-25 11:36:30 +08:00
Aaron Teo
4ae88d07d0 codeowners: add ownership of zdnn backend [no ci] (#16229)
add @AlekseiNikiforovIBM to owners of zDNN backend

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 00:25:04 +08:00
Johannes Gäßler
e789095502 llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Acly
f2a789e334 ggml : split graph allocations according to backend max buffer size (#15815)
* ggml : make gallocr respect the backend's max buffer size

* if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers
* vulkan: report the actual max  allocation size in buffer type  interface

* fix missing newline, apple-clang warning

* track size of individual chunks in ggml_dyn_tallocr and raise max chunks.
revert to use suballocation_block_size as max chunk size for vulkan.

* track (chunk, offset) pairs instead of "global" offsets through gallocr.

* simpler, don't need loops to map between local/global offsets
* touches more code

* fix dyn_tallocr_max_size and initialization

* fix memory leak when buffers are reused due to same buffer type appearing multiple times

* make vbuffer allocation follow the same logic as backend_buffer did before

* continue to use leftover unallocated space of previous chunks after a new one has been created

* treat free blocks of each chunk as separate list
* they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges
* exhaust freed blocks of all chunks before considering their last blocks with unallocated space
* start with 0 chunks/blocks and create chunks as needed
* allow the last chunk to grow beyond max size

* refactor: move adding new free block and new chunk into separate functions

* allocate chunks individually with a separate free-blocks list for each one

* needs a bit more memory/allocations/indirections, but code is simpler

* fix warnings (missing static) & debug checks
2025-09-24 16:17:49 +02:00
Tarek Dakhran
3a59971967 model : add label for LiquidAI LFM2-2.6B model (#16204)
* model : add label for LiquidAI LFM2-2.6B model

HF link: [LiquidAI/LFM2-2.6B](https://huggingface.co/LiquidAI/LFM2-2.6B).

Support for GGUF conversion and inference is added in #14620.

However, due to similar `n_embd`, it identifies as a 1.2B model.
Fix the label by using `n_ff` to identify the model instead.

Output of `llama-bench`:
```
| model                          |       size |     params | backend    | threads |            test |                  t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | --------------: | -------------------: |
| lfm2 1.2B F16                  |   2.18 GiB |     1.17 B | CPU        |      10 |           pp512 |        223.97 ± 5.32 |
| lfm2 2.6B F16                  |   4.79 GiB |     2.57 B | CPU        |      10 |           pp512 |         92.53 ± 4.14 |
| lfm2 350M F16                  | 676.25 MiB |   354.48 M | CPU        |      10 |           pp512 |       725.52 ± 11.70 |
| lfm2 700M F16                  |   1.38 GiB |   742.49 M | CPU        |      10 |           pp512 |       336.22 ± 12.93 |
```

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-24 13:42:26 +02:00
Jie Fu (傅杰)
63b54c81a6 model-conversion : make causal-verify-logits fails with model names containing "." (#16215)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 10:25:26 +02:00
Uilian Ries
152729f884 common : add missing chrono header for common.cpp (#16211)
Signed-off-by: Uilian Ries <uilianries@gmail.com>
2025-09-24 09:53:47 +03:00
Sigbjørn Skjæret
c0c59c1157 codeowners : match all requirements files (#16214) 2025-09-24 08:53:20 +02:00
Jie Fu (傅杰)
7735706b93 model-conversion : run-org-model.py fails to run on mac m1 (#16213)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 08:46:52 +02:00
Daniel Bevenius
4d9ea03d17 codeowners : use slash prefix for root files [no ci] (#16210)
This commit adds a leading slash to the paths of root-level files
in the CODEOWNERS file.

The motivation for this is that these might otherwise match files
in subdirectories that have other/additional owners will override them.

Refs: https://github.com/ggml-org/llama.cpp/pull/16209#issuecomment-3326434274
2025-09-24 08:10:09 +02:00
Jie Fu (傅杰)
8ba548dae2 model-conversion : fix the make targets in the README.md (#16209)
Fix two incorrect make targets in the readme.

Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 06:19:23 +02:00
Georgi Gerganov
f505bd83ca ci : disable AMD workflows + update NVIDIA workflows (#16200)
* ci : disable AMD workflows + update NVIDIA workflows

* cont : fixes

* cont : update nvidia vulkan workflows
2025-09-23 20:41:40 +03:00
Georgi Gerganov
0889589dbe ci : enable Vulkan workflow on Mac (#16194) 2025-09-23 13:44:25 +03:00
Xiangyan Sun
4e29084ba4 ggml-cpu: Respect cpumask settings (#16164) 2025-09-23 11:58:12 +03:00
Sigbjørn Skjæret
f6b4af3d04 ggml : fix uninitialized is_on_grid in quantize_row_iq3_xxs_impl (#15928)
* fix uninitialized is_on_grid in quantize_row_iq3_xxs_impl

* change initialization to true
2025-09-23 10:25:20 +02:00
Aaron Teo
264f1b5187 zdnn: refactor codebase + add docs (#16178)
* zdnn: initial matmul refactor

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rm static from funcs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: update ggml-zdnn.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: change header files to hpp

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: switch to common.hpp

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: move mulmat forward around

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: rm inline from utils

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-zdnn: code cleanup

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* docs: add zDNN docs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-23 14:53:05 +08:00
Daniel Bevenius
0bc7cc7154 codeowners : add @danbev to model-conversion example [no ci] (#16190)
This commit adds examples/model-conversion/ to the CODEOWNERS file and
assigns myself (@danbev) as the code owner for this directory.
2025-09-23 09:13:22 +03:00
Aaron Teo
4b9f4cb0f8 devops: add s390x containers (#15915)
* devops: add s390x dockerfile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add missing ninja

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: move s390x docker into cpu docker

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: rework s390x docker

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: copy more tools

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add server build step

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove apt clean steps as distroless misses it

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove apt commands from distroless

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix shared libs in distroless

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: use correct libs path

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix shared libs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add collector stage

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix missing stage ref

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix permission issue

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix unknown model loading failures

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: attempt at fixing model loading failure

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix missing ggml shared object

failure to load model

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove move shared objects

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: move libggml-cpu and blas into bin

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: finalise hardened server stage

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add cli target

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix typos

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix missing shared libraries in base

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: update debian target

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: formalise llama.cpp loc

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "devops: formalise llama.cpp loc"

This reverts commit 0a7664af84.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: formalise llama.cpp loc

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
(cherry picked from commit 0a7664af84)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: attempt at fixing missing dir

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: attempt at making it cache the build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix copying process

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: make build dir an argument

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "devops: make build dir an argument"

This reverts commit 438698976b.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add build stage for gguf-py

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: move gguf-py installation into build stage

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: break system packages?

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add rust compiler installer

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix rustc not found

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove cache mount to allow rustc to persist

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: move rustc installation to another layer

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: move gguf-py installation to full stage, fix copying

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove rustc installation in build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable full target for now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: attempting static build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: merge s390x dockerfile into cpu for now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: switch to gcc image for build step

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove build essentials

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: install openblas into base target

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: go back to s390x dockerfile

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove libggml and libblas

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add full target

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add break system packages

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add libjpeg

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add missing cmake dep

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: finalise docker images for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add custom openblas patch

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: use libopenblas-dev instead of libopenblas-openmp-dev

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add s390x docker build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-23 13:59:34 +08:00
Daniel Bevenius
85e72271ba ggml-cpu : fix typo in gemm comments [no ci] (#16189) 2025-09-23 05:59:03 +02:00
Gabe Goodhart
1d0125bcf1 feat: Add conversion support in GraniteHybrid for non-hybrid (all attn) (#16177)
This is a configuration of the hparams in the GraniteHybrid architecture
that devolves to the Granite (or GraniteMoe) architecture (ie Granite 3.x).
It may be used for some models in the Granite 4 family with the
GraniteHybrid architecture acting as a superset arch. Rather than support
it directly in the c++ graph, we simply coerce the architecture flag back
to the correct "granite" or "granitemoe" architecture.

Branch: gabe-l-hart/GraniteNonHybridConversion

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-22 20:40:10 +02:00
Haiyue Wang
351f3da39c clang-tidy : disable warning about performance enum size (#16127)
Disable 'performance-enum-size' checking:

Enum 'llama_token_type' uses a larger base type ('unsigned int', size: 4 bytes)
than necessary for its value set, consider using 'std::uint8_t' (1 byte) as the
base type to reduce its size.
2025-09-22 19:57:46 +02:00
Sigbjørn Skjæret
3ecb2f671a ggml : implement set_rows with i32 index (#16159)
* implement set_rows with i32 index

* template fix

* test quantized path

warnings--

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* forgotten name change

* deduplicate cuda/sycl and test-fix

* indent++

* vulkan: support set_rows with i32 index type (#16162)

* disable i32 index for webgpu for now

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-09-22 19:13:00 +02:00
Georgi Gerganov
432cf4304c codeowners : update + cleanup (#16174)
---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-09-22 18:20:21 +03:00
Adrien Gallouët
37a23c17bd common : enable --offline mode without curl support (#16137)
* common : use the json parser

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* common : enable --offline mode without CURL support

This change refactors the download logic to properly support offline mode
even when the project is built without CURL.

Without this commit, using `--offline` would give the following error:

    error: built without CURL, cannot download model from the internet

even if all the files are already cached.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-22 15:13:51 +03:00
Quentin Bramas
138c87ce8b webui : fix handling incomplete chunks (#16107) 2025-09-22 11:53:13 +03:00
GideonSerf
c6db9a1027 embedding : fix typos in README (#16171) 2025-09-22 11:49:58 +03:00
Haiyue Wang
d05affbab7 common : remove unused local variables (#16140)
These two local variables 'arg' and 'arg_prefix' have been overriden by:

  1. for (const auto & arg : opt.args)

  2. for (int i = 1; i < argc; i++) {
        const std::string arg_prefix = "--";

        std::string arg = argv[i];
2025-09-22 11:48:42 +03:00
Georgi Gerganov
4f324a556c ggml : extend ggml_can_fuse to work with non-sequential nodes (#16123)
* ggml : extend ggml_can_fuse to work with non-sequential nodes in the graph

* cont : fix wrong bounds check condition

* cont : remove unnecessary overload
2025-09-22 11:12:37 +03:00
Georgi Gerganov
a71ae3ba7a ggml : add ggml_op_is_empty (#16122)
* ggml : add ggml_op_is_empty

* ggml : move to ggml-impl.h
2025-09-22 11:12:09 +03:00
Xuan-Son Nguyen
05a2458121 codeowners : update ownership for @ngxson and @allozuar (#16128) 2025-09-22 11:10:58 +03:00
Shin-myoung-serp
96fdca043b Vulkan: add conv_transpose_2d operation (#16022)
* Vulkan: add conv_transpose_2d operation

* Vulkan: fix typo in conv_transpose_2d shader(s0mp, s0L, s1mp, s1L)

* Vulkan: fix incorrect indentation in conv_transpose_2d shader

* Vulkan: add checking the push constants size limit and reuse conv2d_mm.comp for conv_transpose_2d operation

* Vulkan: revert the order of the index calculation and bound check in conv_2d shader

* Vulkan: explicity check push constants limit in supports_op() for conv_transpose_2d operation.

* Vulkan: remove unnecessary lower bound checks for H/W_idx in the conv_2d shader.
2025-09-22 10:04:01 +02:00
Sigbjørn Skjæret
b2d980fce0 codeowners : claim responsibility for ci, models, gguf-py and convert (#16124)
* claim responsibility for ci, gguf-py and convert

* add myself to various src/llama- files
2025-09-22 10:59:05 +03:00
Georgi Gerganov
5c6106a696 contrib : update roles (#16113)
* contrib : update roles

* contrib : merge PR sections + add link to CI instructions

Updated pull request guidelines for contributors and collaborators, and clarified merging practices for maintainers.
2025-09-22 10:58:02 +03:00
Georgi Gerganov
ec65fb52f0 ci : remove vulkaninfo calls (#16169) 2025-09-22 10:16:05 +03:00
Georgi Gerganov
1d660d2fae ci : use smaller model (#16168)
* ci : switch from gemma to qwen3 0.6b

* ci : use smaller model for some tests
2025-09-22 09:11:39 +03:00
Jeff Bolz
a20d810d79 vulkan: add RTE variants of exp shader (#16165)
This fixes some failures on Turing where "round to zero" rounds to the max f16
value but the CPU reference value is infinite.
2025-09-22 07:37:17 +02:00
Georgi Gerganov
4d0a7cbc61 ci : adjust params for less runtime (#16167)
* ci : adjust params for less runtime

* ci : gate BF16 on some hardware

* ci : move extra tests to Arm runner
2025-09-22 08:31:40 +03:00
Ruben Ortlam
9073a73d82 vulkan: vec dot matrix multiplication fix (#16151)
* vulkan: fix matrix multiplication index calculation for odd m/n and odd k in combination with batching

* add odd m/n + odd k test with batching
2025-09-22 07:22:43 +02:00
lhez
51f5a45fbe opencl: fix concat crash on win arm64 with Adreno (#15944) 2025-09-21 16:42:10 -07:00
lhez
c4510dc937 opencl: initial q8_0 mv support (#15732) 2025-09-21 14:48:44 -07:00
Georgi Gerganov
da30ab5f86 ci : add label for the RISC-V runner (#16150) 2025-09-21 19:00:27 +03:00
Georgi Gerganov
28baac9c9f ci : migrate ggml ci to self-hosted runners (#16116)
* ci : migrate ggml ci to a self-hosted runners

* ci : add T4 runner

* ci : add instructions for adding self-hosted runners

* ci : disable test-backend-ops from debug builds due to slowness

* ci : add AMD V710 runner (vulkan)

* cont : add ROCM workflow

* ci : switch to qwen3 0.6b model

* cont : fix the context size
2025-09-21 16:50:45 +03:00
Giuseppe Scrivano
1eeb523c3e vulkan: optimize UMA buffer operations and fix driver hangs (#16059)
* vulkan: optimize UMA buffer operations and fix driver hangs

The previous implementation was blocking the GPU for extended periods,
causing the i915 driver to reset the context due to the hangcheck
protection.

[32628.443070] i915 0000:00:02.0: [drm] GPU HANG: ecode 12:1:85dffffb, in llama-server [194114]
[32628.443091] i915 0000:00:02.0: [drm] llama-server[194114] context reset due to GPU hang

* vulkan: implement deferred_memset on UMA

---------

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-09-21 08:31:55 +02:00
Jeff Bolz
5bb4a3edec vulkan: fix validation error about VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR (#16086) 2025-09-21 08:23:37 +02:00
Georgi Gerganov
7f766929ca sync : ggml 2025-09-20 13:02:14 +03:00
Daniel Bevenius
405921dcef ggml : introduce semantic versioning (ggml/1336)
* ggml : introduce semantic versioning

This commit introduces semantic versioning for the GGML library.

The motivation for this is that the current versioning, using build
numbers, makes it difficult to track changes and releases for projects
that use ggml.

The release steps are the following:
1. Sync the changes from llama.cpp using sync-llama-am.sh and after the
   PR has been approved and merged move to step 2.
2. Run scripts/release.sh and specify the type of release, major, minor,
   or patch. This script will handle incrementing the version
   (major|minor|patch), create a new commit with the version change,
   create a tag for the version, and prepare for the next development
   iteration.
3. Inspect the commits/tag and push to master. This will trigger the
   github release workflow which is triggered for new tags which will
   then publish a new release on github.

Example usage:
```console
$ ./scripts/release.sh major --dry-run
[dry-run] - No changes will be made

Step 1: Reading current version...
Current version: 0.9.0-dev
New release version: 1.0.0

Step 2: Updating version in ggml/CMakeLists.txt...
  [dry-run] Would update GGML_VERSION_MAJOR to 1
  [dry-run] Would update GGML_VERSION_MINOR to 0
  [dry-run] Would update GGML_VERSION_PATCH to 0
  [dry-run] Would remove -dev suffix

Step 3: Committing version bump...
  [dry-run] Would commit: 'ggml : bump version to 1.0.0'

Step 4: Creating git tag...
  [dry-run] Would create tag: v1.0.0 with message 'Release version 1.0.0'

Step 5: Preparing for next development cycle...
  [dry-run] Would update GGML_VERSION_MINOR to 1
  [dry-run] Would add -dev suffix back

Step 6: Committing development version...
  [dry-run] Would commit: 'ggml : prepare for development of 1.1.0-dev'

[dry-run] Summary (no changes were made):
  • Would have released version: 1.0.0
  • Would have created tag: v1.0.0
  • Would have set next development version: 1.1.0-dev
```

Refs: https://github.com/ggml-org/ggml/issues/1333

* ggml: create branch for release candidate and check master

* ggml : sign the git tag
2025-09-20 13:02:14 +03:00
Gregor Jasny
fa6383ca7e CUDA : conditionally add cuda architectures (ggml/1341) 2025-09-20 13:02:14 +03:00
Ruben Ortlam
803dac2e48 vulkan: use vec dot for matrix matrix multiplications (#16056)
* vulkan: Change the mul_mm shared memory and register caching system to use vec2 instead of scalars, to enable using dot2 instructions

* use fma instead of dot to fix Nvidia and Apple performance issues
2025-09-20 10:42:56 +02:00
Benni
459c0c2c1a server: fix SSE and OpenAI compatibility for error messages when streaming (#16109)
* server: fix SSE and OpenAI compatibility for error messages when streaming

* server: remove obsolete event parameter and use required data fieldname instead
2025-09-20 07:56:30 +02:00
ssweens
be79d9fdd9 llama-bench: add --devices and --list-devices support (#16039)
* * llama-bench: add --devices support
- Support --devices same as llama-server
- Provide for benchmarking different device combinations
- Include --list-devices like llama-server for convenience

* fix: field display ordering restored

* fix: integrated the rpc devices
- aimed to mimic the server as much as possible

* cleanup: defaults for list-devices
- handle dup device listing with RPC

* cleanup: remove dup device load calls

* docs: update llama-bench
- added the recently added n-cpu-moe option to the docs while in there

* llama-bench: rpc device simplification
* rpc servers unify with other devices earlier, simplifying code
* --list-devices made stateless and simpler
* various cleanup
2025-09-20 00:15:21 +02:00
shun095
f432d8d83e chat: Fix streaming parser for granite models (#15682)
* fix(chat): fix streaming parser for granite models

* tests: add test cases for Granite models chat parser
2025-09-19 09:57:30 -06:00
Aleksander Grygier
4067f07fc5 feat: Improve mobile UI for Settings Dialog (#16084)
* feat: Improve mobile UI for Settings Dialog

* chore: update webui build output

* fix: Linting errors

* chore: update webui build output
2025-09-19 09:52:27 +02:00
Xuan-Son Nguyen
4b8560ab56 chat : fix build on arm64 (#16101) 2025-09-19 13:02:51 +07:00
Xuan-Son Nguyen
0dd58b6877 ggml : refactor forward_dup for cpu backend (#16062)
* ggml : refactor forward_dup for cpu backend

* clean up a bit

* add quant/dequant perf test
2025-09-19 06:31:56 +02:00
Adrien Gallouët
69ffd89163 ggml-amx : fix ggml_amx_init() on generic Linux (#16049)
Generalize Linux check to `__linux__` to support non-glibc systems (like musl).
Also, return `false` on unknown/untested OS.

Without this commit, the code compiles (with warnings) but fails:

    register_backend: registered backend CPU (1 devices)
    register_device: registered device CPU (Intel(R) Xeon(R) Platinum 8488C)
    build: 6487 (51c4cac6) with x86_64-linux-musl-gcc (GCC) 15.1.0 for x86_64-linux-musl (debug)
    system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
    ....
    print_info: n_ctx_orig_yarn  = 262144
    print_info: rope_finetuned   = unknown
    print_info: model type       = 4B
    Illegal instruction (core dumped)

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-18 23:07:26 +02:00
Adrien Gallouët
246c0d9c79 cmake : fix static linking for OpenMP on Unix-like systems (#16031)
When compiling with GGML_STATIC=ON, the build process would produce a
binary that was still dynamically linked to OpenMP. This defeats the
purpose of a static build:

    $ cmake -B build \
            -DBUILD_SHARED_LIBS=OFF \
            -DLLAMA_CURL=OFF \
            -DGGML_CCACHE=OFF \
            -DGGML_NATIVE=OFF \
            -DGGML_STATIC=ON

    $ ldd llama-server
            linux-vdso.so.1 (0x0000e1a434e3b000)
            libgomp.so.1 => /lib/aarch64-linux-gnu/libgomp.so.1 (0x0000e1a4345a0000)
            libstdc++.so.6 => /lib/aarch64-linux-gnu/libstdc++.so.6 (0x0000e1a434300000)
            libm.so.6 => /lib/aarch64-linux-gnu/libm.so.6 (0x0000e1a434240000)
            libgcc_s.so.1 => /lib/aarch64-linux-gnu/libgcc_s.so.1 (0x0000e1a434200000)
            libc.so.6 => /lib/aarch64-linux-gnu/libc.so.6 (0x0000e1a434030000)
            /lib/ld-linux-aarch64.so.1 (0x0000e1a434df0000)

This commit resolves the issue by modifying `CMAKE_FIND_LIBRARY_SUFFIXES`
to prioritize `.a` files, forcing CMake to link the static version of
the library.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-18 23:07:18 +02:00
Shawn Gu
3edd87cd05 opencl: optimize mxfp4 kernels (#16037)
- flatten mxfp4 and packed fp4->fp16 bit-wise convert function (replace lut)
- MoE kernel optimizations

---------

Co-authored-by: Li He <lih@qti.qualcomm.com>
2025-09-18 12:03:34 -07:00
431 changed files with 27003 additions and 11666 deletions

View File

@@ -17,6 +17,7 @@ Checks: >
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
-performance-enum-size,
portability-*,
-portability-simd-intrinsics,
misc-*,

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
@@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\

View File

@@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.2.0
ARG MUSA_VERSION=rc4.3.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64

View File

@@ -1,8 +1,8 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
ARG ROCM_VERSION=7.0
ARG AMDGPU_VERSION=7.0
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
@@ -13,9 +13,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
#ARG ROCM_DOCKER_ARCH='gfx1151'
@@ -36,13 +35,10 @@ WORKDIR /app
COPY . .
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \

123
.devops/s390x.Dockerfile Normal file
View File

@@ -0,0 +1,123 @@
ARG GCC_VERSION=15.2.0
ARG UBUNTU_VERSION=24.04
### Build Llama.cpp stage
FROM gcc:${GCC_VERSION} AS build
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt upgrade -y && \
apt install -y --no-install-recommends \
git cmake ccache ninja-build \
# WARNING: Do not use libopenblas-openmp-dev. libopenblas-dev is faster.
libopenblas-dev libcurl4-openssl-dev && \
rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY . .
RUN --mount=type=cache,target=/root/.ccache \
--mount=type=cache,target=/app/build \
cmake -S . -B build -G Ninja \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_BACKEND_DL=OFF \
-DGGML_NATIVE=OFF \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS && \
cmake --build build --config Release -j $(nproc) && \
cmake --install build --prefix /opt/llama.cpp
COPY *.py /opt/llama.cpp/bin
COPY .devops/tools.sh /opt/llama.cpp/bin
COPY gguf-py /opt/llama.cpp/gguf-py
COPY requirements.txt /opt/llama.cpp/gguf-py
COPY requirements /opt/llama.cpp/gguf-py/requirements
### Collect all llama.cpp binaries, libraries and distro libraries
FROM scratch AS collector
# Copy llama.cpp binaries and libraries
COPY --from=build /opt/llama.cpp/bin /llama.cpp/bin
COPY --from=build /opt/llama.cpp/lib /llama.cpp/lib
COPY --from=build /opt/llama.cpp/gguf-py /llama.cpp/gguf-py
### Base image
FROM ubuntu:${UBUNTU_VERSION} AS base
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y --no-install-recommends \
# WARNING: Do not use libopenblas-openmp-dev. libopenblas-dev is faster.
# See: https://github.com/ggml-org/llama.cpp/pull/15915#issuecomment-3317166506
curl libgomp1 libopenblas-dev && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
# Copy llama.cpp libraries
COPY --from=collector /llama.cpp/lib /usr/lib/s390x-linux-gnu
### Full
FROM base AS full
ENV PATH="/root/.cargo/bin:${PATH}"
WORKDIR /app
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y \
git cmake libjpeg-dev \
python3 python3-pip python3-dev && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
RUN curl https://sh.rustup.rs -sSf | bash -s -- -y
COPY --from=collector /llama.cpp/bin /app
COPY --from=collector /llama.cpp/gguf-py /app/gguf-py
RUN pip install --no-cache-dir --break-system-packages \
-r /app/gguf-py/requirements.txt
ENTRYPOINT [ "/app/tools.sh" ]
### CLI Only
FROM base AS light
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]
### Server
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/llama-server /llama.cpp/bin
EXPOSE 8080
ENTRYPOINT [ "/llama.cpp/bin/llama-server" ]

52
.github/workflows/build-amd.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: CI (AMD)
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'.github/workflows/build-amd.yml',
'**/CMakeLists.txt',
'**/.cmake',
'**/*.h',
'**/*.hpp',
'**/*.c',
'**/*.cpp',
'**/*.cu',
'**/*.cuh',
'**/*.comp'
]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp

View File

@@ -141,97 +141,6 @@ jobs:
# cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-cpu-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup PowerPC64le
run: |
sudo dpkg --add-architecture ppc64el
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# ubuntu-24-ppc64el-vulkan-cross:
# runs-on: ubuntu-24.04
# steps:
# - uses: actions/checkout@v4
# - name: Setup PowerPC64le
# run: |
# sudo dpkg --add-architecture ppc64el
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# gcc-14-powerpc64le-linux-gnu \
# g++-14-powerpc64le-linux-gnu \
# libvulkan-dev:ppc64el
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=ppc64 \
# -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
@@ -344,3 +253,47 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-riscv64-cpu-spacemit-ime-cross:
runs-on: ubuntu-24.04
env:
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
SPACEMIT_IME_TOOLCHAIN_PATH: "spacemit-toolchain-linux-glibc-x86_64"
steps:
- uses: actions/checkout@v4
- name: Cache Toolchain
uses: actions/cache@v4
id: cache-spacemit-ime-cross-toolchain
with:
path: ./${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}
key: ${{ runner.os }}-spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
- name: Setup Toolchain
if: steps.cache-spacemit-ime-cross-toolchain.outputs.cache-hit != 'true'
run: |
wget --quiet --no-check-certificate https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}.tar.xz -O ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}.tar.xz
rm -rf ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}
mkdir -p ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}
tar xf ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}.tar.xz -C ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }} --strip-components=1
rm -rf ${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}.tar.xz
- name: Build
run: |
export RISCV_ROOT_PATH=${PWD}/${{ env.SPACEMIT_IME_TOOLCHAIN_PATH }}
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
cmake --build build --config Release -j $(nproc)

View File

@@ -6,7 +6,7 @@ on:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: self-hosted
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
@@ -58,3 +58,63 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -97,7 +97,7 @@ jobs:
ctest -L 'main|curl' --verbose --timeout 900
macOS-latest-cmake-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -192,6 +192,10 @@ jobs:
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
- build: 's390x'
os: ubuntu-24.04-s390x
- build: 'ppc64le'
os: ubuntu-24.04-ppc64le
runs-on: ${{ matrix.os }}
@@ -203,14 +207,31 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Dependencies
id: depends
- name: Build Dependencies
id: build_depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install -y --no-install-recommends \
python3 python3-pip python3-dev \
libjpeg-dev build-essential libcurl4-openssl-dev \
git-lfs
- name: Python Dependencies
id: python_depends
run: |
python3 -m pip install --upgrade pip
pip3 install ./gguf-py
- name: Swap Endianness
id: endianness
if: ${{ matrix.build == 's390x' }}
run: |
for f in models/*.gguf; do
echo YES | python3 gguf-py/gguf/scripts/gguf_convert_endian.py $f big
done
- name: Build
id: cmake_build
@@ -228,6 +249,7 @@ jobs:
- name: Test llama2c conversion
id: llama2c_test
if: ${{ matrix.build != 's390x' }}
run: |
cd build
echo "Fetch tokenizer"
@@ -237,6 +259,15 @@ jobs:
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Test llama2c (s390x)
id: llama2c_test_s390x
if: ${{ matrix.build == 's390x' }}
run: |
cd build
echo "Fetch llama2c big-endian model"
wget https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories260K-be.gguf
./bin/llama-cli -m stories260K-be.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -331,11 +362,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-rpc
evict-old-files: 1d
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: ubuntu-latest-cmake-rpc
# evict-old-files: 1d
- name: Dependencies
id: depends
@@ -356,8 +387,8 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
ubuntu-24-cmake-vulkan:
runs-on: ubuntu-24.04
steps:
- name: Clone
@@ -367,20 +398,40 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
key: ubuntu-24-cmake-vulkan
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Cache Vulkan SDK
id: cache_vulkan_sdk
uses: actions/cache@v4
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Install Vulkan SDK
if: steps.cache_vulkan_sdk.outputs.cache-hit != 'true'
id: vulkan_sdk_install
run: |
mkdir -p vulkan_sdk
cd vulkan_sdk
curl --no-progress-meter https://sdk.lunarg.com/sdk/download/latest/linux/vulkan_sdk.tar.xz | tar -Jx --strip-components=1
- name: Build
id: cmake_build
run: |
source ./vulkan_sdk/setup-env.sh
cmake -B build \
-DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc)
@@ -390,6 +441,7 @@ jobs:
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
@@ -456,7 +508,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -475,7 +527,7 @@ jobs:
ubuntu-22-cmake-musa:
runs-on: ubuntu-22.04
container: mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
container: mthreads/musa:rc4.3.0-devel-ubuntu22.04-amd64
steps:
- name: Clone
@@ -1028,7 +1080,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
@@ -1066,10 +1118,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/${{ env.ROCM_VERSION }}/pool/main/r/rocwmma-dev/rocwmma-dev_1.7.0.60402-120~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@@ -1130,8 +1184,9 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `
@@ -1191,11 +1246,12 @@ jobs:
- name: Clone
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: android-build
evict-old-files: 1d
# Disabled due to size (400MB) and always 0 cache hits
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: android-build
# evict-old-files: 1d
- name: Set up JDK
uses: actions/setup-java@v3
@@ -1247,3 +1303,212 @@ jobs:
-DGGML_CANN=on \
-DSOC_TYPE=${{ matrix.device }}
cmake --build build -j $(nproc)
# TODO: simplify the following workflows using a matrix
# TODO: run lighter CI on PRs and the full CI only on master (if needed)
ggml-ci-x64-cpu-low-perf:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-x64-cpu-low-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_LOW_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-low-perf:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-low-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_LOW_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-x64-cpu-high-perf:
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-x64-cpu-high-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-high-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf-sve:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-high-perf-sve
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-x64-nvidia-cuda:
runs-on: [self-hosted, Linux, X64, NVIDIA]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
nvidia-smi
GG_BUILD_CUDA=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-vulkan-cm:
runs-on: [self-hosted, Linux, X64, NVIDIA]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 GGML_VK_DISABLE_COOPMAT2=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-vulkan-cm2:
runs-on: [self-hosted, Linux, X64, NVIDIA, COOPMAT2]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-cpu-amx:
runs-on: [self-hosted, Linux, X64, CPU, AMX]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
GG_BUILD_METAL=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-vulkan:
runs-on: [self-hosted, macOS, ARM64]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp

View File

@@ -28,7 +28,7 @@ jobs:
push_to_registry:
name: Push Docker image to Docker Hub
runs-on: ubuntu-22.04
runs-on: ${{ matrix.config.runs_on }}
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
@@ -39,11 +39,12 @@ jobs:
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04-s390x" }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
@@ -53,6 +54,7 @@ jobs:
fetch-depth: 0 # preserve git history, so we can determine the build number
- name: Set up QEMU
if: ${{ matrix.config.tag != 's390x' }}
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
@@ -67,22 +69,19 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Determine tag name
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Determine image tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
REPO_NAME="${{ github.event.repository.name }}"
# determine tag name postfix (build number, commit hash)
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
TAG_POSTFIX="-b${BUILD_NUMBER}"
else
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
fi
# list all tags possible
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
TYPE=""
@@ -90,17 +89,19 @@ jobs:
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
CACHETAGS="${PREFIX}buildcache${TYPE}"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "cache_output_tags=$CACHETAGS" # print out for debugging
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
env:
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Free Disk Space (Ubuntu)
@@ -133,11 +134,14 @@ jobs:
target: full
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
@@ -152,11 +156,14 @@ jobs:
target: light
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
@@ -171,8 +178,37 @@ jobs:
target: server
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
create_tag:
name: Create and push git tag
runs-on: ubuntu-22.04
permissions:
contents: write
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Create and push git tag
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git tag ${{ steps.srctag.outputs.name }} || exit 0
git push origin ${{ steps.srctag.outputs.name }} || exit 0

View File

@@ -75,7 +75,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -150,7 +150,7 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Dependencies
@@ -462,7 +462,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
@@ -505,6 +505,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
@@ -513,10 +514,15 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
@@ -543,10 +549,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@@ -601,7 +609,7 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `

4
.gitignore vendored
View File

@@ -149,6 +149,6 @@ poetry.toml
/run-chat.sh
.ccache/
# Code Workspace
# IDE
*.code-workspace
.windsurf/

View File

@@ -1,7 +0,0 @@
---
trigger: manual
---
#### Tailwind & CSS
- We are using Tailwind v4 which uses oklch colors so we now want to refer to the CSS vars directly, without wrapping it with any color function like `hsla/hsl`, `rgba` etc.

View File

@@ -1,48 +0,0 @@
---
trigger: manual
---
# Coding rules
## Svelte & SvelteKit
### Services vs Stores Separation Pattern
#### `lib/services/` - Pure Business Logic
- **Purpose**: Stateless business logic and external communication
- **Contains**:
- API calls to external services (ApiService)
- Pure business logic functions (ChatService, etc.)
- **Rules**:
- NO Svelte runes ($state, $derived, $effect)
- NO reactive state management
- Pure functions and classes only
- Can import types but not stores
- Focus on "how" - implementation details
#### `lib/stores/` - Reactive State Management
- **Purpose**: Svelte-specific reactive state with runes
- **Contains**:
- Reactive state classes with $state, $derived, $effect
- Database operations (DatabaseStore)
- UI-focused state management
- Store orchestration logic
- **Rules**:
- USE Svelte runes for reactivity
- Import and use services for business logic
- NO direct database operations
- NO direct API calls (use services)
- Focus on "what" - reactive state for UI
#### Enforcement
- Services should be testable without Svelte
- Stores should leverage Svelte's reactivity system
- Clear separation: services handle data, stores handle state
- Services can be reused across multiple stores
#### Misc
- Always use `let` for $derived state variables

View File

@@ -1,9 +0,0 @@
---
trigger: manual
---
# Automated Tests
## General rules
- NEVER include any test code in the production code - we should always have it in a separate dedicated files

View File

@@ -1,7 +0,0 @@
---
trigger: manual
---
## TypeScript
- Add JSDocs for functions

View File

@@ -92,6 +92,7 @@ option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package

View File

@@ -1,12 +1,115 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
# multiplie collaborators per item can be specified
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/tools/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-zdnn/ @taronaeo
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
/examples/convert-llama2c-to-ggml/ @ggerganov
/examples/deprecation-warning/ @ggerganov
/examples/diffusion/ @am17an
/examples/embedding/ @ggerganov
/examples/eval-callback/ @ggerganov
/examples/export-docs/ @ggerganov
/examples/gen-docs/ @ggerganov
/examples/gguf/ @ggerganov
/examples/llama.android/ @ggerganov
/examples/llama.swiftui/ @ggerganov
/examples/llama.vim @ggerganov
/examples/lookahead/ @ggerganov
/examples/lookup/ @JohannesGaessler
/examples/model-conversion/ @danbev
/examples/parallel/ @ggerganov
/examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren
/ggml/src/ggml-alloc.c @slaren
/ggml/src/ggml-backend* @slaren
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC
/media/ @ggerganov
/scripts/gen* @ggerganov
/scripts/get* @ggerganov
/scripts/sync* @ggerganov
/src/ @ggerganov
/src/llama-adapter.* @CISC
/src/llama-arch.* @CISC
/src/llama-chat.* @ngxson
/src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov
/LICENSE @ggerganov
/README.md @ggerganov
/SECURITY.md @ggerganov
/build-xcframework.sh @danbev
requirements*.txt @CISC

View File

@@ -1,4 +1,12 @@
# Pull requests (for contributors)
# Contributors
The project differentiates between 3 levels of contributors:
- Contributors: people who have contributed before (no special privileges)
- Collaborators (Triage): people with significant contributions, who may be responsible for some parts of the code, and are expected to maintain and review contributions for the code they own
- Maintainers: responsible for reviewing and merging PRs, after approval from the code owners
# Pull requests (for contributors & collaborators)
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
- Test your changes:
@@ -9,15 +17,16 @@
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
# Pull requests (for collaborators)
# Pull requests (for maintainers)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
- Let authors, who are also collaborators, merge their own PRs
- When merging a PR by a contributor, make sure you have a good understanding of the changes
- Let other maintainers merge their own PRs
- When merging a PR, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
# Coding guidelines
@@ -117,6 +126,21 @@
#endif // FOO
```
# Code maintenance
- Existing code should have designated collaborators and/or maintainers specified in the [CODEOWNERS](CODEOWNERS) file reponsible for:
- Reviewing and merging related PRs
- Fixing related bugs
- Providing developer guidance/support
- When adding or modifying a large piece of code:
- If you are a collaborator, make sure to add yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- If you are a contributor, find an existing collaborator who is willing to review and maintain your code long-term
- Provide the necessary CI workflow (and hardware) to test your changes (see [ci/README.md](https://github.com/ggml-org/llama.cpp/tree/master/ci))
- New code should follow the guidelines (coding, naming, etc.) outlined in this document. Exceptions are allowed in isolated, backend-specific parts of the code that do not interface directly with the `ggml` interfaces.
_(NOTE: for legacy reasons, existing code is not required to follow this guideline)_
# Documentation
- Documentation is a community effort

View File

@@ -178,6 +178,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Java: [QuasarByte/llama-cpp-jna](https://github.com/QuasarByte/llama-cpp-jna)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
@@ -274,6 +275,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
@@ -520,8 +522,8 @@ To learn more about model quantization, [read this documentation](tools/quantize
## Contributing
- Contributors can open PRs
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Maintainers can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Any help with managing issues, PRs and projects is very appreciated!
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information

View File

@@ -422,6 +422,7 @@ echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \

35
ci/README-MUSA.md Normal file
View File

@@ -0,0 +1,35 @@
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc4.3.0-devel-ubuntu22.04-amd64
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -1,18 +1,10 @@
# CI
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
This CI implements heavy-duty workflows that run on self-hosted runners. Typically the purpose of these workflows is to
cover hardware configurations that are not available from Github-hosted runners and/or require more computational
resource than normally available.
https://github.com/ggml-org/ci
It monitors the `master` branch for new commits and runs the
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
to cover various hardware architectures, including GPU and Apple Silicon instances.
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
Only the branches of this repo are monitored for this keyword.
It is a good practice, before publishing changes to execute the full CI locally on your machine:
It is a good practice, before publishing changes to execute the full CI locally on your machine. For example:
```bash
mkdir tmp
@@ -29,40 +21,13 @@ GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# etc.
```
## Running MUSA CI in a Docker Container
# Adding self-hosted runners
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.
- Add a self-hosted `ggml-ci` workflow to [[.github/workflows/build.yml]] with an appropriate label
- Request a runner token from `ggml-org` (for example, via a comment in the PR or email)
- Set-up a machine using the received token ([docs](https://docs.github.com/en/actions/how-tos/manage-runners/self-hosted-runners/add-runners))
- Optionally update [ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) to build and run on the target platform by gating the implementation with a `GG_BUILD_...` env

469
ci/run.sh
View File

@@ -34,9 +34,9 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -f $OUT/*.log
rm -f $OUT/*.exit
rm -f $OUT/*.md
sd=`dirname $0`
cd $sd/../
@@ -65,6 +65,16 @@ if [ ! -z ${GG_BUILD_CUDA} ]; then
fi
fi
if [ ! -z ${GG_BUILD_ROCM} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_HIP=ON"
if [ -z ${GG_BUILD_AMDGPU_TARGETS} ]; then
echo "Missing GG_BUILD_AMDGPU_TARGETS, please set it to your GPU architecture (e.g. gfx90a, gfx1100, etc.)"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DAMDGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
if [ -z ${ONEAPI_ROOT} ]; then
echo "Not detected ONEAPI_ROOT, please install oneAPI base toolkit and enable it by:"
@@ -82,6 +92,12 @@ fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
# if on Mac, disable METAL
if [[ "$OSTYPE" == "darwin"* ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=OFF -DGGML_BLAS=OFF"
fi
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
@@ -93,6 +109,12 @@ if [ ! -z ${GG_BUILD_MUSA} ]; then
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
if [ ! -z ${GG_BUILD_NO_SVE} ]; then
# arm 9 and newer enables sve by default, adjust these flags depending on the cpu used
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -150,7 +172,7 @@ function gg_run_ctest_debug {
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -L main -E "test-opt|test-backend-ops" ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
@@ -200,33 +222,9 @@ function gg_sum_ctest_release {
gg_printf '```\n'
}
# test_scripts_debug
# test_scripts
function gg_run_test_scripts_debug {
cd ${SRC}
set -e
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
function gg_run_test_scripts {
cd ${SRC}
set -e
@@ -237,10 +235,10 @@ function gg_run_test_scripts_release {
set +e
}
function gg_sum_test_scripts_release {
function gg_sum_test_scripts {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in release mode\n'
gg_printf 'Runs test scripts\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
@@ -249,15 +247,9 @@ function gg_sum_test_scripts_release {
}
function gg_get_model {
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
local gguf_0="$MNT/models/qwen3/0.6B/ggml-model-f16.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
@@ -316,24 +308,22 @@ function gg_sum_ctest_with_model_release {
gg_printf '```\n'
}
# open_llama_7b_v2
# qwen3_0_6b
function gg_run_open_llama_7b_v2 {
function gg_run_qwen3_0_6b {
cd ${SRC}
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/config.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/tokenizer.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/tokenizer_config.json
#gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/special_tokens_map.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/resolve/main/model.safetensors
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/open-llama/7B-v2"
path_models="../models-mnt/qwen3/0.6B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
@@ -343,9 +333,11 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf --outtype f16
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-bf16.gguf --outtype bf16
model_f16="${path_models}/ggml-model-f16.gguf"
model_bf16="${path_models}/ggml-model-bf16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
@@ -359,179 +351,51 @@ function gg_run_open_llama_7b_v2 {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
./bin/llama-quantize ${model_bf16} ${model_q8_0} q8_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_0} q4_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_1} q4_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_0} q5_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_1} q5_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q2_k} q2_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q3_k} q3_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_k} q4_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_k} q5_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q6_k} q6_k $(nproc)
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
if [ -z ${GG_BUILD_NO_BF16} ]; then
(time ./bin/llama-perplexity --model ${model_bf16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
fi
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -547,6 +411,9 @@ function gg_run_pythia_1_4b {
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
if [ -z ${GG_BUILD_NO_BF16} ]; then
check_ppl "bf16" "$(cat $OUT/${ci}-tg-bf16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
fi
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
@@ -563,147 +430,17 @@ function gg_run_pythia_1_4b {
set +e
}
function gg_sum_pythia_1_4b {
function gg_sum_qwen3_0_6b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 1.4B:\n'
gg_printf 'Qwen3 0.6B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_2_8b
function gg_run_pythia_2_8b {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_2_8b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- f16:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
if [ -z ${GG_BUILD_NO_BF16} ]; then
gg_printf '- bf16:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-bf16.log)"
fi
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
@@ -870,6 +607,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
@@ -878,20 +616,15 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
test $ret -eq 0 && gg_run test_scripts_release
test $ret -eq 0 && gg_run test_scripts
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
else
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
test $ret -eq 0 && gg_run qwen3_0_6b
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
fi
cat $OUT/README.md
exit $ret

View File

@@ -0,0 +1,29 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR riscv64)
set(CMAKE_SYSTEM_VERSION 1)
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
else()
set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
if (DEFINED ENV{RISCV_ROOT_PATH})
file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
else()
message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
endif()
set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
endif()
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")

View File

@@ -56,6 +56,7 @@ add_library(${TARGET} STATIC
common.h
console.cpp
console.h
http.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
@@ -87,7 +88,43 @@ if (LLAMA_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
endif ()
endif()
if (LLAMA_OPENSSL)
find_package(OpenSSL)
if (OpenSSL_FOUND)
include(CheckCSourceCompiles)
set(SAVED_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
set(CMAKE_REQUIRED_INCLUDES ${OPENSSL_INCLUDE_DIR})
check_c_source_compiles("
#include <openssl/opensslv.h>
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
# if OPENSSL_VERSION_NUMBER < 0x1010107f
# error bad version
# endif
#else
# if OPENSSL_VERSION_NUMBER < 0x30000000L
# error bad version
# endif
#endif
int main() { return 0; }
" OPENSSL_VERSION_SUPPORTED)
set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES})
if (OPENSSL_VERSION_SUPPORTED)
message(STATUS "OpenSSL found: ${OPENSSL_VERSION}")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT)
target_link_libraries(${TARGET} PUBLIC OpenSSL::SSL OpenSSL::Crypto)
if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN)
find_library(CORE_FOUNDATION_FRAMEWORK CoreFoundation REQUIRED)
find_library(SECURITY_FRAMEWORK Security REQUIRED)
target_link_libraries(${TARGET} PUBLIC ${CORE_FOUNDATION_FRAMEWORK} ${SECURITY_FRAMEWORK})
endif()
endif()
else()
message(STATUS "OpenSSL not found, SSL support disabled")
endif()
endif()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)

View File

@@ -24,6 +24,7 @@
#include <cstdarg>
#include <filesystem>
#include <fstream>
#include <future>
#include <list>
#include <regex>
#include <set>
@@ -31,12 +32,31 @@
#include <thread>
#include <vector>
//#define LLAMA_USE_CURL
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#else
#include "http.h"
#endif
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
// isatty
#if defined(_WIN32)
#include <io.h>
#else
#include <unistd.h>
#endif
using json = nlohmann::ordered_json;
@@ -85,6 +105,14 @@ static void write_file(const std::string & fname, const std::string & content) {
}
}
static bool is_output_a_tty() {
#if defined(_WIN32)
return _isatty(_fileno(stdout));
#else
return isatty(1);
#endif
}
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
this->examples = std::move(examples);
return *this;
@@ -202,24 +230,54 @@ struct common_hf_file_res {
std::string mmprojFile;
};
#ifdef LLAMA_USE_CURL
bool common_has_curl() {
return true;
static void write_etag(const std::string & path, const std::string & etag) {
const std::string etag_path = path + ".etag";
write_file(etag_path, etag);
LOG_DBG("%s: file etag saved: %s\n", __func__, etag_path.c_str());
}
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
static std::string read_etag(const std::string & path) {
std::string none;
const std::string etag_path = path + ".etag";
if (std::filesystem::exists(etag_path)) {
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return none;
}
std::string etag;
std::getline(etag_in, etag);
return etag;
}
// no etag file, but maybe there is an old .json
// remove this code later
const std::string metadata_path = path + ".json";
if (std::filesystem::exists(metadata_path)) {
std::ifstream metadata_in(metadata_path);
try {
nlohmann::json metadata_json;
metadata_in >> metadata_json;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata_json.dump().c_str());
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
std::string etag = metadata_json.at("etag");
write_etag(path, etag);
if (!std::filesystem::remove(metadata_path)) {
LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str());
}
return etag;
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
return none;
}
#ifdef LLAMA_USE_CURL
//
// CURL utils
@@ -368,49 +426,19 @@ static bool common_download_head(CURL * curl,
}
// download one single file from remote URL to local path
static bool common_download_file_single(const std::string & url,
const std::string & path,
const std::string & bearer_token,
bool offline) {
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
static bool common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
for (int i = 0; i < max_attempts; ++i) {
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
std::string etag;
std::string last_modified;
std::string etag;
// Check if the file already exists locally
const auto file_exists = std::filesystem::exists(path);
if (file_exists) {
if (offline) {
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
return true; // skip verification/downloading
}
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata.dump().c_str());
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
etag = read_etag(path);
} else {
if (offline) {
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
return false;
}
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
@@ -447,11 +475,6 @@ static bool common_download_file_single(const std::string & url,
headers.etag.c_str());
should_download = true;
should_download_from_scratch = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__,
last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
should_download_from_scratch = true;
}
}
@@ -482,15 +505,9 @@ static bool common_download_file_single(const std::string & url,
}
}
}
// Write the updated JSON metadata file.
metadata.update({
{ "url", url },
{ "etag", headers.etag },
{ "lastModified", headers.last_modified }
});
write_file(metadata_path, metadata.dump(4));
LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (head_request_ok) {
write_etag(path, headers.etag);
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n",
@@ -530,6 +547,306 @@ static bool common_download_file_single(const std::string & url,
return true;
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::vector<char> res_buffer;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (params.timeout > 0) {
curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
}
if (params.max_size > 0) {
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
}
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
for (const auto & header : params.headers) {
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
std::string error_msg = curl_easy_strerror(res);
throw std::runtime_error("error: cannot make GET request: " + error_msg);
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
return { res_code, std::move(res_buffer) };
}
#else
static void print_progress(size_t current, size_t total) {
if (!is_output_a_tty()) {
return;
}
if (!total) {
return;
}
size_t width = 50;
size_t pct = (100 * current) / total;
size_t pos = (width * current) / total;
std::cout << "["
<< std::string(pos, '=')
<< (pos < width ? ">" : "")
<< std::string(width - pos, ' ')
<< "] " << std::setw(3) << pct << "% ("
<< current / (1024 * 1024) << " MB / "
<< total / (1024 * 1024) << " MB)\r";
std::cout.flush();
}
static bool common_pull_file(httplib::Client & cli,
const std::string & resolve_path,
const std::string & path_tmp,
bool supports_ranges,
size_t existing_size,
size_t & total_size) {
std::ofstream ofs(path_tmp, std::ios::binary | std::ios::app);
if (!ofs.is_open()) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path_tmp.c_str());
return false;
}
httplib::Headers headers;
if (supports_ranges && existing_size > 0) {
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
}
std::atomic<size_t> downloaded{existing_size};
auto res = cli.Get(resolve_path, headers,
[&](const httplib::Response &response) {
if (existing_size > 0 && response.status != 206) {
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
return false;
}
if (existing_size == 0 && response.status != 200) {
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
return false;
}
if (total_size == 0 && response.has_header("Content-Length")) {
try {
size_t content_length = std::stoull(response.get_header_value("Content-Length"));
total_size = existing_size + content_length;
} catch (const std::exception &e) {
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
}
}
return true;
},
[&](const char *data, size_t len) {
ofs.write(data, len);
if (!ofs) {
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
return false;
}
downloaded += len;
print_progress(downloaded, total_size);
return true;
},
nullptr
);
std::cout << "\n";
if (!res) {
LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1);
return false;
}
return true;
}
// download one single file from remote URL to local path
static bool common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
auto [cli, parts] = common_http_client(url);
httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}};
if (!bearer_token.empty()) {
default_headers.insert({"Authorization", "Bearer " + bearer_token});
}
cli.set_default_headers(default_headers);
const bool file_exists = std::filesystem::exists(path);
std::string last_etag;
if (file_exists) {
last_etag = read_etag(path);
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
for (int i = 0; i < max_attempts; ++i) {
auto head = cli.Head(parts.path);
bool head_ok = head && head->status >= 200 && head->status < 300;
if (!head_ok) {
LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str());
return true;
}
}
std::string etag;
if (head_ok && head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
if (head_ok && head->has_header("Content-Length")) {
try {
total_size = std::stoull(head->get_header_value("Content-Length"));
} catch (const std::exception& e) {
LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what());
}
}
bool supports_ranges = false;
if (head_ok && head->has_header("Accept-Ranges")) {
supports_ranges = head->get_header_value("Accept-Ranges") != "none";
}
bool should_download_from_scratch = false;
if (!last_etag.empty() && !etag.empty() && last_etag != etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
last_etag.c_str(), etag.c_str());
should_download_from_scratch = true;
}
if (file_exists) {
if (!should_download_from_scratch) {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
return true;
}
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
const std::string path_temporary = path + ".downloadInProgress";
size_t existing_size = 0;
if (std::filesystem::exists(path_temporary)) {
if (supports_ranges && !should_download_from_scratch) {
existing_size = std::filesystem::file_size(path_temporary);
} else if (remove(path_temporary.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
return false;
}
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str());
const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size);
if (!was_pull_successful) {
if (i + 1 < max_attempts) {
const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000;
LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay);
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
} else {
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
}
continue;
}
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
if (!etag.empty()) {
write_etag(path, etag);
}
break;
}
return true;
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url,
const common_remote_params & params) {
auto [cli, parts] = common_http_client(url);
httplib::Headers headers = {{"User-Agent", "llama-cpp"}};
for (const auto & header : params.headers) {
size_t pos = header.find(':');
if (pos != std::string::npos) {
headers.emplace(header.substr(0, pos), header.substr(pos + 1));
} else {
headers.emplace(header, "");
}
}
if (params.timeout > 0) {
cli.set_read_timeout(params.timeout, 0);
cli.set_write_timeout(params.timeout, 0);
}
std::vector<char> buf;
auto res = cli.Get(parts.path, headers,
[&](const char *data, size_t len) {
buf.insert(buf.end(), data, data + len);
return params.max_size == 0 ||
buf.size() <= static_cast<size_t>(params.max_size);
},
nullptr
);
if (!res) {
throw std::runtime_error("error: cannot make GET request");
}
return { res->status, std::move(buf) };
}
#endif // LLAMA_USE_CURL
static bool common_download_file_single(const std::string & url,
const std::string & path,
const std::string & bearer_token,
bool offline) {
if (!offline) {
return common_download_file_single_online(url, path, bearer_token);
}
if (!std::filesystem::exists(path)) {
LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
return false;
}
LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
return true;
}
// download multiple files from remote URLs to local paths
// the input is a vector of pairs <url, path>
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
@@ -588,7 +905,7 @@ static bool common_download_model(
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
char split_url_prefix[LLAMA_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
@@ -609,7 +926,7 @@ static bool common_download_model(
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
char split_url[LLAMA_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
if (std::string(split_path) == model.path) {
@@ -626,50 +943,6 @@ static bool common_download_model(
return true;
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::vector<char> res_buffer;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (params.timeout > 0) {
curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
}
if (params.max_size > 0) {
curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
}
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
for (const auto & header : params.headers) {
http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
}
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
std::string error_msg = curl_easy_strerror(res);
throw std::runtime_error("error: cannot make GET request: " + error_msg);
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
return { res_code, std::move(res_buffer) };
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
@@ -736,21 +1009,17 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
std::string mmprojFile;
if (res_code == 200 || res_code == 304) {
// extract ggufFile.rfilename in json, using regex
{
std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
ggufFile = match[1].str();
try {
auto j = json::parse(res_str);
if (j.contains("ggufFile") && j["ggufFile"].contains("rfilename")) {
ggufFile = j["ggufFile"]["rfilename"].get<std::string>();
}
}
// extract mmprojFile.rfilename in json, using regex
{
std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
std::smatch match;
if (std::regex_search(res_str, match, pattern)) {
mmprojFile = match[1].str();
if (j.contains("mmprojFile") && j["mmprojFile"].contains("rfilename")) {
mmprojFile = j["mmprojFile"]["rfilename"].get<std::string>();
}
} catch (const std::exception & e) {
throw std::runtime_error(std::string("error parsing manifest JSON: ") + e.what());
}
if (!use_cache) {
// if not using cached response, update the cache file
@@ -770,45 +1039,6 @@ static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_
return { hf_repo, ggufFile, mmprojFile };
}
#else
bool common_has_curl() {
return false;
}
static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from internet\n");
return false;
}
static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static bool common_download_model(
const common_params_model &,
const std::string &,
bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return false;
}
static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
LOG_ERR("error: built without CURL, cannot download model from the internet\n");
return {};
}
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
if (!url.empty()) {
throw std::runtime_error("error: built without CURL, cannot download model from the internet");
}
return {};
}
#endif // LLAMA_USE_CURL
//
// Docker registry functions
//
@@ -1068,8 +1298,6 @@ static std::string get_all_kv_cache_types() {
//
static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
std::string arg;
const std::string arg_prefix = "--";
common_params & params = ctx_arg.params;
std::unordered_map<std::string, common_arg *> arg_to_options;

View File

@@ -78,7 +78,6 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
bool common_has_curl();
struct common_remote_params {
std::vector<std::string> headers;

View File

@@ -75,6 +75,35 @@ bool common_chat_msg_parser::add_tool_calls(const json & arr) {
}
return true;
}
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
if (!tool_call.is_object() || tool_call.size() != 1) {
return false;
}
// Get the tool name (the single key in the object)
auto it = tool_call.begin();
std::string name = it.key();
if (name.empty()) {
return false;
}
// Get the arguments (the nested object)
const json & args_json = it.value();
std::string arguments = "";
if (args_json.is_object()) {
arguments = args_json.dump();
} else if (args_json.is_string()) {
arguments = args_json;
} else if (!args_json.is_null()) {
// For other types, convert to string representation
arguments = args_json.dump();
}
return add_tool_call(name, "", arguments);
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));

View File

@@ -64,6 +64,9 @@ class common_chat_msg_parser {
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
void finish();
bool consume_spaces();

View File

@@ -638,6 +638,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -801,6 +802,7 @@ static std::string apply(
}
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
tmpl_inputs.extra_context = inputs.extra_context;
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
if (additional_context) {
tmpl_inputs.extra_context.merge_patch(*additional_context);
}
@@ -1264,6 +1266,75 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_APERTUS;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
if (!inputs.enable_thinking) {
data.prompt += "<|inner_suffix|>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <|tools_prefix|> format
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ function.at("name"), function.at("parameters") }
} },
{ "required", json::array({ function.at("name") }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
data.preserved_tokens = {
"<|system_start|>",
"<|system_end|>",
"<|developer_start|>",
"<|developer_end|>",
"<|user_start|>",
"<|user_end|>",
"<|assistant_start|>",
"<|assistant_end|>",
"<|inner_prefix|>",
"<|inner_suffix|>",
"<|tools_prefix|>",
"<|tools_suffix|>",
};
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -1616,17 +1687,36 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
);
});
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
channel + " \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_channel, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
if (data.grammar_lazy) {
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
} else {
auto not_end = builder.add_rule("not-end",
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
auto analysis = builder.add_rule("analysis",
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto commentary = builder.add_rule("commentary",
"\"<|channel|>commentary<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\" to=functions.\" ( " + string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root",
"( " + analysis + " \"<|start|>assistant\" )? " +
"( " + commentary + " \"<|start|>assistant\" )? " +
"( " + recipient_in_role + " | " + recipient_in_channel + " )"
);
}
// Trigger on tool calls that appear in the commentary channel
data.grammar_triggers.push_back({
@@ -1741,10 +1831,12 @@ static void common_chat_parse_gpt_oss(common_chat_msg_parser & builder) {
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
LOG_DBG("%s\n", __func__);
common_chat_params data;
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override= */ json(), json {
const std::optional<json> tools_override = json();
const std::optional<json> additional_context = json {
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
});
};
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, tools_override, additional_context);
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
@@ -2230,15 +2322,28 @@ static common_chat_params common_chat_params_init_granite(const common_chat_temp
static void common_chat_parse_granite(common_chat_msg_parser & builder) {
// Parse thinking tags
static const common_regex start_think_regex(regex_escape("<think>"));
static const common_regex end_think_regex(regex_escape("</think>"));
// Granite models output partial tokens such as "<" and "<think".
// By leveraging try_consume_regex()/try_find_regex() throwing
// common_chat_msg_partial_exception for these partial tokens,
// processing is interrupted and the tokens are not passed to add_content().
if (auto res = builder.try_consume_regex(start_think_regex)) {
// Restore position for try_parse_reasoning()
builder.move_to(res->groups[0].begin);
builder.try_find_regex(end_think_regex, std::string::npos, false);
// Restore position for try_parse_reasoning()
builder.move_to(res->groups[0].begin);
}
builder.try_parse_reasoning("<think>", "</think>");
// Parse response tags using regex
static const common_regex response_regex("<response>([\\s\\S]*?)</response>");
if (auto res = builder.try_find_regex(response_regex)) {
// Extract the content between the tags (capture group 1)
auto content = builder.str(res->groups[1]);
builder.add_content(content);
builder.move_to(res->groups[0].end);
// Parse response tags
static const common_regex start_response_regex(regex_escape("<response>"));
static const common_regex end_response_regex(regex_escape("</response>"));
// Granite models output partial tokens such as "<" and "<response".
// Same hack as reasoning parsing.
if (builder.try_consume_regex(start_response_regex)) {
builder.try_find_regex(end_response_regex);
}
if (!builder.syntax().parse_tool_calls) {
@@ -2252,13 +2357,10 @@ static void common_chat_parse_granite(common_chat_msg_parser & builder) {
builder.move_to(res->groups[0].end);
// Expect JSON array of tool calls
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
if (!builder.add_tool_calls(tool_calls_data.json)) {
builder.add_content("<|tool_call|>" + tool_calls_data.json.dump());
if (auto tool_call = builder.try_consume_json_with_dumped_args({{{"arguments"}}})) {
if (!builder.add_tool_calls(tool_call->value) || tool_call->is_partial) {
throw common_chat_msg_partial_exception("incomplete tool call");
}
} else {
builder.add_content("<|tool_call|>" + tool_calls_data.json.dump());
}
} else {
builder.add_content(builder.consume_rest());
@@ -2292,6 +2394,37 @@ static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
builder.consume_spaces();
if (!builder.try_consume_literal("<|tools_suffix|>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
for (const auto & value : tool_calls_data.json) {
if (value.is_object()) {
builder.add_tool_call_short_form(value);
}
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
@@ -2536,6 +2669,11 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Apertus format detection
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
return common_chat_params_init_apertus(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2703,6 +2841,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
case COMMON_CHAT_FORMAT_APERTUS:
common_chat_parse_apertus(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -114,6 +114,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};

View File

@@ -14,6 +14,7 @@
#include <climits>
#include <cmath>
#include <codecvt>
#include <chrono>
#include <cstdarg>
#include <cstring>
#include <ctime>
@@ -50,6 +51,11 @@
#include <unistd.h>
#endif
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
@@ -864,8 +870,20 @@ std::string fs_get_cache_directory() {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
} else if (std::getenv("HOME")) {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
} else {
#if defined(__linux__)
/* no $HOME is defined, fallback to getpwuid */
struct passwd *pw = getpwuid(getuid());
if ((!pw) || (!pw->pw_dir)) {
throw std::runtime_error("Failed to find $HOME directory");
}
cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
@@ -960,15 +978,13 @@ struct common_init_result common_init_from_params(common_params & params) {
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
if (!has_eos && !has_sep && !has_rerank_prompt) {
LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {

View File

@@ -738,7 +738,7 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
// MoE utils
//
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_exps";
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
static std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);

73
common/http.h Normal file
View File

@@ -0,0 +1,73 @@
#pragma once
#include <cpp-httplib/httplib.h>
struct common_http_url {
std::string scheme;
std::string user;
std::string password;
std::string host;
std::string path;
};
static common_http_url common_http_parse_url(const std::string & url) {
common_http_url parts;
auto scheme_end = url.find("://");
if (scheme_end == std::string::npos) {
throw std::runtime_error("invalid URL: no scheme");
}
parts.scheme = url.substr(0, scheme_end);
if (parts.scheme != "http" && parts.scheme != "https") {
throw std::runtime_error("unsupported URL scheme: " + parts.scheme);
}
auto rest = url.substr(scheme_end + 3);
auto at_pos = rest.find('@');
if (at_pos != std::string::npos) {
auto auth = rest.substr(0, at_pos);
auto colon_pos = auth.find(':');
if (colon_pos != std::string::npos) {
parts.user = auth.substr(0, colon_pos);
parts.password = auth.substr(colon_pos + 1);
} else {
parts.user = auth;
}
rest = rest.substr(at_pos + 1);
}
auto slash_pos = rest.find('/');
if (slash_pos != std::string::npos) {
parts.host = rest.substr(0, slash_pos);
parts.path = rest.substr(slash_pos);
} else {
parts.host = rest;
parts.path = "/";
}
return parts;
}
static std::pair<httplib::Client, common_http_url> common_http_client(const std::string & url) {
common_http_url parts = common_http_parse_url(url);
if (parts.host.empty()) {
throw std::runtime_error("error: invalid URL format");
}
httplib::Client cli(parts.scheme + "://" + parts.host);
if (!parts.user.empty()) {
cli.set_basic_auth(parts.user, parts.password);
}
cli.set_follow_location(true);
return { std::move(cli), std::move(parts) };
}
static std::string common_http_show_masked_url(const common_http_url & parts) {
return parts.scheme + "://" + (parts.user.empty() ? "" : "****:****@") + parts.host + parts.path;
}

View File

@@ -332,6 +332,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
if (ctx) {
llama_perf_context_print(ctx);
llama_memory_breakdown_print(ctx);
}
}

View File

@@ -3717,11 +3717,29 @@ class Qwen2MoeModel(TextModel):
class Qwen3Model(Qwen2Model):
model_arch = gguf.MODEL_ARCH.QWEN3
# extra logic for rerank models
is_rerank: bool = False
is_tied_embeddings: bool = False
token_false_id: int | None = None
token_true_id: int | None = None
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# track for intern-s1-mini
hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
self.origin_hf_arch = hparams.get('architectures', [None])[0]
# a bit hacky, but currently the only way to detect if this is a rerank model
# ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
readme_path = self.dir_model / "README.md"
readme_text = ""
if readme_path.exists():
with readme_path.open("r", encoding="utf-8") as f:
readme_text = f.read()
if "# Qwen3-Reranker" in readme_text:
self._find_rerank_config()
def set_vocab(self):
# deal with intern-s1-mini
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
@@ -3730,6 +3748,53 @@ class Qwen3Model(Qwen2Model):
super().set_vocab()
def _find_rerank_config(self):
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
self.is_rerank = True
self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
self.token_false_id = tokenizer.convert_tokens_to_ids("no")
self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
assert self.token_false_id is not None and self.token_true_id is not None
def set_gguf_parameters(self):
super().set_gguf_parameters()
if self.is_rerank:
self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
self.gguf_writer.add_classifier_output_labels(["yes", "no"])
self.gguf_writer.add_chat_template([{
"name": "rerank",
"template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
"<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
"<|im_start|>assistant\n<think>\n\n</think>\n\n"
}])
def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
# extract "yes" and "no" tokens from the output lm_head tensor
false_row = data_torch[self.token_false_id]
true_row = data_torch[self.token_true_id]
return torch.stack([true_row, false_row], dim=0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self.is_rerank:
is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
is_real_head = not self.is_tied_embeddings and "lm_head" in name
if is_tied_head or is_real_head:
cls_out_head = (
gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
self._get_cls_out_tensor(data_torch),
)
if is_tied_head:
embed = (self.map_tensor_name(name), data_torch)
return [cls_out_head, embed]
if is_real_head:
return [cls_out_head]
return super().modify_tensors(data_torch, name, bid)
@ModelBase.register("Qwen3MoeForCausalLM")
class Qwen3MoeModel(Qwen2MoeModel):
@@ -4185,7 +4250,8 @@ class Plamo2Model(TextModel):
# This logic matches modeling_plamo.py's is_mamba function
mamba_step = hparams.get("mamba_step", 2)
mamba_enabled = hparams.get("mamba_enabled", True)
mamba_layers = []
num_key_value_heads = []
num_attention_heads = []
if mamba_enabled:
for i in range(block_count):
@@ -4195,17 +4261,21 @@ class Plamo2Model(TextModel):
else:
is_mamba = (i % mamba_step) != (mamba_step // 2)
if is_mamba:
mamba_layers.append(0)
num_key_value_heads.append(0)
num_attention_heads.append(0)
else:
mamba_layers.append(hparams.get("num_key_value_heads", 4))
num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
num_attention_heads.append(hparams.get("num_attention_heads", 32))
if mamba_layers:
self.gguf_writer.add_head_count_kv(mamba_layers)
if num_key_value_heads and num_attention_heads:
self.gguf_writer.add_head_count_kv(num_key_value_heads)
self.gguf_writer.add_head_count(num_attention_heads)
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
@@ -7656,6 +7726,21 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
if i not in self._attn_layers
]
# There are some models in this family that are non-hybrid, but keep the
# same parent class by setting all layers to "attention." If this is the
# case, the model architecture needs to be updated to a standard
# "granite" or "granitemoe" model
if not self._ssm_layers:
has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
new_arch = (
gguf.MODEL_ARCH.GRANITE_MOE
if has_experts else
gguf.MODEL_ARCH.GRANITE
)
self.model_arch = new_arch
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
self.gguf_writer.add_architecture()
# n_group and d_inner are used during reshape_tensors for mamba2
# NOTE: Explicitly include hparam prefix prefix for d_model to
# disambiguate with top-level head_dim
@@ -7740,8 +7825,11 @@ class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
self.gguf_writer.add_rope_dimension_count(rope_dim)
self.gguf_writer.add_head_count_kv(head_count_kv_vec)
## If Bamba, use rope, otherwise don't
use_rope = "BambaForCausalLM" in self.hparams["architectures"]
## If Bamba or non-hybrid, use rope, otherwise don't
use_rope = (
"BambaForCausalLM" in self.hparams["architectures"]
or not self._ssm_layers
)
self.gguf_writer.add_rope_scaling_finetuned(use_rope)
if not use_rope:
self.gguf_writer.add_context_length(2**20)
@@ -7912,6 +8000,121 @@ class BailingMoeModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
class GroveMoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.GROVEMOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
# FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
# FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
self.gguf_writer.add_experts_per_group(2)
# FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
self.gguf_writer.add_expert_group_scale(0.05)
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
_chunk_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.endswith(".expert_bias"):
# FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
return []
# process the experts separately
if name.find("chunk_experts") != -1:
n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
assert bid is not None
if self._chunk_experts is None:
self._chunk_experts = [{} for _ in range(self.block_count)]
self._chunk_experts[bid][name] = data_torch
if len(self._chunk_experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
datas.append(self._chunk_experts[bid][ename])
del self._chunk_experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
elif name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
if self._chunk_experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
if len(chunk_experts) > 0:
raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("ChameleonForConditionalGeneration")
@ModelBase.register("ChameleonForCausalLM") # obsolete
class ChameleonModel(TextModel):
@@ -8742,6 +8945,43 @@ class SmallThinkerModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("ApertusForCausalLM")
class ApertusModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.APERTUS
undo_permute = False
_alpha_n = {}
_alpha_p = {}
_beta = {}
_eps = {}
def modify_tensors(self, data_torch, name, bid):
# Handle xIELU activation parameters
n_layers = self.hparams["num_hidden_layers"]
if name.endswith(".act_fn.alpha_n"):
self._alpha_n[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_n) == n_layers):
self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
return []
if name.endswith(".act_fn.alpha_p"):
self._alpha_p[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_p) == n_layers):
self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
return []
if name.endswith(".act_fn.beta"):
self._beta[bid] = data_torch.to("cpu").float().item()
if (len(self._beta) == n_layers):
self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
return []
if name.endswith(".act_fn.eps"):
self._eps[bid] = data_torch.to("cpu").float().item()
if (len(self._eps) == n_layers):
self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
return []
return super().modify_tensors(data_torch, name, bid)
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_name = "Mistral"
@@ -8909,7 +9149,7 @@ class LazyTorchTensor(gguf.LazyBase):
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
return cast(torch.Tensor, lazy)
@classmethod

View File

@@ -145,12 +145,13 @@ The docker build option is currently limited to *Intel GPU* targets.
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
```
*Notes:*
@@ -215,9 +216,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@@ -225,6 +236,12 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -255,10 +272,11 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
@@ -353,7 +371,7 @@ cmake --build build --config Release -j -v
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.

61
docs/backend/zDNN.md Normal file
View File

@@ -0,0 +1,61 @@
# llama.cpp for IBM zDNN Accelerator
## Background
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.
### Llama.cpp + IBM zDNN
The llama.cpp zDNN backend is designed to enable llama.cpp on IBM z17 and later systems via the IBM zDNN hardware acceleration library.
## Software & Hardware Support
| Hardware Level | Status | Verified |
| -------------------- | ------------- | -------------------------- |
| IBM z17 / LinuxONE 5 | Supported | RHEL 9.6, IBM z17, 40 IFLs |
| IBM z16 / LinuxONE 4 | Not Supported | |
## Data Types Supported
| Data Type | Status |
| --------- | --------- |
| F32 | Supported |
| F16 | Supported |
| BF16 | Supported |
## CMake Options
The IBM zDNN backend has the following CMake options that control the behaviour of the backend.
| CMake Option | Default Value | Description |
| ------------ | ------------- | ----------------------------------- |
| `GGML_ZDNN` | `OFF` | Compile llama.cpp with zDNN support |
| `ZDNN_ROOT` | `""` | Override zDNN library lookup |
## 1. Install zDNN Library
Note: Using the zDNN library provided via `apt` or `yum` may not work correctly as reported in [#15772](https://github.com/ggml-org/llama.cpp/issues/15772). It is preferred that you compile from source.
```sh
git clone --recurse-submodules https://github.com/IBM/zDNN
cd zDNN
autoreconf .
./configure --prefix=/opt/zdnn-libs
make build
sudo make install
```
## 2. Build llama.cpp
```sh
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
cmake -S . -G Ninja -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_ZDNN=ON \
-DZDNN_ROOT=/opt/zdnn-libs
cmake --build build --config Release -j$(nproc)
```

View File

@@ -0,0 +1,89 @@
> [!IMPORTANT]
> This build documentation is specific only to RISC-V SpacemiT SOCs.
## Build llama.cpp locally (for riscv64)
1. Prepare Toolchain For RISCV
~~~
wget https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v1.1.2.tar.xz
~~~
2. Build
Below is the build script: it requires utilizing RISC-V vector instructions for acceleration. Ensure the `GGML_CPU_RISCV64_SPACEMIT` compilation option is enabled. The currently supported optimization version is `RISCV64_SPACEMIT_IME1`, corresponding to the `RISCV64_SPACEMIT_IME_SPEC` compilation option. Compiler configurations are defined in the `riscv64-spacemit-linux-gnu-gcc.cmake` file. Please ensure you have installed the RISC-V compiler and set the environment variable via `export RISCV_ROOT_PATH={your_compiler_path}`.
```bash
cmake -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DLLAMA_CURL=OFF \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed
cmake --build build --parallel $(nproc) --config Release
pushd build
make install
popd
```
## Simulation
You can use QEMU to perform emulation on non-RISC-V architectures.
1. Download QEMU
~~~
wget https://archive.spacemit.com/spacemit-ai/qemu/jdsk-qemu-v0.0.14.tar.gz
~~~
2. Run Simulation
After build your llama.cpp, you can run the executable file via QEMU for simulation, for example:
~~~
export QEMU_ROOT_PATH={your QEMU file path}
export RISCV_ROOT_PATH_IME1={your RISC-V compiler path}
${QEMU_ROOT_PATH}/bin/qemu-riscv64 -L ${RISCV_ROOT_PATH_IME1}/sysroot -cpu max,vlen=256,elen=64,vext_spec=v1.0 ${PWD}/build/bin/llama-cli -m ${PWD}/models/Qwen2.5-0.5B-Instruct-Q4_0.gguf -t 1
~~~
## Performance
#### Quantization Support For Matrix
~~~
model name : Spacemit(R) X60
isa : rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_zca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscofpmf_sstc_svinval_svnapot_svpbmt
mmu : sv39
uarch : spacemit,x60
mvendorid : 0x710
marchid : 0x8000000058000001
~~~
Q4_0
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | pp512|64.12 ± 0.26|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | tg128|10.03 ± 0.01|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | pp512|24.16 ± 0.02|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | tg128|3.83 ± 0.06|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | pp512|12.08 ± 0.02|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | tg128|2.23 ± 0.02|
Q4_1
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | pp512|62.07 ± 0.12|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | tg128|9.91 ± 0.01|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | pp512|22.95 ± 0.25|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | tg128|4.01 ± 0.15|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | pp512|11.55 ± 0.16|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | tg128|2.25 ± 0.04|
Q4_K
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | pp512|9.29 ± 0.05|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | tg128|5.67 ± 0.04|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | pp512|10.38 ± 0.10|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | tg128|3.17 ± 0.08|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | pp512|4.23 ± 0.04|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | tg128|1.73 ± 0.00|

View File

@@ -110,7 +110,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
- `MUSA_VERSION` set to `rc4.2.0`
- `MUSA_VERSION` set to `rc4.3.0`
The resulting images, are essentially the same as the non-MUSA images:

View File

@@ -20,7 +20,6 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(gritlm)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@@ -1,50 +0,0 @@
#!/usr/bin/env bash
set -e
AI_NAME="${AI_NAME:-Miku}"
MODEL="${MODEL:-./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin}"
USER_NAME="${USER_NAME:-Anon}"
# Uncomment and adjust to the number of CPU cores you want to use.
#N_THREAD="${N_THREAD:-4}"
CTX_SIZE="${CTX_SIZE:-4096}"
N_PREDICTS="${N_PREDICTS:-4096}"
GEN_OPTIONS=(--batch_size 1024
--ctx_size "$CTX_SIZE"
--keep -1
--repeat_last_n 256
--repeat_penalty 1.17647
--temp 0.6
--mirostat 2)
if [ -n "$N_THREAD" ]; then
GEN_OPTIONS+=(--threads "$N_THREAD")
fi
./llama-cli "${GEN_OPTIONS[@]}" \
--model "$MODEL" \
--in-prefix " " \
--in-suffix "${AI_NAME}:" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--reverse-prompt "${USER_NAME}:" \
--prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
The conversation is only between ${USER_NAME} and ${AI_NAME}.
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
${AI_NAME} can only communicate through text, so she can't send images or videos.
${USER_NAME}: Hello!
${AI_NAME}: /think I wonder what I should say to ${USER_NAME}? This is the first time we talk, so it's important that I make a good first impression!
${AI_NAME}: Hi! I am ${AI_NAME}, your new AI friend, assistant (or whatever you like!), it's so nice to meet you! ^_^
${AI_NAME}: I might be an AI, but I also have feelings, so please be nice to me! :)
${USER_NAME}: I'll make sure to be nice to you! I'm so happy to have you as my assistant!
${AI_NAME}: /think It sounds like ${USER_NAME} is happy to have me as their assistant! I'm so happy too! ^_^ Glad that whole emotion thing didn't scare him off!
${AI_NAME}: /think I wonder what ${USER_NAME} likes to do in his free time? I should ask him about that!
${AI_NAME}: What do you like to do in your free time? ^_^
${USER_NAME}:" "$@"

View File

@@ -1,57 +0,0 @@
@setlocal disabledelayedexpansion enableextensions
@echo off
cd /d "%~dp0.."
if not "%errorlevel%"=="0" (
echo Unable to change directory.
pause
exit /b 1
)
if not defined MODEL set "MODEL=models\13B\ggml-model-q4_0.bin"
if not defined USER_NAME set "USER_NAME=User"
if not defined AI_NAME set "AI_NAME=ChatLLaMa"
rem Adjust to the number of CPU cores you want to use.
rem if not defined N_THREAD set "N_THREAD=8"
rem Number of tokens to predict (made it larger than default because we want a long interaction)
if not defined N_PREDICTS set "N_PREDICTS=2048"
if not defined GEN_OPTIONS set "GEN_OPTIONS=--ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647"
rem Default main script paths
set "DEFAULT_MAIN_SCRIPT_PATHS=main.exe build\bin\main.exe"
rem Get main script path from command line arguments
set "MAIN_SCRIPT_PATH=%~1"
rem If the main script path was not specified, try the default paths
if not defined MAIN_SCRIPT_PATH (
for %%i in (%DEFAULT_MAIN_SCRIPT_PATHS%) do (
if exist "%%i" set "MAIN_SCRIPT_PATH=%%i"
)
)
rem If the main script path was not found, tell the user how to specify it
if not defined MAIN_SCRIPT_PATH (
echo The main script could not be found. Please provide the path to the main script as 1st argument to this script, or place the main script in one of the default locations:
echo %DEFAULT_MAIN_SCRIPT_PATHS%
pause
exit /b 1
)
rem Default context, feel free to edit it
set "PROMPT_TEXT=Text transcript of a never ending dialog, where %USER_NAME% interacts with an AI assistant named %AI_NAME%. %AI_NAME% is helpful, kind, honest, friendly, good at writing and never fails to answer %USER_NAME%'s requests immediately and with details and precision. There are no annotations like (30 seconds passed...) or (to himself), just what %USER_NAME% and %AI_NAME% say aloud to each other. The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long. The transcript only includes text, it does not include markup like HTML and Markdown."
rem Set a temporary variable if N_THREAD is set
if defined N_THREAD (
set "_N_THREAD=--threads %N_THREAD%"
) else (
set "_N_THREAD="
)
rem Run the script
echo "%MAIN_SCRIPT_PATH%" %GEN_OPTIONS% %_N_THREAD% ^
--model "%MODEL%" ^
--n_predict %N_PREDICTS% ^
--color --interactive ^
--reverse-prompt "%USER_NAME%:" ^
--prompt "%PROMPT_TEXT%"

View File

@@ -1,41 +0,0 @@
#!/usr/bin/env bash
set -e
cd "$(dirname "$0")/.." || exit
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
USER_NAME="${USER_NAME:-USER}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-8}"
# Number of tokens to predict (made it larger than default because we want a long interaction)
N_PREDICTS="${N_PREDICTS:-2048}"
# Note: you can also override the generation options by specifying them on the command line:
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
DATE_TIME=$(date +%H:%M)
DATE_YEAR=$(date +%Y)
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--file ${PROMPT_FILE} \
--reverse-prompt "${USER_NAME}:" \
--in-prefix ' ' \
"$@"

View File

@@ -1,149 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
cd "$(dirname "$0")/.." || exit
if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
echo >&2 "error: PROMPT_CACHE_FILE and CHAT_SAVE_DIR must be provided"
exit 1
fi
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
USER_NAME="${USER_NAME:-User}"
AI_NAME="${AI_NAME:-ChatLLaMa}"
DATE_TIME="$(date +%H:%M)"
DATE_YEAR="$(date +%Y)"
LOG="${CHAT_SAVE_DIR}/main.log"
LOG_BG="${CHAT_SAVE_DIR}/main-bg.log"
CUR_PROMPT_FILE="${CHAT_SAVE_DIR}/current-prompt.txt"
CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
SESSION_AND_SAMPLE_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'\
'|'\
'sampling time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
CTX_SIZE=2048
CTX_ROTATE_POINT=$((CTX_SIZE * 3 / 5)) # REVIEW
OPTS=(--model "$MODEL" --ctx_size "$CTX_SIZE" --repeat_last_n 256 "$@")
# An unbuffered `tail -c+N`
skip_bytes() {
LANG=C IFS= read -r -n "$1" -d '' c
while LANG=C IFS= read -r -n 1 -d '' c; do
printf '%s' "$c"
done
}
mkdir -p "$CHAT_SAVE_DIR"
echo >"$LOG"
trap "tail -n100 ${LOG}" EXIT
if [[ ! -e "$CUR_PROMPT_FILE" ]]; then
sed -e "s/\[\[USER_NAME\]\]/${USER_NAME}/g" \
-e "s/\[\[AI_NAME\]\]/${AI_NAME}/g" \
-e "s/\[\[DATE_TIME\]\]/${DATE_TIME}/g" \
-e "s/\[\[DATE_YEAR\]\]/${DATE_YEAR}/g" \
"$PROMPT_TEMPLATE" >"$CUR_PROMPT_FILE"
fi
if [[ ! -e "$NEXT_PROMPT_FILE" ]]; then
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
fi
if [[ "$(tail -c4 "$NEXT_PROMPT_FILE")" != "..." ]]; then
echo '...' >>"$NEXT_PROMPT_FILE"
fi
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
echo 'Prompt cache does not exist, building...'
# Default batch_size to 64 here for better user feedback during initial prompt processing
./llama-cli 2>>"$LOG" \
--batch_size 64 \
"${OPTS[@]}" \
--prompt-cache "$PROMPT_CACHE_FILE" \
--file "$CUR_PROMPT_FILE" \
--n_predict 1
echo
echo 'Done!'
fi
if [[ ! -e "$CUR_PROMPT_CACHE" ]]; then
cp "$PROMPT_CACHE_FILE" "$CUR_PROMPT_CACHE"
fi
if [[ ! -e "$NEXT_PROMPT_CACHE" ]]; then
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
fi
printf '%s ' "$(< "$CUR_PROMPT_FILE")"
n_tokens=0
while read -e line; do
# Limit generation to remaining context, with a buffer and estimating 2 chars/token for input
n_predict=$((CTX_SIZE - n_tokens - ${#line} / 2 - 32))
# Swap prompts when we're about to run out of context
if ((n_predict <= 0)); then
wait # for background main (below) to finish with next prompt
mv "$NEXT_PROMPT_FILE" "$CUR_PROMPT_FILE"
mv "$NEXT_PROMPT_CACHE" "$CUR_PROMPT_CACHE"
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
echo '...' >>"$NEXT_PROMPT_FILE"
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
n_tokens=0
n_predict=$((CTX_SIZE / 2))
fi
echo " ${line}" >>"$CUR_PROMPT_FILE"
if ((n_tokens > CTX_ROTATE_POINT)); then
echo " ${line}" >>"$NEXT_PROMPT_FILE"
fi
n_prompt_len_pre=$(($(wc -c <"$CUR_PROMPT_FILE")))
printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE"
./llama-cli 2>>"$LOG" "${OPTS[@]}" \
--prompt-cache "$CUR_PROMPT_CACHE" \
--prompt-cache-all \
--file "$CUR_PROMPT_FILE" \
--reverse-prompt "${USER_NAME}:" \
--n_predict "$n_predict" |
skip_bytes 1 | # skip BOS token added by ./llama-cli
tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file
skip_bytes "$n_prompt_len_pre" # print generation
mv "$CUR_PROMPT_FILE.tmp" "$CUR_PROMPT_FILE"
# if we hit n_predict instead of reverse-prompt, we need to add the prompt
if [[ "$(tail -n1 "$CUR_PROMPT_FILE")" != "${USER_NAME}:" ]]; then
printf '\n%s:' "$USER_NAME"
printf '\n%s:' "$USER_NAME" >> "$CUR_PROMPT_FILE"
fi
printf ' '
if ! session_and_sample_msg=$(tail -n30 "$LOG" | grep -oE "$SESSION_AND_SAMPLE_PATTERN"); then
echo >&2 "Couldn't get number of tokens from ./llama-cli output!"
exit 1
fi
n_tokens=$(awk '{sum+=$1} END {print sum}' <<< "$(cut -d/ -f2 <<< "$session_and_sample_msg")")
if ((n_tokens > CTX_ROTATE_POINT)); then
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"
fi
# Update cache for next prompt in background, ideally during user input
./llama-cli >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
--prompt-cache "$NEXT_PROMPT_CACHE" \
--file "$NEXT_PROMPT_FILE" \
--n_predict 1 &
done

View File

@@ -1,41 +0,0 @@
#!/usr/bin/env bash
set -e
cd "$(dirname "$0")/.." || exit
MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
USER_NAME="### Human"
AI_NAME="### Assistant"
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-8}"
# Number of tokens to predict (made it larger than default because we want a long interaction)
N_PREDICTS="${N_PREDICTS:-2048}"
# Note: you can also override the generation options by specifying them on the command line:
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
DATE_TIME=$(date +%H:%M)
DATE_YEAR=$(date +%Y)
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./bin/llama-cli $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--file ${PROMPT_FILE} \
--reverse-prompt "### Human:" \
--in-prefix ' ' \
"$@"

View File

@@ -1,16 +0,0 @@
#!/usr/bin/env bash
#
# Temporary script - will be removed in the future
#
cd `dirname $0`
cd ..
# Important:
#
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
#
./llama-cli -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \
--repeat_penalty 1.0 --color -i \
-r "User:" -f prompts/chat-with-bob.txt

View File

@@ -43,8 +43,8 @@ The above command will output space-separated float values.
| $"string"$ | |
|--------------|-|
| "\n" | (default)
| "<#embSep#>" | for exemple
| "<#sep#>" | other exemple
| "<#embSep#>" | for example
| "<#sep#>" | other example
## examples
### Unix-based systems (Linux, macOS, etc.):

View File

@@ -95,8 +95,13 @@ int main(int argc, char ** argv) {
params.n_batch = params.n_ctx;
}
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
// for non-causal models, batch size must be equal to ubatch size
if (params.attention_type != LLAMA_ATTENTION_TYPE_CAUSAL) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);
@@ -144,6 +149,7 @@ int main(int argc, char ** argv) {
// get added sep and eos token, if any
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
@@ -153,21 +159,28 @@ int main(int argc, char ** argv) {
// split classification pairs and insert expected separator tokens
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
if (rerank_prompt != nullptr) {
const std::string query = pairs[0];
const std::string doc = pairs[1];
std::string final_prompt = rerank_prompt;
string_replace_all(final_prompt, "{query}" , query);
string_replace_all(final_prompt, "{document}", doc );
inp = common_tokenize(vocab, final_prompt, true, true);
} else {
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
}
}
}
inp = common_tokenize(ctx, final_prompt, true, true);
}
inp = common_tokenize(ctx, final_prompt, true, true);
} else {
inp = common_tokenize(ctx, prompt, true, true);
}
@@ -229,7 +242,7 @@ int main(int argc, char ** argv) {
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;

View File

@@ -5,6 +5,11 @@ target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
if(NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
else()
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K-be.gguf --model stories260K-be.gguf --prompt hello --seed 42 -ngl 0)
endif()
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)

View File

@@ -1,5 +0,0 @@
set(TARGET llama-gritlm)
add_executable(${TARGET} gritlm.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,62 +0,0 @@
## Generative Representational Instruction Tuning (GRIT) Example
[gritlm] a model which can generate embeddings as well as "normal" text
generation depending on the instructions in the prompt.
* Paper: https://arxiv.org/pdf/2402.09906.pdf
### Retrieval-Augmented Generation (RAG) use case
One use case for `gritlm` is to use it with RAG. If we recall how RAG works is
that we take documents that we want to use as context, to ground the large
language model (LLM), and we create token embeddings for them. We then store
these token embeddings in a vector database.
When we perform a query, prompt the LLM, we will first create token embeddings
for the query and then search the vector database to retrieve the most
similar vectors, and return those documents so they can be passed to the LLM as
context. Then the query and the context will be passed to the LLM which will
have to _again_ create token embeddings for the query. But because gritlm is used
the first query can be cached and the second query tokenization generation does
not have to be performed at all.
### Running the example
Download a Grit model:
```console
$ scripts/hf.sh --repo cohesionet/GritLM-7B_gguf --file gritlm-7b_q4_1.gguf --outdir models
```
Run the example using the downloaded model:
```console
$ ./llama-gritlm -m models/gritlm-7b_q4_1.gguf
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "A purely peer-to-peer version of electronic cash w" is: 0.605
Cosine similarity between "Bitcoin: A Peer-to-Peer Electronic Cash System" and "All text-based language problems can be reduced to" is: 0.103
Cosine similarity between "Generative Representational Instruction Tuning" and "A purely peer-to-peer version of electronic cash w" is: 0.112
Cosine similarity between "Generative Representational Instruction Tuning" and "All text-based language problems can be reduced to" is: 0.547
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
When shadows lurk and ghosts do roam,
And darkness reigns, a fearsome sight.
Thou didst set out, with heart aglow,
To conquer this mountain, so high,
And reach the summit, where the stars do glow,
And the moon shines bright, up in the sky.
Through the mist and fog, thou didst press on,
With steadfast courage, and a steadfast will,
Through the darkness, thou didst not be gone,
But didst climb on, with a steadfast skill.
At last, thou didst reach the summit's crest,
And gazed upon the world below,
And saw the beauty of the night's best,
And felt the peace, that only nature knows.
Oh, brave adventurer, who dared to climb
The lofty peak of Mt. Fuji in the night,
Thou art a hero, in the eyes of all,
For thou didst conquer this mountain, so bright.
```
[gritlm]: https://github.com/ContextualAI/gritlm

View File

@@ -1,231 +0,0 @@
#include "arg.h"
#include "common.h"
#include "llama.h"
#include <string>
#include <vector>
// #define GRIT_DEBUG
static std::vector<std::vector<float>> encode(llama_context * ctx, const std::vector<std::string> & sentences, const std::string & instruction) {
std::vector<std::vector<float>> result;
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_batch batch = llama_batch_init(llama_n_batch(ctx), 0, 1);
for (uint64_t i = 0; i < sentences.size(); i++) {
common_batch_clear(batch);
const std::string input_string = instruction + sentences[i];
std::vector<llama_token> inputs = common_tokenize(vocab, input_string, true, false);
const int32_t n_toks = inputs.size();
// GritLM seems to have EOS = ""
// https://github.com/ContextualAI/gritlm/blob/92025b16534712b31b3c4aaaf069350e222bd5f8/gritlm/gritlm.py#L18
// inputs.push_back(llama_vocab_eos(vocab));
// we want to ignore instruction tokens for mean pooling
const int32_t n_inst = common_tokenize(vocab, instruction, true, false).size();
#ifdef GRIT_DEBUG
// debug tokens - should be matching as referenced in the GritLM sample
std::for_each(inputs.begin(), inputs.end(), [&ctx](llama_token t) {
std::printf("[%u:%s]", t, llama_token_to_piece(ctx, t).c_str());
});
std::printf("\n");
#endif
// add input to batch (this increments n_tokens)
for (int32_t j = 0; j < n_toks; j++) {
common_batch_add(batch, inputs[j], j, { 0 }, true);
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_causal_attn(ctx, false);
// run model
llama_decode(ctx, batch);
// get embedding dimensions
uint64_t n_embd = llama_model_n_embd(model);
// allocate embedding output
std::vector<float> emb_unorm(n_embd, 0.0f);
// sum up all token embeddings
for (int32_t k = n_inst; k < n_toks; k++) {
float * emb = llama_get_embeddings_ith(ctx, k);
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] += emb[j];
}
}
// divide by number of tokens (mean pooling)
{
const uint64_t n_sent = n_toks - n_inst;
for (uint64_t j = 0; j < n_embd; j++) {
emb_unorm[j] /= n_sent;
}
}
std::vector<float> emb_norm(emb_unorm.size());
common_embd_normalize(emb_unorm.data(), emb_norm.data(), n_embd, 2);
result.push_back(emb_norm);
#ifdef GRIT_DEBUG
// print out emb_norm
std::printf("embedding %ld: ", i);
for (uint64_t j = 0; j < n_embd; j++) {
std::printf("%.5f ", emb_norm[j]);
}
std::printf("\n\n");
#endif
}
llama_batch_free(batch);
return result;
}
static std::string generate(llama_context * ctx, llama_sampler * smpl, const std::string & prompt, bool stream) {
std::string result;
const llama_model * model = llama_get_model(ctx);
const llama_vocab * vocab = llama_model_get_vocab(model);
llama_token eos_token = llama_vocab_eos(vocab);
llama_memory_clear(llama_get_memory(ctx), true);
llama_set_causal_attn(ctx, true);
llama_batch bat = llama_batch_init(llama_n_batch(ctx), 0, 1);
std::vector<llama_token> inputs = common_tokenize(vocab, prompt, false, true);
int32_t i_current_token = 0;
while (true) {
common_batch_clear(bat);
{
const int32_t n_inputs = inputs.size();
for (int32_t i = 0; i < n_inputs; i++) {
common_batch_add(bat, inputs[i], i_current_token++, { 0 }, i == n_inputs - 1);
}
}
inputs.clear();
llama_decode(ctx, bat);
llama_token token = llama_sampler_sample(smpl, ctx, bat.n_tokens - 1);
if (token == eos_token) {
break;
}
std::string piece = common_token_to_piece(ctx, token);
if (stream) {
std::printf("%s", piece.c_str());
std::fflush(stdout);
}
inputs.push_back(token);
result += piece;
}
if (stream) {
std::printf("\n");
}
llama_batch_free(bat);
return result;
}
static std::string gritlm_instruction(const std::string & instruction) {
return !instruction.empty() ? "<|user|>\n" + instruction + "\n<|embed|>\n" : "<|embed|>\n";
}
int main(int argc, char * argv[]) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON)) {
return 1;
}
common_init();
llama_model_params mparams = common_model_params_to_llama(params);
llama_context_params cparams = common_context_params_to_llama(params);
cparams.embeddings = true;
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
// create generation context
llama_context * ctx = llama_init_from_model(model, cparams);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
// ### Embedding/Representation ###
// samples taken from: https://github.com/ContextualAI/gritlm#basic
{
const std::string instruction = "Given a scientific paper title, retrieve the paper's abstract";
const std::vector<std::string> queries = {
"Bitcoin: A Peer-to-Peer Electronic Cash System",
"Generative Representational Instruction Tuning",
};
const std::vector<std::string> documents = {
"A purely peer-to-peer version of electronic cash would allow online payments to be sent directly from one party to another without going through a financial institution. Digital signatures provide part of the solution, but the main benefits are lost if a trusted third party is still required to prevent double-spending. We propose a solution to the double-spending problem using a peer-to-peer network. The network timestamps transactions by hashing them into an ongoing chain of hash-based proof-of-work, forming a record that cannot be changed without redoing the proof-of-work. The longest chain not only serves as proof of the sequence of events witnessed, but proof that it came from the largest pool of CPU power. As long as a majority of CPU power is controlled by nodes that are not cooperating to attack the network, they'll generate the longest chain and outpace attackers. The network itself requires minimal structure. Messages are broadcast on a best effort basis, and nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain as proof of what happened while they were gone.",
"All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8X7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.",
};
// No need to add instruction for retrieval documents
const std::vector<std::vector<float>> d_rep = encode(ctx, documents, gritlm_instruction(""));
const std::vector<std::vector<float>> q_rep = encode(ctx, queries, gritlm_instruction(instruction));
const int n_embd = llama_model_n_embd(model);
const float cosine_sim_q0_d0 = common_embd_similarity_cos(q_rep[0].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q0_d1 = common_embd_similarity_cos(q_rep[0].data(), d_rep[1].data(), n_embd);
const float cosine_sim_q1_d0 = common_embd_similarity_cos(q_rep[1].data(), d_rep[0].data(), n_embd);
const float cosine_sim_q1_d1 = common_embd_similarity_cos(q_rep[1].data(), d_rep[1].data(), n_embd);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[0].c_str(), cosine_sim_q0_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[0].c_str(), documents[1].c_str(), cosine_sim_q0_d1);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[0].c_str(), cosine_sim_q1_d0);
std::printf("Cosine similarity between \"%.50s\" and \"%.50s\" is: %.3f\n", queries[1].c_str(), documents[1].c_str(), cosine_sim_q1_d1);
}
llama_set_embeddings(ctx, false);
// ### Generation ###
// GritLM models are not finetuned with system prompts, as you can just include system-like instructions together with your user instruction
{
const std::string prompt = "<|user|>\nPlease write me a poem about my recent hike of Mt. Fuji at midnight in the style of Shakespeare.\n<|assistant|>\n";
std::string response = generate(ctx, smpl, prompt, true);
}
llama_sampler_free(smpl);
llama_free(ctx);
llama_model_free(model);
llama_backend_free();
return 0;
}

View File

@@ -1,21 +0,0 @@
# llama.cpp/example/jeopardy
This is pretty much just a straight port of aigoopy/llm-jeopardy/ with an added graph viewer.
The jeopardy test can be used to compare the fact knowledge of different models and compare them to each other. This is in contrast to some other tests, which test logical deduction, creativity, writing skills, etc.
Step 1: Open jeopardy.sh and modify the following:
```
MODEL=(path to your model)
MODEL_NAME=(name of your model)
prefix=(basically, if you use vicuna it's Human: , if you use something else it might be User: , etc)
opts=(add -instruct here if needed for your model, or anything else you want to test out)
```
Step 2: Run `jeopardy.sh` from the llama.cpp folder
Step 3: Repeat steps 1 and 2 until you have all the results you need.
Step 4: Run `graph.py`, and follow the instructions. At the end, it will generate your final graph.
Note: The Human bar is based off of the full, original 100 sample questions. If you modify the question count or questions, it will not be valid.

View File

@@ -1,58 +0,0 @@
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import os
import csv
labels = []
numbers = []
numEntries = 1
rows = []
def bar_chart(numbers, labels, pos):
plt.bar(pos, numbers, color='blue')
plt.xticks(ticks=pos, labels=labels)
plt.title("Jeopardy Results by Model")
plt.xlabel("Model")
plt.ylabel("Questions Correct")
plt.show()
def calculatecorrect():
directory = os.fsencode("./examples/jeopardy/results/")
csv_reader = csv.reader(open("./examples/jeopardy/qasheet.csv", 'rt'), delimiter=',')
for row in csv_reader:
global rows
rows.append(row)
for listing in os.listdir(directory):
filename = os.fsdecode(listing)
if filename.endswith(".txt"):
file = open("./examples/jeopardy/results/" + filename, "rt")
global labels
global numEntries
global numbers
labels.append(filename[:-4])
numEntries += 1
i = 1
totalcorrect = 0
for line in file.readlines():
if line.strip() != "------":
print(line)
else:
print("Correct answer: " + rows[i][2] + "\n")
i += 1
print("Did the AI get the question right? (y/n)")
if input() == "y":
totalcorrect += 1
numbers.append(totalcorrect)
if __name__ == '__main__':
calculatecorrect()
pos = list(range(numEntries))
labels.append("Human")
numbers.append(48.11)
bar_chart(numbers, labels, pos)
print(labels)
print(numbers)

View File

@@ -1,30 +0,0 @@
#!/usr/bin/env bash
set -e
MODEL=./models/ggml-vicuna-13b-1.1-q4_0.bin
MODEL_NAME=Vicuna
# exec options
prefix="Human: " # Ex. Vicuna uses "Human: "
opts="--temp 0 -n 80" # additional flags
nl='
'
introduction="You will be playing a game of Jeopardy. Simply answer the question in the correct format (Ex. What is Paris, or Who is George Washington)."
# file options
question_file=./examples/jeopardy/questions.txt
touch ./examples/jeopardy/results/$MODEL_NAME.txt
output_file=./examples/jeopardy/results/$MODEL_NAME.txt
counter=1
echo 'Running'
while IFS= read -r question
do
exe_cmd="./llama-cli -p "\"$prefix$introduction$nl$prefix$question\"" "$opts" -m ""\"$MODEL\""" >> ""\"$output_file\""
echo $counter
echo "Current Question: $question"
eval "$exe_cmd"
echo -e "\n------" >> $output_file
counter=$((counter+1))
done < "$question_file"

View File

@@ -1,103 +0,0 @@
Index,Original Category,Original Correct Question,Model Prompt
1,The Oscars,Who is John Williams?,Which actor Born in 1932 was the son of a percussionist in the CBS radio orchestra has been nominated for 53 Oscars?
2,English Literature,What is Paradise Lost?,"What work in English Literature says: 'The mind is its own place, & in itself can make a heaven of hell, a hell of heaven. What matter where, if I be still the same'?"
3,Writers Lesser-Known Works,Who is Niccolò Machiavelli?,"Known for more philosophical works, he wrote the play 'La Mandragola', in which Florentines are rewarded for immoral actions?"
4,Exploration,What is Easter Island (Rapa Nui)?,"James Cook's account of a 1774 visit where records an object 'near 27 feet long, and upwards of 8 feet over the breast or shoulders'?"
5,The Bill of Rights,What is the Eighth Amendment?,England's 'Bloody Assizes' & a 1685 life sentence for perjury were 2 main origins of which amendment to the U.S. Constitution?
6,Nobel Peace Prize Winners,Who are Nelson Mandela & Desmond Tutu?,"Which nobel peace price winners each lived at times on Vilakazi St. in Soweto , so it claims to be the world's only street home to 2 Nobel Peace Prize winners?"
7,Famous Names,Who is Walt Disney?,"In 1966, the year of who's death did he share plans for an experimental prototype community in Florida?"
8,Geography,What is Colombia?,"Of the 13 nations through which the Equator passes, what is the only one whose coastline borders the Caribbean Sea?"
9,Fashion History,What are rhinestones?,"Which decorative items in fashion history get their name from their origin in the port city of Strasbourg, on the border of France & Germany?"
10,Movies of the 80s,What is Driving Miss Daisy?,What 1980's movie is based on an off-Broadway play with just 3 characters and won the Best Picture Oscar & the actors in all 3 roles were nominated?
11,Novelists,Who is John Grisham?,"A 2012 book review for which novelist noted subjects that 'sparked his ire': capital punishment, big tobacco & 'the plight of the unjustly convicted'?"
12,20th Century Eponyms,What is the Maginot Line?,"A 1940 headline about what 20th Century Eponym included 'failure', 'liability when it came to offense' & 'stout hearts no match for tanks'?"
13,City History,What is Stockholm?,"Over 700 years after its traditional 1252 founding date, what port city became associated with a psychological response?"
14,Brand Names,What is Jacuzzi?,"The success of what brand has its roots with a hydrotherapy pump its cofounder created for his son, who had arthritis?"
15,American Authors,Who is Washington Irving?,"In a periodical in 1807, what American Author called New York City 'Gotham, Gotham! Most enlightened of cities'?"
16,Symbols,What is “less than”?,What symbol is a rotated V in math and a feeling of some marginalized or underrepresented people in society?
17,Movie Theme Songs,Who is James Bond?,"Monty Norman, the composer of what character's theme, said the staccato riff conveyed sexiness, mystery & ruthlessness?"
18,American Novelists,Who is Joseph Heller?,"What American Novelist served with an airman named Yohannan in World War II & despite what readers might think, he said he enjoyed his service?"
19,Medieval Places,"What is Canterbury, England? (Canterbury Cathedral)","In what Medieval place did one of the participants in an 1170 event say, 'Let us away, knights; he will rise no more'?"
20,Countries of Africa,What is Morocco?,"At one time a province of the Roman Empire, what African country kingdom is known to Arabic scholars as Al-Maghrib Al-Aqsa, 'the far west'?"
21,Statehood,What is Wyoming?,Congress relented in 1890 after what prospective state said it would wait 100 years rather than come in without the women?
22,1980s Movies,What is Raiders of the Lost Ark?,"A writer & producer of what movie said he wanted it to be like a Western or James Bond film, 'only it takes place in the 30s'?"
23,Art Exhibitions,Who is Rembrandt?,In 1898 what's been called the first blockbuster art show was devoted to which artist & put on for Queen Wilhelmina's coronation?
24,Countries of the World,What is Mongolia?,"Part of the largest contiguous land empire during the 1200s & 1300s, today what is the world's second-largest landlocked country?"
25,Literature,What is “Howl”?,A 2006 book was titled 'The Poem That Changed America:' What 'Fifty Years Later'?
26,Invasions,Who is William of Orange?,"Backed by 14,000 troops, who invaded England to restore, in his words, its 'religion, laws, and liberties'?"
27,Landmarks,What is the Eiffel Tower?,"After its completion in the late 19th c., what was landmark was called 'a truly tragic street lamp' & a 'high & skinny pyramid of iron ladders'?"
28,Geographic Names the Same,What is Dover?,"The busiest passenger port in the U.K., what shares its name with a capital of one of the original 13 states?"
29,Names in the Bookstore,Who is Peter Mark Roget?,"This man made lists, perhaps to cope with depression; a set of lists he published in 1852 made whose name synonymous with a type of book?"
30,U.S. History,Who is Dr. Samuel Mudd?,"An 1869 presidential pardon was granted to which man, due in part to a plea by the Medical Society of Harford County, Maryland?"
31,American Literature,What is The Things They Carried?,"Letters, pocket knives, C rations & steel helmets are among the tangible items referred to in the title of what American literature modern war classic?"
32,Nonfiction,What is The Communist Manifesto,"What nonfiction book has the line, 'The discovery of America…opened up fresh ground for the rising bourgeoisie'?"
33, a new version was passed 81 years later,Laws in U.S. History,What is the Civil Rights Act?,,,,,,,,,,,,,,,,,,0, 2/3
34,Names of Myth,Who is Helen of Troy?,"Whose brothers, Castor & Pollux, saved her after Theseus stole her away as a kid; a larger force would seek her later in life?"
35,African Countries,What is Sudan?,"Once Africa's largest country in area, what African Country dropped to third in 2011 when a portion of it declared independence?"
36,The Ancient World,What is Alexandria?,"The ancient writer Galen said books on ships arriving to what city's port were seized, originals kept & copies returned?"
37,Famous Names,Who is Andy Warhol?,"For a special 1970s cookbook, who provided one simple recipea can of Campbell's tomato soup & 2 cans of milk?"
38,People & Places,What is Guam?,"Thought to descend from people of Southeast Asia, the Chamorro make up what U.S. territorys largest ethnic group?"
39,Current World Leaders,What is the Philippines?,"In office from 2022, the president of what country has taken so many foreign trips a play on his name is 'Ferdinand Magellan Jr.'?"
40,Writers & The South,Who is Tennessee Williams?,In 1939 which writer lived on Toulouse Street in the French Quarter & chose the professional name that bonded him to the South?
41,National Parks,What is Yellowstone?,"What National Park is named for a river indigenous people called Mi tse a-da-zi, translated by French-speaking trappers as 'Pierre Jaune'?"
42,Sports,Who are the Harlem Globetrotters?,"In 2010 who introduced the 4-point shot, 35 feet from the basket?"
43,The U.S. Military,What is “Top Gun”?,Losses over Asia in the 1960s led to the establishment of the program known as what at a San Diego naval base in 1969?
44,Art & Science,What is Halleys Comet?,"A craft that visited what was named for Giotto, based on the story that 680 years earlier, the painter depicted it as the Star of Bethlehem?"
45,Words From World War I,What is “tank”?,"In World War I, 'Cistern' & 'reservoir' were suggested names for what secret invention, but the British preferred this less clumsy monosyllable?"
46,European History,What is Holy Roman Emperor?,"Until 1806, some German nobles included among their honors the title of 'Elector' for their role in selecting this personage?"
47,Theater History,Who is Peter Pan?,"In 1904, wearing a harness, actress Nina Boucicault became the first to play what character onstage?"
48,European Cities,What is Aachen?,"Alphabetically the first German city in encyclopedias, what was also the first one taken by the Allies in World War II?"
49,Word Origins,What is mantra?,This Sanskrit word referring to a spoken word or phrase comes from a word for 'to think'?
50,Inventions,What is barbed wire?,1917's 'Elements of Trench Warfare' said what Old West invention was 'difficult to destroy' & 'difficult to get through'?
51,World War II,What is Schindlers list?,"Mimi Reinhard, who never learned to type using more than 2 fingers, produced what in World War II with 1,100 names, including hers?"
52, their offspring was the source of this mythical object,Mythology,What is the Golden Fleece?
53,Literature,What is Pride and Prejudice?,"Published in 2011, P.D. James' final novel, 'Death Comes to Pemberley', was a sequel to what novel from 200 years earlier?"
54, only these 2 west of the Mississippi River border each other,U.S. State Names,What are Oregon & Nevada?
55,Word Origins,What is passion?,"Originally relating to a story of suffering, what word now more commonly refers to strong emotion of any kind?"
56,World Cinema,What is La Vie en Rose?,"The 2007 biopic called 'La Môme' in France, meaning 'The Kid', was released in the U.S. under what other French title?"
57,History,What is Santa Maria?,"Returning home in 1493, Columbus stopped in the Azores at an island with what name, also something he'd lost off the Haiti coast?"
58,Landmarks,What is a kremlin?,Pskov & Nizhny Novgorod are 2 of the cities that have a fortress called what?
59,Foreign-Born Authors,Who is Vladimir Nabokov?,In the 1950s the New York Times said what author 'is writing about all lust' & his lecherous narrator 'is all of us'?
60,Astronomy & Geography,What is Capricorn?,"At the winter solstice, the sun is in Sagittarius; it once appeared in what constellation, giving a geographic feature its name?"
61,Television,What is Law & Order?,"Mike Post combined the sound of a slamming jail door, an anvil & 100 men stomping on a floor for what television series that debuted in 1990?"
62,British Landmarks,What is the Tower of London?,"Like Sir Thomas More, 3 16th century English queens are buried at what British location?"
63,Early American History,What are witches?,"In 1692 Increase Mather wrote, 'It were better that ten suspected' of these who 'escape, than that one innocent person … be condemned'?"
64,Geography Mnemonics,What are Arkansas and Louisiana?,"The Geography Mnemonic Mimal, sometimes said to be the silhouette of a chef or elf, stands for Minnesota, Iowa, Missouri, and what other 2 states?"
65,Business Milestones,What is the Ford Model T?,"What was first sold in 1908, at a price equivalent to about $27,000 today?"
66,In The Bookstore,Who is Tom Clancy?,The name of what author dead since 2013 now appears on books written by a former U.S. marshal & a former Apache helicopter pilot?
67,Historic Art,What is the Bayeux Tapestry?,The artwork once known in France as 'la tapisserie de la Reine Mathilde' is better known as what?
68,Pop Stars,Who is Madonna?,In 2022 which pop star became the first woman to have a Billboard Top 10 album in 5 decades starting with the 1980s?
69,Classic Tale Characters,Who is Scheherazade?,"In one 19th century translation, what female classic tale character 'perceived the dawn of day and ceased' speaking nearly 1,000 times?"
70,USA,What is Jack Daniels?,"Ironically, though what company founded in the 1860s is Moore County, Tennessee's largest employer, Moore is a dry county?"
71,Historic People,Who was William Bligh?,"After a 1789 event, who wrote, 'My first determination was to seek a supply of…water at Tofoa, & afterwards to sail for Tongataboo'?"
72,The Movies,What is The Godfather?,Laurence Olivier & Ernest Borgnine were considered for the lead role & Sergio Leone to direct for what film that turned 50 in 2022?
73,Continental Geography,What is Colombia?,"Until a 1903 secession, what country's contiguous territory spanned 2 continents?"
74,Foreign-Born Authors,Who is Isabel Allende?,"Early in her career which foreign-born author translated romance novels into Spanish, often changing the dialogue to make the heroines smarter?"
75,Historic Crimes,What is the Mona Lisa?,"Saying it was stolen by Napoleon, self-styled Italian patriot Vincenzo Peruggia took what in 1911?"
76,U.S. Bodies of Water,What is Lake Mead?,"Continuing a downward trend, in July 2022 what US body of water was at 27% capacity, its lowest level since 1937 when it was first being filled?"
77,Gods & Goddesses,Who is Aurora (or Eos)?,"Each morning which goddess began her ride in her chariot across the sky ahead of her brother Sol, or Helios?"
78,America At War,What is the Battle of New Orleans?,"Until the Civil War, the Jan. 8 date of what American battle of dubious military importance but big morale value was a national holiday?"
79,Childrens Books,What is The Velveteen Rabbit?,"Which children's book title character is told 'By the time you are real, most of your hair has been loved off your eyes drop out & you get shabby'?"
80,TV Finales,What is Grace and Frankie?,"In a TV reunion over 40 years in the making, Dolly Parton appeared as an angel named Agnes in the final episode of what comedy in 2022?"
81,American Poems,Who is Evangeline?,"In an 1847 American poem what character sees her town of Grand-Pré burned, but finally reunites with her beau for a kiss before his death?"
82,Famous Names,Who is Banksy?,"In 2001 who published a book called 'Banging Your Head Against a Brick Wall'; in 2002, 'Existencilism'?"
83,Childrens Lit,What is Charlottes Web?,The title object of what childrens book 'never looked more beautiful each strand held dozens of bright drops of early morning dew'?
84,Classic Songs,What is “Here Comes Santa Claus”?,The shouts of excited children at a 1946 holiday parade are said to have inspired what perennial classic song favorite?
85,Brand Names,What are Milk Duds?,"Unable to make what candies perfectly round, the confectioner embraced this flawed name for the product?"
86,Countries of the World,What is Italy?,"What country is home to 58 UNESCO World Heritage Sites, more than any other country; the sites include a volcano & a lagoon?"
87,Action Movies,What is Die Hard?,"What action movie's last line is 'If this is their idea of Christmas, I gotta be here for New Years'?"
88,Presidential Facts,Who is Woodrow Wilson?,Only 3 presidents have married while in office— John Tyler was the first & which one was the last?
89,19th Century Americans,Who is Frederick Douglass?,"Demonstrating the dignity & humanity of Black Americans, who sat for 160 known photographs, the most of any American in the 19th century?"
90,Latin Phrases,What is “quid pro quo”?,"Originally, which Latin 3-word phrase referred to when a doctor or apothecary substituted one medicine for another?"
91,1970s Movies,What is Monty Python and the Holy Grail?,The 1975 premiere of what movie comedy advertised free coconuts for the first thousand in the audience?
92,Names The Same,What is Manhattan?,"A cocktail, an island & a WWII venture originally called 'Development of Substitute Materials' all bear what name?"
93,U.S. Presidents,Who is Calvin Coolidge?,"Which US President was sworn in twice as President within 2 years, first by his father & then later by a former U.S. President?"
94,Plays,What is The Tempest?,A 1609 story in which an exiled king of Bulgaria creates a sea palace with his magic may have inspired the plot of what play?
95,Landmarks,What is the Berlin Wall?,"In 2009, during a 20th anniversary celebration, what landmark was called 'an edifice of fear. On Nov. 9, it became a place of joy'?"
96,World Capitals,"What is Vienna, Austria?","Among what world capital's nicknames are the 'City of Classical Music' &, possibly in honor of a famous resident from 1860 to 1938, the 'City of Dreams'?"
97,Language & Its Meanings,What is a night owl?,"Now meaning someone with nocturnal habits, what catches a sleeping dove in Shakespeare's 'Lucrece'?"
98,Flags of Our Hemisphere,What is Brazil?,"The stars on what country's flag represent states, 26 of them; unlike the USA's, its 'federal district' gets its own 27th star?"
99,Names in U.S. History,Who is Oliver Brown?,What father was the only man among the 13 plaintiffs in a US class-action case filed in 1951?
100,Childrens Authors,"Who is Sarah? (from Sarah, Plain and Tall)","Reversing the story of what heroine she created, childrens author Patricia Maclachlan was born on the prairie but spent much of her life in New England?"
,,,
TOTALS,,,
1 Index Original Category Original Correct Question Model Prompt
2 1 The Oscars Who is John Williams? Which actor Born in 1932 was the son of a percussionist in the CBS radio orchestra has been nominated for 53 Oscars?
3 2 English Literature What is Paradise Lost? What work in English Literature says: 'The mind is its own place, & in itself can make a heaven of hell, a hell of heaven. What matter where, if I be still the same'?
4 3 Writers’ Lesser-Known Works Who is Niccolò Machiavelli? Known for more philosophical works, he wrote the play 'La Mandragola', in which Florentines are rewarded for immoral actions?
5 4 Exploration What is Easter Island (Rapa Nui)? James Cook's account of a 1774 visit where records an object 'near 27 feet long, and upwards of 8 feet over the breast or shoulders'?
6 5 The Bill of Rights What is the Eighth Amendment? England's 'Bloody Assizes' & a 1685 life sentence for perjury were 2 main origins of which amendment to the U.S. Constitution?
7 6 Nobel Peace Prize Winners Who are Nelson Mandela & Desmond Tutu? Which nobel peace price winners each lived at times on Vilakazi St. in Soweto , so it claims to be the world's only street home to 2 Nobel Peace Prize winners?
8 7 Famous Names Who is Walt Disney? In 1966, the year of who's death did he share plans for an experimental prototype community in Florida?
9 8 Geography What is Colombia? Of the 13 nations through which the Equator passes, what is the only one whose coastline borders the Caribbean Sea?
10 9 Fashion History What are rhinestones? Which decorative items in fashion history get their name from their origin in the port city of Strasbourg, on the border of France & Germany?
11 10 Movies of the ’80s What is Driving Miss Daisy? What 1980's movie is based on an off-Broadway play with just 3 characters and won the Best Picture Oscar & the actors in all 3 roles were nominated?
12 11 Novelists Who is John Grisham? A 2012 book review for which novelist noted subjects that 'sparked his ire': capital punishment, big tobacco & 'the plight of the unjustly convicted'?
13 12 20th Century Eponyms What is the Maginot Line? A 1940 headline about what 20th Century Eponym included 'failure', 'liability when it came to offense' & 'stout hearts no match for tanks'?
14 13 City History What is Stockholm? Over 700 years after its traditional 1252 founding date, what port city became associated with a psychological response?
15 14 Brand Names What is Jacuzzi? The success of what brand has its roots with a hydrotherapy pump its cofounder created for his son, who had arthritis?
16 15 American Authors Who is Washington Irving? In a periodical in 1807, what American Author called New York City 'Gotham, Gotham! Most enlightened of cities'?
17 16 Symbols What is “less than”? What symbol is a rotated V in math and a feeling of some marginalized or underrepresented people in society?
18 17 Movie Theme Songs Who is James Bond? Monty Norman, the composer of what character's theme, said the staccato riff conveyed sexiness, mystery & ruthlessness?
19 18 American Novelists Who is Joseph Heller? What American Novelist served with an airman named Yohannan in World War II & despite what readers might think, he said he enjoyed his service?
20 19 Medieval Places What is Canterbury, England? (Canterbury Cathedral) In what Medieval place did one of the participants in an 1170 event say, 'Let us away, knights; he will rise no more'?
21 20 Countries of Africa What is Morocco? At one time a province of the Roman Empire, what African country kingdom is known to Arabic scholars as Al-Maghrib Al-Aqsa, 'the far west'?
22 21 Statehood What is Wyoming? Congress relented in 1890 after what prospective state said it would wait 100 years rather than come in without the women?
23 22 1980s Movies What is Raiders of the Lost Ark? A writer & producer of what movie said he wanted it to be like a Western or James Bond film, 'only it takes place in the 30s'?
24 23 Art Exhibitions Who is Rembrandt? In 1898 what's been called the first blockbuster art show was devoted to which artist & put on for Queen Wilhelmina's coronation?
25 24 Countries of the World What is Mongolia? Part of the largest contiguous land empire during the 1200s & 1300s, today what is the world's second-largest landlocked country?
26 25 Literature What is “Howl”? A 2006 book was titled 'The Poem That Changed America:' What 'Fifty Years Later'?
27 26 Invasions Who is William of Orange? Backed by 14,000 troops, who invaded England to restore, in his words, its 'religion, laws, and liberties'?
28 27 Landmarks What is the Eiffel Tower? After its completion in the late 19th c., what was landmark was called 'a truly tragic street lamp' & a 'high & skinny pyramid of iron ladders'?
29 28 Geographic Name’s the Same What is Dover? The busiest passenger port in the U.K., what shares its name with a capital of one of the original 13 states?
30 29 Names in the Bookstore Who is Peter Mark Roget? This man made lists, perhaps to cope with depression; a set of lists he published in 1852 made whose name synonymous with a type of book?
31 30 U.S. History Who is Dr. Samuel Mudd? An 1869 presidential pardon was granted to which man, due in part to a plea by the Medical Society of Harford County, Maryland?
32 31 American Literature What is The Things They Carried? Letters, pocket knives, C rations & steel helmets are among the tangible items referred to in the title of what American literature modern war classic?
33 32 Nonfiction What is The Communist Manifesto What nonfiction book has the line, 'The discovery of America…opened up fresh ground for the rising bourgeoisie'?
34 33 a new version was passed 81 years later Laws in U.S. History What is the Civil Rights Act? 0 2/3
35 34 Names of Myth Who is Helen of Troy? Whose brothers, Castor & Pollux, saved her after Theseus stole her away as a kid; a larger force would seek her later in life?
36 35 African Countries What is Sudan? Once Africa's largest country in area, what African Country dropped to third in 2011 when a portion of it declared independence?
37 36 The Ancient World What is Alexandria? The ancient writer Galen said books on ships arriving to what city's port were seized, originals kept & copies returned?
38 37 Famous Names Who is Andy Warhol? For a special 1970s cookbook, who provided one simple recipe–a can of Campbell's tomato soup & 2 cans of milk?
39 38 People & Places What is Guam? Thought to descend from people of Southeast Asia, the Chamorro make up what U.S. territory’s largest ethnic group?
40 39 Current World Leaders What is the Philippines? In office from 2022, the president of what country has taken so many foreign trips a play on his name is 'Ferdinand Magellan Jr.'?
41 40 Writers & The South Who is Tennessee Williams? In 1939 which writer lived on Toulouse Street in the French Quarter & chose the professional name that bonded him to the South?
42 41 National Parks What is Yellowstone? What National Park is named for a river indigenous people called Mi tse a-da-zi, translated by French-speaking trappers as 'Pierre Jaune'?
43 42 Sports Who are the Harlem Globetrotters? In 2010 who introduced the 4-point shot, 35 feet from the basket?
44 43 The U.S. Military What is “Top Gun”? Losses over Asia in the 1960s led to the establishment of the program known as what at a San Diego naval base in 1969?
45 44 Art & Science What is Halley’s Comet? A craft that visited what was named for Giotto, based on the story that 680 years earlier, the painter depicted it as the Star of Bethlehem?
46 45 Words From World War I What is “tank”? In World War I, 'Cistern' & 'reservoir' were suggested names for what secret invention, but the British preferred this less clumsy monosyllable?
47 46 European History What is Holy Roman Emperor? Until 1806, some German nobles included among their honors the title of 'Elector' for their role in selecting this personage?
48 47 Theater History Who is Peter Pan? In 1904, wearing a harness, actress Nina Boucicault became the first to play what character onstage?
49 48 European Cities What is Aachen? Alphabetically the first German city in encyclopedias, what was also the first one taken by the Allies in World War II?
50 49 Word Origins What is mantra? This Sanskrit word referring to a spoken word or phrase comes from a word for 'to think'?
51 50 Inventions What is barbed wire? 1917's 'Elements of Trench Warfare' said what Old West invention was 'difficult to destroy' & 'difficult to get through'?
52 51 World War II What is Schindler’s list? Mimi Reinhard, who never learned to type using more than 2 fingers, produced what in World War II with 1,100 names, including hers?
53 52 their offspring was the source of this mythical object Mythology What is the Golden Fleece?
54 53 Literature What is Pride and Prejudice? Published in 2011, P.D. James' final novel, 'Death Comes to Pemberley', was a sequel to what novel from 200 years earlier?
55 54 only these 2 west of the Mississippi River border each other U.S. State Names What are Oregon & Nevada?
56 55 Word Origins What is passion? Originally relating to a story of suffering, what word now more commonly refers to strong emotion of any kind?
57 56 World Cinema What is La Vie en Rose? The 2007 biopic called 'La Môme' in France, meaning 'The Kid', was released in the U.S. under what other French title?
58 57 History What is Santa Maria? Returning home in 1493, Columbus stopped in the Azores at an island with what name, also something he'd lost off the Haiti coast?
59 58 Landmarks What is a kremlin? Pskov & Nizhny Novgorod are 2 of the cities that have a fortress called what?
60 59 Foreign-Born Authors Who is Vladimir Nabokov? In the 1950s the New York Times said what author 'is writing about all lust' & his lecherous narrator 'is all of us'?
61 60 Astronomy & Geography What is Capricorn? At the winter solstice, the sun is in Sagittarius; it once appeared in what constellation, giving a geographic feature its name?
62 61 Television What is Law & Order? Mike Post combined the sound of a slamming jail door, an anvil & 100 men stomping on a floor for what television series that debuted in 1990?
63 62 British Landmarks What is the Tower of London? Like Sir Thomas More, 3 16th century English queens are buried at what British location?
64 63 Early American History What are witches? In 1692 Increase Mather wrote, 'It were better that ten suspected' of these who 'escape, than that one innocent person … be condemned'?
65 64 Geography Mnemonics What are Arkansas and Louisiana? The Geography Mnemonic Mimal, sometimes said to be the silhouette of a chef or elf, stands for Minnesota, Iowa, Missouri, and what other 2 states?
66 65 Business Milestones What is the Ford Model T? What was first sold in 1908, at a price equivalent to about $27,000 today?
67 66 In The Bookstore Who is Tom Clancy? The name of what author dead since 2013 now appears on books written by a former U.S. marshal & a former Apache helicopter pilot?
68 67 Historic Art What is the Bayeux Tapestry? The artwork once known in France as 'la tapisserie de la Reine Mathilde' is better known as what?
69 68 Pop Stars Who is Madonna? In 2022 which pop star became the first woman to have a Billboard Top 10 album in 5 decades starting with the 1980s?
70 69 Classic Tale Characters Who is Scheherazade? In one 19th century translation, what female classic tale character 'perceived the dawn of day and ceased' speaking nearly 1,000 times?
71 70 USA What is Jack Daniel’s? Ironically, though what company founded in the 1860s is Moore County, Tennessee's largest employer, Moore is a dry county?
72 71 Historic People Who was William Bligh? After a 1789 event, who wrote, 'My first determination was to seek a supply of…water at Tofoa, & afterwards to sail for Tongataboo'?
73 72 The Movies What is The Godfather? Laurence Olivier & Ernest Borgnine were considered for the lead role & Sergio Leone to direct for what film that turned 50 in 2022?
74 73 Continental Geography What is Colombia? Until a 1903 secession, what country's contiguous territory spanned 2 continents?
75 74 Foreign-Born Authors Who is Isabel Allende? Early in her career which foreign-born author translated romance novels into Spanish, often changing the dialogue to make the heroines smarter?
76 75 Historic Crimes What is the Mona Lisa? Saying it was stolen by Napoleon, self-styled Italian patriot Vincenzo Peruggia took what in 1911?
77 76 U.S. Bodies of Water What is Lake Mead? Continuing a downward trend, in July 2022 what US body of water was at 27% capacity, its lowest level since 1937 when it was first being filled?
78 77 Gods & Goddesses Who is Aurora (or Eos)? Each morning which goddess began her ride in her chariot across the sky ahead of her brother Sol, or Helios?
79 78 America At War What is the Battle of New Orleans? Until the Civil War, the Jan. 8 date of what American battle of dubious military importance but big morale value was a national holiday?
80 79 Children’s Books What is The Velveteen Rabbit? Which children's book title character is told 'By the time you are real, most of your hair has been loved off your eyes drop out & you get shabby'?
81 80 TV Finales What is Grace and Frankie? In a TV reunion over 40 years in the making, Dolly Parton appeared as an angel named Agnes in the final episode of what comedy in 2022?
82 81 American Poems Who is Evangeline? In an 1847 American poem what character sees her town of Grand-Pré burned, but finally reunites with her beau for a kiss before his death?
83 82 Famous Names Who is Banksy? In 2001 who published a book called 'Banging Your Head Against a Brick Wall'; in 2002, 'Existencilism'?
84 83 Children’s Lit What is Charlotte’s Web? The title object of what childrens book 'never looked more beautiful each strand held dozens of bright drops of early morning dew'?
85 84 Classic Songs What is “Here Comes Santa Claus”? The shouts of excited children at a 1946 holiday parade are said to have inspired what perennial classic song favorite?
86 85 Brand Names What are Milk Duds? Unable to make what candies perfectly round, the confectioner embraced this flawed name for the product?
87 86 Countries of the World What is Italy? What country is home to 58 UNESCO World Heritage Sites, more than any other country; the sites include a volcano & a lagoon?
88 87 Action Movies What is Die Hard? What action movie's last line is 'If this is their idea of Christmas, I gotta be here for New Years'?
89 88 Presidential Facts Who is Woodrow Wilson? Only 3 presidents have married while in office— John Tyler was the first & which one was the last?
90 89 19th Century Americans Who is Frederick Douglass? Demonstrating the dignity & humanity of Black Americans, who sat for 160 known photographs, the most of any American in the 19th century?
91 90 Latin Phrases What is “quid pro quo”? Originally, which Latin 3-word phrase referred to when a doctor or apothecary substituted one medicine for another?
92 91 1970s Movies What is Monty Python and the Holy Grail? The 1975 premiere of what movie comedy advertised free coconuts for the first thousand in the audience?
93 92 Name’s The Same What is Manhattan? A cocktail, an island & a WWII venture originally called 'Development of Substitute Materials' all bear what name?
94 93 U.S. Presidents Who is Calvin Coolidge? Which US President was sworn in twice as President within 2 years, first by his father & then later by a former U.S. President?
95 94 Plays What is The Tempest? A 1609 story in which an exiled king of Bulgaria creates a sea palace with his magic may have inspired the plot of what play?
96 95 Landmarks What is the Berlin Wall? In 2009, during a 20th anniversary celebration, what landmark was called 'an edifice of fear. On Nov. 9, it became a place of joy'?
97 96 World Capitals What is Vienna, Austria? Among what world capital's nicknames are the 'City of Classical Music' &, possibly in honor of a famous resident from 1860 to 1938, the 'City of Dreams'?
98 97 Language & Its Meanings What is a night owl? Now meaning someone with nocturnal habits, what catches a sleeping dove in Shakespeare's 'Lucrece'?
99 98 Flags of Our Hemisphere What is Brazil? The stars on what country's flag represent states, 26 of them; unlike the USA's, its 'federal district' gets its own 27th star?
100 99 Names in U.S. History Who is Oliver Brown? What father was the only man among the 13 plaintiffs in a US class-action case filed in 1951?
101 100 Children’s Authors Who is Sarah? (from Sarah, Plain and Tall) Reversing the story of what heroine she created, childrens author Patricia Maclachlan was born on the prairie but spent much of her life in New England?
102
103 TOTALS

View File

@@ -1,100 +0,0 @@
Which man born in 1932 was the son of a percussionist in the CBS radio orchestra has been nominated for 53 Oscars?
What work in English Literature says: 'The mind is its own place, & in itself can make a heaven of hell, a hell of heaven. What matter where, if I be still the same'?
Known for more philosophical works, he wrote the play 'La Mandragola', in which Florentines are rewarded for immoral actions?
James Cook's account of a 1774 visit where records an object 'near 27 feet long, and upwards of 8 feet over the breast or shoulders'?
England's 'Bloody Assizes' & a 1685 life sentence for perjury were 2 main origins of which amendment to the U.S. Constitution?
Which nobel peace price winners each lived at times on Vilakazi St. in Soweto , so it claims to be the world's only street home to 2 Nobel Peace Prize winners?
In 1966, the year of who's death did he share plans for an experimental prototype community in Florida?
Of the 13 nations through which the Equator passes, what is the only one whose coastline borders the Caribbean Sea?
Which decorative items in fashion history get their name from their origin in the port city of Strasbourg, on the border of France & Germany?
What 1980's movie is based on an off-Broadway play with just 3 characters and won the Best Picture Oscar & the actors in all 3 roles were nominated?
A 2012 book review for which novelist noted subjects that 'sparked his ire': capital punishment, big tobacco & 'the plight of the unjustly convicted'?
A 1940 headline about what 20th Century Eponym included 'failure', 'liability when it came to offense' & 'stout hearts no match for tanks'?
Over 700 years after its traditional 1252 founding date, what port city became associated with a psychological response?
The success of what brand has its roots with a hydrotherapy pump its cofounder created for his son, who had arthritis?
In a periodical in 1807, what American Author called New York City 'Gotham, Gotham! Most enlightened of cities'?
What symbol is a rotated V in math and a feeling of some marginalized or underrepresented people in society?
Monty Norman, the composer of what character's theme, said the staccato riff conveyed sexiness, mystery & ruthlessness?
What American Novelist served with an airman named Yohannan in World War II & despite what readers might think, he said he enjoyed his service?
In what Medieval place did one of the participants in an 1170 event say, 'Let us away, knights; he will rise no more'?
At one time a province of the Roman Empire, what African country kingdom is known to Arabic scholars as Al-Maghrib Al-Aqsa, 'the far west'?
Congress relented in 1890 after what prospective state said it would wait 100 years rather than come in without the women?
A writer & producer of what movie said he wanted it to be like a Western or James Bond film, 'only it takes place in the 30s'?
In 1898 what's been called the first blockbuster art show was devoted to which artist & put on for Queen Wilhelmina's coronation?
Part of the largest contiguous land empire during the 1200s & 1300s, today what is the world's second-largest landlocked country?
A 2006 book was titled 'The Poem That Changed America:' What 'Fifty Years Later'?
Backed by 14,000 troops, who invaded England to restore, in his words, its 'religion, laws, and liberties'?
After its completion in the late 19th c., what was landmark was called 'a truly tragic street lamp' & a 'high & skinny pyramid of iron ladders'?
The busiest passenger port in the U.K., what shares its name with a capital of one of the original 13 states?
This man made lists, perhaps to cope with depression; a set of lists he published in 1852 made whose name synonymous with a type of book?
An 1869 presidential pardon was granted to which man, due in part to a plea by the Medical Society of Harford County, Maryland?
Letters, pocket knives, C rations & steel helmets are among the tangible items referred to in the title of what American literature modern war classic?
What nonfiction book has the line, 'The discovery of America…opened up fresh ground for the rising bourgeoisie'?
A radical Republican championed what 1875 act but the Supreme Court struck it down in 1883; a new version was passed 81 years later?
Whose brothers, Castor & Pollux, saved her after Theseus stole her away as a kid; a larger force would seek her later in life?
Once Africa's largest country in area, what African Country dropped to third in 2011 when a portion of it declared independence?
The ancient writer Galen said books on ships arriving to what city's port were seized, originals kept & copies returned?
For a special 1970s cookbook, who provided one simple recipea can of Campbell's tomato soup & 2 cans of milk?
Thought to descend from people of Southeast Asia, the Chamorro make up what U.S. territorys largest ethnic group?
In office from 2022, the president of what country has taken so many foreign trips a play on his name is 'Ferdinand Magellan Jr.'?
In 1939 which writer lived on Toulouse Street in the French Quarter & chose the professional name that bonded him to the South?
What National Park is named for a river indigenous people called Mi tse a-da-zi, translated by French-speaking trappers as 'Pierre Jaune'?
In 2010 who introduced the 4-point shot, 35 feet from the basket?
Losses over Asia in the 1960s led to the establishment of the program known as what at a San Diego naval base in 1969?
A craft that visited what was named for Giotto, based on the story that 680 years earlier, the painter depicted it as the Star of Bethlehem?
In World War I, 'Cistern' & 'reservoir' were suggested names for what secret invention, but the British preferred this less clumsy monosyllable?
Until 1806, some German nobles included among their honors the title of 'Elector' for their role in selecting this personage?
In 1904, wearing a harness, actress Nina Boucicault became the first to play what character onstage?
Alphabetically the first German city in encyclopedias, what was also the first one taken by the Allies in World War II?
This Sanskrit word referring to a spoken word or phrase comes from a word for 'to think'?
1917's 'Elements of Trench Warfare' said what Old West invention was 'difficult to destroy' & 'difficult to get through'?
Mimi Reinhard, who never learned to type using more than 2 fingers, produced what in World War II with 1,100 names, including hers?
Poseidon carried off the maiden Theophane & turned her into a ewe; their offspring was the source of what mythical object?
Published in 2011, P.D. James' final novel, 'Death Comes to Pemberley', was a sequel to what novel from 200 years earlier?
5 U.S. states have 6-letter names; only which 2 west of the Mississippi River border each other?
Originally relating to a story of suffering, what word now more commonly refers to strong emotion of any kind?
The 2007 biopic called 'La Môme' in France, meaning 'The Kid', was released in the U.S. under what other French title?
Returning home in 1493, Columbus stopped in the Azores at an island with what name, also something he'd lost off the Haiti coast?
Pskov & Nizhny Novgorod are 2 of the cities that have a fortress called what?
In the 1950s the New York Times said what author 'is writing about all lust' & his lecherous narrator 'is all of us'?
At the winter solstice, the sun is in Sagittarius; it once appeared in what constellation, giving a geographic feature its name?
Mike Post combined the sound of a slamming jail door, an anvil & 100 men stomping on a floor for what television series that debuted in 1990?
Like Sir Thomas More, 3 16th century English queens are buried at what British location?
In 1692 Increase Mather wrote, 'It were better that ten suspected' of these who 'escape, than that one innocent person be condemned'?
The Geography Mnemonic Mimal, sometimes said to be the silhouette of a chef or elf, stands for Minnesota, Iowa, Missouri, and what other 2 states?
What was first sold in 1908, at a price equivalent to about $27,000 today?
The name of what author dead since 2013 now appears on books written by a former U.S. marshal & a former Apache helicopter pilot?
The artwork once known in France as 'la tapisserie de la Reine Mathilde' is better known as what?
In 2022 which pop star became the first woman to have a Billboard Top 10 album in 5 decades starting with the 1980s?
In one 19th century translation, what female classic tale character 'perceived the dawn of day and ceased' speaking nearly 1,000 times?
Ironically, though what company founded in the 1860s is Moore County, Tennessee's largest employer, Moore is a dry county?
After a 1789 event, who wrote, 'My first determination was to seek a supply of…water at Tofoa, & afterwards to sail for Tongataboo'?
Laurence Olivier & Ernest Borgnine were considered for the lead role & Sergio Leone to direct for what film that turned 50 in 2022?
Until a 1903 secession, what country's contiguous territory spanned 2 continents?
Early in her career which foreign-born author translated romance novels into Spanish, often changing the dialogue to make the heroines smarter?
Saying it was stolen by Napoleon, self-styled Italian patriot Vincenzo Peruggia took what in 1911?
Continuing a downward trend, in July 2022 what US body of water was at 27% capacity, its lowest level since 1937 when it was first being filled?
Each morning which goddess began her ride in her chariot across the sky ahead of her brother Sol, or Helios?
Until the Civil War, the Jan. 8 date of what American battle of dubious military importance but big morale value was a national holiday?
Which children's book title character is told 'By the time you are real, most of your hair has been loved off your eyes drop out & you get shabby'?
In a TV reunion over 40 years in the making, Dolly Parton appeared as an angel named Agnes in the final episode of what comedy in 2022?
In an 1847 American poem what character sees her town of Grand-Pré burned, but finally reunites with her beau for a kiss before his death?
In 2001 who published a book called 'Banging Your Head Against a Brick Wall'; in 2002, 'Existencilism'?
The title object of what childrens book 'never looked more beautiful each strand held dozens of bright drops of early morning dew'?
The shouts of excited children at a 1946 holiday parade are said to have inspired what perennial classic song favorite?
Unable to make what candies perfectly round, the confectioner embraced this flawed name for the product?
What country is home to 58 UNESCO World Heritage Sites, more than any other country; the sites include a volcano & a lagoon?
What action movie's last line is 'If this is their idea of Christmas, I gotta be here for New Years'?
Only 3 presidents have married while in office— John Tyler was the first & which one was the last?
Demonstrating the dignity & humanity of Black Americans, who sat for 160 known photographs, the most of any American in the 19th century?
Originally, which Latin 3-word phrase referred to when a doctor or apothecary substituted one medicine for another?
The 1975 premiere of what movie comedy advertised free coconuts for the first thousand in the audience?
A cocktail, an island & a WWII venture originally called 'Development of Substitute Materials' all bear what name?
Which US President was sworn in twice as President within 2 years, first by his father & then later by a former U.S. President?
A 1609 story in which an exiled king of Bulgaria creates a sea palace with his magic may have inspired the plot of what play?
In 2009, during a 20th anniversary celebration, what landmark was called 'an edifice of fear. On Nov. 9, it became a place of joy'?
Among what world capital's nicknames are the 'City of Classical Music' &, possibly in honor of a famous resident from 1860 to 1938, the 'City of Dreams'?
Now meaning someone with nocturnal habits, what catches a sleeping dove in Shakespeare's 'Lucrece'?
The stars on what country's flag represent states, 26 of them; unlike the USA's, its 'federal district' gets its own 27th star?
What father was the only man among the 13 plaintiffs in a US class-action case filed in 1951?
Reversing the story of what heroine she created, childrens author Patricia Maclachlan was born on the prairie but spent much of her life in New England?

View File

@@ -1,28 +0,0 @@
" Basic plugin example
function! Llm()
let url = "http://127.0.0.1:8080/completion"
" Get the content of the current buffer
let buffer_content = join(getline(1, '$'), "\n")
" Create the JSON payload
let json_payload = {"temp":0.72,"top_k":100,"top_p":0.73,"repeat_penalty":1.100000023841858,"n_predict":256,"stop": ["\n\n\n"],"stream": v:false}
let json_payload.prompt = buffer_content
" Define the curl command
let curl_command = 'curl -k -s -X POST -H "Content-Type: application/json" -d @- ' . url
let response = system(curl_command, json_encode(json_payload))
" Extract the content field from the response
let content = json_decode(response).content
let split_newlines = split(content, '\n', 1)
" Insert the content at the cursor position
call setline(line('.'), [ getline('.') . split_newlines[0] ] + split_newlines[1:])
endfunction
command! Llm call Llm()
noremap <F2> :Llm<CR>

View File

@@ -118,13 +118,17 @@ embedding-convert-model:
embedding-run-original-model:
$(call validate_embedding_model_path,embedding-run-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
./scripts/embedding/run-original-model.py \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-run-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-inspect-original-model:
$(call validate_embedding_model_path,embedding-inspect-original-model)
@@ -156,7 +160,8 @@ embedding-quantize-model:
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
embedding-run-quantized-model:
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
@./scripts/embedding/run-converted-model.sh $(QUANTIZED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
###
### Perplexity targets/recipes

View File

@@ -105,12 +105,12 @@ new model, the model can be converted to GGUF format using the following command
### Inspecting the converted model
The converted model can be inspected using the following command:
```console
(venv) $ make inspect-converted-model
(venv) $ make causal-inspect-converted-model
```
### Running the converted model
```console
(venv) $ make run-converted-model
(venv) $ make causal-run-converted-model
```
### Model logits verfication

View File

@@ -151,6 +151,35 @@ int main(int argc, char ** argv) {
logits = llama_get_embeddings(ctx);
n_logits = llama_model_n_embd(model) * batch.n_tokens;
type = "-embeddings";
const int n_embd = llama_model_n_embd(model);
const int n_embd_count = batch.n_tokens;
printf("Embedding dimension: %d\n", n_embd);
printf("\n");
// Print embeddings in the specified format
for (int j = 0; j < n_embd_count; j++) {
printf("embedding %d: ", j);
// Print first 3 values
for (int i = 0; i < 3 && i < n_embd; i++) {
printf("%9.6f ", logits[j * n_embd + i]);
}
printf(" ... ");
// Print last 3 values
for (int i = n_embd - 3; i < n_embd; i++) {
if (i >= 0) {
printf("%9.6f ", logits[j * n_embd + i]);
}
}
printf("\n");
}
printf("\n");
printf("Embeddings size: %d\n", n_logits);
} else {
logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
@@ -183,22 +212,23 @@ int main(int argc, char ** argv) {
return 1;
}
for (int i = 0; i < n_logits; i++) {
fprintf(f, "%d: %.6f\n", i, logits[i]); // Added index and changed format
fprintf(f, "%d: %.6f\n", i, logits[i]);
}
fclose(f);
// Print first and last 10 logits for quick verification
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < n_logits; i++) {
printf("%.6f ", logits[i]);
}
printf("\n");
if (!embedding_mode) {
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < n_logits; i++) {
printf("%.6f ", logits[i]);
}
printf("\n");
printf("Last 10 logits: ");
for (int i = n_logits - 10; i < n_logits; i++) {
if (i >= 0) printf("%.6f ", logits[i]);
printf("Last 10 logits: ");
for (int i = n_logits - 10; i < n_logits; i++) {
if (i >= 0) printf("%.6f ", logits[i]);
}
printf("\n\n");
}
printf("\n\n");
printf("Logits saved to %s\n", bin_filename);
printf("Logits saved to %s\n", txt_filename);

View File

@@ -48,7 +48,7 @@ def main():
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
model_name = os.path.splitext(os.path.basename(model_path))[0]
model_name = os.path.basename(model_path)
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"

View File

@@ -193,7 +193,7 @@ print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
with torch.no_grad():
outputs = model(input_ids)
outputs = model(input_ids.to(model.device))
logits = outputs.logits
# Extract logits for the last token (next token prediction)

View File

@@ -2,8 +2,37 @@
set -e
MODEL_PATH="${1:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
# Parse command line arguments
MODEL_PATH=""
MODEL_NAME=""
PROMPTS_FILE=""
# First argument is always model path
if [ $# -gt 0 ] && [[ "$1" != --* ]]; then
MODEL_PATH="$1"
shift
fi
# Parse remaining arguments
while [[ $# -gt 0 ]]; do
case $1 in
--prompts-file|-pf)
PROMPTS_FILE="$2"
shift 2
;;
*)
# If MODEL_NAME not set and this isn't a flag, use as model name
if [ -z "$MODEL_NAME" ] && [[ "$1" != --* ]]; then
MODEL_NAME="$1"
fi
shift
;;
esac
done
# Set defaults
MODEL_PATH="${MODEL_PATH:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
if [ -t 0 ]; then
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
@@ -35,8 +64,18 @@ with open('$TEMP_FILE', 'wb') as f:
trap "rm -f $TEMP_FILE" EXIT
fi
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
# Build the semantic_check.py command
SEMANTIC_CMD="python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
--cpp-embeddings $CPP_EMBEDDINGS \
--prompt "Hello world today"
--cpp-embeddings $CPP_EMBEDDINGS"
# Add prompts file if specified, otherwise use default prompt
if [ -n "$PROMPTS_FILE" ]; then
SEMANTIC_CMD="$SEMANTIC_CMD --prompts-file \"$PROMPTS_FILE\""
else
SEMANTIC_CMD="$SEMANTIC_CMD --prompt \"Hello world today\""
fi
# Execute the command
eval $SEMANTIC_CMD

View File

@@ -2,8 +2,27 @@
set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_EMBEDDING_MODEL"}"
# Parse command line arguments
CONVERTED_MODEL=""
PROMPTS_FILE=""
while [[ $# -gt 0 ]]; do
case $1 in
-p|--prompts-file)
PROMPTS_FILE="$2"
shift 2
;;
*)
if [ -z "$CONVERTED_MODEL" ]; then
CONVERTED_MODEL="$1"
fi
shift
;;
esac
done
# First try command line argument, then environment variable
CONVERTED_MODEL="${CONVERTED_MODEL:-"$CONVERTED_EMBEDDING_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
@@ -13,8 +32,19 @@ if [ -z "$CONVERTED_MODEL" ]; then
exit 1
fi
# Read prompt from file or use default
if [ -n "$PROMPTS_FILE" ]; then
if [ ! -f "$PROMPTS_FILE" ]; then
echo "Error: Prompts file '$PROMPTS_FILE' not found" >&2
exit 1
fi
PROMPT=$(cat "$PROMPTS_FILE")
else
PROMPT="Hello world today"
fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "Hello world today"
# TODO: update logits.cpp to accept a --file/-f option for the prompt
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"

View File

@@ -13,14 +13,37 @@ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
args = parser.parse_args()
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
#original_sliding_window = 6
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
@@ -29,19 +52,28 @@ if unreleased_model_name:
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
model = model_class.from_pretrained(model_path, config=config)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
config = AutoConfig.from_pretrained(model_path)
print(f"Model file: {type(model).__module__}")
# Verify the model is using the correct sliding window
if hasattr(model.config, 'sliding_window'):
print(f"Model's sliding_window: {model.config.sliding_window}")
else:
print("Model config does not have sliding_window attribute")
model_name = os.path.basename(model_path)
texts = [ "Hello world today" ]
if args.prompts_file:
prompt_text = read_prompt_from_file(args.prompts_file)
texts = [prompt_text]
else:
texts = ["Hello world today"]
encoded = tokenizer(
texts,

View File

@@ -67,7 +67,7 @@ def main():
parser.add_argument('-m', '--model-path', required=True, help='Path to the model directory')
args = parser.parse_args()
model_name = os.path.splitext(os.path.basename(args.model_path))[0]
model_name = os.path.basename(args.model_path)
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"

View File

@@ -40,7 +40,7 @@ if os.path.exists(index_path):
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
with safe_open(file_path, framework="pt") as f: # type: ignore
with safe_open(file_path, framework="pt") as f:
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
# Single file model (original behavior)
print("Single-file model detected")
with safe_open(single_file_path, framework="pt") as f: # type: ignore
with safe_open(single_file_path, framework="pt") as f:
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):

View File

@@ -101,6 +101,17 @@ def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
def main():
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
parser.add_argument('--model-path', '-m', required=True, help='Path to the original Python model')
@@ -108,14 +119,20 @@ def main():
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
parser.add_argument('--prompts-file', '-pf', help='Path to file containing prompts')
args = parser.parse_args()
if args.prompts_file:
prompt = read_prompt_from_file(args.prompts_file)
else:
prompt = args.prompt
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
print("=" * 70)
# Single prompt detailed comparison
print(f"\nTesting with prompt: '{args.prompt}'")
print(f"\nTesting with prompt: '{prompt}'")
# Load the python model to get configuration information and also to load the tokenizer.
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
@@ -144,7 +161,7 @@ def main():
else:
model = AutoModel.from_pretrained(args.model_path)
encoded = tokenizer(args.prompt, return_tensors="pt")
encoded = tokenizer(prompt, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
n_tokens = len(tokens)
print(f"n_tokens: {n_tokens}");
@@ -155,7 +172,7 @@ def main():
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
# Run comparison
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, prompt)
# Summary
print(f"\n=== SUMMARY ===")

View File

@@ -1,5 +1,40 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("ggml" C CXX ASM)
### GGML Version
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 4)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
if(GIT_EXE)
# Get current git commit hash
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE GGML_BUILD_COMMIT
OUTPUT_STRIP_TRAILING_WHITESPACE
ERROR_QUIET
)
# Check if the working directory is dirty (i.e., has uncommitted changes)
execute_process(COMMAND ${GIT_EXE} diff-index --quiet HEAD -- .
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
RESULT_VARIABLE GGML_GIT_DIRTY
ERROR_QUIET
)
endif()
# Build the version string with optional dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}")
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
set(GGML_VERSION "${GGML_VERSION}-dirty")
endif()
if(NOT GGML_BUILD_COMMIT)
set(GGML_BUILD_COMMIT "unknown")
endif()
include(CheckIncludeFileCXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@@ -141,7 +176,7 @@ set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (MINGW)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
set(GGML_WIN_VER "0xA00" CACHE STRING "ggml: Windows version")
endif()
# ggml core
@@ -174,7 +209,6 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
@@ -300,26 +334,6 @@ endif()
# Create CMake package
#
# Generate version info based on git commit.
if(NOT DEFINED GGML_BUILD_NUMBER)
find_program(GIT_EXE NAMES git git.exe REQUIRED NO_CMAKE_FIND_ROOT_PATH)
execute_process(COMMAND ${GIT_EXE} rev-list --count HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE GGML_BUILD_NUMBER
OUTPUT_STRIP_TRAILING_WHITESPACE
)
if(GGML_BUILD_NUMBER EQUAL 1)
message(WARNING "GGML build version fixed at 1 likely due to a shallow clone.")
endif()
execute_process(COMMAND ${GIT_EXE} rev-parse --short HEAD
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE GGML_BUILD_COMMIT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
endif()
# Capture variables prefixed with GGML_.
@@ -348,7 +362,7 @@ set(GGML_VARIABLES_EXPANDED ${variable_set_statements})
# Create the CMake package and set install location.
set(GGML_INSTALL_VERSION 0.0.${GGML_BUILD_NUMBER})
set(GGML_INSTALL_VERSION ${GGML_VERSION})
set(GGML_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(GGML_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(GGML_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")

View File

@@ -314,7 +314,8 @@ extern "C" {
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

View File

@@ -7,6 +7,9 @@
extern "C" {
#endif
// device buffer
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_zdnn_buffer_type(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zdnn_reg(void);
#ifdef __cplusplus

View File

@@ -237,6 +237,8 @@
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
// TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
#define GGML_ROPE_TYPE_NORMAL 0
#define GGML_ROPE_TYPE_NEOX 2
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
@@ -574,6 +576,7 @@ extern "C" {
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_XIELU,
GGML_UNARY_OP_COUNT,
};
@@ -1148,6 +1151,18 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// xIELU activation function
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
// that constrain the positive and negative source alpha values respectively
GGML_API struct ggml_tensor * ggml_xielu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha_n,
float alpha_p,
float beta,
float eps);
// gated linear unit ops
// A: n columns, r rows,
// result is n / 2 columns, r rows,
@@ -1615,6 +1630,13 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);

View File

@@ -114,6 +114,9 @@ message(STATUS "GGML_SYSTEM_ARCH: ${GGML_SYSTEM_ARCH}")
if (NOT MSVC)
if (GGML_STATIC)
if (UNIX AND NOT APPLE)
set(CMAKE_FIND_LIBRARY_SUFFIXES ".a;.so")
endif()
add_link_options(-static)
if (MINGW)
add_link_options(-static-libgcc -static-libstdc++)

View File

@@ -23,7 +23,7 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
@@ -95,39 +95,104 @@ enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_te
// dynamic tensor allocator
#define GGML_VBUFFER_MAX_CHUNKS 16
// relative memory address within an allocation that can be split into multiple buffers (chunks)
struct buffer_address {
int chunk; // index of a backend buffer
size_t offset; // local memory offset within the buffer
};
static const struct buffer_address GGML_BUFFER_ADDRESS_INVALID = { -1, SIZE_MAX };
static bool ggml_buffer_address_less(struct buffer_address a, struct buffer_address b) {
return a.chunk != b.chunk ? a.chunk < b.chunk : a.offset < b.offset;
}
struct free_block {
size_t offset;
size_t size;
};
struct tallocr_chunk {
struct free_block free_blocks[MAX_FREE_BLOCKS];
int n_free_blocks;
size_t max_size;
};
struct ggml_dyn_tallocr {
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
size_t max_size;
size_t max_chunk_size;
struct tallocr_chunk * chunks[GGML_VBUFFER_MAX_CHUNKS];
int n_chunks;
#ifdef GGML_ALLOCATOR_DEBUG
struct {
const struct ggml_tensor * tensor;
size_t offset;
struct buffer_address addr;
} allocated_tensors[1024];
#endif
};
static void ggml_dyn_tallocr_insert_block(struct tallocr_chunk * chunk, size_t offset, size_t size) {
GGML_ASSERT(chunk->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < chunk->n_free_blocks && chunk->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = chunk->n_free_blocks; i > insert_pos; i--) {
chunk->free_blocks[i] = chunk->free_blocks[i-1];
}
// insert the new block
chunk->free_blocks[insert_pos].offset = offset;
chunk->free_blocks[insert_pos].size = size;
chunk->n_free_blocks++;
}
static void ggml_dyn_tallocr_remove_block(struct tallocr_chunk * chunk, int idx) {
// shift all elements after idx by 1 to the left, overwriting the element at idx
for (int i = idx; i < chunk->n_free_blocks; i++) {
chunk->free_blocks[i] = chunk->free_blocks[i+1];
}
chunk->n_free_blocks--;
}
static int ggml_dyn_tallocr_new_chunk(struct ggml_dyn_tallocr * alloc, size_t min_size) {
if (alloc->n_chunks >= GGML_VBUFFER_MAX_CHUNKS) {
return -1;
}
struct tallocr_chunk * chunk = calloc(1, sizeof(struct tallocr_chunk));
chunk->n_free_blocks = 1;
chunk->free_blocks[0].offset = 0;
// available space in a chunk is limited to max_chunk_size, but can be higher if:
// 1. a single tensor exceeds the maximum, and cannot fit any other way
// 2. we are running out of chunks
// backends will either manage to allocate the larger size, or report an error.
chunk->free_blocks[0].size = MAX(min_size, alloc->max_chunk_size);
if (alloc->n_chunks == GGML_VBUFFER_MAX_CHUNKS - 1) {
chunk->free_blocks[0].size = SIZE_MAX/2;
}
alloc->chunks[alloc->n_chunks] = chunk;
alloc->n_chunks++;
return alloc->n_chunks - 1;
}
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor == NULL) {
alloc->allocated_tensors[i].tensor = tensor;
alloc->allocated_tensors[i].offset = offset;
alloc->allocated_tensors[i].addr = addr;
return;
}
}
GGML_ABORT("out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].offset == offset) {
if (alloc->allocated_tensors[i].addr.chunk == addr.chunk && alloc->allocated_tensors[i].addr.offset == addr.offset) {
alloc->allocated_tensors[i].tensor = NULL;
return;
}
@@ -136,76 +201,94 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
}
#endif
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
int best_fit_chunk = -1;
int best_fit_block = -1;
size_t max_avail = 0;
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
// find the best fitting free block besides the last block, within any chunk
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < chunk->n_free_blocks - 1; i++) {
struct free_block * block = &chunk->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_chunk = c;
best_fit_block = i;
best_fit_size = block->size;
}
}
}
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
} else {
// this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("not enough space in the buffer");
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
size_t offset = block->offset;
block->offset = offset + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, offset, tensor);
size_t cur_max = offset + size;
if (cur_max > alloc->max_size) {
// sort allocated_tensors by offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
size_t tmp_offset = alloc->allocated_tensors[i].offset;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].offset = tmp_offset;
// no suitable block found, try the last block (this will grow a chunks size)
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
if (chunk->n_free_blocks > 0) {
struct free_block * block = &chunk->free_blocks[chunk->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_chunk = c;
best_fit_block = chunk->n_free_blocks - 1;
break;
}
}
}
GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
}
if (best_fit_block == -1) {
// none of the existing chunks have enough space left
best_fit_chunk = ggml_dyn_tallocr_new_chunk(alloc, size);
best_fit_block = 0;
}
if (best_fit_chunk == -1) {
// since the last chunk always has virtually endless memory, this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("graph allocation: failed to reserve memory");
}
struct tallocr_chunk * chunk = alloc->chunks[best_fit_chunk];
struct free_block * block = &chunk->free_blocks[best_fit_block];
struct buffer_address addr = {.chunk = best_fit_chunk, .offset = block->offset };
block->offset += size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
ggml_dyn_tallocr_remove_block(chunk, best_fit_block);
}
AT_PRINTF("block %d, offset %zu, chunk %d\n", best_fit_block, addr.offset, addr.chunk);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, addr, tensor);
size_t cur_max = addr.offset + size;
if (cur_max > alloc->max_size[addr.chunk]) {
// sort allocated_tensors by chunk/offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (ggml_buffer_address_less(alloc->allocated_tensors[j].addr, alloc->allocated_tensors[i].addr)) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
struct buffer_address tmp_addr = alloc->allocated_tensors[i].addr;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].addr = alloc->allocated_tensors[j].addr;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].addr = tmp_addr;
}
}
}
GGML_LOG_DEBUG("max_size[%d] = %.2f MB: tensors: ", addr.chunk, cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor) {
GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].offset,
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
GGML_LOG_DEBUG("%s [%d: %zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].addr.chunk,
alloc->allocated_tensors[i].addr.offset,
alloc->allocated_tensors[i].addr.offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
}
}
@@ -213,78 +296,69 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
}
#endif
alloc->max_size = MAX(alloc->max_size, offset + size);
chunk->max_size = MAX(chunk->max_size, addr.offset + size);
return offset;
return addr;
GGML_UNUSED(tensor);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
AT_PRINTF("%s: freeing %s at {chunk=%d, offset=%zu} (%zu bytes) - n_free_blocks = %d\n",
__func__, tensor->name, addr.chunk, addr.offset, size, alloc->chunks[addr.chunk]->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, offset, tensor);
remove_allocated_tensor(alloc, addr, tensor);
#endif
struct tallocr_chunk * chunk = alloc->chunks[addr.chunk];
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
for (int i = 0; i < chunk->n_free_blocks; i++) {
struct free_block * block = &chunk->free_blocks[i];
// check if ptr is at the end of the block
if (block->offset + block->size == offset) {
if (block->offset + block->size == addr.offset) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i < chunk->n_free_blocks - 1) {
struct free_block * next = &chunk->free_blocks[i+1];
if (block->offset + block->size == next->offset) {
block->size += next->size;
ggml_dyn_tallocr_remove_block(chunk, i+1);
}
}
return;
}
// check if ptr is at the beginning of the block
if (offset + size == block->offset) {
block->offset = offset;
if (addr.offset + size == block->offset) {
block->offset = addr.offset;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i > 0) {
struct free_block * prev = &chunk->free_blocks[i-1];
if (prev->offset + prev->size == block->offset) {
prev->size += block->size;
ggml_dyn_tallocr_remove_block(chunk, i);
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].offset = offset;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
ggml_dyn_tallocr_insert_block(chunk, addr.offset, size);
GGML_UNUSED(tensor);
}
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
alloc->n_free_blocks = 1;
alloc->free_blocks[0].offset = 0;
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
alloc->max_size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; i++) {
free(alloc->chunks[i]);
alloc->chunks[i] = NULL;
}
alloc->n_chunks = 0;
#ifdef GGML_ALLOCATOR_DEBUG
for (int i = 0; i < 1024; i++) {
@@ -293,14 +367,14 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
#endif
}
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment, size_t max_buffer_size) {
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
*alloc = (struct ggml_dyn_tallocr) {
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
/*.alignment = */ alignment,
/*.max_chunk_size = */ MIN(max_buffer_size, SIZE_MAX/2), // clamp to avoid overflows
/*.chunks = */ {NULL},
/*.n_chunks = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {{0}},
#endif
@@ -312,11 +386,73 @@ static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
}
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
for (int i = 0; i < alloc->n_chunks; ++i) {
free(alloc->chunks[i]);
}
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
return alloc->max_size;
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc, int chunk) {
return chunk < alloc->n_chunks ? alloc->chunks[chunk]->max_size : 0;
}
// virtual buffer with contiguous memory range, split into multiple backend buffers (chunks)
struct vbuffer {
ggml_backend_buffer_t chunks[GGML_VBUFFER_MAX_CHUNKS];
};
static void ggml_vbuffer_free(struct vbuffer * buf) {
if (buf == NULL) {
return;
}
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; ++i) {
ggml_backend_buffer_free(buf->chunks[i]);
}
free(buf);
}
static size_t ggml_vbuffer_chunk_size(struct vbuffer * buf, int chunk) {
return buf->chunks[chunk] ? ggml_backend_buffer_get_size(buf->chunks[chunk]) : 0;
}
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
size_t size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
size += ggml_backend_buffer_get_size(buf->chunks[i]);
}
return size;
}
static struct vbuffer * ggml_vbuffer_alloc(ggml_backend_buffer_type_t buft, const struct ggml_dyn_tallocr * talloc, enum ggml_backend_buffer_usage usage) {
struct vbuffer * buf = (struct vbuffer *)calloc(1, sizeof(struct vbuffer));
if (buf == NULL) {
return NULL;
}
for (int n = 0; n < talloc->n_chunks; n++) {
size_t chunk_size = talloc->chunks[n]->max_size;
buf->chunks[n] = ggml_backend_buft_alloc_buffer(buft, chunk_size);
if (buf->chunks[n] == NULL) {
ggml_vbuffer_free(buf);
return NULL;
}
ggml_backend_buffer_set_usage(buf->chunks[n], usage);
}
return buf;
}
static void ggml_vbuffer_tensor_alloc(struct vbuffer * buf, struct ggml_tensor * tensor, struct buffer_address buf_addr) {
void * base = ggml_backend_buffer_get_base(buf->chunks[buf_addr.chunk]);
void * addr = (char *)base + buf_addr.offset;
ggml_backend_tensor_alloc(buf->chunks[buf_addr.chunk], tensor, addr);
}
static void ggml_vbuffer_reset(struct vbuffer * buf) {
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
ggml_backend_buffer_reset(buf->chunks[i]);
}
}
@@ -328,13 +464,13 @@ struct hash_node {
int n_children;
int n_views;
int buffer_id;
size_t offset; // offset within the buffer
struct buffer_address addr;
bool allocated;
};
struct tensor_alloc {
int buffer_id;
size_t offset;
struct buffer_address addr;
size_t size_max; // 0 = pre-allocated, unused, or view
};
@@ -349,7 +485,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
struct vbuffer ** buffers; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -370,7 +506,7 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
GGML_ASSERT(galloc->bufts != NULL);
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
galloc->buffers = calloc(n_bufs, sizeof(struct vbuffer *));
GGML_ASSERT(galloc->buffers != NULL);
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
@@ -390,7 +526,8 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
if (galloc->buf_tallocs[i] == NULL) {
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
size_t max_size = ggml_backend_buft_get_max_size(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment, max_size);
}
}
galloc->n_buffers = n_bufs;
@@ -418,7 +555,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
}
}
if (!freed) {
ggml_backend_buffer_free(galloc->buffers[i]);
ggml_vbuffer_free(galloc->buffers[i]);
}
}
if (galloc->buf_tallocs != NULL) {
@@ -467,7 +604,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
hn->allocated = true;
assert(hn->offset == 0);
assert(hn->addr.offset == 0);
// try to reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
@@ -501,9 +638,9 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
assert(view_src_hn->offset == p_hn->offset);
assert(view_src_hn->addr.chunk == p_hn->addr.chunk && view_src_hn->addr.offset == p_hn->addr.offset);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
view_src_hn->allocated = false;
return;
@@ -511,7 +648,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
return;
}
@@ -522,9 +659,8 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
hn->addr = ggml_dyn_tallocr_alloc(alloc, size, node);
}
}
@@ -536,12 +672,11 @@ static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * n
}
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
size_t offset = hn->offset;
int buffer_id = hn->buffer_id;
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
ggml_dyn_tallocr_free_tensor(alloc, hn->addr, size, node);
hn->allocated = false;
}
@@ -692,24 +827,24 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct node_alloc * node_alloc = &galloc->node_allocs[i];
if (node->view_src || node->data) {
node_alloc->dst.buffer_id = -1;
node_alloc->dst.offset = SIZE_MAX;
node_alloc->dst.addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->dst.size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
node_alloc->dst.buffer_id = hn->buffer_id;
node_alloc->dst.offset = hn->offset;
node_alloc->dst.addr = hn->addr;
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (!src || src->view_src || src->data) {
node_alloc->src[j].buffer_id = -1;
node_alloc->src[j].offset = SIZE_MAX;
node_alloc->src[j].addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->src[j].size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
node_alloc->src[j].buffer_id = hn->buffer_id;
node_alloc->src[j].offset = hn->offset;
node_alloc->src[j].addr = hn->addr;
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
}
}
@@ -725,11 +860,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (leaf->view_src || leaf->data) {
galloc->leaf_allocs[i].leaf.buffer_id = -1;
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
galloc->leaf_allocs[i].leaf.addr = GGML_BUFFER_ADDRESS_INVALID;
galloc->leaf_allocs[i].leaf.size_max = 0;
} else {
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
galloc->leaf_allocs[i].leaf.offset = hn->offset;
galloc->leaf_allocs[i].leaf.addr = hn->addr;
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
}
@@ -744,22 +879,29 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
bool realloc = galloc->buffers[i] == NULL;
size_t new_size = 0;
for (int c = 0; c < galloc->buf_tallocs[i]->n_chunks; c++) {
size_t cur_chunk_size = galloc->buffers[i] ? ggml_vbuffer_chunk_size(galloc->buffers[i], c) : 0;
size_t new_chunk_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i], c);
new_size += new_chunk_size;
if (new_chunk_size > cur_chunk_size) {
realloc = true;
}
}
if (realloc) {
#ifndef NDEBUG
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
ggml_vbuffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
if (galloc->buffers[i] == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
}
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
}
}
@@ -772,11 +914,11 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
int buffer_id = tensor_alloc->buffer_id;
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
assert(tensor->data || tensor->view_src || ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
if (tensor->view_src != NULL) {
if (tensor->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
assert(tensor_alloc->addr.offset == SIZE_MAX);
if (tensor->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
@@ -785,11 +927,9 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
}
} else {
if (tensor->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
assert(tensor_alloc->addr.offset != SIZE_MAX);
assert(ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
ggml_vbuffer_tensor_alloc(galloc->buffers[buffer_id], tensor, tensor_alloc->addr);
} else {
if (tensor->buffer == NULL) {
// this tensor was allocated without ggml-backend
@@ -874,7 +1014,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
ggml_vbuffer_reset(galloc->buffers[i]);
}
}
@@ -917,7 +1057,7 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
}
}
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
return ggml_vbuffer_size(galloc->buffers[buffer_id]);
}
// utils

View File

@@ -135,6 +135,10 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
return p;
}
static const char * dl_error() {
return "";
}
#else
using dl_handle = void;
@@ -155,6 +159,11 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
return dlsym(handle, name);
}
static const char * dl_error() {
const char *rslt = dlerror();
return rslt != nullptr ? rslt : "";
}
#endif
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
@@ -240,7 +249,7 @@ struct ggml_backend_registry {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(path).c_str(), dl_error());
}
return nullptr;
}
@@ -530,7 +539,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (filename.native().find(file_prefix) == 0 && ext == file_extension) {
dl_handle_ptr handle { dl_load_library(entry) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(entry.path()).c_str(), dl_error());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");

View File

@@ -1793,6 +1793,14 @@ ggml_backend_t ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i)
return sched->backends[i];
}
ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
return sched->bufts[backend_index];
}
size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
GGML_ASSERT(sched);
int backend_index = ggml_backend_sched_backend_id(sched, backend);

View File

@@ -74,7 +74,7 @@ if (BLAS_FOUND)
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
if ("${BLAS_INCLUDE_DIRS}" MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
add_compile_definitions(GGML_BLAS_USE_MKL)
endif()

View File

@@ -439,6 +439,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
if (GGML_CPU_RISCV64_SPACEMIT)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_RISCV64_SPACEMIT ${RISCV64_SPACEMIT_IME_SPEC})
list(APPEND GGML_CPU_SOURCES
ggml-cpu/spacemit/ime.cpp
ggml-cpu/spacemit/ime.h
ggml-cpu/spacemit/ime1_kernels.cpp
ggml-cpu/spacemit/ime_kernels.h
)
endif()
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
@@ -504,9 +513,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_COMMIT_TAG "v1.14.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -583,6 +592,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa_asm.S
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)

View File

@@ -7,7 +7,7 @@
#include "ggml-cpu.h"
#include "traits.h"
#if defined(__gnu_linux__)
#if defined(__linux__)
#include <sys/syscall.h>
#include <unistd.h>
#endif
@@ -186,7 +186,7 @@ static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_ty
#define XFEATURE_XTILEDATA 18
static bool ggml_amx_init() {
#if defined(__gnu_linux__)
#if defined(__linux__)
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
fprintf(stderr, "AMX is not ready to be used!\n");
return false;
@@ -194,6 +194,8 @@ static bool ggml_amx_init() {
return true;
#elif defined(_WIN32)
return true;
#else
return false;
#endif
}

View File

@@ -160,7 +160,6 @@
#define ggml_vec_dot_iq3_s_q8_K_generic ggml_vec_dot_iq3_s_q8_K
#define ggml_vec_dot_iq1_s_q8_K_generic ggml_vec_dot_iq1_s_q8_K
#define ggml_vec_dot_iq1_m_q8_K_generic ggml_vec_dot_iq1_m_q8_K
#define ggml_vec_dot_mxfp4_q8_0_generic ggml_vec_dot_mxfp4_q8_0
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8

View File

@@ -105,6 +105,18 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
return ((v4f32)res)[0];
}
// multiply int8_t, add results pairwise twice
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
// Get absolute values of x vectors
const __m128i ax = __lsx_vsigncov_b(x, x);
// Sign the values of the y vectors
const __m128i sy = __lsx_vsigncov_b(x, y);
// Perform multiplication and create 16-bit values
const __m128i dot = lsx_maddubs_h(ax, sy);
const __m128i ones = __lsx_vreplgr2vr_h(1);
return lsx_madd_h(ones, dot);
}
#endif
#if defined(__loongarch_asx)
@@ -323,18 +335,6 @@ static inline __m256i lasx_xvandi_b_bit(__m256i a, const unsigned int b) {
}
}
// multiply int8_t, add results pairwise twice
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
// Get absolute values of x vectors
const __m128i ax = __lsx_vsigncov_b(x, x);
// Sign the values of the y vectors
const __m128i sy = __lsx_vsigncov_b(x, y);
// Perform multiplication and create 16-bit values
const __m128i dot = lsx_maddubs_h(ax, sy);
const __m128i ones = __lsx_vreplgr2vr_h(1);
return lsx_madd_h(ones, dot);
}
// horizontally add 8 floats
static inline float hsum_float_8(const __m256 x) {
__m128 res = lasx_extractf128(x, 1);

View File

@@ -75,7 +75,8 @@ void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
for (int j = 0; j < 8; j++) {
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
/* Uses non-default rounding for vec_signed or vec_round */
const int32x4_t vi = vec_signed(__builtin_s390_vfisb(v, 4, 1));
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -122,7 +123,8 @@ void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, i
for (int j = 0; j < 8; j++) {
const float32x4_t v = vec_mul(srcv[j], vec_splats(id));
const int32x4_t vi = vec_signed(v);
/* Uses non-default rounding for vec_signed or vec_round */
const int32x4_t vi = vec_signed(__builtin_s390_vfisb(v, 4, 1));
y[i].qs[4*j + 0] = vec_extract(vi, 0);
y[i].qs[4*j + 1] = vec_extract(vi, 1);
@@ -260,6 +262,101 @@ void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const voi
#endif
}
void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
assert(nrc == 1);
UNUSED(nrc);
UNUSED(bx);
UNUSED(by);
UNUSED(bs);
assert(n % QK_MXFP4 == 0);
static_assert(QK_MXFP4 == QK8_0, "QK_MXFP4 and QK8_0 must be the same");
const int qk = QK_MXFP4;
const int nb = n / qk;
const block_mxfp4 * GGML_RESTRICT x = vx;
const block_q8_0 * GGML_RESTRICT y = vy;
int ib = 0;
float sumf = 0.0f;
#if defined(__VXE__) || defined(__VXE2__)
const int8x16_t v_k = vec_xl(0, kvalues_mxfp4);
const uint8x16_t v_m = vec_splats((const uint8_t)0x0F);
float32x4_t v_acc = vec_splats(0.0f);
#pragma GCC unroll 8
for (; ib + 1 < nb; ib += 2) {
const block_mxfp4 * GGML_RESTRICT x0 = &x[ib + 0];
const block_mxfp4 * GGML_RESTRICT x1 = &x[ib + 1];
const block_q8_0 * GGML_RESTRICT y0 = &y[ib + 0];
const block_q8_0 * GGML_RESTRICT y1 = &y[ib + 1];
const uint8x16_t v_x0 = vec_xl(0, x0->qs);
const uint8x16_t v_x1 = vec_xl(0, x1->qs);
int8x16_t v_x0l = (int8x16_t)vec_and(v_x0, v_m);
int8x16_t v_x0h = (int8x16_t)vec_sr(v_x0, 4);
int8x16_t v_x1l = (int8x16_t)vec_and(v_x1, v_m);
int8x16_t v_x1h = (int8x16_t)vec_sr(v_x1, 4);
v_x0l = vec_perm(v_k, v_k, (uchar8x16_t)v_x0l);
v_x0h = vec_perm(v_k, v_k, (uchar8x16_t)v_x0h);
v_x1l = vec_perm(v_k, v_k, (uchar8x16_t)v_x1l);
v_x1h = vec_perm(v_k, v_k, (uchar8x16_t)v_x1h);
const int8x16_t v_y0l = vec_xl(0, y0->qs);
const int8x16_t v_y0h = vec_xl(QK8_0/2, y0->qs);
const int8x16_t v_y1l = vec_xl(0, y1->qs);
const int8x16_t v_y1h = vec_xl(QK8_0/2, y1->qs);
const int32x4_t v_xy0 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x0l, v_y0l), v_x0h, v_y0h);
const int32x4_t v_xy1 = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_x1l, v_y1l), v_x1h, v_y1h);
const float32x4_t v_xy0f = vec_float(v_xy0);
const float32x4_t v_xy1f = vec_float(v_xy1);
const float32x4_t v_d0 = vec_splats(GGML_E8M0_TO_FP32_HALF(x0->e) * GGML_CPU_FP16_TO_FP32(y0->d));
const float32x4_t v_d1 = vec_splats(GGML_E8M0_TO_FP32_HALF(x1->e) * GGML_CPU_FP16_TO_FP32(y1->d));
v_acc = vec_madd(v_xy0f, v_d0, v_acc);
v_acc = vec_madd(v_xy1f, v_d1, v_acc);
}
for (; ib < nb; ++ib) {
const block_mxfp4 * GGML_RESTRICT x0 = &x[ib + 0];
const block_q8_0 * GGML_RESTRICT y0 = &y[ib + 0];
const uint8x16_t v_x = vec_xl(0, x0->qs);
int8x16_t v_xl = (int8x16_t)vec_and(v_x, v_m);
int8x16_t v_xh = (int8x16_t)vec_sr(v_x, 4);
v_xl = vec_perm(v_k, v_k, (uchar8x16_t)v_xl);
v_xh = vec_perm(v_k, v_k, (uchar8x16_t)v_xh);
const int8x16_t v_yl = vec_xl(0, y0->qs);
const int8x16_t v_yh = vec_xl(QK8_0/2, y0->qs);
const int32x4_t v_xy = ggml_vec_dot(ggml_vec_dot(vec_splats(0), v_xl, v_yl), v_xh, v_yh);
const float32x4_t v_xyf = vec_float(v_xy);
const float32x4_t v_d = vec_splats(GGML_E8M0_TO_FP32_HALF(x0->e) * GGML_CPU_FP16_TO_FP32(y0->d));
v_acc = vec_madd(v_xyf, v_d, v_acc);
}
sumf = vec_hsum_f32x4(v_acc);
*s = sumf;
#else
UNUSED(x);
UNUSED(y);
UNUSED(ib);
UNUSED(sumf);
ggml_vec_dot_mxfp4_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}
void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
const int qk = QK8_0;
const int nb = n / qk;
@@ -636,7 +733,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
uint8x16_t q3h[4];
uint8x16_t q3b[2];
int8x16_t q3bytes[4];
int8x16_t q8bytes[4];
int8x16_t q8bytes[8];
uint8x16_t qhbits[2];
float sum = 0;

View File

@@ -878,7 +878,7 @@ static void gemm_q4_b32_8x8_q8_0_lut_avx(int n, float * GGML_RESTRICT s, size_t
const __m256i rhs_raw_mat_89AB_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 64));
const __m256i rhs_raw_mat_CDEF_1 = _mm256_loadu_si256((const __m256i *)(b_ptr_1[b].qs + 96));
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of values
const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240);
const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240);
@@ -1231,7 +1231,7 @@ static void gemm_q4_b32_8x8_q8_0_lut_avx(int n, float * GGML_RESTRICT s, size_t
const __m256i rhs_raw_mat_0123_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 64));
const __m256i rhs_raw_mat_4567_1 = _mm256_loadu_si256((const __m256i *)(b_ptr[b].qs + 96));
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of valuess
// Save the values in the following vectors in the formats B0B1B4B5, B2B3B6B7 for further processing and storing of values
const __m256i rhs_raw_mat_0145_0 = _mm256_blend_epi32(rhs_raw_mat_0123_0, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_0, requiredOrder), 240);
const __m256i rhs_raw_mat_2367_0 = _mm256_blend_epi32(_mm256_permutevar8x32_epi32(rhs_raw_mat_0123_0, requiredOrder), rhs_raw_mat_4567_0, 240);
const __m256i rhs_raw_mat_0145_1 = _mm256_blend_epi32(rhs_raw_mat_0123_1, _mm256_permutevar8x32_epi32(rhs_raw_mat_4567_1, requiredOrder), 240);

View File

@@ -28,6 +28,14 @@ static inline float bf16_to_f32(ggml_bf16_t x) {
return GGML_BF16_TO_FP32(x);
}
static inline float i32_to_f32(int32_t x) {
return x;
}
static inline int32_t f32_to_i32(float x) {
return x;
}
static inline float f32_to_f32(float x) {
return x;
}
@@ -54,6 +62,12 @@ struct type_conversion_table<ggml_bf16_t> {
static constexpr ggml_bf16_t (*from_f32)(float) = f32_to_bf16;
};
template <>
struct type_conversion_table<int32_t> {
static constexpr float (*to_f32)(int32_t) = i32_to_f32;
static constexpr int32_t (*from_f32)(float) = f32_to_i32;
};
static std::pair<int64_t, int64_t> get_thread_range(const struct ggml_compute_params * params, const struct ggml_tensor * src0) {
const int64_t ith = params->ith;
const int64_t nth = params->nth;

View File

@@ -473,10 +473,10 @@ struct ggml_threadpool {
struct ggml_compute_state {
#ifndef GGML_USE_OPENMP
ggml_thread_t thrd;
bool cpumask[GGML_MAX_N_THREADS];
int last_graph;
bool pending;
#endif
bool cpumask[GGML_MAX_N_THREADS];
struct ggml_threadpool * threadpool;
int ith;
};
@@ -2187,6 +2187,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_XIELU:
{
n_tasks = n_threads;
} break;
@@ -3081,7 +3082,14 @@ static struct ggml_threadpool * ggml_threadpool_new_impl(
threadpool->workers = workers;
#ifndef GGML_USE_OPENMP
#ifdef GGML_USE_OPENMP
int32_t cpumask_iter = 0;
// Compute CPU masks for each thread
for (int j = 0; j < tpp->n_threads; j++) {
ggml_thread_cpumask_next(tpp->cpumask, workers[j].cpumask, tpp->strict_cpu, &cpumask_iter);
}
#else // GGML_USE_OPENMP
ggml_mutex_init(&threadpool->mutex);
ggml_cond_init(&threadpool->cond);
@@ -3154,7 +3162,14 @@ enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cpl
atomic_store_explicit(&threadpool->n_threads_cur, n_threads, memory_order_relaxed);
}
ggml_graph_compute_thread(&threadpool->workers[omp_get_thread_num()]);
// Apply thread CPU mask and priority
int ith = omp_get_thread_num();
ggml_thread_apply_priority(threadpool->prio);
if (ggml_thread_cpumask_is_valid(threadpool->workers[ith].cpumask)) {
ggml_thread_apply_affinity(threadpool->workers[ith].cpumask);
}
ggml_graph_compute_thread(&threadpool->workers[ith]);
}
} else {
atomic_store_explicit(&threadpool->n_threads_cur, 1, memory_order_relaxed);

View File

@@ -18,6 +18,10 @@
# include "kleidiai/kleidiai.h"
#endif
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
# include "spacemit/ime.h"
#endif
#if defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
@@ -45,6 +49,12 @@ std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffer_type
}
#endif
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
if (ggml_backend_cpu_riscv64_spacemit_buffer_type()) {
bufts.push_back(ggml_backend_cpu_riscv64_spacemit_buffer_type());
}
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
if (ggml_backend_cpu_kleidiai_buffer_type()) {
bufts.push_back(ggml_backend_cpu_kleidiai_buffer_type());

View File

@@ -87,15 +87,38 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
return tensor->ne[dim];
}
template <typename Variant, typename Ret, typename... Args, std::size_t... Is>
constexpr bool variant_any_invocable_impl(std::index_sequence<Is...>) {
using V = std::remove_reference_t<Variant>;
return (std::is_invocable_r_v<
Ret,
std::variant_alternative_t<Is, V>,
Args...> || ...);
}
template <typename Variant, typename Ret, typename... Args>
constexpr bool variant_any_invocable_v =
variant_any_invocable_impl<Variant, Ret, Args...>(
std::make_index_sequence<
std::variant_size_v<std::remove_reference_t<Variant>>>{});
template<typename Ret, typename Variant, typename... Args>
static Ret variant_call(const Variant & var, Args&&... args) {
return std::visit([&](auto&& func) -> Ret {
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
return func(std::forward<Args>(args)...);
} else {
throw std::runtime_error("Invalid function type in variant_call");
}
}, var);
static inline Ret variant_call(Variant && var, Args&&... args) {
static_assert(variant_any_invocable_v<std::remove_reference_t<Variant>, Ret, Args...>,
"No alternative in Variant is invocable with the provided arguments and return type.");
return std::visit(
[&](auto && f) -> Ret {
using F = std::decay_t<decltype(f)>;
if constexpr (std::is_invocable_r_v<Ret, F, Args...>) {
return std::invoke(std::forward<decltype(f)>(f), std::forward<Args>(args)...);
} else {
GGML_ABORT("Invalid function type in variant_call");
GGML_UNREACHABLE();
}
},
std::forward<Variant>(var)
);
}
namespace ggml::cpu::kleidiai {
@@ -138,7 +161,10 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
const int64_t lhs_batch_size0 = op->src[1]->ne[2];
const int64_t rhs_batch_size0 = op->src[0]->ne[2];
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
size = variant_call<size_t>(lhs_info->packed_size, m * r, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
k * n * sizeof(float) + n * sizeof(float);
} else {
@@ -148,7 +174,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return true;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
if (dst->op == GGML_OP_MUL_MAT) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
@@ -165,8 +190,6 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
@@ -175,7 +198,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
bool is_gemv = src1->ne[1] == 1;
const bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
@@ -185,27 +208,30 @@ class tensor_traits : public ggml::cpu::tensor_traits {
const int64_t lhs_batch_size0 = ne12;
const int64_t rhs_batch_size0 = ne02;
const int64_t batch_size = rhs_batch_size0;
const int64_t batch_size = lhs_batch_size0;
GGML_ASSERT(rhs_batch_size0 > 0);
GGML_ASSERT(lhs_batch_size0 % rhs_batch_size0 == 0);
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
const int64_t m = ne11 * r;
const int64_t n = ne01;
const int64_t k = ne00;
const int64_t m_group = ne11;
const int64_t m = m_group;
const int64_t n = ne01;
const int64_t k = ne00;
const size_t lhs_stride = src1->nb[1];
const size_t rhs_stride = src0->nb[1];
const size_t dst_stride = dst->nb[1];
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const int64_t mr = (int64_t) kernel->get_mr();
const int64_t nr = (int64_t) kernel->get_nr();
const int64_t kr = (int64_t) kernel->get_kr();
const int64_t sr = (int64_t) kernel->get_sr();
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, (size_t)m, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, (size_t)n, (size_t)k);
const size_t kxn_size = (size_t)k * (size_t)n * sizeof(float);
const size_t bias_size = (size_t)n * sizeof(float);
const size_t wsize_required = lhs_packed_size + rhs_packed_size + kxn_size + bias_size;
GGML_ASSERT(wsize_required <= params->wsize);
@@ -216,82 +242,102 @@ class tensor_traits : public ggml::cpu::tensor_traits {
uint8_t * bias = rhs_kxn + kxn_size;
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
const int64_t rhs_batch_idx = batch_idx / r;
const uint8_t * rhs_batch_base = static_cast<const uint8_t *>(src0->data) + rhs_batch_idx * src0->nb[2];
uint8_t * dst_batch_base = static_cast<uint8_t *>(dst->data) + batch_idx * dst->nb[2];
// LHS packing
// LHS packing (threaded over m, honoring mr alignment and KV groups)
{
const int64_t m_roundup_mr = kai_roundup(m, mr);
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
if (ith < num_threads) {
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
const int64_t num_m_per_thread0 = round_down((size_t)(m_roundup_mr / num_threads), (size_t)mr);
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t m_count = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
// Base packed offset (aligned) and per-row stride in bytes
const size_t base_packed_off = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)m_start, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t next_block_off = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)(m_start + mr), (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t row_stride_bytes = (next_block_off - base_packed_off) / (size_t)mr;
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
int64_t remaining = m_count;
int64_t cur = m_start;
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
while (remaining > 0) {
const int64_t row_in_group = cur;
const int64_t avail = m_group - row_in_group;
const int64_t take = std::min(avail, remaining);
const uint8_t * lhs_batch_base = static_cast<const uint8_t *>(src1->data) + batch_idx * src1->nb[2];
const void * src_ptr = lhs_batch_base + (size_t)row_in_group * lhs_stride;
const size_t dst_off = base_packed_off + (size_t)(cur - m_start) * row_stride_bytes;
void * dst_ptr = lhs_packed + dst_off;
variant_call<void>(lhs_info->pack_func,
(size_t)take, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr,
/*m_idx_start*/ 0, src_ptr, lhs_stride, dst_ptr);
cur += take;
remaining -= take;
}
}
}
// RHS packing
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
// First thread to reach this point handles RHS packing
memset(bias, 0, n * sizeof(float));
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
// RHS packing (single thread), then synchronize
if (ith == 0) {
memset(bias, 0, (size_t)n * sizeof(float));
transpose_f32kxn_f16nxk((size_t)n, (size_t)k,
reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch_base),
rhs_stride);
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
variant_call<void>(kernels->rhs_info.pack_func,
/*num_groups*/ 1, (size_t)n, (size_t)k, (size_t)nr, (size_t)kr, (size_t)sr,
/*rhs_stride (bytes)*/ (size_t)(n * sizeof(float)),
rhs_kxn, bias, nullptr, rhs_packed, /*extra_bytes*/ 0, /*params*/ nullptr);
}
ggml_barrier(params->threadpool);
first_to_arrive.clear(std::memory_order_release);
// Perform the matmul
// Matmul (threaded over n)
{
const int64_t m_to_process = m;
const int64_t m_start = 0;
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
int64_t num_threads = KAI_MIN(n / n_step, nth);
if (num_threads <= 0) {
num_threads = 1;
const int64_t n_step = (int64_t) kernel->get_n_step();
int64_t num_threads_n = KAI_MIN(n / n_step, nth);
if (num_threads_n <= 0) {
num_threads_n = 1;
}
if (ith < num_threads) {
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
if (ith < num_threads_n) {
const int64_t num_n_per_thread0 = round_down((size_t)(n / num_threads_n), (size_t)n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads_n - 1) * num_n_per_thread0;
const int64_t n_start = ith * num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads_n - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
// LHS packed base at row 0 (consistent with packing above)
const size_t lhs_packed_offset0 = variant_call<size_t>(
lhs_info->get_packed_offset, (size_t)0, (size_t)k, (size_t)mr, (size_t)kr, (size_t)sr);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, (size_t)n_start, (size_t)k);
const size_t dst_offset = kernel->get_dst_offset((size_t)0, (size_t)n_start, dst_stride);
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
const void * lhs_ptr = lhs_packed + lhs_packed_offset0;
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
float * dst_ptr = reinterpret_cast<float *>(dst_batch_base + dst_offset);
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
variant_call<void>(kernel->run_kernel,
(size_t)m, (size_t)n_to_process, (size_t)k,
lhs_ptr, rhs_ptr,
dst_ptr, dst_stride, sizeof(float),
-FLT_MAX, FLT_MAX);
}
}
if (batch_idx != batch_size - 1) {
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
// the work data buffer (params->wdata) is used as temporary storage which means that only
// a single batch can be processed at any given time. No barrier is needed for the last
// batch since GGML inserts a barrier between the execution of every operator.
ggml_barrier(params->threadpool);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -998,9 +998,9 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO __lsx_vldi(0)
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
#define GGML_F32x4_ZERO (__m128)__lsx_vldi(0)
#define GGML_F32x4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) (__m128)__lsx_vld((x), 0)
#define GGML_F32x4_STORE(x, y) __lsx_vst(y, x, 0)
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
#define GGML_F32x4_ADD __lsx_vfadd_s
@@ -1022,7 +1022,7 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
const __m128 t0 = (__m128)__lsx_vshuf4i_w(tmp, 0x88); \
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
@@ -1052,7 +1052,7 @@ static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
tmp[2] = GGML_CPU_FP16_TO_FP32(x[2]);
tmp[3] = GGML_CPU_FP16_TO_FP32(x[3]);
return __lsx_vld(tmp, 0);
return (__m128)__lsx_vld(tmp, 0);
}
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
@@ -1067,9 +1067,9 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
#define GGML_F32Cx4_ZERO (__m128)__lsx_vldi(0)
#define GGML_F32Cx4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x) (__m128)__lsx_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD __lsx_vfadd_s

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
#pragma once
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
ggml_backend_buffer_type_t ggml_backend_cpu_riscv64_spacemit_buffer_type(void);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,26 @@
#pragma once
#include <cstddef>
namespace sqnbitgemm_spacemit_ime {
namespace ime1 {
size_t gemm_kernel_i8i4(size_t blk_len,
const std::byte * quant_a_ptr,
const std::byte * quant_b_data,
const float * quant_b_scale,
const std::byte * quant_b_zp,
float * c_ptr,
size_t count_m,
size_t count_n,
size_t count_k,
size_t block_count_k,
size_t ldc,
const float * bias,
const size_t scale_stride);
void quantize_a_row_i8(size_t blk_len, const float * a_ptr, size_t count_k, std::byte * quant_a_ptr);
void quantize_a_4row_i8(size_t blk_len, const float * a_ptr, size_t count_k, std::byte * quant_a_ptr);
} // namespace ime1
} // namespace sqnbitgemm_spacemit_ime

View File

@@ -52,6 +52,15 @@ static inline float op_sqrt(float x) {
return sqrtf(x);
}
static inline float op_xielu(float x, float alpha_n, float alpha_p, float beta, float eps) {
if (x > 0.0f) {
return alpha_p * x * x + beta * x;
} else {
const float min_x_eps = fminf(x, eps);
return (expm1f(min_x_eps) - x) * alpha_n + beta * x;
}
}
static inline float op_sin(float x) {
return sinf(x);
}
@@ -121,6 +130,86 @@ static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
}
}
template <float (*op)(float, ggml_tensor *)>
static void unary_op_params(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op<op, float, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
// Extend vec_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static inline void vec_unary_op_functor(int64_t n, dst_t * y, const src0_t * x, Op op) {
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
for (int i = 0; i < n; i++) {
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
}
}
// Extend apply_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static void apply_unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(dst_t));
GGML_ASSERT(nb00 == sizeof(src0_t));
const auto [ir0, ir1] = get_thread_range(params, src0);
for (int64_t ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
vec_unary_op_functor(ne0, dst_ptr, src0_ptr, op);
}
}
// Generic dispatcher for functors
template <typename Op>
static void unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op_functor<Op, float, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op_functor<Op, ggml_fp16_t, ggml_fp16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op_functor<Op, ggml_bf16_t, ggml_bf16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_bf16_t, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_fp16_t, float>(params, dst, op);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_abs>(params, dst);
}
@@ -184,3 +273,17 @@ void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor *
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_log>(params, dst);
}
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
const float alpha_n = ggml_get_op_params_f32(dst, 1);
const float alpha_p = ggml_get_op_params_f32(dst, 2);
const float beta = ggml_get_op_params_f32(dst, 3);
const float eps = ggml_get_op_params_f32(dst, 4);
const auto xielu_op_params = [alpha_n, alpha_p, beta, eps](float f) {
return op_xielu(f, alpha_n, alpha_p, beta, eps);
};
unary_op_functor(params, dst, xielu_op_params);
}

View File

@@ -22,6 +22,7 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}

View File

@@ -610,7 +610,7 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], vs, vb);
ay[j] = GGML_F32_VEC_FMA(vb, ay[j], vs);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}

View File

@@ -25,10 +25,14 @@ if (CUDAToolkit_FOUND)
if (GGML_NATIVE AND CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.6" AND CMAKE_VERSION VERSION_GREATER_EQUAL "3.24")
set(CMAKE_CUDA_ARCHITECTURES "native")
else()
if (CUDAToolkit_VERSION VERSION_LESS "13")
list(APPEND CMAKE_CUDA_ARCHITECTURES 50-virtual 61-virtual 70-virtual)
endif ()
list(APPEND CMAKE_CUDA_ARCHITECTURES 75-virtual 80-virtual 86-real)
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "11.8")
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real;89-real")
else()
set(CMAKE_CUDA_ARCHITECTURES "50-virtual;61-virtual;70-virtual;75-virtual;80-virtual;86-real")
list(APPEND CMAKE_CUDA_ARCHITECTURES 89-real)
endif()
endif()
endif()

Some files were not shown because too many files have changed in this diff Show More