Compare commits

...

123 Commits
b6601 ... b6724

Author SHA1 Message Date
duduta
1deee0f8d4 cpu : optimize the ggml NORM operation (#15953)
* ggml-cpu: optimize norm operation to use intrinsics or Accelerate

          rename function

          add endif macro comment

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>

* implement s390x SIMD suggested by @taronaeo

* add TODO comment

* tidy up spaces

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Aaron Teo <taronaeo@gmail.com>
2025-10-09 21:11:15 +02:00
Georgi Gerganov
d00cbea63c server : host-memory prompt caching (#16391)
* minor : code style

* server : fix prompt similarity calculation

* server : initial host-memory prompt caching

* cont

* server : refactor

* cont

* cont : make the server task of the slot const

* cont : minor [no ci]

* server : cache prompts and checkpoints only for completion tasks

* server : improve prompt caching logic

* cont : fix check for number of cached prompts [no ci]

* server : improve caching logic, add -cram CLI arg

* server : print prompt mismatch info

* cont : better naming [no ci]

* server : improve prompt cache loading logic

* server : add option to debug the slot contents (#16482)

* server : add option to debug the slot contents

* Update tools/server/server.cpp

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* server : add option to disable prompt cache

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-10-09 18:54:51 +03:00
Pascal
8328fd4bae No markdown in cot (#16483)
* fix: let the model think in plaintext

* chore: npm run format + npm run build
2025-10-09 17:36:29 +02:00
Daniel Bevenius
56b4795842 model-conversion : add support for SentenceTransformers (#16387)
* model-conversion : add support for SentenceTransformers

This commit adds support for models that use SentenceTransformer layers.

The motivation for this is that if converted model includes any of the
numbered layers specified in the original models repository then these
changes enable these models to be used and verified. Currently the
model-conversion only support the base model output without any of
the additional transformation layers.

Usage:
Convert the model that also includes the SentenceTransformer layers:
```console
(venv) $ export EMBEDDING_MODEL_PATH="~/google/embeddinggemma-300M"
(venv) make embedding-convert-model
```

Verify the produced embeddings from the converted model against the
original model embeddings:
```console
(venv) make embedding-verify-logits-st
```

The original model can be run using SentenceTransformer:
```console
(venv) make embedding-run-original-model-st
```

Run the converted model using "SentenceTransformer" layers whic
enables pooling and normalization:
```console
(venv) make embedding-run-converted-model-st
```

* add model-conversion example requirements

* add support for -st flag in embedding model conversion

This commit add support for the -st flag in the embedding model
conversion script. This will enable models to be converted using
sentence transformers dense layers.
2025-10-09 14:35:22 +02:00
sudhiarm
2c0d875ae6 ci: add ARM64 Kleidiai build and test support (#16462) 2025-10-09 10:13:18 +02:00
Chenguang Li
aa4711d369 CANN: Improve ACL graph matching (#16166)
* CANN: improve ACL graph matching

Record `ne` and `nb` information for src tensors and include them in the
graph matching check. This enhances the robustness of ACL graph matching
by preventing incorrect matches when src tensors share the same data
address but differ in shape or stride.

* CANN: add op_params match
2025-10-09 15:50:25 +08:00
Charles Xu
d80d6d2400 kleidiai: kernel interface refactoring (#16460) 2025-10-09 10:29:17 +03:00
Neo Zhang Jianyu
b260213755 [SYCL] refactor soft_max, add soft_max_back (#16472)
* refactor to support soft_max_ext

* fix error and support soft_max_back

* rm unused functions

* fix format issue

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-09 10:25:11 +03:00
Saba Fallah
e08db42595 model: EmbeddingGemma Adding Support for SentenceTransformers Dense Modules (#16367)
* model: EmbeddingGemma sentence-transformers dense linear projections support

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

Adding support for the Dense modules used in EmbeddingGemma models.
EmbeddingGemma is a SentenceTransformers model with additional modules beyond the base Transformer backbone.

See: https://developers.googleblog.com/en/gemma-explained-embeddinggemma-architecture-and-recipe/

* model: add support for EmbeddingGemma SentenceTransformers dense linear projections

- converting model with dense-layers is optional
- introduced dense config params

* Update convert_hf_to_gguf.py

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>

* fixed formatting issues

* Update src/llama-graph.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* - removed pooling_type_opt, always allow overriding pooling_type
- asserts checking dense features dims

* fix python lint

* fix ubuntu gcc build warning

* - fixed thread-safety test
- moved asserts to load_hparams

* - tidying up code
- simplifying graph-context expecting both dense weights

* minor : add TODO

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-09 09:39:18 +03:00
Pascal
12bbc3fa50 refactor: centralize CoT parsing in backend for streaming mode (#16394)
* refactor: unify reasoning handling via backend reasoning_content, drop frontend tag parsing

- Updated the chat message component to surface backend-supplied reasoning via message.thinking while showing the raw assistant content without inline tag scrubbing
- Simplified chat streaming to append content chunks directly, stream reasoning into the message model, and persist any partial reasoning when generation stops
- Refactored the chat service SSE handler to rely on server-provided reasoning_content, removing legacy <think> parsing logic
- Refreshed Storybook data and streaming flows to populate the thinking field explicitly for static and streaming assistant messages

* refactor: implement streaming-aware universal reasoning parser

Remove the streaming mode limitation from --reasoning-format by refactoring
try_parse_reasoning() to handle incremental parsing of <think> tags across
all formats.

- Rework try_parse_reasoning() to track whitespace, partial tags, and
  multiple reasoning segments, allowing proper separation of reasoning_content
  and content in streaming mode
- Parse reasoning tags before tool call handling in content-only and Llama 3.x
  formats to ensure inline <think> blocks are captured correctly
- Change default reasoning_format from 'auto' to 'deepseek' for consistent
  behavior
- Add 'deepseek-legacy' option to preserve old inline behavior when needed
- Update CLI help and documentation to reflect streaming support
- Add parser tests for inline <think>...</think> segments

The parser now continues processing content after </think> closes instead of
stopping, enabling proper message.reasoning_content and message.content
separation in both streaming and non-streaming modes.

Fixes the issue where streaming responses would dump everything (including
post-thinking content) into reasoning_content while leaving content empty.

* refactor: address review feedback from allozaur

- Passed the assistant message content directly to ChatMessageAssistant to drop the redundant derived state in the chat message component
- Simplified chat streaming updates by removing unused partial-thinking handling and persisting partial responses straight from currentResponse
- Refreshed the ChatMessage stories to cover standard and reasoning scenarios without the old THINK-tag parsing examples

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* refactor: restore forced reasoning prefix to pass test-chat ([chat] All tests passed)

- store the exact sequence seen on input when 'thinking_forced_open' enforces a reasoning block
- inject this prefix before the first accumulated segment in 'reasoning_content', then clear it to avoid duplication
- repeat the capture on every new 'start_think' detection to properly handle partial/streaming flows

* refactor: address review feedback from ngxson

* debug: say goodbye to curl -N, hello one-click raw stream

- adds a new checkbox in the WebUI to display raw LLM output without backend parsing or frontend Markdown rendering

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessage.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: add Storybook example for raw LLM output and scope reasoning format toggle per story

- Added a Storybook example that showcases the chat message component in raw LLM output mode with the provided trace sample
- Updated every ChatMessage story to toggle the disableReasoningFormat setting so the raw-output rendering remains scoped to its own example

* npm run format

* chat-parser: address review feedback from ngxson

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2025-10-08 23:18:41 +03:00
ai-fonsi
9d0882840e Disable CUDA host buffers on integrated GPUs (#16308) 2025-10-08 20:21:46 +02:00
issixx
d2ee056e1d server : fix cancel pending task (#16467)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
Build Actions Cache / ubuntu-24-vulkan-cache (push) Has been cancelled
Build Actions Cache / ubuntu-24-spacemit-cache (push) Has been cancelled
Build Actions Cache / windows-2022-rocm-cache (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
Co-authored-by: DevAI <DevAI@gmail.com>
2025-10-08 11:20:18 +03:00
Georgi Gerganov
b2c08c9ec4 metal : mark FA blocks (#16372)
* metal : better unroll in the FA kernels

* metal : index FA blocks

* tests : restore [no ci]

* metal : prevent division by zero in FA kernels

* metal : fix -INF detection logic
2025-10-08 10:57:53 +03:00
Georgi Gerganov
7fdd16b432 server : improve context checkpoint logic (#16440) 2025-10-08 10:57:29 +03:00
Reese Levine
74b8fc17f9 ggml webgpu: profiling, CI updates, reworking of command submission (#16452)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
* Add profiling

* More detailed profiling

* Rework command submission to avoid global locks

* Update wait handling

* try new method of waiting on futures

* Add serializing of command submission in some cases

* Add new pool for timestamp queries and clean up logging

* Serialize command submission in CI and leave a TODO note

* Update webgpu CI

* Add myself as WebGPU codeowner

* Deadlock avoidance

* Leave WebGPU/Vulkan CI serialized

* Fix divide by 0

* Fix logic in division by inflight_threads

* Update CODEOWNERS and remove serialize submit option
2025-10-07 13:48:56 -07:00
Tarek Dakhran
aeaf8a36f0 llama : support LiquidAI LFM2-MoE hybrid model (#16464)
* llama : support LiquidAI LFM2-MoE hybrid model

Add support for [LiquidAI/LFM2-8B-A1B](https://huggingface.co/LiquidAI/LFM2-8B-A1B) model.
For more information about models, please read [the blog post](https://www.liquid.ai/company/news).

[HF PR](https://github.com/huggingface/transformers/pull/41401)
[GGUFs](https://huggingface.co/LiquidAI/LFM2-8B-A1B-GGUF)

* Do not use defaultdict

* Address PR feedback
2025-10-07 20:03:35 +02:00
Georgi Gerganov
df1b612e29 server : add /v1/health endpoint (#16461)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Waiting to run
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
* server : add /v1/health endpoint

* cont : update readme
2025-10-07 15:57:14 +03:00
Sascha Rogmann
4e0388aa8a webui : added download action (#13552) (#16282)
* webui : added download action (#13552)

* webui : import and export (for all conversations)

* webui : fixed download-format, import of one conversation

* webui : add ExportedConversations type for chat import/export

* feat: Update naming & order

* chore: Linting

* webui : Updated static build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-07 11:11:08 +02:00
Georgi Gerganov
ef4c5b87ea presets : fix pooling param for embedding models (#16455) 2025-10-07 10:32:32 +03:00
Radoslav Gerganov
c61ae20d05 rpc : update documentation (#16441)
Update the README file to match the newly added functionality of
exposing multiple devices from a single server.

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-10-07 06:59:13 +00:00
Georgi Gerganov
0123ff38f5 memory : use sequential equal splits for recurrent modules (#16442) 2025-10-07 08:24:17 +03:00
Georgi Gerganov
0a319bb75e metal : add support for non-padded FA KV (#16148)
* metal : pad K, V and Mask when needed

* cont : simplify

* cuda : add TODO about KV padding requirement

* metal : add comments

* metal : remove mask padding requirement
2025-10-07 08:23:30 +03:00
Georgi Gerganov
1d6092fc72 tests : add -INF blocks to the KQ mask in the FA tests (#16380)
* tests : add -INF blocks to the KQ mask in the FA tests

* cont : bump -INF block size to 64

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* ggml : prevent division by zero in FA CPU op

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-07 08:22:35 +03:00
Georgi Gerganov
8ae32dc9ec metal : various optimizations + refactoring (#16446)
* metal : ssm_scan minor opts

* metal : get_rows optimize

* metal : cpy optimize

* metal : ssm_conv opt

* metal : ssm_scan simplify

* metal : ssm_Scan opt
2025-10-07 08:21:40 +03:00
Gadflyii
3df2244df4 llama : add --no-host to disable host buffers (#16310)
* implement --no-host to disable host buffer

* fix equal_mparams

* move no-host enumeration order together with other model params

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-10-06 19:55:53 +02:00
Gabe Goodhart
c08002a198 chat : Granite Docling stopping (#16438)
* fix: Fix duplicate fake image before token on first slice

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use double-newline before overview image

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove incorrect newline at the end of granite chat template gen prompt

There should not be one, even for the language models.

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* tests: Remove bad newline from granite chat template test (legacy)

Branch: GraniteDoclingStopping

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-10-06 18:59:40 +02:00
Sigbjørn Skjæret
3a002afafa ci : refactor sdk caching to minimize storage (#16414)
* refactor sdk caching to minimize storage

* use correct action

* add myself as owner to /.github/actions/ [no ci]
2025-10-06 17:40:21 +02:00
Georgi Gerganov
a23b9bdbd3 ggml : fix unaligned access in AMX code (#16315) 2025-10-06 16:05:27 +03:00
Daniel Bevenius
04e632a4aa ci : remove missing reranker model files (#16444)
This commit removes jina-reranker-v1-tiny-en model files that are no
longer present on Hugging Face.

The motivation for this that it clears up the CI logs from 404 errors
which can be a little confusing when looking at the logs the first time.

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630#step:5:2649
2025-10-06 14:56:59 +02:00
Daniel Bevenius
a80ff183ab ggml-cpu : fix leftover handling in ggml_vec_scale_f32 for SVE (#16443)
This commit updates the leftover handling in ggml_vec_scale_f32.

The motivation for this is that the code currently incorrectly assumes
there would be fewer than ggml_f32_epr leftover elements. However,
since the main loop processes 2*ggml_f32_epr elements per iteration
, there can be up to (2*ggml_f32_epr - 1) leftover elements.

The original single-pass leftover code could only process ggml_f32_epr
elements, leaving some elements unscaled.

Example scenario with 256-bit SVE:
```
ggml_f32_epr  = 8 (elements per register)
ggml_f32_step = 16 (two registers per iteration)
n             = 25
np            = 16
leftovers     = 9 elements (16-24)

Original    : processes only elements 16-23, misses element 24
This commit : loop processes elements 16-23, then element 24
```

Refs: https://github.com/ggml-org/llama.cpp/actions/runs/18070620247/job/51419855630
2025-10-06 14:17:12 +02:00
Yuannan
1d49ca3759 nix : removed metal for nix (#16118) 2025-10-06 12:29:56 +03:00
Oleksandr Kuvshynov
c5fef0fcea server: update readme to mention n_past_max metric (#16436)
https://github.com/ggml-org/llama.cpp/pull/15361 added new metric
exported, but I've missed this doc.
2025-10-06 10:53:31 +03:00
Gabe Goodhart
ca71fb9b36 model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)
* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-10-05 14:57:47 +02:00
Reese Levine
35266573b9 ggml webgpu: actually add softmax, fix rms_norm offset (#16400)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Has been cancelled
CI (AMD) / ggml-ci-x64-amd-rocm (push) Has been cancelled
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-22-cmake-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
* implement soft_max

* Fix soft_max data race

* Temporary fix, wait on each submit
2025-10-04 20:59:31 -07:00
Eve
86df2c9ae4 vulkan: use a more appropriate amount of threads when generating shaders (#16418)
Some checks are pending
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
* use a more flexible amount of threads

* fix windows compile and 0 thread case

* nominmax
2025-10-04 22:04:27 +02:00
Radoslav Gerganov
f39283960b rpc : check src buffer when copying tensor (#16421)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
Only dst buffer is guaranteed to be an RPC buffer. Add check for the src
one.
2025-10-04 16:22:45 +03:00
Radoslav Gerganov
898acba681 rpc : add support for multiple devices (#16276)
* rpc : add support for multiple devices

Allow rpc-server to expose multiple devices from a single endpoint.
Change RPC protocol to include device identifier where needed.

closes: #15210

* fixes

* use ggml_backend_reg_t

* address review comments

* fix llama-bench backend report

* address review comments, change device naming

* fix cmd order
2025-10-04 12:49:16 +03:00
Acly
e29acf74fe vulkan : incremental shader builds (#16341)
* vulkan (DRAFT): split shader generation by GLSL source file, to improve incremental build times

* support dep-files so shaders are recompiled if their included files change

* rename shader files which are used as "headers" to use .glsl extension
* move glslc extension detection shaders to separate folders
* the above is to prevent them from getting glob'd with the actual compute shaders that need to be compiled

* vulkan : only write embedded shader .hpp/.cpp when they change

* avoid recompiling ggml-vulkan.cpp when editing shaders
* pass single --source argument instead of --input-dir & --filter to shader gen
* check for source file match earlier

* fix hang in vulkan-shaders-gen when there are compilation errors

* early out did not decrement compile_count

* clean up

* fix glslc integer dot product test

* unconditionally write the embedded shader cpp output

* replace output filepath in generated dep-files to match output in CMakeLists

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-04 11:42:56 +02:00
Pascal
128d522c04 chat : support Magistral thinking (#16413)
Some checks failed
CI (AMD) / ggml-ci-x64-amd-vulkan (push) Waiting to run
CI (AMD) / ggml-ci-x64-amd-rocm (push) Waiting to run
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-22-cmake-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 8.1.RC1.alpha001-910b-openeuler22.03-py3.10, ascend910b3) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
Copilot Setup Steps / copilot-setup-steps (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* feat: added a dedicated Magistral chat format that preserves [THINK] spans, parses reasoning before tool calls

* feat: new flow in the chat template test suite for Magistral
2025-10-03 21:51:48 +03:00
ddh0
f6dcda3900 server : context checkpointing for hybrid and recurrent models (#16382)
* initial commit for branch 3

* generalize `swa_checkpoint` to `ctx_checkpoint`

this extends `llama-server`'s SWA checkpointing logic to include
hybrid/recurrent models such as Jamba, Granite

* oops

* disable debug prints

* keep backwards compat with `--swa-checkpoints`

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* update prompt re-processing message

* fix off-by-one error per GG

* keep `seq_rm` log per GG

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server : fix checkpoint logic to support recurrent caches

* server : cleanup and fixes

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-03 21:34:51 +03:00
Georgi Gerganov
606a73f531 metal : fix loop bound in ggml_mem_ranges (#16412) 2025-10-03 19:18:56 +03:00
Sigbjørn Skjæret
946f71ed9a llama : fix shapes for bert/mpt q/k norm (#16409) 2025-10-03 14:40:25 +02:00
Acly
638d330246 ggml : fix graph reallocation with multiple chunks (#16396)
reallocation is needed if a single chunk grows in size,
even if total allocation size stays the same or is lower
2025-10-03 13:49:08 +02:00
Aleksander Grygier
84c8e305e8 Fix missing messages on sibling navigation (#16408)
* fix: resolve message disappearing issue when navigating between regenerated siblings by using current leaf nodes instead of cached sibling IDs

* chore: update webui build output

* chore: update webui build output
2025-10-03 12:51:40 +02:00
Jeff Bolz
2aaf0a2a20 vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE (#16354)
* vulkan: Replace uses of maxMemoryAllocationSize and VK_WHOLE_SIZE

Replace maxMemoryAllocationSize check with maxBufferSize when creating buffers.
The maxMemoryAllocationSize limit is a "soft" limit and allocations can succeed
beyond that limit. This allows > 4GB buffers to be allocated on some
implementations (e.g. NVIDIA) and tensors this large can be used for im2col
and mul_mat.

For temporary buffers (prealloc_x/y/etc) check against maxStorageBufferRange.
I'm not sure this check is ideal, but we always use these buffers as a single
full size binding and the limit may be smaller than maxMemoryAllocationSize
or maxBufferSize, so I think this is reasonable.

Replace descriptor range uses of VK_WHOLE_SIZE with a manually computed range.
The maxStorageBufferRange may be smaller than the maxBufferSize or
maxMemoryAllocationSize (and the Vulkan spec warns about this in a note) and
it's invalid usage if VK_WHOLE_SIZE computes a range larger than
maxStorageBufferRange.

With this change, it should be possible to generate videos using wan networks
in stable-diffusion.cpp.

* vulkan: Add env var GGML_VK_FORCE_MAX_BUFFER_SIZE and use stoull
2025-10-03 12:50:46 +02:00
Jeff Bolz
0e1f838556 vulkan: Fix FA coopmat1 invalid array indexing (#16365)
When computing sinks, the cm1 shader was looping r from 0 to Br rather than
to rows_per_thread. I must have copied this from the scalar path (where it is
correct), and somehow it wasn't causing failures on current drivers.
2025-10-03 11:52:46 +02:00
Daniel Bevenius
ad126479c2 ci : change macos-13 to macos-15-intel (#16401)
This commit updates the macos-13 runners to macos-15-intel.

The motivation for this changes is the macos-13 runners are scheduled
to be retired on 2025-12-04.

Refs: https://github.blog/changelog/2025-09-19-github-actions-macos-13-runner-image-is-closing-down/
2025-10-03 11:45:16 +02:00
Aleksander Grygier
77233277c9 Capture model name only after first token (streaming) or completed request (#16405)
* feat: Capture model name only after first token (streaming) or completed request (non-streaming)

* chore: update webui build output

* chore: update webui build output
2025-10-03 11:30:39 +02:00
Jeff Bolz
e308efda8e vulkan: in flash attention, bounds check against nem1 (don't rely on GGML_KQ_MASK_PAD) (#16316) 2025-10-03 10:33:08 +02:00
Aleksander Grygier
136bda78c5 webui : Fix messages payload sent to chat completions (#16402)
* fix: Include just the currently active message branches instead of all in chat completions request

* chore: Build webui static output

* chore: Formatting

* chore: update webui build output
2025-10-03 10:11:34 +03:00
Pascal
5113efd34c fix: track viewportHeight via window.innerHeight to avoid unwanted scrolling (#16356)
Use <svelte:window bind:innerHeight> instead of manual resize listener

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-03 08:01:31 +02:00
Sigbjørn Skjæret
d64c8104f0 test-barrier : do not use more threads than physically available (#16389)
* do not use more threads than physically available

* ensure n_threads > 0

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-10-02 20:10:12 +02:00
Reese Levine
ef07a40906 ggml webgpu: add support for soft_max, optimize rms_norm (#16357)
* Add inplace softmax

* Move rms_norm to split row approach

* Update debug for supports_op

* clean up debug statements

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-02 11:00:31 -07:00
Piotr Wilkin (ilintar)
34fcc5a4ac model : Apertus model implementation (#15852)
* First attempt

* No permute during convert (fixes qk tensors), proper norm application.

* RoPE = NeoX

* Coherence!

* Migrate xielu params from tensors to hyperparameters

* Simple CUDA kernel

* Revert stupid LLM refactorings

* Chat template support

* configchecker / flake8 errors

* Reorder unary.cu

* I do conclude that LLMs are, in fact, stupid.

* Fix after merge

* Final newline

* Make xIELU an UNARY_OP

* Final newline

* Correctly account for parameter shift

* Argh.

* Update ggml/src/ggml-cpu/unary-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Refactor: remove unused methods, inline and factorize softplus, add const modifiers

* Revert CUDA changes, implement xIELU as a separate OP

* Pesky newline

* Add float2half / half2float for F16 inputs/outputs

* CUDA variants, attempt 2

* Actually, attempt 3

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Missing convert header

* Proper formula and reference for xIELU in the comments.

* Modify unary-ops.cpp to add the functor-based logic besides the template system to retain optimizations

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add tensor mappings for Apertus to global list instead

* Fix lazy on scalars

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Add comment about the constraints on positive/negative alpha

* Change `softplus` to `ggml_softplus`

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-02 20:43:22 +03:00
R0CKSTAR
91a2a56556 musa: update compile flags (#16265)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-10-02 16:29:56 +03:00
Sigbjørn Skjæret
72ee736c44 ci : fix ubuntu-latest-cmake-rpc (disable ccache) (#16388) 2025-10-02 13:51:36 +02:00
Eve
f09aefaa84 ci: update vulkan ci (#16294) 2025-10-02 10:10:07 +02:00
Georgi Gerganov
bbd32bc038 ci : fix clean-up of old logs (#16381) 2025-10-02 10:35:43 +03:00
Neo Zhang Jianyu
2be72c2b12 SYCL: Update to oneAPI 2025.2 (#16371)
* update oneapi to 2025.2, use deep-learning-essentials to replace base-tool

* update to 2025.2 use deeplearn essi to replace base toolkit

* add missed dll

* add deep learning essentials

* add sycl-ls

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-10-02 10:16:25 +03:00
uvos
95ce098544 HIP: add IMbackK to codeowner (#16375) 2025-10-02 05:52:59 +02:00
uvos
c8dedc9999 CI: reenable cdna in rocm docker builds (#16376) 2025-10-01 23:32:39 +02:00
uvos
e95fec640f HIP: Disable ROCWMMA fattn on CDNA when compiled against ROCWMMA 2.0.0 (#16221)
* HIP: Disable ROCWMMA fatt on CDNA when compiled against ROCWMMA 2.0.0

rocwmma 2.0.0 includes a bug in the code fakeing fp16 accumulation on CDNA

* CUDA: Fix volta condition in ggml_cuda_should_use_wmma_fattn
2025-10-01 23:09:25 +02:00
Shunta Saito
ded67b9444 llama : parameter conversion and loading fixes for PLaMo2 variants (#16075)
* Fix to use hidden_size_per_head

* Fix num heads

* Fix array

* Fix loading weights

* Support old GGUF converted by the previous version of llama.cpp

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Move shared parameter definitions to the outside of loop

* Not calculating n_embd_head_k,v by n_embd / n_head

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-01 23:08:15 +02:00
uvos
1fe4e38cc2 ci: Properly install rocwmma for hip builds (#16305)
* CI: Properly install rocwmma for hip builds

on windows we now windows install rocwmma from ubuntu pacakges

* CI: update linux rocm docker build to use rocm 7.0
2025-10-01 20:18:03 +02:00
Adrien Gallouët
4201deae9c common: introduce http.h for httplib-based client (#16373)
* common: introduce http.h for httplib-based client

This change moves cpp-httplib based URL parsing and client setup into
a new header `common/http.h`, and integrates it in `arg.cpp` and `run.cpp`.

It is an iteration towards removing libcurl, while intentionally
minimizing changes to existing code to guarantee the same behavior when
`LLAMA_CURL` is used.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* tools : add missing WIN32_LEAN_AND_MEAN

Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-10-01 20:22:18 +03:00
Aleksander Grygier
764799279f Conversation action dialogs as singletons from Chat Sidebar + apply conditional rendering for Actions Dropdown for Chat Conversation Items (#16369)
* fix: Render Conversation action dialogs as singletons from Chat Sidebar level

* chore: update webui build output

* fix: Render Actions Dropdown conditionally only when user hovers conversation item + remove unused markup

* chore: Update webui static build

* fix: Always truncate conversation names

* chore: Update webui static build
2025-10-01 18:18:10 +02:00
Aleksander Grygier
2a9b63383a Improve code block color theming (#16325)
* feat: Improve code block theming

* chore: update webui build output

* chore: Update webui static build
2025-10-01 15:54:42 +02:00
Sigbjørn Skjæret
1104ca1a1c ci : use registry cache for docker builds (#16366) 2025-10-01 14:09:52 +02:00
Aleksander Grygier
4f1575921c Add optional setting for showing "Model used:" information (#16337)
* feat: Add a setting to include model name used to generate the message

* feat: UI improvements

* feat: Save model info along with the database message entry creation

* chore: Build webui static output
2025-10-01 12:08:16 +02:00
Eve
132d673554 vulkan: make ggml_vk_default_dispatcher support older vulkan headers (#16345)
* make ggml_vk_default_dispatcher support older vulkan headers

* simpilfy with using
2025-10-01 09:56:36 +02:00
Aleksander Grygier
aa9538a63a webui: Remove running llama-server within WebUI dev.sh script (#16363) 2025-10-01 08:40:26 +03:00
Bartowski
e74c92e842 model : support GLM 4.6 (make a few NextN/MTP tensors not required) (#16359)
* Make a few GLM tensors not required

layer.nextn.shared_head_head and layer.nextn.embed_tokens are both excluded from GLM 4.6 resulting in the model not loading after conversion/quantization, this marks those tensors as not required which makes it work

* Update llama-model.cpp

layer.nextn.shared_head_norm also not required in case of future models
2025-09-30 22:24:36 +02:00
Sigbjørn Skjæret
b2ba81dbe0 ci : fix ccache key for ubuntu-cpu-cmake (#16355)
* fix ccache key for ubuntu-cpu-cmake

* set it for release as well [no ci]
2025-09-30 21:41:42 +02:00
Adrien Gallouët
bf6f3b3a19 common : disable progress bar without a tty (#16352)
* common : disable progress bar without a tty

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Add missing headers

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 20:52:41 +03:00
lhez
7c156df414 opencl: support pad_ext (#15888) 2025-09-30 10:45:45 -07:00
Pascal
16b0ca0d2e Chatapi ignore empty sampling (#16330)
* fix: skip empty sampling fields instead of coercing to 0 in chat API options

* chore: update webui build output
2025-09-30 19:18:54 +02:00
Reese Levine
8d78cd2613 ggml webgpu: support for rope,div,sub,glu,scale,cont operators (#16187)
* Work on rope

* Simplify inplace operation generation and combine mul/add generation

* Work on rope variants

* implement neox rope

* rope complete

* Add sub,div,glu operators

* implement scale op

* Update cpy shader to handle cont/more types

* formatting

* Update test vars printing for rope,rms_norm

* Avoid ROPE hardcoded constants

* Add TODO to change ROPE constants to enum

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix TODO comment

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-09-30 09:57:51 -07:00
lhez
d1c84a662d opencl: support ne3 in get_rows (#15866) 2025-09-30 09:55:13 -07:00
Adrien Gallouët
364a7a6d4a common : remove common_has_curl() (#16351)
`test-arg-parser.cpp` has been updated to work consistently,
regardless of whether CURL or SSL support is available, and
now always points to `ggml.ai`.

The previous timeout test has been removed, but it can be
added back by providing a dedicated URL under `ggml.ai`.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 17:39:44 +03:00
Sigbjørn Skjæret
2df5bcf357 ci : disable ccache for android (#16348) 2025-09-30 15:38:01 +02:00
Georgi Gerganov
075c01567b ggml : bump version to 0.9.4 (ggml/1363) 2025-09-30 13:53:55 +03:00
anavp-nvidia
a014310374 cuda : Enable CUDA Graph usage for Nemotron Nano v2 (NemotronH) (#16328)
* Fix Nemotron Nano v2 9B not executing as CUDA Graph on NVIDIA GPUs

* fix to ensure test-backend-ops check passes
2025-09-30 11:13:22 +03:00
Georgi Gerganov
35fb82497e metal : dynamic simdgroups for MV kernels (#16340)
* metal : dynamic simdgroups for MV kernels

* cont : minor
2025-09-30 11:03:23 +03:00
Adrien Gallouët
3c62aed89f common : simplify etag tracking by removing json (#16342)
The JSON parser is temporarily kept only for backward compatibility. It
reads the etag from old .json files to prevent unnecessary re-downloads
for existing users.

This legacy code can be removed in a future version.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-30 10:36:33 +03:00
Charles Xu
f1eb1cb1eb kleidiai : fix work size and threads sync for fp16 (#16246) 2025-09-30 10:07:20 +03:00
lhez
de41f2b7bf codeowners: add codeowners for opencl backend (#16344) 2025-09-30 08:30:16 +03:00
Jeff Bolz
a74a0d69f3 tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences (#16295)
* tests: override test_set_rows::max_nmse_err to allow for occasional rounding differences

* apply similar error bounds to test_cpy
2025-09-29 19:26:34 -05:00
Pascal
5f7e166cbf Fix thinking blocks with quotes + add handling [THINK]...[/THINK] blocks (#16326)
* fix: prevent reasoning blocks with quotes from being truncated

* chore: update webui build output

* feat: Improve thinking content parsing

* test: Adds ChatMessage component stories for different thinking blocks

* chore: update webui build output

* fix: ChatMessage story fix

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-09-29 18:49:47 +02:00
Georgi Gerganov
d72f5f7ba2 ci : add AMD runners and workflows (#16249)
* ci : add AMD runners and workflows

* ci : move AMD jobs to separate workflow

* cont : fix paths
2025-09-29 17:51:48 +03:00
alex-spacemit
b77e6c18e1 ggml: riscv: add riscv spacemit backend (#15288)
* ggml: add spacemit backend

Change-Id: I249bdc043485d815a9c351867137bc1e27cc2e23

* add new line at end of file

Change-Id: I889ed1c85fb45e62350ecde0c06f70450cadfbe2

* add riscv zba extension limit

Change-Id: I321eb200f859751727afe5cae13074dfce2bb0ce

* fixed for review comments, file renamed and format

Change-Id: Ia20b6ec24a36638e62e0fe07cf100916a7cce3ce

* fixed for code format, after clang-format

Change-Id: I5dc33a0412da3d3f2d77075d8939185d3009eca2

* use _Float16 instead of __fp16

Change-Id: I039fb02bb95270e641bc4442204e658735859d43

* add ci for riscv64-spacemit-ime-native

Change-Id: I711c1033061df1a289ea77891b2997599dfe8279

* update debian-13-riscv64-spacemit-ime-native ci label

Change-Id: Ifb2b891e2fca57b5da604fce2ac255f27731179a

* remove license comment for spacemit ime

Change-Id: If0dc3ca30a958631ccca0a28b62e0b825f9fb0c3

* upgrade binutils for gcc ime

Change-Id: Ibf2fa74c1064408974cb5b45f044d40987e5fb45

* add spacemit ime cross jobs

Change-Id: I80d74909941d41cb9cd09e51d8baf01c985cbfc6

* remove native compile for riscv64-spacemit-ime

Change-Id: I01920afafdc73fa7424014fd648d243f8ec9e25e

* ci : add caching for spacemit ime cross toolchain

Change-Id: Ic54a192019a2fd982bbd58225ce3bbc38f4053de

* ci: bug fixed for cache path and env

Change-Id: I28c42e10b6fff053bb6580926ca2353448cb042a

* Update .github/workflows/build-linux-cross.yml for cache path

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* bugfixed for  build-linux-cross.yml,  syntax error

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: cailinxi <linxi.cai@spacemit.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 17:50:44 +03:00
Georgi Gerganov
2ddd3f2356 sync : ggml 2025-09-29 17:43:58 +03:00
Georgi Gerganov
4d3d455d3c sync : whisper.cpp (ggml/1359)
* ggml : Fix MKL detection by quoting BLAS_INCLUDE_DIRS (whisper/3426)

* sync : whisper.cpp
2025-09-29 17:43:58 +03:00
Daniel Bevenius
c9b1c06467 ggml : remove -dev suffix from release version (ggml/1355)
This commit removes the `-dev` suffix from the version string in
CMakeLists.txt and the release script. The version will now be
just be formatted as `MAJOR.MINOR.PATCH`.
2025-09-29 17:43:58 +03:00
Daniel Bevenius
b6ae75afb4 ggml : bump version to 0.9.3 (ggml/1353) 2025-09-29 17:43:58 +03:00
Georgi Gerganov
b6dff20e2f ggml : prepare for development of 0.9.2-dev 2025-09-29 17:43:58 +03:00
Georgi Gerganov
2db78c75e4 ggml : bump version to 0.9.1 2025-09-29 17:43:58 +03:00
Rafal Lewczuk
02463ab27b ggml-backend : add root cause in error message if loading backend library fails (#16172)
This PR adds additional information to an error message when loading backend library via ld_load_library() fails. This helps spotting why backend library did not load (missing library, missing dependency or unresolved symbol etc.).
2025-09-29 13:17:09 +02:00
Sigbjørn Skjæret
adc76347d7 ggml : check cuda and metal argsort limits and add test (#16323)
* check cuda argsort limits and add test

* add metal check
2025-09-29 11:09:00 +02:00
Aleksander Grygier
3a2bdcda0b Improve Mobile UI for dialogs and action dropdowns (#16222)
* fix: Always show conversation item actions

* feat: Improve Alert Dialog and Dialog mobile UI

* feat: Add settings reset to default confirmation

* fix: Close Edit dialog on save

* chore: update webui build output

* webui: implement proper z-index system and scroll management

- Add CSS variable for centralized z-index control
- Fix dropdown positioning with Settings dialog conflicts
- Prevent external scroll interference with proper event handling
- Clean up hardcoded z-index values for maintainable architecture

* webui: ensured the settings dialog enforces dynamic viewport height on mobile while retaining existing desktop sizing overrides

* feat: Use `dvh` instead of computed px height for dialogs max height on mobile

* chore: update webui build output

* feat: Improve Settings fields UI

* chore: update webui build output

* chore: update webui build output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-09-29 10:37:20 +02:00
Pascal
66bb7985c3 fix: preserved zero values in chat settings inputs and textareas by switching to nullish coalescing for field values and default placeholders (#16312) 2025-09-29 09:08:41 +02:00
Vinkal
2f61c0f5bf llama-cli: prevent spurious assistant token (#16202)
* tools/main: llama-cli: prevent spurious assistant token (#13402)

During prompt ingestion, prompt tokens are accepted into the sampler history (for repetition penalties). The conversation-mode path then appended `common_sampler_last(smpl)` to `assistant_ss` before any new token was sampled. At that point, "last" was a prompt-side token (e.g., an input prefix), so the assistant chat message began with an extra piece.

Fix: append to `assistant_ss` only for a newly sampled (non-EOG) token. This affects only chat message assembly (`assistant_ss` / `chat_msgs` / `common_chat_format_single`); terminal stdout is unchanged. Sampling order/logits are unchanged.

Fixes #13402.

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update tools/main/main.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* tools/main: remove outdated comment

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-29 10:03:12 +03:00
ddh0
3ffd0fae47 perplexity : show more kl-divergence data (#16321)
Adds additional percentile data for displayed in the output of `llama-perplexity --kl-divergence`:
- Added 95 percentile (mirroring existing 5 percentile)
- Added 0.1 percentile (mirroring existing 99.9 percentile)
2025-09-29 09:30:45 +03:00
Georgi Gerganov
a4a0aa5ea2 ggml : fix dependencies for ggml_set_rows (#16318) 2025-09-29 08:41:28 +03:00
Jeff Bolz
92cd103f62 vulkan: Fix validation failure in quantized flash attention (#16292) 2025-09-29 06:50:37 +02:00
Sigbjørn Skjæret
b887d2f341 ggml : fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32 (#16307)
* fix GGML_F32_VEC_FMA argument order in ggml_vec_mad1_f32

* add test that fails on simd
2025-09-28 23:15:03 +02:00
crat0z
bd0af02fc9 common : fix reasoning before forced tool call via tool_choice = required (#16264)
* common : fix reasoning before forced tool call via tool_choice = required

* common : improve reasoning and commentary handling when tool_choice is required

(cherry picked from commit c746984956d6882c2de73d53ae2bb3bdf889e475)

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2025-09-28 21:13:50 +03:00
R0CKSTAR
d9e0e7c819 ci : fix musa docker build (#16306)
Signed-off-by: Xiaodong Ye <yeahdongcn@gmail.com>
2025-09-28 16:38:15 +02:00
Aaron Teo
0124ac989f devops: switch to using ubuntu-22.04-s390x image (#16302)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-09-28 19:25:58 +08:00
Imad Saddik
2811c65286 Fixed a few typos in the README of the LLaMA.cpp HTTP Server [no ci] (#16297) 2025-09-28 13:04:46 +02:00
Jeff Bolz
d8359f5fde vulkan: 64-bit im2col (#16135)
* vulkan: 64-bit im2col

Add variants of the im2col shaders that use buffer_device_address/buffer_reference,
and use 64-bit address calculations. This is needed for large convolutions used in
stable-diffusion.cpp.

* fix validation error for large im2col
2025-09-28 08:38:37 +02:00
Georgi Gerganov
6a2c6145a0 metal : extend mat-mat multiplication support (#16225)
* metal : support mul_mm with src1->type == GGML_TYPE_F16

* metal : support mul_mm_id with src1->type == GGML_TYPE_F16

[no ci]

* metal : mul_mm support ne00 % 32 != 0

* metal : support mul_mm_id with ne00 % 32 != 0

* cont : remove unnecessary unrolls

* cont : simplify data loading

* metal : optimize mul_mm when output bounds checks are not needed
2025-09-28 09:34:44 +03:00
Georgi Gerganov
3b53634fe3 metal : fuse non-sequential nodes (#16102)
* metal : fuse non-sequential nodes

* cont : add comment

* cont : simplify bounds checks
2025-09-28 09:34:05 +03:00
Jeff Bolz
1384abf8b8 vulkan: handle mat_mul with A matrix > 4GB (#16176)
* vulkan: handle mat_mul with A matrix > 4GB

This change splits mat_mul operations with huge A matrix into chunks in the M
dimension. This works well for stable-diffusion use cases where the im2col
matrix has very large M.

Fix the order of setting the stride in mul_mm_cm2 - setting the dimension
clobbers the stride, so stride should be set after.

* build fixes
2025-09-27 20:36:34 -05:00
Jeff Bolz
e6d65fb02d vulkan: support arbitrary KV dimension in flash attention (#16160)
The "Clamp" spec constant is already based on whether KV is a multiple of Bc,
so use that to control whether bounds checking is performed. Add bounds checking
to the scalar and coopmat1 paths. Coopmat2 didn't need any changes (the K/V
tensors are already optionally clamped, nothing else needed to be changed).
2025-09-27 22:43:39 +02:00
Acly
8656f5de68 vulkan : make the vulkan.hpp dynamic dispatcher instance private (#16224)
* don't use VULKAN_HPP_DEFAULT_DISPATCH_LOADER_DYNAMIC_STORAGE which can cause conflicts if application or other libraries do the same
2025-09-27 22:41:03 +02:00
Aleksander Grygier
4807e8f96a Show message actions by default (#16289) 2025-09-27 19:56:40 +02:00
Aman Gupta
c0bfc57af4 CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32 (#16277)
* CUDA: mul_mat_id for mmf for bs <= 64 for f16 and bs <= 32 for f32

This commit adds mul_mat_id support for ncols_dst >= 16. It does this by
packing ncols_dst tiles into the blockDim.y.

My tests on a RTX 3090 show that this is faster than the cuBLAS fallback
for f16 till bs=64, and for f32 till bs=32

* Review: refactor if statement
2025-09-27 18:49:32 +02:00
Johannes Gäßler
75a3a6c2cd CUDA: refactor and deduplicate vector FA kernels (#16208)
* CUDA: refactor and deduplicate vector FA kernels
2025-09-27 18:45:07 +02:00
Dmytro Minochkin
0499b29c6f vulkan: throw system error instead of SIGABRT during init on older devices (#16156)
* Throw system error on old Vulkan driver rather than SIGABRT

* Optionally handle any potential error in vulkan init
2025-09-27 18:26:46 +02:00
Adrien Gallouët
234e2ff8ed server : remove old LLAMA_SERVER_SSL (#16290)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 19:17:08 +03:00
Jeff Bolz
3f81b4e91c vulkan: support GET_ROWS for k-quants (#16235)
The dequantize functions are copy/pasted from mul_mm_funcs.comp with very few
changes - add a_offset and divide iqs by 2. It's probably possible to call
these functions from mul_mm_funcs and avoid the duplication, but I didn't go
that far in this change.
2025-09-27 12:36:11 +02:00
Adrien Gallouët
ace6a54565 build : add LLAMA_OPENSSL option (#16287)
Introduce a new `LLAMA_OPENSSL` option, enabled by default.

This preserves the previous default (libcurl first, OpenSSL as fallback),
while allowing OpenSSL to be disabled if desired.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-09-27 12:12:46 +03:00
Vinkal
72b24d96c6 model : make minicpm embedding_scale, residual_scale and logit_scale optional with legacy defaults (#16273)
* minicpm: make GGUF scaling keys optional with legacy defaults

Older MiniCPM GGUFs do not include the scaling metadata keys (minicpm.embedding_scale, minicpm.residual_scale, minicpm.logit_scale). The loader currently treats these as required, so quantization fails with:

    key not found in model: minicpm.embedding_scale

This change restores backward compatibility by treating these keys as optional in the loader and using the older MiniCPM scaling values:

    embedding_scale = 12.0f
    residual_scale  = 1.4f / sqrt(n_layer)
    logit_scale     = 256.0f / n_embd

When the GGUF provides the keys, their values override the defaults; otherwise the legacy defaults are used. Newer GGUFs that already include these keys are unaffected.

Fixes: #16192
Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>

* Update src/llama-model.cpp

Committed as suggested. Thanks!

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Signed-off-by: Vinkal Chudgar <vinkal.chudgar@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-09-26 23:28:29 +02:00
461 changed files with 17654 additions and 6674 deletions

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
## Build Image
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
@@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\

View File

@@ -2,9 +2,9 @@ ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.3.0
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=sh-harbor.mthreads.com/haive/mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64
ARG BASE_MUSA_RUN_CONTAINER=sh-harbor.mthreads.com/haive/mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64
FROM ${BASE_MUSA_DEV_CONTAINER} AS build

View File

@@ -128,10 +128,6 @@ effectiveStdenv.mkDerivation (finalAttrs: {
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,

View File

@@ -1,8 +1,8 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=6.4
ARG AMDGPU_VERSION=6.4
ARG ROCM_VERSION=7.0
ARG AMDGPU_VERSION=7.0
# Target the ROCm build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
@@ -13,9 +13,8 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
#ARG ROCM_DOCKER_ARCH='gfx1151'
@@ -36,13 +35,10 @@ WORKDIR /app
COPY . .
RUN git clone https://github.com/rocm/rocwmma --branch develop --depth 1
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DCMAKE_HIP_FLAGS="-I$(pwd)/rocwmma/library/include/" \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \

36
.github/actions/install-exe/action.yml vendored Normal file
View File

@@ -0,0 +1,36 @@
name: "Install exe"
description: "Download and install exe"
inputs:
url:
description: "URL of the exe installer"
required: true
args:
description: "Installer arguments"
required: true
timeout:
description: "Timeout (in ms)"
required: false
default: "600000"
runs:
using: "composite"
steps:
- name: Install EXE
shell: pwsh
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading Installer EXE"
Invoke-WebRequest -Uri "${{ inputs.url }}" -OutFile "${env:RUNNER_TEMP}\temp-install.exe"
write-host "Installing"
$proc = Start-Process "${env:RUNNER_TEMP}\temp-install.exe" -ArgumentList '${{ inputs.args }}' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(${{ inputs.timeout }})
if (-not $completed) {
Write-Error "Installer timed out. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "Installer failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed installation"

View File

@@ -0,0 +1,20 @@
name: "Linux - Setup SpacemiT Toolchain"
description: "Setup SpacemiT Toolchain for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "SpacemiT toolchain version"
required: true
runs:
using: "composite"
steps:
- name: Setup SpacemiT Toolchain
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v${{ inputs.version }}.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -0,0 +1,20 @@
name: "Linux - Setup Vulkan SDK"
description: "Setup Vulkan SDK for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "Vulkan SDK version"
required: true
runs:
using: "composite"
steps:
- name: Setup Vulkan SDK
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://sdk.lunarg.com/sdk/download/${{ inputs.version }}/linux/vulkan_sdk.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -0,0 +1,27 @@
name: "Unarchive tar"
description: "Download and unarchive tar into directory"
inputs:
url:
description: "URL of the tar archive"
required: true
path:
description: "Directory to unarchive into"
required: true
type:
description: "Compression type (tar option)"
required: false
default: "J"
strip:
description: "Strip components"
required: false
default: "0"
runs:
using: "composite"
steps:
- name: Unarchive into directory
shell: bash
run: |
mkdir -p ${{ inputs.path }}
cd ${{ inputs.path }}
curl --no-progress-meter ${{ inputs.url }} | tar -${{ inputs.type }}x --strip-components=${{ inputs.strip }}

View File

@@ -0,0 +1,15 @@
name: "Windows - Setup ROCm"
description: "Setup ROCm for Windows"
inputs:
version:
description: "ROCm version"
required: true
runs:
using: "composite"
steps:
- name: Setup ROCm
uses: ./.github/actions/install-exe
with:
url: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ inputs.version }}-WinSvr2022-For-HIP.exe
args: -install

52
.github/workflows/build-amd.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: CI (AMD)
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'.github/workflows/build-amd.yml',
'**/CMakeLists.txt',
'**/.cmake',
'**/*.h',
'**/*.hpp',
'**/*.c',
'**/*.cpp',
'**/*.cu',
'**/*.cuh',
'**/*.comp'
]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp

89
.github/workflows/build-cache.yml vendored Normal file
View File

@@ -0,0 +1,89 @@
name: Build Actions Cache
on:
workflow_dispatch: # allows manual triggering
schedule:
- cron: '0 * * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ubuntu-24-vulkan-cache:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Setup Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
ubuntu-24-spacemit-cache:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-linux-cross.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
windows-2022-rocm-cache:
runs-on: windows-2022
env:
# Make sure this is in sync with build.yml
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-rocm
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Setup ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
uses: ./.github/actions/windows-setup-rocm
with:
version: ${{ env.HIPSDK_INSTALLER_VERSION }}

View File

@@ -253,3 +253,45 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-riscv64-cpu-spacemit-ime-cross:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-cache.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- uses: actions/checkout@v4
- name: Use SpacemiT Toolchain Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
- name: Build
run: |
export RISCV_ROOT_PATH=${PWD}/spacemit_toolchain
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
cmake --build build --config Release -j $(nproc)

View File

@@ -58,3 +58,63 @@ jobs:
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -97,7 +97,7 @@ jobs:
ctest -L 'main|curl' --verbose --timeout 900
macOS-latest-cmake-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -207,7 +207,7 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Build Dependencies
@@ -362,11 +362,11 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-cmake-rpc
evict-old-files: 1d
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: ubuntu-latest-cmake-rpc
# evict-old-files: 1d
- name: Dependencies
id: depends
@@ -387,8 +387,8 @@ jobs:
cd build
ctest -L main --verbose
ubuntu-22-cmake-vulkan:
runs-on: ubuntu-22.04
ubuntu-24-cmake-vulkan:
runs-on: ubuntu-24.04
steps:
- name: Clone
@@ -398,20 +398,39 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
key: ubuntu-24-cmake-vulkan
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Use Vulkan SDK Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
- name: Build
id: cmake_build
run: |
source ./vulkan_sdk/setup-env.sh
cmake -B build \
-DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc)
@@ -421,11 +440,12 @@ jobs:
run: |
cd build
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ubuntu-22-cmake-webgpu:
runs-on: ubuntu-22.04
ubuntu-24-cmake-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
@@ -435,16 +455,34 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-webgpu
key: ubuntu-24-cmake-webgpu
evict-old-files: 1d
- name: Vulkan SDK Dependencies
id: vulkan-depends
- name: Dependencies
id: depends
run: |
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | sudo apt-key add -
sudo wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers vulkan-sdk libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Use Vulkan SDK Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
- name: Dawn Dependency
id: dawn-depends
@@ -487,7 +525,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -1059,7 +1097,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
@@ -1090,6 +1128,7 @@ jobs:
env:
# The ROCm version must correspond to the version used in the HIP SDK.
ROCM_VERSION: "6.4.2"
# Make sure this is in sync with build-cache.yml
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
@@ -1097,38 +1136,25 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-${{ env.ROCM_VERSION }} --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/${{ env.ROCM_VERSION }}/pool/main/r/rocwmma-dev/rocwmma-dev_1.7.0.60402-120~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
- name: Use ROCm Installation Cache
uses: actions/cache@v4
id: cache-rocm
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Install ROCm
- name: Setup ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed AMD HIP SDK installation"
uses: ./.github/actions/windows-setup-rocm
with:
version: ${{ env.HIPSDK_INSTALLER_VERSION }}
- name: Verify ROCm
id: verify
@@ -1161,8 +1187,9 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `
@@ -1222,11 +1249,12 @@ jobs:
- name: Clone
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: android-build
evict-old-files: 1d
# Disabled due to size (400MB) and always 0 cache hits
# - name: ccache
# uses: ggml-org/ccache-action@v1.2.16
# with:
# key: android-build
# evict-old-files: 1d
- name: Set up JDK
uses: actions/setup-java@v3
@@ -1461,34 +1489,6 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# ggml-ci-x64-amd-vulkan:
# runs-on: [self-hosted, Linux, X64, AMD]
#
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
#
# - name: Test
# id: ggml-ci
# run: |
# vulkaninfo --summary
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
#
# ggml-ci-x64-amd-rocm:
# runs-on: [self-hosted, Linux, X64, AMD]
#
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
#
# - name: Test
# id: ggml-ci
# run: |
# amd-smi static
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@@ -1515,3 +1515,29 @@ jobs:
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp ~/mnt/llama.cpp
ggml-ci-arm64-cpu-kleidiai:
runs-on: ubuntu-22.04-arm
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-cpu-kleidiai
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential libcurl4-openssl-dev
- name: Test
id: ggml-ci
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt

View File

@@ -28,7 +28,7 @@ jobs:
push_to_registry:
name: Push Docker image to Docker Hub
runs-on: ubuntu-22.04
runs-on: ${{ matrix.config.runs_on }}
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
@@ -39,12 +39,12 @@ jobs:
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04-s390x" }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
@@ -54,6 +54,7 @@ jobs:
fetch-depth: 0 # preserve git history, so we can determine the build number
- name: Set up QEMU
if: ${{ matrix.config.tag != 's390x' }}
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
@@ -88,12 +89,15 @@ jobs:
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
CACHETAGS="${PREFIX}buildcache${TYPE}"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "cache_output_tags=$CACHETAGS" # print out for debugging
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
@@ -130,11 +134,14 @@ jobs:
target: full
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
@@ -149,11 +156,14 @@ jobs:
target: light
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
@@ -168,11 +178,14 @@ jobs:
target: server
provenance: false
# using github experimental cache
cache-from: type=gha
cache-to: type=gha,mode=max
#cache-from: type=gha
#cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
create_tag:
name: Create and push git tag

View File

@@ -75,7 +75,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-13
runs-on: macos-15-intel
steps:
- name: Clone
@@ -150,7 +150,7 @@ jobs:
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
- name: Dependencies
@@ -462,7 +462,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
@@ -505,6 +505,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
@@ -513,10 +514,15 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
@@ -543,10 +549,12 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Clone rocWMMA repository
id: clone_rocwmma
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch develop --depth 1
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
@@ -601,7 +609,7 @@ jobs:
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `

View File

@@ -92,6 +92,7 @@ option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package

View File

@@ -2,7 +2,7 @@
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren
/.github/actions/ @slaren @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
@@ -14,6 +14,7 @@
/common/build-info.* @ggerganov
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/sampling.* @ggerganov
@@ -50,6 +51,7 @@
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
@@ -57,13 +59,18 @@
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren

View File

@@ -22,6 +22,9 @@
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with KLEIDIAI support
# GG_BUILD_KLEIDIAI=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -34,9 +37,9 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
rm -f $OUT/*.log
rm -f $OUT/*.exit
rm -f $OUT/*.md
sd=`dirname $0`
cd $sd/../
@@ -114,6 +117,35 @@ if [ ! -z ${GG_BUILD_NO_SVE} ]; then
# arm 9 and newer enables sve by default, adjust these flags depending on the cpu used
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm"
fi
if [ -n "${GG_BUILD_KLEIDIAI}" ]; then
echo ">>===== Enabling KleidiAI support"
CANDIDATES=("armv9-a+dotprod+i8mm" "armv8.6-a+dotprod+i8mm" "armv8.2-a+dotprod")
CPU=""
for cpu in "${CANDIDATES[@]}"; do
if echo 'int main(){}' | ${CXX:-c++} -march="$cpu" -x c++ - -c -o /dev/null >/dev/null 2>&1; then
CPU="$cpu"
break
fi
done
if [ -z "$CPU" ]; then
echo "ERROR: None of the required ARM baselines (armv9/armv8.6/armv8.2 + dotprod) are supported by this compiler."
exit 1
fi
echo ">>===== Using ARM baseline: ${CPU}"
CMAKE_EXTRA="${CMAKE_EXTRA:+$CMAKE_EXTRA } \
-DGGML_NATIVE=OFF \
-DGGML_CPU_KLEIDIAI=ON \
-DGGML_CPU_AARCH64=ON \
-DGGML_CPU_ARM_ARCH=${CPU} \
-DBUILD_SHARED_LIBS=OFF"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -511,12 +543,7 @@ function gg_run_rerank_tiny {
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.json
path_models="../models-mnt/rerank-tiny"
@@ -606,6 +633,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
@@ -623,4 +651,6 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run ctest_with_model_release
fi
cat $OUT/README.md
exit $ret

View File

@@ -0,0 +1,29 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR riscv64)
set(CMAKE_SYSTEM_VERSION 1)
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
else()
set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
if (DEFINED ENV{RISCV_ROOT_PATH})
file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
else()
message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
endif()
set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
endif()
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")

View File

@@ -56,6 +56,7 @@ add_library(${TARGET} STATIC
common.h
console.cpp
console.h
http.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
@@ -87,10 +88,13 @@ if (LLAMA_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
else()
endif()
if (LLAMA_OPENSSL)
find_package(OpenSSL)
if (OpenSSL_FOUND)
include(CheckCSourceCompiles)
set(SAVED_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
set(CMAKE_REQUIRED_INCLUDES ${OPENSSL_INCLUDE_DIR})
check_c_source_compiles("
#include <openssl/opensslv.h>
@@ -105,6 +109,7 @@ else()
#endif
int main() { return 0; }
" OPENSSL_VERSION_SUPPORTED)
set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES})
if (OPENSSL_VERSION_SUPPORTED)
message(STATUS "OpenSSL found: ${OPENSSL_VERSION}")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT)

View File

@@ -32,13 +32,11 @@
#include <thread>
#include <vector>
//#define LLAMA_USE_CURL
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#else
#include <cpp-httplib/httplib.h>
#include "http.h"
#endif
#ifdef __linux__
@@ -54,6 +52,13 @@
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
// isatty
#if defined(_WIN32)
#include <io.h>
#else
#include <unistd.h>
#endif
using json = nlohmann::ordered_json;
std::initializer_list<enum llama_example> mmproj_examples = {
@@ -100,6 +105,14 @@ static void write_file(const std::string & fname, const std::string & content) {
}
}
static bool is_output_a_tty() {
#if defined(_WIN32)
return _isatty(_fileno(stdout));
#else
return isatty(1);
#endif
}
common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
this->examples = std::move(examples);
return *this;
@@ -217,12 +230,55 @@ struct common_hf_file_res {
std::string mmprojFile;
};
#ifdef LLAMA_USE_CURL
bool common_has_curl() {
return true;
static void write_etag(const std::string & path, const std::string & etag) {
const std::string etag_path = path + ".etag";
write_file(etag_path, etag);
LOG_DBG("%s: file etag saved: %s\n", __func__, etag_path.c_str());
}
static std::string read_etag(const std::string & path) {
std::string none;
const std::string etag_path = path + ".etag";
if (std::filesystem::exists(etag_path)) {
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return none;
}
std::string etag;
std::getline(etag_in, etag);
return etag;
}
// no etag file, but maybe there is an old .json
// remove this code later
const std::string metadata_path = path + ".json";
if (std::filesystem::exists(metadata_path)) {
std::ifstream metadata_in(metadata_path);
try {
nlohmann::json metadata_json;
metadata_in >> metadata_json;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata_json.dump().c_str());
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
std::string etag = metadata_json.at("etag");
write_etag(path, etag);
if (!std::filesystem::remove(metadata_path)) {
LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str());
}
return etag;
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
return none;
}
#ifdef LLAMA_USE_CURL
//
// CURL utils
//
@@ -373,36 +429,15 @@ static bool common_download_head(CURL * curl,
static bool common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
for (int i = 0; i < max_attempts; ++i) {
nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
std::string etag;
std::string last_modified;
std::string etag;
// Check if the file already exists locally
const auto file_exists = std::filesystem::exists(path);
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata.dump().c_str());
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
}
// if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
etag = read_etag(path);
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
@@ -440,11 +475,6 @@ static bool common_download_file_single_online(const std::string & url,
headers.etag.c_str());
should_download = true;
should_download_from_scratch = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__,
last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
should_download_from_scratch = true;
}
}
@@ -475,15 +505,9 @@ static bool common_download_file_single_online(const std::string & url,
}
}
}
// Write the updated JSON metadata file.
metadata.update({
{ "url", url },
{ "etag", headers.etag },
{ "lastModified", headers.last_modified }
});
write_file(metadata_path, metadata.dump(4));
LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (head_request_ok) {
write_etag(path, headers.etag);
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n",
@@ -570,82 +594,11 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
#else
bool common_has_curl() {
return false;
}
struct common_url {
std::string scheme;
std::string user;
std::string password;
std::string host;
std::string path;
};
static common_url parse_url(const std::string & url) {
common_url parts;
auto scheme_end = url.find("://");
if (scheme_end == std::string::npos) {
throw std::runtime_error("invalid URL: no scheme");
}
parts.scheme = url.substr(0, scheme_end);
if (parts.scheme != "http" && parts.scheme != "https") {
throw std::runtime_error("unsupported URL scheme: " + parts.scheme);
static void print_progress(size_t current, size_t total) {
if (!is_output_a_tty()) {
return;
}
auto rest = url.substr(scheme_end + 3);
auto at_pos = rest.find('@');
if (at_pos != std::string::npos) {
auto auth = rest.substr(0, at_pos);
auto colon_pos = auth.find(':');
if (colon_pos != std::string::npos) {
parts.user = auth.substr(0, colon_pos);
parts.password = auth.substr(colon_pos + 1);
} else {
parts.user = auth;
}
rest = rest.substr(at_pos + 1);
}
auto slash_pos = rest.find('/');
if (slash_pos != std::string::npos) {
parts.host = rest.substr(0, slash_pos);
parts.path = rest.substr(slash_pos);
} else {
parts.host = rest;
parts.path = "/";
}
return parts;
}
static std::pair<httplib::Client, common_url> http_client(const std::string & url) {
common_url parts = parse_url(url);
if (parts.host.empty()) {
throw std::runtime_error("error: invalid URL format");
}
if (!parts.user.empty()) {
throw std::runtime_error("error: user:password@ not supported yet"); // TODO
}
httplib::Client cli(parts.scheme + "://" + parts.host);
cli.set_follow_location(true);
// TODO cert
return { std::move(cli), std::move(parts) };
}
static std::string show_masked_url(const common_url & parts) {
return parts.scheme + "://" + (parts.user.empty() ? "" : "****:****@") + parts.host + parts.path;
}
static void print_progress(size_t current, size_t total) { // TODO isatty
if (!total) {
return;
}
@@ -664,51 +617,6 @@ static void print_progress(size_t current, size_t total) { // TODO isatty
std::cout.flush();
}
struct common_file_metadata {
std::string etag;
std::string last_modified;
};
static std::optional<common_file_metadata> read_metadata(const std::string & path) {
if (!std::filesystem::exists(path)) {
return std::nullopt;
}
nlohmann::json metadata_json;
common_file_metadata metadata;
std::ifstream metadata_in(path);
try {
metadata_in >> metadata_json;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, path.c_str(),
metadata_json.dump().c_str());
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
metadata.etag = metadata_json.at("etag");
}
if (metadata_json.contains("lastModified") && metadata_json.at("lastModified").is_string()) {
metadata.last_modified = metadata_json.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, path.c_str(), e.what());
return std::nullopt;
}
return metadata;
}
static void write_metadata(const std::string & path,
const std::string & url,
const common_file_metadata & metadata) {
nlohmann::json metadata_json = {
{ "url", url },
{ "etag", metadata.etag },
{ "lastModified", metadata.last_modified }
};
write_file(path, metadata_json.dump(4));
LOG_DBG("%s: file metadata saved: %s\n", __func__, path.c_str());
}
static bool common_pull_file(httplib::Client & cli,
const std::string & resolve_path,
const std::string & path_tmp,
@@ -775,12 +683,10 @@ static bool common_pull_file(httplib::Client & cli,
static bool common_download_file_single_online(const std::string & url,
const std::string & path,
const std::string & bearer_token) {
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
static const int max_attempts = 3;
static const int retry_delay_seconds = 2;
auto [cli, parts] = http_client(url);
auto [cli, parts] = common_http_client(url);
httplib::Headers default_headers = {{"User-Agent", "llama-cpp"}};
if (!bearer_token.empty()) {
@@ -788,12 +694,11 @@ static bool common_download_file_single_online(const std::string & url,
}
cli.set_default_headers(default_headers);
common_file_metadata last;
const bool file_exists = std::filesystem::exists(path);
std::string last_etag;
if (file_exists) {
if (auto opt = read_metadata(metadata_path)) {
last = *opt;
}
last_etag = read_etag(path);
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
@@ -809,14 +714,9 @@ static bool common_download_file_single_online(const std::string & url,
}
}
common_file_metadata current;
if (head_ok) {
if (head->has_header("ETag")) {
current.etag = head->get_header_value("ETag");
}
if (head->has_header("Last-Modified")) {
current.last_modified = head->get_header_value("Last-Modified");
}
std::string etag;
if (head_ok && head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
@@ -834,16 +734,10 @@ static bool common_download_file_single_online(const std::string & url,
}
bool should_download_from_scratch = false;
if (head_ok) {
if (!last.etag.empty() && last.etag != current.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
last.etag.c_str(), current.etag.c_str());
should_download_from_scratch = true;
} else if (!last.last_modified.empty() && last.last_modified != current.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__,
last.last_modified.c_str(), current.last_modified.c_str());
should_download_from_scratch = true;
}
if (!last_etag.empty() && !etag.empty() && last_etag != etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
last_etag.c_str(), etag.c_str());
should_download_from_scratch = true;
}
if (file_exists) {
@@ -871,9 +765,8 @@ static bool common_download_file_single_online(const std::string & url,
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n",
__func__, show_masked_url(parts).c_str(), path_temporary.c_str(),
current.etag.c_str(), current.last_modified.c_str());
LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str());
const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size);
if (!was_pull_successful) {
if (i + 1 < max_attempts) {
@@ -883,7 +776,6 @@ static bool common_download_file_single_online(const std::string & url,
} else {
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
}
continue;
}
@@ -891,7 +783,9 @@ static bool common_download_file_single_online(const std::string & url,
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
write_metadata(metadata_path, url, current);
if (!etag.empty()) {
write_etag(path, etag);
}
break;
}
@@ -900,7 +794,7 @@ static bool common_download_file_single_online(const std::string & url,
std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url,
const common_remote_params & params) {
auto [cli, parts] = http_client(url);
auto [cli, parts] = common_http_client(url);
httplib::Headers headers = {{"User-Agent", "llama-cpp"}};
for (const auto & header : params.headers) {
@@ -1721,18 +1615,14 @@ static void add_rpc_devices(const std::string & servers) {
if (!rpc_reg) {
throw std::invalid_argument("failed to find RPC backend");
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
throw std::invalid_argument("failed to find RPC device add function");
typedef ggml_backend_reg_t (*ggml_backend_rpc_add_server_t)(const char * endpoint);
ggml_backend_rpc_add_server_t ggml_backend_rpc_add_server_fn = (ggml_backend_rpc_add_server_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_server");
if (!ggml_backend_rpc_add_server_fn) {
throw std::invalid_argument("failed to find RPC add server function");
}
for (const auto & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
ggml_backend_device_register(dev);
} else {
throw std::invalid_argument("failed to register RPC device");
}
auto reg = ggml_backend_rpc_add_server_fn(server.c_str());
ggml_backend_register(reg);
}
}
@@ -2038,13 +1928,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_SWA_FULL"));
add_opt(common_arg(
{"--swa-checkpoints"}, "N",
string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
{"--ctx-checkpoints", "--swa-checkpoints"}, "N",
string_format("max number of context checkpoints to create per slot (default: %d)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_ctx_checkpoints),
[](common_params & params, int value) {
params.n_swa_checkpoints = value;
params.n_ctx_checkpoints = value;
}
).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
).set_env("LLAMA_ARG_CTX_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--cache-ram", "-cram"}, "N",
string_format("set the maximum cache size in MiB (default: %d, -1 - no limit, 0 - disable)\n"
"[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)", params.cache_ram_mib),
[](common_params & params, int value) {
params.cache_ram_mib = value;
}
).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--kv-unified", "-kvu"},
string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
@@ -2694,6 +2592,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.no_extra_bufts = true;
}
).set_env("LLAMA_ARG_NO_REPACK"));
add_opt(common_arg(
{"--no-host"},
"bypass host buffer allowing extra buffers to be used",
[](common_params & params) {
params.no_host = true;
}
).set_env("LLAMA_ARG_NO_HOST"));
add_opt(common_arg(
{"-ctk", "--cache-type-k"}, "TYPE",
string_format(
@@ -3535,7 +3440,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--reasoning-format"}, "FORMAT",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
"- none: leaves thoughts unparsed in `message.content`\n"
"- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
"- deepseek: puts thoughts in `message.reasoning_content`\n"
"- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`\n"
"(default: auto)",
[](common_params & params, const std::string & value) {
params.reasoning_format = common_reasoning_format_from_name(value);
@@ -3962,7 +3868,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
params.verbose_prompt = true;
@@ -3976,7 +3881,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
params.model.hf_file = "e5-small-v2-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
params.verbose_prompt = true;
@@ -3990,7 +3894,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
params.model.hf_file = "gte-small-q8_0.gguf";
params.pooling_type = LLAMA_POOLING_TYPE_NONE;
params.embd_normalize = 2;
params.n_ctx = 512;
params.verbose_prompt = true;

View File

@@ -78,7 +78,6 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
bool common_has_curl();
struct common_remote_params {
std::vector<std::string> headers;

View File

@@ -3,9 +3,12 @@
#include "log.h"
#include "regex-partial.h"
#include <algorithm>
#include <cctype>
#include <optional>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
using json = nlohmann::ordered_json;
@@ -75,6 +78,35 @@ bool common_chat_msg_parser::add_tool_calls(const json & arr) {
}
return true;
}
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
if (!tool_call.is_object() || tool_call.size() != 1) {
return false;
}
// Get the tool name (the single key in the object)
auto it = tool_call.begin();
std::string name = it.key();
if (name.empty()) {
return false;
}
// Get the arguments (the nested object)
const json & args_json = it.value();
std::string arguments = "";
if (args_json.is_object()) {
arguments = args_json.dump();
} else if (args_json.is_string()) {
arguments = args_json;
} else if (!args_json.is_null()) {
// For other types, convert to string representation
arguments = args_json.dump();
}
return add_tool_call(name, "", arguments);
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
@@ -137,6 +169,27 @@ void common_chat_msg_parser::consume_literal(const std::string & literal) {
}
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
std::string pending_reasoning_prefix;
if (syntax_.reasoning_format == COMMON_REASONING_FORMAT_NONE) {
return false;
}
auto set_reasoning_prefix = [&](size_t prefix_pos) {
if (!syntax_.thinking_forced_open || syntax_.reasoning_in_content) {
return;
}
if (prefix_pos + start_think.size() > input_.size()) {
pending_reasoning_prefix.clear();
return;
}
// Capture the exact literal that opened the reasoning section so we can
// surface it back to callers. This ensures formats that force the
// reasoning tag open (e.g. DeepSeek R1) retain their original prefix
// instead of dropping it during parsing.
pending_reasoning_prefix = input_.substr(prefix_pos, start_think.size());
};
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
auto stripped_reasoning = string_strip(reasoning);
if (stripped_reasoning.empty()) {
@@ -149,28 +202,116 @@ bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
}
} else {
if (!pending_reasoning_prefix.empty()) {
add_reasoning_content(pending_reasoning_prefix);
pending_reasoning_prefix.clear();
}
add_reasoning_content(stripped_reasoning);
}
};
if (syntax_.reasoning_format != COMMON_REASONING_FORMAT_NONE) {
if (syntax_.thinking_forced_open || try_consume_literal(start_think)) {
if (auto res = try_find_literal(end_think)) {
handle_reasoning(res->prelude, /* closed */ true);
consume_spaces();
return true;
}
auto rest = consume_rest();
const size_t saved_pos = pos_;
const size_t saved_content_size = result_.content.size();
const size_t saved_reasoning_size = result_.reasoning_content.size();
auto restore_state = [&]() {
move_to(saved_pos);
result_.content.resize(saved_content_size);
result_.reasoning_content.resize(saved_reasoning_size);
};
// Allow leading whitespace to be preserved as content when reasoning is present at the start
size_t cursor = pos_;
size_t whitespace_end = cursor;
while (whitespace_end < input_.size() && std::isspace(static_cast<unsigned char>(input_[whitespace_end]))) {
++whitespace_end;
}
if (whitespace_end >= input_.size()) {
restore_state();
if (syntax_.thinking_forced_open) {
auto rest = input_.substr(saved_pos);
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
// Allow unclosed thinking tags, for now (https://github.com/ggml-org/llama.cpp/issues/13812, https://github.com/ggml-org/llama.cpp/issues/13877)
// if (!syntax_.thinking_forced_open) {
// throw common_chat_msg_partial_exception(end_think);
// }
move_to(input_.size());
return true;
}
return false;
}
cursor = whitespace_end;
const size_t remaining = input_.size() - cursor;
const size_t start_prefix = std::min(start_think.size(), remaining);
const bool has_start_tag = input_.compare(cursor, start_prefix, start_think, 0, start_prefix) == 0;
if (has_start_tag && start_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
if (has_start_tag) {
if (whitespace_end > pos_) {
add_content(input_.substr(pos_, whitespace_end - pos_));
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
} else if (syntax_.thinking_forced_open) {
cursor = whitespace_end;
} else {
restore_state();
return false;
}
while (true) {
if (cursor >= input_.size()) {
move_to(input_.size());
return true;
}
size_t end_pos = input_.find(end_think, cursor);
if (end_pos == std::string::npos) {
std::string_view remaining_view(input_.data() + cursor, input_.size() - cursor);
size_t partial_off = string_find_partial_stop(remaining_view, end_think);
size_t reasoning_end = partial_off == std::string::npos ? input_.size() : cursor + partial_off;
if (reasoning_end > cursor) {
handle_reasoning(input_.substr(cursor, reasoning_end - cursor), /* closed */ partial_off == std::string::npos && !is_partial());
}
move_to(input_.size());
return true;
}
if (end_pos > cursor) {
handle_reasoning(input_.substr(cursor, end_pos - cursor), /* closed */ true);
} else {
handle_reasoning("", /* closed */ true);
}
cursor = end_pos + end_think.size();
while (cursor < input_.size() && std::isspace(static_cast<unsigned char>(input_[cursor]))) {
++cursor;
}
const size_t next_remaining = input_.size() - cursor;
if (next_remaining == 0) {
move_to(cursor);
return true;
}
const size_t next_prefix = std::min(start_think.size(), next_remaining);
if (input_.compare(cursor, next_prefix, start_think, 0, next_prefix) == 0) {
if (next_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
continue;
}
move_to(cursor);
return true;
}
return false;
}
std::string common_chat_msg_parser::consume_rest() {

View File

@@ -64,6 +64,9 @@ class common_chat_msg_parser {
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
void finish();
bool consume_spaces();

View File

@@ -625,6 +625,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_CONTENT_ONLY: return "Content-only";
case COMMON_CHAT_FORMAT_GENERIC: return "Generic";
case COMMON_CHAT_FORMAT_MISTRAL_NEMO: return "Mistral Nemo";
case COMMON_CHAT_FORMAT_MAGISTRAL: return "Magistral";
case COMMON_CHAT_FORMAT_LLAMA_3_X: return "Llama 3.x";
case COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS: return "Llama 3.x with builtin tools";
case COMMON_CHAT_FORMAT_DEEPSEEK_R1: return "DeepSeek R1";
@@ -638,6 +639,7 @@ const char * common_chat_format_name(common_chat_format format) {
case COMMON_CHAT_FORMAT_GPT_OSS: return "GPT-OSS";
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
default:
throw std::runtime_error("Unknown chat format");
}
@@ -801,6 +803,7 @@ static std::string apply(
}
tmpl_inputs.add_generation_prompt = inputs.add_generation_prompt;
tmpl_inputs.extra_context = inputs.extra_context;
tmpl_inputs.extra_context["enable_thinking"] = inputs.enable_thinking;
if (additional_context) {
tmpl_inputs.extra_context.merge_patch(*additional_context);
}
@@ -982,6 +985,65 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
data.format = COMMON_CHAT_FORMAT_MISTRAL_NEMO;
return data;
}
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_MAGISTRAL;
data.preserved_tokens = {
"[THINK]",
"[/THINK]",
};
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{"type", "object"},
{"properties", {
{"name", {
{"type", "string"},
{"const", function.at("name")},
}},
{"arguments", function.at("parameters")},
{"id", {
{"type", "string"},
{"pattern", "^[a-zA-Z0-9]{9}$"},
}},
}},
{"required", json::array({"name", "arguments", "id"})},
});
});
auto schema = json {
{"type", "array"},
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
{"minItems", 1},
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root", "\"[TOOL_CALLS]\" " + builder.add_schema("tool_calls", schema));
});
data.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "[TOOL_CALLS]"});
data.preserved_tokens.push_back("[TOOL_CALLS]");
} else {
data.grammar_lazy = false;
if (!inputs.json_schema.is_null()) {
if (!inputs.grammar.empty()) {
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
}
data.grammar = json_schema_to_grammar(inputs.json_schema);
} else {
data.grammar = inputs.grammar;
}
}
return data;
}
static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
@@ -992,6 +1054,18 @@ static void common_chat_parse_mistral_nemo(common_chat_msg_parser & builder) {
parse_prefixed_json_tool_call_array(builder, prefix);
}
static void common_chat_parse_magistral(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("[THINK]", "[/THINK]");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
static const common_regex prefix(regex_escape("[TOOL_CALLS]"));
parse_prefixed_json_tool_call_array(builder, prefix);
}
static common_chat_params common_chat_params_init_command_r7b(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
@@ -1264,7 +1338,78 @@ static common_chat_params common_chat_params_init_nemotron_v2(const common_chat_
}
return data;
}
static common_chat_params common_chat_params_init_apertus(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// Generate the prompt using the apply() function with the template
data.prompt = apply(tmpl, inputs);
data.format = COMMON_CHAT_FORMAT_APERTUS;
// Handle thinking tags appropriately based on inputs.enable_thinking
if (string_ends_with(data.prompt, "<|inner_prefix|>")) {
if (!inputs.enable_thinking) {
data.prompt += "<|inner_suffix|>";
} else {
data.thinking_forced_open = true;
}
}
// When tools are present, build grammar for the <|tools_prefix|> format
if (!inputs.tools.is_null() && inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = true;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
auto schemas = json::array();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
schemas.push_back({
{ "type", "object" },
{ "properties",
{
{ function.at("name"), function.at("parameters") }
} },
{ "required", json::array({ function.at("name") }) },
});
});
auto schema = json{
{ "type", "array" },
{ "items", schemas.size() == 1 ? schemas[0] : json{ { "anyOf", schemas } } },
{ "minItems", 1 },
};
if (!inputs.parallel_tool_calls) {
schema["maxItems"] = 1;
}
builder.add_rule("root",
std::string(data.thinking_forced_open ? "( \"<|inner_suffix|>\" space )? " : "") +
"\"<|tools_prefix|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tools_suffix|>\"");
});
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
// If thinking_forced_open, then we capture the <|inner_suffix|> tag in the grammar,
// (important for required tool choice) and in the trigger's first capture (decides what is sent to the grammar)
std::string(data.thinking_forced_open ?
"[\\s\\S]*?(<\\|inner_suffix\\|>\\s*)" :
"(?:<\\|inner_prefix\\|>[\\s\\S]*?<\\|inner_suffix\\|>\\s*)?") +
"(<\\|tools_prefix\\|>)[\\s\\S]*" });
data.preserved_tokens = {
"<|system_start|>",
"<|system_end|>",
"<|developer_start|>",
"<|developer_end|>",
"<|user_start|>",
"<|user_end|>",
"<|assistant_start|>",
"<|assistant_end|>",
"<|inner_prefix|>",
"<|inner_suffix|>",
"<|tools_prefix|>",
"<|tools_suffix|>",
};
}
return data;
}
static void common_chat_parse_llama_3_1(common_chat_msg_parser & builder, bool with_builtin_tools = false) {
builder.try_parse_reasoning("<think>", "</think>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
@@ -1616,17 +1761,36 @@ static common_chat_params common_chat_params_init_gpt_oss(const common_chat_temp
);
});
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
auto recipient_in_channel = builder.add_rule("recipient_in_channel",
channel + " \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_channel, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
if (data.grammar_lazy) {
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\"<|start|>assistant\"? \" to=functions.\" ( " +
string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root", recipient_in_role + " | " + recipient_in_channel);
} else {
auto not_end = builder.add_rule("not-end",
"[^<] | \"<\" [^|] | \"<|\" [^e] | \"<|e\" [^n] | \"<|en\" [^d] | \"<|end\" [^|] | \"<|end|\" [^>]");
auto analysis = builder.add_rule("analysis",
"\"<|channel|>analysis<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto commentary = builder.add_rule("commentary",
"\"<|channel|>commentary<|message|>\" ( " + not_end + " )* \"<|end|>\"");
auto recipient_in_role = builder.add_rule("recipient_in_role",
"\" to=functions.\" ( " + string_join(tool_rules_recipient_in_role, " | ") + " )"
);
builder.add_rule("root",
"( " + analysis + " \"<|start|>assistant\" )? " +
"( " + commentary + " \"<|start|>assistant\" )? " +
"( " + recipient_in_role + " | " + recipient_in_channel + " )"
);
}
// Trigger on tool calls that appear in the commentary channel
data.grammar_triggers.push_back({
@@ -2304,6 +2468,37 @@ static void common_chat_parse_nemotron_v2(common_chat_msg_parser & builder) {
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
// Parse thinking tags
builder.try_parse_reasoning("<|inner_prefix|>", "<|inner_suffix|>");
if (!builder.syntax().parse_tool_calls) {
builder.add_content(builder.consume_rest());
return;
}
// Look for tool calls
static const common_regex tool_call_regex(regex_escape("<|tools_prefix|>"));
if (auto res = builder.try_find_regex(tool_call_regex)) {
builder.move_to(res->groups[0].end);
auto tool_calls_data = builder.consume_json();
if (tool_calls_data.json.is_array()) {
builder.consume_spaces();
if (!builder.try_consume_literal("<|tools_suffix|>")) {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
for (const auto & value : tool_calls_data.json) {
if (value.is_object()) {
builder.add_tool_call_short_form(value);
}
}
} else {
throw common_chat_msg_partial_exception("Incomplete tool call");
}
}
builder.add_content(builder.consume_rest());
}
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
// Parse thinking tags first - this handles the main reasoning content
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
@@ -2548,6 +2743,11 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_nemotron_v2(tmpl, params);
}
// Apertus format detection
if (src.find("<|system_start|>") != std::string::npos && src.find("<|tools_prefix|>") != std::string::npos) {
return common_chat_params_init_apertus(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {
@@ -2576,6 +2776,10 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_llama_3_x(tmpl, params, allow_python_tag_builtin_tools);
}
if (src.find("[THINK]") != std::string::npos && src.find("[/THINK]") != std::string::npos) {
return common_chat_params_init_magistral(tmpl, params);
}
// Plain handler (no tools)
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
return common_chat_params_init_without_tools(tmpl, params);
@@ -2660,6 +2864,7 @@ common_chat_params common_chat_templates_apply(
}
static void common_chat_parse_content_only(common_chat_msg_parser & builder) {
builder.try_parse_reasoning("<think>", "</think>");
builder.add_content(builder.consume_rest());
}
@@ -2676,6 +2881,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_MISTRAL_NEMO:
common_chat_parse_mistral_nemo(builder);
break;
case COMMON_CHAT_FORMAT_MAGISTRAL:
common_chat_parse_magistral(builder);
break;
case COMMON_CHAT_FORMAT_LLAMA_3_X:
common_chat_parse_llama_3_1(builder);
break;
@@ -2715,6 +2923,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
case COMMON_CHAT_FORMAT_NEMOTRON_V2:
common_chat_parse_nemotron_v2(builder);
break;
case COMMON_CHAT_FORMAT_APERTUS:
common_chat_parse_apertus(builder);
break;
default:
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
}

View File

@@ -33,8 +33,8 @@ struct common_chat_msg_content_part {
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_chat_msg_content_part> content_parts = {};
std::vector<common_chat_tool_call> tool_calls = {};
std::vector<common_chat_msg_content_part> content_parts;
std::vector<common_chat_tool_call> tool_calls;
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
@@ -44,7 +44,7 @@ struct common_chat_msg {
bool empty() const {
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
}
void ensure_tool_call_ids_set(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
void set_tool_call_ids(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
for (auto i = 0u; i < tool_calls.size(); i++) {
if (ids_cache.size() <= i) {
auto id = tool_calls[i].id;
@@ -101,6 +101,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_MAGISTRAL,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
@@ -114,6 +115,7 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};

View File

@@ -1133,6 +1133,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;
mparams.no_host = params.no_host;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;

View File

@@ -378,7 +378,7 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@@ -392,6 +392,7 @@ struct common_params {
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
bool no_host = false; // bypass host buffer allowing extra buffers to be used
bool single_turn = false; // single turn chat conversation
@@ -424,7 +425,8 @@ struct common_params {
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_swa_checkpoints = 3; // max number of SWA checkpoints per slot
int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
int32_t cache_ram_mib = 8192; // 0 = no limit, 1 = 1 MiB, etc.
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
@@ -432,7 +434,7 @@ struct common_params {
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_AUTO;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response

73
common/http.h Normal file
View File

@@ -0,0 +1,73 @@
#pragma once
#include <cpp-httplib/httplib.h>
struct common_http_url {
std::string scheme;
std::string user;
std::string password;
std::string host;
std::string path;
};
static common_http_url common_http_parse_url(const std::string & url) {
common_http_url parts;
auto scheme_end = url.find("://");
if (scheme_end == std::string::npos) {
throw std::runtime_error("invalid URL: no scheme");
}
parts.scheme = url.substr(0, scheme_end);
if (parts.scheme != "http" && parts.scheme != "https") {
throw std::runtime_error("unsupported URL scheme: " + parts.scheme);
}
auto rest = url.substr(scheme_end + 3);
auto at_pos = rest.find('@');
if (at_pos != std::string::npos) {
auto auth = rest.substr(0, at_pos);
auto colon_pos = auth.find(':');
if (colon_pos != std::string::npos) {
parts.user = auth.substr(0, colon_pos);
parts.password = auth.substr(colon_pos + 1);
} else {
parts.user = auth;
}
rest = rest.substr(at_pos + 1);
}
auto slash_pos = rest.find('/');
if (slash_pos != std::string::npos) {
parts.host = rest.substr(0, slash_pos);
parts.path = rest.substr(slash_pos);
} else {
parts.host = rest;
parts.path = "/";
}
return parts;
}
static std::pair<httplib::Client, common_http_url> common_http_client(const std::string & url) {
common_http_url parts = common_http_parse_url(url);
if (parts.host.empty()) {
throw std::runtime_error("error: invalid URL format");
}
httplib::Client cli(parts.scheme + "://" + parts.host);
if (!parts.user.empty()) {
cli.set_basic_auth(parts.user, parts.password);
}
cli.set_follow_location(true);
return { std::move(cli), std::move(parts) };
}
static std::string common_http_show_masked_url(const common_http_url & parts) {
return parts.scheme + "://" + (parts.user.empty() ? "" : "****:****@") + parts.host + parts.path;
}

View File

@@ -93,13 +93,15 @@ class ModelBase:
# Mistral format specifics
is_mistral_format: bool = False
disable_mistral_community_chat_template: bool = False
sentence_transformers_dense_modules: bool = False
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
disable_mistral_community_chat_template: bool = False):
disable_mistral_community_chat_template: bool = False,
sentence_transformers_dense_modules: bool = False):
if type(self) is ModelBase or \
type(self) is TextModel or \
type(self) is MmprojModel:
@@ -114,6 +116,7 @@ class ModelBase:
self.lazy = not eager or (remote_hf_model_id is not None)
self.dry_run = dry_run
self.remote_hf_model_id = remote_hf_model_id
self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
if remote_hf_model_id is not None:
self.is_safetensors = True
@@ -891,6 +894,9 @@ class TextModel(ModelBase):
if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
# ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
res = "llada-moe"
if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
# ref: https://huggingface.co/ibm-granite/granite-docling-258M
res = "granite-docling"
if res is None:
logger.warning("\n")
@@ -1325,6 +1331,7 @@ class MmprojModel(ModelBase):
self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
@@ -1347,7 +1354,8 @@ class MmprojModel(ModelBase):
self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
# vision config
self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
self.image_size = self.find_vparam(["image_size"])
self.gguf_writer.add_vision_image_size(self.image_size)
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
@@ -2378,6 +2386,10 @@ class SmolVLMModel(MmprojModel):
self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
self.gguf_writer.add_vision_use_gelu(True)
# Add the preprocessor longest edge size
preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
def tensor_force_quant(self, name, new_name, bid, n_dims):
if ".embeddings." in name:
return gguf.GGMLQuantizationType.F32
@@ -4250,7 +4262,8 @@ class Plamo2Model(TextModel):
# This logic matches modeling_plamo.py's is_mamba function
mamba_step = hparams.get("mamba_step", 2)
mamba_enabled = hparams.get("mamba_enabled", True)
mamba_layers = []
num_key_value_heads = []
num_attention_heads = []
if mamba_enabled:
for i in range(block_count):
@@ -4260,17 +4273,21 @@ class Plamo2Model(TextModel):
else:
is_mamba = (i % mamba_step) != (mamba_step // 2)
if is_mamba:
mamba_layers.append(0)
num_key_value_heads.append(0)
num_attention_heads.append(0)
else:
mamba_layers.append(hparams.get("num_key_value_heads", 4))
num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
num_attention_heads.append(hparams.get("num_attention_heads", 32))
if mamba_layers:
self.gguf_writer.add_head_count_kv(mamba_layers)
if num_key_value_heads and num_attention_heads:
self.gguf_writer.add_head_count_kv(num_key_value_heads)
self.gguf_writer.add_head_count(num_attention_heads)
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
@@ -5255,6 +5272,53 @@ class Gemma3Model(TextModel):
@ModelBase.register("Gemma3TextModel")
class EmbeddingGemma(Gemma3Model):
model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
module_paths = []
dense_features_dims = {}
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
if self.sentence_transformers_dense_modules:
# read modules.json to determine if model has Dense layers
modules_file = self.dir_model / "modules.json"
if modules_file.is_file():
with open(modules_file, encoding="utf-8") as modules_json_file:
mods = json.load(modules_json_file)
for mod in mods:
if mod["type"] == "sentence_transformers.models.Dense":
mod_path = mod["path"]
# check if model.safetensors file for Dense layer exists
model_tensors_file = self.dir_model / mod_path / "model.safetensors"
if model_tensors_file.is_file():
self.module_paths.append(mod_path)
# read config.json of the Dense layer to get in/out features
mod_conf_file = self.dir_model / mod_path / "config.json"
if mod_conf_file.is_file():
with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
mod_conf = json.load(mod_conf_json_file)
# hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
prefix = self._get_dense_prefix(mod_path)
if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
from safetensors.torch import load_file
module_paths = list(self.module_paths)
for i, module_path in enumerate(module_paths):
tensors_file = self.dir_model / module_path / "model.safetensors"
local_tensors = load_file(tensors_file)
tensor_name = self._get_dense_prefix(module_path)
for name, local_tensor in local_tensors.items():
if not name.endswith(".weight"):
continue
orig_name = name.replace("linear", tensor_name)
name = self.map_tensor_name(orig_name)
yield name, local_tensor.clone()
@staticmethod
def _get_dense_prefix(module_path) -> str:
"""Get the tensor name prefix for the Dense layer from module path."""
tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
return tensor_name
def set_gguf_parameters(self):
super().set_gguf_parameters()
@@ -5271,6 +5335,10 @@ class EmbeddingGemma(Gemma3Model):
logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
f"instead of {self.hparams['sliding_window']}")
self.gguf_writer.add_sliding_window(orig_sliding_window)
if self.sentence_transformers_dense_modules:
for dense, dims in self.dense_features_dims.items():
logger.info(f"Setting dense layer {dense} in/out features to {dims}")
self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
self._try_set_pooling_type()
@@ -8822,6 +8890,75 @@ class LFM2Model(TextModel):
return [(self.map_tensor_name(name), data_torch)]
@ModelBase.register("Lfm2MoeForCausalLM")
class LFM2MoeModel(TextModel):
model_arch = gguf.MODEL_ARCH.LFM2MOE
def set_gguf_parameters(self):
# set num_key_value_heads only for attention layers
self.hparams["num_key_value_heads"] = [
self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
for layer_type in self.hparams["layer_types"]
]
super().set_gguf_parameters()
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
# cache for experts weights for merging
_experts_cache: dict[int, dict[str, Tensor]] = {}
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# conv op requires 2d tensor
if 'conv.conv' in name:
data_torch = data_torch.squeeze(1)
if name.endswith(".expert_bias"):
name = name.replace(".expert_bias", ".expert_bias.bias")
# merge expert weights
if 'experts' in name:
n_experts = self.hparams["num_experts"]
assert bid is not None
expert_cache = self._experts_cache.setdefault(bid, {})
expert_cache[name] = data_torch
expert_weights = ["w1", "w2", "w3"]
# not enough expert weights to merge
if len(expert_cache) < n_experts * len(expert_weights):
return []
tensors: list[tuple[str, Tensor]] = []
for w_name in expert_weights:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
datas.append(expert_cache[ename])
del expert_cache[ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
del self._experts_cache[bid]
return tensors
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
assert not self._experts_cache
@ModelBase.register("Lfm2VlForConditionalGeneration")
class LFM2VLModel(MmprojModel):
def __init__(self, *args, **kwargs):
@@ -8940,6 +9077,43 @@ class SmallThinkerModel(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("ApertusForCausalLM")
class ApertusModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.APERTUS
undo_permute = False
_alpha_n = {}
_alpha_p = {}
_beta = {}
_eps = {}
def modify_tensors(self, data_torch, name, bid):
# Handle xIELU activation parameters
n_layers = self.hparams["num_hidden_layers"]
if name.endswith(".act_fn.alpha_n"):
self._alpha_n[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_n) == n_layers):
self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
return []
if name.endswith(".act_fn.alpha_p"):
self._alpha_p[bid] = data_torch.to("cpu").float().item()
if (len(self._alpha_p) == n_layers):
self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
return []
if name.endswith(".act_fn.beta"):
self._beta[bid] = data_torch.to("cpu").float().item()
if (len(self._beta) == n_layers):
self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
return []
if name.endswith(".act_fn.eps"):
self._eps[bid] = data_torch.to("cpu").float().item()
if (len(self._eps) == n_layers):
self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
return []
return super().modify_tensors(data_torch, name, bid)
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_name = "Mistral"
@@ -9107,7 +9281,7 @@ class LazyTorchTensor(gguf.LazyBase):
def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
dtype = cls._dtype_str_map[st_slice.get_dtype()]
shape: tuple[int, ...] = tuple(st_slice.get_shape())
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
return cast(torch.Tensor, lazy)
@classmethod
@@ -9215,6 +9389,13 @@ def parse_args() -> argparse.Namespace:
)
)
parser.add_argument(
"--sentence-transformers-dense-modules", action="store_true",
help=("Whether to include sentence-transformers dense modules."
"It can be used for sentence-transformers models, like google/embeddinggemma-300m"
"Default these modules are not included.")
)
args = parser.parse_args()
if not args.print_supported_models and args.model is None:
parser.error("the following arguments are required: model")
@@ -9277,9 +9458,13 @@ def main() -> None:
if args.remote:
hf_repo_id = args.model
from huggingface_hub import snapshot_download
allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
if args.sentence_transformers_dense_modules:
# include sentence-transformers dense modules safetensors files
allowed_patterns.append("*.safetensors")
local_dir = snapshot_download(
repo_id=hf_repo_id,
allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
allow_patterns=allowed_patterns)
dir_model = Path(local_dir)
logger.info(f"Downloaded config and tokenizer to {local_dir}")
else:
@@ -9347,7 +9532,8 @@ def main() -> None:
split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split,
remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
)
if args.vocab_only:

View File

@@ -140,6 +140,7 @@ models = [
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
]
# some models are known to be broken upstream, so we will skip them as exceptions

View File

@@ -145,12 +145,13 @@ The docker build option is currently limited to *Intel GPU* targets.
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@@ -160,7 +161,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
```
*Notes:*
@@ -215,9 +216,19 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@@ -225,6 +236,12 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -255,10 +272,11 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
@@ -353,7 +371,7 @@ cmake --build build --config Release -j -v
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@@ -466,7 +484,17 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.

View File

@@ -0,0 +1,89 @@
> [!IMPORTANT]
> This build documentation is specific only to RISC-V SpacemiT SOCs.
## Build llama.cpp locally (for riscv64)
1. Prepare Toolchain For RISCV
~~~
wget https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v1.1.2.tar.xz
~~~
2. Build
Below is the build script: it requires utilizing RISC-V vector instructions for acceleration. Ensure the `GGML_CPU_RISCV64_SPACEMIT` compilation option is enabled. The currently supported optimization version is `RISCV64_SPACEMIT_IME1`, corresponding to the `RISCV64_SPACEMIT_IME_SPEC` compilation option. Compiler configurations are defined in the `riscv64-spacemit-linux-gnu-gcc.cmake` file. Please ensure you have installed the RISC-V compiler and set the environment variable via `export RISCV_ROOT_PATH={your_compiler_path}`.
```bash
cmake -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DLLAMA_CURL=OFF \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed
cmake --build build --parallel $(nproc) --config Release
pushd build
make install
popd
```
## Simulation
You can use QEMU to perform emulation on non-RISC-V architectures.
1. Download QEMU
~~~
wget https://archive.spacemit.com/spacemit-ai/qemu/jdsk-qemu-v0.0.14.tar.gz
~~~
2. Run Simulation
After build your llama.cpp, you can run the executable file via QEMU for simulation, for example:
~~~
export QEMU_ROOT_PATH={your QEMU file path}
export RISCV_ROOT_PATH_IME1={your RISC-V compiler path}
${QEMU_ROOT_PATH}/bin/qemu-riscv64 -L ${RISCV_ROOT_PATH_IME1}/sysroot -cpu max,vlen=256,elen=64,vext_spec=v1.0 ${PWD}/build/bin/llama-cli -m ${PWD}/models/Qwen2.5-0.5B-Instruct-Q4_0.gguf -t 1
~~~
## Performance
#### Quantization Support For Matrix
~~~
model name : Spacemit(R) X60
isa : rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_zca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscofpmf_sstc_svinval_svnapot_svpbmt
mmu : sv39
uarch : spacemit,x60
mvendorid : 0x710
marchid : 0x8000000058000001
~~~
Q4_0
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | pp512|64.12 ± 0.26|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | tg128|10.03 ± 0.01|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | pp512|24.16 ± 0.02|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | tg128|3.83 ± 0.06|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | pp512|12.08 ± 0.02|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | tg128|2.23 ± 0.02|
Q4_1
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | pp512|62.07 ± 0.12|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | tg128|9.91 ± 0.01|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | pp512|22.95 ± 0.25|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | tg128|4.01 ± 0.15|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | pp512|11.55 ± 0.16|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | tg128|2.25 ± 0.04|
Q4_K
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | pp512|9.29 ± 0.05|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | tg128|5.67 ± 0.04|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | pp512|10.38 ± 0.10|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | tg128|3.17 ± 0.08|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | pp512|4.23 ± 0.04|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | tg128|1.73 ± 0.00|

View File

@@ -116,20 +116,39 @@ embedding-convert-model:
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh
embedding-convert-model-st:
$(call validate_embedding_model_path,embedding-convert-model-st)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/embedding/convert-model.sh -st
embedding-run-original-model:
$(call validate_embedding_model_path,embedding-run-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" \
USE_SENTENCE_TRANSFORMERS="$(USE_SENTENCE_TRANSFORMERS)" \
./scripts/embedding/run-original-model.py \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_SENTENCE_TRANSFORMERS),--use-sentence-transformers)
embedding-run-original-model-st: USE_SENTENCE_TRANSFORMERS=1
embedding-run-original-model-st: embedding-run-original-model
embedding-run-converted-model:
@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_POOLING),--pooling)
embedding-run-converted-model-st: USE_POOLING=1
embedding-run-converted-model-st: embedding-run-converted-model
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model-st
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-inspect-original-model:
$(call validate_embedding_model_path,embedding-inspect-original-model)
@EMBEDDING_MODEL_PATH="$(EMBEDDING_MODEL_PATH)" ./scripts/utils/inspect-org-model.py -m ${EMBEDDING_MODEL_PATH}

View File

@@ -189,6 +189,23 @@ This command will save two files to the `data` directory, one is a binary
file containing logits which will be used for comparison with the converted
model, and the other is a text file which allows for manual visual inspection.
#### Using SentenceTransformer with numbered layers
For models that have numbered SentenceTransformer layers (01_Pooling, 02_Dense,
03_Dense, 04_Normalize), use the `-st` targets to apply all these layers:
```console
# Run original model with SentenceTransformer (applies all numbered layers)
(venv) $ make embedding-run-original-model-st
# Run converted model with pooling enabled
(venv) $ make embedding-run-converted-model-st
```
This will use the SentenceTransformer library to load and run the model, which
automatically applies all the numbered layers in the correct order. This is
particularly useful when comparing with models that should include these
additional transformation layers beyond just the base model output.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model the model can be converted to GGUF format using the following command:
@@ -208,6 +225,13 @@ was done manually in the previous steps) and compare the logits:
(venv) $ make embedding-verify-logits
```
For models with SentenceTransformer layers, use the `-st` verification target:
```console
(venv) $ make embedding-verify-logits-st
```
This convenience target automatically runs both the original model with SentenceTransformer
and the converted model with pooling enabled, then compares the results.
### llama-server verification
To verify that the converted model works with llama-server, the following
command can be used:

View File

@@ -1,4 +1,7 @@
#include "llama.h"
#include "common.h"
#include <cstdio>
#include <cstring>
#include <string>
@@ -8,7 +11,10 @@
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [prompt]\n", argv[0]);
printf("\n %s -m model.gguf [-ngl n_gpu_layers] -embd-mode [-pooling] [-embd-norm <norm>] [prompt]\n", argv[0]);
printf("\n");
printf(" -embd-norm: normalization type for pooled embeddings (default: 2)\n");
printf(" -1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm\n");
printf("\n");
}
@@ -17,6 +23,8 @@ int main(int argc, char ** argv) {
std::string prompt = "Hello, my name is";
int ngl = 0;
bool embedding_mode = false;
bool pooling_enabled = false;
int32_t embd_norm = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
{
int i = 1;
@@ -41,9 +49,13 @@ int main(int argc, char ** argv) {
return 1;
}
} else if (strcmp(argv[i], "-embd-mode") == 0) {
embedding_mode = true;
} else if (strcmp(argv[i], "-pooling") == 0) {
pooling_enabled = true;
} else if (strcmp(argv[i], "-embd-norm") == 0) {
if (i + 1 < argc) {
try {
embedding_mode = true;
embd_norm = std::stoi(argv[++i]);
} catch (...) {
print_usage(argc, argv);
return 1;
@@ -112,7 +124,7 @@ int main(int argc, char ** argv) {
ctx_params.no_perf = false;
if (embedding_mode) {
ctx_params.embeddings = true;
ctx_params.pooling_type = LLAMA_POOLING_TYPE_NONE;
ctx_params.pooling_type = pooling_enabled ? LLAMA_POOLING_TYPE_MEAN : LLAMA_POOLING_TYPE_NONE;
ctx_params.n_ubatch = ctx_params.n_batch;
}
@@ -143,17 +155,27 @@ int main(int argc, char ** argv) {
return 1;
}
float * logits;
int n_logits;
float * data_ptr;
int data_size;
const char * type;
std::vector<float> embd_out;
if (embedding_mode) {
logits = llama_get_embeddings(ctx);
n_logits = llama_model_n_embd(model) * batch.n_tokens;
const int n_embd = llama_model_n_embd(model);
const int n_embd_count = pooling_enabled ? 1 : batch.n_tokens;
const int n_embeddings = n_embd * n_embd_count;
float * embeddings;
type = "-embeddings";
const int n_embd = llama_model_n_embd(model);
const int n_embd_count = batch.n_tokens;
if (llama_pooling_type(ctx) != LLAMA_POOLING_TYPE_NONE) {
embeddings = llama_get_embeddings_seq(ctx, 0);
embd_out.resize(n_embeddings);
printf("Normalizing embeddings using norm: %d\n", embd_norm);
common_embd_normalize(embeddings, embd_out.data(), n_embeddings, embd_norm);
embeddings = embd_out.data();
} else {
embeddings = llama_get_embeddings(ctx);
}
printf("Embedding dimension: %d\n", n_embd);
printf("\n");
@@ -164,7 +186,7 @@ int main(int argc, char ** argv) {
// Print first 3 values
for (int i = 0; i < 3 && i < n_embd; i++) {
printf("%9.6f ", logits[j * n_embd + i]);
printf("%9.6f ", embeddings[j * n_embd + i]);
}
printf(" ... ");
@@ -172,7 +194,7 @@ int main(int argc, char ** argv) {
// Print last 3 values
for (int i = n_embd - 3; i < n_embd; i++) {
if (i >= 0) {
printf("%9.6f ", logits[j * n_embd + i]);
printf("%9.6f ", embeddings[j * n_embd + i]);
}
}
@@ -180,27 +202,33 @@ int main(int argc, char ** argv) {
}
printf("\n");
printf("Embeddings size: %d\n", n_logits);
printf("Embeddings size: %d\n", n_embeddings);
data_ptr = embeddings;
data_size = n_embeddings;
} else {
logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
n_logits = llama_vocab_n_tokens(vocab);
float * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
const int n_logits = llama_vocab_n_tokens(vocab);
type = "";
printf("Vocab size: %d\n", n_logits);
data_ptr = logits;
data_size = n_logits;
}
std::filesystem::create_directory("data");
// Save logits to binary file
// Save data to binary file
char bin_filename[512];
snprintf(bin_filename, sizeof(bin_filename), "data/llamacpp-%s%s.bin", model_name, type);
printf("Saving logits to %s\n", bin_filename);
printf("Saving data to %s\n", bin_filename);
FILE * f = fopen(bin_filename, "wb");
if (f == NULL) {
fprintf(stderr, "%s: error: failed to open binary output file\n", __func__);
return 1;
}
fwrite(logits, sizeof(float), n_logits, f);
fwrite(data_ptr, sizeof(float), data_size, f);
fclose(f);
// Also save as text for debugging
@@ -211,27 +239,27 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: error: failed to open text output file\n", __func__);
return 1;
}
for (int i = 0; i < n_logits; i++) {
fprintf(f, "%d: %.6f\n", i, logits[i]);
for (int i = 0; i < data_size; i++) {
fprintf(f, "%d: %.6f\n", i, data_ptr[i]);
}
fclose(f);
if (!embedding_mode) {
printf("First 10 logits: ");
for (int i = 0; i < 10 && i < n_logits; i++) {
printf("%.6f ", logits[i]);
for (int i = 0; i < 10 && i < data_size; i++) {
printf("%.6f ", data_ptr[i]);
}
printf("\n");
printf("Last 10 logits: ");
for (int i = n_logits - 10; i < n_logits; i++) {
if (i >= 0) printf("%.6f ", logits[i]);
for (int i = data_size - 10; i < data_size; i++) {
if (i >= 0) printf("%.6f ", data_ptr[i]);
}
printf("\n\n");
}
printf("Logits saved to %s\n", bin_filename);
printf("Logits saved to %s\n", txt_filename);
printf("Data saved to %s\n", bin_filename);
printf("Data saved to %s\n", txt_filename);
llama_free(ctx);
llama_model_free(model);

View File

@@ -4,3 +4,4 @@ torchvision
transformers
huggingface-hub
accelerate
sentence-transformers

View File

@@ -2,6 +2,21 @@
set -e
# Parse command line arguments
SENTENCE_TRANSFORMERS=""
while [[ $# -gt 0 ]]; do
case $1 in
-st|--sentence-transformers)
SENTENCE_TRANSFORMERS="--sentence-transformers-dense-modules"
shift
;;
*)
echo "Unknown option: $1"
exit 1
;;
esac
done
MODEL_NAME="${MODEL_NAME:-$(basename "$EMBEDDING_MODEL_PATH")}"
OUTPUT_DIR="${OUTPUT_DIR:-../../models}"
TYPE="${OUTTYPE:-f16}"
@@ -15,7 +30,8 @@ echo "Converted model path:: ${CONVERTED_MODEL}"
python ../../convert_hf_to_gguf.py --verbose \
${EMBEDDING_MODEL_PATH} \
--outfile ${CONVERTED_MODEL} \
--outtype ${TYPE}
--outtype ${TYPE} \
${SENTENCE_TRANSFORMERS}
echo ""
echo "The environment variable CONVERTED_EMBEDDING MODEL can be set to this path using:"

View File

@@ -5,6 +5,7 @@ set -e
# Parse command line arguments
CONVERTED_MODEL=""
PROMPTS_FILE=""
USE_POOLING=""
while [[ $# -gt 0 ]]; do
case $1 in
@@ -12,6 +13,10 @@ while [[ $# -gt 0 ]]; do
PROMPTS_FILE="$2"
shift 2
;;
--pooling)
USE_POOLING="1"
shift
;;
*)
if [ -z "$CONVERTED_MODEL" ]; then
CONVERTED_MODEL="$1"
@@ -47,4 +52,8 @@ echo $CONVERTED_MODEL
cmake --build ../../build --target llama-logits -j8
# TODO: update logits.cpp to accept a --file/-f option for the prompt
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
if [ -n "$USE_POOLING" ]; then
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode -pooling "$PROMPT"
else
../../build/bin/llama-logits -m "$CONVERTED_MODEL" -embd-mode "$PROMPT"
fi

View File

@@ -14,6 +14,8 @@ unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
parser = argparse.ArgumentParser(description='Process model with specified path')
parser.add_argument('--model-path', '-m', help='Path to the model')
parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
parser.add_argument('--use-sentence-transformers', action='store_true',
help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
args = parser.parse_args()
def read_prompt_from_file(file_path):
@@ -31,41 +33,52 @@ model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
if model_path is None:
parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Determine if we should use SentenceTransformer
use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
config = AutoConfig.from_pretrained(model_path)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
#original_sliding_window = 6
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path, config=config)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
if use_sentence_transformers:
from sentence_transformers import SentenceTransformer
print("Using SentenceTransformer to apply all numbered layers")
model = SentenceTransformer(model_path)
tokenizer = model.tokenizer
config = model[0].auto_model.config # type: ignore
else:
model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
# This can be used to override the sliding window size for manual testing. This
# can be useful to verify the sliding window attention mask in the original model
# and compare it with the converted .gguf model.
if hasattr(config, 'sliding_window'):
original_sliding_window = config.sliding_window
#original_sliding_window = 6
print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
print(f"Using unreleased model: {unreleased_model_name}")
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
class_name = f"{unreleased_model_name}Model"
print(f"Importing unreleased model module: {unreleased_module_path}")
try:
model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
model = model_class.from_pretrained(model_path, config=config)
except (ImportError, AttributeError) as e:
print(f"Failed to import or load model: {e}")
exit(1)
else:
model = AutoModel.from_pretrained(model_path, config=config)
print(f"Model class: {type(model)}")
print(f"Model file: {type(model).__module__}")
# Verify the model is using the correct sliding window
if hasattr(model.config, 'sliding_window'):
print(f"Model's sliding_window: {model.config.sliding_window}")
else:
print("Model config does not have sliding_window attribute")
if not use_sentence_transformers:
if hasattr(model.config, 'sliding_window'): # type: ignore
print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
else:
print("Model config does not have sliding_window attribute")
model_name = os.path.basename(model_path)
@@ -75,34 +88,56 @@ if args.prompts_file:
else:
texts = ["Hello world today"]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
with torch.no_grad():
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
if use_sentence_transformers:
embeddings = model.encode(texts, convert_to_numpy=True)
all_embeddings = embeddings # Shape: [batch_size, hidden_size]
# Extract embeddings for each token (matching LLAMA_POOLING_TYPE_NONE behavior)
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
else:
# Standard approach: use base model output only
encoded = tokenizer(
texts,
padding=True,
truncation=True,
return_tensors="pt"
)
# Print embeddings exactly like embedding.cpp does for LLAMA_POOLING_TYPE_NONE
n_embd = all_embeddings.shape[1]
n_embd_count = all_embeddings.shape[0]
tokens = encoded['input_ids'][0]
token_strings = tokenizer.convert_ids_to_tokens(tokens)
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
print(f"{token_id:6d} -> '{token_str}'")
print() # Empty line to match C++ output
outputs = model(**encoded)
hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
print(f"Hidden states shape: {hidden_states.shape}")
print(f"All embeddings shape: {all_embeddings.shape}")
print(f"Embedding dimension: {all_embeddings.shape[1]}")
if len(all_embeddings.shape) == 1:
n_embd = all_embeddings.shape[0] # type: ignore
n_embd_count = 1
all_embeddings = all_embeddings.reshape(1, -1)
else:
n_embd = all_embeddings.shape[1] # type: ignore
n_embd_count = all_embeddings.shape[0] # type: ignore
print()
for j in range(n_embd_count):
embedding = all_embeddings[j]
@@ -120,29 +155,23 @@ with torch.no_grad():
print() # New line
print() # Final empty line to match C++ output
print()
data_dir = Path("data")
data_dir.mkdir(exist_ok=True)
bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
# Save all embeddings flattened (matching what embedding.cpp would save if it did)
flattened_embeddings = all_embeddings.flatten()
flattened_embeddings.astype(np.float32).tofile(bin_filename)
with open(txt_filename, "w") as f:
f.write(f"# Model class: {model_name}\n")
f.write(f"# Tokens: {token_strings}\n")
f.write(f"# Shape: {all_embeddings.shape}\n")
f.write(f"# n_embd_count: {n_embd_count}, n_embd: {n_embd}\n\n")
idx = 0
for j in range(n_embd_count):
f.write(f"# Token {j} ({token_strings[j]}):\n")
for i, value in enumerate(all_embeddings[j]):
f.write(f"{j}_{i}: {value:.6f}\n")
f.write("\n")
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} tokens × {n_embd} dimensions)")
for value in all_embeddings[j]:
f.write(f"{idx}: {value:.6f}\n")
idx += 1
print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
print("")
print(f"Saved bin embeddings to: {bin_filename}")
print(f"Saved txt embeddings to: {txt_filename}")

View File

@@ -35,7 +35,11 @@ def cosine_similarity(a, b=None):
def load_embeddings_from_file(filename, n_tokens, n_embd):
embeddings = np.fromfile(filename, dtype=np.float32)
return embeddings.reshape(n_tokens, n_embd)
# Check if this is pooled (single embedding) or per-token embeddings
if len(embeddings) == n_embd:
return embeddings.reshape(1, n_embd)
else:
return embeddings.reshape(n_tokens, n_embd)
def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
np.set_printoptions(suppress=True, precision=6)
@@ -48,58 +52,83 @@ def test_single_prompt_similarity(python_emb, cpp_emb, tokens, prompt):
print(f"Embeddings shape: Python {python_emb.shape}, llama.cpp {cpp_emb.shape}")
n_tokens = len(tokens)
is_pooled = python_emb.shape[0] == 1
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
if is_pooled:
print(f"\n[Pooled Embeddings Mode - comparing single sentence embeddings]")
# 1. Direct embedding comparison for pooled embeddings
print(f"\n1. Raw Embedding Magnitude Comparison:")
py_mag = np.linalg.norm(python_emb[0])
cpp_mag = np.linalg.norm(cpp_emb[0])
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
print(f" Pooled embedding: Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 2. Cross-model similarity for pooled embeddings
print(f"\n2. Cross-Model Pooled Embedding Similarity:")
sim = cosine_similarity([python_emb[0]], [cpp_emb[0]])[0][0]
print(f" Cosine similarity: {sim:.6f}")
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
return {
'cross_model_similarities': [sim],
'similarity_matrix_diff': np.array([[0.0]]),
'max_diff': 0.0,
'mean_diff': 0.0,
'rms_diff': 0.0
}
else:
# Original per-token comparison logic
# 1. Direct embedding comparison
print(f"\n1. Raw Embedding Magnitude Comparison:")
# Check if the distance of each token embedding from the origin and compare
# if the vectors are on the same "sphere". This does not tell us about
# direction (meaning of the token embedding), just magnitude.
for i in range(n_tokens):
py_mag = np.linalg.norm(python_emb[i]) # calculate standard euclidean norm for Python embeddings
cpp_mag = np.linalg.norm(cpp_emb[i]) # calculate standard euclidean norm for llama.cpp embeddings
ratio = py_mag / cpp_mag if cpp_mag > 0 else float('inf')
print(f" Token {i} ({tokens[i]}): Python={py_mag:.3f}, llama.cpp={cpp_mag:.3f}, ratio={ratio:.3f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
# 2. Cosine similarity between tokens within each model
# Here we check the direction of token embeddings to see if the have the
# same meaning (similarity). This is done by calculating cosine similarity
# of a pair of token embeddings within each model.
print(f"\n2. Within-Model Token Similarities:")
print(" Python model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([python_emb[i]], [python_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(" llama.cpp model:")
for i in range(n_tokens):
for j in range(i+1, n_tokens):
sim = cosine_similarity([cpp_emb[i]], [cpp_emb[j]])[0][0]
print(f" {tokens[i]}{tokens[j]}: {sim:.4f}")
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
# 3. Cross-model similarity (same token position)
print(f"\n3. Cross-Model Same-Token Similarities:")
for i in range(n_tokens):
sim = cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0]
print(f" Token {i} ({tokens[i]}): {sim:.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
# 4. Similarity matrix comparison
print(f"\n4. Similarity Matrix Differences:")
py_sim_matrix = cosine_similarity(python_emb)
cpp_sim_matrix = cosine_similarity(cpp_emb)
diff_matrix = np.abs(py_sim_matrix - cpp_sim_matrix)
print(f" Max difference: {np.max(diff_matrix):.4f}")
print(f" Mean difference: {np.mean(diff_matrix):.4f}")
print(f" RMS difference: {np.sqrt(np.mean(diff_matrix**2)):.4f}")
return {
'cross_model_similarities': [cosine_similarity([python_emb[i]], [cpp_emb[i]])[0][0] for i in range(n_tokens)],
'similarity_matrix_diff': diff_matrix,
'max_diff': np.max(diff_matrix),
'mean_diff': np.mean(diff_matrix),
'rms_diff': np.sqrt(np.mean(diff_matrix**2))
}
def read_prompt_from_file(file_path):
try:

View File

@@ -4,8 +4,7 @@ project("ggml" C CXX ASM)
### GGML Version
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 0)
set(GGML_VERSION_DEV "-dev") # "-dev" for development, "" for releases
set(GGML_VERSION_PATCH 4)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
@@ -26,8 +25,8 @@ if(GIT_EXE)
)
endif()
# Build the version string with optional -dev suffix and dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}${GGML_VERSION_DEV}")
# Build the version string with optional dirty flag
set(GGML_VERSION "${GGML_VERSION_BASE}")
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
set(GGML_VERSION "${GGML_VERSION}-dirty")
endif()
@@ -210,7 +209,6 @@ option(GGML_HIP "ggml: use HIP"
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_FORCE_ROCWMMA_FATTN_GFX12 "ggml: enable rocWMMA FlashAttention on GFX12" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)
option(GGML_HIP_EXPORT_METRICS "ggml: enable kernel perf metrics output" OFF)
option(GGML_MUSA_GRAPHS "ggml: use MUSA graph, experimental, unstable" OFF)
@@ -224,6 +222,9 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_WEBGPU "ggml: use WebGPU" OFF)
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)" OFF)
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)

View File

@@ -215,6 +215,8 @@ extern "C" {
// Backend registry
//
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Backend (reg) enumeration

View File

@@ -7,26 +7,25 @@
extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 2
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint, uint32_t device);
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint, uint32_t device);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
size_t n_threads, size_t n_devices,
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);
#ifdef __cplusplus
}

View File

@@ -237,6 +237,8 @@
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
// TODO: convert to enum https://github.com/ggml-org/llama.cpp/pull/16187#discussion_r2388538726
#define GGML_ROPE_TYPE_NORMAL 0
#define GGML_ROPE_TYPE_NEOX 2
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
@@ -574,6 +576,7 @@ extern "C" {
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_EXP,
GGML_UNARY_OP_GELU_ERF,
GGML_UNARY_OP_XIELU,
GGML_UNARY_OP_COUNT,
};
@@ -1148,6 +1151,18 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
// xIELU activation function
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
// that constrain the positive and negative source alpha values respectively
GGML_API struct ggml_tensor * ggml_xielu(
struct ggml_context * ctx,
struct ggml_tensor * a,
float alpha_n,
float alpha_p,
float beta,
float eps);
// gated linear unit ops
// A: n columns, r rows,
// result is n / 2 columns, r rows,
@@ -1615,6 +1630,13 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API void ggml_soft_max_add_sinks(
struct ggml_tensor * a,
struct ggml_tensor * sinks);

View File

@@ -392,12 +392,8 @@ static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
free(alloc);
}
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
size_t max_size = 0;
for (int i = 0; i < alloc->n_chunks; i++) {
max_size += alloc->chunks[i]->max_size;
}
return max_size;
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc, int chunk) {
return chunk < alloc->n_chunks ? alloc->chunks[chunk]->max_size : 0;
}
@@ -417,10 +413,8 @@ static void ggml_vbuffer_free(struct vbuffer * buf) {
free(buf);
}
static int ggml_vbuffer_n_chunks(struct vbuffer * buf) {
int n = 0;
while (n < GGML_VBUFFER_MAX_CHUNKS && buf->chunks[n]) n++;
return n;
static size_t ggml_vbuffer_chunk_size(struct vbuffer * buf, int chunk) {
return buf->chunks[chunk] ? ggml_backend_buffer_get_size(buf->chunks[chunk]) : 0;
}
static size_t ggml_vbuffer_size(struct vbuffer * buf) {
@@ -885,12 +879,20 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
}
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
if (new_size > cur_size || galloc->buffers[i] == NULL) {
bool realloc = galloc->buffers[i] == NULL;
size_t new_size = 0;
for (int c = 0; c < galloc->buf_tallocs[i]->n_chunks; c++) {
size_t cur_chunk_size = galloc->buffers[i] ? ggml_vbuffer_chunk_size(galloc->buffers[i], c) : 0;
size_t new_chunk_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i], c);
new_size += new_chunk_size;
if (new_chunk_size > cur_chunk_size) {
realloc = true;
}
}
if (realloc) {
#ifndef NDEBUG
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif

View File

@@ -209,9 +209,6 @@ extern "C" {
void * context;
};
// Internal backend registry API
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
// Add backend dynamic loading support to the backend
// Initialize the backend

View File

@@ -135,6 +135,10 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
return p;
}
static const char * dl_error() {
return "";
}
#else
using dl_handle = void;
@@ -155,6 +159,11 @@ static void * dl_get_sym(dl_handle * handle, const char * name) {
return dlsym(handle, name);
}
static const char * dl_error() {
const char *rslt = dlerror();
return rslt != nullptr ? rslt : "";
}
#endif
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
@@ -240,7 +249,7 @@ struct ggml_backend_registry {
dl_handle_ptr handle { dl_load_library(path) };
if (!handle) {
if (!silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(path).c_str());
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(path).c_str(), dl_error());
}
return nullptr;
}
@@ -530,7 +539,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (filename.native().find(file_prefix) == 0 && ext == file_extension) {
dl_handle_ptr handle { dl_load_library(entry) };
if (!handle && !silent) {
GGML_LOG_ERROR("%s: failed to load %s\n", __func__, path_str(entry.path()).c_str());
GGML_LOG_ERROR("%s: failed to load %s: %s\n", __func__, path_str(entry.path()).c_str(), dl_error());
}
if (handle) {
auto score_fn = (ggml_backend_score_t) dl_get_sym(handle.get(), "ggml_backend_score");

View File

@@ -74,7 +74,7 @@ if (BLAS_FOUND)
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
if ("${BLAS_INCLUDE_DIRS}" MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
add_compile_definitions(GGML_BLAS_USE_MKL)
endif()

View File

@@ -341,11 +341,18 @@ private:
#ifdef USE_ACL_GRAPH
struct ggml_graph_node_properties {
// dst tensor
void * node_address;
ggml_op node_op;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
// src tensor
void * src_address[GGML_MAX_SRC];
int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS];
size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS];
// op
ggml_op node_op;
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
};

View File

@@ -2186,7 +2186,15 @@ static void add_lru_matched_graph_node_properties(
std::copy_n(node->nb, GGML_MAX_DIMS, prop.nb);
for (int src = 0; src < GGML_MAX_SRC; ++src) {
prop.src_address[src] = node->src[src] ? node->src[src]->data : nullptr;
if (node->src[src]) {
prop.src_address[src] = node->src[src]->data;
std::copy_n(node->src[src]->ne, GGML_MAX_DIMS, prop.src_ne[src]);
std::copy_n(node->src[src]->nb, GGML_MAX_DIMS, prop.src_nb[src]);
} else {
prop.src_address[src] = nullptr;
std::fill_n(prop.src_ne[src], GGML_MAX_DIMS, 0);
std::fill_n(prop.src_nb[src], GGML_MAX_DIMS, 0);
}
}
memcpy(prop.op_params, node->op_params, GGML_MAX_OP_PARAMS);
@@ -2206,14 +2214,18 @@ static void add_lru_matched_graph_node_properties(
* @param graph_node_properties The stored properties of a CANN graph node.
* @return true if all fields match (excluding GGML_OP_VIEW); false otherwise.
*/
static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
static bool ggml_graph_node_has_matching_properties(
ggml_tensor * node,
ggml_graph_node_properties * graph_node_properties) {
if (node->data != graph_node_properties->node_address &&
node->op != GGML_OP_VIEW) {
node->op != GGML_OP_VIEW) {
return false;
}
if (node->op != graph_node_properties->node_op) {
return false;
}
for (int i = 0; i < GGML_MAX_DIMS; i++) {
if (node->ne[i] != graph_node_properties->ne[i]) {
return false;
@@ -2222,17 +2234,31 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
return false;
}
}
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (node->src[i] &&
node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_VIEW
) {
return false;
if (node->src[i]) {
if (node->src[i]->data != graph_node_properties->src_address[i] &&
node->op != GGML_OP_VIEW) {
return false;
}
for (int d = 0; d < GGML_MAX_DIMS; d++) {
if (node->src[i]->ne[d] != graph_node_properties->src_ne[i][d]) {
return false;
}
if (node->src[i]->nb[d] != graph_node_properties->src_nb[i][d]) {
return false;
}
}
} else {
if (graph_node_properties->src_address[i] != nullptr) {
return false;
}
}
}
if (node->op == GGML_OP_SCALE &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
if (node->op == GGML_OP_SCALE || node->op == GGML_OP_UNARY || node->op == GGML_OP_GLU) {
return memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) == 0;
}
return true;
}

View File

@@ -439,6 +439,15 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/arch/riscv/quants.c
ggml-cpu/arch/riscv/repack.cpp
)
if (GGML_CPU_RISCV64_SPACEMIT)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_RISCV64_SPACEMIT ${RISCV64_SPACEMIT_IME_SPEC})
list(APPEND GGML_CPU_SOURCES
ggml-cpu/spacemit/ime.cpp
ggml-cpu/spacemit/ime.h
ggml-cpu/spacemit/ime1_kernels.cpp
ggml-cpu/spacemit/ime_kernels.h
)
endif()
set(MARCH_STR "rv64gc")
if (GGML_RV_ZFH)
string(APPEND MARCH_STR "_zfh")
@@ -504,9 +513,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.13.0")
set(KLEIDIAI_COMMIT_TAG "v1.14.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "d82a8de939d9814621a5ba23907bdac1")
set(KLEIDIAI_ARCHIVE_MD5 "45e110675d93f99f82c23a1afcca76bc")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
@@ -583,6 +592,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_fp32_bf16p_bf16p/kai_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa_asm.S
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_pack_bf16p2vlx2_f32_sme.c
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme.c
${KLEIDIAI_SRC}/kai/kai_common_sme_asm.S)

View File

@@ -149,6 +149,7 @@ class extra_buffer_type : ggml::cpu::extra_buffer_type {
if (op->op == GGML_OP_MUL_MAT && is_contiguous_2d(op->src[0]) && // src0 must be contiguous
is_contiguous_2d(op->src[1]) && // src1 must be contiguous
op->src[0]->buffer && op->src[0]->buffer->buft == ggml_backend_amx_buffer_type() &&
op->src[0]->ne[0] % (TILE_K * 2 * 32) == 0 && // TODO: not sure if correct (https://github.com/ggml-org/llama.cpp/pull/16315)
op->ne[0] % (TILE_N * 2) == 0 && // out_features is 32x
(qtype_has_amx_kernels(op->src[0]->type) || (op->src[0]->type == GGML_TYPE_F16))) {
// src1 must be host buffer

View File

@@ -2187,6 +2187,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
case GGML_UNARY_OP_GELU_ERF:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_XIELU:
{
n_tasks = n_threads;
} break;

View File

@@ -18,6 +18,10 @@
# include "kleidiai/kleidiai.h"
#endif
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
# include "spacemit/ime.h"
#endif
#if defined(_WIN32)
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
@@ -45,6 +49,12 @@ std::vector<ggml_backend_buffer_type_t> & ggml_backend_cpu_get_extra_buffer_type
}
#endif
#ifdef GGML_USE_CPU_RISCV64_SPACEMIT
if (ggml_backend_cpu_riscv64_spacemit_buffer_type()) {
bufts.push_back(ggml_backend_cpu_riscv64_spacemit_buffer_type());
}
#endif
#ifdef GGML_USE_CPU_KLEIDIAI
if (ggml_backend_cpu_kleidiai_buffer_type()) {
bufts.push_back(ggml_backend_cpu_kleidiai_buffer_type());

View File

@@ -29,6 +29,108 @@
#define NELEMS(x) sizeof(x) / sizeof(*x)
template<size_t(*Fn)(size_t,size_t,size_t)>
static inline size_t kernel_offs_fn3(size_t a, size_t b, size_t c) {
return Fn(a, b, c);
}
template<size_t(*Fn)(size_t,size_t)>
static inline size_t kernel_offs_fn2(size_t a, size_t b, size_t) {
return Fn(a, b);
}
template<void(*Fn)(size_t,size_t,size_t,size_t,const void*,const void*,float*,size_t,size_t,float,float)>
static inline void kernel_run_fn11(size_t m, size_t n, size_t k, size_t bl,
const void* lhs, const void* rhs, void* dst,
size_t dst_stride_row, size_t dst_stride_col,
float clamp_min, float clamp_max) {
Fn(m, n, k, bl, lhs, rhs, static_cast<float*>(dst), dst_stride_row, dst_stride_col, clamp_min, clamp_max);
}
template<void(*Fn)(size_t,size_t,size_t,const void*,const void*,void*,size_t,size_t,float,float)>
static inline void kernel_run_fn10(size_t m, size_t n, size_t k, size_t /*bl*/,
const void* lhs, const void* rhs, void* dst,
size_t dst_stride_row, size_t dst_stride_col,
float clamp_min, float clamp_max) {
Fn(m, n, k, lhs, rhs, dst, dst_stride_row, dst_stride_col, clamp_min, clamp_max);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t)>
static inline size_t lhs_ps_fn6(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr) {
return Fn(m, k, bl, mr, kr, sr);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t)>
static inline size_t lhs_ps_fn5(size_t m, size_t k, size_t /*bl*/, size_t mr, size_t kr, size_t sr) {
return Fn(m, k, mr, kr, sr);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t)>
static inline size_t lhs_offs_fn6(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr) {
return Fn(m_idx, k, bl, mr, kr, sr);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t)>
static inline size_t lhs_offs_fn5(size_t m_idx, size_t k, size_t /*bl*/, size_t mr, size_t kr, size_t sr) {
return Fn(m_idx, k, mr, kr, sr);
}
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,size_t,const float*,size_t,void*)>
static inline void lhs_pack_float_fn10(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr,
size_t m_idx_start, const void* lhs, size_t lhs_stride, void* lhs_packed) {
Fn(m, k, bl, mr, kr, sr, m_idx_start, static_cast<const float*>(lhs), lhs_stride, lhs_packed);
}
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,size_t,const void*,size_t,void*)>
static inline void lhs_pack_void_fn10(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr,
size_t m_idx_start, const void* lhs, size_t lhs_stride, void* lhs_packed) {
Fn(m, k, bl, mr, kr, sr, m_idx_start, lhs, lhs_stride, lhs_packed);
}
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,const void*,size_t,void*)>
static inline void lhs_pack_void_fn9(size_t m, size_t k, size_t /*bl*/, size_t mr, size_t kr, size_t sr,
size_t m_idx_start, const void* lhs, size_t lhs_stride, void* lhs_packed) {
Fn(m, k, mr, kr, sr, m_idx_start, lhs, lhs_stride, lhs_packed);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t,size_t)>
static inline size_t rhs_ps_fn5(size_t n, size_t k, size_t nr, size_t kr, size_t bl) {
return Fn(n, k, nr, kr, bl);
}
template<size_t(*Fn)(size_t,size_t)>
static inline size_t rhs_ps_fn2(size_t n, size_t k, size_t /*nr*/, size_t /*kr*/, size_t /*bl*/) {
return Fn(n, k);
}
template<size_t(*Fn)(size_t,size_t,size_t,size_t)>
static inline size_t rhs_stride_fn4(size_t k, size_t nr, size_t kr, size_t bl) {
return Fn(k, nr, kr, bl);
}
template<size_t(*Fn)(size_t)>
static inline size_t rhs_stride_fn1(size_t k, size_t /*nr*/, size_t /*kr*/, size_t /*bl*/) {
return Fn(k);
}
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,size_t,const uint8_t*,const float*,void*,size_t,const struct kai_rhs_pack_qs4cxs1s0_param*)>
static inline void rhs_pack_fn12(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl,
size_t /*rhs_stride*/, const void* rhs, const void* bias, const void* /*scale*/,
void* rhs_packed, size_t extra_bytes, const void* params) {
Fn(num_groups, n, k, nr, kr, sr, bl,
static_cast<const uint8_t*>(rhs),
static_cast<const float*>(bias),
rhs_packed, extra_bytes,
static_cast<const kai_rhs_pack_qs4cxs1s0_param*>(params));
}
template<void(*Fn)(size_t,size_t,size_t,size_t,size_t,size_t,size_t,const void*,const void*,const void*,void*,size_t,const void*)>
static inline void rhs_pack_fn13(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t /*bl*/,
size_t rhs_stride, const void* rhs, const void* bias, const void* scale,
void* rhs_packed, size_t extra_bytes, const void* params) {
Fn(num_groups, n, k, nr, kr, sr, rhs_stride, rhs, bias, scale, rhs_packed, extra_bytes, params);
}
static const size_t INT4_PER_BYTE = 2;
static const size_t INT4_BITS = 4;
static const int Q4_0_ZERO_POINT = 8;
@@ -122,17 +224,18 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32_neon>,
},
/* SME GEMV */
/* .kern_info = */ {
@@ -142,23 +245,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot>,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32_neon>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .to_float = */ dequantize_row_qsi4c32ps1s0scalef16,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
/* .to_float = */ dequantize_row_qsi4c32ps1s0scalef16,
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon>,
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon>,
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon>,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -174,17 +278,17 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset_ex = */ &kernel_offs_fn2<kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn2<kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa>,
/* .run_kernel_ex = */ &kernel_run_fn10<kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme>,
/* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme>,
/* .pack_func_ex = */ &lhs_pack_void_fn9<kai_run_lhs_pack_bf16p2vlx2_f32_sme>,
},
/* SME GEMV */
/* .kern_info = */ {
@@ -194,23 +298,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .run_kernel = */ kai_run_matmul_clamp_f32_bf16p2vlx2_bf16p2vlx2_2vlx2vl_sme2_mopa,
/* .get_lhs_offset_ex = */ nullptr,
/* .get_rhs_packed_offset_ex = */ nullptr,
/* .run_kernel_ex = */ nullptr,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme,
/* .pack_func = */ kai_run_lhs_pack_bf16p2vlx2_f32_sme,
/* .get_packed_offset_ex = */ &lhs_offs_fn5<kai_get_lhs_packed_offset_lhs_pack_bf16p2vlx2_f32_sme>,
/* .packed_size_ex = */ &lhs_ps_fn5<kai_get_lhs_packed_size_lhs_pack_bf16p2vlx2_f32_sme>,
/* .pack_func_ex = */ &lhs_pack_void_fn9<kai_run_lhs_pack_bf16p2vlx2_f32_sme>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .packed_stride = */ NULL,
/* .pack_func = */ kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme,
/* .to_float = */ NULL,
/* .packed_stride = */ nullptr,
/* .to_float = */ nullptr,
/* .packed_size_ex = */ &rhs_ps_fn2<kai_get_rhs_packed_size_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme>,
/* .packed_stride_ex = */ &rhs_stride_fn1<kai_get_rhs_packed_stride_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme>,
/* .pack_func_ex = */ &rhs_pack_fn13<kai_run_rhs_pack_kxn_bf16p2vlx2b_f32_x32_sme>,
},
/* .required_cpu = */ CPU_FEATURE_SME,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -229,17 +334,17 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
@@ -249,23 +354,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -283,17 +389,17 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
},
/* i8mm GEMV */
/* .kern_info = */ {
@@ -303,23 +409,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -338,17 +445,17 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p4x8sb_f32_neon>,
},
/* i8mm GEMV */
/* .kern_info = */ {
@@ -358,23 +465,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod>,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD | CPU_FEATURE_I8MM,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -392,17 +500,17 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod>,
},
/* .gemm_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* DOTPROD GEMV */
/* .kern_info = */ {
@@ -412,23 +520,24 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_nr = */ kai_get_nr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_kr = */ kai_get_kr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_sr = */ kai_get_sr_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_lhs_offset = */ kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_rhs_packed_offset = */ kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_dst_offset = */ kai_get_dst_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_dst_size = */ kai_get_dst_size_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod,
/* .get_lhs_offset_ex = */ &kernel_offs_fn3<kai_get_lhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
/* .get_rhs_packed_offset_ex = */ &kernel_offs_fn3<kai_get_rhs_packed_offset_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
/* .run_kernel_ex = */ &kernel_run_fn11<kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod>,
},
/* .gemv_lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset_ex = */ &lhs_offs_fn6<kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32>,
/* .packed_size_ex = */ &lhs_ps_fn6<kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32>,
/* .pack_func_ex = */ &lhs_pack_float_fn10<kai_run_lhs_quant_pack_qsi8d32p_f32>,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .pack_func = */ kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_stride = */ kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
/* .to_float = */ dequantize_row_qsi4c32pscalef16,
/* .packed_size_ex = */ &rhs_ps_fn5<kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .packed_stride_ex = */ &rhs_stride_fn4<kai_get_rhs_packed_stride_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
/* .pack_func_ex = */ &rhs_pack_fn12<kai_run_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0>,
},
/* .required_cpu = */ CPU_FEATURE_DOTPROD,
/* .lhs_type = */ GGML_TYPE_F32,
@@ -443,6 +552,7 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
ggml_kleidiai_kernels * kernel = nullptr;
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
@@ -452,6 +562,7 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
break;
}
}
#endif
}
return kernel;
@@ -460,12 +571,14 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features) {
ggml_kleidiai_kernels * kernels = nullptr;
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) {
kernels = &gemm_gemv_kernels[i];
break;
}
}
#endif
return kernels;
}

View File

@@ -4,8 +4,6 @@
#pragma once
#include <functional>
#include <variant>
#include "ggml.h"
enum cpu_feature {
@@ -15,6 +13,7 @@ enum cpu_feature {
CPU_FEATURE_SVE = 4,
CPU_FEATURE_SME = 8
};
inline cpu_feature& operator|=(cpu_feature& lhs, cpu_feature rhs) {
lhs = static_cast<cpu_feature>(lhs | rhs);
return lhs;
@@ -30,63 +29,52 @@ struct kernel_info {
size_t (*get_nr)(void);
size_t (*get_kr)(void);
size_t (*get_sr)(void);
std::variant<
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
std::function<size_t(size_t m_idx, size_t k)>
> get_lhs_offset;
std::variant<
std::function<size_t(size_t n_idx, size_t k, size_t bl)>,
std::function<size_t(size_t n_idx, size_t k)>
> get_rhs_packed_offset;
size_t (*get_dst_offset)(size_t m_idx, size_t n_idx, size_t stride);
size_t (*get_dst_size)(size_t m, size_t n);
std::variant<
std::function<void(size_t m, size_t n, size_t k, size_t bl, const void* lhs_packed, const void* rhs_packed,
float* dst, size_t dst_stride_row, size_t dst_stride_col, float scalar_min, float scalar_max)>,
std::function<void(size_t m, size_t n, size_t k, const void* lhs_packed, const void* rhs_packed, void* dst, size_t dst_stride_row,
size_t dst_stride_col, float clamp_min, float clamp_max)>
> run_kernel;
size_t (*get_lhs_offset_ex)(size_t m_idx, size_t k, size_t bl);
size_t (*get_rhs_packed_offset_ex)(size_t n_idx, size_t k, size_t bl);
void (*run_kernel_ex)(
size_t m, size_t n, size_t k, size_t bl,
const void* lhs_packed, const void* rhs_packed,
void* dst, size_t dst_stride_row, size_t dst_stride_col,
float clamp_min, float clamp_max);
};
struct lhs_packing_info {
size_t (*get_offset)(size_t m_idx, size_t lhs_stride);
std::variant<
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
std::function<size_t(size_t m_idx, size_t k, size_t mr, size_t kr, size_t sr)>
> get_packed_offset;
std::variant<
std::function<size_t(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr)>,
std::function<size_t(size_t m, size_t k, size_t mr, size_t kr, size_t sr)>
> packed_size;
std::variant<
std::function<void(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
size_t lhs_stride, void* lhs_packed)>,
std::function<void(size_t m, size_t k, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const void* lhs, size_t lhs_stride,
void* lhs_packed)>
> pack_func;
size_t (*get_packed_offset_ex)(size_t m_idx, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
size_t (*packed_size_ex)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
void (*pack_func_ex)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr,
size_t m_idx_start, const void * lhs, size_t lhs_stride, void * lhs_packed);
};
struct rhs_packing_info {
std::variant<
std::function<size_t(size_t n, size_t k, size_t nr, size_t kr, size_t bl)>,
std::function<size_t(size_t n, size_t k)>
> packed_size;
size_t (*packed_stride)(size_t k, size_t nr, size_t kr, size_t bl);
std::variant<
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl, const uint8_t* rhs,
const float* bias, void* rhs_packed, size_t extra_bytes, const struct kai_rhs_pack_qs4cxs1s0_param* params)>,
std::function<void(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t rhs_stride, const void* rhs,
const void* bias, const void* scale, void* rhs_packed, size_t extra_bytes, const void* params)>
> pack_func;
void (*to_float)(const void *packed_data, int32_t row_idx, int64_t nc, float *out, size_t nr_pack, size_t packed_row_stride,
size_t kr, size_t bl, size_t num_bytes_multiplier);
void (*to_float)(const void *packed_data, int32_t row_idx, int64_t nc, float *out,
size_t nr_pack, size_t packed_row_stride, size_t kr, size_t bl,
size_t num_bytes_multiplier);
size_t (*packed_size_ex)(size_t n, size_t k, size_t nr, size_t kr, size_t bl);
size_t (*packed_stride_ex)(size_t k, size_t nr, size_t kr, size_t bl);
void (*pack_func_ex)(size_t num_groups, size_t n, size_t k, size_t nr, size_t kr, size_t sr, size_t bl,
size_t rhs_stride, const void * rhs, const void * bias, const void * scale, void * rhs_packed, size_t extra_bytes, const void * params);
};
struct ggml_kleidiai_kernels {
kernel_info gemm;
kernel_info gemm;
lhs_packing_info gemm_lhs_info;
kernel_info gemv;
kernel_info gemv;
lhs_packing_info gemv_lhs_info;
rhs_packing_info rhs_info;

View File

@@ -8,6 +8,7 @@
#include <stdexcept>
#include <stdint.h>
#include <string.h>
#include <string>
#if defined(__linux__)
#include <asm/hwcap.h>
#include <sys/auxv.h>
@@ -87,17 +88,6 @@ static inline int64_t ggml_ne(const ggml_tensor * tensor, int dim) {
return tensor->ne[dim];
}
template<typename Ret, typename Variant, typename... Args>
static Ret variant_call(const Variant & var, Args&&... args) {
return std::visit([&](auto&& func) -> Ret {
if constexpr (std::is_invocable_r_v<Ret, decltype(func), Args...>) {
return func(std::forward<Args>(args)...);
} else {
throw std::runtime_error("Invalid function type in variant_call");
}
}, var);
}
namespace ggml::cpu::kleidiai {
static size_t round_down(size_t x, size_t y) {
@@ -122,7 +112,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
return false;
}
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, op);
GGML_ASSERT(kernels);
if (!kernels) {
return false;
}
bool is_gemv = op->src[1]->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
@@ -136,19 +128,23 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
if (kernels->rhs_type == GGML_TYPE_Q4_0) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, QK4_0, mr, kr, sr);
if (!lhs_info->packed_size_ex) return false;
size = lhs_info->packed_size_ex(m, k, QK4_0, mr, kr, sr);
} else if (kernels->rhs_type == GGML_TYPE_F16) {
size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr) +
variant_call<size_t>(kernels->rhs_info.packed_size, n, k) +
if (!lhs_info->packed_size_ex || !kernels->rhs_info.packed_size_ex) return false;
const int64_t lhs_batch_size0 = op->src[1]->ne[2];
const int64_t rhs_batch_size0 = op->src[0]->ne[2];
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
size = lhs_info->packed_size_ex(m * r, k, 0, mr, kr, sr) +
kernels->rhs_info.packed_size_ex(n, k, kernel->get_nr(), kernel->get_kr(), 0) +
k * n * sizeof(float) + n * sizeof(float);
} else {
GGML_ASSERT(false);
return false;
}
return true;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * dst) override {
if (dst->op == GGML_OP_MUL_MAT) {
if (dst->src[0]->type == GGML_TYPE_Q4_0) {
@@ -165,45 +161,52 @@ class tensor_traits : public ggml::cpu::tensor_traits {
}
bool compute_forward_fp16(ggml_compute_params * params, struct ggml_tensor * dst) {
static std::atomic_flag first_to_arrive = ATOMIC_FLAG_INIT;
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
if (!kernels) {
return false;
}
bool is_gemv = src1->ne[1] == 1;
const bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
if (!kernels->rhs_info.pack_func_ex ||
!kernel->get_lhs_offset_ex || !kernel->get_rhs_packed_offset_ex || !kernel->run_kernel_ex) {
return false;
}
const int nth = params->nth;
const int ith = params->ith;
const int64_t lhs_batch_size0 = ne12;
const int64_t rhs_batch_size0 = ne02;
const int64_t batch_size = rhs_batch_size0;
const int64_t batch_size = lhs_batch_size0;
GGML_ASSERT(rhs_batch_size0 > 0);
GGML_ASSERT(lhs_batch_size0 % rhs_batch_size0 == 0);
const int64_t r = lhs_batch_size0 / rhs_batch_size0;
const int64_t m = ne11 * r;
const int64_t n = ne01;
const int64_t k = ne00;
const int64_t m_group = ne11;
const int64_t m = m_group;
const int64_t n = ne01;
const int64_t k = ne00;
const size_t lhs_stride = src1->nb[1];
const size_t rhs_stride = src0->nb[1];
const size_t dst_stride = dst->nb[1];
const int64_t mr = static_cast<int64_t>(kernel->get_mr());
const int64_t nr = static_cast<int64_t>(kernel->get_nr());
const int64_t kr = static_cast<int64_t>(kernel->get_kr());
const int64_t sr = static_cast<int64_t>(kernel->get_sr());
const int64_t mr = (int64_t) kernel->get_mr();
const int64_t nr = (int64_t) kernel->get_nr();
const int64_t kr = (int64_t) kernel->get_kr();
const int64_t sr = (int64_t) kernel->get_sr();
const size_t lhs_packed_size = variant_call<size_t>(lhs_info->packed_size, m, k, mr, kr, sr);
const size_t rhs_packed_size = variant_call<size_t>(kernels->rhs_info.packed_size, n, k);
const size_t lhs_packed_size = lhs_info->packed_size_ex(m, k, 0, mr, kr, sr);
const size_t rhs_packed_size = kernels->rhs_info.packed_size_ex(n, k, nr, kr, 0);
const size_t kxn_size = k * n * sizeof(float);
const size_t bias_size = n * sizeof(float);
@@ -216,82 +219,91 @@ class tensor_traits : public ggml::cpu::tensor_traits {
uint8_t * bias = rhs_kxn + kxn_size;
for (int64_t batch_idx = 0; batch_idx < batch_size; ++batch_idx) {
const uint8_t * lhs_batch = static_cast<const uint8_t *>(src1->data) + batch_idx * m * lhs_stride;
const uint8_t * rhs_batch = static_cast<const uint8_t *>(src0->data) + batch_idx * n * rhs_stride;
uint8_t * dst_batch = static_cast<uint8_t *>(dst->data) + batch_idx * m * dst_stride;
const int64_t rhs_batch_idx = batch_idx / r;
const uint8_t * rhs_batch_base = static_cast<const uint8_t *>(src0->data) + rhs_batch_idx * src0->nb[2];
uint8_t * dst_batch_base = static_cast<uint8_t *>(dst->data) + batch_idx * dst->nb[2];
// LHS packing
// LHS packing (threaded over m, honoring mr alignment and KV groups)
{
const int64_t m_roundup_mr = kai_roundup(m, mr);
const int64_t num_threads = KAI_MIN(m_roundup_mr / mr, nth);
if (ith < num_threads) {
const int64_t num_m_per_thread0 = round_down(m_roundup_mr / num_threads, mr);
const int64_t num_m_per_thread0 = round_down((size_t)(m_roundup_mr / num_threads), (size_t)mr);
const int64_t num_m_per_threadN_1 = m - (num_threads - 1) * num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t num_m_per_thread = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const int64_t m_start = ith * num_m_per_thread0;
const int64_t m_count = (ith == num_threads - 1) ? num_m_per_threadN_1 : num_m_per_thread0;
const size_t lhs_offset = variant_call<size_t>(kernels->gemm.get_lhs_offset, m_start, lhs_stride);
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, mr, kr, sr);
// Base packed offset (aligned) and per-row stride in bytes
const size_t base_packed_off = lhs_info->get_packed_offset_ex(m_start, k, 0, mr, kr, sr);
const size_t next_block_off = lhs_info->get_packed_offset_ex(m_start + mr, k, 0, mr, kr, sr);
const size_t row_stride_bytes = (next_block_off - base_packed_off) / (size_t)mr;
const void * src_ptr = static_cast<const uint8_t *>(lhs_batch) + lhs_offset;
void * dst_ptr = static_cast<uint8_t *>(lhs_packed) + lhs_packed_offset;
int64_t remaining = m_count;
int64_t cur = m_start;
variant_call<void>(lhs_info->pack_func, num_m_per_thread, k, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
while (remaining > 0) {
const int64_t row_in_group = cur;
const int64_t avail = m_group - row_in_group;
const int64_t take = std::min(avail, remaining);
const uint8_t * lhs_batch_base = static_cast<const uint8_t *>(src1->data) + batch_idx * src1->nb[2];
const void * src_ptr = lhs_batch_base + (size_t)row_in_group * lhs_stride;
const size_t dst_off = base_packed_off + (size_t)(cur - m_start) * row_stride_bytes;
void * dst_ptr = lhs_packed + dst_off;
lhs_info->pack_func_ex(take, k, 0, mr, kr, sr, 0, src_ptr, lhs_stride, dst_ptr);
cur += take;
remaining -= take;
}
}
}
// RHS packing
if (first_to_arrive.test_and_set(std::memory_order_acquire) == false) {
// First thread to reach this point handles RHS packing
memset(bias, 0, n * sizeof(float));
transpose_f32kxn_f16nxk(n, k, reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch), rhs_stride);
// RHS packing (single thread), then synchronize
if (ith == 0) {
memset(bias, 0, (size_t)n * sizeof(float));
transpose_f32kxn_f16nxk((size_t)n, (size_t)k,
reinterpret_cast<float *>(rhs_kxn),
reinterpret_cast<const uint16_t *>(rhs_batch_base),
rhs_stride);
variant_call<void>(kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, n * sizeof(float),
kernels->rhs_info.pack_func_ex(1, n, k, nr, kr, sr, 0, n * sizeof(float),
rhs_kxn, bias, nullptr, rhs_packed, 0, nullptr);
}
ggml_barrier(params->threadpool);
first_to_arrive.clear(std::memory_order_release);
// Perform the matmul
// Matmul (threaded over n)
{
const int64_t m_to_process = m;
const int64_t m_start = 0;
const int64_t n_step = static_cast<int64_t>(kernel->get_n_step());
int64_t num_threads = KAI_MIN(n / n_step, nth);
if (num_threads <= 0) {
num_threads = 1;
const int64_t n_step = (int64_t) kernel->get_n_step();
int64_t num_threads_n = KAI_MIN(n / n_step, nth);
if (num_threads_n <= 0) {
num_threads_n = 1;
}
if (ith < num_threads) {
const int64_t num_n_per_thread0 = round_down(n / num_threads, n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads - 1) * num_n_per_thread0;
if (ith < num_threads_n) {
const int64_t num_n_per_thread0 = round_down((size_t)(n / num_threads_n), (size_t)n_step);
const int64_t num_n_per_threadN_1 = n - (num_threads_n - 1) * num_n_per_thread0;
const int64_t n_start = ith * num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const int64_t n_to_process = (ith == num_threads_n - 1) ? num_n_per_threadN_1 : num_n_per_thread0;
const size_t lhs_packed_offset = variant_call<size_t>(kernel->get_lhs_offset, m_start, k);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k);
const size_t dst_offset = kernel->get_dst_offset(m_start, n_start, dst_stride);
// LHS packed base at row 0 (consistent with packing above)
const size_t lhs_packed_offset0 = lhs_info->get_packed_offset_ex(0, k, 0, mr, kr, sr);
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset_ex(n_start, k, 0);
const size_t dst_offset = kernel->get_dst_offset((size_t)0, (size_t)n_start, dst_stride);
const void * lhs_ptr = lhs_packed + lhs_packed_offset;
const void * lhs_ptr = lhs_packed + lhs_packed_offset0;
const void * rhs_ptr = rhs_packed + rhs_packed_offset;
float * dst_ptr = reinterpret_cast<float *>(dst_batch + dst_offset);
float * dst_ptr = reinterpret_cast<float *>(dst_batch_base + dst_offset);
variant_call<void>(kernel->run_kernel, m_to_process, n_to_process, k, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
kernel->run_kernel_ex(m, n_to_process, k, 0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride, sizeof(float), -FLT_MAX, FLT_MAX);
}
}
if (batch_idx != batch_size - 1) {
// This barrier is necessary when the batch size is larger than 1. While processing a batch,
// the work data buffer (params->wdata) is used as temporary storage which means that only
// a single batch can be processed at any given time. No barrier is needed for the last
// batch since GGML inserts a barrier between the execution of every operator.
ggml_barrier(params->threadpool);
}
}
@@ -308,13 +320,19 @@ class tensor_traits : public ggml::cpu::tensor_traits {
GGML_TENSOR_BINARY_OP_LOCALS
ggml_kleidiai_kernels *kernels = ggml_kleidiai_select_kernels(ctx.features, dst);
GGML_ASSERT(kernels);
if (!kernels) {
return false;
}
bool is_gemv = src1->ne[1] == 1;
kernel_info * kernel = is_gemv ? &kernels->gemv : &kernels->gemm;
lhs_packing_info * lhs_info = is_gemv ? &kernels->gemv_lhs_info : &kernels->gemm_lhs_info;
GGML_ASSERT(kernel);
if (!lhs_info->get_packed_offset_ex || !lhs_info->pack_func_ex ||
!kernel->get_rhs_packed_offset_ex || !kernel->run_kernel_ex || !kernel->get_dst_offset) {
return false;
}
const int ith = params->ith;
const int nth_raw = params->nth;
@@ -356,25 +374,26 @@ class tensor_traits : public ggml::cpu::tensor_traits {
// Transform LHS
const size_t src_stride = src1->nb[1];
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, m_start, k, QK4_0, mr, kr, sr);
const size_t lhs_packed_offset = lhs_info->get_packed_offset_ex(m_start, k, QK4_0, mr, kr, sr);
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
variant_call<void>(lhs_info->pack_func, m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
// Pack this thread's chunk with m_idx_start = 0 and per-thread output pointer
lhs_info->pack_func_ex(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
}
ggml_barrier(params->threadpool);
// Perform the operation
const size_t dst_stride = dst->nb[1];
const size_t lhs_packed_offset = variant_call<size_t>(lhs_info->get_packed_offset, 0, k, QK4_0, mr, kr, sr);
const size_t rhs_packed_offset = variant_call<size_t>(kernel->get_rhs_packed_offset, n_start, k, QK4_0);
const size_t lhs_packed_offset = lhs_info->get_packed_offset_ex(0, k, QK4_0, mr, kr, sr);
const size_t rhs_packed_offset = kernel->get_rhs_packed_offset_ex(n_start, k, QK4_0);
const size_t dst_offset = kernel->get_dst_offset(0, n_start, dst_stride);
const void * rhs_ptr = static_cast<const void *>(rhs_packed + rhs_packed_offset);
const void* lhs_ptr = (const void*)((const char *)lhs_packed + lhs_packed_offset);
float *dst_ptr = reinterpret_cast<float *>(static_cast<uint8_t *>(dst->data) + dst_offset);
if (n_to_process > 0) {
variant_call<void>(kernel->run_kernel, m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
kernel->run_kernel_ex(m, n_to_process, k, QK4_0, lhs_ptr, rhs_ptr, dst_ptr, dst_stride,
sizeof(float), -FLT_MAX, FLT_MAX);
}
@@ -383,7 +402,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
bool compute_forward_get_rows(struct ggml_compute_params * params, struct ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_Q4_0);
GGML_ASSERT(ctx.kernels);
if (!ctx.kernels) {
return false;
}
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
@@ -392,6 +413,9 @@ class tensor_traits : public ggml::cpu::tensor_traits {
rhs_packing_info * rhs_info = &ctx.kernels->rhs_info;
kernel_info * kernel = &ctx.kernels->gemm;
if (!rhs_info->to_float || !kernel->get_nr) {
return false;
}
const int64_t nc = ne00;
const int64_t nr = ggml_nelements(src1);
@@ -434,7 +458,7 @@ public:
struct kai_rhs_pack_qs4cxs1s0_param params;
params.lhs_zero_point = 1;
params.rhs_zero_point = 8;
variant_call<void>(ctx.kernels->rhs_info.pack_func, 1, n, k, nr, kr, sr, QK4_0, (const uint8_t*)data, nullptr, tensor->data, 0, &params);
ctx.kernels->rhs_info.pack_func_ex(1, n, k, nr, kr, sr, QK4_0, 0, (const uint8_t*)data, nullptr, nullptr, tensor->data, 0, &params);
return 0;
GGML_UNUSED(data_size);
@@ -502,7 +526,7 @@ static size_t ggml_backend_cpu_kleidiai_buffer_type_get_alloc_size(ggml_backend_
const size_t nr = ctx.kernels->gemm.get_nr();
const size_t kr = ctx.kernels->gemm.get_kr();
return variant_call<size_t>(ctx.kernels->rhs_info.packed_size, n, k, nr, kr, QK4_0);
return ctx.kernels->rhs_info.packed_size_ex(n, k, nr, kr, QK4_0);
GGML_UNUSED(buft);
}

View File

@@ -3467,31 +3467,27 @@ static void ggml_compute_forward_norm_f32(
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
float sum = 0.0;
ggml_vec_sum_f32(ne00, &sum, x);
float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
float variance = 0;
ggml_float sum2 = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v*v);
}
#ifdef GGML_USE_ACCELERATE
mean = -mean;
vDSP_vsadd(x, 1, &mean, y, 1, ne00);
vDSP_measqv(y, 1, &variance, ne00);
#else
variance = ggml_vec_cvar_f32(ne00, y, x, mean);
#endif //GGML_USE_ACCELERATE
float variance = sum2/ne00;
const float scale = 1.0f/sqrtf(variance + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
@@ -8135,7 +8131,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
}
// V /= S
const float S_inv = 1.0f/S;
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
// dst indices
@@ -8637,7 +8633,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// n_head
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dt_soft_plus = ggml_softplus(dt[h]);
const float dA = expf(dt_soft_plus * A[h]);
const int g = h / (nh / ng); // repeat_interleave
@@ -8734,7 +8730,7 @@ static void ggml_compute_forward_ssm_scan_f32(
// n_head
for (int h = ih0; h < ih1; ++h) {
// ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
const float dt_soft_plus = ggml_softplus(dt[h]);
const int g = h / (nh / ng); // repeat_interleave
// dim
@@ -8997,6 +8993,10 @@ void ggml_compute_forward_unary(
{
ggml_compute_forward_exp(params, dst);
} break;
case GGML_UNARY_OP_XIELU:
{
ggml_compute_forward_xielu(params, dst);
} break;
default:
{
GGML_ABORT("fatal error");

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,13 @@
#pragma once
#include "ggml-alloc.h"
#ifdef __cplusplus
extern "C" {
#endif
ggml_backend_buffer_type_t ggml_backend_cpu_riscv64_spacemit_buffer_type(void);
#ifdef __cplusplus
}
#endif

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,26 @@
#pragma once
#include <cstddef>
namespace sqnbitgemm_spacemit_ime {
namespace ime1 {
size_t gemm_kernel_i8i4(size_t blk_len,
const std::byte * quant_a_ptr,
const std::byte * quant_b_data,
const float * quant_b_scale,
const std::byte * quant_b_zp,
float * c_ptr,
size_t count_m,
size_t count_n,
size_t count_k,
size_t block_count_k,
size_t ldc,
const float * bias,
const size_t scale_stride);
void quantize_a_row_i8(size_t blk_len, const float * a_ptr, size_t count_k, std::byte * quant_a_ptr);
void quantize_a_4row_i8(size_t blk_len, const float * a_ptr, size_t count_k, std::byte * quant_a_ptr);
} // namespace ime1
} // namespace sqnbitgemm_spacemit_ime

View File

@@ -52,6 +52,15 @@ static inline float op_sqrt(float x) {
return sqrtf(x);
}
static inline float op_xielu(float x, float alpha_n, float alpha_p, float beta, float eps) {
if (x > 0.0f) {
return alpha_p * x * x + beta * x;
} else {
const float min_x_eps = fminf(x, eps);
return (expm1f(min_x_eps) - x) * alpha_n + beta * x;
}
}
static inline float op_sin(float x) {
return sinf(x);
}
@@ -121,6 +130,86 @@ static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) {
}
}
template <float (*op)(float, ggml_tensor *)>
static void unary_op_params(const ggml_compute_params * params, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op<op, float, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op<op, ggml_fp16_t, ggml_fp16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op<op, ggml_bf16_t, ggml_bf16_t>(params, dst);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_bf16_t, float>(params, dst);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op<op, ggml_fp16_t, float>(params, dst);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
// Extend vec_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static inline void vec_unary_op_functor(int64_t n, dst_t * y, const src0_t * x, Op op) {
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
constexpr auto f32_to_dst = type_conversion_table<dst_t >::from_f32;
for (int i = 0; i < n; i++) {
y[i] = f32_to_dst(op(src0_to_f32(x[i])));
}
}
// Extend apply_unary_op to support functors
template <typename Op, typename src0_t, typename dst_t>
static void apply_unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst));
GGML_TENSOR_UNARY_OP_LOCALS
GGML_ASSERT( nb0 == sizeof(dst_t));
GGML_ASSERT(nb00 == sizeof(src0_t));
const auto [ir0, ir1] = get_thread_range(params, src0);
for (int64_t ir = ir0; ir < ir1; ++ir) {
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
vec_unary_op_functor(ne0, dst_ptr, src0_ptr, op);
}
}
// Generic dispatcher for functors
template <typename Op>
static void unary_op_functor(const ggml_compute_params * params, ggml_tensor * dst, Op op) {
const ggml_tensor * src0 = dst->src[0];
/* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32
apply_unary_op_functor<Op, float, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16
apply_unary_op_functor<Op, ggml_fp16_t, ggml_fp16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16
apply_unary_op_functor<Op, ggml_bf16_t, ggml_bf16_t>(params, dst, op);
} else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_bf16_t, float>(params, dst, op);
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
apply_unary_op_functor<Op, ggml_fp16_t, float>(params, dst, op);
} else {
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__,
ggml_type_name(dst->type), ggml_type_name(src0->type));
GGML_ABORT("fatal error");
}
}
void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_abs>(params, dst);
}
@@ -184,3 +273,17 @@ void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor *
void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) {
unary_op<op_log>(params, dst);
}
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
const float alpha_n = ggml_get_op_params_f32(dst, 1);
const float alpha_p = ggml_get_op_params_f32(dst, 2);
const float beta = ggml_get_op_params_f32(dst, 3);
const float eps = ggml_get_op_params_f32(dst, 4);
const auto xielu_op_params = [alpha_n, alpha_p, beta, eps](float f) {
return op_xielu(f, alpha_n, alpha_p, beta, eps);
};
unary_op_functor(params, dst, xielu_op_params);
}

View File

@@ -22,6 +22,7 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}

View File

@@ -404,6 +404,72 @@ void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float *
}
}
ggml_float ggml_vec_cvar_f32(const int n, float * y, const float * x, const float mean) {
int i = 0;
ggml_float sum = 0;
// TODO: optimize to process the remaining elements in groups using the smaller vector sizes from AVX2 and SSE
// ref: https://github.com/ggml-org/llama.cpp/pull/15953#pullrequestreview-3310928344
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
__m512 val = _mm512_sub_ps(_mm512_loadu_ps(x + i),
_mm512_set1_ps(mean));
_mm512_storeu_ps(y + i, val);
sum += (ggml_float)_mm512_reduce_add_ps(_mm512_mul_ps(val, val));
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
__m256 val = _mm256_sub_ps(_mm256_loadu_ps(x + i),
_mm256_set1_ps(mean));
_mm256_storeu_ps(y + i, val);
val = _mm256_mul_ps(val,val);
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
_mm256_castps256_ps128(val));
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
sum += (ggml_float)_mm_cvtss_f32(val2);
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
__m128 val = _mm_sub_ps(_mm_loadu_ps(x + i),
_mm_set1_ps(mean));
_mm_storeu_ps(y + i, val);
val = _mm_mul_ps(val, val);
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
val = _mm_add_ss(val, _mm_movehdup_ps(val));
#else
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
val = _mm_add_ps(val, tmp);
tmp = _mm_movehl_ps(tmp, val);
val = _mm_add_ss(val, tmp);
#endif // __AVX__ || __AVX2__ || __AVX512F__
sum += (ggml_float)_mm_cvtss_f32(val);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
float32x4_t val = vsubq_f32(vld1q_f32(x + i),
vdupq_n_f32(mean));
vst1q_f32(y + i, val);
val = vmulq_f32(val, val);
sum += (ggml_float)vaddvq_f32(val);
}
#elif defined(__VXE__) || defined(__VXE2__)
for (; i + 3 < n; i += 4) {
float32x4_t val = vec_sub(vec_xl(0, x + i), vec_splats(mean));
vec_xst(val, 0, y + i);
val = vec_mul(val, val);
sum += (ggml_float)vec_hsum_f32x4(val);
}
#endif
for (; i < n; ++i) {
float val = x[i] - mean;
val *= val;
sum += (ggml_float)val;
y[i] = val;
}
return sum/n;
}
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
int i = 0;
ggml_float sum = 0;

View File

@@ -44,6 +44,7 @@ void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t *
void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
void ggml_vec_silu_f32(const int n, float * y, const float * x);
ggml_float ggml_vec_cvar_f32(const int n, float * y, const float * x, const float mean); //it will also center y ( y = y - mean )
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max);
ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max);
@@ -610,7 +611,7 @@ inline static void ggml_vec_mad1_f32(const int n, float * y, const float * x, co
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], vs, vb);
ay[j] = GGML_F32_VEC_FMA(vb, ay[j], vs);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
@@ -654,11 +655,11 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
}
// leftovers
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
if (np < n) {
svbool_t pg = svwhilelt_b32(np, n);
ay1 = svld1_f32(pg, y + np);
for (int i = np; i < n; i += ggml_f32_epr) {
svbool_t pg = svwhilelt_b32(i, n);
ay1 = svld1_f32(pg, y + i);
ay1 = svmul_f32_m(pg, ay1, vx);
svst1_f32(pg, y + np, ay1);
svst1_f32(pg, y + i, ay1);
}
#elif defined(__riscv_v_intrinsic)
for (int i = 0, avl; i < n; i += avl) {

View File

@@ -220,14 +220,6 @@ static const char * cu_get_error_str(CUresult err) {
#define FAST_FP16_AVAILABLE
#endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#define FP16_MMA_AVAILABLE
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
#if defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
@@ -262,27 +254,6 @@ static bool fast_fp16_hardware_available(const int cc) {
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_QY2);
}
// Any FP16 tensor core instructions are available for ggml code.
static bool fp16_mma_available(const int cc) {
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) ||
GGML_CUDA_CC_IS_MTHREADS(cc)) {
return true;
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_HIP_ROCWMMA_FATTN_GFX12)
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
@@ -586,17 +557,42 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v,
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
}
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
#ifdef FAST_FP16_AVAILABLE
acc += v*u;
#else
const float2 tmpv = __half22float2(v);
const float2 tmpu = __half22float2(u);
float2 tmpacc = __half22float2(acc);
tmpacc.x += tmpv.x * tmpu.x;
tmpacc.y += tmpv.y * tmpu.y;
acc = make_half2(tmpacc.x, tmpacc.y);
#endif // FAST_FP16_AVAILABLE
}
// Aligned memory transfers of 8/16 bytes can be faster than 2 transfers with 4 bytes, especially on AMD.
template <int nbytes>
template <int nbytes, int alignment = 0>
static __device__ __forceinline__ void ggml_cuda_memcpy_1(void * __restrict__ dst, const void * __restrict__ src) {
if constexpr (nbytes == 4) {
*(int *) dst = *(const int *) src;
} else if constexpr (nbytes == 8) {
*(int2 *) dst = *(const int2 *) src;
} else if constexpr (nbytes == 16) {
*(int4 *) dst = *(const int4 *) src;
} else {
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
if constexpr (alignment != 0) {
static_assert(nbytes % alignment == 0, "bad alignment");
}
constexpr int nb_per_cpy = alignment == 0 ? nbytes : alignment;
#pragma unroll
for (int i = 0; i < nbytes/nb_per_cpy; ++i) {
if constexpr (nb_per_cpy == 1) {
((char *) dst)[i] = ((const char *) src)[i];
} else if constexpr (nb_per_cpy == 2) {
((short *) dst)[i] = ((const short *) src)[i];
} else if constexpr (nb_per_cpy == 4) {
((int *) dst)[i] = ((const int *) src)[i];
} else if constexpr (nb_per_cpy == 8) {
((int2 *) dst)[i] = ((const int2 *) src)[i];
} else if constexpr (nb_per_cpy == 16) {
((int4 *) dst)[i] = ((const int4 *) src)[i];
} else {
static_assert(nbytes == 0 && nbytes == -1, "bad nbytes");
}
}
}

View File

@@ -329,7 +329,11 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
} else
#endif // GGML_USE_MUSA && GGML_MUSA_MUDNN_COPY
{
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
if (src0->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else {
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
}
}
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
@@ -400,7 +404,13 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
return nullptr;
// Prioritize CUDA graph compatibility over direct memory copy optimization.
// Using copy kernels here maintains graph indirection support, preventing performance regression from disabled CUDA graphs.
if (src0->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<float, float>>;
} else {
return nullptr;
}
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_flt<cpy_1_flt<float, float>>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {

View File

@@ -33,276 +33,230 @@ typedef void (* fattn_kernel_t)(
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33);
typedef half (*vec_dot_KQ_f16_t)(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
typedef float (*vec_dot_KQ_f32_t)(
typedef float (*vec_dot_KQ_t)(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_0;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (8/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
return sum;
}
template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_1;
const int shift = k_KQ & (QI8_1/2);
const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid4d8 + m4s8scaled);
}
}
return sum;
}
template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_0;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/warp_size];
sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (16/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
}
}
return sum;
}
template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_1;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
const int u = Q_q8[k_KQ_0/warp_size];
const int sumi = ggml_cuda_dp4a(v, u, 0);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/warp_size];
const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
} else
#endif // FP16_AVAILABLE
{
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;
sum += (T) (sumid5d8 + m5s8scaled);
}
}
return sum;
}
template <typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
GGML_UNUSED(Q_v);
T sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const int ib = k_KQ / QI8_0;
const int iqs = k_KQ % QI8_0;
const int v = get_int_b2(K_q8_0[ib].qs, iqs);
T Q_d;
if (std::is_same<T, half>::value) {
const half2 * Q_ds = (const half2 *) Q_ds_v;
Q_d = __low2half(Q_ds[k_KQ_0/warp_size]);
} else {
const float2 * Q_ds = (const float2 *) Q_ds_v;
Q_d = Q_ds[k_KQ_0/warp_size].x;
}
sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/warp_size], K_q8_0[ib].d, Q_d);
}
return sum;
}
template <typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
template <int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_f16(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
const half2 * K_h2 = (const half2 *) K_c;
GGML_UNUSED(Q_q8);
GGML_UNUSED(Q_ds_v);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
const half2 * Q_h2 = (const half2 *) Q_v;
half2 sum2 = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum2 += K_ik * Q_h2[k_KQ_0/warp_size];
}
return __low2half(sum2) + __high2half(sum2);
}
#endif // FP16_AVAILABLE
const float2 * Q_f2 = (const float2 *) Q_v;
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[k_KQ];
sum += __low2float(K_ik) * Q_f2[k_KQ_0/warp_size].x;
sum += __high2float(K_ik) * Q_f2[k_KQ_0/warp_size].y;
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += nthreads*cpy_ne) {
half2 tmp[cpy_ne];
ggml_cuda_memcpy_1<sizeof(tmp)>(tmp, K_h2 + k_KQ_0 + (threadIdx.x % nthreads)*cpy_ne);
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < cpy_ne; ++k_KQ_1) {
#ifdef FAST_FP16_AVAILABLE
ggml_cuda_mad(sum, tmp[k_KQ_1] , ((const half2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#else
ggml_cuda_mad(sum, __half22float2(tmp[k_KQ_1]), ((const float2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#endif // FP16_AVAILABLE
}
}
return sum;
}
template <typename Tds>
template<int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q4_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
GGML_UNUSED(Q_v);
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_0;
const int shift = k_KQ & (QI8_1/2);
int v;
ggml_cuda_memcpy_1<sizeof(int), 2>(&v, K_q4_0[ib].qs + sizeof(int)*iqs4);
v = (v >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/nthreads];
const int sumi = ggml_cuda_dp4a(v, u, 0);
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
sum += __half2float(K_q4_0[ib].d) * (sumi*Q_ds.x - (8/QI8_1)*Q_ds.y);
}
return sum;
}
template<int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q4_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
GGML_UNUSED(Q_v);
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI4_1;
const int shift = k_KQ & (QI8_1/2);
int v;
ggml_cuda_memcpy_1<sizeof(int)>(&v, K_q4_1[ib].qs + sizeof(int)*iqs4);
v = (v >> shift) & 0x0F0F0F0F;
const int u = Q_q8[k_KQ_0/nthreads];
const int sumi = ggml_cuda_dp4a(v, u, 0);
const float2 K_dm = __half22float2(K_q4_1[ib].dm);
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
sum += K_dm.x*Q_ds.x*sumi + K_dm.y*Q_ds.y/QI8_1;
}
return sum;
}
template<int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q5_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
GGML_UNUSED(Q_v);
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_0;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v;
ggml_cuda_memcpy_1<sizeof(int), 2>(&v, K_q5_0[ib].qs + sizeof(int)*iqs4);
v = (v >> shift) & 0x0F0F0F0F;
{
int vh;
ggml_cuda_memcpy_1<sizeof(int), 2>(&vh, K_q5_0[ib].qh);
vh >>= iqs8 * QI5_0;
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
}
const int u = Q_q8[k_KQ_0/nthreads];
const int sumi = ggml_cuda_dp4a(v, u, 0);
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
sum += __half2float(K_q5_0[ib].d) * (sumi*Q_ds.x - (16/QI8_1)*Q_ds.y);
}
return sum;
}
template<int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q5_1(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
GGML_UNUSED(Q_v);
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
const int ib = k_KQ / QI8_1;
const int iqs4 = k_KQ % QI5_1;
const int iqs8 = k_KQ % QI8_1;
const int shift = k_KQ & (QI8_1/2);
int v;
ggml_cuda_memcpy_1<sizeof(int)>(&v, K_q5_1[ib].qs + sizeof(int)*iqs4);
v = (v >> shift) & 0x0F0F0F0F;
{
int vh;
ggml_cuda_memcpy_1<sizeof(int)>(&vh, K_q5_1[ib].qh);
vh >>= iqs8 * QI5_0;
v |= (vh << 4) & 0x00000010; // 0 -> 4
v |= (vh << 11) & 0x00001000; // 1 -> 12
v |= (vh << 18) & 0x00100000; // 2 -> 20
v |= (vh << 25) & 0x10000000; // 3 -> 28
}
const int u = Q_q8[k_KQ_0/nthreads];
const int sumi = ggml_cuda_dp4a(v, u, 0);
const float2 K_dm = __half22float2(K_q5_1[ib].dm);
const float2 Q_ds = ((const float2 *) Q_ds_v)[k_KQ_0/nthreads];
sum += K_dm.x*Q_ds.x*sumi + K_dm.y*Q_ds.y/QI8_1;
}
return sum;
}
template <int D, int nthreads>
static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_q8_0(
const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
GGML_UNUSED(Q_v);
float sum = 0.0f;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += nthreads) {
const int k_KQ = k_KQ_0 + (nthreads == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads);
const int ib = k_KQ / QI8_0;
const int iqs = k_KQ % QI8_0;
int v;
ggml_cuda_memcpy_1<sizeof(v), 2>(&v, K_q8_0[ib].qs + 4*iqs);
const float2 * Q_ds = (const float2 *) Q_ds_v;
const float Q_d = Q_ds[k_KQ_0/nthreads].x;
sum += vec_dot_q8_0_q8_1_impl<float, 1>(&v, &Q_q8[k_KQ_0/nthreads], K_q8_0[ib].d, Q_d);
}
return sum;
}
template <typename Tds, int ni>
static __device__ __forceinline__ void quantize_q8_1_to_shared(
const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
float vals[sizeof(int)] = {0.0f};
#pragma unroll
for (int l = 0; l < int(sizeof(int)); ++l) {
vals[l] = scale * x[4*threadIdx.x + l];
vals[l] = (ni == WARP_SIZE || threadIdx.x < ni) ? scale * x[4*threadIdx.x + l] : 0.0f;
}
float amax = fabsf(vals[0]);
@@ -330,7 +284,7 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
}
yq32[threadIdx.x] = q32;
if (threadIdx.x % QI8_1 == 0) {
if (threadIdx.x % QI8_1 == 0 && (ni == WARP_SIZE || threadIdx.x < ni)) {
if (std::is_same<Tds, half2>::value) {
((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
} else {
@@ -339,167 +293,276 @@ static __device__ __forceinline__ void quantize_q8_1_to_shared(
}
}
typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
typedef void (*dequantize_V_t)(const void *, void *, const int64_t);
template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_f16(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
if constexpr (std::is_same_v<T, half>) {
ggml_cuda_memcpy_1<ne*sizeof(half)>(dst, (const half *) vx + i0);
} else if constexpr (std::is_same_v<T, float>) {
static_assert(ne % 2 == 0, "bad ne");
half2 tmp[ne/2];
ggml_cuda_memcpy_1<ne*sizeof(half)>(tmp, (const half *) vx + i0);
float2 * dst_f2 = (float2 *) dst;
#pragma unroll
for (int l = 0; l < ne/2; ++l) {
dst_f2[l] = __half22float2(tmp[l]);
}
} else {
static_assert(std::is_same_v<T, void>, "unsupported type");
}
}
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_q4_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
const block_q4_0 * x = (const block_q4_0 *) vx;
const int64_t ib = i / QK4_0;
const int iqs = i % (QK4_0/2);
const int shift = (i % QK4_0) / (QK4_0/2);
const int64_t ib = i0 / QK4_0;
const int iqs = i0 % (QK4_0/2);
const int shift = (i0 % QK4_0) / (QK4_0/2);
const T d = x[ib].d;
const int q0 = x[ib].qs[iqs];
const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
int q;
static_assert(ne == 2 || ne == 4, "bad ne");
ggml_cuda_memcpy_1<ne, 2>(&q, x[ib].qs + iqs);
q >>= 4*shift;
q &= 0x0F0F0F0F;
q = __vsubss4(q, 0x08080808);
const int8_t * q8 = (const int8_t *) &q;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, half>) {
const half2 d = __half2half2(x[ib].d);
return ((float) d)*((float) q);
#pragma unroll
for (int l0 = 0; l0 < ne; l0 += 2) {
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]);
}
} else
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, float>) {
const float d = x[ib].d;
#pragma unroll
for (int l = 0; l < ne; ++l) {
((float *) dst)[l] = d * q8[l];
}
} else {
static_assert(std::is_same_v<T, void>, "bad type");
}
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_q4_1(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
const block_q4_1 * x = (const block_q4_1 *) vx;
const int64_t ib = i / QK4_1;
const int iqs = i % (QK4_1/2);
const int shift = (i % QK4_1) / (QK4_1/2);
const int64_t ib = i0 / QK4_1;
const int iqs = i0 % (QK4_1/2);
const int shift = (i0 % QK4_1) / (QK4_1/2);
const half2 dm = x[ib].dm;
const int q0 = x[ib].qs[iqs];
const int q = ((q0 >> (4*shift)) & 0x0F);
int q;
static_assert(ne == 2 || ne == 4, "bad ne");
ggml_cuda_memcpy_1<ne>(&q, x[ib].qs + iqs);
q >>= 4*shift;
q &= 0x0F0F0F0F;
const int8_t * q8 = (const int8_t *) &q;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return __low2half(dm)*((half) q) + __high2half(dm);
}
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, half>) {
const half2 dm = x[ib].dm;
const half2 d = __half2half2( __low2half(dm));
const half2 m = __half2half2(__high2half(dm));
return __low2float(dm)*((float) q) + __high2float(dm);
#pragma unroll
for (int l0 = 0; l0 < ne; l0 += 2) {
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]) + m;
}
} else
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, float>) {
const float2 dm = __half22float2(x[ib].dm);
#pragma unroll
for (int l = 0; l < ne; ++l) {
((float *) dst)[l] = dm.x * q8[l] + dm.y;
}
} else {
static_assert(std::is_same_v<T, void>, "bad type");
}
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_q5_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
const block_q5_0 * x = (const block_q5_0 *) vx;
const int64_t ib = i / QK5_0;
const int idq = i % QK5_0;
const int iqs = i % (QK5_0/2);
const int shift = (i % QK5_0) / (QK5_0/2);
const int64_t ib = i0 / QK5_0;
const int idq = i0 % QK5_0;
const int iqs = i0 % (QK5_0/2);
const int shift = (i0 % QK5_0) / (QK5_0/2);
const T d = x[ib].d;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_b2(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh) - 16;
int q;
static_assert(ne == 2 || ne == 4, "bad ne");
ggml_cuda_memcpy_1<ne, 2>(&q, x[ib].qs + iqs);
q >>= 4*shift;
q &= 0x0F0F0F0F;
{
int qh;
ggml_cuda_memcpy_1<ne, 2>(&qh, x[ib].qh);
#pragma unroll
for (int l = 0; l < ne; ++l) {
q |= ((qh >> (idq + l)) & 0x00000001) << (8*l + 4);
}
}
q = __vsubss4(q, 0x10101010);
const int8_t * q8 = (const int8_t *) &q;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, half>) {
const half2 d = __half2half2(x[ib].d);
return ((float) d)*((float) q);
#pragma unroll
for (int l0 = 0; l0 < ne; l0 += 2) {
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]);
}
} else
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, float>) {
const float d = x[ib].d;
#pragma unroll
for (int l = 0; l < ne; ++l) {
((float *) dst)[l] = d * q8[l];
}
} else {
static_assert(std::is_same_v<T, void>, "bad type");
}
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_q5_1(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
const block_q5_1 * x = (const block_q5_1 *) vx;
const int64_t ib = i / QK5_1;
const int idq = i % QK5_1;
const int iqs = i % (QK5_1/2);
const int shift = (i % QK5_1) / (QK5_1/2);
const int64_t ib = i0 / QK5_1;
const int idq = i0 % QK5_1;
const int iqs = i0 % (QK5_1/2);
const int shift = (i0 % QK5_1) / (QK5_1/2);
const half2 dm = x[ib].dm;
const int ql0 = x[ib].qs[iqs];
const int qh0 = get_int_b4(x[ib].qh, 0);
const int ql = ((ql0 >> (4*shift)) & 0x0F);
const int qh = ((qh0 >> idq) << 4) & 0x10;
const int q = (ql | qh);
int q;
static_assert(ne == 2 || ne == 4, "bad ne");
ggml_cuda_memcpy_1<ne>(&q, x[ib].qs + iqs);
q >>= 4*shift;
q &= 0x0F0F0F0F;
{
int qh;
ggml_cuda_memcpy_1<ne>(&qh, x[ib].qh);
#pragma unroll
for (int l = 0; l < ne; ++l) {
q |= ((qh >> (idq + l)) & 0x00000001) << (8*l + 4);
}
}
const int8_t * q8 = (const int8_t *) &q;
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return __low2half(dm)*((half) q) + __high2half(dm);
}
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, half>) {
const half2 dm = x[ib].dm;
const half2 d = __half2half2( __low2half(dm));
const half2 m = __half2half2(__high2half(dm));
return __low2float(dm)*((float) q) + __high2float(dm);
#pragma unroll
for (int l0 = 0; l0 < ne; l0 += 2) {
((half2 *) dst)[l0/2] = d * make_half2(q8[l0 + 0], q8[l0 + 1]) + m;
}
} else
#endif // FP16_AVAILABLE
if constexpr (std::is_same_v<T, float>) {
const float2 dm = __half22float2(x[ib].dm);
#pragma unroll
for (int l = 0; l < ne; ++l) {
((float *) dst)[l] = dm.x * q8[l] + dm.y;
}
} else {
static_assert(std::is_same_v<T, void>, "bad type");
}
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
template <typename T, int ne>
static __device__ __forceinline__ void dequantize_V_q8_0(const void * __restrict__ vx, void * __restrict__ dst, const int64_t i0) {
const block_q8_0 * x = (const block_q8_0 *) vx;
const int64_t ib = i / QK8_0;
const int iqs = i % QK8_0;
const int64_t ib = i0 / QK8_0;
const int iqs = i0 % QK8_0;
const T d = x[ib].d;
const int q = x[ib].qs[iqs];
static_assert(ne % 2 == 0, "bad ne");
int8_t qs[ne];
ggml_cuda_memcpy_1<ne, 2>(qs, x[ib].qs + iqs);
#ifdef FP16_AVAILABLE
if (std::is_same<T, half>::value) {
return ((half) d)*((half) q);
}
if constexpr (std::is_same<T, half>::value) {
const half2 d = __half2half2(x[ib].d);
#pragma unroll
for (int l0 = 0; l0 < ne; l0 += 2) {
((half2 *) dst)[l0/2] = d * make_half2(qs[l0 + 0], qs[l0 + 1]);
}
} else
#endif // FP16_AVAILABLE
if constexpr (std::is_same<T, float>::value) {
const float d = x[ib].d;
return ((float) d)*((float) q);
#pragma unroll
for (int l = 0; l < ne; ++l) {
((float *) dst)[l] = d * qs[l];
}
} else {
static_assert(std::is_same_v<T, void>, "unsupported type");
}
}
template <typename T>
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
const half * x = (const half *) vx;
return x[i];
template <ggml_type type_K, int D, int nthreads>
constexpr __device__ vec_dot_KQ_t get_vec_dot_KQ() {
if constexpr (type_K == GGML_TYPE_F16) {
return vec_dot_fattn_vec_KQ_f16<D, nthreads>;
} else if constexpr (type_K == GGML_TYPE_Q4_0) {
return vec_dot_fattn_vec_KQ_q4_0<D, nthreads>;
} else if constexpr (type_K == GGML_TYPE_Q4_1) {
return vec_dot_fattn_vec_KQ_q4_1<D, nthreads>;
} else if constexpr (type_K == GGML_TYPE_Q5_0) {
return vec_dot_fattn_vec_KQ_q5_0<D, nthreads>;
} else if constexpr (type_K == GGML_TYPE_Q5_1) {
return vec_dot_fattn_vec_KQ_q5_1<D, nthreads>;
} else if constexpr (type_K == GGML_TYPE_Q8_0) {
return vec_dot_fattn_vec_KQ_q8_0<D, nthreads>;
} else {
static_assert(type_K == -1, "bad type");
return nullptr;
}
}
template <int D, int warp_size = WARP_SIZE>
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D, warp_size> :
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D, warp_size> :
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D, warp_size> :
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D, warp_size> :
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D, warp_size> :
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D, warp_size> :
nullptr;
}
template <int D, int warp_size = WARP_SIZE>
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D, warp_size> :
type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D, warp_size> :
type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D, warp_size> :
type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D, warp_size> :
type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D, warp_size> :
type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D, warp_size> :
nullptr;
}
constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
nullptr;
}
constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
nullptr;
template <ggml_type type_V, typename T, int ne>
constexpr __device__ dequantize_V_t get_dequantize_V() {
if constexpr (type_V == GGML_TYPE_F16) {
return dequantize_V_f16<T, ne>;
} else if constexpr (type_V == GGML_TYPE_Q4_0) {
return dequantize_V_q4_0<T, ne>;
} else if constexpr (type_V == GGML_TYPE_Q4_1) {
return dequantize_V_q4_1<T, ne>;
} else if constexpr (type_V == GGML_TYPE_Q5_0) {
return dequantize_V_q5_0<T, ne>;
} else if constexpr (type_V == GGML_TYPE_Q5_1) {
return dequantize_V_q5_1<T, ne>;
} else if constexpr (type_V == GGML_TYPE_Q8_0) {
return dequantize_V_q8_0<T, ne>;
} else {
static_assert(type_V == -1, "bad type");
return nullptr;
}
}
template <int ncols1>
@@ -870,7 +933,7 @@ void launch_fattn(
const int efficiency_percent = 100 * nblocks_total / (nwaves*blocks_per_wave);
// Stop trying configurations with more waves if we already have good efficiency to avoid excessive overhead.
if (efficiency_percent_best >= 90 && nwaves > nwaves_best) {
if (efficiency_percent_best >= 95 && nwaves > nwaves_best) {
break;
}

View File

@@ -1,6 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile.cuh"
#include "fattn-wmma-f16.cuh"
// kq_stride == number of KQ rows to process per iteration
// kq_nbatch == number of K columns to load in parallel for KQ calculation
@@ -190,10 +191,10 @@ static __global__ void flash_attn_tile(
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
#ifdef FP16_MMA_AVAILABLE
#ifdef GGML_USE_WMMA_FATTN
NO_DEVICE_CODE;
return;
#endif // FP16_MMA_AVAILABLE
#endif // GGML_USE_WMMA_FATTN
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,

View File

@@ -1,495 +0,0 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
#endif // GGML_USE_HIP
static __global__ void flash_attn_vec_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
if (ncols > 1) {
NO_DEVICE_CODE;
return;
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slopef = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < D);
__shared__ half KQ[ncols*D];
half2 * KQ2 = (half2 *) KQ;
half kqmax[ncols];
half kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -HALF_MAX_HALF;
kqsum[j] = 0.0f;
}
__shared__ half kqmax_shared[ncols][WARP_SIZE];
__shared__ half kqsum_shared[ncols][WARP_SIZE];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.y == 0) {
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__shared__ half maskh_shared[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = 0.0f;
}
__syncthreads();
// Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
if (Q_q8_1) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > ncols && j >= ncols) {
break;
}
// Reuse KQ as temporary storage for converting Q to q8_1:
int * tmp_q_i32 = (int *) &KQ[j*D];
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
// Set memory to zero if out of bounds:
if (ncols > 2 && ic0 + j >= ne01) {
#pragma unroll
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
tmp_q_i32[i] = 0;
}
if (threadIdx.x < D/QK8_1) {
tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
}
continue;
}
const float * Q_f = (const float *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
quantize_q8_1_to_shared<half2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
int * tmp_q_i32 = (int *) &KQ[j*D];
half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
#pragma unroll
for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
}
}
__syncthreads();
} else {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ[j*D + tid] = -HALF_MAX_HALF;
}
__syncthreads();
half2 VKQ[ncols] = {{0.0f, 0.0f}};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskh_shared[j*D + tid] = slopeh*maskh[j*ne11 + tid];
}
__syncthreads();
}
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
half kqmax_new = kqmax[0];
half kqmax_new_arr[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax_new_arr[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
break;
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half sum = vec_dot_KQ(K + i_KQ*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum((float)sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += maskh_shared[j*D + i_KQ];
if (ncols == 1) {
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
} else {
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
}
if (threadIdx.x == 0) {
KQ[j*D + i_KQ] = sum;
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale + val;
KQ[j*D + tid] = val;
VKQ[j] *= __half2half2(KQ_max_scale);
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < D; k0 += 2) {
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
break;
}
half2 V_k;
reinterpret_cast<half&>(V_k.x) = dequantize_1_v(V + (k0 + 0)*nb21, tid);
reinterpret_cast<half&>(V_k.y) = dequantize_1_v(V + (k0 + 1)*nb21, tid);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
}
}
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const half sink = __float2half(sinksf[head]);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const half val = hexp(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= __half2half2(KQ_max_scale);
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum((float)kqsum[j]);
if (threadIdx.x == 0) {
kqsum_shared[j][threadIdx.y] = kqsum[j];
}
}
__syncthreads();
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum((float)kqsum[j_VKQ]);
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && defined(FP16_AVAILABLE)
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
template void ggml_cuda_flash_attn_ext_vec_f16_case \
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);

View File

@@ -1,486 +0,0 @@
#include "common.cuh"
#include "fattn-common.cuh"
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
#endif // GGML_USE_HIP
static __global__ void flash_attn_vec_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
if (ncols > 1) {
NO_DEVICE_CODE;
return;
}
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float * sinksf = (const float *) (sinks);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < D);
__shared__ float KQ[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ[j*D + tid] = -FLT_MAX/2.0f;
}
float kqmax[ncols];
float kqsum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -FLT_MAX/2.0f;
kqsum[j] = 0.0f;
}
__shared__ float kqmax_shared[ncols][WARP_SIZE];
__shared__ float kqsum_shared[ncols][WARP_SIZE];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.y == 0) {
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__shared__ float maskf_shared[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = 0.0f;
}
__syncthreads();
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
float2 Q_f2[ncols][D/(2*WARP_SIZE)];
int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
if (Q_q8_1) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > ncols && j >= ncols) {
break;
}
// Reuse KQ as temporary storage for converting Q to q8_1:
int * tmp_q_i32 = (int *) &KQ[j*D];
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
// Set memory to zero if out of bounds:
if (ncols > 2 && ic0 + j >= ne01) {
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
tmp_q_i32[i] = 0;
}
if (threadIdx.x < D/QK8_1) {
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
}
continue;
}
const float * Q_f = (const float *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
int * tmp_q_i32 = (int *) &KQ[j*D];
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
}
}
__syncthreads();
} else {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
Q_f2[j][i0/WARP_SIZE].x *= scale;
Q_f2[j][i0/WARP_SIZE].y *= scale;
}
}
}
float VKQ[ncols] = {0.0f};
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*D * nb11;
V += blockIdx.y*D * nb21;
maskh += blockIdx.y*D;
for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
// Increment pointers after each loop:
K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
if (mask) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
}
__syncthreads();
}
float kqmax_new_arr[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax_new_arr[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
break;
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float sum = vec_dot_KQ(K + i_KQ*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += maskf_shared[j*D + i_KQ];
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
if (threadIdx.x == 0) {
KQ[j*D + i_KQ] = sum;
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_new_arr[j];
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const float val = expf(KQ[j*D + tid] - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale + val;
KQ[j*D + tid] = val;
VKQ[j] *= KQ_max_scale;
}
__syncthreads();
#pragma unroll
for (int k = 0; k < D; ++k) {
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
break;
}
const float V_ki = dequantize_1_v(V + k*nb21, tid);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j] += V_ki*KQ[j*D + k];
}
}
__syncthreads();
}
if (sinksf && blockIdx.y == 0) {
const float sink = sinksf[head];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const float val = expf(sink - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale;
if (tid == 0) {
kqsum[j] += val;
}
VKQ[j] *= KQ_max_scale;
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum(kqsum[j]);
if (threadIdx.x == 0) {
kqsum_shared[j][threadIdx.y] = kqsum[j];
}
}
__syncthreads();
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
float dst_val = VKQ[j_VKQ];
if (gridDim.y == 1) {
dst_val /= kqsum[j_VKQ];
}
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
}
if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
template void ggml_cuda_flash_attn_ext_vec_f32_case \
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);

View File

@@ -0,0 +1,591 @@
#include "common.cuh"
#include "fattn-common.cuh"
static int ggml_cuda_fattn_vec_get_nthreads_host(const int cc) {
return 128;
GGML_UNUSED(cc);
}
static constexpr __device__ int ggml_cuda_fattn_vec_get_nthreads_device() {
return 128;
}
// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
__launch_bounds__(ggml_cuda_fattn_vec_get_nthreads_device(), 1)
static __global__ void flash_attn_ext_vec(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
const char * __restrict__ sinks,
const int * __restrict__ KV_max,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
#ifdef GGML_USE_HIP
#ifdef RDNA
constexpr int nthreads_KQ_q = 2;
#else
constexpr int nthreads_KQ_q = 4;
#endif // RDNA
constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
#else
constexpr int nthreads_KQ_q = (D/4 < 32 ? D/4 : 32);
constexpr int nthreads_V_q = (D/4 < 32 ? D/4 : 32);
#endif // GGML_USE_HIP
constexpr int nthreads = ggml_cuda_fattn_vec_get_nthreads_device();
constexpr int nthreads_KQ = type_K == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_KQ_q;
constexpr int nthreads_V = type_V == GGML_TYPE_F16 ? 128 / cpy_nb : nthreads_V_q;
static_assert(WARP_SIZE % nthreads_KQ == 0, "bad nthreads_K");
static_assert(WARP_SIZE % nthreads_V == 0, "bad nthreads_V");
constexpr int V_rows_per_thread = type_V == GGML_TYPE_F16 ? 2*cpy_ne : 4;
constexpr int V_cols_per_iter = WARP_SIZE / nthreads_V;
constexpr vec_dot_KQ_t vec_dot_KQ = get_vec_dot_KQ<type_K, D, nthreads_KQ>();
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
#ifdef FAST_FP16_AVAILABLE
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, half, V_rows_per_thread>();
#else
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, float, V_rows_per_thread>();
#endif // FAST_FP16_AVAILABLE
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
const int sequence = blockIdx.z / ne02;
const int head = blockIdx.z - sequence*ne02;
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
Q += nb03*sequence + nb02* head + nb01*ic0;
K += nb13*sequence + nb12*(head / gqa_ratio);
V += nb23*sequence + nb22*(head / gqa_ratio);
const half * maskh = (const half *) (mask + nb33*(sequence % ne33) + nb31*ic0);
const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = nthreads / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < nthreads);
constexpr int ne_KQ = ncols*D;
constexpr int ne_combine = nwarps*V_cols_per_iter*D;
#ifdef FAST_FP16_AVAILABLE
half2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ half KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#else
float2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ float KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#endif // FAST_FP16_AVAILABLE
float KQ_max[ncols];
float KQ_sum[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ_max[j] = -FLT_MAX/2.0f;
KQ_sum[j] = 0.0f;
}
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
#ifdef FAST_FP16_AVAILABLE
half2 Q_reg[ncols][(D/2)/nthreads_KQ]; // Will be initialized completely.
#else
float2 Q_reg[ncols][(D/2)/nthreads_KQ] = {{{0.0f, 0.0f}}}; // May be only partially initialized.
#endif // FAST_FP16_AVAILABLE
int Q_i32[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
float2 Q_ds[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
if constexpr (Q_q8_1) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > ncols && j >= ncols) {
break;
}
// Reuse KQ as temporary storage for converting Q to q8_1:
int * tmp_q_i32 = (int *) &KQ[j*D];
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
// Set memory to zero if out of bounds:
if (ncols > 1 && ic0 + j >= ne01) {
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE <= D/sizeof(int) || i < D/sizeof(int)) {
tmp_q_i32[i] = 0;
}
}
if (threadIdx.x < D/QK8_1) {
tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
}
} else {
const float * Q_f = (const float *) (Q + j*nb01);
constexpr int nthreads_quantize = D/sizeof(int) < WARP_SIZE ? D/sizeof(int) : WARP_SIZE;
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_quantize) {
quantize_q8_1_to_shared<float2, nthreads_quantize>
(Q_f + i0*sizeof(int), scale, tmp_q_i32 + i0, tmp_q_ds + i0/QI8_1);
}
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
int * tmp_q_i32 = (int *) &KQ[j*D];
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += nthreads_KQ) {
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ);
Q_i32[j][i0/nthreads_KQ] = tmp_q_i32[i];
Q_ds[j][i0/nthreads_KQ] = tmp_q_ds[i/QI8_1];
}
}
__syncthreads();
} else {
#ifdef FAST_FP16_AVAILABLE
const half2 scale_h2 = make_half2(scale, scale);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
const float2 * Q_j = (const float2 *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
float2 tmp[cpy_ne] = {{0.0f, 0.0f}};
if (ncols == 1 || ic0 + j < ne01) {
ggml_cuda_memcpy_1<cpy_nb>(tmp, &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(tmp + cpy_ne/2, &Q_j[i + cpy_ne/2]);
}
#pragma unroll
for (int i1 = 0; i1 < cpy_ne; ++i1) {
Q_reg[j][i0/nthreads_KQ + i1] = make_half2(tmp[i1].x, tmp[i1].y);
}
}
#pragma unroll
for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
Q_reg[j][k] *= scale_h2;
}
}
#else
#pragma unroll
for (int j = 0; j < ncols; ++j) {
const float2 * Q_j = (const float2 *) (Q + j*nb01);
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
if (ncols == 1 || ic0 + j < ne01) {
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ], &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ + cpy_ne/2], &Q_j[i + cpy_ne/2]);
}
}
#pragma unroll
for (int k = 0; k < (D/2)/nthreads_KQ; ++k) {
Q_reg[j][k].x *= scale;
Q_reg[j][k].y *= scale;
}
}
#endif // FAST_FP16_AVAILABLE
}
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
K += blockIdx.y*nthreads * nb11;
V += blockIdx.y*nthreads * nb21;
maskh += blockIdx.y*nthreads;
for (int k_VKQ_0 = blockIdx.y*nthreads; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nthreads,
// Increment pointers after each loop:
K += gridDim.y*nthreads*nb11, V += gridDim.y*nthreads*nb21, maskh += gridDim.y*nthreads) {
// Calculate KQ tile and keep track of new maximum KQ values:
float KQ_reg[ncols]; // KQ in registers.
float KQ_max_new[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ_max_new[j] = KQ_max[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nthreads_KQ; ++i_KQ_0) {
const int i_KQ = threadIdx.y*WARP_SIZE + (nthreads_KQ == WARP_SIZE ? 0 : (threadIdx.x & ~(nthreads_KQ-1))) + i_KQ_0;
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float sum = vec_dot_KQ(K + i_KQ*nb11, Q_reg[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum<nthreads_KQ>(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
if (mask) {
sum += slope*__half2float(maskh[j*ne11 + i_KQ]);
}
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == i_KQ_0) {
KQ_reg[j] = sum;
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int offset = nthreads_KQ; offset < WARP_SIZE; offset <<= 1) {
KQ_max_new[j] = fmaxf(KQ_max_new[j], __shfl_xor_sync(0xFFFFFFFF, KQ_max_new[j], offset, WARP_SIZE));
}
const float KQ_max_scale = expf(KQ_max[j] - KQ_max_new[j]);
KQ_max[j] = KQ_max_new[j];
KQ_reg[j] = expf(KQ_reg[j] - KQ_max[j]);
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + KQ_reg[j];
KQ[j*nthreads + tid] = KQ_reg[j];
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
#ifndef GGML_USE_HIP
__syncwarp();
#endif // GGML_USE_HIP
#pragma unroll
for (int k0 = 0; k0 < WARP_SIZE; k0 += V_cols_per_iter) {
const int k = threadIdx.y*WARP_SIZE + k0 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V);
#ifdef FAST_FP16_AVAILABLE
half2 KQ_k[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ_k[j] = __half2half2(KQ[j*nthreads + k]);
}
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
half2 tmp[V_rows_per_thread/2];
dequantize_V(V + k*nb21, tmp,
2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
#pragma unroll
for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1] += tmp[i_VKQ_1]*KQ_k[j];
}
}
}
#else
float KQ_k[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ_k[j] = KQ[j*nthreads + k];
}
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
float2 tmp[V_rows_per_thread/2];
dequantize_V(V + k*nb21, tmp,
2*i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*V_rows_per_thread);
#pragma unroll
for (int i_VKQ_1 = 0; i_VKQ_1 < V_rows_per_thread/2; ++i_VKQ_1) {
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].x += tmp[i_VKQ_1].x*KQ_k[j];
VKQ[j][i_VKQ_0/nthreads_V + i_VKQ_1].y += tmp[i_VKQ_1].y*KQ_k[j];
}
}
}
#endif // FAST_FP16_AVAILABLE
}
}
if (sinks && blockIdx.y == 0) {
const float sink = ((const float *) sinks)[head];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (j0 + nwarps > ncols && j >= ncols) {
break;
}
const float kqmax_new_j = fmaxf(sink, KQ_max[j]);
const float KQ_max_scale = expf(KQ_max[j] - kqmax_new_j);
KQ_max[j] = kqmax_new_j;
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + (threadIdx.x == 0 ? expf(sink - KQ_max[j]) : 0.0f);
#ifdef FAST_FP16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j][i_VKQ_0/nthreads_V] *= KQ_max_scale_h2;
}
#else
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
}
}
__shared__ float KQ_max_shared[ncols][WARP_SIZE];
__shared__ float KQ_sum_shared[ncols][WARP_SIZE];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.y == 0) {
KQ_max_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
KQ_sum_shared[j][threadIdx.x] = 0.0f;
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.x == 0) {
KQ_max_shared[j][threadIdx.y] = KQ_max[j];
}
}
__syncthreads();
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 1 && ic0 + j_VKQ >= ne01) {
break;
}
float kqmax_new = KQ_max_shared[j_VKQ][threadIdx.x];
kqmax_new = warp_reduce_max(kqmax_new);
const float kqmax_scale = expf(KQ_max[j_VKQ] - kqmax_new);
KQ_max[j_VKQ] = kqmax_new;
#ifdef FAST_FP16_AVAILABLE
half2 * VKQ_tmp = (half2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
const half2 kqmax_scale_h2 = make_half2(kqmax_scale, kqmax_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j_VKQ][i_VKQ_0/nthreads_V] *= kqmax_scale_h2;
}
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
ggml_cuda_memcpy_1<V_rows_per_thread*sizeof(half)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
}
#else
float2 * VKQ_tmp = (float2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
VKQ[j_VKQ][i_VKQ_0/nthreads_V].x *= kqmax_scale;
VKQ[j_VKQ][i_VKQ_0/nthreads_V].y *= kqmax_scale;
}
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V*V_rows_per_thread/2) {
const int i_VKQ = i_VKQ_0 + (nthreads_V == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_V)*(V_rows_per_thread/2);
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ + V_rows_per_thread/4, &VKQ[j_VKQ][i_VKQ_0/nthreads_V + V_rows_per_thread/4]);
}
#endif // FAST_FP16_AVAILABLE
KQ_sum[j_VKQ] *= kqmax_scale;
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
if (threadIdx.x == 0) {
KQ_sum_shared[j_VKQ][threadIdx.y] = KQ_sum[j_VKQ];
}
__syncthreads();
if (nthreads <= D || tid < D) {
KQ_sum[j_VKQ] = KQ_sum_shared[j_VKQ][threadIdx.x];
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
#pragma unroll
for (int i0 = 0; i0 < D; i0 += nthreads) {
float dst_val = 0;
#pragma unroll
for (int w = 0; w < nwarps; ++w) {
#pragma unroll
for (int v = 0; v < V_cols_per_iter; ++v) {
dst_val += float(KQ[w*V_cols_per_iter*D + v*D + i0 + tid]);
}
}
if (gridDim.y == 1) {
dst_val /= KQ_sum[j_VKQ];
}
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
}
}
if (j_VKQ < ncols-1) {
__syncthreads();
}
}
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < ne01)) {
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,
max_bias, m0, m1, n_head_log2, logit_softcap,
ne00, ne01, ne02, ne03,
nb01, nb02, nb03,
ne10, ne11, ne12, ne13,
nb11, nb12, nb13,
nb21, nb22, nb23,
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__
template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int nthreads = ggml_cuda_fattn_vec_get_nthreads_host(cc);
const int nwarps = nthreads / WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_ext_vec<D, cols_per_block, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = false;
constexpr bool need_f16_V = false;
constexpr size_t nbytes_shared = 0;
launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 2;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_CASE(D, type_K, type_V) \
template void ggml_cuda_flash_attn_ext_vec_case \
<D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
#define EXTERN_DECL_FATTN_VEC_CASES(D, type_K) \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_F16); \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_0); \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q4_1); \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_0); \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q5_1); \
extern DECL_FATTN_VEC_CASE(D, type_K, GGML_TYPE_Q8_0); \
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_F16)
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_0)
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q4_1)
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_0)
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q5_1)
EXTERN_DECL_FATTN_VEC_CASES( 64, GGML_TYPE_Q8_0)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_F16)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_0)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q4_1)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_0)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q5_1)
EXTERN_DECL_FATTN_VEC_CASES(128, GGML_TYPE_Q8_0)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_F16)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_0)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q4_1)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_0)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q5_1)
EXTERN_DECL_FATTN_VEC_CASES(256, GGML_TYPE_Q8_0)

View File

@@ -6,19 +6,19 @@
#include "fattn-common.cuh"
#include "fattn-wmma-f16.cuh"
#ifdef FP16_MMA_AVAILABLE
#ifdef GGML_USE_WMMA_FATTN
#if !defined(GGML_USE_HIP)
#include <mma.h>
#ifdef GGML_USE_MUSA
#if defined(GGML_USE_MUSA)
namespace wmma = mtmusa::wmma;
#else // GGML_USE_MUSA
namespace wmma = nvcuda::wmma;
#endif // GGML_USE_MUSA
#elif defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)
#elif defined(GGML_USE_HIP)
#include <rocwmma/rocwmma.hpp>
namespace wmma = rocwmma;
#endif // !defined(GGML_USE_HIP)
#endif // FP16_MMA_AVAILABLE
#endif // GGML_USE_WMMA_FATTN
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, typename KQ_acc_t, bool use_logit_softcap>
@@ -45,7 +45,7 @@ static __global__ void flash_attn_ext_f16(
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@@ -481,7 +481,7 @@ static __global__ void flash_attn_ext_f16(
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(FP16_MMA_AVAILABLE)))
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
}
constexpr int get_max_power_of_2(int x) {

View File

@@ -1,3 +1,49 @@
#include "common.cuh"
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#define GGML_USE_WMMA_FATTN
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
#define GGML_USE_WMMA_FATTN
#elif defined(CDNA)
#warning "rocwmma fattn on CDNA is broken on rocwmma v2.0.0, expect degraded performance"
#endif // defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
#if defined(RDNA3)
#define GGML_USE_WMMA_FATTN
#endif // defined(RDNA3)
#if defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
#define GGML_USE_WMMA_FATTN
#elif defined(RDNA4)
#warning "rocwmma fattn is not suported on RDNA4 on rocwmma < v2.0.0, expect degraded performance"
#endif // defined(RDNA4) && ROCWMMA_VERSION_MAJOR > 1
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
// WMMA flash attention requires FP16 matrix instructions to be available for ggml code.
static bool ggml_cuda_should_use_wmma_fattn(const int cc) {
#if defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
return false;
#else
if ((GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_MTHREADS(cc)) {
return true;
} else if (GGML_CUDA_CC_IS_CDNA(cc)){
#if defined(GGML_HIP_ROCWMMA_FATTN) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)
} else if (GGML_CUDA_CC_IS_RDNA4(cc)) {
#if defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
return true;
#else
return false;
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && ROCWMMA_VERSION_MAJOR > 1
} else {
return false;
}
#endif // defined(GGML_USE_HIP) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -2,8 +2,7 @@
#include "fattn-common.cuh"
#include "fattn-mma-f16.cuh"
#include "fattn-tile.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
#include "fattn-vec.cuh"
#include "fattn-wmma-f16.cuh"
#include "fattn.cuh"
@@ -117,151 +116,68 @@ static void ggml_cuda_flash_attn_ext_mma_f16(ggml_backend_cuda_context & ctx, gg
}
}
#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
ggml_cuda_flash_attn_ext_vec_f16_case<D, type_K, type_V>(ctx, dst); \
return; \
} \
#define FATTN_VEC_CASE(D, type_K, type_V) \
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
ggml_cuda_flash_attn_ext_vec_case<D, type_K, type_V>(ctx, dst); \
return; \
} \
static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
#define FATTN_VEC_CASES_ALL_D(type_K, type_V) \
FATTN_VEC_CASE( 64, type_K, type_V) \
FATTN_VEC_CASE(128, type_K, type_V) \
FATTN_VEC_CASE(256, type_K, type_V) \
static void ggml_cuda_flash_attn_ext_vec(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
#ifdef GGML_CUDA_FA_ALL_QUANTS
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_Q8_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
#else
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
#endif // GGML_CUDA_FA_ALL_QUANTS
GGML_ABORT("fatal error");
}
#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
ggml_cuda_flash_attn_ext_vec_f32_case<D, type_K, type_V>(ctx, dst); \
return; \
} \
static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
#ifdef GGML_CUDA_FA_ALL_QUANTS
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
#else
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_F16, GGML_TYPE_F16)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
FATTN_VEC_CASES_ALL_D(GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
#endif // GGML_CUDA_FA_ALL_QUANTS
GGML_ABORT("fatal error");
@@ -271,8 +187,7 @@ static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, gg
enum best_fattn_kernel {
BEST_FATTN_KERNEL_NONE = 0,
BEST_FATTN_KERNEL_TILE = 200,
BEST_FATTN_KERNEL_VEC_F32 = 100,
BEST_FATTN_KERNEL_VEC_F16 = 110,
BEST_FATTN_KERNEL_VEC = 100,
BEST_FATTN_KERNEL_WMMA_F16 = 300,
BEST_FATTN_KERNEL_MMA_F16 = 400,
};
@@ -283,7 +198,6 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_NONE;
#endif// FLASH_ATTN_AVAILABLE
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
@@ -293,8 +207,12 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int cc = ggml_cuda_info().devices[device].cc;
const int warp_size = ggml_cuda_info().devices[device].warp_size;
const enum ggml_prec prec = ggml_flash_attn_ext_get_prec(KQV);
// TODO: temporary until support is extended
// https://github.com/ggml-org/llama.cpp/pull/16148#issuecomment-3343525206
if (K->ne[1] % FATTN_KQ_STRIDE != 0) {
return BEST_FATTN_KERNEL_NONE;
}
switch (K->ne[0]) {
case 64:
@@ -310,7 +228,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
if (V->ne[0] != K->ne[0]) {
return BEST_FATTN_KERNEL_NONE;
}
if (!fp16_mma_available(cc) && !turing_mma_available(cc)) {
if (!ggml_cuda_should_use_wmma_fattn(cc) && !turing_mma_available(cc)) {
return BEST_FATTN_KERNEL_NONE;
}
break;
@@ -343,31 +261,6 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
#endif // GGML_CUDA_FA_ALL_QUANTS
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
#ifdef GGML_CUDA_FA_ALL_QUANTS
if (K->ne[0] != 128 && K->ne[0] != 64) {
return BEST_FATTN_KERNEL_NONE;
}
#else
if (K->ne[0] != 128) {
return BEST_FATTN_KERNEL_NONE;
}
#endif // GGML_CUDA_FA_ALL_QUANTS
break;
default:
return BEST_FATTN_KERNEL_NONE;
}
switch (V->type) {
case GGML_TYPE_F16:
break;
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
if (K->ne[0] != 128) {
return BEST_FATTN_KERNEL_NONE;
}
break;
default:
return BEST_FATTN_KERNEL_NONE;
@@ -377,34 +270,43 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_NONE;
}
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % (2*warp_size) == 0;
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0;
// If Turing tensor cores available, use them except for some cases with batch size 1:
if (turing_mma_available(cc)) {
const bool gqa_opt_applies = gqa_ratio % 2 == 0 && mask; // The mma-based kernels have GQA-specific optimizations
const bool mma_needs_data_conversion = K->type != GGML_TYPE_F16 || V->type != GGML_TYPE_F16;
const bool mma_faster_for_rtx4000 = Q->ne[3] > 1 || (gqa_ratio > 4 && K->ne[1] >= 8192);
const bool mma_faster_for_bs1 = gqa_opt_applies && !mma_needs_data_conversion &&
(cc < GGML_CUDA_CC_ADA_LOVELACE || mma_faster_for_rtx4000);
if (Q->ne[1] == 1 && can_use_vector_kernel && !mma_faster_for_bs1) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
return BEST_FATTN_KERNEL_VEC_F16;
best_fattn_kernel best = BEST_FATTN_KERNEL_MMA_F16;
if (can_use_vector_kernel) {
if (K->type == GGML_TYPE_F16 && V->type == GGML_TYPE_F16) {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
best = BEST_FATTN_KERNEL_VEC;
}
} else {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE) {
if (Q->ne[1] <= 2) {
best = BEST_FATTN_KERNEL_VEC;
}
} else {
if (Q->ne[1] == 1) {
best = BEST_FATTN_KERNEL_VEC;
}
}
}
if ((gqa_ratio % 2 != 0 || !mask) && Q->ne[1] == 1) {
best = BEST_FATTN_KERNEL_VEC; // GQA-specific optimizations in the mma kernel do not apply.
}
return BEST_FATTN_KERNEL_VEC_F32;
}
return BEST_FATTN_KERNEL_MMA_F16;
return best;
}
// Use kernels specializes for small batch sizes if possible:
// Use kernels specialized for small batch sizes if possible:
if (Q->ne[1] <= 8 && can_use_vector_kernel) {
if (prec == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
return BEST_FATTN_KERNEL_VEC_F16;
}
return BEST_FATTN_KERNEL_VEC_F32;
return BEST_FATTN_KERNEL_VEC;
}
// For large batch sizes, use the WMMA kernel if possible:
if (fp16_mma_available(cc)) {
if (ggml_cuda_should_use_wmma_fattn(cc)) {
return BEST_FATTN_KERNEL_WMMA_F16;
}
@@ -420,11 +322,8 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
case BEST_FATTN_KERNEL_TILE:
ggml_cuda_flash_attn_ext_tile(ctx, dst);
break;
case BEST_FATTN_KERNEL_VEC_F32:
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
break;
case BEST_FATTN_KERNEL_VEC_F16:
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
case BEST_FATTN_KERNEL_VEC:
ggml_cuda_flash_attn_ext_vec(ctx, dst);
break;
case BEST_FATTN_KERNEL_WMMA_F16:
ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);

View File

@@ -231,7 +231,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
info.default_tensor_split[id] = total_vram;
total_vram += prop.totalGlobalMem;
info.devices[id].integrated = prop.integrated;
info.devices[id].integrated = false; // Temporarily disabled due to issues with corrupted output (e.g. #15034)
info.devices[id].nsm = prop.multiProcessorCount;
info.devices[id].smpb = prop.sharedMemPerBlock;
info.devices[id].warp_size = prop.warpSize;
@@ -2031,7 +2031,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
const int cc = ggml_cuda_info().devices[id].cc;
const int warp_size = ggml_cuda_info().devices[id].warp_size;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
}
@@ -2039,7 +2039,7 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
const int cc = ggml_cuda_info().devices[ctx.device].cc;
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1]);
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
}
@@ -2111,7 +2111,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
return;
}
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2])) {
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2], /*mul_mat_id=*/true)) {
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
return;
}
@@ -2334,6 +2334,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_UNARY_OP_ELU:
ggml_cuda_op_elu(ctx, dst);
break;
case GGML_UNARY_OP_XIELU:
ggml_cuda_op_xielu(ctx, dst);
break;
default:
return false;
}
@@ -2641,6 +2644,8 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
const std::string nemotron_h_block_out_prefix = "nemotron_h_block_out";
const std::string mamba2_y_add_d_prefix = "mamba2_y_add_d";
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@@ -2669,7 +2674,9 @@ static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cud
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0) {
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0 &&
strncmp(node->name, nemotron_h_block_out_prefix.c_str(), nemotron_h_block_out_prefix.size()) != 0 &&
strncmp(node->name, mamba2_y_add_d_prefix.c_str(), mamba2_y_add_d_prefix.size()) != 0) {
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
// by means of matching node names. See
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
@@ -3639,9 +3646,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CONV_TRANSPOSE_2D:
case GGML_OP_POOL_2D:
case GGML_OP_SUM:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
return true;
case GGML_OP_ARGSORT:
// TODO: Support arbitrary column width
return op->src[0]->ne[0] <= 1024;
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_GROUP_NORM:

View File

@@ -84,7 +84,7 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
}
}
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols) {
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols, bool mul_mat_id) {
if (ggml_is_quantized(type)) {
return false;
@@ -96,8 +96,18 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
return false;
}
if (src1_ncols > 16) {
return false;
if (mul_mat_id) {
if (type == GGML_TYPE_F32 && src1_ncols > 32) {
return false;
}
if ((type == GGML_TYPE_F16 || type == GGML_TYPE_BF16) && src1_ncols > 64) {
return false;
}
} else {
if (src1_ncols > 16) {
return false;
}
}
switch (type) {

View File

@@ -9,13 +9,13 @@ using namespace ggml_cuda_mma;
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols);
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols, bool mul_mat_id);
template <typename T, int rows_per_block, int cols_per_block, int nwarps, bool has_ids>
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
static __global__ void mul_mat_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const int ncols, const int nchannels_dst, const int stride_row, const int stride_col_y, const int stride_col_dst,
const int ncols, const int ncols_dst_total, const int nchannels_dst, const int stride_row, const int stride_col_y, const int stride_col_dst,
const int stride_col_id, const int stride_row_id,
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -31,9 +31,20 @@ static __global__ void mul_mat_f(
const int row0 = blockIdx.x * rows_per_block;
const int expert_idx = has_ids ? blockIdx.y : 0;
int expert_idx = 0;
int col_base = 0;
const int channel_dst = has_ids ? 0 : blockIdx.y;
if constexpr (has_ids) {
// experts + tiles of ncols_dst are packed in the y dimension
int col_tiles = (ncols_dst_total + cols_per_block - 1) / cols_per_block;
const int nchannels_x = gridDim.y / col_tiles;
const int tile_idx = blockIdx.y / nchannels_x;
expert_idx = blockIdx.y - tile_idx * nchannels_x;
col_base = tile_idx * cols_per_block;
}
const int channel_x = has_ids ? expert_idx : (channel_dst / channel_ratio);
const int channel_y = channel_dst;
const int sample_dst = blockIdx.z;
@@ -44,6 +55,14 @@ static __global__ void mul_mat_f(
y += int64_t(sample_y) *stride_sample_y + (has_ids ? 0 : channel_y *stride_channel_y);
dst += int64_t(sample_dst)*stride_sample_dst + (has_ids ? 0 : channel_dst*stride_channel_dst);
if constexpr (has_ids) {
constexpr int y_stride_scale = std::is_same_v<T, float> ? 1 : 2;
const int64_t col_offset = col_base;
y += col_offset * stride_col_y * y_stride_scale;
dst += col_offset * stride_col_dst;
ids += col_offset * stride_row_id;
}
const float2 * y2 = (const float2 *) y;
extern __shared__ char data_mmv[];
@@ -61,12 +80,17 @@ static __global__ void mul_mat_f(
for (int j0 = 0; j0 < cols_per_block; j0 += nwarps) {
const int j = j0 + threadIdx.y;
const int32_t * __restrict__ id_row = ids + j*stride_row_id;
if (threadIdx.x == 0) {
slot_map[j] = -1;
}
if (col_base + j >= ncols_dst_total) {
continue;
}
const int32_t * __restrict__ id_row = ids + j*stride_row_id;
for (int k = threadIdx.x; k < nchannels_dst; k += warp_size) {
int match = id_row[k*stride_col_id] == expert_idx;
@@ -108,7 +132,8 @@ static __global__ void mul_mat_f(
if constexpr (!has_ids) {
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[j*stride_col_y + col] : 0.0f;
} else {
tile_xy[j0*tile_k_padded + threadIdx.x] = j < cols_per_block ? y[slot_map[j]*stride_channel_y + j*stride_col_y + col] : 0.0f;
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
tile_xy[j0*tile_k_padded + threadIdx.x] = valid ? y[slot_map[j]*stride_channel_y + j*stride_col_y + col] : 0.0f;
}
}
} else if constexpr (std::is_same_v<T, half2> || std::is_same_v<T, nv_bfloat162>) {
@@ -120,7 +145,8 @@ static __global__ void mul_mat_f(
const float2 tmp = j < cols_per_block ? y2[j*stride_col_y + col] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
} else {
float2 tmp = j < cols_per_block && slot_map[j] >= 0 ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f);
const bool valid = j < cols_per_block && (col_base + j) < ncols_dst_total && slot_map[j] >= 0;
float2 tmp = valid ? *(const float2*) &y[slot_map[j]*stride_channel_y + 2*(j*stride_col_y + col)] : make_float2(0.0f, 0.0f);
tile_xy[j0*tile_k_padded + threadIdx.x] = {tmp.x, tmp.y};
}
}
@@ -183,14 +209,14 @@ static __global__ void mul_mat_f(
dst[j*stride_col_dst + row0 + threadIdx.x] = sum;
} else {
const int slot = (j < cols_per_block) ? slot_map[j] : -1;
if (slot >= 0) {
if (slot >= 0 && (col_base + j) < ncols_dst_total) {
dst[slot*stride_channel_dst + j*stride_col_dst + row0 + threadIdx.x] = sum;
}
}
}
#else
GGML_UNUSED_VARS(x, y, ids, dst,
ncols, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
@@ -201,20 +227,23 @@ static __global__ void mul_mat_f(
template<typename T, int cols_per_block, int nwarps>
static inline void mul_mat_f_switch_ids(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols_x, const int64_t nchannels_dst,
const int64_t ncols_x, const int64_t ncols_dst, const int64_t nchannels_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t stride_col_id, const int64_t stride_row_id,
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
const int64_t sample_ratio, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared_total, cudaStream_t stream) {
if (ids) {
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, true><<<block_nums, block_dims, nbytes_shared_total, stream>>>
(x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
const int64_t col_tiles = (ncols_dst + cols_per_block - 1) / cols_per_block;
dim3 block_nums_ids = block_nums;
block_nums_ids.y *= col_tiles;
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, true><<<block_nums_ids, block_dims, nbytes_shared_total, stream>>>
(x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
} else {
mul_mat_f<T, MMF_ROWS_PER_BLOCK, cols_per_block, nwarps, false><<<block_nums, block_dims, nbytes_shared_total, stream>>>
(x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, dst, ncols_x, cols_per_block, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
}
@@ -223,7 +252,8 @@ static inline void mul_mat_f_switch_ids(
template <typename T, int cols_per_block>
void mul_mat_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const int64_t ncols_x, const int64_t nrows_x, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t ncols_x, const int64_t nrows_x, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t stride_col_id, const int64_t stride_row_id,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
@@ -268,49 +298,49 @@ void mul_mat_f_cuda(
switch (nwarps_best) {
case 1: {
mul_mat_f_switch_ids<T, cols_per_block, 1>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 2: {
mul_mat_f_switch_ids<T, cols_per_block, 2>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 3: {
mul_mat_f_switch_ids<T, cols_per_block, 3>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 4: {
mul_mat_f_switch_ids<T, cols_per_block, 4>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 5: {
mul_mat_f_switch_ids<T, cols_per_block, 5>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 6: {
mul_mat_f_switch_ids<T, cols_per_block, 6>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 7: {
mul_mat_f_switch_ids<T, cols_per_block, 7>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
case 8: {
mul_mat_f_switch_ids<T, cols_per_block, 8>(
x, y, ids, dst, ncols_x, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
x, y, ids, dst, ncols_x, ncols_dst, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, block_nums, block_dims, nbytes_shared_total, stream);
} break;
@@ -332,84 +362,89 @@ static void mul_mat_f_switch_cols_per_block(
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
switch (ncols_dst) {
const int ncols_case = (ids && ncols_dst > 16) ? 16 : ncols_dst;
GGML_ASSERT(ids || ncols_dst <= 16);
switch (ncols_case) {
case 1: {
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 1>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 2: {
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 2>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 3: {
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 3>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 4: {
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 4>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 5: {
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 5>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 6: {
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 6>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 7: {
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 7>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 8: {
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 8>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 9: {
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 9>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 10: {
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 10>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 11: {
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 11>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 12: {
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 12>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 13: {
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 13>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 14: {
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 14>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 15: {
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 15>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
case 16: {
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, stride_row, stride_col_y, stride_col_dst,
mul_mat_f_cuda<T, 16>(x, y, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row, stride_col_y, stride_col_dst,
stride_col_id, stride_row_id, nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
} break;
@@ -422,7 +457,7 @@ static void mul_mat_f_switch_cols_per_block(
#define DECL_MMF_CASE_HELPER(T, ncols_dst) \
template void mul_mat_f_cuda<T, ncols_dst>( \
const T * x, const float * y, const int32_t * ids, float * dst, \
const int64_t ncols_x, const int64_t nrows_x, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, \
const int64_t ncols_x, const int64_t nrows_x, int64_t ncols_dst_total, const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst, \
const int64_t stride_col_id, const int64_t stride_row_id, \
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst, \
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,\

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);

View File

@@ -1,5 +0,0 @@
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
#include "../fattn-vec-f16.cuh"
DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);

Some files were not shown because too many files have changed in this diff Show More