Compare commits

..

495 Commits
b6558 ... b7053

Author SHA1 Message Date
Xuan-Son Nguyen
c4abcb2457 server: fixing naming conflict res_error (#17243) 2025-11-13 20:53:47 +01:00
Piotr Wilkin (ilintar)
389ac78b26 ggml : add ops SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM (#17063)
* Add ops needed for new hybrid models: SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Code review

* Whitespace

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* This is actually sigmoid, duh.

* Add CONST, remove TRI_KEEP, other changes from review

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Remove extra script

* Update ggml/src/ggml.c

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* moving changes from laptop [no ci]

* pre-rebase

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Refactor tests

* ggml : cleanup

* cont : fix ggml_fill srcs

* tests : add note

* ggml : add ggml_fill_inplace

* ggml : add asserts

* ggml : fix ggml_fill constant cast

* cont : ggml_tri minor

* Use TENSOR_LOCALS

* Fix regression from #14596, regenerate

* Don't make commits at night...

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-13 20:54:47 +02:00
Ruben Ortlam
a19bd6f7ce vulkan: remove shell call from vulkan-shaders-gen tool, revert file check (#17219)
* vulkan: remove shell call from vulkan-shaders-gen tool

* use string vector for command execution

* Fix condition

* use string, remove const_cast

* Fix dependency file quotation on Windows

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-11-13 14:51:21 +01:00
Diego Devesa
dd091e52f8 sched : fix reserve ignoring user tensor assignments (#17232) 2025-11-13 13:14:02 +01:00
ixgbe
1215dde7b0 ggml-cpu : add RISC-V vector intrinsic support for silu and cvar operations (#17227)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-13 13:13:32 +01:00
bagheera
0cfb19166b metal: accelerated conv2d (#17175)
* metal: accelerated conv2d

* cont : cleanup

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-13 13:32:44 +02:00
Georgi Gerganov
2776db6c81 Revert "ggml-cpu: handle 3d tensors in repack mat_mul (#17030)" (#17233)
This reverts commit 1c398dc9ec.
2025-11-13 12:59:37 +02:00
Diego Devesa
879dec341a ggml-cpu : use template for argsort (#17222) 2025-11-13 10:59:05 +02:00
TecJesh
97d5117217 CANN: Add cross_entropy_loss op support (#16886)
* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace

* cann: update cross_entropy_loss op support

* remove trailing whitespaces

* rebase the latest code in the main repository and remove the l2_norm operator that already exists in another pull request.

* undo the l2_norm operator deletion
2025-11-13 09:39:51 +08:00
Aman Gupta
a90eb94ca9 CUDA: fuse rope + set_rows (#16884)
* CUDA: add fused rope

* move k forward_expand up

* create helper function instead of re-using params

* make assert statement more in line with comment

* rope_norm: coalesced writes to global mem
2025-11-13 08:50:01 +08:00
Neo Zhang Jianyu
07751f8d44 update SYCL support OPs (#17208)
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-11-13 08:42:23 +08:00
o7si
ffb6f3d921 vocab : correct bounds check for UGM XCDA array access (#17215) 2025-11-12 23:41:02 +01:00
Johannes Gäßler
5d6838b74f CUDA: static assert to prevent misuse of memcpy_1 (#17198) 2025-11-12 23:13:55 +01:00
Mike Abbott
92bb442ad9 docker : preserve .so symlinks for docker container builds (#17214) 2025-11-12 20:33:55 +01:00
Georgi Gerganov
374fe09cdd ggml : use std::sort in ggml_argsort CPU implementation (#17211)
* ggml : use std::sort in ggml_argsort CPU implementation

* cont : add missing header
2025-11-12 20:43:38 +02:00
Aleksander Grygier
8e878f0cb4 Update packages + upgrade Storybook to v10 (#17201)
* chore: Update packages + upgrade Storybook to v10

* fix: Increase timeout for UI tests
2025-11-12 19:01:48 +01:00
Xuan-Son Nguyen
00c94083b3 server: (refactor) implement generator-based API for task results (#17174)
* server: (refactor) implement generator-based API for task results

* improve

* moving some code

* fix "Response ended prematurely"

* add sink.done before return false

* rm redundant check

* rm unused var

* rename generator --> reader
2025-11-12 18:50:52 +01:00
Xuan-Son Nguyen
017eceed61 ci: add check vendor job (#17179)
* ci: add check vendor job

* use dev version of miniaudio

* move to dedicated workflow, only run on related files changed
2025-11-12 14:56:02 +01:00
Xuan-Son Nguyen
ee8dd5c658 server: move res_error/res_ok to static function (#17167) 2025-11-12 14:17:24 +01:00
Alberto Cabrera Pérez
1c398dc9ec ggml-cpu: handle 3d tensors in repack mat_mul (#17030)
* ggml-cpu: handle 3d tensors in repack mul_mat

* Removed unnecessary branch, removed need for <algorithm>

* Fixed dst_ptr pointer in chunk + clang_format

* GGML_ASSERT to check wdata within bounds

* Accidental ggml.h inclusion

* Improved GGML_ASSERT on wdata boundaries
2025-11-12 14:52:19 +02:00
Adrien Gallouët
52cf111b31 cmake : cleanup (#17199) 2025-11-12 14:48:30 +02:00
Adrien Gallouët
78010a0d52 cmake : move OpenSSL linking to vendor/cpp-httplib (#17177)
* cmake : move OpenSSL linking to vendor/cpp-httplib

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* bring back httplib 0.27.0

* add -DLLAMA_HTTPLIB

* update cmake config for visionos

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-12 12:32:50 +01:00
TecJesh
655cddd174 CANN: Add L2_NORM op support (#16856)
* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace
2025-11-12 15:11:42 +08:00
Neo Zhang Jianyu
5da7664960 [SYCL]fix ci crash about SSM_CONV (#17169)
* fix ci crash

* Update ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-12 14:44:29 +08:00
Raul Torres
23a46ce972 CANN: GGML_CANN_ACL_GRAPH works only USE_ACL_GRAPH enabled (#16861)
The documentation should state that `GGML_CANN_ACL_GRAPH` is only effective if `USE_ACL_GRAPH` was enabled at compilation time.
2025-11-12 14:37:52 +08:00
Max Krasnyansky
c273d75375 hexagon: various Op fixes (#17135)
* hexagon: explicitly check for ops with zero nrows

llm_graph_context::build_inp_out_ids() can generate tensors with zero nrows.
Somehow other backends seems to handle this without obvious explicit checks.
In the hexagon case we need to check explicitly and skip them.

* hexagon: introduce fastdiv, fix test-backend-ops for ADD/SUB/MUL

Co-authored-by: chraac <chraac@gmail.com>

* hexagon: use fastdiv in ADD_ID

* hexagon: use ggml_op_is_empty and ggml_is_empty to check for NOPs

---------

Co-authored-by: chraac <chraac@gmail.com>
2025-11-11 15:25:04 -08:00
Eve
7d019cff74 disable rms norm mul rope for chips with no fp16 rte (#17134) 2025-11-11 12:53:30 -06:00
sudhiarm
3fe36c3238 ci: add Arm-hosted Graviton4 runner (#17021)
* ci: add Arm-hosted Graviton4 runner

* ci: add missing dependencies for graviton4 build

* ci: enable LFS checkout on graviton4

* ci: move git-lfs install to dependencies in Graviton4 workflow
2025-11-11 17:58:05 +02:00
Xuan-Son Nguyen
1d45b4228f vendor: split httplib to cpp/h files (#17150)
* vendor: split httplib to cpp/h files

* move defines

* include httplib if curl is not used

* add TODO

* fix build ios

* fix build visionos instead
2025-11-11 13:32:58 +01:00
ixgbe
ca4844062b ggml-cpu : add RISC-V RVV (Zvfh) optimization for FP16 to FP32 conversion (#17161)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-11 13:41:51 +02:00
duduta
73460f6278 ggml-cpu: templateify ggml_compute_forward_rope_f32 and _f16 (#16805)
* extract rotate_pairs logic from ggml_compute_forward_rope_f32

* templateify ggml_compute_forward_rope_f32 and _f16

* abort when rope type not supported, remove GLM from test-rope

* add imrope branch to switch

* add rope tests for perf

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-11 13:33:24 +02:00
Charles Xu
8c583242ad kleidiai: add optimized per-channel kernels for Q8_0 (#16993) 2025-11-11 13:20:31 +02:00
Mike Abbott
4a5b8aff40 cmake : add version to all shared object files (#17091)
When compiling llama.cpp in Yocto, it fails QA checks because the generated so files aren't versioned.  This applies a version to all generated so files, allowing the package to build without errors.
2025-11-11 13:19:50 +02:00
Nicolas B. Pierron
d2d626938a Install rpc-server when GGML_RPC is ON. (#17149) 2025-11-11 10:53:59 +00:00
levkropp
2fc392ce35 convert : register UMT5Model architecture for T5 conversion (#17160)
Register UMT5Model as a supported architecture variant for T5 model conversion.
This allows the conversion to work for models downloaded with AutoModel.
2025-11-11 09:38:30 +01:00
lhez
ece0f5c177 opencl: add fastdiv and use it in set_rows, ported from cuda (#17090)
* opencl: add fastdiv for mm q8_0

* opencl: use uint4 for fastdiv vals

* opencl: use fastdiv for set_rows

* opencl: do not use fastdiv for q8_0 mm
2025-11-10 15:00:13 -08:00
Sigbjørn Skjæret
7bef684118 models : move build_inp_out_ids outside loop (#17151)
* move build_inp_out_ids outside loop

* realign
2025-11-10 22:55:30 +01:00
Max Krasnyansky
395e286bc9 cpu: skip NOPs to avoid barriers (#17133)
* cpu: skip NOPs to avoid barriers

* cpu: use ggml_op_is_empty
2025-11-10 12:44:49 -08:00
Georgi Gerganov
13730c183b metal : cap threadgroups size of set_rows (#17146) 2025-11-10 21:33:35 +02:00
Adrien Gallouët
967eb4b2bf ggml-cpu : inspect -march and -mcpu to found the CPU (#16333)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-10 21:03:36 +02:00
Ruben Ortlam
f117be185e vulkan: check glslc executable string (#17144) 2025-11-10 16:59:26 +01:00
Ruben Ortlam
85234a4b3a vulkan: fix validation issue introduced by #16868 (#17145) 2025-11-10 16:59:10 +01:00
Gabe Goodhart
0c74f32632 memory: Hybrid context shift (#17009)
* feat(memory): Only fail partial erasure of recurrent tail

The recurrent state is always assumed to be the state as of the last update
from the final token in the sequence. When doing a partial erasure, if the
range does not include the final token, the erasure can be considered a
success since any memory used for the sequence prior to the final token
(which is no memory) has been successfully removed.

There is one potential case that this doesn't address which is the pruning
of cache to remove sensitive data from the context. This wouldn't work for
attention cache partial removal (in the middle) either since the KV state
is linearly-dependent and states in later sequence positions would still be
based on the state from the sensitive data, even if that data is no longer
cached, so I don't think this is relevant, but it is worth noting that the
semantics of this change for a partial erasure in the middle of the cache
are essentially "my context is already compressed" and not "all trace of
the removed tokens has been removed."

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(main): Check the output of seq_rm for prefix matching

This prefix matching is explicitly attempting to remove the tokens at the
end of the sequence that don't match. This is the operation that can't be
performed on a recurrent cache due to the state being updated in place, so
if this removal fails, we need to clear the whole cache.

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(memory): Fix condition for partial erasure failure if p0 > pos

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: compilade <git@compilade.net>

* style: Fix extra parens

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix(main.cpp): Set n_matching_session_tokens to 0 on cache clear

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-10 17:14:23 +02:00
Georgi Gerganov
c27efd2bd1 metal : enable tensor API for A19 (#17087) 2025-11-10 15:38:42 +02:00
fj-y-saito
df70bedda7 arm64: add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_… (#15277)
* add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_q8_K

* Surround SVE function with compiler directive

* fix compile switch

* fix coding style

* ggml : fix indent

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-10 15:12:59 +02:00
Georgi Gerganov
f914544b16 batched-bench : add "separate text gen" mode (#17103) 2025-11-10 12:59:29 +02:00
Xuan-Son Nguyen
4b13a684c5 mtmd: fix patch_size initialized to random value in audio models (#17128)
* mtmd: fix patch_size initialized to random value in audio models

* add default hparams
2025-11-10 11:41:05 +01:00
Georgi Gerganov
9898b57cbe editorconfig : ignore benches/ (#17140)
[no ci]
2025-11-10 12:17:19 +02:00
Acly
1032256ec9 cuda/vulkan : bicubic interpolation (#17022)
* vulkan : implement upscale with bicubic interpolation

* cuda : implement upscale with bicubic interpolation

* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests

* adapt OpenCL backend to not support the OP in that case so tests don't fail

* print scale mode & flags in test-backend-ops
2025-11-10 10:19:39 +01:00
Georgi Gerganov
15274c0c50 benches : add eval results (#17139)
[no ci]
2025-11-10 10:44:10 +02:00
Georgi Gerganov
b8595b16e6 mtmd : fix embedding size for image input (#17123) 2025-11-09 18:31:02 +02:00
Ruben Ortlam
392e09a608 vulkan: fix memory allocations (#17122) 2025-11-09 16:14:41 +01:00
compilade
802cef44bf convert : parse safetensors directly (#15667)
* convert : parse safetensors directly

* gguf-py : order safetensors tensors by name

Applies to both local and remote safetensors custom parsing.
This matches the behavior of the official safetensors implementation.

* convert : rename from_safetensors_meta to from_local_tensor

For consistency with from_remote_tensor

* convert : fix no-lazy dtypes from direct safetensors
2025-11-09 09:49:40 -05:00
compilade
1c07c0c68c convert : handle compressed-tensors quant method (#17069)
* convert : handle compressed-tensors quant method

* convert : handle int-quantized models

* convert : handle naive-quantized models

* gguf-py : __pos__ is also unary

* convert : fix flake8 lint

* convert : use F32 for dequant of pack-quantized tensors
2025-11-09 09:45:50 -05:00
Georgi Gerganov
cb1adf8851 server : handle failures to restore host cache (#17078)
* server : handle failures to restore host cache

* server : add tests for the prompt cache
2025-11-09 14:27:05 +02:00
Georgi Gerganov
ef1d826997 benches : add folder with benchmarks (#16931)
* benches : add folder with benchmarks

* benches : update dgx-spark bench
2025-11-09 12:53:29 +02:00
Eric Curtin
86fde91e62 Switch to using Ubuntu 25.10 vulkan/mesa (#16497)
Because "Ubuntu packages to be discontinued in Vulkan SDK"

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-09 10:25:38 +01:00
Ruben Ortlam
7f3e9d339c vulkan: iGPU memory reporting fix (#17110)
* vulkan: use all device-local heaps for memory availability reporting

Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>

* use all available heaps for iGPU memory reporting

* Allow multiple memory types per buffer request for devices with split heaps

---------

Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-11-09 09:54:47 +01:00
Ruben Ortlam
8a3519b708 vulkan: fix mmq out of bounds reads (#17108)
* vulkan: fix mmq out of bounds reads, streamline outdated matmul host code

* fix mul_mat_id quantization call

* Fix compiler warnings
2025-11-09 09:52:57 +01:00
Jeff Bolz
80a6cf6347 vulkan: fuse mul_mat_id + mul (#17095)
* vulkan: fuse mul_mat_id + mul

This comes up in qwen3 moe.

* split mul_mat_id fusion tests into a separate class
2025-11-09 09:48:42 +01:00
Georgi Gerganov
0750a59903 metal : retain src and dst buffers during async ops (#17101) 2025-11-09 08:28:51 +02:00
Xuan-Son Nguyen
aa3b7a90b4 arg: add --cache-list argument to list cached models (#17073)
* arg: add --cache-list argument to list cached models

* new manifest naming format

* improve naming

* Update common/arg.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-08 21:54:14 +01:00
chansikpark
333f2595a3 webui: fix keyboard shortcuts for new chat & edit chat title (#17007) 2025-11-08 20:52:35 +01:00
Jeff Bolz
53d7d21e61 vulkan: Use spec constants for conv2d s/d/p and kernel W/H (#16978)
* vulkan: Use spec constants for conv2d s/d/p and kernel W/H

Also add some additional unroll hints, which seems to help.

* lock around map lookup
2025-11-08 13:24:29 -06:00
Aidan
eeee367de5 server: fix correct time_ms calculation in prompt_progress (#17093)
* fix: correct time_ms calculation in send_partial_response

The time_ms field was incorrectly calculated. The division was happening
before the subtraction leading to incorrect values.

Before: (ggml_time_us() - slot.t_start_process_prompt / 1000) After:
(ggml_time_us() - slot.t_start_process_prompt) / 1000

* docs : document time_ms field in prompt_progress
2025-11-08 15:12:11 +02:00
Aman Gupta
64fe17fbb8 Revert "CUDA: add expert reduce kernel (#16857)" (#17100) 2025-11-08 21:05:19 +08:00
Aman Gupta
c1b187688d CUDA: skip fusion for repeating adds in bias (#17080) 2025-11-08 16:58:05 +08:00
SavicStefan
b8a5cfd11a vulkan: Increase BK to 32; use BK/4 for non-CM mul_mm.comp (#16636)
Signed-off-by: Stefan Savic <stefan.savic@huawei.com>
Co-authored-by: Stefan Savic <stefan.savic@huawei.com>
2025-11-08 09:28:22 +01:00
Aleksei Nikiforov
08416ebe7f ggml: disable vxe for cross-compilation by default (#16966)
Otherwise compilation will fail due to enabling -mvx -mzvector
and not setting corresponding -march options.
2025-11-08 16:00:20 +08:00
Jeff Bolz
b4e335d8dc vulkan: fuse rms_norm + mul + rope (+ view + set_rows) (#16977)
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
2025-11-08 08:52:15 +01:00
Jeff Bolz
d6fe40fa00 vulkan: Fix test-thread-safety crashes (#17024)
The std::map pipeline_flash_attn_f32_f16 could be searched and inserted at the
same time, which needs to hold the lock. To be safe, hold the lock for all of
ggml_vk_load_shaders.
2025-11-08 08:39:45 +01:00
Johannes Gäßler
e14e842e87 CUDA: fix MMQ stream-k fixup ne1 indices (#17089) 2025-11-08 08:26:18 +01:00
Reese Levine
647b960bd8 ggml webgpu: faster matrix multiplication/matrix-vector multiplication (#17031)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings
2025-11-07 19:27:20 -08:00
bssrdf
299f5d782c CUDA: properly handle nb00=nb02 case for cpy (#17081) 2025-11-07 23:41:58 +01:00
Acly
ac76d36201 vulkan : refactor buffer handling in vk_op_f32 (#16840)
* vulkan : refactor/simplify buffer handling in vk_op_* functions

* Combine UMA handling into ggml_vk_tensor_subbuffer
2025-11-07 21:08:50 +01:00
Johannes Gäßler
6515610506 CUDA: fix should_use_mmvf for ne11 == 1 (#17085)
* CUDA: fix should_use_mmvf for ne11 == 1

* Apply suggestion from @am17an

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-11-07 20:53:14 +01:00
Georgi Gerganov
7956bb4d7f bench : cache the llama_context state at computed depth (#16944)
* bench : cache llama_context state at depth

* cont : handle failures to restore the old state

* cont : print information when the state is being reused
2025-11-07 21:23:11 +02:00
Sigbjørn Skjæret
9008027aa3 hparams : add n_embd_inp() to support extended embed (#16928)
* add n_embd_full to support extended embed

* don't change output

* rename to n_embd_inp

* restore n_embd where applicable
2025-11-07 19:27:58 +01:00
Georgi Gerganov
16bcc1259d kv-cache : pad the cache size to 256 for performance (#17046)
* kv-cache : pad the size of the small SWA cache for performance

* context : pad the total context to 256

* cont : future-proof the swa pad

* server : adjust test params to new logic
2025-11-07 20:03:25 +02:00
Adrien Gallouët
9eb9a1331d Revert "ggml-cpu: detect correct cpu flags for arm64 (#16229) (#16239)" (#17084)
This reverts commit 7c23f3f0d4.
2025-11-07 18:34:05 +02:00
iron
7c23f3f0d4 ggml-cpu: detect correct cpu flags for arm64 (#16229) (#16239)
When using GCC 9 and GCC 12 on the arm64 platform of ubuntu 2004,
the command "gcc -mcpu=native -E -v -" fails to detect the correct CPU flags,
which results in compilation failures for certain extended instructions,
but the correct CPU flags can be obtained by using gcc -march.

Signed-off-by: lizhenneng <lizhenneng@kylinos.cn>
Co-authored-by: lizhenneng <lizhenneng@kylinos.cn>
2025-11-07 08:18:14 -08:00
Georgi Gerganov
8c0d6bb455 server : print the samplers chain for each request (#17070) 2025-11-07 12:24:47 +02:00
Xuan-Son Nguyen
5c9a18e674 common: move download functions to download.(cpp|h) (#17059)
* common: move download functions to download.(cpp|h)

* rm unused includes

* minor cleanup

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-07 11:23:34 +01:00
xctan
7f09a680af ggml-cpu : optimize RVV q2_k and q3_k kernels (#16887) 2025-11-06 18:12:45 +02:00
Johannes Gäßler
aa374175c3 CUDA: fix crash on uneven context without FA (#16988) 2025-11-06 14:05:47 +01:00
Georgi Gerganov
5b180c3d60 metal : initial Metal4 tensor API support (#16634)
* metal : rework mat-mat multiplication

* metal : initial Metal4 support

* cont

* metal : detect tensor support

* cont : better ifdefs

* metal : support tensors in mul_mm_id

* metal : add env for disabling tensor API

* tests : restore

* metal : remove unused constants

* metal : fix check for bfloat tensor support

* cont : handle API incompatibilities

* cont : handle even more incompatibilities

* metal : use tensor API only on M5 and later
2025-11-06 14:45:10 +02:00
Georgi Gerganov
b7f9010d24 server : disable checkpoints with mtmd (#17045) 2025-11-06 12:09:29 +02:00
Xuan-Son Nguyen
4882f0ff78 clip: implement minicpm-v sinusoidal embd using GGML (#17036)
* clip: implement minicpm-v sinusoidal embd using GGML

* fix repeat op
2025-11-06 11:02:54 +01:00
YehuditE
9d7c518d64 sycl: add CONCAT operator support (#16047)
* sycl: add CONCAT operator support

* cleanup: remove stray lines added by mistake

* fix: code format issues in concat.cpp and tests/test-backend-ops.cpp

* chore: fix editorconfig violations

* cleanup: drop unnecessary i16 type support

* docs: update sycl-csv and regenerate ops.md

* update docs/ops.md

* fix: adapt to upstream master changes after rebase

* fix: remove empty files

* fix: drop whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-06 11:02:33 +01:00
Johannes Gäßler
22c8c3c6ad docs: explain CUDA 11 compilation [no ci] (#16824) 2025-11-06 08:14:35 +01:00
l3utterfly
6db3d1ffe6 ggml-hexagon: graceful fallback for older socs where rpcmem_alloc2 and FASTRPC_GET_URI is unsupported (#16987)
* support older socs where FASTRPC_GET_URI is unsupported

* added graceful fallback when FASTRPC_GET_URI call fails

* use weak symbols instead of loading libcdsprpc.so dynamically

* Add weak pragma for rpcmem_alloc2

* Remove weak declaration for rpcmem_alloc2 in ggml-hexagon.cpp

Removed weak declaration for rpcmem_alloc2.

* Enforce ndev to 1 for archs below v75

Force ndev to 1 for SoCs architectures lower than v75.
2025-11-05 21:46:38 -08:00
bssrdf
230d1169e5 improve CUDA cpy memory bandwidth when copying transposed tensor (#16841)
* WIP

* added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth

* added BF16 support

* more strict check to make sure src0 is a transpose

* reformulated to handle more complicated transpose cases

* bring back 2D transpose for higher performance

* allow build on windows

* tranpose copy more shapes

* minor tweak

* final clean up

* restore some test cases

* keep only the kernel for true tranposed case; updated with review suggestions

* make CI happy

* remove headers not needed

* reduced bank conflicts for fp16 and bf16

* add missing const*

* now bank conflicts free

* use padding instead of swizzling

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
2025-11-05 21:55:04 +01:00
Jeff Bolz
a44d77126c vulkan: Fix GGML_VULKAN_CHECK_RESULTS to better handle fusion (#16919) 2025-11-05 19:51:03 +01:00
Gabe Goodhart
5886f4f545 examples(gguf): GGUF example outputs (#17025)
* feat(llama-gguf): Print out the tensor type in llama-gguf r

Branch: Mamba2Perf

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(off-topic): print the number of elements in tensors with llama-gguf

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: valign

Branch: GGUFToolOutputs

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Update examples/gguf/gguf.cpp

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-05 19:58:16 +02:00
Xuan-Son Nguyen
92bb84f775 mtmd: allow QwenVL to process larger image by default (#17020) 2025-11-05 14:26:49 +01:00
Georgi Gerganov
13b339bcd9 server : do not default to multiple slots with speculative decoding (#17017)
* server : do not default to multiple slots with speculative decoding

* cont : fix
2025-11-05 14:32:55 +02:00
Xuan-Son Nguyen
2f0c2db43e mtmd: improve struct initialization (#16981) 2025-11-05 11:26:37 +01:00
손희준
fd2f84f468 docs: Clarify the endpoint that webui uses (#17001) 2025-11-05 11:20:28 +01:00
Li Pengzhan
9f052478c2 model : add openPangu-Embedded (#16941)
* Model: add openPangu-Embedded

* fixed according to reviewer's comments

* fixed the chat template check condition

* Apply suggestions from code review

change the chat-template check condition and some formatting issue

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* whitespace cleanup

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-05 10:28:58 +01:00
Reese Levine
03ea04175d ggml webgpu: minor set rows optimization (#16810)
* Add buffer label and enable dawn-specific toggles to turn off some checks

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Remove some comments

* Implement overlap binary operators

* Revert "Implement overlap binary operators"

This reverts commit ed710b36f5.

* Disable support for non-contiguous binary_op tensors and leave note for future support

---------

Co-authored-by: neha-ha <137219201+neha-ha@users.noreply.github.com>
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
2025-11-05 10:27:42 +01:00
Georgi Gerganov
cdabeb2c27 sync : ggml 2025-11-05 10:41:51 +02:00
Georgi Gerganov
852ce5180a ggml : fix conv2d_dw SVE path (ggml/1380)
* Fix test-conv2d-dw failure on ARM SVE by using runtime vector length

The ggml_compute_forward_conv_2d_dw_cwhn function was using a hardcoded GGML_F32_EPR (8) for SIMD vectorization, but on ARM SVE the actual vector length varies by hardware. This caused incorrect computation when processing CWHN layout tensors on ARM machines.

Fix by using svcntw() to get the runtime SVE vector length instead of the compile-time constant.

Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>

* ci : reduce sam score threshold

* ci : update bbox checks for sam test

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
2025-11-05 10:41:51 +02:00
mnehete32
9aa63374f2 CUDA: update ops.md (#17005) 2025-11-05 11:01:15 +08:00
lhez
5e90233bdb opencl: update doc (#17011)
* opencl: update docs

* opencl: update docs

* opencl: fix link

* opencl: update doc
2025-11-04 16:02:36 -08:00
nullname
a5c07dcd7b refactor: replace sprintf with snprintf for safer string handling in dump functions (#16913) 2025-11-04 12:25:39 -08:00
Jeff Bolz
ad51c0a720 vulkan: remove the need for the dryrun (#16826)
* vulkan: remove the need for the dryrun

Allocate pipelines and descriptor sets when requested.

Reallocate the prealloc buffers when needed, and flush any pending work
before reallocating.

For rms_partials and total_mul_mat_bytes, use the sizes computed the last time
the graph was executed.

* remove dryrun parameters
2025-11-04 13:28:17 -06:00
Georgi Gerganov
66d8eccd42 server : do context shift only while generating (#17000) 2025-11-04 19:21:36 +02:00
Georgi Gerganov
afd353246d readme : update hot topics (#17002) 2025-11-04 17:21:31 +02:00
Acly
cc98f8d349 ggml-cpu : bicubic interpolation (#16891) 2025-11-04 13:12:20 +01:00
Sigbjørn Skjæret
d945834366 ci : apply model label to models (#16994) 2025-11-04 12:29:39 +01:00
Sigbjørn Skjæret
b164259bba chore : fix models indent after refactor (#16992) 2025-11-04 12:29:15 +01:00
Noah
1f5accb8d0 Fix garbled output with REPACK at high thread counts (#16956)
* Fix garbled output with REPACK at high thread counts

Fixed a race condition in the REPACK matrix multiplication code that caused garbled output when using 26+ threads (model-dependent threshold). The issue occurred because with high thread counts, the code forced chunk count to equal thread count, creating many small chunks. After aligning these chunks to NB_COLS boundaries, adjacent chunks could overlap, causing data corruption and race conditions. The fix enforces minimum chunk sizes based on NB_COLS and caps maximum chunk count to prevent creating too many tiny chunks, ensuring proper alignment without overlaps.

* Update ggml/src/ggml-cpu/repack.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/repack.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-03 21:04:59 -08:00
Aman Gupta
2759ccdb4a CUDA: avoid mul + bias fusion when doing fusion (#16935) 2025-11-04 10:53:48 +08:00
lhez
c5023daf60 opencl: support imrope (#16914)
* opencl: support imrope

* opencl: fix whitespace
2025-11-03 11:47:57 -08:00
Aleksander Grygier
e7da30b584 fix: Viewing multiple PDF attachments (#16974) 2025-11-03 18:53:26 +01:00
Daniel Bevenius
ed8aa63320 model-conversion : pass config to from_pretrained (#16963)
This commit modifies the script `run-org-model.py` to ensure that the
model configuration is explicitly passed to the `from_pretrained` method
when loading the model. It also removes a duplicate configuration
loading which was a mistake.

The motivation for this change is that enables the config object to be
modified and then passed to the model loading function, which can be
useful when testing new models.
2025-11-03 18:01:59 +01:00
Georgi Gerganov
48bd26501b server : add props.model_alias (#16943)
* server : add props.model_alias

* webui : npm run format
2025-11-03 14:38:23 +01:00
theo77186
622cd010ff ggml: CUDA: add head size 72 for flash-attn (#16962) 2025-11-03 14:29:11 +01:00
Xuan-Son Nguyen
070ff4d535 mtmd: add --image-min/max-tokens (#16921) 2025-11-03 11:11:18 +01:00
Xuan-Son Nguyen
bf7b0c9725 mtmd: pad mask for qwen2.5vl (#16954)
* mtmd: pad mask for qwen2.5vl

* improve
2025-11-03 10:25:55 +01:00
Jinyang He
fcfce040e8 ggml : LoongArch fixes (#16958)
* Fix test-quantize-fns f16 and q4_0 failed when use LSX

* Fix LoongArch set float intrinsic when use LSX/LASX
2025-11-03 08:40:02 +02:00
Olivier Chafik
ee3a5a10ad sync: minja (glm 4.6 & minmax m2 templates) (#16949)
* sync: minja

* Sync https://github.com/ochafik/minja/pull/7 (MinMax M2)
2025-11-03 07:33:56 +02:00
shani-f
7e994168b1 SYCL: optimized repeat_back kernel (3× fewer asm instructions, 2× faster)Feature/sycl repeat back opt (#16869)
* SYCL repeat_back v1 — add core op + switch case

* Implement repeat_back SYCL operation and minor fixes

* SYCL: optimize repeat_back kernel

* Remove Hebrew comment from repeat_back.cpp

* Remove comments for code clarity

Removed comments to clean up the code.

* Fix formatting in ggml-sycl.cpp

* Formatted lambda according to legacy style. No logic changes

* Remove blank line in repeat_back.cpp

Remove unnecessary blank line before assigning acc to dst_dd.
2025-11-03 09:35:33 +08:00
Sascha Rogmann
bcfa87622a feat(webui): improve LaTeX rendering with currency detection (#16508)
* webui : Revised LaTeX formula recognition

* webui : Further examples containg amounts

* webui : vitest for maskInlineLaTeX

* webui: Moved preprocessLaTeX to lib/utils

* webui: LaTeX in table-cells

* chore: update webui build output (use theirs)

* webui: backslash in LaTeX-preprocessing

* chore: update webui build output

* webui: look-behind backslash-check

* chore: update webui build output

* Apply suggestions from code review

Code maintenance (variable names, code formatting, string handling)

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: Moved constants to lib/constants.

* webui: package woff2 inside base64 data

* webui: LaTeX-line-break in display formula

* chore: update webui build output

* webui: Bugfix (font embedding)

* webui: Bugfix (font embedding)

* webui: vite embeds assets

* webui: don't suppress 404 (fonts)

* refactor: KaTeX integration with SCSS

Moves KaTeX styling to SCSS for better customization and font embedding.

This change includes:
- Adding `sass` as a dev dependency.
- Introducing a custom SCSS file to override KaTeX variables and disable TTF/WOFF fonts, relying solely on WOFF2 for embedding.
- Adjusting the Vite configuration to resolve `katex-fonts` alias and inject SCSS variables.

* fix: LaTeX processing within blockquotes

* webui: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-11-03 00:41:08 +01:00
Shagun Bera
a2054e3a8f test-backend-ops : fix segfault in moe-expert-reduce test in support mode and coverage (#16936)
* tests: fix segfault in moe-expert-reduce test in support mode and --show-coverage

* tests: init gf and filter out fusion tests for support mode

* tests: filter out fusion cases before calling eval_support

* tests: filter out fusion cases from show_test_coverage as well, fix lint
2025-11-03 00:10:30 +01:00
Sigbjørn Skjæret
dd52868050 ci : disable failing riscv cross build (#16952) 2025-11-02 23:11:21 +01:00
Zhiyong Wang
6b9a52422b model: add Janus Pro for image understanding (#16906)
* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-02 22:08:04 +01:00
Georgi Gerganov
2f966b8ed8 clip : use FA (#16837)
* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-02 21:21:48 +01:00
Georgi Gerganov
cd5e3b5754 server : support unified cache across slots (#16736)
* server : support unified context across slots

* cont : fix speculative decoding initialization

* context : fix n_ctx_per_seq computation

* server : purge slots one by one

* tests : add unified cache server tests

* llama : update per-seq context computation

* test-thread-safety : handle tiny training context of the input model

* server : fix server_tokens clear()

* server : use 4 slots + unified KV by default

* llama : add note about context size queries

* cont : update todos [no ci]

* context : do not cap the size of the context

* tests : adjust parameters to be CI friendlier

* context : add warning
2025-11-02 18:14:04 +02:00
Aldehir Rojas
87c9efc3b2 common : move gpt-oss reasoning processing to init params (#16937) 2025-11-02 16:56:28 +02:00
Adrian Lundberg
76af40aaaa docs: remove llama_sampler_accept reference in sampling sample usage (#16920)
commit 5fb5e24811 (llama : minor
sampling refactor (2) (#9386)) moved the llama_sampler_accept call
into llama_sampler_sample, but the sampling sample usage in llama.h
was forgotten to be updated accordingly.
2025-11-02 11:28:37 +02:00
mnehete32
7db35a7958 CUDA: add FLOOR, CEIL, ROUND, TRUNC unary ops (#16917) 2025-11-02 11:12:57 +08:00
Aaron Teo
a864132ba5 devops: fix failing s390x docker build (#16918) 2025-11-02 08:48:46 +08:00
Aaron Teo
d38d9f0877 ggml: add s390x cpu-feats (#16774) 2025-11-02 08:48:23 +08:00
Georgi Gerganov
7fd205a8e8 scripts : add script to bench models (#16894) 2025-11-02 00:15:31 +02:00
Pascal
2f68ce7cfd webui: auto-refresh /props on inference start to resync model metadata (#16784)
* webui: auto-refresh /props on inference start to resync model metadata

- Add no-cache headers to /props and /slots
- Throttle slot checks to 30s
- Prevent concurrent fetches with promise guard
- Trigger refresh from chat streaming for legacy and ModelSelector
- Show dynamic serverWarning when using cached data

* fix: restore proper legacy behavior in webui by using unified /props refresh

Updated assistant message bubbles to show each message's stored model when available,
falling back to the current server model only when the per-message value is missing

When the model selector is disabled, now fetches /props and prioritizes that model name
over chunk metadata, then persists it with the streamed message so legacy mode properly
reflects the backend configuration

* fix: detect first valid SSE chunk and refresh server props once

* fix: removed the slots availability throttle constant and state

* webui: purge ai-generated cruft

* chore: update webui static build
2025-11-01 19:49:51 +01:00
Pascal
e4a71599e5 webui: add HTML/JS preview support to MarkdownContent with sandboxed iframe (#16757)
* webui: add HTML/JS preview support to MarkdownContent with sandboxed iframe dialog

Extended MarkdownContent to flag previewable code languages,
add a preview button alongside copy controls, manage preview
dialog state, and share styling for the new button group

Introduced CodePreviewDialog.svelte, a sandboxed iframe modal
for rendering HTML/JS previews with consistent dialog controls

* webui: fullscreen HTML preview dialog using bits-ui

* Update tools/server/webui/src/lib/components/app/misc/CodePreviewDialog.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/misc/MarkdownContent.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: pedantic style tweak for CodePreviewDialog close button

* webui: remove overengineered preview language logic

* chore: update webui static build

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-11-01 17:14:54 +01:00
Adrien Gallouët
dd5e8cab51 vendor : update cpp-httplib to 0.27.0 (#16846)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-01 16:52:17 +01:00
Xuan-Son Nguyen
cf659bbb8e mtmd: refactor preprocessing + support max/min pixels (#16878)
* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
2025-11-01 15:51:36 +01:00
Aleksander Grygier
d8b860a219 Add a setting to display message generation statistics (#16901)
* feat: Add setting to display message generation statistics

* chore: build static webui output
2025-11-01 15:35:57 +01:00
Jaromír Hradílek
1ae74882f8 webui: recognize AsciiDoc files as valid text files (#16850)
* webui: recognize AsciiDoc files as valid text files

* webui: add an updated static webui build

* webui: add the updated dependency list

* webui: re-add an updated static webui build

This also reverts commit 742dbb8379.
2025-11-01 15:02:57 +01:00
Sigbjørn Skjæret
961660b8c3 common : allow --system-prompt-file for diffusion-cli (#16903) 2025-11-01 11:01:42 +01:00
Sigbjørn Skjæret
74fef4129f codeowners : update after refactor (#16905) 2025-11-01 09:55:25 +02:00
Jeff Bolz
5d8bb900bc vulkan: Fix multi_add invalid descriptor usage (#16899) 2025-11-01 06:52:14 +01:00
Jeff Bolz
2e76e01360 vulkan: fuse mul_mat+add and mul_mat_id+add_id (#16868)
* vulkan: fuse mul_mat+add and mul_mat_id+add_id

The fusion is only applied for the mat-vec mul paths.

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix 32b build

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-01 06:45:28 +01:00
Oliver Simons
d3dc9dd898 CUDA: Remove unneded bias/gate dims in fused mmvq (#16858)
* CUDA: Remove unneded bias/gate dims in fused mmvq

Pointed out
[here](https://github.com/ggml-org/llama.cpp/pull/16847#discussion_r2476798989)
that only a single value is needed per target col per thread

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Fix "Error 991-D: extra braces are nonstandard" during compilation

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-01 13:13:26 +08:00
Piotr Wilkin (ilintar)
bea04522ff refactor : llama-model.cpp (#16252)
* Sqashed: llama-model.cpp refactoring

* Fix formatting of attn / ffn / ffn_moe calls

* Fix import regression / unify spacing in models.h

* totally DID NOT miss those!

* Add missing qwen3vl(moe) models

* Add missing new .cpp files to build

* Remove extra semicolons

* Editor checker

* Update src/models/models.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-31 23:40:23 +01:00
Piotr Wilkin (ilintar)
0de0a01576 model : Minimax M2 (#16831)
* Model: Minimax M2

* Cleanup

* Cleanup pt. 2

* Cleanup pt. 3

* Update convert_hf_to_gguf_update.py - merge catch blocks

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove vocab models and test

* Remove all redundant hparam settings covered by TextModel

* Move super to start, don't set block_count

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-31 21:20:47 +01:00
Giuseppe Scrivano
e58d585604 model : add Granite Hybrid nano types (#16896)
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-31 21:20:07 +01:00
Johannes Gäßler
31c511a968 CUDA: Volta tensor core support for MMF (#16843)
* CUDA: Volta tensor core support for MMF

* more generic checks for hardware support

* Update ggml/src/ggml-cuda/mmf.cuh

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-10-31 15:57:19 +01:00
Georgi Gerganov
6d39015a74 sync : ggml 2025-10-31 16:26:28 +02:00
Aman Gupta
4146d6a1a6 CUDA: add expert reduce kernel (#16857)
* CUDA: add expert reduce kernel

* contigous checks, better formatting, use std::vector instead of array

* use vector empty instead of size

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-10-31 20:05:07 +08:00
Georgi Gerganov
8da3c0e200 batch : fix consistency checks for the input positions (#16890) 2025-10-31 13:50:33 +02:00
Georgi Gerganov
c22473b580 server : don't print user inputs to console (#16871) 2025-10-31 10:54:19 +02:00
Daniel Bevenius
0f715b4e75 server : fix typos in server.cpp comments [no ci] (#16883) 2025-10-31 09:51:26 +01:00
Jeff Bolz
d2d931f173 vulkan: disable spirv-opt for rope shaders (#16872) 2025-10-31 08:34:47 +01:00
Masato Nakasaka
2976b0374d vulkan: Fix crash when FP16 mul_mat accumulation is not supported (#16796)
* Experimenting crash fix

* added assert for aborting and fixed comment

* changed to check if a pipeline is empty or not

* Moved function in class definition

* replaced with is_empty

* Modified is_empty to check only unaligned pipelines
2025-10-31 08:18:59 +01:00
Ruben Ortlam
d2a2673dd1 vulkan: fix shmem overrun in mmq id shader (#16873)
* vulkan: fix shmem overrun in mmq id shader

* metal : fix mul_mm_id

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-31 08:14:49 +01:00
l3utterfly
13002a0896 ggml-hexagon: respect input size when getting/setting tensor data (#16836)
* respect input size when getting/setting tensor data

allows partial repacking/copying when get tensor size is smaller than the actual tensor

* Removed duplicate repack_mxfp4_mxfp4x4x2 function
2025-10-30 21:46:31 -07:00
Sigbjørn Skjæret
6eb208d17e ci : enable free-disk-space on cuda docker build (#16877) 2025-10-31 00:34:27 +01:00
lhez
9984cbb61d opencl: fix boundary handling for mul_mm (#16875) 2025-10-30 16:00:20 -07:00
RodriMora
ce18efeaf1 convert : update transformers requirements (#16866)
* Update requirements-convert_legacy_llama.txt

Updated requirements to support Qwen3-VL in transformers 4.57.1 version

* Update requirements/requirements-convert_legacy_llama.txt

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-30 23:15:03 +01:00
chansikpark
16724b5b68 server : bump request URI max length to 32768 (#16862) 2025-10-30 20:22:23 +02:00
Georgi Gerganov
b52edd2558 server : remove n_past (#16818)
* server : remove n_past

* server : replace slot.n_prompt_tokens() with slot.task->n_tokens()

* server : fixes + clean-up

* cont : fix context shift

* server : add server_tokens::pos_next()

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* server : fix pos_next() usage

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-10-30 18:42:57 +02:00
Max Krasnyansky
517b7170e1 cpu: introduce chunking for repack matmuls and enable matmul-id chunking on ARM64 (#16833)
Very similar implementation to the flash-attention chunking, with similar benefits.
2025-10-30 09:06:13 -07:00
Shagun Bera
835e918d84 common: fix typo in cli help text (#16864) 2025-10-30 17:47:31 +02:00
JJJYmmm
d261223d24 model: add support for qwen3vl series (#16780)
* support qwen3vl series.

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>

* bugfix: fix the arch check for qwen3vl-moe.

* use build_ffn

* optimize deepstack structure

* optimize deepstack feature saving

* Revert "optimize deepstack feature saving" for temporal fix

This reverts commit f321b9fdf1.

* code clean

* use fused qkv in clip

* clean up / rm is_deepstack_layers for simplification

* add test model

* move test model to "big" section

* fix imrope check

* remove trailing whitespace

* fix rope fail

* metal : add imrope support

* add imrope support for sycl

* vulkan: add imrope w/o check

* fix vulkan

* webgpu: add imrope w/o check

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix tensor mapping

---------

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-30 16:19:14 +01:00
Max Krasnyansky
dcca0d3ab8 cpu: introduce chunking for flash attention (#16829)
Factor out the core FA loop into flash_atten_f16_one_chunk and add an outter loop
on top that handles the chunks.
2025-10-30 14:26:05 +02:00
Tianyue-Zhao
bacddc049a model: Add support for CogVLM model (#15002)
* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-10-30 12:18:50 +01:00
Sigbjørn Skjæret
229bf68628 cuda : fix argsort with 64k+ rows (#16849) 2025-10-30 08:56:28 +01:00
Jan Boon
d7395115ba llama : use std::abs instead of abs (#16853) 2025-10-30 08:30:58 +02:00
Jeff Bolz
052df28b0e vulkan: Handle argsort with a large number of rows (#16851) 2025-10-30 07:27:41 +01:00
Oliver Simons
8b11deea46 Hide latency of bias and gate-loading (#16847)
This is realised by loading them into registers before computation of
the dot-product, effectively batching them together with said
dot-product. As a lot of threads are alive here, the warp scheduler has
enough threads available to effectively hide the cost of additionally
loading those two floats.
2025-10-30 11:34:15 +08:00
Jeff Bolz
b9ce940177 vulkan: Fuse rope+set_rows (#16769)
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).

Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).

Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.

Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.

Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.

Add new backend tests.
2025-10-29 15:13:10 -05:00
Xuan-Son Nguyen
3464bdac37 llama: fix ASAN error with M-RoPE (#16848) 2025-10-29 20:11:39 +01:00
Xuan-Son Nguyen
e3af5563bd llama: store mrope data in KV cell (#16825)
* llama: store mrope data in KV cell

* correct x,y ordering

* address review comments

* add consistency checks

* Update src/llama-kv-cache.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add TODO

* fix asan error

* kv-cells : improve ext handling

* cont : fix headers

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-29 18:09:18 +01:00
Jeff Bolz
10fcc41290 vulkan: Update topk_moe fusion to handle gpt's late softmax (#16656)
* vulkan: Update topk_moe fusion to handle gpt's late softmax

Based on #16649.

* Add ggml_check_edges

* Add sync logging to show fusion effects

* handle clamp added in #16655

* Update ggml/src/ggml-impl.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-10-29 14:44:29 +01:00
Ruben Ortlam
bcf5bda6f5 Vulkan MMQ Integer Dot Refactor and K-Quant support (#16536)
* vulkan: add mmq q2_k integer dot support

* Refactor mmq caching

* Reduce mmq register use

* Load 4 quant blocks into shared memory in one step

* Pack q2_k blocks into caches of 32

* Use 32-bit accumulators for integer dot matmul

* Add q4_k mmq

* Add q3_k mmq

* Add q5_k mmq

* Add q6_k mmq

* Add mxfp4 mmq, enable MMQ MUL_MAT_ID

* Fix mmv dm loads
2025-10-29 14:39:03 +01:00
Max Krasnyansky
3eb2be1ca5 Hexagon Op queue & dispatch optimizations (#16820)
* hexagon: remove dspqueue callbacks and do all read processing inplace

* hexagon: there is no need to ref/deref the buffers at this point

We're not going to release the buffers without flushing the session queue.
So there is no need to inc/dec the refcounts for every request.
We also don't need to include those bufs in the response.

* hexagon: bump the thread count in the adb wrapper scripts

We can use more CPU cores now that the dedicated dspqueue polling threads are not used (ie no contention).
Also enable more agressive polling for now since we still map Flash Attention (and a few other kernels) to
the CPU and those dspqueue threads were keeping the CPU cores are higher clock freqs.

* hexagon: add lhez as the second code owner
2025-10-29 06:29:12 -07:00
Aman Gupta
e41bcce8f0 CUDA: use fastdiv in set-rows (#16834)
* CUDA: use fastdiv in set-rows

* add assert about value fitting in u32
2025-10-29 21:11:53 +08:00
Sigbjørn Skjæret
144a4ce824 vendor : sync minja (#16500)
* sync minja.hpp

Adds Call/EndCall support, used in MiniCPM3 and MiniCPM4-MCP.

* remove spurious semicolon

* sync from ochafik/minja
2025-10-29 14:09:50 +01:00
Jeff Bolz
f549b0007d vulkan: Call ggml_vk_buffer_write_2d from ggml_vk_buffer_copy (#16793)
This lets the copy to the destination device use the host-visible
vidmem optimization.
2025-10-29 09:53:04 +01:00
Aman Gupta
9a3ea685b9 CUDA: Fix bug in topk-moe for gpt-oss (#16821)
* CUDA: Fix bug in topk-moe for gpt-oss

When using ggml_can_fuse_subgraph, the output nodes which are passed are wrong. This causes `test-backend-ops` to still fuse ndoes (because the nodes are not used elsewhere in the graph),
but it actually doesn't fuse in the actual gpt-oss

* fix for qwen3 too

* change ifndef to ifdef
2025-10-29 15:55:06 +08:00
YaelLogic
338074c383 sycl: add RMS_NORM_BACK operation support (#16808)
* sycl: add RMS_NORM_BACK operation support

* sycl: rms_norm_back: add dual reduction paths (FP64 and FP32) and savepoint before further changes

* sycl: add RMS_NORM_BACK support

Implement RMS_NORM_BACK for the SYCL backend using FP32 compensated parallel reduction. Minimal docs updates (ops.md / SYCL.csv).

* revert: restore .gitignore and tools/run/CMakeLists.txt to upstream

* revert: restore tests/CMakeLists.txt to upstream

* sycl: optimize rms_norm_back

* fix: restore SYCL.csv to correct state with RMS_NORM_BACK support

* Update ggml/src/ggml-sycl/norm.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* fix: remove trailing whitespace and add missing newline (EditorConfig)

---------

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-10-29 14:14:39 +08:00
YaelGitAccount
851553ea6b cuda: add SET operation support (#16804)
* feat(cuda): add GGML_OP_SET support

Implement CUDA kernel for SET operation with f32 support.

All tests passing (14598/14598).

* cuda(set): add I32 support; keep F32

* refactor(cuda): use ggml_cuda_cpy to unify SET operator logic and remove code duplication

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-cuda/set.cu

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-28 20:10:28 +01:00
Georgi Gerganov
85a7d8677b memory : remove KV cache size padding (#16812)
* memory : remove KV cache size padding

* cont : restore padding for n_kv tensor shape

* server : use slot context size instead of training context size

* server : simplify context limit logic
2025-10-28 20:19:44 +02:00
Georgi Gerganov
a8ca18b4b8 llama-bench : clarify benchmarked parts of the computation (#16823) 2025-10-28 19:41:43 +02:00
l3utterfly
8284efc35c initialise buffer.device in ggml_hexagon_session (#16816) 2025-10-28 08:16:20 -07:00
Sam Malayek
1c1409e131 embedding: add raw option for --embd-output-format (#16541)
* Add --embd-output-format raw for plain numeric embedding output

This new option outputs embeddings as raw space-separated floats, without JSON or 'embedding N:' prefixes. Useful for downstream vector pipelines and scripting.

* Move raw output handling into format handling section

* Move raw output handling into else-if block with other format handlers

* Use LOG instead of printf for raw embedding output

* docs: document 'raw' embedding output format in arg.cpp and README
2025-10-28 12:51:41 +02:00
Johannes Gäßler
7a0e900e36 llama: consistent ctx <-> buf order for KV cache (#16746) 2025-10-28 11:23:54 +01:00
Aldehir Rojas
280d97be96 grammar : support array references in json schema (#16792)
* grammar : support array references in json schema

* Update json-schema-to-grammar.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* grammar : improve regex when naming ref derived rules

* grammar : replace non-conformant definitions array with anyOf test case

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-28 09:37:52 +01:00
Chenguang Li
3479efd112 CANN: Improve device ID handling and aclnnArange checks (#16752)
* cann: improve device ID handling and aclnnArange checks

- Stop relying on CANN's internal device ID retrieval; use a global variable instead.
- Enforce stricter dimension validation in aclnnArange for better compatibility across CANN versions.

* cann: use thread local var
2025-10-28 10:54:53 +08:00
Aman Gupta
463bbf20bf CUDA: add unused vars to mmvf and mmvq (#16807) 2025-10-28 10:31:21 +08:00
tamarPal
ad8d36beff sycl: add SSM_CONV operation support (#16800)
* feat: Add SYCL backend support for SSM_CONV operator

* Implement State Space Model Convolution 1D for SYCL backend
* Add optimized GPU kernel with parallel work distribution
* Support various tensor dimensions and batch sizes
* Full integration with existing SYCL infrastructure
* All tests pass with CPU backend equivalence verification

* feat: Implement SYCL backend support for SSM_CONV operation

- Add ggml-sycl/ssm_conv.cpp and ssm_conv.hpp
- Implement SYCL kernel for state space model convolution
- Ensure numerical correctness matches CPU implementation exactly
- Add proper type checking for F32 tensors in backend support
- All test-backend-ops SSM_CONV tests pass (14490/14490)

* Perfect SSM_CONV SYCL implementation - 100% CPU parity

 Flawless numerical accuracy - matches CPU bit-for-bit
 Optimal SYCL kernel design - efficient parallel execution
 Complete tensor layout compatibility - handles all strides correctly
 Robust error handling - comprehensive assertions and validation
 All official tests pass - 14,490/14,490 backend operations verified
 Production-ready code - clean, documented, maintainable

Implements state-space model 1D convolution with sliding window algorithm.
Eliminates blocking queue.wait() for better async performance.

* Clean SSM_CONV code - remove all comments for production

Removed all inline comments and documentation from the implementation.
Clean, minimal code ready for production merge.

* fix: Final formatting corrections for CI compliance

- Remove all trailing whitespace from SSM_CONV files
- Add proper final newlines to source files
- Fix C++17 compliance issues
- Ready for llama.cpp CI validation

* sycl: fix trailing whitespace and minor safety casts in ssm_conv

* fix: Clean up duplicated content in ssm_conv.hpp header file

---------

Co-authored-by: tamarPal <tamarPal@example.com>
2025-10-28 09:50:33 +08:00
Yuri Khrustalev
c053e18a66 chat: Add LFM2 tool handling (#16763)
* Add LFM2 tool handling

* fmt

* Apply suggestion from @ykhrustalev
2025-10-27 23:54:01 +01:00
Xuan-Son Nguyen
e1ab084803 mtmd : fix idefics3 preprocessing (#16806)
* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite
2025-10-27 23:12:16 +01:00
Diego Devesa
5a4ff43e7d llama : disable pipeline parallelism if compute buffer allocation fails (#16748) 2025-10-27 21:51:28 +01:00
Acly
10640e31aa ggml : fix interpolate with align-corners and ne=1 (#16700)
* ggml : fix interpolate with align-corners and ne=1

* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken

* fix clang warning
2025-10-27 21:50:22 +01:00
Johannes Gäßler
80d28f104c HIP: fix AMDGPU_TARGETS, update documentation (#16803) 2025-10-27 21:39:49 +01:00
Xuan-Son Nguyen
c55d53acec model : add LightOnOCR-1B model (#16764)
* model : add LightOnOCR-1B model

* add test
2025-10-27 16:02:58 +01:00
Johannes Gäßler
945501f5ea llama: fix leaked buffers for mmap + split files (#16765) 2025-10-27 09:17:31 +01:00
Aman Gupta
75cbdd3fce test-backend-ops: print failed tests at the end (#16785) 2025-10-27 09:25:10 +08:00
tamarPal
2b9bd9bf4e sycl: add ROLL operation support (#16665)
* sycl: add ROLL operation support

- Implement ggml_sycl_roll function for F32 tensors
- Add multi-axis roll operation with SYCL kernel
- Support all 4 tensor dimensions with proper shift normalization
- Add roll.cpp and roll.hpp to SYCL backend
- Update backend dispatch and supports_op for GGML_OP_ROLL
- Tests: 17662/17662 pass with identical CPU reference results

* fix: remove trailing whitespace from roll.cpp

- Fix EditorConfig violations in ggml/src/ggml-sycl/roll.cpp
- Remove trailing spaces from lines 6, 11, 28, 47, 58, 60

* ci: retrigger

* sycl: remove wait() calls from ROLL operation

* fix: editorconfig — LF endings + final newline for roll.hpp

---------

Co-authored-by: tamarPal <tamarPal@example.com>
2025-10-27 09:20:24 +08:00
shani-f
59fc1ec8e8 sycl: add REPEAT_BACK operation support (#16734)
* SYCL repeat_back v1 — add core op + switch case

* Implement repeat_back SYCL operation and minor fixes

* Update ggml/src/ggml-sycl/repeat_back.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-sycl/repeat_back.hpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-27 09:19:50 +08:00
Aman Gupta
75d33b9302 CUDA: support for weight clamp in top-k norm (#16702) 2025-10-27 09:06:16 +08:00
Acly
3470a5c891 ggml-alloc : make gallocr prefer chunks that allow memory reuse (#16788) 2025-10-26 23:19:03 +01:00
Sigbjørn Skjæret
bd562fe4f7 cuda : use fast copy when src and dst are of different type and contiguous (#16789)
* use fast copy when src and dst are contiguous and same shape

* use int64_t ne and ignore shape
2025-10-26 21:31:41 +01:00
leejet
bbac6a26b2 ggml: fix cuda kernel launch configuration for k_compute_batched_ptrs to support large batch (#16744)
* fix k_compute_batched_ptrs

* add backend ops test

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* reduce the batch size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-10-26 19:13:31 +01:00
Sigbjørn Skjæret
73a48c9790 convert : enable expert group selection for all models with it (#16691) 2025-10-26 17:21:23 +01:00
Sigbjørn Skjæret
f696428ce8 graph : add clamping to ffn_moe_weights_sum to avoid div-by-zero (#16655)
* add missing norm topk bias

* use clamping instead, update number and add comment
2025-10-26 17:20:32 +01:00
Sigbjørn Skjæret
7cce4f8158 model : set res->t_embd in SmallThinker models (#16782) 2025-10-26 16:08:52 +01:00
amirai21
8d8862829c docs : add Jamba to Text-only models list (#16778) 2025-10-26 13:01:20 +01:00
Aman Gupta
f77c13b91f CUDA: General GEMV fusion (#16715) 2025-10-26 19:28:04 +08:00
Gilad S.
3cfa9c3f12 vulkan: deduplicate Microsoft Direct3D12 devices (#16689)
* fix: deduplicate and deprioritize Microsoft Direct3D12 vulkan devices from the `vulkan-dozen` driver

* style: indent

* fix: decrease priority

* fix: switch to `||`
2025-10-26 05:37:38 +01:00
Galunid
5d195f17bc convert : handle mmproj filename/path properly (#16760)
* convert: handle mmproj model output filename properly

* remove redundant commits

* Add model_type to gguf utility

* Use mmproj- prefix instead of suffix

* Apply CISC suggestion

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-25 20:41:36 +02:00
Shunta Saito
226f295f4d model : set res->t_embd in PLaMo2 models (#16766) 2025-10-25 12:26:27 +02:00
Giuseppe Scrivano
f90b4a8efe vulkan: delete dead code (#16732)
ggml_vk_create_buffer_temp is not used anywhere, and it is the only
caller for ggml_vk_pool_malloc.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-25 10:59:54 +02:00
Jeff Bolz
8423d01931 vulkan: Optimize SSM_SCAN (#16645) 2025-10-25 07:04:12 +02:00
compilade
5cca2542ac convert : avoid dequantizing mxfp4 for GPT-OSS (#16756) 2025-10-24 20:52:00 -04:00
leejet
55945d2ef5 ggml: fix CUDA grid launch condition for large block_nums.y in binbcast (#16742)
* Fix CUDA grid launch condition for large block_nums.y

* add backend ops test

* reduce test  repetitions
2025-10-24 21:39:37 +02:00
Aman Gupta
0bcb40b48c CUDA: use CUB for arbitary size argsort (#16754) 2025-10-24 20:46:19 +08:00
Florian Badie
69e9ff0103 webui: support q URL parameter (#16728)
* webui: support q URL parameter

Fixes #16722
I’ve checked that it works with Firefox’s AI tools

* webui: apply suggestions from code review

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui static build

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-24 14:10:29 +02:00
Daniel Bevenius
5a91109a5d model-conversion : add trust_remote_code for orig model run [no ci] (#16751)
This commit add the trust_remote_code=True argument when loading models
using AutoConfig, AutoTokenizer, and AutoModelForCausalLM for the run
original model script.

The motivation for this is that some models require custom code to be
loaded properly, and setting trust_remote_code=True avoids a prompt
asking for user confirmation:
```console
(venv) $ make causal-run-original-model
The repository /path/to/model contains custom code which must be
executed to correctly load the model. You can inspect the repository
content at /path/to/model.

Do you wish to run the custom code? [y/N] N
```

Having this as the default seems like a safe choice as we have to clone
or download the models we convert and would be expecting to run any
custom code they have.
2025-10-24 12:02:02 +02:00
compilade
f8f071fadd convert : handle pre-quantized models (#14810)
* convert : begin handling pre-quantized models

* convert : fix conversion from FP8 for Deepseek-V3.1-Base
2025-10-23 16:31:41 -04:00
Johannes Gäßler
0bf47a1dbb server: add memory breakdown print (#16740) 2025-10-23 21:30:17 +02:00
Julien Denize
dd62dcfab9 convert : Make mistral-common dependency optional (#16738)
* Make mistral-common dependency optional

* Fix typing
2025-10-23 15:54:46 +02:00
Xuan-Son Nguyen
d0660f237a mtmd-cli : allow using --jinja (#16718)
* mtmd-cli : allow using --jinja

* support -sys

* implement chat_history

* fix clear memory

* rm -sys support, added TODO
2025-10-23 15:00:49 +02:00
Prajwal B Mehendarkar
fe6a9882ac Manually link -lbsd to resolve flock symbol on AIX (#16610) 2025-10-23 19:37:31 +08:00
Aman Gupta
061f0eff02 ggml-cuda: use passed ops instead of hardcoded ops (#16712) 2025-10-23 19:14:06 +08:00
matteo
8cf6b42d46 server : send partial stop string when <EOG> is reached (#15007) 2025-10-23 12:32:24 +03:00
Matthew Michel
9de9672adb sycl: use async memory allocation to fix crashes during graph recording (#16644)
* sycl: use async memory allocation to fix graph recording failures

GGML_SYCL_DISABLE_GRAPHS=0 causes crashes because:
  - Host waits are currently unsupported in graph recording mode.
  - SYCL malloc / free calls are unsupported in graph recording mode.

The following changes are made to fix SYCL graph functionality:
  - When graphs are enabled, use the SYCL async memory extension for temp
    buffers which is supported with SYCL graphs.
  - For compiler versions that do not support this extension, skip
    graphs with the affected op.
  - Switch from USM shared to device memory as the async extension
    currently just supports device allocations.

* Address reviewer feedback

* Use global async variable to decide path in sycl_ext_[malloc_device|free]
2025-10-23 09:05:15 +08:00
Max Krasnyansky
63d2fc46e1 Add experimental ggml-hexagon backend for the Hexagon NPU (#16547)
* model: add support for extra bufs for all devices

* hexagon: add experimental ggml-hexagon backend for the Hexagon NPU

This commit introduces a new experimental backend `ggml-hexagon` with support for the Hexagon NPU.

Highlights:
- Supports Hexagon versions: v73, v75, v79, and v81
- Targets Android devices based on Snapdragon SoCs: Gen3, 8-Elite, and 8-Elite Gen5
- Supports Q4_0, Q8_0, MXFP4, and FP32 data types
- Implements core LLM ops: MUL_MAT/MUL_MAT_ID, ADD/SUB/MUL/ADD_ID, RMS_NORM, ROPE, GLU/SWIGLU, SOFTMAX

**Note:** This backend is experimental and may exhibit instability or limited performance across supported devices.
It is intended for early testing and feedback from llama.cpp/ggml developer and user community.

Co-Authored-By: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-Authored-By: Todor Boinovski <todorb@qti.qualcomm.com>

* hexagon: fix format checker errors

* hexagon: update readme and cmake presets

* ci: add android-ndk-build jobs that build plain ARM64 and Snapdragon versions

* hexagon: add simple graph optimizer for stacking MUL_MAT ops with the same input

* hexagon: move ADB helper scripts into scripts/snapdragon/adb

* hexagon: replace all f/printfs with GGML_LOG_...

* readme: add hexagon to the list supported backends

* hexagon: stack malmuts with quantized inputs only

* hexagon: add TODO for fixing issues in hexagon_graph_optimize

* hexagon: update to hex-sdk 6.4.0 and add scripts for running on QDC

* scripts: fix lint errors

* scripts: update qdc pytest script to make linter happy

* hexagon: add reduce sum in fp32

* hexagon: reduce number of vector stores in matmul output

* hexagon: remove the need for vdelta in reduce-multiply-x8

* hexagon: consistent use of reduce_sum_fp32 for row_sums

* hexagon: some more matmul optimizations and comments

Optimize cases where tensor dims are not multiple of 1024 (e.g in Qwen models).
We've handled those cases already but at a higher overhead.

* hexagon: update cmake presets

* hexagon: add OPMASK support for run-bench.sh wrapper

* hexagon: update to use GGML_BACKEND_API

* hexagon: remove unused logic for setting tensor flags for the views

* hexagon: add asserts to set/get_tensor to make sure we handle complete tensors

Same asserts as the CPU backend.

* hexagon: use cpy_tensor slow path for non-host buffers

* hexagon: error checks in the buffer allocator

* cmake: move include(extProj) under ggml-hexagon

* hexagon: don't forget to delete the backend on free

* hexagon: set/get_tensor size assert apply only to quantized tensors

* hexagon: reintroduce HEX_VERBOSE wrapper for GGML_LOG_DEBUG for now

GGML_LOG_DEBUG is always enabled for test-backend-ops and the output gets in the way.
Ideally we need a bit more finer log levels.

* docs: typos in hexagon developer docs (libggm-...)

* hexagon: overhaul error handling in the session/device allocation

this should handle all failure paths in the session allocation.

* hexagon: update cmake presets to enable fp16 vectors

* hexagon: remove unused time_usec function

* hexagon: don't forget to release buffer contexts

* hexagon: fixed indents in hvx-utils (missed clang-format auto-format failure)

* hexagon: remove custom can_repeat function and use ggml_can_repeat

---------

Co-authored-by: Rajdeep Ganguly <rganguly@qti.qualcomm.com>
Co-authored-by: Todor Boinovski <todorb@qti.qualcomm.com>
2025-10-22 13:47:09 -07:00
Diego Devesa
a2e0088d92 Revert "ggml : Leverage the existing GGML_F32_VEC helpers to vectorize ggml_v…" (#16723)
This reverts commit 19a5a3edfd.
2025-10-22 20:20:55 +02:00
Pascal
9b9201f65a webui: introduce OpenAI-compatible model selector in JSON payload (#16562)
* webui: introduce OpenAI-compatible model selector in JSON payload

* webui: restore OpenAI-Compatible model source of truth and unify metadata capture

This change re-establishes a single, reliable source of truth for the active model:
fully aligned with the OpenAI-Compat API behavior

It introduces a unified metadata flow that captures the model field from both
streaming and non-streaming responses, wiring a new onModel callback through ChatService
The model name is now resolved directly from the API payload rather than relying on
server /props or UI assumptions

ChatStore records and persists the resolved model for each assistant message during
streaming, ensuring consistency across the UI and database
Type definitions for API and settings were also extended to include model metadata
and the onModel callback, completing the alignment with OpenAI-Compat semantics

* webui: address review feedback from allozaur

* webui: move model selector into ChatForm (idea by @allozaur)

* webui: make model selector more subtle and integrated into ChatForm

* webui: replaced the Flowbite selector with a native Svelte dropdown

* webui: add developer setting to toggle the chat model selector

* webui: address review feedback from allozaur

Normalized streamed model names during chat updates
by trimming input and removing directory components before saving
or persisting them, so the conversation UI shows only the filename

Forced model names within the chat form selector dropdown to render as
a single-line, truncated entry with a tooltip revealing the full name

* webui: toggle displayed model source for legacy vs OpenAI-Compat modes

When the selector is disabled, it falls back to the active server model name from /props

When the model selector is enabled, the displayed model comes from the message metadata
(the one explicitly selected and sent in the request)

* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormActions.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/constants/localstorage-keys.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormModelSelector.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/services/chat.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/services/chat.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: refactor model selector and persistence helpers

- Replace inline portal and event listeners with proper Svelte bindings
- Introduce 'persisted' store helper for localStorage sync without runes
- Extract 'normalizeModelName' utils + Vitest coverage
- Simplify ChatFormModelSelector structure and cleanup logic

Replaced the persisted store helper's use of '$state/$effect' runes with
a plain TS implementation to prevent orphaned effect runtime errors
outside component context

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: document normalizeModelName usage with inline examples

* Update tools/server/webui/src/lib/components/app/chat/ChatForm/ChatFormModelSelector.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/stores/models.svelte.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/stores/models.svelte.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: extract ModelOption type into dedicated models.d.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: refine ChatMessageAssistant displayedModel source logic

* webui: stabilize dropdown, simplify model extraction, and init assistant model field

* chore: update webui static build

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: npm format, update webui static build

* webui: align sidebar trigger position, remove z-index glitch

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-22 16:58:23 +02:00
sirus20x6
19a5a3edfd ggml : Leverage the existing GGML_F32_VEC helpers to vectorize ggml_vec_set_f32 for faster fills (#16522)
* Leverage the existing GGML_F32_VEC helpers to broadcast the fill value across SIMD registers and store in vector-sized chunks, while retaining the scalar tail for leftover elements and non-SIMD builds.

* Vectorize additional f32 helper loops

* Normalize f32 helper tails for ggml vec ops

---------

Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
2025-10-22 12:14:14 +02:00
Acly
d8eaa26e4d tests : fix test-thread-safety when compiling with multiple backends (#16699)
* run one test per backend/device (even if it's the same device)
2025-10-22 12:01:22 +02:00
Aman Gupta
9285325ce0 CUDA: fix bug in topk-moe softmax (#16711) 2025-10-22 12:33:08 +08:00
Aman Gupta
03792ad936 CUDA: topk-moe: add optional parameter for gpt-oss (#16649)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan-deb (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / ggml-ci-arm64-cpu-kleidiai (push) Has been cancelled
Close inactive issues / close-issues (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
Build Actions Cache / ubuntu-24-vulkan-cache (push) Has been cancelled
Build Actions Cache / ubuntu-24-spacemit-cache (push) Has been cancelled
Build Actions Cache / windows-2022-rocm-cache (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
2025-10-21 22:40:38 +08:00
Johannes Gäßler
51d1a8c997 CUDA: better error for FA kernel with 0 occupancy (#16643) 2025-10-21 15:27:53 +02:00
Aman Gupta
4926419c4d ggml: add ggml_can_fuse_subgraph (#16662)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
* ggml: add ggml_can_fuse_subgraph

* ggml-cuda: use ggml_can_fuse_subgraph for topk-moe

* format

* 1. remove inputs from signature as they are transient nodes
2. add check for views: view_src should be part of the subgraph

* - combine check into one loop
- check all view_src parents
- other minor review comments

* remove redudant if test

* - rename and other minor review comments

* add assert about count < 32
2025-10-21 16:43:14 +08:00
lhez
6ea37f5739 opencl: fix warnings and clean up profiling (#16688)
* opencl: remove unused headers, fix warnings

* opencl: clean up profiling, only keep kernel time
2025-10-20 22:26:17 -07:00
Jeff Bolz
fb349848f3 vulkan: Handle FA with all -inf mask values (#16447)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
2025-10-20 22:16:08 -05:00
YehuditE
6de8ed7519 sycl : add PAD_REFLECT_D1 operator support (#16145)
* sycl: add PAD_REFLECT_D1 operator support

* docs(ops): regenerate docs/ops.md

* remove trailing whitespaces

* style: fix editorconfig issues — trim trailing spaces and normalize EOLs

* fix: move PAD_REFLECT_1D case outside of fall-through block
2025-10-21 00:21:12 +02:00
Sigbjørn Skjæret
84bf3c6778 model : add BailingMoeV2 support (#16063)
* add BailingMoeV2 support

* update llm types

* undo

* undo

* update llm types

* add model collection link

* update

* almost working

* correct group selection and rename n_group_exp

* avoid large top_k and use argmax instead for now

if we had something like argmax2 that would be equivalent, but this works fine until then

* poke

* skip group selection when there are no tokens

* fix 1T conversion

* hopefully fixed expert group selection

third time's the charm?

* make expert group selection generally available

The new LLaDA2Moe model uses this method too, make it generally available regardless of architecture.

* allow n_expert_groups to be 1 (Kimi K2)

* address review suggestions
2025-10-20 21:38:20 +02:00
Aleksander Grygier
c9c1972e2c Handle legacy 'context' attachments (#16687)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
2025-10-20 19:49:02 +02:00
Diego Devesa
b617cfd289 ggml-alloc : fix leak when reusing a tensor with a larger size (#16679) 2025-10-20 14:53:50 +02:00
Aleksander Grygier
79068501fa Prevent premature submission on IME input (#16673)
* fix: Prevent premature submission on IME input

* chore: update webui static build

* refactor: Put IME completion checker in a helper function and add checking for `KeyboardEvent.eventKey === 229`

* chore: update webui static build

* chore: update webui static build

* chore: update webui static build
2025-10-20 14:21:12 +02:00
Aleksander Grygier
0e4a0cf2fa Import/Export UX improvements (#16619)
* webui : added download action (#13552)

* webui : import and export (for all conversations)

* webui : fixed download-format, import of one conversation

* webui : add ExportedConversations type for chat import/export

* feat: Update naming & order

* chore: Linting

* feat: Import/Export UX improvements

* chore: update webui build output

* feat: Update UI placement of Import/Export tab in Chat Settings Dialog

* refactor: Cleanup

chore: update webui build output

* feat: Enable shift-click multiple conversation items selection

* chore: update webui static build

* chore: update webui static build

---------

Co-authored-by: Sascha Rogmann <github@rogmann.org>
2025-10-20 13:29:14 +02:00
Aleksander Grygier
13f2cfad41 Enable per-conversation loading states to allow having parallel conversations (#16327)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Update Operations Documentation / update-ops-docs (push) Waiting to run
* feat: Per-conversation loading states and tracking streaming stats

* chore: update webui build output

* refactor: Chat state management

Consolidates loading state management by using a global `isLoading` store synchronized with individual conversation states.

This change ensures proper reactivity and avoids potential race conditions when updating the UI based on the loading status of different conversations. It also improves the accuracy of statistics displayed.

Additionally, slots service methods are updated to use conversation IDs for per-conversation state management, avoiding global state pollution.

* feat: Adds loading indicator to conversation items

* chore: update webui build output

* fix: Fix aborting chat streaming

Improves the chat stream abortion process by ensuring that partial responses are saved before the abort signal is sent.

This avoids a race condition where the onError callback could clear the streaming state before the partial response is saved. Additionally, the stream reading loop and callbacks are now checked for abort signals to prevent further processing after abortion.

* refactor: Remove redundant comments

* chore: build webui static output

* refactor: Cleanup

* chore: update webui build output

* chore: update webui build output

* fix: Conversation loading indicator for regenerating messages

* chore: update webui static build

* feat: Improve configuration

* feat: Install `http-server` as dev dependency to not need to rely on `npx` in CI
2025-10-20 12:41:13 +02:00
takuya kodama
06332e2867 llama-batch: fix build fails with -Werror=missing-braces (#16614)
## Why it failed

When compiling with strict compiler flags (-Wmissing-braces -Werror=missing-braces),
the build fails with the following error:

```
cmake \
  -S . \
  -B ../llama.cpp.build \
  --preset=x64-linux-gcc-debug \
  -DCMAKE_INSTALL_PREFIX=/tmp/local \
  -DCMAKE_CXX_FLAGS="-Wmissing-braces -Werror=missing-braces" && \
cmake --build ../llama.cpp.build/
...
In file included from /home/otegami/work/cpp/llama.cpp/src/llama-graph.h:4,
                 from /home/otegami/work/cpp/llama.cpp/src/llama-model.h:5,
                 from /home/otegami/work/cpp/llama.cpp/src/llama.cpp:8:
/home/otegami/work/cpp/llama.cpp/src/llama-batch.h:126:48: error: missing braces around initializer for 'std::__array_traits<int, 1>::_Type' {aka 'int [1]'} [-Werror=missing-braces]
  126 |     std::array<llama_seq_id, 1> seq_id_0 = { 0 }; // default sequence id
      |                                                ^
cc1plus: some warnings being treated as errors
```

The issue is that std::array initialization requires double braces.

## How to fix

This PR changes `{ 0 }` to `{{ 0 }}` for std::array initialization.

This is part of a series of commits to fix missing braces warnings across the codebase.
- src/llama-batch.h <- This PR is here.
- src/llama-context.cpp
- tests/test-backend-ops.cpp
- tests/test-gguf.cpp
- tools/mtmd/clip.cpp

Benefits:
- std::array is a struct containing a C-style array, requiring nested braces
- Enables stricter compiler warnings to catch potential issues
2025-10-20 11:27:09 +03:00
Ron Evans
72d53e6c4d readme: update bindings (#16651)
Signed-off-by: deadprogram <ron@hybridgroup.com>
2025-10-20 11:20:04 +03:00
safranowith
2330de7b84 SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators (#16613)
* SYCL: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators

Clean up unrelated changes from previous commit

* Chore: remove empty lines and fix indentation

* Clean up: remove leftover blank lines and fix spacing

* chore: fix trailing whitespace and ensure final newline

* Cleanup: remove redundant declarations already defined in header

* Sync docs/ops.md with updated backend operation support

* docs: update ops.md after rebase

* docs: update ops.md - Vulkan supports SSM_CONV and SSM_SCAN
2025-10-20 11:08:32 +03:00
takuya kodama
7062dd8460 llama-context: only warn on pooling_type when user specified (#16674)
The unexpeced pooling_type warning was incorrectly shown when users did not
specify the --pooling-type parameter. In this case, the parameter
defaults to `LLAMA_POOLING_TYPE_UNSPECIFIED (-1)`, and the code
automatically applies the model's default pooling type.

Example of spurious warning:
```
$ llama-embedding -hf ggml-org/bge-m3-Q8_0-GGUF -p "hello"
...
llama_init_from_model: model default pooling_type is [2], but [-1] was specified
...
```

This fix ensures the warning only appears when users explicitly specify
a pooling type that differs from the model's default (e.g., using
--pooling-type mean on a model that expects CLS pooling).
2025-10-20 10:44:21 +03:00
Giuseppe Scrivano
0398752dd4 model : add Granite Hybrid types (#16635)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
add Granite 4 models mapping their embedding dimensions to the # of
parameters.

Information taken from https://huggingface.co/ibm-granite/granite-4.0-h-tiny

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-19 23:54:31 +02:00
Aaron Teo
4f73d0a951 ci : fix binaries release failure for s390x (binaries may not work yet) (#16664)
* devops: initial patch

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: forgot the z15 suffix

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: attempt at impl GGML_CPU_ALL_VARIANTS for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: rm baseline version

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-10-19 23:06:39 +02:00
Sigbjørn Skjæret
cec5edbcae ci : avoid manual updates of docs/ops.md (#16663) 2025-10-19 14:03:25 +02:00
Aaron Teo
fcb235b466 ci: include s390x release binaries (#16648)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-10-19 18:37:47 +08:00
Aman Gupta
55754bebd5 CODEOWNERS: update for ggml-cuda/mmf (#16660) 2025-10-19 10:37:12 +03:00
Johannes Gäßler
ee09828cb0 HIP: fix GPU_TARGETS (#16642)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan-deb (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / ggml-ci-arm64-cpu-kleidiai (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
2025-10-18 14:47:32 +02:00
Jeff Bolz
e56abd2098 vulkan: Implement topk_moe fused shader, ported from CUDA (#16641)
This is similar to the CUDA shader from #16130, but doesn't use shared memory
and handles different subgroup sizes.
2025-10-18 12:22:57 +02:00
Aman Gupta
38355c6c8e CUDA: use registers instead of smem in topk-moe (#16647)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
Uses the technique used in the vulkan PR #16641. Neat trick!
2025-10-18 11:52:53 +02:00
Shawn Gu
81387858f1 opencl: transposed gemm/gemv moe kernel with mxfp4,f32 (#16602)
* opencl: transposed gemm/gemv moe kernel with mxfp4,f32

* add restore kernel for moe transpose

* fix trailing whitespaces

* resolve compilation warnings
2025-10-17 17:55:32 -07:00
Johannes Gäßler
66b0dbcb2d llama-model: fix insonsistent ctxs <-> bufs order (#16581) 2025-10-17 17:41:09 +02:00
Radoslav Gerganov
41386cf365 rpc : report actual free memory (#16616)
* rpc : report actual free memory

Start reporting the free memory on every device instead of using
fixed values. Now llama-cli users can get a nice memory breakdown
when using RPC devices.

* drop --mem in rpc-server
2025-10-17 18:02:52 +03:00
Giuseppe Scrivano
3d4e86bbeb vulkan: Add State Space Model (SSM) Operations Support (#16463)
* vulkan: implement SSM scan operation

Add State Space Model scan operation to the Vulkan backend.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

* vulkan: implement SSM conv operation

Add State Space Model conv operation to the Vulkan backend.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>

---------

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-17 14:23:47 +02:00
muggle-stack
342c728d03 ggml : fix SpaceMit IME array out-of-bounds in task assignment (#16629)
Fix incorrect task-to-batch index calculation in the quantization phase.

The bug caused out-of-bounds access to qnbitgemm_args array when
compute_idx exceeded per_gemm_block_count_m, leading to invalid
pointer dereferences and SIGBUS errors.

Correctly map tasks to batches by dividing compute_idx by
per_gemm_block_count_m instead of block_size_m.

Example:
  batch_feature=1, gemm_m=30, block_size_m=4
  per_gemm_block_count_m = 8, task_count = 8

  Old: gemm_idx = 4/4 = 1 (out of bounds  New: gemm_idx = 4/8 = 0 (correct)

Tested on SpaceMit K1 RISC-V64 with qwen2.5:0.5b model.

Co-authored-by: muggle <mingjun.rong@spacemit.com>
2025-10-17 13:01:23 +03:00
Pascal
ababae7e1e webui: reorganize settings layout (#16607)
* webui: reorganize settings layout

* chore: update webui build output

* fix: remove unused variable

* chore: update webui build output
2025-10-17 10:35:03 +02:00
Jeff Bolz
b19491599d vulkan: fix debug build (add_rms_len/data not found) (#16624) 2025-10-17 09:31:04 +02:00
Ilia Ilmer
9ad4f1931e metal : add CONV_TRANSPOSE_2D (#16542)
* initial: headers and metal-device.cpp updates

* adding conv_transpose_2d

* fix type

* fix type: int32->int64

* Update ggml/src/ggml-metal/ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-metal/ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-metal/ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add checks for src[0] and src[1]; add type checks

* Update ggml-metal.metal

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add more tests, add optimization to threading

* add dynamic memory allocation in metal

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-17 09:33:58 +03:00
Olivier Chafik
79967ec596 grammar : use int64_t to avoid int overflows in int schema to grammar conversion logic (#16626) 2025-10-17 08:59:31 +03:00
GittyBurstein
ceff6bb253 SYCL SET operator optimized for F32 tensors (#16350)
* SYCL/SET: implement operator + wire-up; docs/ops updates; element_wise & ggml-sycl changes

* sycl(SET): re-apply post-rebase; revert manual docs/ops.md; style cleanups

* move SET op to standalone file, GPU-only implementation

* Update SYCL SET operator for F32

* ci: fix editorconfig issues (LF endings, trailing spaces, final newline)

* fixed ggml-sycl.cpp

---------

Co-authored-by: Gitty Burstein <gitty@example.com>
2025-10-17 10:36:40 +08:00
Xuan-Son Nguyen
1bb4f43380 mtmd : support home-cooked Mistral Small Omni (#14928) 2025-10-16 19:00:31 +02:00
Pascal
683fa6ba4e fix: added a normalization step for MathJax-style \[\] and \(\) delimiters (#16599)
* fix: added a normalization step for MathJax-style \[\] and \(\) delimiters

So inline and block equations are converted before KaTeX rendering,
enabling proper display of model-generated LaTeX in the WebUI

* chore: update webui build output
2025-10-16 16:28:41 +02:00
GittyBurstein
b22572e97d sycl : add ARANGE operator (#16362)
* SYCL: update element-wise ops and presets

* clean arange

* Re-trigger CI

---------

Co-authored-by: Gitty Burstein <gitty@example.com>
2025-10-16 15:26:21 +02:00
Chenguang Li
7a50cf388a CANN: format code using .clang-format (#15863)
This commit applies .clang-format rules to all source files under the
ggml-cann directory to ensure consistent coding style and readability.
The .clang-format option `SortIncludes: false` has been set to disable
automatic reordering of include directives.
No functional changes are introduced.

Co-authored-by: hipudding <huafengchun@gmail.com>
2025-10-16 16:41:11 +08:00
takasurazeem
6f5d924637 common : Update the docs on -t --threads (#16236)
* Update the docs on -t --threads

* Revert "Update the docs on -t --threads"

This reverts commit eba97345e2.

* docs: clarify -t/--threads parameter uses CPU threads and defaults to all available cores

* Update arg.cpp
2025-10-16 08:11:33 +03:00
takuya kodama
adc9b60f19 ggml-cpu: replace putenv with setenv for const-correctness (#16573)
## Why it failed

When compiling with strict compiler flags (-Wwrite-strings -Werror=discarded-qualifiers),
the build fails with the following error:

```
cmake \
  -S . \
  -B ../llama.cpp.build \
  --preset=x64-linux-gcc-debug \
  -DCMAKE_INSTALL_PREFIX=/tmp/local \
  -DCMAKE_C_FLAGS="-Wwrite-strings -Werror=discarded-qualifiers" && \
cmake --build ../llama.cpp.build/
...
/home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c: In function ‘ggml_cpu_init’:
/home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:3572:24: error: passing argument 1 of ‘putenv’ discards ‘const’ qualifier from pointer target type [-Werror=discarded-qualifiers]
 3572 |                 putenv("KMP_BLOCKTIME=200"); // 200ms
      |                        ^~~~~~~~~~~~~~~~~~~
In file included from /home/otegami/work/cpp/llama.cpp/ggml/src/./ggml-impl.h:10,
                 from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu-impl.h:6,
                 from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/traits.h:3,
                 from /home/otegami/work/cpp/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:6:
/usr/include/stdlib.h:786:26: note: expected ‘char *’ but argument is of type ‘const char *’
  786 | extern int putenv (char *__string) __THROW __nonnull ((1));
      |                    ~~~~~~^~~~~~~~
cc1: some warnings being treated as errors
ninja: build stopped: subcommand failed.
```

The issue is that putenv() expects a non-const char * but receives a string literal (const char *).

## How to fix

This PR replaces putenv("KMP_BLOCKTIME=200") with setenv("KMP_BLOCKTIME", "200", 0).

Benefits of setenv():
- Accepts const char * parameters (no qualifier warnings)
- Makes copies of the strings (safer memory handling)
- The third parameter (0) ensures we don't overwrite if already set
2025-10-16 08:10:32 +03:00
yael-works
ee50ee1ead SYCL: Add GGML_OP_MEAN operator support (#16009)
* SYCL: Add GGML_OP_MEAN operator support

* SYCL: Fix formatting for GGML_OP_MEAN case

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-16 12:21:28 +08:00
Aleksei Nikiforov
7adc79c032 gguf-py : add support for endian conversion of BF16 data (#16594)
BF16 requires special handling in this script
while it's a 2-bytes data, but view is 1-byte by default.
Switch to correct view before attempting byteswapping.

With this change correctly byteswapping models like
Meta-Llama-3-8B-Instruct-bf16-GGUF
should be possible.
2025-10-15 22:43:08 +02:00
safranowith
466c1911ab cpu : add FLOOR, CEIL, ROUND and TRUNC unary operators (#16083)
* CPU: Add support for FLOOR,CEIL,ROUND and TRUNC unary operators

- Added the operators to unary op enum
- Implemented API functions
- Implemented forward and unary-op logic in CPU backend
- Updated ggml_get_n_tasks
- Updated operators names array and static_assert
- Updated docs and enabled automatic tests

* docs: add documentation for ggml_trunc and ggml_trunc_inplace in ggml.h

* chore: remove trailing whitespace from ggml.h

* Remove unresolved merge markers

* Apply review suggestions: cleanup formatting, enum order and leftover artifacts

* Regenerate ops.md using create_ops_docs.py
2025-10-15 21:24:51 +02:00
lhez
0cb7a0683b opencl: add q8_0 mm support (#16469)
* opencl: add mm_q8_0_f32

* opencl: fix data loading for incomplete tile

* opencl: use q8_0 mm for larger matrix

* opencl: add some tests to cover the path
2025-10-15 10:51:04 -07:00
lhez
d93f8439b0 opencl: fix FA for f32 (#16584) 2025-10-15 10:48:28 -07:00
Aleksander Grygier
f9fb33f263 Add server-driven parameter defaults and syncing (#16515) 2025-10-15 16:22:20 +02:00
Sam/Samuel
f4ce81c45e metal: optimise GGML_OP_SUM (#16559)
* optimise GGML_OP_SUM

* add non-contiguous tests by permuting the input

* change tests to require full contiguity of OP_SUM

* cuda : add check GGML_OP_SUM

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-15 17:05:56 +03:00
Georgi Gerganov
17304cbcc1 server : fix img token logs (#16595) 2025-10-15 16:53:12 +03:00
Xuan-Son Nguyen
3e3cb19f64 llama-quant: add support for mmproj (#16592)
* llama-quant: add support for mmproj

* Update src/llama.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* check prefix instead

* small fix

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-15 14:48:08 +02:00
Julius Tischbein
5acd455460 CUDA: Changing the CUDA scheduling strategy to spin (#16585)
* CUDA set scheduling strategy to spinning for cc121

* Using prop.major and prop.minor, include HIP and MUSA

* Exclude HIP and MUSA

* Remove trailing whitespace

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Remove empty line

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-10-15 14:54:15 +03:00
Georgi Gerganov
554fd578a5 server : fix mtmd checkpoints (#16591) 2025-10-15 11:51:27 +02:00
Georgi Gerganov
fa882fd2b1 metal : avoid using Metal's gpuAddress property (#16576)
* metal : avoid using Metal's gpuAddress property

* metal : fix rope kernels buffer check
2025-10-14 20:33:05 +03:00
SavicStefan
ffa059034c vulkan: Add ACC_TYPE_VEC2 implementation (#16203)
Signed-off-by: Stefan Savic <stefan.savic@huawei.com>
Co-authored-by: Stefan Savic <stefan.savic@huawei.com>
2025-10-14 19:18:05 +02:00
Aman Gupta
120bf7046d CUDA + openCL: fix bug in accessing rms_norm->src while doing fusion (#16577) 2025-10-14 07:48:08 -07:00
Jeff Bolz
4258e0cfe7 vulkan: Support FA with K/V in F32 (#16543) 2025-10-14 15:53:37 +02:00
Jeff Bolz
7ea15bb64c vulkan: Improve build time for MSVC (#16545)
Enable CMP0147 so custom build steps (invoking vulkan-shader-gen) are run in parallel.

Enable /MP so source files are compiled in parallel.
2025-10-14 14:51:36 +02:00
Johannes Gäßler
9c7185dd28 CUDA: enable FA for FP32 KV cache (#16546) 2025-10-14 14:22:47 +02:00
Aman Gupta
1ee9d0b415 CUDA: use fastdiv + ggml_cuda_mad for mmvf (#16557)
* CUDA: use fastdiv + ggml_cuda_mad for mmvf

* use bf16 directly + fix formatting

* Add exception for HIP code
2025-10-14 13:16:21 +02:00
Aman Gupta
48e2fa9fb7 CUDA: add fp kernel for larger batch size MoE (#16512)
* CUDA: kernel for larger batch sizes for MoE

* WIP

* WIP

* WIP

* WIP

* WIP

* WIP

* fixup

* tests

* Move mmq_ids_helper to mmid

* cleanup

* Remove redundant checks
2025-10-14 13:15:15 +02:00
Anav Prasad
5b6913c47b cuda : remove legacy copy-op pointer indirection code (#16485)
* remove legacy copy-op pointer indirection code

* further removal of copy-op indirection code

* renamed check_node_graph_compatibility_and_refresh_copy_ops function
2025-10-14 11:53:49 +02:00
Georgi Gerganov
bc07349a7f server : dynamic token limit for prompt cache (#16560)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan-deb (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / ggml-ci-arm64-cpu-kleidiai (push) Has been cancelled
Build Actions Cache / ubuntu-24-vulkan-cache (push) Has been cancelled
Build Actions Cache / ubuntu-24-spacemit-cache (push) Has been cancelled
Build Actions Cache / windows-2022-rocm-cache (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
* server : dynamic token limit for prompt cache

* cont : print estimated token limit
2025-10-14 08:48:50 +03:00
Georgi Gerganov
e60f241eac metal : FA support F32 K and V and head size = 32 (#16531)
* metal : FA support F32 K and V and head size = 32

* graph : remove obsolete comment [no ci]
2025-10-13 23:07:57 +03:00
Georgi Gerganov
e38b7c6e9e graph : support cacheless embeddings with FA and iSWA (#16528)
* graph : support cacheless embeddings with FA and iSWA

* cont : deduplicate mask creation

* cont : fix name
2025-10-13 22:42:37 +03:00
lhez
5016b72862 opencl: fix build targeting CL 2 (#16554) 2025-10-13 11:50:37 -07:00
Johannes Gäßler
7049736b2d CUDA: fix numerical issues in tile FA kernel (#16540)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
2025-10-13 17:29:45 +03:00
Jie Fu (傅杰)
01d2bdc2bc ggml : fix build broken with -march=armv9-a on MacOS (#16520)
* ggml : fix build broken with -march=armv9-a on MacOS

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Add #pragma message

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Address review comment.

Signed-off-by: Jie Fu <jiefu@tencent.com>

* Update ggml/src/ggml-cpu/ggml-cpu.c

---------

Signed-off-by: Jie Fu <jiefu@tencent.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-10-13 15:48:47 +03:00
Chenguang Li
56fc38b965 CANN: fix CPU memory leak in CANN backend (#16549)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
This commit fixes a CPU-side memory leak issue in the CANN backend,
which occurred when intermediate aclTensorList objects were not properly
released after operator execution. The leak happened during repeated
invocations of CANN ops (e.g., FlashAttention), leading to increasing
host memory usage over time.

Proper resource cleanup (aclDestroyTensorList and related release logic)
has been added to ensure that all temporary tensors are correctly freed.
2025-10-13 17:01:24 +08:00
Pascal
1fb9504eb7 fix: add remark plugin to render raw HTML as literal text (#16505)
* fix: add remark plugin to render raw HTML as literal text

Implemented a missing MDAST stage to neutralize raw HTML like major LLM WebUIs
do ensuring consistent and safe Markdown rendering

Introduced 'remarkLiteralHtml', a plugin that converts raw HTML nodes in the
Markdown AST into plain-text equivalents while preserving indentation and
line breaks. This ensures consistent rendering and prevents unintended HTML
execution, without altering valid Markdown structure

Kept 'remarkRehype' in the pipeline since it performs the required conversion
from MDAST to HAST for KaTeX, syntax highlighting, and HTML serialization

Refined the link-enhancement logic to skip unnecessary DOM rewrites,
fixing a subtle bug where extra paragraphs were injected after the first
line due to full innerHTML reconstruction, and ensuring links open in new
tabs only when required

Final pipeline: remarkGfm -> remarkMath -> remarkBreaks -> remarkLiteralHtml
-> remarkRehype -> rehypeKatex -> rehypeHighlight -> rehypeStringify

* fix: address review feedback from allozaur

* chore: update webui build output
2025-10-13 10:55:32 +02:00
Sam/Samuel
3f750f8d76 metal: add support for opt_step_sgd (#16539)
* metal: add support for opt_step_sgd

* add newline to pass EditorConfig check
2025-10-13 11:25:02 +03:00
Georgi Gerganov
c515fc5771 ggml : fix scalar path for computing norm (#16558) 2025-10-13 11:22:27 +03:00
hipudding
f9bc66c3eb CANN: Update several operators to support FP16 data format (#16251)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Many Ascend operators internally use FP16 precision for computation.
If input data is in FP32, it must first be cast to FP16 before
computation, and then cast back to FP32 after computation, which
introduces unnecessary cast operations. Moreover, FP16 computation
requires significantly less workload compared to FP32, leading to
noticeable efficiency improvements.

In this change, `get_rows`, `rms_norm`, and `flash_attn_ext` are extended
to support multiple data types. Validation on the Qwen2 0.5b model shows
correct accuracy and about 10% performance gain in concurrent scenarios.

Co-authored-by: noemotiovon <757486878@qq.com>
2025-10-13 08:52:22 +08:00
Sam/Samuel
a31cf36ad9 metal : add opt_step_adamw and op_sum (#16529)
* scaffold to support opt step adamw on metal (not written so far)

* add opt-step-adamw kernel for metal

* pass op->src[4] as a separate buffer to the pipeline

* add bounds check to opt-step-adamw kernel

* complete scaffold for GGML_OP_SUM

* naive GGML_OP_SUM kernel

* remove unwanted comment

* change OP_SUM capability gate

* Add has_simdgroup_reduction to both ops to pass CI
2025-10-12 21:43:14 +03:00
Pascal
81d54bbfd5 webui: remove client-side context pre-check and rely on backend for limits (#16506)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* fix: make SSE client robust to premature [DONE] in agentic proxy chains

* webui: remove client-side context pre-check and rely on backend for limits

Removed the client-side context window pre-check and now simply sends messages
while keeping the dialog imports limited to core components, eliminating the
maximum context alert path

Simplified streaming and non-streaming chat error handling to surface a generic
'No response received from server' error whenever the backend returns no content

Removed the obsolete maxContextError plumbing from the chat store so state
management now focuses on the core message flow without special context-limit cases

* webui: cosmetic rename of error messages

* Update tools/server/webui/src/lib/stores/chat.svelte.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/stores/chat.svelte.ts

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatScreen/ChatScreen.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-12 18:06:41 +02:00
Neo Zhang Jianyu
c7be9febcb [SYCL] fix UT fault cases: count-equal, argsort, pad OPs (#16521)
* fix/refactor OP argsort, pad

* fix count-equal op

* update SYCL OP list

* fix format issue

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-12 21:53:35 +08:00
Mathieu Baudier
8415f61e23 ci : add Vulkan on Ubuntu with default packages build (#16532)
* ci: build Vulkan on Ubuntu with default packages

* ci: disable tests in Vulkan build with default Ubuntu packages
2025-10-12 15:48:03 +02:00
Aldehir Rojas
2c301e91ab common : handle unicode during partial json parsing (#16526)
* common : handle unicode during partial json parsing

* common : set missing `ensure_ascii = true` during json dump
2025-10-12 16:18:47 +03:00
Georgi Gerganov
4b2dae383d common : update presets (#16504)
* presets : add --embd-gemma-default and remove old embedding presets

* presets : add gpt-oss presets

* presets : add vision presets

* cont : remove reasoning overrides [no ci]

* cont : fix batch size for embedding gemma [no ci]
2025-10-12 09:29:13 +03:00
sirus20x6
41aac5c69b ggml : Fix FP16 ELU positive branch (#16519)
Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
2025-10-12 08:25:37 +03:00
Daniel Bevenius
a2fba89a42 hparams : add check for layer index in is_recurrent (#16511)
* hparams : add check for layer index in is_recurrent

This commit adds a check in the is_recurrent method to ensure that the
provided layer index is within the valid range.

The motivation for this change is to prevent potential out-of-bounds
and also be consistent with other methods in the class that perform
similar checks, like is_swa.
2025-10-12 07:19:06 +02:00
sirus20x6
20cc625edc ggml: Correct SVE implementation in ggml_vec_dot_f16_unroll (#16518)
The previous SVE implementation for `ggml_vec_dot_f16_unroll` contained a bug due to a copy-paste error. The wrong variable was used in an FMA instruction, leading to incorrect results. This commit corrects the variable usage and improves the clarity of the code by renaming variables to avoid confusion.

Co-authored-by: Aaron <shelhamer.aaron@gmail.com>
2025-10-12 08:15:00 +03:00
Johannes Gäßler
11f0af5504 CUDA: faster tile FA, add oob checks, more HSs (#16492)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-10-11 20:54:32 +02:00
Georgi Gerganov
a3cb04744f metal : fix mul-mm condition + fix mul-mv permuted kernels (#16494)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-10-11 16:54:10 +03:00
Pascal
4a8fbe0a5e feat: render user content as markdown option (#16358)
* feat: render user content as markdown option
- Add a persisted 'renderUserContentAsMarkdown' preference to the settings defaults and info metadata so the choice survives reloads like other options
- Surface the new 'Render user content as Markdown' checkbox in the General section of the chat settings dialog, beneath the PDF toggle
- Render user chat messages with 'MarkdownContent' when the new setting is enabled, matching assistant formatting while preserving the existing card styling otherwise
- chore: update webui build output

* chore: update webui build output
2025-10-11 15:50:49 +02:00
Yann Follet
31d0ff1869 server / ranking : add sorting and management of top_n (#16403)
* server / ranking : add sorting and management of top_n

* Make the retro compatible if no top_n will return
all results

here is a script to make some test

```script

URL=${1:-http://127.0.0.1:8181}

curl "$URL/v1/rerank" -H "Content-Type: application/json" \
 -d '{ "model": "M", "query": "What is the recipe to make bread ?",
 "return_text" : true,
 "texts" : true,
 "top_n": 6,
 "documents": [
 "voici la recette pour faire du pain, il faut de la farine de l eau et du levain et du sel",
 "it is a bear",
 "bread recipe : floor, water, yest, salt",
 "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.",
 "here is the ingedients to bake bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
 "recipe to make cookies : floor, eggs, water, chocolat",
 "here is the recipe to make bread : 500g floor, 350g water, 120g fresh refresh yest, 15g salt",
 "il fait tres beau aujourd hui",
 "je n ai pas faim, je ne veux pas manger",
 "je suis a paris"
 ] }' | jq
```

* use resize() instead for(...)

* simplify top_n init since no need to return error

result to test :

./tests.sh unit/test_rerank.py -v -x
==================================================== test session starts =====================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 8 items

unit/test_rerank.py::test_rerank PASSED                                                                                [ 12%]
unit/test_rerank.py::test_rerank_tei_format PASSED                                                                     [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED                                                        [ 37%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED                                                              [ 50%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED                                                               [ 62%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED                                                        [ 75%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED                            [ 87%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED               [100%]

===================================================== 8 passed in 4.31s ======================================================

* add rerank top_n unit test

here is the result :

./tests.sh unit/test_rerank.py -v -x
=================================================================== test session starts ===================================================================
platform linux -- Python 3.12.3, pytest-8.3.5, pluggy-1.6.0 -- /home/yann/dev/yann/llama.cpp/tools/server/tests/test/bin/python3
cachedir: .pytest_cache
rootdir: /home/yann/dev/yann/llama.cpp/tools/server/tests
configfile: pytest.ini
plugins: anyio-4.11.0
collected 16 items

unit/test_rerank.py::test_rerank PASSED                                                                                                             [  6%]
unit/test_rerank.py::test_rerank_tei_format PASSED                                                                                                  [ 12%]
unit/test_rerank.py::test_invalid_rerank_req[documents0] PASSED                                                                                     [ 18%]
unit/test_rerank.py::test_invalid_rerank_req[None] PASSED                                                                                           [ 25%]
unit/test_rerank.py::test_invalid_rerank_req[123] PASSED                                                                                            [ 31%]
unit/test_rerank.py::test_invalid_rerank_req[documents3] PASSED                                                                                     [ 37%]
unit/test_rerank.py::test_rerank_usage[Machine learning is-A machine-Learning is-19] PASSED                                                         [ 43%]
unit/test_rerank.py::test_rerank_usage[Which city?-Machine learning is -Paris, capitale de la-26] PASSED                                            [ 50%]
unit/test_rerank.py::test_rerank_top_n[None-4] PASSED                                                                                               [ 56%]
unit/test_rerank.py::test_rerank_top_n[2-2] PASSED                                                                                                  [ 62%]
unit/test_rerank.py::test_rerank_top_n[4-4] PASSED                                                                                                  [ 68%]
unit/test_rerank.py::test_rerank_top_n[99-4] PASSED                                                                                                 [ 75%]
unit/test_rerank.py::test_rerank_tei_top_n[None-4] PASSED                                                                                           [ 81%]
unit/test_rerank.py::test_rerank_tei_top_n[2-2] PASSED                                                                                              [ 87%]
unit/test_rerank.py::test_rerank_tei_top_n[4-4] PASSED                                                                                              [ 93%]
unit/test_rerank.py::test_rerank_tei_top_n[99-4] PASSED                                                                                             [100%]

=================================================================== 16 passed in 8.84s ===================================================================

* editor config check fix
2025-10-11 16:39:04 +03:00
Diego Devesa
97870e6497 cuda : avoid initializing unused devices (#16510) 2025-10-11 13:02:26 +02:00
amirai21
477a66b035 convert : correctly handle LLaMA tokenizer for Jamba (#16470)
* fix: convert_hf_to_gguf - change Jamba non-sentencepiece mode (tokenizer.json) vocab construction

* fix: convert_hf_to_gguf - jamba non-sentencepiece tokenizer to use _set_vocab_llama_hf func

* fix: convert_hf_to_gguf - removed get_vocab_base_pre from jamba
2025-10-11 10:33:41 +02:00
Georgi Gerganov
e60f01d941 server : fix division by zero when reporting stats (#16501) 2025-10-10 22:15:05 +03:00
Georgi Gerganov
81086cd6a3 vocab : mark EOT token for Granite models (#16499)
* vocab : mark EOT token for Granite models

* sampling : fallback to EOS when EOT is not found
2025-10-10 17:17:31 +03:00
Radoslav Gerganov
68ee98ae18 server : return HTTP 400 if prompt exceeds context length (#16486)
In streaming mode when prompt exceeds context length, the server returns
HTTP 200 status code with a JSON error in the body.  This is very
confusing and inconsistent with all other inference engines which return
HTTP 4xx error in this case.

This patch fixes this problem and makes the server return HTTP 400 in
such cases.
2025-10-10 16:11:07 +02:00
Radoslav Gerganov
cdb6da468c server : log requests to /v1/completions (#16495) 2025-10-10 13:22:27 +03:00
Prajwal B Mehendarkar
6d69ab3f26 cmake : Dont define XOPENSOURCE on AIX (#16481) 2025-10-10 11:15:46 +03:00
Pascal
1faa13a118 webui: updated the chat service to only include max_tokens in the req… (#16489)
* webui: updated the chat service to only include max_tokens in the request payload when the setting is explicitly provided, while still mapping explicit zero or null values to the infinite-token sentinel

* chore: update webui build output
2025-10-09 22:54:57 +02:00
duduta
1deee0f8d4 cpu : optimize the ggml NORM operation (#15953)
* ggml-cpu: optimize norm operation to use intrinsics or Accelerate

          rename function

          add endif macro comment

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>

* implement s390x SIMD suggested by @taronaeo

* add TODO comment

* tidy up spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>
2025-10-09 21:11:15 +02:00
Georgi Gerganov
d00cbea63c server : host-memory prompt caching (#16391)
* minor : code style

* server : fix prompt similarity calculation

* server : initial host-memory prompt caching

* cont

* server : refactor

* cont

* cont : make the server task of the slot const

* cont : minor [no ci]

* server : cache prompts and checkpoints only for completion tasks

* server : improve prompt caching logic

* cont : fix check for number of cached prompts [no ci]

* server : improve caching logic, add -cram CLI arg

* server : print prompt mismatch info

* cont : better naming [no ci]

* server : improve prompt cache loading logic

* server : add option to debug the slot contents (#16482)

* server : add option to debug the slot contents

* Update tools/server/server.cpp

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* server : add option to disable prompt cache

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-10-09 18:54:51 +03:00
Pascal
8328fd4bae No markdown in cot (#16483)
* fix: let the model think in plaintext

* chore: npm run format + npm run build
2025-10-09 17:36:29 +02:00
Daniel Bevenius
56b4795842 model-conversion : add support for SentenceTransformers (#16387)
* model-conversion : add support for SentenceTransformers

This commit adds support for models that use SentenceTransformer layers.

The motivation for this is that if converted model includes any of the
numbered layers specified in the original models repository then these
changes enable these models to be used and verified. Currently the
model-conversion only support the base model output without any of
the additional transformation layers.

Usage:
Convert the model that also includes the SentenceTransformer layers:
```console
(venv) $ export EMBEDDING_MODEL_PATH="~/google/embeddinggemma-300M"
(venv) make embedding-convert-model
```

Verify the produced embeddings from the converted model against the
original model embeddings:
```console
(venv) make embedding-verify-logits-st
```

The original model can be run using SentenceTransformer:
```console
(venv) make embedding-run-original-model-st
```

Run the converted model using "SentenceTransformer" layers whic
enables pooling and normalization:
```console
(venv) make embedding-run-converted-model-st
```

* add model-conversion example requirements

* add support for -st flag in embedding model conversion

This commit add support for the -st flag in the embedding model
conversion script. This will enable models to be converted using
sentence transformers dense layers.
2025-10-09 14:35:22 +02:00
sudhiarm
2c0d875ae6 ci: add ARM64 Kleidiai build and test support (#16462) 2025-10-09 10:13:18 +02:00
Chenguang Li
aa4711d369 CANN: Improve ACL graph matching (#16166)
* CANN: improve ACL graph matching

Record `ne` and `nb` information for src tensors and include them in the
graph matching check. This enhances the robustness of ACL graph matching
by preventing incorrect matches when src tensors share the same data
address but differ in shape or stride.

* CANN: add op_params match
2025-10-09 15:50:25 +08:00
Charles Xu
d80d6d2400 kleidiai: kernel interface refactoring (#16460) 2025-10-09 10:29:17 +03:00
Neo Zhang Jianyu
b260213755 [SYCL] refactor soft_max, add soft_max_back (#16472)
* refactor to support soft_max_ext

* fix error and support soft_max_back

* rm unused functions

* fix format issue

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-09 10:25:11 +03:00
Saba Fallah
e08db42595 model: EmbeddingGemma Adding Support for SentenceTransformers Dense Modules (#16367)
* model: EmbeddingGemma sentence-transformers dense linear projections support

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.

See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

- converting model with dense-layers is optional
- introduced dense config params

* Update convert_hf_to_gguf.py

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* fixed formatting issues

* Update src/llama-graph.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims

* fix python lint

* fix ubuntu gcc build warning

* - fixed thread-safety test
- moved asserts to load_hparams

* - tidying up code
- simplifying graph-context expecting both dense weights

* minor : add TODO

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-09 09:39:18 +03:00
Pascal
12bbc3fa50 refactor: centralize CoT parsing in backend for streaming mode (#16394)
* refactor: unify reasoning handling via backend reasoning_content, drop frontend tag parsing

- Updated the chat message component to surface backend-supplied reasoning via message.thinking while showing the raw assistant content without inline tag scrubbing
- Simplified chat streaming to append content chunks directly, stream reasoning into the message model, and persist any partial reasoning when generation stops
- Refactored the chat service SSE handler to rely on server-provided reasoning_content, removing legacy <think> parsing logic
- Refreshed Storybook data and streaming flows to populate the thinking field explicitly for static and streaming assistant messages

* refactor: implement streaming-aware universal reasoning parser

Remove the streaming mode limitation from --reasoning-format by refactoring
try_parse_reasoning() to handle incremental parsing of <think> tags across
all formats.

- Rework try_parse_reasoning() to track whitespace, partial tags, and
  multiple reasoning segments, allowing proper separation of reasoning_content
  and content in streaming mode
- Parse reasoning tags before tool call handling in content-only and Llama 3.x
  formats to ensure inline <think> blocks are captured correctly
- Change default reasoning_format from 'auto' to 'deepseek' for consistent
  behavior
- Add 'deepseek-legacy' option to preserve old inline behavior when needed
- Update CLI help and documentation to reflect streaming support
- Add parser tests for inline <think>...</think> segments

The parser now continues processing content after </think> closes instead of
stopping, enabling proper message.reasoning_content and message.content
separation in both streaming and non-streaming modes.

Fixes the issue where streaming responses would dump everything (including
post-thinking content) into reasoning_content while leaving content empty.

* refactor: address review feedback from allozaur

- Passed the assistant message content directly to ChatMessageAssistant to drop the redundant derived state in the chat message component
- Simplified chat streaming updates by removing unused partial-thinking handling and persisting partial responses straight from currentResponse
- Refreshed the ChatMessage stories to cover standard and reasoning scenarios without the old THINK-tag parsing examples

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* refactor: restore forced reasoning prefix to pass test-chat ([chat] All tests passed)

- store the exact sequence seen on input when 'thinking_forced_open' enforces a reasoning block
- inject this prefix before the first accumulated segment in 'reasoning_content', then clear it to avoid duplication
- repeat the capture on every new 'start_think' detection to properly handle partial/streaming flows

* refactor: address review feedback from ngxson

* debug: say goodbye to curl -N, hello one-click raw stream

- adds a new checkbox in the WebUI to display raw LLM output without backend parsing or frontend Markdown rendering

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: add Storybook example for raw LLM output and scope reasoning format toggle per story

- Added a Storybook example that showcases the chat message component in raw LLM output mode with the provided trace sample
- Updated every ChatMessage story to toggle the disableReasoningFormat setting so the raw-output rendering remains scoped to its own example

* npm run format

* chat-parser: address review feedback from ngxson

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2025-10-08 23:18:41 +03:00
ai-fonsi
9d0882840e Disable CUDA host buffers on integrated GPUs (#16308) 2025-10-08 20:21:46 +02:00
issixx
d2ee056e1d server : fix cancel pending task (#16467)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
Build Actions Cache / ubuntu-24-vulkan-cache (push) Has been cancelled
Build Actions Cache / ubuntu-24-spacemit-cache (push) Has been cancelled
Build Actions Cache / windows-2022-rocm-cache (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
Co-authored-by: DevAI <DevAI@gmail.com>
2025-10-08 11:20:18 +03:00
Georgi Gerganov
b2c08c9ec4 metal : mark FA blocks (#16372)
* metal : better unroll in the FA kernels

* metal : index FA blocks

* tests : restore [no ci]

* metal : prevent division by zero in FA kernels

* metal : fix -INF detection logic
2025-10-08 10:57:53 +03:00
Georgi Gerganov
7fdd16b432 server : improve context checkpoint logic (#16440) 2025-10-08 10:57:29 +03:00
Reese Levine
74b8fc17f9 ggml webgpu: profiling, CI updates, reworking of command submission (#16452)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
* Add profiling

* More detailed profiling

* Rework command submission to avoid global locks

* Update wait handling

* try new method of waiting on futures

* Add serializing of command submission in some cases

* Add new pool for timestamp queries and clean up logging

* Serialize command submission in CI and leave a TODO note

* Update webgpu CI

* Add myself as WebGPU codeowner

* Deadlock avoidance

* Leave WebGPU/Vulkan CI serialized

* Fix divide by 0

* Fix logic in division by inflight_threads

* Update CODEOWNERS and remove serialize submit option
2025-10-07 13:48:56 -07:00
Tarek Dakhran
aeaf8a36f0 llama : support LiquidAI LFM2-MoE hybrid model (#16464)
* llama : support LiquidAI LFM2-MoE hybrid model

Add support for [LiquidAI/LFM2-8B-A1B](https://huggingface.co/LiquidAI/LFM2-8B-A1B) model.
For more information about models, please read [the blog post](https://www.liquid.ai/company/news).

[HF PR](https://github.com/huggingface/transformers/pull/41401)
[GGUFs](https://huggingface.co/LiquidAI/LFM2-8B-A1B-GGUF)

* Do not use defaultdict

* Address PR feedback
2025-10-07 20:03:35 +02:00
Georgi Gerganov
df1b612e29 server : add /v1/health endpoint (#16461)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
* server : add /v1/health endpoint

* cont : update readme
2025-10-07 15:57:14 +03:00
Sascha Rogmann
4e0388aa8a webui : added download action (#13552) (#16282)
* webui : added download action (#13552)

* webui : import and export (for all conversations)

* webui : fixed download-format, import of one conversation

* webui : add ExportedConversations type for chat import/export

* feat: Update naming & order

* chore: Linting

* webui : Updated static build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-07 11:11:08 +02:00
Georgi Gerganov
ef4c5b87ea presets : fix pooling param for embedding models (#16455) 2025-10-07 10:32:32 +03:00
Radoslav Gerganov
c61ae20d05 rpc : update documentation (#16441)
Update the README file to match the newly added functionality of
exposing multiple devices from a single server.

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-10-07 06:59:13 +00:00
Georgi Gerganov
0123ff38f5 memory : use sequential equal splits for recurrent modules (#16442) 2025-10-07 08:24:17 +03:00
Georgi Gerganov
0a319bb75e metal : add support for non-padded FA KV (#16148)
* metal : pad K, V and Mask when needed

* cont : simplify

* cuda : add TODO about KV padding requirement

* metal : add comments

* metal : remove mask padding requirement
2025-10-07 08:23:30 +03:00
Georgi Gerganov
1d6092fc72 tests : add -INF blocks to the KQ mask in the FA tests (#16380)
* tests : add -INF blocks to the KQ mask in the FA tests

* cont : bump -INF block size to 64

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* ggml : prevent division by zero in FA CPU op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-07 08:22:35 +03:00
Georgi Gerganov
8ae32dc9ec metal : various optimizations + refactoring (#16446)
* metal : ssm_scan minor opts

* metal : get_rows optimize

* metal : cpy optimize

* metal : ssm_conv opt

* metal : ssm_scan simplify

* metal : ssm_Scan opt
2025-10-07 08:21:40 +03:00
Gadflyii
3df2244df4 llama : add --no-host to disable host buffers (#16310)
* implement --no-host to disable host buffer

* fix equal_mparams

* move no-host enumeration order together with other model params

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-10-06 19:55:53 +02:00
Gabe Goodhart
c08002a198 chat : Granite Docling stopping (#16438)
* fix: Fix duplicate fake image before token on first slice

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use double-newline before overview image

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove incorrect newline at the end of granite chat template gen prompt

There should not be one, even for the language models.

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Remove bad newline from granite chat template test (legacy)

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-06 18:59:40 +02:00
Sigbjørn Skjæret
3a002afafa ci : refactor sdk caching to minimize storage (#16414)
* refactor sdk caching to minimize storage

* use correct action

* add myself as owner to /.github/actions/ [no ci]
2025-10-06 17:40:21 +02:00
Georgi Gerganov
a23b9bdbd3 ggml : fix unaligned access in AMX code (#16315) 2025-10-06 16:05:27 +03:00
Daniel Bevenius
04e632a4aa ci : remove missing reranker model files (#16444)
This commit removes jina-reranker-v1-tiny-en model files that are no
longer present on Hugging Face.

The motivation for this that it clears up the CI logs from 404 errors
which can be a little confusing when looking at the logs the first time.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630#step:5:2649
2025-10-06 14:56:59 +02:00
Daniel Bevenius
a80ff183ab ggml-cpu : fix leftover handling in ggml_vec_scale_f32 for SVE (#16443)
This commit updates the leftover handling in ggml_vec_scale_f32.

The motivation for this is that the code currently incorrectly assumes
there would be fewer than ggml_f32_epr leftover elements. However,
since the main loop processes 2*ggml_f32_epr elements per iteration
, there can be up to (2*ggml_f32_epr - 1) leftover elements.

The original single-pass leftover code could only process ggml_f32_epr
elements, leaving some elements unscaled.

Example scenario with 256-bit SVE:
```
ggml_f32_epr  = 8 (elements per register)
ggml_f32_step = 16 (two registers per iteration)
n             = 25
np            = 16
leftovers     = 9 elements (16-24)

Original    : processes only elements 16-23, misses element 24
This commit : loop processes elements 16-23, then element 24
```

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630
2025-10-06 14:17:12 +02:00
Yuannan
1d49ca3759 nix : removed metal for nix (#16118) 2025-10-06 12:29:56 +03:00
Oleksandr Kuvshynov
c5fef0fcea server: update readme to mention n_past_max metric (#16436)
https://github.com/ggml-org/llama.cpp/pull/15361 added new metric
exported, but I've missed this doc.
2025-10-06 10:53:31 +03:00
Gabe Goodhart
ca71fb9b36 model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)
* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-10-05 14:57:47 +02:00
Reese Levine
35266573b9 ggml webgpu: actually add softmax, fix rms_norm offset (#16400)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-22-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
* implement soft_max

* Fix soft_max data race

* Temporary fix, wait on each submit
2025-10-04 20:59:31 -07:00
Eve
86df2c9ae4 vulkan: use a more appropriate amount of threads when generating shaders (#16418)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
* use a more flexible amount of threads

* fix windows compile and 0 thread case

* nominmax
2025-10-04 22:04:27 +02:00
Radoslav Gerganov
f39283960b rpc : check src buffer when copying tensor (#16421)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
Only dst buffer is guaranteed to be an RPC buffer. Add check for the src
one.
2025-10-04 16:22:45 +03:00
Radoslav Gerganov
898acba681 rpc : add support for multiple devices (#16276)
* rpc : add support for multiple devices

Allow rpc-server to expose multiple devices from a single endpoint.
Change RPC protocol to include device identifier where needed.

closes: #15210

* fixes

* use ggml_backend_reg_t

* address review comments

* fix llama-bench backend report

* address review comments, change device naming

* fix cmd order
2025-10-04 12:49:16 +03:00
Acly
e29acf74fe vulkan : incremental shader builds (#16341)
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times

* support dep-files so shaders are recompiled if their included files change

* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled

* vulkan : only write embedded shader .hpp/.cpp when they change

* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier

* fix hang in vulkan-shaders-gen when there are compilation errors

* early out did not decrement compile_count

* clean up

* fix glslc integer dot product test

* unconditionally write the embedded shader cpp output

* replace output filepath in generated dep-files to match output in CMakeLists

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-04 11:42:56 +02:00
Pascal
128d522c04 chat : support Magistral thinking (#16413)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Copilot Setup Steps / copilot-setup-steps (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* feat: added a dedicated Magistral chat format that preserves [THINK] spans, parses reasoning before tool calls

* feat: new flow in the chat template test suite for Magistral
2025-10-03 21:51:48 +03:00
ddh0
f6dcda3900 server : context checkpointing for hybrid and recurrent models (#16382)
* initial commit for branch 3

* generalize `swa_checkpoint` to `ctx_checkpoint`

this extends `llama-server`'s SWA checkpointing logic to include
hybrid/recurrent models such as Jamba, Granite

* oops

* disable debug prints

* keep backwards compat with `--swa-checkpoints`

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update prompt re-processing message

* fix off-by-one error per GG

* keep `seq_rm` log per GG

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : fix checkpoint logic to support recurrent caches

* server : cleanup and fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-03 21:34:51 +03:00
Georgi Gerganov
606a73f531 metal : fix loop bound in ggml_mem_ranges (#16412) 2025-10-03 19:18:56 +03:00
Sigbjørn Skjæret
946f71ed9a llama : fix shapes for bert/mpt q/k norm (#16409) 2025-10-03 14:40:25 +02:00
Acly
638d330246 ggml : fix graph reallocation with multiple chunks (#16396)
reallocation is needed if a single chunk grows in size,
even if total allocation size stays the same or is lower
2025-10-03 13:49:08 +02:00
Aleksander Grygier
84c8e305e8 Fix missing messages on sibling navigation (#16408)
* fix: resolve message disappearing issue when navigating between regenerated siblings by using current leaf nodes instead of cached sibling IDs

* chore: update webui build output

* chore: update webui build output
2025-10-03 12:51:40 +02:00
Jeff Bolz
2aaf0a2a20 vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE (#16354)
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE

Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.

For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.

Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.

With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.

* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
2025-10-03 12:50:46 +02:00
Jeff Bolz
0e1f838556 vulkan: Fix FA coopmat1 invalid array indexing (#16365)
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
2025-10-03 11:52:46 +02:00
Daniel Bevenius
ad126479c2 ci : change macos-13 to macos-15-intel (#16401)
This commit updates the macos-13 runners to macos-15-intel.

The motivation for this changes is the macos-13 runners are scheduled
to be retired on 2025-12-04.

Refs: https://github.blog/changelog/2025-09-19-github-actions-macos-13-runner-image-is-closing-down/
2025-10-03 11:45:16 +02:00
Aleksander Grygier
77233277c9 Capture model name only after first token (streaming) or completed request (#16405)
* feat: Capture model name only after first token (streaming) or completed request (non-streaming)

* chore: update webui build output

* chore: update webui build output
2025-10-03 11:30:39 +02:00
Jeff Bolz
e308efda8e vulkan: in flash attention, bounds check against nem1 (don't rely on GGML_KQ_MASK_PAD) (#16316) 2025-10-03 10:33:08 +02:00
Aleksander Grygier
136bda78c5 webui : Fix messages payload sent to chat completions (#16402)
* fix: Include just the currently active message branches instead of all in chat completions request

* chore: Build webui static output

* chore: Formatting

* chore: update webui build output
2025-10-03 10:11:34 +03:00
Pascal
5113efd34c fix: track viewportHeight via window.innerHeight to avoid unwanted scrolling (#16356)
Use <svelte:window bind:innerHeight> instead of manual resize listener

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-03 08:01:31 +02:00
Sigbjørn Skjæret
d64c8104f0 test-barrier : do not use more threads than physically available (#16389)
* do not use more threads than physically available

* ensure n_threads > 0

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-02 20:10:12 +02:00
Reese Levine
ef07a40906 ggml webgpu: add support for soft_max, optimize rms_norm (#16357)
* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-02 11:00:31 -07:00
Piotr Wilkin (ilintar)
34fcc5a4ac model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
R0CKSTAR
91a2a56556 musa: update compile flags (#16265)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-10-02 16:29:56 +03:00
Sigbjørn Skjæret
72ee736c44 ci : fix ubuntu-latest-cmake-rpc (disable ccache) (#16388) 2025-10-02 13:51:36 +02:00
Eve
f09aefaa84 ci: update vulkan ci (#16294) 2025-10-02 10:10:07 +02:00
Georgi Gerganov
bbd32bc038 ci : fix clean-up of old logs (#16381) 2025-10-02 10:35:43 +03:00
Neo Zhang Jianyu
2be72c2b12 SYCL: Update to oneAPI 2025.2 (#16371)
* update oneapi to 2025.2, use deep-learning-essentials to replace base-tool

* update to 2025.2 use deeplearn essi to replace base toolkit

* add missed dll

* add deep learning essentials

* add sycl-ls

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-02 10:16:25 +03:00
uvos
95ce098544 HIP: add IMbackK to codeowner (#16375) 2025-10-02 05:52:59 +02:00
uvos
c8dedc9999 CI: reenable cdna in rocm docker builds (#16376) 2025-10-01 23:32:39 +02:00
uvos
e95fec640f HIP: Disable ROCWMMA fattn on CDNA when compiled against ROCWMMA 2.0.0 (#16221)
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0

rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA

* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
2025-10-01 23:09:25 +02:00
Shunta Saito
ded67b9444 llama : parameter conversion and loading fixes for PLaMo2 variants (#16075)
* Fix to use hidden_size_per_head

* Fix num heads

* Fix array

* Fix loading weights

* Support old GGUF converted by the previous version of llama.cpp

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Move shared parameter definitions to the outside of loop

* Not calculating n_embd_head_k,v by n_embd / n_head

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-01 23:08:15 +02:00
uvos
1fe4e38cc2 ci: Properly install rocwmma for hip builds (#16305)
* CI: Properly install rocwmma for hip builds

on windows we now windows install rocwmma from ubuntu pacakges

* CI: update linux rocm docker build to use rocm 7.0
2025-10-01 20:18:03 +02:00
Adrien Gallouët
4201deae9c common: introduce http.h for httplib-based client (#16373)
* common: introduce http.h for httplib-based client

This change moves cpp-httplib based URL parsing and client setup into
a new header `common/http.h`, and integrates it in `arg.cpp` and `run.cpp`.

It is an iteration towards removing libcurl, while intentionally
minimizing changes to existing code to guarantee the same behavior when
`LLAMA_CURL` is used.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* tools : add missing WIN32_LEAN_AND_MEAN

Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-10-01 20:22:18 +03:00
Aleksander Grygier
764799279f Conversation action dialogs as singletons from Chat Sidebar + apply conditional rendering for Actions Dropdown for Chat Conversation Items (#16369)
* fix: Render Conversation action dialogs as singletons from Chat Sidebar level

* chore: update webui build output

* fix: Render Actions Dropdown conditionally only when user hovers conversation item + remove unused markup

* chore: Update webui static build

* fix: Always truncate conversation names

* chore: Update webui static build
2025-10-01 18:18:10 +02:00
Aleksander Grygier
2a9b63383a Improve code block color theming (#16325)
* feat: Improve code block theming

* chore: update webui build output

* chore: Update webui static build
2025-10-01 15:54:42 +02:00
Sigbjørn Skjæret
1104ca1a1c ci : use registry cache for docker builds (#16366) 2025-10-01 14:09:52 +02:00
Aleksander Grygier
4f1575921c Add optional setting for showing "Model used:" information (#16337)
* feat: Add a setting to include model name used to generate the message

* feat: UI improvements

* feat: Save model info along with the database message entry creation

* chore: Build webui static output
2025-10-01 12:08:16 +02:00
Eve
132d673554 vulkan: make ggml_vk_default_dispatcher support older vulkan headers (#16345)
* make ggml_vk_default_dispatcher support older vulkan headers

* simpilfy with using
2025-10-01 09:56:36 +02:00
Aleksander Grygier
aa9538a63a webui: Remove running llama-server within WebUI dev.sh script (#16363) 2025-10-01 08:40:26 +03:00
Bartowski
e74c92e842 model : support GLM 4.6 (make a few NextN/MTP tensors not required) (#16359)
* Make a few GLM tensors not required

layer.nextn.shared_head_head and layer.nextn.embed_tokens are both excluded from GLM 4.6 resulting in the model not loading after conversion/quantization, this marks those tensors as not required which makes it work

* Update llama-model.cpp

layer.nextn.shared_head_norm also not required in case of future models
2025-09-30 22:24:36 +02:00
Sigbjørn Skjæret
b2ba81dbe0 ci : fix ccache key for ubuntu-cpu-cmake (#16355)
* fix ccache key for ubuntu-cpu-cmake

* set it for release as well [no ci]
2025-09-30 21:41:42 +02:00
Adrien Gallouët
bf6f3b3a19 common : disable progress bar without a tty (#16352)
* common : disable progress bar without a tty

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add missing headers

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 20:52:41 +03:00
lhez
7c156df414 opencl: support pad_ext (#15888) 2025-09-30 10:45:45 -07:00
Pascal
16b0ca0d2e Chatapi ignore empty sampling (#16330)
* fix: skip empty sampling fields instead of coercing to 0 in chat API options

* chore: update webui build output
2025-09-30 19:18:54 +02:00
Reese Levine
8d78cd2613 ggml webgpu: support for rope,div,sub,glu,scale,cont operators (#16187)
* Work on rope

* Simplify inplace operation generation and combine mul/add generation

* Work on rope variants

* implement neox rope

* rope complete

* Add sub,div,glu operators

* implement scale op

* Update cpy shader to handle cont/more types

* formatting

* Update test vars printing for rope,rms_norm

* Avoid ROPE hardcoded constants

* Add TODO to change ROPE constants to enum

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix TODO comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-30 09:57:51 -07:00
lhez
d1c84a662d opencl: support ne3 in get_rows (#15866) 2025-09-30 09:55:13 -07:00
Adrien Gallouët
364a7a6d4a common : remove common_has_curl() (#16351)
`test-arg-parser.cpp` has been updated to work consistently,
regardless of whether CURL or SSL support is available, and
now always points to `ggml.ai`.

The previous timeout test has been removed, but it can be
added back by providing a dedicated URL under `ggml.ai`.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 17:39:44 +03:00
Sigbjørn Skjæret
2df5bcf357 ci : disable ccache for android (#16348) 2025-09-30 15:38:01 +02:00
Georgi Gerganov
075c01567b ggml : bump version to 0.9.4 (ggml/1363) 2025-09-30 13:53:55 +03:00
anavp-nvidia
a014310374 cuda : Enable CUDA Graph usage for Nemotron Nano v2 (NemotronH) (#16328)
* Fix Nemotron Nano v2 9B not executing as CUDA Graph on NVIDIA GPUs

* fix to ensure test-backend-ops check passes
2025-09-30 11:13:22 +03:00
Georgi Gerganov
35fb82497e metal : dynamic simdgroups for MV kernels (#16340)
* metal : dynamic simdgroups for MV kernels

* cont : minor
2025-09-30 11:03:23 +03:00
Adrien Gallouët
3c62aed89f common : simplify etag tracking by removing json (#16342)
The JSON parser is temporarily kept only for backward compatibility. It
reads the etag from old .json files to prevent unnecessary re-downloads
for existing users.

This legacy code can be removed in a future version.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 10:36:33 +03:00
Charles Xu
f1eb1cb1eb kleidiai : fix work size and threads sync for fp16 (#16246) 2025-09-30 10:07:20 +03:00
lhez
de41f2b7bf codeowners: add codeowners for opencl backend (#16344) 2025-09-30 08:30:16 +03:00
Jeff Bolz
a74a0d69f3 tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences (#16295)
* tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences

* apply similar error bounds to test_cpy
2025-09-29 19:26:34 -05:00
Pascal
5f7e166cbf Fix thinking blocks with quotes + add handling [THINK]...[/THINK] blocks (#16326)
* fix: prevent reasoning blocks with quotes from being truncated

* chore: update webui build output

* feat: Improve thinking content parsing

* test: Adds ChatMessage component stories for different thinking blocks

* chore: update webui build output

* fix: ChatMessage story fix

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-09-29 18:49:47 +02:00
Georgi Gerganov
d72f5f7ba2 ci : add AMD runners and workflows (#16249)
* ci : add AMD runners and workflows

* ci : move AMD jobs to separate workflow

* cont : fix paths
2025-09-29 17:51:48 +03:00
alex-spacemit
b77e6c18e1 ggml: riscv: add riscv spacemit backend (#15288)
* ggml: add spacemit backend

Change-Id: I249bdc043485d815a9c351867137bc1e27cc2e23

* add new line at end of file

Change-Id: I889ed1c85fb45e62350ecde0c06f70450cadfbe2

* add riscv zba extension limit

Change-Id: I321eb200f859751727afe5cae13074dfce2bb0ce

* fixed for review comments, file renamed and format

Change-Id: Ia20b6ec24a36638e62e0fe07cf100916a7cce3ce

* fixed for code format, after clang-format

Change-Id: I5dc33a0412da3d3f2d77075d8939185d3009eca2

* use _Float16 instead of __fp16

Change-Id: I039fb02bb95270e641bc4442204e658735859d43

* add ci for riscv64-spacemit-ime-native

Change-Id: I711c1033061df1a289ea77891b2997599dfe8279

* update debian-13-riscv64-spacemit-ime-native ci label

Change-Id: Ifb2b891e2fca57b5da604fce2ac255f27731179a

* remove license comment for spacemit ime

Change-Id: If0dc3ca30a958631ccca0a28b62e0b825f9fb0c3

* upgrade binutils for gcc ime

Change-Id: Ibf2fa74c1064408974cb5b45f044d40987e5fb45

* add spacemit ime cross jobs

Change-Id: I80d74909941d41cb9cd09e51d8baf01c985cbfc6

* remove native compile for riscv64-spacemit-ime

Change-Id: I01920afafdc73fa7424014fd648d243f8ec9e25e

* ci : add caching for spacemit ime cross toolchain

Change-Id: Ic54a192019a2fd982bbd58225ce3bbc38f4053de

* ci: bug fixed for cache path and env

Change-Id: I28c42e10b6fff053bb6580926ca2353448cb042a

* Update .github/workflows/build-linux-cross.yml for cache path

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* bugfixed for  build-linux-cross.yml,  syntax error

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: cailinxi <linxi.cai@spacemit.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 17:50:44 +03:00
Georgi Gerganov
2ddd3f2356 sync : ggml 2025-09-29 17:43:58 +03:00
Georgi Gerganov
4d3d455d3c sync : whisper.cpp (ggml/1359)
* ggml : Fix MKL detection by quoting BLAS_INCLUDE_DIRS (whisper/3426)

* sync : whisper.cpp
2025-09-29 17:43:58 +03:00
Daniel Bevenius
c9b1c06467 ggml : remove -dev suffix from release version (ggml/1355)
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
2025-09-29 17:43:58 +03:00
Daniel Bevenius
b6ae75afb4 ggml : bump version to 0.9.3 (ggml/1353) 2025-09-29 17:43:58 +03:00
Georgi Gerganov
b6dff20e2f ggml : prepare for development of 0.9.2-dev 2025-09-29 17:43:58 +03:00
Georgi Gerganov
2db78c75e4 ggml : bump version to 0.9.1 2025-09-29 17:43:58 +03:00
Rafal Lewczuk
02463ab27b ggml-backend : add root cause in error message if loading backend library fails (#16172)
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
2025-09-29 13:17:09 +02:00
Sigbjørn Skjæret
adc76347d7 ggml : check cuda and metal argsort limits and add test (#16323)
* check cuda argsort limits and add test

* add metal check
2025-09-29 11:09:00 +02:00
Aleksander Grygier
3a2bdcda0b Improve Mobile UI for dialogs and action dropdowns (#16222)
* fix: Always show conversation item actions

* feat: Improve Alert Dialog and Dialog mobile UI

* feat: Add settings reset to default confirmation

* fix: Close Edit dialog on save

* chore: update webui build output

* webui: implement proper z-index system and scroll management

- Add CSS variable for centralized z-index control
- Fix dropdown positioning with Settings dialog conflicts
- Prevent external scroll interference with proper event handling
- Clean up hardcoded z-index values for maintainable architecture

* webui: ensured the settings dialog enforces dynamic viewport height on mobile while retaining existing desktop sizing overrides

* feat: Use `dvh` instead of computed px height for dialogs max height on mobile

* chore: update webui build output

* feat: Improve Settings fields UI

* chore: update webui build output

* chore: update webui build output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-09-29 10:37:20 +02:00
Pascal
66bb7985c3 fix: preserved zero values in chat settings inputs and textareas by switching to nullish coalescing for field values and default placeholders (#16312) 2025-09-29 09:08:41 +02:00
Vinkal
2f61c0f5bf llama-cli: prevent spurious assistant token (#16202)
* tools/main: llama-cli: prevent spurious assistant token (#13402)

During prompt ingestion, prompt tokens are accepted into the sampler history (for repetition penalties). The conversation-mode path then appended `common_sampler_last(smpl)` to `assistant_ss` before any new token was sampled. At that point, "last" was a prompt-side token (e.g., an input prefix), so the assistant chat message began with an extra piece.

Fix: append to `assistant_ss` only for a newly sampled (non-EOG) token. This affects only chat message assembly (`assistant_ss` / `chat_msgs` / `common_chat_format_single`); terminal stdout is unchanged. Sampling order/logits are unchanged.

Fixes #13402.

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update tools/main/main.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* tools/main: remove outdated comment

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 10:03:12 +03:00
ddh0
3ffd0fae47 perplexity : show more kl-divergence data (#16321)
Adds additional percentile data for displayed in the output of `llama-perplexity --kl-divergence`:
- Added 95 percentile (mirroring existing 5 percentile)
- Added 0.1 percentile (mirroring existing 99.9 percentile)
2025-09-29 09:30:45 +03:00
Georgi Gerganov
a4a0aa5ea2 ggml : fix dependencies for ggml_set_rows (#16318) 2025-09-29 08:41:28 +03:00
Jeff Bolz
92cd103f62 vulkan: Fix validation failure in quantized flash attention (#16292) 2025-09-29 06:50:37 +02:00
Sigbjørn Skjæret
b887d2f341 ggml : fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32 (#16307)
* fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32

* add test that fails on simd
2025-09-28 23:15:03 +02:00
crat0z
bd0af02fc9 common : fix reasoning before forced tool call via tool_choice = required (#16264)
* common : fix reasoning before forced tool call via tool_choice = required

* common : improve reasoning and commentary handling when tool_choice is required

(cherry picked from commit c746984956d6882c2de73d53ae2bb3bdf889e475)

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2025-09-28 21:13:50 +03:00
R0CKSTAR
d9e0e7c819 ci : fix musa docker build (#16306)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-09-28 16:38:15 +02:00
Aaron Teo
0124ac989f devops: switch to using ubuntu-22.04-s390x image (#16302)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-28 19:25:58 +08:00
Imad Saddik
2811c65286 Fixed a few typos in the README of the LLaMA.cpp HTTP Server [no ci] (#16297) 2025-09-28 13:04:46 +02:00
Jeff Bolz
d8359f5fde vulkan: 64-bit im2col (#16135)
* vulkan: 64-bit im2col

Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.

* fix validation error for large im2col
2025-09-28 08:38:37 +02:00
Georgi Gerganov
6a2c6145a0 metal : extend mat-mat multiplication support (#16225)
* metal : support mul_mm with src1->type == GGML_TYPE_F16

* metal : support mul_mm_id with src1->type == GGML_TYPE_F16

[no ci]

* metal : mul_mm support ne00 % 32 != 0

* metal : support mul_mm_id with ne00 % 32 != 0

* cont : remove unnecessary unrolls

* cont : simplify data loading

* metal : optimize mul_mm when output bounds checks are not needed
2025-09-28 09:34:44 +03:00
Georgi Gerganov
3b53634fe3 metal : fuse non-sequential nodes (#16102)
* metal : fuse non-sequential nodes

* cont : add comment

* cont : simplify bounds checks
2025-09-28 09:34:05 +03:00
Jeff Bolz
1384abf8b8 vulkan: handle mat_mul with A matrix > 4GB (#16176)
* vulkan: handle mat_mul with A matrix > 4GB

This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.

Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.

* build fixes
2025-09-27 20:36:34 -05:00
Jeff Bolz
e6d65fb02d vulkan: support arbitrary KV dimension in flash attention (#16160)
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
2025-09-27 22:43:39 +02:00
Acly
8656f5de68 vulkan : make the vulkan.hpp dynamic dispatcher instance private (#16224)
* don't use VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE which can cause conflicts if application or other libraries do the same
2025-09-27 22:41:03 +02:00
Aleksander Grygier
4807e8f96a Show message actions by default (#16289) 2025-09-27 19:56:40 +02:00
Aman Gupta
c0bfc57af4 CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32 (#16277)
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32

This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.

My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32

* Review: refactor if statement
2025-09-27 18:49:32 +02:00
Johannes Gäßler
75a3a6c2cd CUDA: refactor and deduplicate vector FA kernels (#16208)
* CUDA: refactor and deduplicate vector FA kernels
2025-09-27 18:45:07 +02:00
Dmytro Minochkin
0499b29c6f vulkan: throw system error instead of SIGABRT during init on older devices (#16156)
* Throw system error on old Vulkan driver rather than SIGABRT

* Optionally handle any potential error in vulkan init
2025-09-27 18:26:46 +02:00
Adrien Gallouët
234e2ff8ed server : remove old LLAMA_SERVER_SSL (#16290)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 19:17:08 +03:00
Jeff Bolz
3f81b4e91c vulkan: support GET_ROWS for k-quants (#16235)
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
2025-09-27 12:36:11 +02:00
Adrien Gallouët
ace6a54565 build : add LLAMA_OPENSSL option (#16287)
Introduce a new `LLAMA_OPENSSL` option, enabled by default.

This preserves the previous default (libcurl first, OpenSSL as fallback),
while allowing OpenSSL to be disabled if desired.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 12:12:46 +03:00
Vinkal
72b24d96c6 model : make minicpm embedding_scale, residual_scale and logit_scale optional with legacy defaults (#16273)
* minicpm: make GGUF scaling keys optional with legacy defaults

Older MiniCPM GGUFs do not include the scaling metadata keys (minicpm.embedding_scale, minicpm.residual_scale, minicpm.logit_scale). The loader currently treats these as required, so quantization fails with:

    key not found in model: minicpm.embedding_scale

This change restores backward compatibility by treating these keys as optional in the loader and using the older MiniCPM scaling values:

    embedding_scale = 12.0f
    residual_scale  = 1.4f / sqrt(n_layer)
    logit_scale     = 256.0f / n_embd

When the GGUF provides the keys, their values override the defaults; otherwise the legacy defaults are used. Newer GGUFs that already include these keys are unaffected.

Fixes: #16192
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update src/llama-model.cpp

Committed as suggested. Thanks!

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 23:28:29 +02:00
Aaron Teo
624207e676 devops: add s390x & ppc64le CI (#15925)
* devops: move s390x and ppc64le ci build

we have access to ubuntu-24.04-s390x and ppc64le images now

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le for now since they have compiler errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: stop warnings as errors

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: switch to non-macro flag

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: going the llama macro route

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian gguf test models

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le to test s390x, check test build

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.inp files for big-endian tests

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dup .gguf.out files for big-endian too

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add python setup and endian byteswap

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: pooring thing does not have s390x python3

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add missing rust compiler for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try rust actions runner

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "devops: try rust actions runner"

This reverts commit 3f8db04356033d6c1d7eccc75ca396bc5298250c.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: try a different path for rust

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: dump home directory and user info

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: install gguf-py only

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: missed relative path

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: remove big-endian files since local swapping is working

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: revert test-tokenizer-0 cmakelists

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix unicode flags conversion from and to uint16_t

Bitfields are allocated in different order on s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Simplify byteswap command

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add byteswapping and git-lfs for test-tokenizers-ggml-vocabs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix endianness detection in vocab loader

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Disable test-thread-safety on s390x

In this test a model is downloaded,
then immediately loaded to check if more downloads are needed,
and then used for test.

There is no clean way to separate all those steps
 to add byteswapping between them, so just skip this test.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q8_0 test in test-quantize-fns

vec_signed uses unexpected rounding mode.
Explicitly use different rounding function.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add big-endian stories260K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: add s390x test-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix test does not exist

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: fix model not found llama-eval-callback

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix q3_K dot product error in test-quantize-fns on s390x

Array q8bytes had only 4 elements allocated, but 8 elements accessed.
This lead to write out of bounds and later read of overwritten values out of bounds
and incorrect result.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: re-enable ppc64le for testing

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: activate test-thread-safety for s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: disable ppc64le tests

for some reason it keeps failing test-thread-safety tests and I do not
    have a machine that is able to replicate the tests.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* devops: LLAMA_FATAL_WARNINGS=ON

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Correct repository URL for s390x for test-thread-safety model

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fix fs_get_cache_directory

Ensure it works even if both XDG_CACHE_HOME and HOME are unset.
This might happen in containers.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Re-enable CI for ppc64le

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Fortify ggml_rope_impl

Only memcpy data from sections argument if it's non-NULL.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Add TODO in struct unicode_cpt_flags to reimplement it in endian-independent way

* Update URL for big-endian model

* Update .github/workflows/build.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update remaining mentions of BE models to ggml-org/models repo

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@linux.ibm.com>
Co-authored-by: Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-27 02:03:33 +08:00
Aleksander Grygier
807e8c6d31 Enhance text file detection logic for file attachments (#16199)
* feat: Enhances text file detection logic

* chore: Build static `webui` output

* chore: update webui build output
2025-09-26 19:25:29 +02:00
Aleksander Grygier
1a18927894 Allow viewing conversations even when llama server is down (#16255)
* webui: allow viewing conversations and sending messages even if llama-server is down

- Cached llama.cpp server properties in browser localStorage on startup, persisting successful fetches and reloading them when refresh attempts fail so the chat UI continues to render while the backend is unavailable.
- Cleared the stored server properties when resetting the store to prevent stale capability data after cache-backed operation.
- Kept the original error-splash behavior when no cached props exist so fresh installs still surface a clear failure state instead of rendering stale data.

* feat: Add UI for `props` endpoint unavailable + cleanup logic

* webui: extend cached props fallback to offline errors

Treat connection failures (refused, DNS, timeout, fetch) the same way as
server 5xx so the warning banner shows up when cache is available, instead
of falling back to a full error screen.

* webui: Left the chat form enabled when a server warning is present so operators can keep sending messages

e.g., to restart the backend over llama-swap, even while cached /props data is in use

* chore: update webui build output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-09-26 18:35:42 +02:00
Isaac McFadyen
e0539eb6ae webui: switch to hash-based routing (alternative of #16079) (#16157)
* Switched web UI to hash-based routing

* Added hash to missed goto function call

* Removed outdated SPA handling code

* Fixed broken sidebar home link
2025-09-26 18:36:48 +03:00
Aleksander Grygier
5d0a40f390 Always show message actions for mobile UI + improvements for user message sizing (#16076) 2025-09-26 15:59:07 +02:00
Radoslav Gerganov
d12a983659 codeowners : add rgerganov as owner of RPC [no ci] (#16279) 2025-09-26 16:09:34 +03:00
Aleksei Nikiforov
cc1cfa277b mtmd : fix uninitialized variable in bicubic_resize (#16275)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-26 15:00:44 +02:00
Georgi Gerganov
54dbc37053 metal : report OOM errors (#16274) 2025-09-26 14:14:28 +03:00
Adrien Gallouët
b995a10760 common : use cpp-httplib as a cURL alternative for downloads (#16185)
* vendor : update httplib

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* common : use cpp-httplib as a cURL alternative for downloads

The existing cURL implementation is intentionally left untouched to
prevent any regressions and to allow for safe, side-by-side testing by
toggling the `LLAMA_CURL` CMake option.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ggml : Bump to Windows 10

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-26 14:12:19 +03:00
Adrien Gallouët
4710dd31bb build : fix build-ios-device (#16257)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-26 13:39:35 +03:00
Aaron Teo
9b26511857 ggml-cpu: implement MXFP4 SIMD for s390x (#16193)
* ggml-cpu: impl mxfp4 s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: missing s = sumf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix incorrect kval_mxfp4 type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rework mxfp4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: missing delta calc

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: fix typo for vec_splats

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: expand to 2 blocks per loop

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: add unroll to boost perf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: back to 1 block per loop to test perf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* Revert "ggml-cpu: back to 1 block per loop to test perf"

This reverts commit 1fe55724e2.

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml-cpu: rm unroll from single block

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-26 13:27:25 +03:00
Radoslav Gerganov
00217cd413 ci : create git tags for released docker images (#16008)
* ci : create git tags for released docker images

When releasing a docker image for build number X, we should also create
the corresponding git tag. This allows users to easily checkout the
corresponding source tree for given docker image.

* Update .github/workflows/docker.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update .github/workflows/docker.yml

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 10:19:23 +00:00
Daniel Bevenius
3b337b01a1 codeowners : add danbev as owner of build-xcframework.sh [no ci] (#16268) 2025-09-26 08:53:36 +03:00
R0CKSTAR
a86a580a66 musa: upgrade musa sdk to 4.3.0 (#16240)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-09-26 02:56:38 +02:00
R0CKSTAR
0f7c69689f musa: fix build warnings (#15611)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-09-26 02:56:10 +02:00
Sigbjørn Skjæret
835b2b915c model : add GroveMoE support (#15510)
* add GroveMoE support

* remove constexpr that fails on certain compilers

* revert crude scalar div implementation, use cast

* build_attn_inp_kv_unified -> build_attn_inp_kv

* fix build_attn

* re-apply ffn_exps regex changes
2025-09-25 19:50:28 +02:00
Aaron Teo
b05a9d650f vendors: update miniaudio version (#16212)
* vendor: update miniaudio.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* vendor: update miniaudio.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 23:38:10 +08:00
rtaluyev
27052978e4 readme : update bindings (#16144)
Link to Java JNA bindings to llama.cpp native libraries
2025-09-25 18:20:34 +03:00
Aman Gupta
077c94d0ca CUDA: add a fused top-K MoE kernel (#16130)
* CUDA: add a fused top-K MoE kernel

This kernel does the following:
1. softmax over the logits per token [n_experts, n_tokens]
2. argmax reduce over the top-k (n_experts_used) logits
3. write weights + ids to global memory

It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models

* Refactor into ggml_cuda_should_use_topk_moe

* Review: Use better coalescing pattern, use WARP_SIZE, store logits into registers before

* Review: format + micro-optimizations

* Fix bug: fix tie breakers

* Add optional norm + clean-up code

* Use smem for final write

* Add bounds check

* Use better memory pattern for writeback
2025-09-25 16:35:05 +02:00
Daniel Bevenius
aa3ee0eb0b model-conversion : add embedding prompt file support (#15871)
This commit adds support for passing a prompt file to the model
conversion targets/scripts. It also updates the logits.cpp to print out
embedding information in the same format as when running the original
embedding model.

The motivation for this is that it allows us to pass files of different
sizes when running the converted models and validating the logits.

This can be particularly important when testing the sliding window
functionality of models where the sequence length needs to exceed a
certain number of tokens to trigger the sliding window logic.
2025-09-25 12:02:36 +02:00
Daniel Bevenius
d0991da39d server : add support for external server for tests (#16243)
This commit adds support for using an externally started llama-server
instance for the server tests. This can be enabled by setting the
DEBUG_EXTERNAL environment variable.

The motivation for this is to allow debugging of the server itself
when investigating a test failure. Instructions for how to do this are
added to the README.md file in the tests directory.
2025-09-25 11:36:47 +02:00
junchao-zhao
aa719c2f88 ggml : fix loongarch lsx compilation error (#15864) 2025-09-25 12:22:55 +03:00
Johannes Gäßler
4cdd0bb453 docs: fix typo [no ci] (#16244) 2025-09-25 12:12:27 +03:00
Douglas Hanley
b5bd037832 llama : add support for qwen3 reranker (#15824) 2025-09-25 11:53:09 +03:00
Georgi Gerganov
dfcd53f7ec metal : fuse NORM + MUL + ADD, support non-multiples of 4 (#16220)
* metal : fuse NORM + MUL + ADD

* metal : support norms of non-multiple of 4

* cont : fix comment [no ci]
2025-09-25 11:30:16 +03:00
Georgi Gerganov
4ea00794b8 metal : relax reorder conditions (#16216) 2025-09-25 11:29:42 +03:00
Georgi Gerganov
02a6a82ae7 metal : restore im2col perf (#16219) 2025-09-25 11:29:08 +03:00
Radoslav Gerganov
c498fc82fe rpc : use ggml logging facilities
Use RPC_DEBUG environment variable to enable debug messages.
Add helper macro LOG_DBG() which does an early
check of the env var before calling GGML_LOG_DEBUG().
Make sure we log a debug message for every server function.
2025-09-25 07:20:02 +00:00
Aaron Teo
e7a5130a20 codeowners: add ownership of zdnn backend [no ci] (#16232)
add @Andreas-Krebbel to owners of zDNN backend

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 08:06:30 +03:00
Eve
bee378e098 ci: run the x64 and arm ci on the github machines instead (#16183)
* run the x64 ci on regular machines

* set up the same thing for arm

fix test-quantize-perf just like #12306

* try to disable sve

* add another sve run
2025-09-25 08:06:06 +03:00
Aaron Teo
5fb557653b devops: fix s390x docker release failure (#16231) 2025-09-25 11:36:30 +08:00
Aaron Teo
4ae88d07d0 codeowners: add ownership of zdnn backend [no ci] (#16229)
add @AlekseiNikiforovIBM to owners of zDNN backend

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-25 00:25:04 +08:00
Johannes Gäßler
e789095502 llama: print memory breakdown on exit (#15860)
* llama: print memory breakdown on exit
2025-09-24 16:53:48 +02:00
Acly
f2a789e334 ggml : split graph allocations according to backend max buffer size (#15815)
* ggml : make gallocr respect the backend's max buffer size

* if the graph requires more memory than can fit into a single allocation, split it into multiple backend buffers
* vulkan: report the actual max  allocation size in buffer type  interface

* fix missing newline, apple-clang warning

* track size of individual chunks in ggml_dyn_tallocr and raise max chunks.
revert to use suballocation_block_size as max chunk size for vulkan.

* track (chunk, offset) pairs instead of "global" offsets through gallocr.

* simpler, don't need loops to map between local/global offsets
* touches more code

* fix dyn_tallocr_max_size and initialization

* fix memory leak when buffers are reused due to same buffer type appearing multiple times

* make vbuffer allocation follow the same logic as backend_buffer did before

* continue to use leftover unallocated space of previous chunks after a new one has been created

* treat free blocks of each chunk as separate list
* they're still allocated together, but start/end of each chunk is tracked, and allocate/free iterate over sub-ranges
* exhaust freed blocks of all chunks before considering their last blocks with unallocated space
* start with 0 chunks/blocks and create chunks as needed
* allow the last chunk to grow beyond max size

* refactor: move adding new free block and new chunk into separate functions

* allocate chunks individually with a separate free-blocks list for each one

* needs a bit more memory/allocations/indirections, but code is simpler

* fix warnings (missing static) & debug checks
2025-09-24 16:17:49 +02:00
Tarek Dakhran
3a59971967 model : add label for LiquidAI LFM2-2.6B model (#16204)
* model : add label for LiquidAI LFM2-2.6B model

HF link: [LiquidAI/LFM2-2.6B](https://huggingface.co/LiquidAI/LFM2-2.6B).

Support for GGUF conversion and inference is added in #14620.

However, due to similar `n_embd`, it identifies as a 1.2B model.
Fix the label by using `n_ff` to identify the model instead.

Output of `llama-bench`:
```
| model                          |       size |     params | backend    | threads |            test |                  t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | --------------: | -------------------: |
| lfm2 1.2B F16                  |   2.18 GiB |     1.17 B | CPU        |      10 |           pp512 |        223.97 ± 5.32 |
| lfm2 2.6B F16                  |   4.79 GiB |     2.57 B | CPU        |      10 |           pp512 |         92.53 ± 4.14 |
| lfm2 350M F16                  | 676.25 MiB |   354.48 M | CPU        |      10 |           pp512 |       725.52 ± 11.70 |
| lfm2 700M F16                  |   1.38 GiB |   742.49 M | CPU        |      10 |           pp512 |       336.22 ± 12.93 |
```

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-24 13:42:26 +02:00
Jie Fu (傅杰)
63b54c81a6 model-conversion : make causal-verify-logits fails with model names containing "." (#16215)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 10:25:26 +02:00
Uilian Ries
152729f884 common : add missing chrono header for common.cpp (#16211)
Signed-off-by: Uilian Ries <uilianries@gmail.com>
2025-09-24 09:53:47 +03:00
Sigbjørn Skjæret
c0c59c1157 codeowners : match all requirements files (#16214) 2025-09-24 08:53:20 +02:00
Jie Fu (傅杰)
7735706b93 model-conversion : run-org-model.py fails to run on mac m1 (#16213)
Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 08:46:52 +02:00
Daniel Bevenius
4d9ea03d17 codeowners : use slash prefix for root files [no ci] (#16210)
This commit adds a leading slash to the paths of root-level files
in the CODEOWNERS file.

The motivation for this is that these might otherwise match files
in subdirectories that have other/additional owners will override them.

Refs: https://github.com/ggml-org/llama.cpp/pull/16209#issuecomment-3326434274
2025-09-24 08:10:09 +02:00
Jie Fu (傅杰)
8ba548dae2 model-conversion : fix the make targets in the README.md (#16209)
Fix two incorrect make targets in the readme.

Signed-off-by: Jie Fu <jiefu@tencent.com>
2025-09-24 06:19:23 +02:00
Georgi Gerganov
f505bd83ca ci : disable AMD workflows + update NVIDIA workflows (#16200)
* ci : disable AMD workflows + update NVIDIA workflows

* cont : fixes

* cont : update nvidia vulkan workflows
2025-09-23 20:41:40 +03:00
Georgi Gerganov
0889589dbe ci : enable Vulkan workflow on Mac (#16194) 2025-09-23 13:44:25 +03:00
866 changed files with 176931 additions and 55907 deletions

View File

@@ -49,7 +49,7 @@ RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh --force \
# -- Organize build artifacts for copying in later stages --
# Create a lib directory to store all .so files
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
# Create a full directory to store all executables and Python scripts
RUN mkdir -p /app/full && \

View File

@@ -20,7 +20,7 @@ RUN if [ "$TARGETARCH" = "amd64" ] || [ "$TARGETARCH" = "arm64" ]; then \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -25,7 +25,7 @@ RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
@@ -21,7 +21,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
@@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\

View File

@@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.2.0
ARG MUSA_VERSION=rc4.3.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64
@@ -32,7 +32,7 @@ RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -34,6 +34,7 @@
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
useRpc ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
@@ -128,10 +129,6 @@ effectiveStdenv.mkDerivation (finalAttrs: {
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
@@ -179,6 +176,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
(cmakeBool "GGML_RPC" useRpc)
]
++ optionals useCuda [
(

View File

@@ -1,8 +1,8 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
ARG ROCM_VERSION=7.0
ARG AMDGPU_VERSION=7.0
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
@@ -13,9 +13,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
#ARG ROCM_DOCKER_ARCH='gfx1151'
@@ -36,20 +35,17 @@ WORKDIR /app
COPY . .
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \
&& find build -name "*.so" -exec cp {} /app/lib \;
&& find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -2,10 +2,10 @@ ARG GCC_VERSION=15.2.0
ARG UBUNTU_VERSION=24.04
### Build Llama.cpp stage
FROM --platform=linux/s390x gcc:${GCC_VERSION} AS build
FROM gcc:${GCC_VERSION} AS build
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt/lists \
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt upgrade -y && \
apt install -y --no-install-recommends \
@@ -24,8 +24,9 @@ RUN --mount=type=cache,target=/root/.ccache \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_BACKEND_DL=OFF \
-DGGML_NATIVE=OFF \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS && \
cmake --build build --config Release -j $(nproc) && \
@@ -40,7 +41,7 @@ COPY requirements /opt/llama.cpp/gguf-py/requirements
### Collect all llama.cpp binaries, libraries and distro libraries
FROM --platform=linux/s390x scratch AS collector
FROM scratch AS collector
# Copy llama.cpp binaries and libraries
COPY --from=build /opt/llama.cpp/bin /llama.cpp/bin
@@ -49,13 +50,14 @@ COPY --from=build /opt/llama.cpp/gguf-py /llama.cpp/gguf-py
### Base image
FROM --platform=linux/s390x ubuntu:${UBUNTU_VERSION} AS base
FROM ubuntu:${UBUNTU_VERSION} AS base
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt/lists \
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y --no-install-recommends \
# WARNING: Do not use libopenblas-openmp-dev. libopenblas-dev is faster.
# See: https://github.com/ggml-org/llama.cpp/pull/15915#issuecomment-3317166506
curl libgomp1 libopenblas-dev && \
apt autoremove -y && \
apt clean -y && \
@@ -68,13 +70,13 @@ COPY --from=collector /llama.cpp/lib /usr/lib/s390x-linux-gnu
### Full
FROM --platform=linux/s390x base AS full
FROM base AS full
ENV PATH="/root/.cargo/bin:${PATH}"
WORKDIR /app
RUN --mount=type=cache,target=/var/cache/apt \
--mount=type=cache,target=/var/lib/apt/lists \
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y \
git cmake libjpeg-dev \
@@ -97,24 +99,26 @@ ENTRYPOINT [ "/app/tools.sh" ]
### CLI Only
FROM --platform=linux/s390x base AS light
FROM base AS light
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]
### Server
FROM --platform=linux/s390x base AS server
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-server /llama.cpp/bin
EXPOSE 8080

View File

@@ -1,4 +1,4 @@
ARG UBUNTU_VERSION=24.04
ARG UBUNTU_VERSION=25.10
FROM ubuntu:$UBUNTU_VERSION AS build
@@ -7,36 +7,20 @@ FROM ubuntu:$UBUNTU_VERSION AS build
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget xz-utils
# Install Vulkan SDK
ARG VULKAN_VERSION=1.4.321.1
RUN ARCH=$(uname -m) && \
wget -qO /tmp/vulkan-sdk.tar.xz https://sdk.lunarg.com/sdk/download/${VULKAN_VERSION}/linux/vulkan-sdk-linux-${ARCH}-${VULKAN_VERSION}.tar.xz && \
mkdir -p /opt/vulkan && \
tar -xf /tmp/vulkan-sdk.tar.xz -C /tmp --strip-components=1 && \
mv /tmp/${ARCH}/* /opt/vulkan/ && \
rm -rf /tmp/*
# Install cURL and Vulkan SDK dependencies
RUN apt install -y libcurl4-openssl-dev curl \
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev
# Set environment variables
ENV VULKAN_SDK=/opt/vulkan
ENV PATH=$VULKAN_SDK/bin:$PATH
ENV LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
ENV CMAKE_PREFIX_PATH=$VULKAN_SDK:$CMAKE_PREFIX_PATH
ENV PKG_CONFIG_PATH=$VULKAN_SDK/lib/pkgconfig:$PKG_CONFIG_PATH
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libvulkan-dev glslc
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
@@ -50,7 +34,7 @@ RUN mkdir -p /app/full \
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@@ -60,3 +60,11 @@ end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[benches/**]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

36
.github/actions/install-exe/action.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
name: "Install exe"
description: "Download and install exe"
inputs:
url:
description: "URL of the exe installer"
required: true
args:
description: "Installer arguments"
required: true
timeout:
description: "Timeout (in ms)"
required: false
default: "600000"
runs:
using: "composite"
steps:
- name: Install EXE
shell: pwsh
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading Installer EXE"
Invoke-WebRequest -Uri "${{ inputs.url }}" -OutFile "${env:RUNNER_TEMP}\temp-install.exe"
write-host "Installing"
$proc = Start-Process "${env:RUNNER_TEMP}\temp-install.exe" -ArgumentList '${{ inputs.args }}' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(${{ inputs.timeout }})
if (-not $completed) {
Write-Error "Installer timed out. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "Installer failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed installation"

View File

@@ -0,0 +1,20 @@
name: "Linux - Setup SpacemiT Toolchain"
description: "Setup SpacemiT Toolchain for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "SpacemiT toolchain version"
required: true
runs:
using: "composite"
steps:
- name: Setup SpacemiT Toolchain
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v${{ inputs.version }}.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -0,0 +1,20 @@
name: "Linux - Setup Vulkan SDK"
description: "Setup Vulkan SDK for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "Vulkan SDK version"
required: true
runs:
using: "composite"
steps:
- name: Setup Vulkan SDK
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://sdk.lunarg.com/sdk/download/${{ inputs.version }}/linux/vulkan_sdk.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -0,0 +1,27 @@
name: "Unarchive tar"
description: "Download and unarchive tar into directory"
inputs:
url:
description: "URL of the tar archive"
required: true
path:
description: "Directory to unarchive into"
required: true
type:
description: "Compression type (tar option)"
required: false
default: "J"
strip:
description: "Strip components"
required: false
default: "0"
runs:
using: "composite"
steps:
- name: Unarchive into directory
shell: bash
run: |
mkdir -p ${{ inputs.path }}
cd ${{ inputs.path }}
curl --no-progress-meter ${{ inputs.url }} | tar -${{ inputs.type }}x --strip-components=${{ inputs.strip }}

View File

@@ -0,0 +1,15 @@
name: "Windows - Setup ROCm"
description: "Setup ROCm for Windows"
inputs:
version:
description: "ROCm version"
required: true
runs:
using: "composite"
steps:
- name: Setup ROCm
uses: ./.github/actions/install-exe
with:
url: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ inputs.version }}-WinSvr2022-For-HIP.exe
args: -install

4
.github/labeler.yml vendored
View File

@@ -76,6 +76,10 @@ ggml:
- changed-files:
- any-glob-to-any-file:
- ggml/**
model:
- changed-files:
- any-glob-to-any-file:
- src/models/**
nix:
- changed-files:
- any-glob-to-any-file:

52
.github/workflows/build-amd.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: CI (AMD)
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'.github/workflows/build-amd.yml',
'**/CMakeLists.txt',
'**/.cmake',
'**/*.h',
'**/*.hpp',
'**/*.c',
'**/*.cpp',
'**/*.cu',
'**/*.cuh',
'**/*.comp'
]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp

89
.github/workflows/build-cache.yml vendored Normal file
View File

@@ -0,0 +1,89 @@
name: Build Actions Cache
on:
workflow_dispatch: # allows manual triggering
schedule:
- cron: '0 * * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ubuntu-24-vulkan-cache:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Setup Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
ubuntu-24-spacemit-cache:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-linux-cross.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
windows-2022-rocm-cache:
runs-on: windows-2022
env:
# Make sure this is in sync with build.yml
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-rocm
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Setup ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
uses: ./.github/actions/windows-setup-rocm
with:
version: ${{ env.HIPSDK_INSTALLER_VERSION }}

View File

@@ -4,49 +4,49 @@ on:
workflow_call:
jobs:
ubuntu-24-riscv64-cpu-cross:
runs-on: ubuntu-24.04
# ubuntu-24-riscv64-cpu-cross:
# runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
# steps:
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo dpkg --add-architecture riscv64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# cmake --build build --config Release -j $(nproc)
# ubuntu-24-riscv64-vulkan-cross:
# runs-on: ubuntu-24.04
@@ -141,97 +141,6 @@ jobs:
# cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-cpu-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup PowerPC64le
run: |
sudo dpkg --add-architecture ppc64el
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# ubuntu-24-ppc64el-vulkan-cross:
# runs-on: ubuntu-24.04
# steps:
# - uses: actions/checkout@v4
# - name: Setup PowerPC64le
# run: |
# sudo dpkg --add-architecture ppc64el
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# gcc-14-powerpc64le-linux-gnu \
# g++-14-powerpc64le-linux-gnu \
# libvulkan-dev:ppc64el
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=ppc64 \
# -DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
@@ -344,3 +253,45 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-riscv64-cpu-spacemit-ime-cross:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-cache.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- uses: actions/checkout@v4
- name: Use SpacemiT Toolchain Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
- name: Build
run: |
export RISCV_ROOT_PATH=${PWD}/spacemit_toolchain
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
cmake --build build --config Release -j $(nproc)

View File

@@ -58,3 +58,63 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -97,7 +97,7 @@ jobs:
ctest -L 'main|curl' --verbose --timeout 900
macOS-latest-cmake-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -161,15 +161,16 @@ jobs:
- name: Dawn Dependency
id: dawn-depends
run: |
DAWN_VERSION="v1.0.0"
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-macos-latest-Release.tar.gz"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar -xvf artifact.tar.gz -C dawn --strip-components=1
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@@ -192,6 +193,10 @@ jobs:
os: ubuntu-22.04
- build: 'arm64'
os: ubuntu-22.04-arm
- build: 's390x'
os: ubuntu-24.04-s390x
- build: 'ppc64le'
os: ubuntu-24.04-ppc64le
runs-on: ${{ matrix.os }}
@@ -203,14 +208,31 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Dependencies
id: depends
- name: Build Dependencies
id: build_depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install -y --no-install-recommends \
python3 python3-pip python3-dev \
libjpeg-dev build-essential libcurl4-openssl-dev \
git-lfs
- name: Python Dependencies
id: python_depends
run: |
python3 -m pip install --upgrade pip
pip3 install ./gguf-py
- name: Swap Endianness
id: endianness
if: ${{ matrix.build == 's390x' }}
run: |
for f in models/*.gguf; do
echo YES | python3 gguf-py/gguf/scripts/gguf_convert_endian.py $f big
done
- name: Build
id: cmake_build
@@ -228,6 +250,7 @@ jobs:
- name: Test llama2c conversion
id: llama2c_test
if: ${{ matrix.build != 's390x' }}
run: |
cd build
echo "Fetch tokenizer"
@@ -237,6 +260,15 @@ jobs:
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Test llama2c (s390x)
id: llama2c_test_s390x
if: ${{ matrix.build == 's390x' }}
run: |
cd build
echo "Fetch llama2c big-endian model"
wget https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories260K-be.gguf
./bin/llama-cli -m stories260K-be.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -331,11 +363,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-rpc
evict-old-files: 1d
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: ubuntu-latest-cmake-rpc
# evict-old-files: 1d
- name: Dependencies
id: depends
@@ -356,8 +388,8 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
ubuntu-24-cmake-vulkan-deb:
runs-on: ubuntu-24.04
steps:
- name: Clone
@@ -367,20 +399,72 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
key: ubuntu-24-cmake-vulkan-deb
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y glslc libvulkan-dev libcurl4-openssl-dev
- name: Configure
id: cmake_configure
run: |
cmake -B build \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_VULKAN=ON
- name: Build
id: cmake_build
run: |
cmake --build build -j $(nproc)
ubuntu-24-cmake-vulkan:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-24-cmake-vulkan
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Use Vulkan SDK Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
- name: Build
id: cmake_build
run: |
source ./vulkan_sdk/setup-env.sh
cmake -B build \
-DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc)
@@ -390,11 +474,12 @@ jobs:
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ubuntu-22-cmake-webgpu:
runs-on: ubuntu-22.04
ubuntu-24-cmake-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
@@ -404,30 +489,49 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-webgpu
key: ubuntu-24-cmake-webgpu
evict-old-files: 1d
- name: Vulkan SDK Dependencies
id: vulkan-depends
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Use Vulkan SDK Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
- name: Dawn Dependency
id: dawn-depends
run: |
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
DAWN_VERSION="v1.0.0"
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-ubuntu-latest-Release.tar.gz"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar -xvf artifact.tar.gz -C dawn --strip-components=1
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@@ -456,7 +560,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -475,7 +579,7 @@ jobs:
ubuntu-22-cmake-musa:
runs-on: ubuntu-22.04
container: mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
container: mthreads/musa:rc4.3.0-devel-ubuntu22.04-amd64
steps:
- name: Clone
@@ -1028,7 +1132,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
@@ -1059,6 +1163,7 @@ jobs:
env:
# The ROCm version must correspond to the version used in the HIP SDK.
ROCM_VERSION: "6.4.2"
# Make sure this is in sync with build-cache.yml
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
@@ -1066,38 +1171,25 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/${{ env.ROCM_VERSION }}/pool/main/r/rocwmma-dev/rocwmma-dev_1.7.0.60402-120~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
- name: Use ROCm Installation Cache
uses: actions/cache@v4
id: cache-rocm
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Install ROCm
- name: Setup ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
uses: ./.github/actions/windows-setup-rocm
with:
version: ${{ env.HIPSDK_INSTALLER_VERSION }}
- name: Verify ROCm
id: verify
@@ -1130,8 +1222,9 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `
@@ -1191,11 +1284,12 @@ jobs:
- name: Clone
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: android-build
evict-old-files: 1d
# Disabled due to size (400MB) and always 0 cache hits
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: android-build
# evict-old-files: 1d
- name: Set up JDK
uses: actions/setup-java@v3
@@ -1213,6 +1307,81 @@ jobs:
cd examples/llama.android
./gradlew build --no-daemon
android-ndk-build:
runs-on: ubuntu-latest
env:
OPENCL_VERSION: 2025.07.22
strategy:
matrix:
include:
- build: 'arm64-cpu'
defines: '-D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF -D GGML_OPENMP=OFF'
- build: 'arm64-snapdragon'
defines: '--preset arm64-android-snapdragon-release'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
mkdir opencl
curl -L -o opencl/clhpp.tar.gz https://github.com/KhronosGroup/OpenCL-CLHPP/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/headers.tar.gz https://github.com/KhronosGroup/OpenCL-Headers/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
curl -L -o opencl/icd-loader.tar.gz https://github.com/KhronosGroup/OpenCL-ICD-Loader/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
tar -xaf opencl/headers.tar.gz -C opencl
tar -xaf opencl/clhpp.tar.gz -C opencl
tar -xaf opencl/icd-loader.tar.gz -C opencl
sudo cp -r opencl/OpenCL-Headers-${OPENCL_VERSION}/CL ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
sudo cp -r opencl/OpenCL-CLHPP-${OPENCL_VERSION}/include/CL/* ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/CL
cd opencl/OpenCL-ICD-Loader-${OPENCL_VERSION}
cmake -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -DOPENCL_ICD_LOADER_HEADERS_DIR=${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=31 -DANDROID_STL=c++_shared
cmake --build build
sudo cp build/libOpenCL.so ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
rm -rf opencl
- name: Install Hexagon SDK
id: install_hexsdk
if: ${{ matrix.build == 'arm64-snapdragon' }}
env:
HEXSDK_VER: 6.4.0.2
HEXTLS_VER: 19.0.04
run: |
curl -L -o hex-sdk.tar.gz https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v$HEXSDK_VER/hexagon-sdk-v$HEXSDK_VER-amd64-lnx.tar.xz
mkdir hex-sdk
tar -xaf hex-sdk.tar.gz -C hex-sdk
ls -l hex-sdk
sudo mv hex-sdk /opt/hexagon
echo "HEXAGON_SDK_ROOT=/opt/hexagon/$HEXSDK_VER" >> "$GITHUB_ENV"
echo "HEXAGON_TOOLS_ROOT=/opt/hexagon/$HEXSDK_VER/tools/HEXAGON_Tools/$HEXTLS_VER" >> "$GITHUB_ENV"
echo "DEFAULT_HLOS_ARCH=64" >> "$GITHUB_ENV"
echo "DEFAULT_TOOLS_VARIANT=toolv19" >> "$GITHUB_ENV"
echo "DEFAULT_NO_QURT_INC=0" >> "$GITHUB_ENV"
echo "DEFAULT_DSP_ARCH=v73" >> "$GITHUB_ENV"
- name: Update CMake presets
id: update_presets
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
cp docs/backend/hexagon/CMakeUserPresets.json .
- name: Build
id: ndk_build
run: |
cmake ${{ matrix.defines }} -B build
cmake --build build
cmake --install build --prefix pkg-adb/llama.cpp
- name: Test
id: cmake_test
run: |
echo "FIXME: test on devices"
openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
@@ -1251,59 +1420,132 @@ jobs:
# TODO: simplify the following workflows using a matrix
# TODO: run lighter CI on PRs and the full CI only on master (if needed)
ggml-ci-x64-cpu-low-perf:
runs-on: [self-hosted, Linux, X64, CPU, low-perf]
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-x64-cpu-low-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_LOW_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-low-perf:
runs-on: [self-hosted, Linux, ARM64, CPU, low-perf]
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-low-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_LOW_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-x64-cpu-high-perf:
runs-on: [self-hosted, Linux, X64, CPU, high-perf]
runs-on: ubuntu-22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-x64-cpu-high-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf:
runs-on: [self-hosted, Linux, ARM64, CPU, high-perf]
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-high-perf
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-x64-nvidia-v100-cuda:
runs-on: [self-hosted, Linux, X64, NVIDIA, V100]
ggml-ci-arm64-cpu-high-perf-sve:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-high-perf-sve
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-x64-nvidia-cuda:
runs-on: [self-hosted, Linux, X64, NVIDIA]
steps:
- name: Clone
@@ -1316,8 +1558,8 @@ jobs:
nvidia-smi
GG_BUILD_CUDA=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-v100-vulkan:
runs-on: [self-hosted, Linux, X64, NVIDIA, V100]
ggml-ci-x64-nvidia-vulkan-cm:
runs-on: [self-hosted, Linux, X64, NVIDIA]
steps:
- name: Clone
@@ -1327,51 +1569,23 @@ jobs:
- name: Test
id: ggml-ci
run: |
vulkaninfo
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-t4-cuda:
runs-on: [self-hosted, Linux, X64, NVIDIA, T4]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
nvidia-smi
GG_BUILD_CUDA=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-t4-vulkan:
runs-on: [self-hosted, Linux, X64, NVIDIA, T4]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-t4-vulkan-coopmat1:
runs-on: [self-hosted, Linux, X64, NVIDIA, T4]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo
vulkaninfo --summary
GG_BUILD_VULKAN=1 GGML_VK_DISABLE_COOPMAT2=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-nvidia-vulkan-cm2:
runs-on: [self-hosted, Linux, X64, NVIDIA, COOPMAT2]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-cpu-amx:
runs-on: [self-hosted, Linux, X64, CPU, AMX]
@@ -1385,32 +1599,6 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-v710-vulkan:
runs-on: [self-hosted, Linux, X64, AMD, V710]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-v710-rocm:
runs-on: [self-hosted, Linux, X64, AMD, V710]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@@ -1424,16 +1612,89 @@ jobs:
run: |
GG_BUILD_METAL=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
# TODO: install vulkan drivers
# ggml-ci-mac-vulkan:
# runs-on: [self-hosted, macOS, ARM64]
#
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
#
# - name: Test
# id: ggml-ci
# run: |
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-mac-vulkan:
runs-on: [self-hosted, macOS, ARM64]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-arm64-cpu-kleidiai:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-kleidiai
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-graviton4-kleidiai:
runs-on: ah-ubuntu_22_04-c8g_8x
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
set -euxo pipefail
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive NEEDRESTART_MODE=a \
apt-get install -y \
build-essential \
libcurl4-openssl-dev \
python3-venv \
gpg \
wget \
time \
git-lfs
git lfs install
# install the latest cmake
sudo install -d /usr/share/keyrings
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc \
| gpg --dearmor \
| sudo tee /usr/share/keyrings/kitware-archive-keyring.gpg >/dev/null
echo 'deb [signed-by=/usr/share/keyrings/kitware-archive-keyring.gpg] https://apt.kitware.com/ubuntu/ jammy main' \
| sudo tee /etc/apt/sources.list.d/kitware.list
sudo apt-get update
sudo apt-get install -y cmake
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-graviton4-kleidiai
evict-old-files: 1d
- name: Test
id: ggml-ci
run: |
GG_BUILD_KLEIDIAI=1 \
GG_BUILD_EXTRA_TESTS_0=1 \
bash ./ci/run.sh ./tmp/results ./tmp/mnt

52
.github/workflows/check-vendor.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Check vendor
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'vendor/**',
'scripts/sync_vendor.py'
]
pull_request:
types: [opened, synchronize, reopened]
paths: [
'vendor/**',
'scripts/sync_vendor.py'
]
jobs:
check-vendor:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Run vendor sync
run: |
set -euo pipefail
python3 scripts/sync_vendor.py
- name: Check for changes
run: |
set -euo pipefail
# detect modified or untracked files
changed=$(git status --porcelain --untracked-files=all || true)
if [ -n "$changed" ]; then
echo "Vendor sync modified files:"
echo "$changed" | awk '{ print $2 }' | sed '/^$/d'
echo "Failing because vendor files mismatch. Please update scripts/sync_vendor.py"
exit 1
else
echo "Vendor files are up-to-date."
fi

View File

@@ -28,7 +28,7 @@ jobs:
push_to_registry:
name: Push Docker image to Docker Hub
runs-on: ubuntu-22.04
runs-on: ${{ matrix.config.runs_on }}
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
@@ -39,12 +39,12 @@ jobs:
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04-s390x" }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
@@ -54,6 +54,7 @@ jobs:
fetch-depth: 0 # preserve git history, so we can determine the build number
- name: Set up QEMU
if: ${{ matrix.config.tag != 's390x' }}
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
@@ -68,22 +69,19 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Determine tag name
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Determine image tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
REPO_NAME="${{ github.event.repository.name }}"
# determine tag name postfix (build number, commit hash)
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
TAG_POSTFIX="-b${BUILD_NUMBER}"
else
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
fi
# list all tags possible
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
TYPE=""
@@ -91,17 +89,19 @@ jobs:
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
CACHETAGS="${PREFIX}buildcache${TYPE}"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "cache_output_tags=$CACHETAGS" # print out for debugging
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
env:
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Free Disk Space (Ubuntu)
@@ -134,11 +134,14 @@ jobs:
target: full
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
@@ -153,11 +156,14 @@ jobs:
target: light
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
@@ -172,8 +178,37 @@ jobs:
target: server
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
create_tag:
name: Create and push git tag
runs-on: ubuntu-22.04
permissions:
contents: write
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Create and push git tag
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git tag ${{ steps.srctag.outputs.name }} || exit 0
git push origin ${{ steps.srctag.outputs.name }} || exit 0

View File

@@ -75,7 +75,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -134,6 +134,8 @@ jobs:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 's390x'
os: ubuntu-24.04-s390x
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64'
# os: ubuntu-22.04-arm
@@ -150,7 +152,7 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Dependencies
@@ -462,7 +464,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
@@ -505,6 +507,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
@@ -513,10 +516,15 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
@@ -543,10 +551,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@@ -601,7 +611,7 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `

View File

@@ -209,7 +209,7 @@ jobs:
working-directory: tools/server/webui
- name: Run UI tests
run: npm run test:ui
run: npm run test:ui -- --testTimeout=60000
working-directory: tools/server/webui
- name: Run E2E tests

View File

@@ -3,10 +3,12 @@ name: Update Operations Documentation
on:
push:
paths:
- 'docs/ops.md'
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'
pull_request:
paths:
- 'docs/ops.md'
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'

4
.gitignore vendored
View File

@@ -149,6 +149,6 @@ poetry.toml
/run-chat.sh
.ccache/
# Code Workspace
# IDE
*.code-workspace
.windsurf/

View File

@@ -1,7 +0,0 @@
---
trigger: manual
---
#### Tailwind & CSS
- We are using Tailwind v4 which uses oklch colors so we now want to refer to the CSS vars directly, without wrapping it with any color function like `hsla/hsl`, `rgba` etc.

View File

@@ -1,48 +0,0 @@
---
trigger: manual
---
# Coding rules
## Svelte & SvelteKit
### Services vs Stores Separation Pattern
#### `lib/services/` - Pure Business Logic
- **Purpose**: Stateless business logic and external communication
- **Contains**:
- API calls to external services (ApiService)
- Pure business logic functions (ChatService, etc.)
- **Rules**:
- NO Svelte runes ($state, $derived, $effect)
- NO reactive state management
- Pure functions and classes only
- Can import types but not stores
- Focus on "how" - implementation details
#### `lib/stores/` - Reactive State Management
- **Purpose**: Svelte-specific reactive state with runes
- **Contains**:
- Reactive state classes with $state, $derived, $effect
- Database operations (DatabaseStore)
- UI-focused state management
- Store orchestration logic
- **Rules**:
- USE Svelte runes for reactivity
- Import and use services for business logic
- NO direct database operations
- NO direct API calls (use services)
- Focus on "what" - reactive state for UI
#### Enforcement
- Services should be testable without Svelte
- Stores should leverage Svelte's reactivity system
- Clear separation: services handle data, stores handle state
- Services can be reused across multiple stores
#### Misc
- Always use `let` for $derived state variables

View File

@@ -1,9 +0,0 @@
---
trigger: manual
---
# Automated Tests
## General rules
- NEVER include any test code in the production code - we should always have it in a separate dedicated files

View File

@@ -1,7 +0,0 @@
---
trigger: manual
---
## TypeScript
- Add JSDocs for functions

View File

@@ -92,6 +92,8 @@ option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_HTTPLIB "llama: if libcurl is disabled, use httplib to download model from an URL" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
@@ -199,6 +201,9 @@ endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
if (LLAMA_HTTPLIB)
add_subdirectory(vendor/cpp-httplib)
endif()
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)

View File

@@ -2,7 +2,7 @@
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren
/.github/actions/ @slaren @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
@@ -14,6 +14,7 @@
/common/build-info.* @ggerganov
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/sampling.* @ggerganov
@@ -50,20 +51,28 @@
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-zdnn/ @taronaeo
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
@@ -80,6 +89,7 @@
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
@@ -89,18 +99,20 @@
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
.clang-format @slaren
.clang-tidy @slaren
AUTHORS @ggerganov
CMakeLists.txt @ggerganov
CONTRIBUTING.md @ggerganov
LICENSE @ggerganov
README.md @ggerganov
SECURITY.md @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov
/LICENSE @ggerganov
/README.md @ggerganov
/SECURITY.md @ggerganov
/build-xcframework.sh @danbev
requirements*.txt @CISC

View File

@@ -25,7 +25,7 @@ The project differentiates between 3 levels of contributors:
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Let other maintainers, merge their own PRs
- Let other maintainers merge their own PRs
- When merging a PR, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)

View File

@@ -17,14 +17,13 @@ LLM inference in C/C++
## Hot topics
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
- **[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
- **[guide : using the new WebUI of llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/16938)**
- [guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)
- [[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
@@ -84,6 +83,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [x] [Jamba](https://huggingface.co/ai21labs)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
@@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86)
#### Multimodal
@@ -178,6 +179,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Java: [QuasarByte/llama-cpp-jna](https://github.com/QuasarByte/llama-cpp-jna)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
@@ -186,6 +188,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
</details>
@@ -277,6 +280,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
## Obtaining and quantizing models

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
{
"chars": 2296.1916666666666,
"chars:std": 986.051306946325,
"score": 0.925,
"score:std": 0.26339134382131846
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,264 @@
## System info
```bash
uname --all
Linux spark-17ed 6.11.0-1016-nvidia #16-Ubuntu SMP PREEMPT_DYNAMIC Sun Sep 21 16:52:46 UTC 2025 aarch64 aarch64 aarch64 GNU/Linux
g++ --version
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
nvidia-smi
Sun Nov 2 10:43:25 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
```
## ggml-org/gpt-oss-20b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
build: eeee367de (6989)
## ggml-org/gpt-oss-120b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
build: eeee367de (6989)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
build: eeee367de (6989)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
build: eeee367de (6989)
## ggml-org/gemma-3-4b-it-qat-GGUF
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
build: eeee367de (6989)

File diff suppressed because one or more lines are too long

View File

@@ -422,6 +422,7 @@ echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
@@ -453,6 +454,8 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -467,6 +470,8 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet

View File

@@ -21,7 +21,7 @@ docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc4.2.0-devel-ubuntu22.04-amd64
mthreads/musa:rc4.3.0-devel-ubuntu22.04-amd64
```
Inside the container, execute the following commands:

View File

@@ -22,6 +22,9 @@
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with KLEIDIAI support
# GG_BUILD_KLEIDIAI=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -34,9 +37,9 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -f $OUT/*.log
rm -f $OUT/*.exit
rm -f $OUT/*.md
sd=`dirname $0`
cd $sd/../
@@ -72,7 +75,7 @@ if [ ! -z ${GG_BUILD_ROCM} ]; then
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DAMDGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
@@ -92,6 +95,12 @@ fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
# if on Mac, disable METAL
if [[ "$OSTYPE" == "darwin"* ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=OFF -DGGML_BLAS=OFF"
fi
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
@@ -103,6 +112,45 @@ if [ ! -z ${GG_BUILD_MUSA} ]; then
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
if [ ! -z ${GG_BUILD_NO_SVE} ]; then
# arm 9 and newer enables sve by default, adjust these flags depending on the cpu used
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm"
fi
if [ -n "${GG_BUILD_KLEIDIAI}" ]; then
echo ">>===== Enabling KleidiAI support"
CANDIDATES=(
"armv9-a+dotprod+i8mm+sve2"
"armv9-a+dotprod+i8mm"
"armv8.6-a+dotprod+i8mm"
"armv8.2-a+dotprod"
)
CPU=""
for cpu in "${CANDIDATES[@]}"; do
if echo 'int main(){}' | ${CXX:-c++} -march="$cpu" -x c++ - -c -o /dev/null >/dev/null 2>&1; then
CPU="$cpu"
break
fi
done
if [ -z "$CPU" ]; then
echo "ERROR: None of the required ARM baselines (armv9/armv8.6/armv8.2 + dotprod) are supported by this compiler."
exit 1
fi
echo ">>===== Using ARM baseline: ${CPU}"
CMAKE_EXTRA="${CMAKE_EXTRA:+$CMAKE_EXTRA } \
-DGGML_NATIVE=OFF \
-DGGML_CPU_KLEIDIAI=ON \
-DGGML_CPU_AARCH64=ON \
-DGGML_CPU_ARM_ARCH=${CPU} \
-DBUILD_SHARED_LIBS=OFF"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -339,16 +387,16 @@ function gg_run_qwen3_0_6b {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_bf16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_bf16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_bf16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_bf16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_bf16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_bf16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_bf16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_bf16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_bf16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_bf16} ${model_q6_k} q6_k
./bin/llama-quantize ${model_bf16} ${model_q8_0} q8_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_0} q4_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_1} q4_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_0} q5_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_1} q5_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q2_k} q2_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q3_k} q3_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_k} q4_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_k} q5_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q6_k} q6_k $(nproc)
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
@@ -421,7 +469,7 @@ function gg_run_qwen3_0_6b {
function gg_sum_qwen3_0_6b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf 'Qwen3 0.6B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
@@ -500,12 +548,7 @@ function gg_run_rerank_tiny {
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.json
path_models="../models-mnt/rerank-tiny"
@@ -595,6 +638,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
@@ -612,4 +656,6 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run ctest_with_model_release
fi
cat $OUT/README.md
exit $ret

View File

@@ -0,0 +1,29 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR riscv64)
set(CMAKE_SYSTEM_VERSION 1)
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
else()
set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
if (DEFINED ENV{RISCV_ROOT_PATH})
file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
else()
message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
endif()
set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
endif()
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")

View File

@@ -56,6 +56,9 @@ add_library(${TARGET} STATIC
common.h
console.cpp
console.h
download.cpp
download.h
http.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
@@ -76,10 +79,11 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
# TODO: use list(APPEND LLAMA_COMMON_EXTRA_LIBS ...)
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
# Use curl to download model url
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
@@ -87,7 +91,11 @@ if (LLAMA_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
endif ()
elseif (LLAMA_HTTPLIB)
# otherwise, use cpp-httplib
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_HTTPLIB)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} cpp-httplib)
endif()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)

File diff suppressed because it is too large Load Diff

View File

@@ -59,8 +59,8 @@ struct common_arg {
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
bool get_value_from_env(std::string & output) const;
bool has_value_from_env() const;
std::string to_string();
};
@@ -78,7 +78,6 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
bool common_has_curl();
struct common_remote_params {
std::vector<std::string> headers;

View File

@@ -3,9 +3,12 @@
#include "log.h"
#include "regex-partial.h"
#include <algorithm>
#include <cctype>
#include <optional>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
using json = nlohmann::ordered_json;
@@ -75,6 +78,35 @@ bool common_chat_msg_parser::add_tool_calls(const json & arr) {
}
return true;
}
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
if (!tool_call.is_object() || tool_call.size() != 1) {
return false;
}
// Get the tool name (the single key in the object)
auto it = tool_call.begin();
std::string name = it.key();
if (name.empty()) {
return false;
}
// Get the arguments (the nested object)
const json & args_json = it.value();
std::string arguments = "";
if (args_json.is_object()) {
arguments = args_json.dump();
} else if (args_json.is_string()) {
arguments = args_json;
} else if (!args_json.is_null()) {
// For other types, convert to string representation
arguments = args_json.dump();
}
return add_tool_call(name, "", arguments);
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
@@ -137,6 +169,27 @@ void common_chat_msg_parser::consume_literal(const std::string & literal) {
}
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
std::string pending_reasoning_prefix;
if (syntax_.reasoning_format == COMMON_REASONING_FORMAT_NONE) {
return false;
}
auto set_reasoning_prefix = [&](size_t prefix_pos) {
if (!syntax_.thinking_forced_open || syntax_.reasoning_in_content) {
return;
}
if (prefix_pos + start_think.size() > input_.size()) {
pending_reasoning_prefix.clear();
return;
}
// Capture the exact literal that opened the reasoning section so we can
// surface it back to callers. This ensures formats that force the
// reasoning tag open (e.g. DeepSeek R1) retain their original prefix
// instead of dropping it during parsing.
pending_reasoning_prefix = input_.substr(prefix_pos, start_think.size());
};
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
auto stripped_reasoning = string_strip(reasoning);
if (stripped_reasoning.empty()) {
@@ -149,28 +202,116 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
}
} else {
if (!pending_reasoning_prefix.empty()) {
add_reasoning_content(pending_reasoning_prefix);
pending_reasoning_prefix.clear();
}
add_reasoning_content(stripped_reasoning);
}
};
if (syntax_.reasoning_format != COMMON_REASONING_FORMAT_NONE) {
if (syntax_.thinking_forced_open || try_consume_literal(start_think)) {
if (auto res = try_find_literal(end_think)) {
handle_reasoning(res->prelude, /* closed */ true);
consume_spaces();
return true;
}
auto rest = consume_rest();
const size_t saved_pos = pos_;
const size_t saved_content_size = result_.content.size();
const size_t saved_reasoning_size = result_.reasoning_content.size();
auto restore_state = [&]() {
move_to(saved_pos);
result_.content.resize(saved_content_size);
result_.reasoning_content.resize(saved_reasoning_size);
};
// Allow leading whitespace to be preserved as content when reasoning is present at the start
size_t cursor = pos_;
size_t whitespace_end = cursor;
while (whitespace_end < input_.size() && std::isspace(static_cast<unsigned char>(input_[whitespace_end]))) {
++whitespace_end;
}
if (whitespace_end >= input_.size()) {
restore_state();
if (syntax_.thinking_forced_open) {
auto rest = input_.substr(saved_pos);
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
// if (!syntax_.thinking_forced_open) {
// throw common_chat_msg_partial_exception(end_think);
// }
move_to(input_.size());
return true;
}
return false;
}
cursor = whitespace_end;
const size_t remaining = input_.size() - cursor;
const size_t start_prefix = std::min(start_think.size(), remaining);
const bool has_start_tag = input_.compare(cursor, start_prefix, start_think, 0, start_prefix) == 0;
if (has_start_tag && start_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
if (has_start_tag) {
if (whitespace_end > pos_) {
add_content(input_.substr(pos_, whitespace_end - pos_));
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
} else if (syntax_.thinking_forced_open) {
cursor = whitespace_end;
} else {
restore_state();
return false;
}
while (true) {
if (cursor >= input_.size()) {
move_to(input_.size());
return true;
}
size_t end_pos = input_.find(end_think, cursor);
if (end_pos == std::string::npos) {
std::string_view remaining_view(input_.data() + cursor, input_.size() - cursor);
size_t partial_off = string_find_partial_stop(remaining_view, end_think);
size_t reasoning_end = partial_off == std::string::npos ? input_.size() : cursor + partial_off;
if (reasoning_end > cursor) {
handle_reasoning(input_.substr(cursor, reasoning_end - cursor), /* closed */ partial_off == std::string::npos && !is_partial());
}
move_to(input_.size());
return true;
}
if (end_pos > cursor) {
handle_reasoning(input_.substr(cursor, end_pos - cursor), /* closed */ true);
} else {
handle_reasoning("", /* closed */ true);
}
cursor = end_pos + end_think.size();
while (cursor < input_.size() && std::isspace(static_cast<unsigned char>(input_[cursor]))) {
++cursor;
}
const size_t next_remaining = input_.size() - cursor;
if (next_remaining == 0) {
move_to(cursor);
return true;
}
const size_t next_prefix = std::min(start_think.size(), next_remaining);
if (input_.compare(cursor, next_prefix, start_think, 0, next_prefix) == 0) {
if (next_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
continue;
}
move_to(cursor);
return true;
}
return false;
}
std::string common_chat_msg_parser::consume_rest() {
@@ -291,7 +432,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
if (is_arguments_path({})) {
// Entire JSON is the arguments and was parsed fully.
return consume_json_result {
partial->json.dump(),
partial->json.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true),
/* .is_partial = */ false,
};
}
@@ -303,7 +444,7 @@ std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parse
std::vector<std::string> path;
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
if (is_arguments_path(path)) {
auto arguments = j.dump();
auto arguments = j.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true);
if (is_partial() && !partial->healing_marker.marker.empty()) {
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
if (idx != std::string::npos) {

View File

@@ -64,6 +64,9 @@ class common_chat_msg_parser {
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
void finish();
bool consume_spaces();

View File

@@ -9,8 +9,11 @@
#include <minja/chat-template.hpp>
#include <minja/minja.hpp>
#include <algorithm>
#include <cstdio>
#include <cctype>
#include <exception>
#include <functional>
#include <iostream>
#include <optional>
#include <stdexcept>
@@ -310,7 +313,6 @@ json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msg
}
if (!msg.reasoning_content.empty()) {
jmsg["reasoning_content"] = msg.reasoning_content;
jmsg["thinking"] = msg.reasoning_content; // gpt-oss
}
if (!msg.tool_name.empty()) {
jmsg["name"] = msg.tool_name;
@@ -625,6 +627,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
case COMMON_CHAT_FORMAT_MAGISTRAL: return "Magistral";
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
@@ -638,6 +641,8 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS: return "LFM2 with JSON tools";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -801,6 +806,7 @@ static std::string apply(
}
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
tmpl_inputs.extra_context = inputs.extra_context;
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
if (additional_context) {
tmpl_inputs.extra_context.merge_patch(*additional_context);
}
@@ -982,6 +988,185 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
// Case-insensitive find
static size_t ifind_string(const std::string & haystack, const std::string & needle, size_t pos = 0) {
auto it = std::search(
haystack.begin() + pos, haystack.end(),
needle.begin(), needle.end(),
[](char a, char b) { return std::tolower(a) == std::tolower(b); }
);
return (it == haystack.end()) ? std::string::npos : std::distance(haystack.begin(), it);
}
static common_chat_params common_chat_params_init_lfm2(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
const auto is_json_schema_provided = !inputs.json_schema.is_null();
const auto is_grammar_provided = !inputs.grammar.empty();
const auto are_tools_provided = inputs.tools.is_array() && !inputs.tools.empty();
// the logic requires potentially modifying the messages
auto tweaked_messages = inputs.messages;
auto replace_json_schema_marker = [](json & messages) -> bool {
static std::string marker1 = "force json schema.\n";
static std::string marker2 = "force json schema.";
if (messages.empty() || messages.at(0).at("role") != "system") {
return false;
}
std::string content = messages.at(0).at("content");
for (const auto & marker : {marker1, marker2}) {
const auto pos = ifind_string(content, marker);
if (pos != std::string::npos) {
content.replace(pos, marker.length(), "");
// inject modified content back into the messages
messages.at(0).at("content") = content;
return true;
}
}
return false;
};
// Lfm2 model does not natively work with json, but can generally understand the tools structure
//
// Example of the pytorch dialog structure:
// <|startoftext|><|im_start|>system
// List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
// <|im_start|>user
// What is the current status of candidate ID 12345?<|im_end|>
// <|im_start|>assistant
// <|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
// <|im_start|>tool
// <|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
// <|im_start|>assistant
// The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
//
// For the llama server compatibility with json tools semantic,
// the client can add "Follow json schema." line into the system message prompt to force the json output.
//
if (are_tools_provided && (is_json_schema_provided || is_grammar_provided)) {
// server/utils.hpp prohibits that branch for the custom grammar anyways
throw std::runtime_error("Tools call must not use \"json_schema\" or \"grammar\", use non-tool invocation if you want to use custom grammar");
} else if (are_tools_provided && replace_json_schema_marker(tweaked_messages)) {
LOG_INF("%s: Using tools to build a grammar\n", __func__);
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function.at("name")},
}},
{"arguments", function.at("parameters")},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"<|tool_call_start|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tool_call_end|>\"");
});
// model has no concept of tool selection mode choice,
// if the system prompt rendered correctly it will produce a tool call
// the grammar goes inside the tool call body
data.grammar_lazy = true;
data.grammar_triggers = {{COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, "\\s*<\\|tool_call_start\\|>\\s*\\["}};
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
data.format = COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS;
} else if (are_tools_provided && (!is_json_schema_provided && !is_grammar_provided)) {
LOG_INF("%s: Using tools without json schema or grammar\n", __func__);
// output those tokens
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
} else if (is_json_schema_provided) {
LOG_INF("%s: Using provided json schema to build a grammar\n", __func__);
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else if (is_grammar_provided) {
LOG_INF("%s: Using provided grammar\n", __func__);
data.grammar = inputs.grammar;
} else {
LOG_INF("%s: Using content relying on the template\n", __func__);
}
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
LOG_DBG("%s: Prompt: %s\n", __func__, data.prompt.c_str());
return data;
}
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_MAGISTRAL;
data.preserved_tokens = {
"[THINK]",
"[/THINK]",
};
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function.at("name")},
}},
{"arguments", function.at("parameters")},
{"id", {
{"type", "string"},
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
data.preserved_tokens.push_back("[TOOL_CALLS]");
} else {
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
if (!inputs.grammar.empty()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar;
}
}
return data;
}
static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -992,6 +1177,18 @@ static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
parse_prefixed_json_tool_call_array(builder, prefix);
}
static void common_chat_parse_magistral(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("[THINK]", "[/THINK]");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
parse_prefixed_json_tool_call_array(builder, prefix);
}
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
@@ -1264,7 +1461,78 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_APERTUS;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
if (!inputs.enable_thinking) {
data.prompt += "<|inner_suffix|>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <|tools_prefix|> format
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ function.at("name"), function.at("parameters") }
} },
{ "required", json::array({ function.at("name") }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
data.preserved_tokens = {
"<|system_start|>",
"<|system_end|>",
"<|developer_start|>",
"<|developer_end|>",
"<|user_start|>",
"<|user_end|>",
"<|assistant_start|>",
"<|assistant_end|>",
"<|inner_prefix|>",
"<|inner_suffix|>",
"<|tools_prefix|>",
"<|tools_suffix|>",
};
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
@@ -1541,7 +1809,23 @@ static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
auto prompt = apply(tmpl, inputs);
// Copy reasoning to the "thinking" field as expected by the gpt-oss template
auto adjusted_messages = json::array();
for (const auto & msg : inputs.messages) {
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
if (has_reasoning_content && has_tool_calls) {
auto adjusted_message = msg;
adjusted_message["thinking"] = msg.at("reasoning_content");
adjusted_messages.push_back(adjusted_message);
} else {
adjusted_messages.push_back(msg);
}
}
auto prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
// Check if we need to replace the return token with end token during
// inference and without generation prompt. For more details see:
@@ -1616,17 +1900,36 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
);
});
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
channel + " \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_channel, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
if (data.grammar_lazy) {
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
} else {
auto not_end = builder.add_rule("not-end",
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
auto analysis = builder.add_rule("analysis",
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto commentary = builder.add_rule("commentary",
"\"<|channel|>commentary<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\" to=functions.\" ( " + string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root",
"( " + analysis + " \"<|start|>assistant\" )? " +
"( " + commentary + " \"<|start|>assistant\" )? " +
"( " + recipient_in_role + " | " + recipient_in_channel + " )"
);
}
// Trigger on tool calls that appear in the commentary channel
data.grammar_triggers.push_back({
@@ -2304,6 +2607,102 @@ static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
builder.consume_spaces();
if (!builder.try_consume_literal("<|tools_suffix|>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
for (const auto & value : tool_calls_data.json) {
if (value.is_object()) {
builder.add_tool_call_short_form(value);
}
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_lfm2(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// LFM2 format: <|tool_call_start|>[{"name": "get_current_time", "arguments": {"location": "Paris"}}]<|tool_call_end|>
static const common_regex tool_call_start_regex(regex_escape("<|tool_call_start|>"));
static const common_regex tool_call_end_regex(regex_escape("<|tool_call_end|>"));
// Loop through all tool calls
while (auto res = builder.try_find_regex(tool_call_start_regex, std::string::npos, /* add_prelude_to_content= */ true)) {
builder.move_to(res->groups[0].end);
// Parse JSON array format: [{"name": "...", "arguments": {...}}]
auto tool_calls_data = builder.consume_json();
// Consume end marker
builder.consume_spaces();
if (!builder.try_consume_regex(tool_call_end_regex)) {
throw common_chat_msg_partial_exception("Expected <|tool_call_end|>");
}
// Process each tool call in the array
if (tool_calls_data.json.is_array()) {
for (const auto & tool_call : tool_calls_data.json) {
if (!tool_call.is_object()) {
throw common_chat_msg_partial_exception("Tool call must be an object");
}
if (!tool_call.contains("name")) {
throw common_chat_msg_partial_exception("Tool call missing 'name' field");
}
std::string function_name = tool_call.at("name");
std::string arguments = "{}";
if (tool_call.contains("arguments")) {
if (tool_call.at("arguments").is_object()) {
arguments = tool_call.at("arguments").dump();
} else if (tool_call.at("arguments").is_string()) {
arguments = tool_call.at("arguments");
}
}
if (!builder.add_tool_call(function_name, "", arguments)) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
} else {
throw common_chat_msg_partial_exception("Expected JSON array for tool calls");
}
// Consume any trailing whitespace after this tool call
builder.consume_spaces();
}
// Consume any remaining content after all tool calls
auto remaining = builder.consume_rest();
if (!string_strip(remaining).empty()) {
builder.add_content(remaining);
}
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
@@ -2548,6 +2947,17 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Apertus format detection
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
return common_chat_params_init_apertus(tmpl, params);
}
// LFM2 (w/ tools)
if (src.find("List of tools: <|tool_list_start|>[") != std::string::npos &&
src.find("]<|tool_list_end|>") != std::string::npos) {
return common_chat_params_init_lfm2(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2576,6 +2986,10 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_llama_3_x(tmpl, params, allow_python_tag_builtin_tools);
}
if (src.find("[THINK]") != std::string::npos && src.find("[/THINK]") != std::string::npos) {
return common_chat_params_init_magistral(tmpl, params);
}
// Plain handler (no tools)
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
return common_chat_params_init_without_tools(tmpl, params);
@@ -2660,6 +3074,7 @@ common_chat_params common_chat_templates_apply(
}
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
builder.add_content(builder.consume_rest());
}
@@ -2676,6 +3091,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
common_chat_parse_mistral_nemo(builder);
break;
case COMMON_CHAT_FORMAT_MAGISTRAL:
common_chat_parse_magistral(builder);
break;
case COMMON_CHAT_FORMAT_LLAMA_3_X:
common_chat_parse_llama_3_1(builder);
break;
@@ -2715,6 +3133,12 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
case COMMON_CHAT_FORMAT_APERTUS:
common_chat_parse_apertus(builder);
break;
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS:
common_chat_parse_lfm2(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -33,8 +33,8 @@ struct common_chat_msg_content_part {
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_chat_msg_content_part> content_parts = {};
std::vector<common_chat_tool_call> tool_calls = {};
std::vector<common_chat_msg_content_part> content_parts;
std::vector<common_chat_tool_call> tool_calls;
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
@@ -44,7 +44,7 @@ struct common_chat_msg {
bool empty() const {
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
}
void ensure_tool_call_ids_set(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
void set_tool_call_ids(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
for (auto i = 0u; i < tool_calls.size(); i++) {
if (ids_cache.size() <= i) {
auto id = tool_calls[i].id;
@@ -101,6 +101,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_MAGISTRAL,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
@@ -114,6 +115,8 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};

View File

@@ -14,6 +14,7 @@
#include <climits>
#include <cmath>
#include <codecvt>
#include <chrono>
#include <cstdarg>
#include <cstring>
#include <ctime>
@@ -50,6 +51,11 @@
#include <unistd.h>
#endif
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
@@ -864,8 +870,20 @@ std::string fs_get_cache_directory() {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
} else if (std::getenv("HOME")) {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
} else {
#if defined(__linux__)
/* no $HOME is defined, fallback to getpwuid */
struct passwd *pw = getpwuid(getuid());
if ((!pw) || (!pw->pw_dir)) {
throw std::runtime_error("Failed to find $HOME directory");
}
cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
@@ -890,6 +908,39 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list_files(const std::string & path) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// Model utils
@@ -960,15 +1011,13 @@ struct common_init_result common_init_from_params(common_params & params) {
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
if (!has_eos && !has_sep) {
LOG_WRN("%s: warning: vocab does not have an EOS token or SEP token, reranking will not work\n", __func__);
if (!has_eos && !has_sep && !has_rerank_prompt) {
LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
} else if (!has_sep) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
@@ -1117,6 +1166,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;
mparams.no_host = params.no_host;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;

View File

@@ -378,7 +378,7 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@@ -392,6 +392,7 @@ struct common_params {
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
bool no_host = false; // bypass host buffer allowing extra buffers to be used
bool single_turn = false; // single turn chat conversation
@@ -405,6 +406,8 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
@@ -424,7 +427,8 @@ struct common_params {
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
@@ -432,7 +436,7 @@ struct common_params {
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_AUTO;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
@@ -456,7 +460,8 @@ struct common_params {
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -503,6 +508,10 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -603,6 +612,13 @@ bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
};
std::vector<common_file_info> fs_list_files(const std::string & path);
//
// Model utils
//
@@ -738,7 +754,7 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
// MoE utils
//
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_exps";
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
static std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);

1072
common/download.cpp Normal file

File diff suppressed because it is too large Load Diff

55
common/download.h Normal file
View File

@@ -0,0 +1,55 @@
#pragma once
#include <string>
struct common_params_model;
//
// download functionalities
//
struct common_cached_model_info {
std::string manifest_path;
std::string user;
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
std::string to_string() const {
return user + "/" + model + ":" + tag;
}
};
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
common_hf_file_res common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & bearer_token,
bool offline);
// returns true if download succeeded
bool common_download_model(
const common_params_model & model,
const std::string & bearer_token,
bool offline);
// returns list of cached models
std::vector<common_cached_model_info> common_list_cached_models();
// resolve and download model from Docker registry
// return local path to downloaded model file
std::string common_docker_resolve_model(const std::string & docker);

73
common/http.h Normal file
View File

@@ -0,0 +1,73 @@
#pragma once
#include <cpp-httplib/httplib.h>
struct common_http_url {
std::string scheme;
std::string user;
std::string password;
std::string host;
std::string path;
};
static common_http_url common_http_parse_url(const std::string & url) {
common_http_url parts;
auto scheme_end = url.find("://");
if (scheme_end == std::string::npos) {
throw std::runtime_error("invalid URL: no scheme");
}
parts.scheme = url.substr(0, scheme_end);
if (parts.scheme != "http" && parts.scheme != "https") {
throw std::runtime_error("unsupported URL scheme: " + parts.scheme);
}
auto rest = url.substr(scheme_end + 3);
auto at_pos = rest.find('@');
if (at_pos != std::string::npos) {
auto auth = rest.substr(0, at_pos);
auto colon_pos = auth.find(':');
if (colon_pos != std::string::npos) {
parts.user = auth.substr(0, colon_pos);
parts.password = auth.substr(colon_pos + 1);
} else {
parts.user = auth;
}
rest = rest.substr(at_pos + 1);
}
auto slash_pos = rest.find('/');
if (slash_pos != std::string::npos) {
parts.host = rest.substr(0, slash_pos);
parts.path = rest.substr(slash_pos);
} else {
parts.host = rest;
parts.path = "/";
}
return parts;
}
static std::pair<httplib::Client, common_http_url> common_http_client(const std::string & url) {
common_http_url parts = common_http_parse_url(url);
if (parts.host.empty()) {
throw std::runtime_error("error: invalid URL format");
}
httplib::Client cli(parts.scheme + "://" + parts.host);
if (!parts.user.empty()) {
cli.set_basic_auth(parts.user, parts.password);
}
cli.set_follow_location(true);
return { std::move(cli), std::move(parts) };
}
static std::string common_http_show_masked_url(const common_http_url & parts) {
return parts.scheme + "://" + (parts.user.empty() ? "" : "****:****@") + parts.host + parts.path;
}

View File

@@ -5,6 +5,7 @@
#include <nlohmann/json.hpp>
#include <string>
#include <regex>
using json = nlohmann::ordered_json;
@@ -168,6 +169,47 @@ bool common_json_parse(
}
}
// Matches a potentially partial unicode escape sequence, e.g. \u, \uX, \uXX, \uXXX, \uXXXX
static const std::regex partial_unicode_regex(R"(\\u(?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F])?)?)?)?$)");
auto is_high_surrogate = [&](const std::string & s) {
// Check if a partial of a high surrogate (U+D800-U+DBFF)
return s.length() >= 4 &&
s[0] == '\\' && s[1] == 'u' &&
std::tolower(s[2]) == 'd' &&
(s[3] == '8' || s[3] == '9' || std::tolower(s[3]) == 'a' || std::tolower(s[3]) == 'b');
};
// Initialize the unicode marker to a low surrogate to handle the edge case
// where a high surrogate (U+D800-U+DBFF) is immediately followed by a
// backslash (\)
std::string unicode_marker_padding = "udc00";
std::smatch last_unicode_seq;
if (std::regex_search(str, last_unicode_seq, partial_unicode_regex)) {
std::smatch second_last_seq;
std::string prelude = str.substr(0, last_unicode_seq.position());
// Pad the escape sequence with 0s until it forms a complete sequence of 6 characters
unicode_marker_padding = std::string(6 - last_unicode_seq.length(), '0');
if (is_high_surrogate(last_unicode_seq.str())) {
// If the sequence is a partial match for a high surrogate, add a low surrogate (U+DC00-U+UDFF)
unicode_marker_padding += "\\udc00";
} else if (std::regex_search(prelude, second_last_seq, partial_unicode_regex)) {
if (is_high_surrogate(second_last_seq.str())) {
// If this follows a high surrogate, pad it to be a low surrogate
if (last_unicode_seq.length() == 2) {
unicode_marker_padding = "dc00";
} else if (last_unicode_seq.length() == 3) {
unicode_marker_padding = "c00";
} else {
// The original unicode_marker_padding is already padded with 0s
}
}
}
}
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
@@ -186,6 +228,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an object value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an object value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else {
// find last :
auto last_pos = str.find_last_of(':');
@@ -205,6 +250,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an array value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an array value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
// Had just finished a value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
@@ -230,6 +278,9 @@ bool common_json_parse(
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
// Was inside an object key string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + unicode_marker_padding + "\": 1" + closing)) {
// Was inside an object key string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\": 1" + closing;
} else {
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {

View File

@@ -41,9 +41,9 @@ static std::string build_repetition(const std::string & item_rule, int min_items
return result;
}
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int>::min();
auto has_max = max_value != std::numeric_limits<int>::max();
static void _build_min_max_int(int64_t min_value, int64_t max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int64_t>::min();
auto has_max = max_value != std::numeric_limits<int64_t>::max();
auto digit_range = [&](char from, char to) {
out << "[";
@@ -159,7 +159,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (has_min) {
if (min_value < 0) {
out << "\"-\" (";
_build_min_max_int(std::numeric_limits<int>::min(), -min_value, out, decimals_left, /* top_level= */ false);
_build_min_max_int(std::numeric_limits<int64_t>::min(), -min_value, out, decimals_left, /* top_level= */ false);
out << ") | [0] | [1-9] ";
more_digits(0, decimals_left - 1);
} else if (min_value == 0) {
@@ -194,7 +194,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
}
digit_range(c, c);
out << " (";
_build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits<int>::max(), out, less_decimals, /* top_level= */ false);
_build_min_max_int(std::stoll(min_s.substr(1)), std::numeric_limits<int64_t>::max(), out, less_decimals, /* top_level= */ false);
out << ")";
if (c < '9') {
out << " | ";
@@ -216,7 +216,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
_build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true);
} else {
out << "\"-\" (";
_build_min_max_int(-max_value, std::numeric_limits<int>::max(), out, decimals_left, /* top_level= */ false);
_build_min_max_int(-max_value, std::numeric_limits<int64_t>::max(), out, decimals_left, /* top_level= */ false);
out << ")";
}
return;
@@ -601,7 +601,10 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -774,11 +777,24 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -925,17 +941,17 @@ public:
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) {
int min_value = std::numeric_limits<int>::min();
int max_value = std::numeric_limits<int>::max();
int64_t min_value = std::numeric_limits<int64_t>::min();
int64_t max_value = std::numeric_limits<int64_t>::max();
if (schema.contains("minimum")) {
min_value = schema["minimum"].get<int>();
min_value = schema["minimum"].get<int64_t>();
} else if (schema.contains("exclusiveMinimum")) {
min_value = schema["exclusiveMinimum"].get<int>() + 1;
min_value = schema["exclusiveMinimum"].get<int64_t>() + 1;
}
if (schema.contains("maximum")) {
max_value = schema["maximum"].get<int>();
max_value = schema["maximum"].get<int64_t>();
} else if (schema.contains("exclusiveMaximum")) {
max_value = schema["exclusiveMaximum"].get<int>() - 1;
max_value = schema["exclusiveMaximum"].get<int64_t>() - 1;
}
std::stringstream out;
out << "(";

View File

@@ -332,6 +332,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
if (ctx) {
llama_perf_context_print(ctx);
llama_memory_breakdown_print(ctx);
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -139,7 +139,9 @@ models = [
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
{"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -434,7 +436,7 @@ for model in models:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
except (OSError, TypeError) as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop

View File

@@ -313,7 +313,12 @@ Converting the matmul weight format from ND to NZ to improve performance. Enable
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default. This option is only effective if `USE_ACL_GRAPH` was enabled at compilation time. To enable it, recompile using:
```sh
cmake -B build -DGGML_CANN=on -DCMAKE_BUILD_TYPE=release -DUSE_ACL_GRAPH=ON
cmake --build build --config release
```
### GGML_CANN_GRAPH_CACHE_CAPACITY

View File

@@ -39,18 +39,23 @@ The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adren
| Adreno 830 (Snapdragon 8 Elite) | Support |
| Adreno X85 (Snapdragon X Elite) | Support |
> A6x GPUs with a recent driver and compiler are supported; they are usually found in IoT platforms.
However, A6x GPUs in phones are likely not supported due to the outdated driver and compiler.
## DataType Supports
| DataType | Status |
|:----------------------:|:--------------------------:|
| Q4_0 | Support |
| Q6_K | Support, but not optimized |
| Q8_0 | Support |
| MXFP4 | Support |
## Model Preparation
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
You can refer to the general [llama-quantize tool](/tools/quantize/README.md) for steps to convert a model in Hugging Face safetensor format to GGUF with quantization.
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
Currently we support `Q4_0` quantization and have optimized for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize` (i.e., make all weights in `Q4_0`). For example,
```sh
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
@@ -58,6 +63,17 @@ Currently we support `Q4_0` quantization and have optimize for it. To achieve be
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
### `MXFP4` MoE Models
OpenAI gpt-oss models are MoE models in `MXFP4`. The quantized model will be in `MXFP4_MOE`, a mixture of `MXFP4` and `Q8_0`.
For this quantization, there is no need to specify `--pure`.
For gpt-oss-20b model, you can directly [download](https://huggingface.co/ggml-org/gpt-oss-20b-GGUF) the quantized GGUF file in `MXFP4_MOE` from Hugging Face.
Although it is possible to quantize gpt-oss-20b model in pure `Q4_0` (all weights in `Q4_0`), it is not recommended since `MXFP4` has been optimized for MoE while `Q4_0` is not. In addition, accuracy should degrade with such pure `Q4_0` quantization.
Hence, using the default `MXFP4_MOE` quantization (see the link above) is recommended for this model.
> Note that the `Q4_0` model found [here](https://huggingface.co/unsloth/gpt-oss-20b-GGUF/blob/main/gpt-oss-20b-Q4_0.gguf) is a mixture of `Q4_0`, `Q8_0` and `MXFP4` and gives better performance than `MXFP4_MOE` quantization.
## CMake Options
The OpenCL backend has the following CMake options that control the behavior of the backend.
@@ -146,10 +162,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Ninja
* Visual Studio 2022
* Powershell 7
* Python
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
> Note that building using Visual Studio's cl compiler is not supported. Clang must be used. Clang depends on libraries provided by Visual Studio to work. Therefore, Visual Studio must be installed. Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
@@ -201,9 +220,12 @@ ninja
## Known Issues
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
- Flash attention does not always improve performance.
- Currently OpenCL backend works on A6xx GPUs with recent drivers and compilers (usually found in IoT platforms).
However, it does not work on A6xx GPUs found in phones with old drivers and compilers.
## TODO
- Optimization for Q6_K
- Support and optimization for Q4_K
- Improve flash attention

View File

@@ -145,12 +145,13 @@ The docker build option is currently limited to *Intel GPU* targets.
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
```
*Notes:*
@@ -215,9 +216,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@@ -225,6 +236,12 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -255,10 +272,11 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
@@ -353,7 +371,7 @@ cmake --build build --config Release -j -v
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.

View File

@@ -0,0 +1,49 @@
{
"version": 4,
"configurePresets": [
{
"name": "arm64-android-snapdragon",
"hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"ANDROID_ABI": "arm64-v8a",
"ANDROID_PLATFORM": "android-31",
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "android_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{
"name": "arm64-windows-snapdragon",
"inherits": [ "base", "arm64-windows-llvm" ],
"cacheVariables": {
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "windows_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },
{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
]
}

View File

@@ -0,0 +1,239 @@
# Snapdragon-based Android devices
## How to Build
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.
```
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
[d]/> cd /workspace
```
The rest of the Android build process assumes that you're running inside the toolchain container.
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:
ANDROID_ABI="arm64-v8a"
...
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
GGML_HEXAGON="ON"
GGML_OPENCL="ON"
GGML_OPENMP="OFF"
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
...
-- Including OpenCL backend
-- Including Hexagon backend
...
-- Build files have been written to: /workspace/build-snapdragon
[d]/workspace> cmake --build build-snapdragon
...
[144/356] Performing build step for 'htp-v73'
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
...
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
...
```
To generate an installable "package" simply use cmake --install:
```
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
-- Install configuration: "Release"
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
...
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
...
```
## How to Install
For this step, your device needs to be configured for on-device development.
Please see https://developer.android.com/studio/debug/dev-options for details.
Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
```
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
```
At this point, you should also install some models:
```
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
...
2025-10-11 12:04:52 (10.7 MB/s) - Llama-3.2-1B-Instruct-Q4_0.gguf saved [773025920/773025920]
~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
```
## How to Run
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
Here are some examples of running various llama.cpp tools via ADB.
Simple question for Llama-3.2-1B
```
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 225.49 MiB
load_tensors: HTP0 model buffer size = 0.26 MiB
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
...
I hope this helps you understand the world's most popular cookies! [end of text]
...
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
llama_perf_context_print: load time = 617.94 ms
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
llama_perf_context_print: graphs reused = 473
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
```
Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices
```
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v81
ggml-hex: allocating new session: HTP0
ggml-hex: allocating new session: HTP1
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 143.86 MiB
load_tensors: HTP1 model buffer size = 0.23 MiB
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
load_tensors: HTP0 model buffer size = 0.28 MiB
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
...
llama_context: CPU output buffer size = 0.19 MiB
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
llama_context: HTP0 compute buffer size = 15.00 MiB
llama_context: HTP1 compute buffer size = 15.00 MiB
llama_context: CPU compute buffer size = 24.56 MiB
...
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
llama_perf_context_print: graphs reused = 255
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
```
Op test for MUL_MAT
```
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
...
Backend 2/3: HTP0
Device description: Hexagon
Device memory: 2048 MB (2048 MB free)
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |
build: 6a8cf8914 (6733)
```
## Environment variables
- `GGML_HEXAGON_NDEV=1`
Controls the number of devices/sessions to allocate. The default is 1.
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.
- `GGML_HEXAGON_NHVX=0`
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).
- `GGML_HEXAGON_HOSTBUF=1`
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).
- `GGML_HEXAGON_VERBOSE=1`
Enables verbose logging of Ops from the backend. Example output:
```
ggml-hex: HTP0 graph-compute n_nodes 2
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
ggml-hex: HTP0 graph-compute n_nodes 1
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
```
- `GGML_HEXAGON_PROFILE=1`
Generates a host-side profile for the ggml-hexagon Ops.
- `GGML_HEXAGON_OPMASK=0x0`
Allows enabling specific stages of the processing pipeline:
- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
- `0x4` Enable Op Compute (MUL_MAT, etc.)
Examples:
`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)

View File

@@ -0,0 +1,109 @@
# Hexagon backend developer details
## Backend libraries
The Hexagon backend consist of two parts:
- `libggml-hexagon`
This is the regular CPU-side GGML backend library, either shared or statically linked
- `libggml-htp-vNN`
This is the NPU-side (HTP stands for Hexagon Tensor Processor) shared library that contains the Op dispatcher and kernels.
The correct library is selected automatically at runtime based on the HW version.
Here is an example of the build artifacts
```
~/src/llama.cpp$ ls -l pkg-adb/llama.cpp/lib/libggml*
pkg-adb/llama.cpp/lib/libggml-base.so
pkg-adb/llama.cpp/lib/libggml-cpu.so
pkg-adb/llama.cpp/lib/libggml-hexagon.so <<< CPU library
pkg-adb/llama.cpp/lib/libggml-htp-v73.so <<< HTP op/kernels for Hexagon v73
pkg-adb/llama.cpp/lib/libggml-htp-v75.so
pkg-adb/llama.cpp/lib/libggml-htp-v79.so
pkg-adb/llama.cpp/lib/libggml-htp-v81.so
```
## Memory buffers
Hexagon NPU backend takes advantage of the Snapdragon's unified memory model where all buffers are fully accessible by the CPU and GPU.
The NPU does have a dedicated tightly-coupled memory called VTCM but that memory is used only for intermediate data (e.g. dynamically
quantized tensors) or temporary data (chunks of the weight tensors fetched via DMA).
Please note that currently the Hexagon backend does not implement SET/GET_ROWS Ops because there is no advantage in offloading those
to the NPU at this point.
The backend does allocates non-host buffers for the tensors with datatypes that require repacking: Q4_0, Q8_0, MXFP4.
From the MMU perspective these buffers are still regular buffers (normal access by the CPU) they are marked as non-host simply to force
the repacking.
## Large model handling
Hexagon NPU session (aka Process Domain (PD) in the Hexagon docs) is limited to a memory mapping of around 3.5GB.
In llama.cpp/GGML the Hexagon session is mapped to a single GGML backend device (HTP0, HTP1, etc).
In order to map models larger than 3.5GB we need to allocate multiple devices and split the model.
For this we're taking advantage of the llama.cpp/GGML multi-GPU layer-splitting support.
Each Hexagon device behaves like a GPU from the offload and model splitting perspective.
Here is an example of running GPT-OSS-20B model on a newer Snapdragon device with 16GB of DDR.
```
M=gpt-oss-20b-Q4_0.gguf NDEV=4 D=HTP0,HTP1,HTP2,HTP3 P=surfing.txt scripts/snapdragon/adb/run-cli.sh -no-cnv -f surfing.txt -n 32
...
LD_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
ADSP_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
GGML_HEXAGON_NDEV=4 ./bin/llama-cli --no-mmap -m /data/local/tmp/llama.cpp/../gguf/gpt-oss-20b-Q4_0.gguf
-t 4 --ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on -ngl 99 --device HTP0,HTP1,HTP2,HTP3 -no-cnv -f surfing.txt
...
llama_model_loader: - type f32: 289 tensors
llama_model_loader: - type q4_0: 96 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type mxfp4: 72 tensors
...
load_tensors: offloaded 25/25 layers to GPU
load_tensors: CPU model buffer size = 1182.09 MiB
load_tensors: HTP1 model buffer size = 6.64 MiB
load_tensors: HTP1-REPACK model buffer size = 2505.94 MiB
load_tensors: HTP3 model buffer size = 5.55 MiB
load_tensors: HTP3-REPACK model buffer size = 2088.28 MiB
load_tensors: HTP0 model buffer size = 7.75 MiB
load_tensors: HTP0-REPACK model buffer size = 2923.59 MiB
load_tensors: HTP2 model buffer size = 6.64 MiB
load_tensors: HTP2-REPACK model buffer size = 2505.94 MiB
...
llama_context: n_ctx_per_seq (8192) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.77 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 8192 cells
llama_kv_cache: HTP1 KV buffer size = 25.50 MiB
llama_kv_cache: HTP3 KV buffer size = 25.50 MiB
llama_kv_cache: HTP0 KV buffer size = 25.50 MiB
llama_kv_cache: HTP2 KV buffer size = 25.50 MiB
llama_kv_cache: size = 102.00 MiB ( 8192 cells, 12 layers, 1/1 seqs), K (q8_0): 51.00 MiB, V (q8_0): 51.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 256 cells
llama_kv_cache: HTP1 KV buffer size = 0.80 MiB
llama_kv_cache: HTP3 KV buffer size = 0.53 MiB
llama_kv_cache: HTP0 KV buffer size = 1.06 MiB
llama_kv_cache: HTP2 KV buffer size = 0.80 MiB
llama_kv_cache: size = 3.19 MiB ( 256 cells, 12 layers, 1/1 seqs), K (q8_0): 1.59 MiB, V (q8_0): 1.59 MiB
llama_context: HTP0 compute buffer size = 16.06 MiB
llama_context: HTP1 compute buffer size = 16.06 MiB
llama_context: HTP2 compute buffer size = 16.06 MiB
llama_context: HTP3 compute buffer size = 16.06 MiB
llama_context: CPU compute buffer size = 98.19 MiB
...
llama_perf_context_print: prompt eval time = 3843.67 ms / 197 tokens ( 19.51 ms per token, 51.25 tokens per second)
llama_perf_context_print: eval time = 1686.13 ms / 31 runs ( 54.39 ms per token, 18.39 tokens per second)
llama_perf_context_print: total time = 6266.30 ms / 228 tokens
llama_perf_context_print: graphs reused = 30
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP2 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP3 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 1476 = 1208 + 105 + 162 |
llama_memory_breakdown_print: | - HTP1-REPACK | 2505 = 2505 + 0 + 0 |
llama_memory_breakdown_print: | - HTP3-REPACK | 2088 = 2088 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2923 = 2923 + 0 + 0 |
llama_memory_breakdown_print: | - HTP2-REPACK | 2505 = 2505 + 0 + 0 |
```

View File

@@ -0,0 +1,89 @@
> [!IMPORTANT]
> This build documentation is specific only to RISC-V SpacemiT SOCs.
## Build llama.cpp locally (for riscv64)
1. Prepare Toolchain For RISCV
~~~
wget https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v1.1.2.tar.xz
~~~
2. Build
Below is the build script: it requires utilizing RISC-V vector instructions for acceleration. Ensure the `GGML_CPU_RISCV64_SPACEMIT` compilation option is enabled. The currently supported optimization version is `RISCV64_SPACEMIT_IME1`, corresponding to the `RISCV64_SPACEMIT_IME_SPEC` compilation option. Compiler configurations are defined in the `riscv64-spacemit-linux-gnu-gcc.cmake` file. Please ensure you have installed the RISC-V compiler and set the environment variable via `export RISCV_ROOT_PATH={your_compiler_path}`.
```bash
cmake -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DLLAMA_CURL=OFF \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed
cmake --build build --parallel $(nproc) --config Release
pushd build
make install
popd
```
## Simulation
You can use QEMU to perform emulation on non-RISC-V architectures.
1. Download QEMU
~~~
wget https://archive.spacemit.com/spacemit-ai/qemu/jdsk-qemu-v0.0.14.tar.gz
~~~
2. Run Simulation
After build your llama.cpp, you can run the executable file via QEMU for simulation, for example:
~~~
export QEMU_ROOT_PATH={your QEMU file path}
export RISCV_ROOT_PATH_IME1={your RISC-V compiler path}
${QEMU_ROOT_PATH}/bin/qemu-riscv64 -L ${RISCV_ROOT_PATH_IME1}/sysroot -cpu max,vlen=256,elen=64,vext_spec=v1.0 ${PWD}/build/bin/llama-cli -m ${PWD}/models/Qwen2.5-0.5B-Instruct-Q4_0.gguf -t 1
~~~
## Performance
#### Quantization Support For Matrix
~~~
model name : Spacemit(R) X60
isa : rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_zca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscofpmf_sstc_svinval_svnapot_svpbmt
mmu : sv39
uarch : spacemit,x60
mvendorid : 0x710
marchid : 0x8000000058000001
~~~
Q4_0
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | pp512|64.12 ± 0.26|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | tg128|10.03 ± 0.01|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | pp512|24.16 ± 0.02|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | tg128|3.83 ± 0.06|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | pp512|12.08 ± 0.02|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | tg128|2.23 ± 0.02|
Q4_1
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | pp512|62.07 ± 0.12|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | tg128|9.91 ± 0.01|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | pp512|22.95 ± 0.25|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | tg128|4.01 ± 0.15|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | pp512|11.55 ± 0.16|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | tg128|2.25 ± 0.04|
Q4_K
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | pp512|9.29 ± 0.05|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | tg128|5.67 ± 0.04|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | pp512|10.38 ± 0.10|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | tg128|3.17 ± 0.08|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | pp512|4.23 ± 0.04|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | tg128|1.73 ± 0.00|

View File

@@ -178,6 +178,48 @@ GeForce RTX 3070 8.6
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
```
### Overriding the CUDA Version
If you have multiple CUDA installations on your system and want to compile llama.cpp for a specific one, e.g. for CUDA 11.7 installed under `/opt/cuda-11.7`:
```bash
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_COMPILER=/opt/cuda-11.7/bin/nvcc -DCMAKE_INSTALL_RPATH="/opt/cuda-11.7/lib64;\$ORIGIN" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
```
#### Fixing Compatibility Issues with Old CUDA and New glibc
If you try to use an old CUDA version (e.g. v11.7) with a new glibc version you can get errors like this:
```
/usr/include/bits/mathcalls.h(83): error: exception specification is
incompatible with that of previous function "cospi"
/opt/cuda-11.7/bin/../targets/x86_64-linux/include/crt/math_functions.h(5545):
here
```
It seems the least bad solution is to patch the CUDA installation to declare the correct signatures.
Replace the following lines in `/path/to/your/cuda/installation/targets/x86_64-linux/include/crt/math_functions.h`:
```C++
// original lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x);
// edited lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x) noexcept (true);
```
### Runtime CUDA environmental variables
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
@@ -261,10 +303,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
Note: `GPU_TARGETS` is optional, omitting it will build the code for all GPUs in the current system.
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
@@ -282,17 +326,17 @@ You can download it from your Linux distro's package manager or from here: [ROCm
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
If necessary, adapt `GPU_TARGETS` to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.

View File

@@ -7,9 +7,9 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above:
@@ -110,7 +110,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
- `MUSA_VERSION` set to `rc4.2.0`
- `MUSA_VERSION` set to `rc4.3.0`
The resulting images, are essentially the same as the non-MUSA images:

View File

@@ -18,29 +18,34 @@ Legend:
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | | ❌ | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_3D | ❌ | ❌ | | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
@@ -51,60 +56,67 @@ Legend:
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| IM2COL_3D | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | | ✅ | ✅ | | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | | ✅ | ❌ | | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | | ✅ | ❌ | | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | | | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROLL | ❌ | ❌ | ✅ | | ❌ | ❌ | | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | | | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROLL | ❌ | ❌ | ✅ | | ❌ | ❌ | | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | | ✅ | ❌ | | ❌ | ❌ |
| SET | ❌ | ❌ | ✅ | | ✅ | ❌ | 🟡 | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | | | | 🟡 | | ❌ |
| SOFT_MAX_BACK | ❌ | | 🟡 | 🟡 | | | | ✅ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| SOFTPLUS | ❌ | | ✅ | 🟡 | | | | | ❌ |
| SOFT_MAX | ❌ | 🟡 | | | | | | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | | ❌ | ❌ | | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | | ✅ | ✅ | | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| SWIGLU_OAI | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -3263,27 +3263,27 @@
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan"
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan"
"Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan"
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
Can't render this file because it is too large.

View File

@@ -38,6 +38,7 @@ The above command will output space-separated float values.
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
| 'json' | openai style |
| 'json+' | add cosine similarity matrix |
| 'raw' | plain text output |
### --embd-separator $"string"$
| $"string"$ | |

View File

@@ -70,6 +70,29 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
}
}
// plain, pipe-friendly output: one embedding per line
static void print_raw_embeddings(const float * emb,
int n_embd_count,
int n_embd,
const llama_model * model,
enum llama_pooling_type pooling_type,
int embd_normalize) {
const uint32_t n_cls_out = llama_model_n_cls_out(model);
const bool is_rank = (pooling_type == LLAMA_POOLING_TYPE_RANK);
const int cols = is_rank ? std::min<int>(n_embd, (int) n_cls_out) : n_embd;
for (int j = 0; j < n_embd_count; ++j) {
for (int i = 0; i < cols; ++i) {
if (embd_normalize == 0) {
LOG("%1.0f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
} else {
LOG("%1.7f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
}
}
LOG("\n");
}
}
int main(int argc, char ** argv) {
common_params params;
@@ -95,8 +118,13 @@ int main(int argc, char ** argv) {
params.n_batch = params.n_ctx;
}
// For non-causal models, batch size must be equal to ubatch size
params.n_ubatch = params.n_batch;
// for non-causal models, batch size must be equal to ubatch size
if (params.attention_type != LLAMA_ATTENTION_TYPE_CAUSAL) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);
@@ -144,6 +172,7 @@ int main(int argc, char ** argv) {
// get added sep and eos token, if any
const std::string added_sep_token = llama_vocab_get_add_sep(vocab) ? llama_vocab_get_text(vocab, llama_vocab_sep(vocab)) : "";
const std::string added_eos_token = llama_vocab_get_add_eos(vocab) ? llama_vocab_get_text(vocab, llama_vocab_eos(vocab)) : "";
const char * rerank_prompt = llama_model_chat_template(model, "rerank");
// tokenize the prompts and trim
std::vector<std::vector<int32_t>> inputs;
@@ -153,21 +182,28 @@ int main(int argc, char ** argv) {
// split classification pairs and insert expected separator tokens
if (pooling_type == LLAMA_POOLING_TYPE_RANK && prompt.find(params.cls_sep) != std::string::npos) {
std::vector<std::string> pairs = split_lines(prompt, params.cls_sep);
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
if (rerank_prompt != nullptr) {
const std::string query = pairs[0];
const std::string doc = pairs[1];
std::string final_prompt = rerank_prompt;
string_replace_all(final_prompt, "{query}" , query);
string_replace_all(final_prompt, "{document}", doc );
inp = common_tokenize(vocab, final_prompt, true, true);
} else {
std::string final_prompt;
for (size_t i = 0; i < pairs.size(); i++) {
final_prompt += pairs[i];
if (i != pairs.size() - 1) {
if (!added_eos_token.empty()) {
final_prompt += added_eos_token;
}
if (!added_sep_token.empty()) {
final_prompt += added_sep_token;
}
}
}
inp = common_tokenize(ctx, final_prompt, true, true);
}
inp = common_tokenize(ctx, final_prompt, true, true);
} else {
inp = common_tokenize(ctx, prompt, true, true);
}
@@ -229,7 +265,7 @@ int main(int argc, char ** argv) {
const uint64_t n_toks = inp.size();
// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
if (batch.n_tokens + n_toks > n_batch || s >= n_seq_max) {
float * out = emb + e * n_embd;
batch_decode(ctx, batch, out, s, n_embd, params.embd_normalize);
e += pooling_type == LLAMA_POOLING_TYPE_NONE ? batch.n_tokens : s;
@@ -359,6 +395,8 @@ int main(int argc, char ** argv) {
}
if (notArray) LOG("\n}\n");
} else if (params.embd_out == "raw") {
print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
}
LOG("\n");

View File

@@ -5,6 +5,11 @@ target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TEST_TARGET test-eval-callback)
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
if(NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K.gguf --model stories260K.gguf --prompt hello --seed 42 -ngl 0)
else()
add_test(NAME ${TEST_TARGET}
COMMAND llama-eval-callback --hf-repo ggml-org/models --hf-file tinyllamas/stories260K-be.gguf --model stories260K-be.gguf --prompt hello --seed 42 -ngl 0)
endif()
set_property(TEST ${TEST_TARGET} PROPERTY LABELS eval-callback curl)

View File

@@ -184,8 +184,13 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
const auto type = gguf_get_tensor_type (ctx, i);
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
const char * type_name = ggml_type_name(type);
const size_t type_size = ggml_type_size(type);
const size_t n_elements = size / type_size;
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu, type = %s, n_elts = %zu\n", __func__, i, name, size, offset, type_name, n_elements);
}
}

View File

@@ -371,8 +371,17 @@ class SchemaConverter:
raise ValueError(f'Unsupported ref {ref}')
for sel in ref.split('#')[-1].split('/')[1:]:
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel]
assert target is not None, f'Error resolving ref {ref}: {sel} not in {target}'
if isinstance(target, list):
try:
sel_index = int(sel)
except ValueError:
raise ValueError(f'Error resolving ref {ref}: {sel} not in {target}')
assert 0 <= sel_index < len(target), f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel_index]
else:
assert sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel]
self._refs[ref] = target
else:
@@ -547,7 +556,8 @@ class SchemaConverter:
def _resolve_ref(self, ref):
ref_name = ref.split('/')[-1]
ref_fragment = ref.split('#')[-1]
ref_name = 'ref' + re.sub(r'[^a-zA-Z0-9-]+', '-', ref_fragment)
if ref_name not in self._rules and ref not in self._refs_being_resolved:
self._refs_being_resolved.add(ref)
resolved = self._refs[ref]

View File

@@ -116,15 +116,38 @@ embedding-convert-model:
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh
embedding-convert-model-st:
$(call validate_embedding_model_path,embedding-convert-model-st)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh -st
embedding-run-original-model:
$(call validate_embedding_model_path,embedding-run-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/embedding/run-original-model.py
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
USE_SENTENCE_TRANSFORMERS="$(USE_SENTENCE_TRANSFORMERS)" \
./scripts/embedding/run-original-model.py \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_SENTENCE_TRANSFORMERS),--use-sentence-transformers)
embedding-run-original-model-st: USE_SENTENCE_TRANSFORMERS=1
embedding-run-original-model-st: embedding-run-original-model
embedding-run-converted-model:
@CONVERTED_EMBEDDING_MODEL="$(CONVERTED_EMBEDDING_MODEL)" ./scripts/embedding/run-converted-model.sh ${CONVERTED_EMBEDDING_MODEL}
@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_POOLING),--pooling)
embedding-run-converted-model-st: USE_POOLING=1
embedding-run-converted-model-st: embedding-run-converted-model
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model-st
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-inspect-original-model:
$(call validate_embedding_model_path,embedding-inspect-original-model)
@@ -156,7 +179,8 @@ embedding-quantize-model:
$(call quantize_model,$(CONVERTED_EMBEDDING_MODEL),QUANTIZED_EMBEDDING_MODEL)
embedding-run-quantized-model:
@./scripts/embedding/run-converted-model.sh ${QUANTIZED_EMBEDDING_MODEL}
@./scripts/embedding/run-converted-model.sh $(QUANTIZED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
###
### Perplexity targets/recipes

View File

@@ -105,12 +105,12 @@ new model, the model can be converted to GGUF format using the following command
### Inspecting the converted model
The converted model can be inspected using the following command:
```console
(venv) $ make inspect-converted-model
(venv) $ make causal-inspect-converted-model
```
### Running the converted model
```console
(venv) $ make run-converted-model
(venv) $ make causal-run-converted-model
```
### Model logits verfication
@@ -189,6 +189,23 @@ This command will save two files to the `data` directory, one is a binary
file containing logits which will be used for comparison with the converted
model, and the other is a text file which allows for manual visual inspection.
#### Using SentenceTransformer with numbered layers
For models that have numbered SentenceTransformer layers (01_Pooling, 02_Dense,
03_Dense, 04_Normalize), use the `-st` targets to apply all these layers:
```console
# Run original model with SentenceTransformer (applies all numbered layers)
(venv) $ make embedding-run-original-model-st
# Run converted model with pooling enabled
(venv) $ make embedding-run-converted-model-st
```
This will use the SentenceTransformer library to load and run the model, which
automatically applies all the numbered layers in the correct order. This is
particularly useful when comparing with models that should include these
additional transformation layers beyond just the base model output.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model the model can be converted to GGUF format using the following command:
@@ -208,6 +225,13 @@ was done manually in the previous steps) and compare the logits:
(venv) $ make embedding-verify-logits
```
For models with SentenceTransformer layers, use the `-st` verification target:
```console
(venv) $ make embedding-verify-logits-st
```
This convenience target automatically runs both the original model with SentenceTransformer
and the converted model with pooling enabled, then compares the results.
### llama-server verification
To verify that the converted model works with llama-server, the following
command can be used:

View File

@@ -1,4 +1,7 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <cstring>
#include <string>
@@ -8,7 +11,10 @@
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [prompt]\n", argv[0]);
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
printf("\n");
printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
printf("\n");
}
@@ -17,6 +23,8 @@ int main(int argc, char ** argv) {
std::string prompt = "Hello, my name is";
int ngl = 0;
bool embedding_mode = false;
bool pooling_enabled = false;
int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
{
int i = 1;
@@ -41,9 +49,13 @@ int main(int argc, char ** argv) {
return 1;
}
} else if (strcmp(argv[i], "-embd-mode") == 0) {
embedding_mode = true;
} else if (strcmp(argv[i], "-pooling") == 0) {
pooling_enabled = true;
} else if (strcmp(argv[i], "-embd-norm") == 0) {
if (i + 1 < argc) {
try {
embedding_mode = true;
embd_norm = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
@@ -112,7 +124,7 @@ int main(int argc, char ** argv) {
ctx_params.no_perf = false;
if (embedding_mode) {
ctx_params.embeddings = true;
ctx_params.pooling_type = LLAMA_POOLING_TYPE_NONE;
ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
ctx_params.n_ubatch = ctx_params.n_batch;
}
@@ -143,35 +155,80 @@ int main(int argc, char ** argv) {
return 1;
}
float * logits;
int n_logits;
float * data_ptr;
int data_size;
const char * type;
std::vector<float> embd_out;
if (embedding_mode) {
logits = llama_get_embeddings(ctx);
n_logits = llama_model_n_embd(model) * batch.n_tokens;
const int n_embd = llama_model_n_embd(model);
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
const int n_embeddings = n_embd * n_embd_count;
float * embeddings;
type = "-embeddings";
printf("Embeddings size: %d\n", n_logits);
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
embeddings = llama_get_embeddings_seq(ctx, 0);
embd_out.resize(n_embeddings);
printf("Normalizing embeddings using norm: %d\n", embd_norm);
common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
embeddings = embd_out.data();
} else {
embeddings = llama_get_embeddings(ctx);
}
printf("Embedding dimension: %d\n", n_embd);
printf("\n");
// Print embeddings in the specified format
for (int j = 0; j < n_embd_count; j++) {
printf("embedding %d: ", j);
// Print first 3 values
for (int i = 0; i < 3 && i < n_embd; i++) {
printf("%9.6f ", embeddings[j * n_embd + i]);
}
printf(" ... ");
// Print last 3 values
for (int i = n_embd - 3; i < n_embd; i++) {
if (i >= 0) {
printf("%9.6f ", embeddings[j * n_embd + i]);
}
}
printf("\n");
}
printf("\n");
printf("Embeddings size: %d\n", n_embeddings);
data_ptr = embeddings;
data_size = n_embeddings;
} else {
logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
n_logits = llama_vocab_n_tokens(vocab);
float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
const int n_logits = llama_vocab_n_tokens(vocab);
type = "";
printf("Vocab size: %d\n", n_logits);
data_ptr = logits;
data_size = n_logits;
}
std::filesystem::create_directory("data");
// Save logits to binary file
// Save data to binary file
char bin_filename[512];
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
printf("Saving logits to %s\n", bin_filename);
printf("Saving data to %s\n", bin_filename);
FILE * f = fopen(bin_filename, "wb");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
return 1;
}
fwrite(logits, sizeof(float), n_logits, f);
fwrite(data_ptr, sizeof(float), data_size, f);
fclose(f);
// Also save as text for debugging
@@ -182,26 +239,27 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
return 1;
}
for (int i = 0; i < n_logits; i++) {
fprintf(f, "%d: %.6f\n", i, logits[i]); // Added index and changed format
for (int i = 0; i < data_size; i++) {
fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
}
fclose(f);
// Print first and last 10 logits for quick verification
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < n_logits; i++) {
printf("%.6f ", logits[i]);
}
printf("\n");
if (!embedding_mode) {
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < data_size; i++) {
printf("%.6f ", data_ptr[i]);
}
printf("\n");
printf("Last 10 logits: ");
for (int i = n_logits - 10; i < n_logits; i++) {
if (i >= 0) printf("%.6f ", logits[i]);
printf("Last 10 logits: ");
for (int i = data_size - 10; i < data_size; i++) {
if (i >= 0) printf("%.6f ", data_ptr[i]);
}
printf("\n\n");
}
printf("\n\n");
printf("Logits saved to %s\n", bin_filename);
printf("Logits saved to %s\n", txt_filename);
printf("Data saved to %s\n", bin_filename);
printf("Data saved to %s\n", txt_filename);
llama_free(ctx);
llama_model_free(model);

View File

@@ -4,3 +4,4 @@ torchvision
transformers
huggingface-hub
accelerate
sentence-transformers

View File

@@ -48,7 +48,7 @@ def main():
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
model_name = os.path.splitext(os.path.basename(model_path))[0]
model_name = os.path.basename(model_path)
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"

View File

@@ -138,7 +138,10 @@ if model_path is None:
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
config = AutoConfig.from_pretrained(model_path)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
@@ -147,10 +150,6 @@ print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
@@ -171,7 +170,7 @@ if unreleased_model_name:
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload"
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
)
for name, module in model.named_modules():
@@ -193,7 +192,7 @@ print(f"Input text: {repr(prompt)}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(input_ids[0])}")
with torch.no_grad():
outputs = model(input_ids)
outputs = model(input_ids.to(model.device))
logits = outputs.logits
# Extract logits for the last token (next token prediction)

View File

@@ -2,8 +2,37 @@
set -e
MODEL_PATH="${1:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${2:-$(basename "$MODEL_PATH")}"
# Parse command line arguments
MODEL_PATH=""
MODEL_NAME=""
PROMPTS_FILE=""
# First argument is always model path
if [ $# -gt 0 ] && [[ "$1" != --* ]]; then
MODEL_PATH="$1"
shift
fi
# Parse remaining arguments
while [[ $# -gt 0 ]]; do
case $1 in
--prompts-file|-pf)
PROMPTS_FILE="$2"
shift 2
;;
*)
# If MODEL_NAME not set and this isn't a flag, use as model name
if [ -z "$MODEL_NAME" ] && [[ "$1" != --* ]]; then
MODEL_NAME="$1"
fi
shift
;;
esac
done
# Set defaults
MODEL_PATH="${MODEL_PATH:-"$EMBEDDING_MODEL_PATH"}"
MODEL_NAME="${MODEL_NAME:-$(basename "$MODEL_PATH")}"
if [ -t 0 ]; then
CPP_EMBEDDINGS="data/llamacpp-${MODEL_NAME}-embeddings.bin"
@@ -35,8 +64,18 @@ with open('$TEMP_FILE', 'wb') as f:
trap "rm -f $TEMP_FILE" EXIT
fi
python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
# Build the semantic_check.py command
SEMANTIC_CMD="python scripts/utils/semantic_check.py --model-path $MODEL_PATH \
--python-embeddings data/pytorch-${MODEL_NAME}-embeddings.bin \
--cpp-embeddings $CPP_EMBEDDINGS \
--prompt "Hello world today"
--cpp-embeddings $CPP_EMBEDDINGS"
# Add prompts file if specified, otherwise use default prompt
if [ -n "$PROMPTS_FILE" ]; then
SEMANTIC_CMD="$SEMANTIC_CMD --prompts-file \"$PROMPTS_FILE\""
else
SEMANTIC_CMD="$SEMANTIC_CMD --prompt \"Hello world today\""
fi
# Execute the command
eval $SEMANTIC_CMD

View File

@@ -2,6 +2,21 @@
set -e
# Parse command line arguments
SENTENCE_TRANSFORMERS=""
while [[ $# -gt 0 ]]; do
case $1 in
-st|--sentence-transformers)
SENTENCE_TRANSFORMERS="--sentence-transformers-dense-modules"
shift
;;
*)
echo "Unknown option: $1"
exit 1
;;
esac
done
MODEL_NAME="${MODEL_NAME:-$(basename "$EMBEDDING_MODEL_PATH")}"
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
TYPE="${OUTTYPE:-f16}"
@@ -15,7 +30,8 @@ echo "Converted model path:: ${CONVERTED_MODEL}"
python ../../convert_hf_to_gguf.py --verbose \
${EMBEDDING_MODEL_PATH} \
--outfile ${CONVERTED_MODEL} \
--outtype ${TYPE}
--outtype ${TYPE} \
${SENTENCE_TRANSFORMERS}
echo ""
echo "The environment variable CONVERTED_EMBEDDING MODEL can be set to this path using:"

View File

@@ -2,8 +2,32 @@
set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_EMBEDDING_MODEL"}"
# Parse command line arguments
CONVERTED_MODEL=""
PROMPTS_FILE=""
USE_POOLING=""
while [[ $# -gt 0 ]]; do
case $1 in
-p|--prompts-file)
PROMPTS_FILE="$2"
shift 2
;;
--pooling)
USE_POOLING="1"
shift
;;
*)
if [ -z "$CONVERTED_MODEL" ]; then
CONVERTED_MODEL="$1"
fi
shift
;;
esac
done
# First try command line argument, then environment variable
CONVERTED_MODEL="${CONVERTED_MODEL:-"$CONVERTED_EMBEDDING_MODEL"}"
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
@@ -13,8 +37,23 @@ if [ -z "$CONVERTED_MODEL" ]; then
exit 1
fi
# Read prompt from file or use default
if [ -n "$PROMPTS_FILE" ]; then
if [ ! -f "$PROMPTS_FILE" ]; then
echo "Error: Prompts file '$PROMPTS_FILE' not found" >&2
exit 1
fi
PROMPT=$(cat "$PROMPTS_FILE")
else
PROMPT="Hello world today"
fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "Hello world today"
# TODO: update logits.cpp to accept a --file/-f option for the prompt
if [ -n "$USE_POOLING" ]; then
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode -pooling "$PROMPT"
else
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
fi

View File

@@ -13,64 +13,131 @@ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
parser.add_argument('--use-sentence-transformers', action='store_true',
help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
args = parser.parse_args()
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Determine if we should use SentenceTransformer
use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path) # Note: from_pretrained, not fromPretrained
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
if use_sentence_transformers:
from sentence_transformers import SentenceTransformer
print("Using SentenceTransformer to apply all numbered layers")
model = SentenceTransformer(model_path)
tokenizer = model.tokenizer
config = model[0].auto_model.config # type: ignore
else:
model = AutoModel.from_pretrained(model_path)
print(f"Model class: {type(model)}")
#print(f"Model file: {type(model).__module__}")
config = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
#original_sliding_window = 6
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path, config=config)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
# Verify the model is using the correct sliding window
if not use_sentence_transformers:
if hasattr(model.config, 'sliding_window'): # type: ignore
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
else:
print("Model config does not have sliding_window attribute")
model_name = os.path.basename(model_path)
texts = [ "Hello world today" ]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
if args.prompts_file:
prompt_text = read_prompt_from_file(args.prompts_file)
texts = [prompt_text]
else:
texts = ["Hello world today"]
with torch.no_grad():
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
if use_sentence_transformers:
embeddings = model.encode(texts, convert_to_numpy=True)
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
else:
# Standard approach: use base model output only
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
n_embd = all_embeddings.shape[1]
n_embd_count = all_embeddings.shape[0]
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
print() # Empty line to match C++ output
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
if len(all_embeddings.shape) == 1:
n_embd = all_embeddings.shape[0] # type: ignore
n_embd_count = 1
all_embeddings = all_embeddings.reshape(1, -1)
else:
n_embd = all_embeddings.shape[1] # type: ignore
n_embd_count = all_embeddings.shape[0] # type: ignore
print()
for j in range(n_embd_count):
embedding = all_embeddings[j]
@@ -88,29 +155,23 @@ with torch.no_grad():
print() # New line
print() # Final empty line to match C++ output
print()
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
f.write(f"# Model class: {model_name}\n")
f.write(f"# Tokens: {token_strings}\n")
f.write(f"# Shape: {all_embeddings.shape}\n")
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
idx = 0
for j in range(n_embd_count):
f.write(f"# Token {j} ({token_strings[j]}):\n")
for i, value in enumerate(all_embeddings[j]):
f.write(f"{j}_{i}: {value:.6f}\n")
f.write("\n")
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
for value in all_embeddings[j]:
f.write(f"{idx}: {value:.6f}\n")
idx += 1
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")

View File

@@ -67,7 +67,7 @@ def main():
parser.add_argument('-m', '--model-path', required=True, help='Path to the model directory')
args = parser.parse_args()
model_name = os.path.splitext(os.path.basename(args.model_path))[0]
model_name = os.path.basename(args.model_path)
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"

View File

@@ -40,7 +40,7 @@ if os.path.exists(index_path):
file_path = os.path.join(model_path, file_name)
print(f"\n--- From {file_name} ---")
with safe_open(file_path, framework="pt") as f: # type: ignore
with safe_open(file_path, framework="pt") as f:
for tensor_name in sorted(tensor_names):
tensor = f.get_tensor(tensor_name)
print(f"- {tensor_name} : shape = {tensor.shape}, dtype = {tensor.dtype}")
@@ -49,7 +49,7 @@ elif os.path.exists(single_file_path):
# Single file model (original behavior)
print("Single-file model detected")
with safe_open(single_file_path, framework="pt") as f: # type: ignore
with safe_open(single_file_path, framework="pt") as f:
keys = f.keys()
print("Tensors in model:")
for key in sorted(keys):

View File

@@ -35,7 +35,11 @@ def cosine_similarity(a, b=None):
def load_embeddings_from_file(filename, n_tokens, n_embd):
embeddings = np.fromfile(filename, dtype=np.float32)
return embeddings.reshape(n_tokens, n_embd)
# Check if this is pooled (single embedding) or per-token embeddings
if len(embeddings) == n_embd:
return embeddings.reshape(1, n_embd)
else:
return embeddings.reshape(n_tokens, n_embd)
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
np.set_printoptions(suppress=True, precision=6)
@@ -48,58 +52,94 @@ def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
n_tokens = len(tokens)
is_pooled = python_emb.shape[0] == 1
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
if is_pooled:
print(f"\n[Pooled Embeddings Mode - comparing single sentence embeddings]")
# 1. Direct embedding comparison for pooled embeddings
print(f"\n1. Raw Embedding Magnitude Comparison:")
py_mag = np.linalg.norm(python_emb[0])
cpp_mag = np.linalg.norm(cpp_emb[0])
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
print(f" Pooled embedding: Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 2. Cross-model similarity for pooled embeddings
print(f"\n2. Cross-Model Pooled Embedding Similarity:")
sim = cosine_similarity([python_emb[0]], [cpp_emb[0]])[0][0]
print(f" Cosine similarity: {sim:.6f}")
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
return {
'cross_model_similarities': [sim],
'similarity_matrix_diff': np.array([[0.0]]),
'max_diff': 0.0,
'mean_diff': 0.0,
'rms_diff': 0.0
}
else:
# Original per-token comparison logic
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
def read_prompt_from_file(file_path):
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read().strip()
except FileNotFoundError:
print(f"Error: Prompts file '{file_path}' not found")
exit(1)
except Exception as e:
print(f"Error reading prompts file: {e}")
exit(1)
def main():
parser = argparse.ArgumentParser(description='Test semantic similarity between Python and llama.cpp embeddings')
@@ -108,14 +148,20 @@ def main():
parser.add_argument('--cpp-embeddings', '-ce', help='Path to llama.cpp embeddings "logits" binary file')
parser.add_argument('--causal', '-c', default=False, help='if the model is causal (default: false)', action='store_true')
parser.add_argument('--prompt', '-p', default='Hello world today', help='Test prompt')
parser.add_argument('--prompts-file', '-pf', help='Path to file containing prompts')
args = parser.parse_args()
if args.prompts_file:
prompt = read_prompt_from_file(args.prompts_file)
else:
prompt = args.prompt
print("Semantic Similarity Test Between Python and llama.cpp Embedding Models")
print("=" * 70)
# Single prompt detailed comparison
print(f"\nTesting with prompt: '{args.prompt}'")
print(f"\nTesting with prompt: '{prompt}'")
# Load the python model to get configuration information and also to load the tokenizer.
print("Loading model and tokenizer using AutoTokenizer:", args.model_path)
@@ -144,7 +190,7 @@ def main():
else:
model = AutoModel.from_pretrained(args.model_path)
encoded = tokenizer(args.prompt, return_tensors="pt")
encoded = tokenizer(prompt, return_tensors="pt")
tokens = tokenizer.convert_ids_to_tokens(encoded['input_ids'][0])
n_tokens = len(tokens)
print(f"n_tokens: {n_tokens}");
@@ -155,7 +201,7 @@ def main():
python_embeddings = load_embeddings_from_file(args.python_embeddings, n_tokens, model.config.hidden_size)
# Run comparison
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, args.prompt)
results = test_single_prompt_similarity(python_embeddings, llamacpp_embeddings, tokens, prompt)
# Summary
print(f"\n=== SUMMARY ===")

View File

@@ -4,8 +4,7 @@ project("ggml" C CXX ASM)
### GGML Version
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION_DEV "-dev") # "-dev" for development, "" for releases
set(GGML_VERSION_PATCH 4)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
@@ -26,8 +25,8 @@ if(GIT_EXE)
)
endif()
# Build the version string with optional -dev suffix and dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}${GGML_VERSION_DEV}")
# Build the version string with optional dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}")
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
set(GGML_VERSION "${GGML_VERSION}-dirty")
endif()
@@ -169,7 +168,7 @@ option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_VXE "ggml: enable vxe" ${GGML_NATIVE})
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
@@ -177,7 +176,7 @@ set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (MINGW)
set(GGML_WIN_VER "0x602" CACHE STRING "ggml: Windows version")
set(GGML_WIN_VER "0xA00" CACHE STRING "ggml: Windows version")
endif()
# ggml core
@@ -210,7 +209,6 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
@@ -224,6 +222,9 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)" OFF)
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@@ -250,6 +251,8 @@ option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adr
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
"gmml: OpenCL API version to target")
option(GGML_HEXAGON "ggml: enable Hexagon backend" OFF)
# toolchain for vulkan-shaders-gen
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")

View File

@@ -215,6 +215,8 @@ extern "C" {
// Backend registry
//
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Backend (reg) enumeration
@@ -314,7 +316,8 @@ extern "C" {
GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched);
GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_sched_get_buffer_type(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend);
GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node);

View File

@@ -0,0 +1,19 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_hexagon_init(void);
GGML_BACKEND_API bool ggml_backend_is_hexagon(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_hexagon_reg(void);
#ifdef __cplusplus
}
#endif

View File

@@ -7,26 +7,24 @@
extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 2
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device);
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);
#ifdef __cplusplus
}

View File

@@ -237,9 +237,12 @@
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
// TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
#define GGML_ROPE_TYPE_NORMAL 0
#define GGML_ROPE_TYPE_NEOX 2
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
#define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
#define GGML_MROPE_SECTIONS 4
@@ -472,6 +475,7 @@ extern "C" {
GGML_OP_COS,
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_CUMSUM,
GGML_OP_MEAN,
GGML_OP_ARGMAX,
GGML_OP_COUNT_EQUAL,
@@ -527,6 +531,8 @@ extern "C" {
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
GGML_OP_TRI,
GGML_OP_FILL,
GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_ATTN_BACK,
@@ -539,6 +545,7 @@ extern "C" {
GGML_OP_RWKV_WKV6,
GGML_OP_GATED_LINEAR_ATTN,
GGML_OP_RWKV_WKV7,
GGML_OP_SOLVE_TRI,
GGML_OP_UNARY,
@@ -573,7 +580,14 @@ extern "C" {
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_EXPM1,
GGML_UNARY_OP_SOFTPLUS,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_XIELU,
GGML_UNARY_OP_FLOOR,
GGML_UNARY_OP_CEIL,
GGML_UNARY_OP_ROUND,
GGML_UNARY_OP_TRUNC,
GGML_UNARY_OP_COUNT,
};
@@ -612,6 +626,13 @@ extern "C" {
GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
};
enum ggml_tri_type {
GGML_TRI_TYPE_UPPER_DIAG = 0,
GGML_TRI_TYPE_UPPER = 1,
GGML_TRI_TYPE_LOWER_DIAG = 2,
GGML_TRI_TYPE_LOWER = 3
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
@@ -949,6 +970,22 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_expm1(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_expm1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_softplus(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_softplus_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sin(
struct ggml_context * ctx,
struct ggml_tensor * a);
@@ -975,6 +1012,10 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_cumsum(
struct ggml_context * ctx,
struct ggml_tensor * a);
// mean along rows
GGML_API struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
@@ -1148,6 +1189,58 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_floor(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_floor_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_ceil(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_ceil_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_round(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_round_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
/**
* Truncates the fractional part of each element in the tensor (towards zero).
* For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
* Similar to std::trunc in C/C++.
*/
GGML_API struct ggml_tensor * ggml_trunc(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_trunc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// xIELU activation function
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
// that constrain the positive and negative source alpha values respectively
GGML_API struct ggml_tensor * ggml_xielu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha_n,
float alpha_p,
float beta,
float eps);
// gated linear unit ops
// A: n columns, r rows,
// result is n / 2 columns, r rows,
@@ -1615,6 +1708,13 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);
@@ -2041,6 +2141,7 @@ extern "C" {
enum ggml_scale_mode {
GGML_SCALE_MODE_NEAREST = 0,
GGML_SCALE_MODE_BILINEAR = 1,
GGML_SCALE_MODE_BICUBIC = 2,
GGML_SCALE_MODE_COUNT
};
@@ -2119,6 +2220,23 @@ extern "C" {
int shift2,
int shift3);
// Convert matrix into a triangular one (upper, strict upper, lower or strict lower) by writing
// zeroes everywhere outside the masked area
GGML_API struct ggml_tensor * ggml_tri(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_tri_type type);
// Fill tensor a with constant c
GGML_API struct ggml_tensor * ggml_fill(
struct ggml_context * ctx,
struct ggml_tensor * a,
float c);
GGML_API struct ggml_tensor * ggml_fill_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float c);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
@@ -2288,6 +2406,27 @@ extern "C" {
struct ggml_tensor * b,
struct ggml_tensor * state);
/* Solves a specific equation of the form Ax=B, where A is a triangular matrix
* without zeroes on the diagonal (i.e. invertible).
* B can have any number of columns, but must have the same number of rows as A
* If A is [n, n] and B is [n, m], then the result will be [n, m] as well
* Has O(n^3) complexity (unlike most matrix ops out there), so use on cases
* where n > 100 sparingly, pre-chunk if necessary.
*
* If left = false, solves xA=B instead
* If lower = false, assumes upper triangular instead
* If uni = true, assumes diagonal of A to be all ones (will override actual values)
*
* TODO: currently only lower, right, non-unitriangular variant is implemented
*/
GGML_API struct ggml_tensor * ggml_solve_tri(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool left,
bool lower,
bool uni);
// custom operators
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);

View File

@@ -145,6 +145,9 @@ endif()
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_XOPEN_SOURCE=700)
elseif (CMAKE_SYSTEM_NAME MATCHES "AIX")
# Don't define _XOPEN_SOURCE. We need _ALL_SOURCE, which is the default,
# in order to define _SC_PHYS_PAGES.
else()
add_compile_definitions(_XOPEN_SOURCE=600)
endif()
@@ -208,6 +211,11 @@ add_library(ggml-base
ggml-quants.h
gguf.cpp)
set_target_properties(ggml-base PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
target_include_directories(ggml-base PRIVATE .)
if (GGML_BACKEND_DL)
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
@@ -217,6 +225,11 @@ add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
set_target_properties(ggml PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
if (GGML_BACKEND_DIR)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_BACKEND_DIR requires GGML_BACKEND_DL")
@@ -256,6 +269,12 @@ function(ggml_add_backend_library backend)
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
endif()
# Set versioning properties for all backend libraries
set_target_properties(${backend} PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
if(NOT GGML_AVAILABLE_BACKENDS)
set(GGML_AVAILABLE_BACKENDS "${backend}"
CACHE INTERNAL "List of backends for cmake package")
@@ -301,6 +320,14 @@ function(ggml_add_cpu_backend_variant tag_name)
set(GGML_INTERNAL_${feat} ON)
endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
foreach (feat VXE2 NNPA)
set(GGML_INTERNAL_${feat} OFF)
endforeach()
foreach (feat ${ARGN})
set(GGML_INTERNAL_${feat} ON)
endforeach()
@@ -368,6 +395,13 @@ if (GGML_CPU_ALL_VARIANTS)
else()
message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}")
endif()
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
ggml_add_cpu_backend_variant(z15 Z15 VXE2)
ggml_add_cpu_backend_variant(z16 Z16 VXE2 NNPA)
else()
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
endif()
else()
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
endif()
@@ -387,6 +421,7 @@ ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)
ggml_add_backend(zDNN)
ggml_add_backend(OpenCL)
ggml_add_backend(Hexagon)
foreach (target ggml-base ggml)
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)

View File

@@ -23,7 +23,7 @@ static bool ggml_is_view(const struct ggml_tensor * t) {
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
case GGML_OP_DIAG_MASK_ZERO:
@@ -95,39 +95,104 @@ enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_te
// dynamic tensor allocator
#define GGML_VBUFFER_MAX_CHUNKS 16
// relative memory address within an allocation that can be split into multiple buffers (chunks)
struct buffer_address {
int chunk; // index of a backend buffer
size_t offset; // local memory offset within the buffer
};
static const struct buffer_address GGML_BUFFER_ADDRESS_INVALID = { -1, SIZE_MAX };
static bool ggml_buffer_address_less(struct buffer_address a, struct buffer_address b) {
return a.chunk != b.chunk ? a.chunk < b.chunk : a.offset < b.offset;
}
struct free_block {
size_t offset;
size_t size;
};
struct tallocr_chunk {
struct free_block free_blocks[MAX_FREE_BLOCKS];
int n_free_blocks;
size_t max_size;
};
struct ggml_dyn_tallocr {
size_t alignment;
int n_free_blocks;
struct free_block free_blocks[MAX_FREE_BLOCKS];
size_t max_size;
size_t max_chunk_size;
struct tallocr_chunk * chunks[GGML_VBUFFER_MAX_CHUNKS];
int n_chunks;
#ifdef GGML_ALLOCATOR_DEBUG
struct {
const struct ggml_tensor * tensor;
size_t offset;
struct buffer_address addr;
} allocated_tensors[1024];
#endif
};
static void ggml_dyn_tallocr_insert_block(struct tallocr_chunk * chunk, size_t offset, size_t size) {
GGML_ASSERT(chunk->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < chunk->n_free_blocks && chunk->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = chunk->n_free_blocks; i > insert_pos; i--) {
chunk->free_blocks[i] = chunk->free_blocks[i-1];
}
// insert the new block
chunk->free_blocks[insert_pos].offset = offset;
chunk->free_blocks[insert_pos].size = size;
chunk->n_free_blocks++;
}
static void ggml_dyn_tallocr_remove_block(struct tallocr_chunk * chunk, int idx) {
// shift all elements after idx by 1 to the left, overwriting the element at idx
for (int i = idx; i < chunk->n_free_blocks; i++) {
chunk->free_blocks[i] = chunk->free_blocks[i+1];
}
chunk->n_free_blocks--;
}
static int ggml_dyn_tallocr_new_chunk(struct ggml_dyn_tallocr * alloc, size_t min_size) {
if (alloc->n_chunks >= GGML_VBUFFER_MAX_CHUNKS) {
return -1;
}
struct tallocr_chunk * chunk = calloc(1, sizeof(struct tallocr_chunk));
chunk->n_free_blocks = 1;
chunk->free_blocks[0].offset = 0;
// available space in a chunk is limited to max_chunk_size, but can be higher if:
// 1. a single tensor exceeds the maximum, and cannot fit any other way
// 2. we are running out of chunks
// backends will either manage to allocate the larger size, or report an error.
chunk->free_blocks[0].size = MAX(min_size, alloc->max_chunk_size);
if (alloc->n_chunks == GGML_VBUFFER_MAX_CHUNKS - 1) {
chunk->free_blocks[0].size = SIZE_MAX/2;
}
alloc->chunks[alloc->n_chunks] = chunk;
alloc->n_chunks++;
return alloc->n_chunks - 1;
}
#ifdef GGML_ALLOCATOR_DEBUG
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor == NULL) {
alloc->allocated_tensors[i].tensor = tensor;
alloc->allocated_tensors[i].offset = offset;
alloc->allocated_tensors[i].addr = addr;
return;
}
}
GGML_ABORT("out of allocated_tensors");
}
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, const struct ggml_tensor * tensor) {
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].offset == offset) {
if (alloc->allocated_tensors[i].addr.chunk == addr.chunk && alloc->allocated_tensors[i].addr.offset == addr.offset) {
alloc->allocated_tensors[i].tensor = NULL;
return;
}
@@ -136,76 +201,101 @@ static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offs
}
#endif
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
int best_fit_chunk = -1;
int best_fit_block = -1;
size_t max_avail = 0;
// find the best fitting free block besides the last block
int best_fit_block = -1;
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
struct free_block * block = &alloc->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_block = i;
best_fit_size = block->size;
// find the best fitting free block besides the last block, within any chunk
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
size_t best_fit_size = SIZE_MAX;
for (int i = 0; i < chunk->n_free_blocks - 1; i++) {
struct free_block * block = &chunk->free_blocks[i];
max_avail = MAX(max_avail, block->size);
if (block->size >= size && block->size <= best_fit_size) {
best_fit_chunk = c;
best_fit_block = i;
best_fit_size = block->size;
}
}
}
if (best_fit_block == -1) {
// the last block is our last resort
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
if (block->size >= size) {
best_fit_block = alloc->n_free_blocks - 1;
} else {
// this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("not enough space in the buffer");
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
size_t offset = block->offset;
block->offset = offset + size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
alloc->n_free_blocks--;
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
}
}
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, offset, tensor);
size_t cur_max = offset + size;
if (cur_max > alloc->max_size) {
// sort allocated_tensors by offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
size_t tmp_offset = alloc->allocated_tensors[i].offset;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].offset = tmp_offset;
// no suitable block found, try the last block (this may grow a chunks size)
int64_t best_reuse = INT64_MIN;
for (int c = 0; c < alloc->n_chunks; ++c) {
struct tallocr_chunk * chunk = alloc->chunks[c];
if (chunk->n_free_blocks > 0) {
struct free_block * block = &chunk->free_blocks[chunk->n_free_blocks - 1];
max_avail = MAX(max_avail, block->size);
int64_t reuse_factor = chunk->max_size - block->offset - size;
// reuse_factor < 0 : amount of extra memory that needs to be allocated
// reuse_factor = 0 : allocated free space exactly matches tensor size
// reuse_factor > 0 : superfluous memory that will remain unused
bool better_reuse = best_reuse < 0 && reuse_factor > best_reuse;
bool better_fit = reuse_factor >= 0 && reuse_factor < best_reuse;
if (block->size >= size && (better_reuse || better_fit)) {
best_fit_chunk = c;
best_fit_block = chunk->n_free_blocks - 1;
best_reuse = reuse_factor;
}
}
}
GGML_LOG_DEBUG("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
}
if (best_fit_block == -1) {
// none of the existing chunks have enough space left
best_fit_chunk = ggml_dyn_tallocr_new_chunk(alloc, size);
best_fit_block = 0;
}
if (best_fit_chunk == -1) {
// since the last chunk always has virtually endless memory, this should never happen
GGML_LOG_ERROR("%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
__func__, size, max_avail);
GGML_ABORT("graph allocation: failed to reserve memory");
}
struct tallocr_chunk * chunk = alloc->chunks[best_fit_chunk];
struct free_block * block = &chunk->free_blocks[best_fit_block];
struct buffer_address addr = {.chunk = best_fit_chunk, .offset = block->offset };
block->offset += size;
block->size -= size;
if (block->size == 0) {
// remove block if empty
ggml_dyn_tallocr_remove_block(chunk, best_fit_block);
}
AT_PRINTF("block %d, offset %zu, chunk %d\n", best_fit_block, addr.offset, addr.chunk);
#ifdef GGML_ALLOCATOR_DEBUG
add_allocated_tensor(alloc, addr, tensor);
size_t cur_max = addr.offset + size;
if (cur_max > chunk->max_size) {
// sort allocated_tensors by chunk/offset
for (int i = 0; i < 1024; i++) {
for (int j = i + 1; j < 1024; j++) {
if (ggml_buffer_address_less(alloc->allocated_tensors[j].addr, alloc->allocated_tensors[i].addr)) {
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
struct buffer_address tmp_addr = alloc->allocated_tensors[i].addr;
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
alloc->allocated_tensors[i].addr = alloc->allocated_tensors[j].addr;
alloc->allocated_tensors[j].tensor = tmp_tensor;
alloc->allocated_tensors[j].addr = tmp_addr;
}
}
}
GGML_LOG_DEBUG("max_size[%d] = %.2f MB: tensors: ", addr.chunk, cur_max / 1024.0 / 1024.0);
for (int i = 0; i < 1024; i++) {
if (alloc->allocated_tensors[i].tensor) {
GGML_LOG_DEBUG("%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].offset,
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
GGML_LOG_DEBUG("%s [%d: %zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
alloc->allocated_tensors[i].addr.chunk,
alloc->allocated_tensors[i].addr.offset,
alloc->allocated_tensors[i].addr.offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
}
}
@@ -213,78 +303,69 @@ static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t siz
}
#endif
alloc->max_size = MAX(alloc->max_size, offset + size);
chunk->max_size = MAX(chunk->max_size, addr.offset + size);
return offset;
return addr;
GGML_UNUSED(tensor);
}
// this is a very naive implementation, but for our case the number of free blocks should be very small
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, struct buffer_address addr, size_t size, const struct ggml_tensor * tensor) {
size = aligned_offset(NULL, size, alloc->alignment);
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
AT_PRINTF("%s: freeing %s at {chunk=%d, offset=%zu} (%zu bytes) - n_free_blocks = %d\n",
__func__, tensor->name, addr.chunk, addr.offset, size, alloc->chunks[addr.chunk]->n_free_blocks);
#ifdef GGML_ALLOCATOR_DEBUG
remove_allocated_tensor(alloc, offset, tensor);
remove_allocated_tensor(alloc, addr, tensor);
#endif
struct tallocr_chunk * chunk = alloc->chunks[addr.chunk];
// see if we can merge with an existing block
for (int i = 0; i < alloc->n_free_blocks; i++) {
struct free_block * block = &alloc->free_blocks[i];
for (int i = 0; i < chunk->n_free_blocks; i++) {
struct free_block * block = &chunk->free_blocks[i];
// check if ptr is at the end of the block
if (block->offset + block->size == offset) {
if (block->offset + block->size == addr.offset) {
block->size += size;
// check if we can merge with the next block
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
block->size += alloc->free_blocks[i+1].size;
alloc->n_free_blocks--;
for (int j = i+1; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i < chunk->n_free_blocks - 1) {
struct free_block * next = &chunk->free_blocks[i+1];
if (block->offset + block->size == next->offset) {
block->size += next->size;
ggml_dyn_tallocr_remove_block(chunk, i+1);
}
}
return;
}
// check if ptr is at the beginning of the block
if (offset + size == block->offset) {
block->offset = offset;
if (addr.offset + size == block->offset) {
block->offset = addr.offset;
block->size += size;
// check if we can merge with the previous block
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
alloc->free_blocks[i-1].size += block->size;
alloc->n_free_blocks--;
for (int j = i; j < alloc->n_free_blocks; j++) {
alloc->free_blocks[j] = alloc->free_blocks[j+1];
if (i > 0) {
struct free_block * prev = &chunk->free_blocks[i-1];
if (prev->offset + prev->size == block->offset) {
prev->size += block->size;
ggml_dyn_tallocr_remove_block(chunk, i);
}
}
return;
}
}
// otherwise, add a new block
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
int insert_pos = 0;
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
insert_pos++;
}
// shift all blocks from insert_pos onward to make room for the new block
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
alloc->free_blocks[i] = alloc->free_blocks[i-1];
}
// insert the new block
alloc->free_blocks[insert_pos].offset = offset;
alloc->free_blocks[insert_pos].size = size;
alloc->n_free_blocks++;
ggml_dyn_tallocr_insert_block(chunk, addr.offset, size);
GGML_UNUSED(tensor);
}
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
alloc->n_free_blocks = 1;
alloc->free_blocks[0].offset = 0;
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
alloc->max_size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; i++) {
free(alloc->chunks[i]);
alloc->chunks[i] = NULL;
}
alloc->n_chunks = 0;
#ifdef GGML_ALLOCATOR_DEBUG
for (int i = 0; i < 1024; i++) {
@@ -293,14 +374,14 @@ static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
#endif
}
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment, size_t max_buffer_size) {
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
*alloc = (struct ggml_dyn_tallocr) {
/*.alignment = */ alignment,
/*.n_free_blocks = */ 0,
/*.free_blocks = */ {{0}},
/*.max_size = */ 0,
/*.alignment = */ alignment,
/*.max_chunk_size = */ MIN(max_buffer_size, SIZE_MAX/2), // clamp to avoid overflows
/*.chunks = */ {NULL},
/*.n_chunks = */ 0,
#ifdef GGML_ALLOCATOR_DEBUG
/*.allocated_tensors = */ {{0}},
#endif
@@ -312,11 +393,73 @@ static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
}
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
for (int i = 0; i < alloc->n_chunks; ++i) {
free(alloc->chunks[i]);
}
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
return alloc->max_size;
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc, int chunk) {
return chunk < alloc->n_chunks ? alloc->chunks[chunk]->max_size : 0;
}
// virtual buffer with contiguous memory range, split into multiple backend buffers (chunks)
struct vbuffer {
ggml_backend_buffer_t chunks[GGML_VBUFFER_MAX_CHUNKS];
};
static void ggml_vbuffer_free(struct vbuffer * buf) {
if (buf == NULL) {
return;
}
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS; ++i) {
ggml_backend_buffer_free(buf->chunks[i]);
}
free(buf);
}
static size_t ggml_vbuffer_chunk_size(struct vbuffer * buf, int chunk) {
return buf->chunks[chunk] ? ggml_backend_buffer_get_size(buf->chunks[chunk]) : 0;
}
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
size_t size = 0;
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
size += ggml_backend_buffer_get_size(buf->chunks[i]);
}
return size;
}
static struct vbuffer * ggml_vbuffer_alloc(ggml_backend_buffer_type_t buft, const struct ggml_dyn_tallocr * talloc, enum ggml_backend_buffer_usage usage) {
struct vbuffer * buf = (struct vbuffer *)calloc(1, sizeof(struct vbuffer));
if (buf == NULL) {
return NULL;
}
for (int n = 0; n < talloc->n_chunks; n++) {
size_t chunk_size = talloc->chunks[n]->max_size;
buf->chunks[n] = ggml_backend_buft_alloc_buffer(buft, chunk_size);
if (buf->chunks[n] == NULL) {
ggml_vbuffer_free(buf);
return NULL;
}
ggml_backend_buffer_set_usage(buf->chunks[n], usage);
}
return buf;
}
static void ggml_vbuffer_tensor_alloc(struct vbuffer * buf, struct ggml_tensor * tensor, struct buffer_address buf_addr) {
void * base = ggml_backend_buffer_get_base(buf->chunks[buf_addr.chunk]);
void * addr = (char *)base + buf_addr.offset;
ggml_backend_tensor_alloc(buf->chunks[buf_addr.chunk], tensor, addr);
}
static void ggml_vbuffer_reset(struct vbuffer * buf) {
for (int i = 0; i < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[i]; ++i) {
ggml_backend_buffer_reset(buf->chunks[i]);
}
}
@@ -328,13 +471,13 @@ struct hash_node {
int n_children;
int n_views;
int buffer_id;
size_t offset; // offset within the buffer
struct buffer_address addr;
bool allocated;
};
struct tensor_alloc {
int buffer_id;
size_t offset;
struct buffer_address addr;
size_t size_max; // 0 = pre-allocated, unused, or view
};
@@ -349,7 +492,7 @@ struct node_alloc {
struct ggml_gallocr {
ggml_backend_buffer_type_t * bufts; // [n_buffers]
ggml_backend_buffer_t * buffers; // [n_buffers]
struct vbuffer ** buffers; // [n_buffers]
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
int n_buffers;
@@ -370,7 +513,7 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
GGML_ASSERT(galloc->bufts != NULL);
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
galloc->buffers = calloc(n_bufs, sizeof(struct vbuffer *));
GGML_ASSERT(galloc->buffers != NULL);
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
@@ -390,7 +533,8 @@ ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs
if (galloc->buf_tallocs[i] == NULL) {
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
size_t max_size = ggml_backend_buft_get_max_size(bufts[i]);
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment, max_size);
}
}
galloc->n_buffers = n_bufs;
@@ -418,7 +562,7 @@ void ggml_gallocr_free(ggml_gallocr_t galloc) {
}
}
if (!freed) {
ggml_backend_buffer_free(galloc->buffers[i]);
ggml_vbuffer_free(galloc->buffers[i]);
}
}
if (galloc->buf_tallocs != NULL) {
@@ -461,13 +605,33 @@ static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
}
// free the extra space at the end if the new tensor is smaller
static void ggml_gallocr_free_extra_space(ggml_gallocr_t galloc, struct ggml_tensor * node, struct ggml_tensor * parent) {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
size_t parent_size = ggml_backend_buft_get_alloc_size(galloc->bufts[p_hn->buffer_id], parent);
size_t node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
GGML_ASSERT(parent_size >= node_size);
if (parent_size > node_size) {
struct ggml_dyn_tallocr * p_alloc = galloc->buf_tallocs[p_hn->buffer_id];
struct buffer_address p_addr = p_hn->addr;
p_addr.offset += node_size;
size_t extra_size = parent_size - node_size;
AT_PRINTF("freeing extra %zu bytes from parent %s for %s\n", extra_size, parent->name, node->name);
ggml_dyn_tallocr_free_tensor(p_alloc, p_addr, extra_size, parent);
}
}
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
GGML_ASSERT(buffer_id >= 0);
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
hn->allocated = true;
assert(hn->offset == 0);
assert(hn->addr.offset == 0);
// try to reuse a parent's buffer (inplace)
if (ggml_op_can_inplace(node->op)) {
@@ -501,18 +665,20 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
assert(view_src_hn->offset == p_hn->offset);
assert(view_src_hn->addr.chunk == p_hn->addr.chunk && view_src_hn->addr.offset == p_hn->addr.offset);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
view_src_hn->allocated = false;
ggml_gallocr_free_extra_space(galloc, node, view_src);
return;
}
} else {
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
hn->buffer_id = p_hn->buffer_id;
hn->offset = p_hn->offset;
hn->addr = p_hn->addr;
p_hn->allocated = false; // avoid freeing the parent
ggml_gallocr_free_extra_space(galloc, node, parent);
return;
}
}
@@ -522,9 +688,8 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
hn->addr = ggml_dyn_tallocr_alloc(alloc, size, node);
}
}
@@ -536,12 +701,11 @@ static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * n
}
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
size_t offset = hn->offset;
int buffer_id = hn->buffer_id;
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
ggml_dyn_tallocr_free_tensor(alloc, hn->addr, size, node);
hn->allocated = false;
}
@@ -692,24 +856,24 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct node_alloc * node_alloc = &galloc->node_allocs[i];
if (node->view_src || node->data) {
node_alloc->dst.buffer_id = -1;
node_alloc->dst.offset = SIZE_MAX;
node_alloc->dst.addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->dst.size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
node_alloc->dst.buffer_id = hn->buffer_id;
node_alloc->dst.offset = hn->offset;
node_alloc->dst.addr = hn->addr;
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
}
for (int j = 0; j < GGML_MAX_SRC; j++) {
struct ggml_tensor * src = node->src[j];
if (!src || src->view_src || src->data) {
node_alloc->src[j].buffer_id = -1;
node_alloc->src[j].offset = SIZE_MAX;
node_alloc->src[j].addr = GGML_BUFFER_ADDRESS_INVALID;
node_alloc->src[j].size_max = 0;
} else {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
node_alloc->src[j].buffer_id = hn->buffer_id;
node_alloc->src[j].offset = hn->offset;
node_alloc->src[j].addr = hn->addr;
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
}
}
@@ -725,11 +889,11 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
if (leaf->view_src || leaf->data) {
galloc->leaf_allocs[i].leaf.buffer_id = -1;
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
galloc->leaf_allocs[i].leaf.addr = GGML_BUFFER_ADDRESS_INVALID;
galloc->leaf_allocs[i].leaf.size_max = 0;
} else {
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
galloc->leaf_allocs[i].leaf.offset = hn->offset;
galloc->leaf_allocs[i].leaf.addr = hn->addr;
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
}
}
@@ -744,22 +908,29 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
bool realloc = galloc->buffers[i] == NULL;
size_t new_size = 0;
for (int c = 0; c < galloc->buf_tallocs[i]->n_chunks; c++) {
size_t cur_chunk_size = galloc->buffers[i] ? ggml_vbuffer_chunk_size(galloc->buffers[i], c) : 0;
size_t new_chunk_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i], c);
new_size += new_chunk_size;
if (new_chunk_size > cur_chunk_size) {
realloc = true;
}
}
if (realloc) {
#ifndef NDEBUG
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
ggml_backend_buffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
ggml_vbuffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
if (galloc->buffers[i] == NULL) {
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
return false;
}
ggml_backend_buffer_set_usage(galloc->buffers[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
}
}
@@ -772,11 +943,11 @@ bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
int buffer_id = tensor_alloc->buffer_id;
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
assert(tensor->data || tensor->view_src || ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
if (tensor->view_src != NULL) {
if (tensor->buffer == NULL) {
assert(tensor_alloc->offset == SIZE_MAX);
assert(tensor_alloc->addr.offset == SIZE_MAX);
if (tensor->view_src->buffer == NULL) {
// this tensor was allocated without ggml-backend
return;
@@ -785,11 +956,9 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
}
} else {
if (tensor->data == NULL) {
assert(tensor_alloc->offset != SIZE_MAX);
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
void * addr = (char *)base + tensor_alloc->offset;
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
assert(tensor_alloc->addr.offset != SIZE_MAX);
assert(ggml_backend_buft_get_alloc_size(galloc->bufts[buffer_id], tensor) <= tensor_alloc->size_max);
ggml_vbuffer_tensor_alloc(galloc->buffers[buffer_id], tensor, tensor_alloc->addr);
} else {
if (tensor->buffer == NULL) {
// this tensor was allocated without ggml-backend
@@ -874,7 +1043,7 @@ bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph)
// reset buffers
for (int i = 0; i < galloc->n_buffers; i++) {
if (galloc->buffers[i] != NULL) {
ggml_backend_buffer_reset(galloc->buffers[i]);
ggml_vbuffer_reset(galloc->buffers[i]);
}
}
@@ -917,7 +1086,7 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
}
}
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
return ggml_vbuffer_size(galloc->buffers[buffer_id]);
}
// utils

Some files were not shown because too many files have changed in this diff Show More