mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
246 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
967eb4b2bf | ||
|
|
f117be185e | ||
|
|
85234a4b3a | ||
|
|
0c74f32632 | ||
|
|
c27efd2bd1 | ||
|
|
df70bedda7 | ||
|
|
f914544b16 | ||
|
|
4b13a684c5 | ||
|
|
9898b57cbe | ||
|
|
1032256ec9 | ||
|
|
15274c0c50 | ||
|
|
b8595b16e6 | ||
|
|
392e09a608 | ||
|
|
802cef44bf | ||
|
|
1c07c0c68c | ||
|
|
cb1adf8851 | ||
|
|
ef1d826997 | ||
|
|
86fde91e62 | ||
|
|
7f3e9d339c | ||
|
|
8a3519b708 | ||
|
|
80a6cf6347 | ||
|
|
0750a59903 | ||
|
|
aa3b7a90b4 | ||
|
|
333f2595a3 | ||
|
|
53d7d21e61 | ||
|
|
eeee367de5 | ||
|
|
64fe17fbb8 | ||
|
|
c1b187688d | ||
|
|
b8a5cfd11a | ||
|
|
08416ebe7f | ||
|
|
b4e335d8dc | ||
|
|
d6fe40fa00 | ||
|
|
e14e842e87 | ||
|
|
647b960bd8 | ||
|
|
299f5d782c | ||
|
|
ac76d36201 | ||
|
|
6515610506 | ||
|
|
7956bb4d7f | ||
|
|
9008027aa3 | ||
|
|
16bcc1259d | ||
|
|
9eb9a1331d | ||
|
|
7c23f3f0d4 | ||
|
|
8c0d6bb455 | ||
|
|
5c9a18e674 | ||
|
|
7f09a680af | ||
|
|
aa374175c3 | ||
|
|
5b180c3d60 | ||
|
|
b7f9010d24 | ||
|
|
4882f0ff78 | ||
|
|
9d7c518d64 | ||
|
|
22c8c3c6ad | ||
|
|
6db3d1ffe6 | ||
|
|
230d1169e5 | ||
|
|
a44d77126c | ||
|
|
5886f4f545 | ||
|
|
92bb84f775 | ||
|
|
13b339bcd9 | ||
|
|
2f0c2db43e | ||
|
|
fd2f84f468 | ||
|
|
9f052478c2 | ||
|
|
03ea04175d | ||
|
|
cdabeb2c27 | ||
|
|
852ce5180a | ||
|
|
9aa63374f2 | ||
|
|
5e90233bdb | ||
|
|
a5c07dcd7b | ||
|
|
ad51c0a720 | ||
|
|
66d8eccd42 | ||
|
|
afd353246d | ||
|
|
cc98f8d349 | ||
|
|
d945834366 | ||
|
|
b164259bba | ||
|
|
1f5accb8d0 | ||
|
|
2759ccdb4a | ||
|
|
c5023daf60 | ||
|
|
e7da30b584 | ||
|
|
ed8aa63320 | ||
|
|
48bd26501b | ||
|
|
622cd010ff | ||
|
|
070ff4d535 | ||
|
|
bf7b0c9725 | ||
|
|
fcfce040e8 | ||
|
|
ee3a5a10ad | ||
|
|
7e994168b1 | ||
|
|
bcfa87622a | ||
|
|
a2054e3a8f | ||
|
|
dd52868050 | ||
|
|
6b9a52422b | ||
|
|
2f966b8ed8 | ||
|
|
cd5e3b5754 | ||
|
|
87c9efc3b2 | ||
|
|
76af40aaaa | ||
|
|
7db35a7958 | ||
|
|
a864132ba5 | ||
|
|
d38d9f0877 | ||
|
|
7fd205a8e8 | ||
|
|
2f68ce7cfd | ||
|
|
e4a71599e5 | ||
|
|
dd5e8cab51 | ||
|
|
cf659bbb8e | ||
|
|
d8b860a219 | ||
|
|
1ae74882f8 | ||
|
|
961660b8c3 | ||
|
|
74fef4129f | ||
|
|
5d8bb900bc | ||
|
|
2e76e01360 | ||
|
|
d3dc9dd898 | ||
|
|
bea04522ff | ||
|
|
0de0a01576 | ||
|
|
e58d585604 | ||
|
|
31c511a968 | ||
|
|
6d39015a74 | ||
|
|
4146d6a1a6 | ||
|
|
8da3c0e200 | ||
|
|
c22473b580 | ||
|
|
0f715b4e75 | ||
|
|
d2d931f173 | ||
|
|
2976b0374d | ||
|
|
d2a2673dd1 | ||
|
|
13002a0896 | ||
|
|
6eb208d17e | ||
|
|
9984cbb61d | ||
|
|
ce18efeaf1 | ||
|
|
16724b5b68 | ||
|
|
b52edd2558 | ||
|
|
517b7170e1 | ||
|
|
835e918d84 | ||
|
|
d261223d24 | ||
|
|
dcca0d3ab8 | ||
|
|
bacddc049a | ||
|
|
229bf68628 | ||
|
|
d7395115ba | ||
|
|
052df28b0e | ||
|
|
8b11deea46 | ||
|
|
b9ce940177 | ||
|
|
3464bdac37 | ||
|
|
e3af5563bd | ||
|
|
10fcc41290 | ||
|
|
bcf5bda6f5 | ||
|
|
3eb2be1ca5 | ||
|
|
e41bcce8f0 | ||
|
|
144a4ce824 | ||
|
|
f549b0007d | ||
|
|
9a3ea685b9 | ||
|
|
338074c383 | ||
|
|
851553ea6b | ||
|
|
85a7d8677b | ||
|
|
a8ca18b4b8 | ||
|
|
8284efc35c | ||
|
|
1c1409e131 | ||
|
|
7a0e900e36 | ||
|
|
280d97be96 | ||
|
|
3479efd112 | ||
|
|
463bbf20bf | ||
|
|
ad8d36beff | ||
|
|
c053e18a66 | ||
|
|
e1ab084803 | ||
|
|
5a4ff43e7d | ||
|
|
10640e31aa | ||
|
|
80d28f104c | ||
|
|
c55d53acec | ||
|
|
945501f5ea | ||
|
|
75cbdd3fce | ||
|
|
2b9bd9bf4e | ||
|
|
59fc1ec8e8 | ||
|
|
75d33b9302 | ||
|
|
3470a5c891 | ||
|
|
bd562fe4f7 | ||
|
|
bbac6a26b2 | ||
|
|
73a48c9790 | ||
|
|
f696428ce8 | ||
|
|
7cce4f8158 | ||
|
|
8d8862829c | ||
|
|
f77c13b91f | ||
|
|
3cfa9c3f12 | ||
|
|
5d195f17bc | ||
|
|
226f295f4d | ||
|
|
f90b4a8efe | ||
|
|
8423d01931 | ||
|
|
5cca2542ac | ||
|
|
55945d2ef5 | ||
|
|
0bcb40b48c | ||
|
|
69e9ff0103 | ||
|
|
5a91109a5d | ||
|
|
f8f071fadd | ||
|
|
0bf47a1dbb | ||
|
|
dd62dcfab9 | ||
|
|
d0660f237a | ||
|
|
fe6a9882ac | ||
|
|
061f0eff02 | ||
|
|
8cf6b42d46 | ||
|
|
9de9672adb | ||
|
|
63d2fc46e1 | ||
|
|
a2e0088d92 | ||
|
|
9b9201f65a | ||
|
|
19a5a3edfd | ||
|
|
d8eaa26e4d | ||
|
|
9285325ce0 | ||
|
|
03792ad936 | ||
|
|
51d1a8c997 | ||
|
|
4926419c4d | ||
|
|
6ea37f5739 | ||
|
|
fb349848f3 | ||
|
|
6de8ed7519 | ||
|
|
84bf3c6778 | ||
|
|
c9c1972e2c | ||
|
|
b617cfd289 | ||
|
|
79068501fa | ||
|
|
0e4a0cf2fa | ||
|
|
13f2cfad41 | ||
|
|
06332e2867 | ||
|
|
72d53e6c4d | ||
|
|
2330de7b84 | ||
|
|
7062dd8460 | ||
|
|
0398752dd4 | ||
|
|
4f73d0a951 | ||
|
|
cec5edbcae | ||
|
|
fcb235b466 | ||
|
|
55754bebd5 | ||
|
|
ee09828cb0 | ||
|
|
e56abd2098 | ||
|
|
38355c6c8e | ||
|
|
81387858f1 | ||
|
|
66b0dbcb2d | ||
|
|
41386cf365 | ||
|
|
3d4e86bbeb | ||
|
|
342c728d03 | ||
|
|
ababae7e1e | ||
|
|
b19491599d | ||
|
|
9ad4f1931e | ||
|
|
79967ec596 | ||
|
|
ceff6bb253 | ||
|
|
1bb4f43380 | ||
|
|
683fa6ba4e | ||
|
|
b22572e97d | ||
|
|
7a50cf388a | ||
|
|
6f5d924637 | ||
|
|
adc9b60f19 | ||
|
|
ee50ee1ead | ||
|
|
7adc79c032 | ||
|
|
466c1911ab | ||
|
|
0cb7a0683b | ||
|
|
d93f8439b0 | ||
|
|
f9fb33f263 | ||
|
|
f4ce81c45e | ||
|
|
17304cbcc1 |
@@ -24,8 +24,9 @@ RUN --mount=type=cache,target=/root/.ccache \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DGGML_BACKEND_DL=OFF \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
-DGGML_BLAS=ON \
|
||||
-DGGML_BLAS_VENDOR=OpenBLAS && \
|
||||
cmake --build build --config Release -j $(nproc) && \
|
||||
@@ -103,6 +104,7 @@ FROM base AS light
|
||||
WORKDIR /llama.cpp/bin
|
||||
|
||||
# Copy llama.cpp binaries and libraries
|
||||
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
|
||||
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
|
||||
|
||||
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]
|
||||
@@ -116,6 +118,7 @@ ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
WORKDIR /llama.cpp/bin
|
||||
|
||||
# Copy llama.cpp binaries and libraries
|
||||
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
|
||||
COPY --from=collector /llama.cpp/bin/llama-server /llama.cpp/bin
|
||||
|
||||
EXPOSE 8080
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
ARG UBUNTU_VERSION=24.04
|
||||
ARG UBUNTU_VERSION=25.10
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
@@ -7,32 +7,16 @@ FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget xz-utils
|
||||
|
||||
# Install Vulkan SDK
|
||||
ARG VULKAN_VERSION=1.4.321.1
|
||||
RUN ARCH=$(uname -m) && \
|
||||
wget -qO /tmp/vulkan-sdk.tar.xz https://sdk.lunarg.com/sdk/download/${VULKAN_VERSION}/linux/vulkan-sdk-linux-${ARCH}-${VULKAN_VERSION}.tar.xz && \
|
||||
mkdir -p /opt/vulkan && \
|
||||
tar -xf /tmp/vulkan-sdk.tar.xz -C /tmp --strip-components=1 && \
|
||||
mv /tmp/${ARCH}/* /opt/vulkan/ && \
|
||||
rm -rf /tmp/*
|
||||
|
||||
# Install cURL and Vulkan SDK dependencies
|
||||
RUN apt install -y libcurl4-openssl-dev curl \
|
||||
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev
|
||||
|
||||
# Set environment variables
|
||||
ENV VULKAN_SDK=/opt/vulkan
|
||||
ENV PATH=$VULKAN_SDK/bin:$PATH
|
||||
ENV LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
|
||||
ENV CMAKE_PREFIX_PATH=$VULKAN_SDK:$CMAKE_PREFIX_PATH
|
||||
ENV PKG_CONFIG_PATH=$VULKAN_SDK/lib/pkgconfig:$PKG_CONFIG_PATH
|
||||
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libvulkan-dev glslc
|
||||
|
||||
# Build it
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
|
||||
cmake --build build --config Release -j$(nproc)
|
||||
|
||||
RUN mkdir -p /app/lib && \
|
||||
@@ -50,7 +34,7 @@ RUN mkdir -p /app/full \
|
||||
FROM ubuntu:$UBUNTU_VERSION AS base
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y libgomp1 curl libvulkan-dev \
|
||||
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
|
||||
&& apt autoremove -y \
|
||||
&& apt clean -y \
|
||||
&& rm -rf /tmp/* /var/tmp/* \
|
||||
|
||||
@@ -60,3 +60,11 @@ end_of_line = unset
|
||||
charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
[benches/**]
|
||||
indent_style = unset
|
||||
indent_size = unset
|
||||
end_of_line = unset
|
||||
charset = unset
|
||||
trim_trailing_whitespace = unset
|
||||
insert_final_newline = unset
|
||||
|
||||
4
.github/labeler.yml
vendored
4
.github/labeler.yml
vendored
@@ -76,6 +76,10 @@ ggml:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- ggml/**
|
||||
model:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
- src/models/**
|
||||
nix:
|
||||
- changed-files:
|
||||
- any-glob-to-any-file:
|
||||
|
||||
74
.github/workflows/build-linux-cross.yml
vendored
74
.github/workflows/build-linux-cross.yml
vendored
@@ -4,49 +4,49 @@ on:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
ubuntu-24-riscv64-cpu-cross:
|
||||
runs-on: ubuntu-24.04
|
||||
# ubuntu-24-riscv64-cpu-cross:
|
||||
# runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo dpkg --add-architecture riscv64
|
||||
# steps:
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Setup Riscv
|
||||
# run: |
|
||||
# sudo dpkg --add-architecture riscv64
|
||||
|
||||
# Add arch-specific repositories for non-amd64 architectures
|
||||
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
EOF
|
||||
# # Add arch-specific repositories for non-amd64 architectures
|
||||
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
|
||||
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
|
||||
# EOF
|
||||
|
||||
sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
|
||||
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu
|
||||
# sudo apt-get install -y --no-install-recommends \
|
||||
# build-essential \
|
||||
# gcc-14-riscv64-linux-gnu \
|
||||
# g++-14-riscv64-linux-gnu
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cmake -B build -DLLAMA_CURL=OFF \
|
||||
# -DCMAKE_BUILD_TYPE=Release \
|
||||
# -DGGML_OPENMP=OFF \
|
||||
# -DLLAMA_BUILD_EXAMPLES=ON \
|
||||
# -DLLAMA_BUILD_TOOLS=ON \
|
||||
# -DLLAMA_BUILD_TESTS=OFF \
|
||||
# -DCMAKE_SYSTEM_NAME=Linux \
|
||||
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
# cmake --build build --config Release -j $(nproc)
|
||||
|
||||
# ubuntu-24-riscv64-vulkan-cross:
|
||||
# runs-on: ubuntu-24.04
|
||||
|
||||
93
.github/workflows/build.yml
vendored
93
.github/workflows/build.yml
vendored
@@ -161,15 +161,16 @@ jobs:
|
||||
- name: Dawn Dependency
|
||||
id: dawn-depends
|
||||
run: |
|
||||
DAWN_VERSION="v1.0.0"
|
||||
DAWN_VERSION="v2.0.0"
|
||||
DAWN_OWNER="reeselevine"
|
||||
DAWN_REPO="dawn"
|
||||
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-macos-latest-Release.tar.gz"
|
||||
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.zip"
|
||||
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
|
||||
curl -L -o artifact.tar.gz \
|
||||
curl -L -o artifact.zip \
|
||||
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
|
||||
mkdir dawn
|
||||
tar -xvf artifact.tar.gz -C dawn --strip-components=1
|
||||
unzip artifact.zip
|
||||
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.tar.gz -C dawn --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -521,15 +522,16 @@ jobs:
|
||||
id: dawn-depends
|
||||
run: |
|
||||
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
|
||||
DAWN_VERSION="v1.0.0"
|
||||
DAWN_VERSION="v2.0.0"
|
||||
DAWN_OWNER="reeselevine"
|
||||
DAWN_REPO="dawn"
|
||||
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-ubuntu-latest-Release.tar.gz"
|
||||
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.zip"
|
||||
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
|
||||
curl -L -o artifact.tar.gz \
|
||||
curl -L -o artifact.zip \
|
||||
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
|
||||
mkdir dawn
|
||||
tar -xvf artifact.tar.gz -C dawn --strip-components=1
|
||||
unzip artifact.zip
|
||||
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.tar.gz -C dawn --strip-components=1
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -1305,6 +1307,81 @@ jobs:
|
||||
cd examples/llama.android
|
||||
./gradlew build --no-daemon
|
||||
|
||||
android-ndk-build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
env:
|
||||
OPENCL_VERSION: 2025.07.22
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'arm64-cpu'
|
||||
defines: '-D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF -D GGML_OPENMP=OFF'
|
||||
- build: 'arm64-snapdragon'
|
||||
defines: '--preset arm64-android-snapdragon-release'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install OpenCL Headers and Libs
|
||||
id: install_opencl
|
||||
if: ${{ matrix.build == 'arm64-snapdragon' }}
|
||||
run: |
|
||||
mkdir opencl
|
||||
curl -L -o opencl/clhpp.tar.gz https://github.com/KhronosGroup/OpenCL-CLHPP/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
|
||||
curl -L -o opencl/headers.tar.gz https://github.com/KhronosGroup/OpenCL-Headers/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
|
||||
curl -L -o opencl/icd-loader.tar.gz https://github.com/KhronosGroup/OpenCL-ICD-Loader/archive/refs/tags/v${OPENCL_VERSION}.tar.gz
|
||||
tar -xaf opencl/headers.tar.gz -C opencl
|
||||
tar -xaf opencl/clhpp.tar.gz -C opencl
|
||||
tar -xaf opencl/icd-loader.tar.gz -C opencl
|
||||
sudo cp -r opencl/OpenCL-Headers-${OPENCL_VERSION}/CL ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
|
||||
sudo cp -r opencl/OpenCL-CLHPP-${OPENCL_VERSION}/include/CL/* ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include/CL
|
||||
cd opencl/OpenCL-ICD-Loader-${OPENCL_VERSION}
|
||||
cmake -B build -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -DOPENCL_ICD_LOADER_HEADERS_DIR=${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=31 -DANDROID_STL=c++_shared
|
||||
cmake --build build
|
||||
sudo cp build/libOpenCL.so ${ANDROID_NDK_ROOT}/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
|
||||
rm -rf opencl
|
||||
|
||||
- name: Install Hexagon SDK
|
||||
id: install_hexsdk
|
||||
if: ${{ matrix.build == 'arm64-snapdragon' }}
|
||||
env:
|
||||
HEXSDK_VER: 6.4.0.2
|
||||
HEXTLS_VER: 19.0.04
|
||||
run: |
|
||||
curl -L -o hex-sdk.tar.gz https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v$HEXSDK_VER/hexagon-sdk-v$HEXSDK_VER-amd64-lnx.tar.xz
|
||||
mkdir hex-sdk
|
||||
tar -xaf hex-sdk.tar.gz -C hex-sdk
|
||||
ls -l hex-sdk
|
||||
sudo mv hex-sdk /opt/hexagon
|
||||
echo "HEXAGON_SDK_ROOT=/opt/hexagon/$HEXSDK_VER" >> "$GITHUB_ENV"
|
||||
echo "HEXAGON_TOOLS_ROOT=/opt/hexagon/$HEXSDK_VER/tools/HEXAGON_Tools/$HEXTLS_VER" >> "$GITHUB_ENV"
|
||||
echo "DEFAULT_HLOS_ARCH=64" >> "$GITHUB_ENV"
|
||||
echo "DEFAULT_TOOLS_VARIANT=toolv19" >> "$GITHUB_ENV"
|
||||
echo "DEFAULT_NO_QURT_INC=0" >> "$GITHUB_ENV"
|
||||
echo "DEFAULT_DSP_ARCH=v73" >> "$GITHUB_ENV"
|
||||
|
||||
- name: Update CMake presets
|
||||
id: update_presets
|
||||
if: ${{ matrix.build == 'arm64-snapdragon' }}
|
||||
run: |
|
||||
cp docs/backend/hexagon/CMakeUserPresets.json .
|
||||
|
||||
- name: Build
|
||||
id: ndk_build
|
||||
run: |
|
||||
cmake ${{ matrix.defines }} -B build
|
||||
cmake --build build
|
||||
cmake --install build --prefix pkg-adb/llama.cpp
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
echo "FIXME: test on devices"
|
||||
|
||||
openEuler-latest-cmake-cann:
|
||||
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
|
||||
defaults:
|
||||
|
||||
2
.github/workflows/docker.yml
vendored
2
.github/workflows/docker.yml
vendored
@@ -40,7 +40,7 @@ jobs:
|
||||
# https://github.com/ggml-org/llama.cpp/issues/11888
|
||||
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
|
||||
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
|
||||
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
|
||||
|
||||
2
.github/workflows/release.yml
vendored
2
.github/workflows/release.yml
vendored
@@ -134,6 +134,8 @@ jobs:
|
||||
include:
|
||||
- build: 'x64'
|
||||
os: ubuntu-22.04
|
||||
- build: 's390x'
|
||||
os: ubuntu-24.04-s390x
|
||||
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
|
||||
# - build: 'arm64'
|
||||
# os: ubuntu-22.04-arm
|
||||
|
||||
2
.github/workflows/update-ops-docs.yml
vendored
2
.github/workflows/update-ops-docs.yml
vendored
@@ -3,10 +3,12 @@ name: Update Operations Documentation
|
||||
on:
|
||||
push:
|
||||
paths:
|
||||
- 'docs/ops.md'
|
||||
- 'docs/ops/**'
|
||||
- 'scripts/create_ops_docs.py'
|
||||
pull_request:
|
||||
paths:
|
||||
- 'docs/ops.md'
|
||||
- 'docs/ops/**'
|
||||
- 'scripts/create_ops_docs.py'
|
||||
|
||||
|
||||
@@ -55,7 +55,7 @@
|
||||
/ggml/src/ggml-cuda/common.cuh @slaren
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
|
||||
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
|
||||
@@ -65,6 +65,7 @@
|
||||
/ggml/src/ggml-impl.h @ggerganov @slaren
|
||||
/ggml/src/ggml-metal/ @ggerganov
|
||||
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
|
||||
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/ggml-quants.* @ggerganov
|
||||
/ggml/src/ggml-rpc/ @rgerganov
|
||||
@@ -88,6 +89,7 @@
|
||||
/src/llama-model-loader.* @slaren
|
||||
/src/llama-model.* @CISC
|
||||
/src/llama-vocab.* @CISC
|
||||
/src/models/ @CISC
|
||||
/tests/ @ggerganov
|
||||
/tests/test-backend-ops.cpp @slaren
|
||||
/tests/test-thread-safety.cpp @slaren
|
||||
|
||||
11
README.md
11
README.md
@@ -17,14 +17,13 @@ LLM inference in C/C++
|
||||
|
||||
## Hot topics
|
||||
|
||||
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
|
||||
- **[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
|
||||
- **[guide : using the new WebUI of llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/16938)**
|
||||
- [guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)
|
||||
- [[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)
|
||||
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
|
||||
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
|
||||
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
|
||||
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
|
||||
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
|
||||
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
|
||||
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
|
||||
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
|
||||
|
||||
@@ -84,6 +83,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
|
||||
- [x] [Jamba](https://huggingface.co/ai21labs)
|
||||
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
@@ -138,6 +138,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
|
||||
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
|
||||
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
|
||||
- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86)
|
||||
|
||||
#### Multimodal
|
||||
|
||||
@@ -187,6 +188,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
|
||||
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
|
||||
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
|
||||
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -278,6 +280,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
|
||||
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"chars": 2296.1916666666666,
|
||||
"chars:std": 986.051306946325,
|
||||
"score": 0.925,
|
||||
"score:std": 0.26339134382131846
|
||||
}
|
||||
File diff suppressed because one or more lines are too long
264
benches/dgx-spark/dgx-spark.md
Normal file
264
benches/dgx-spark/dgx-spark.md
Normal file
@@ -0,0 +1,264 @@
|
||||
## System info
|
||||
|
||||
```bash
|
||||
uname --all
|
||||
Linux spark-17ed 6.11.0-1016-nvidia #16-Ubuntu SMP PREEMPT_DYNAMIC Sun Sep 21 16:52:46 UTC 2025 aarch64 aarch64 aarch64 GNU/Linux
|
||||
|
||||
g++ --version
|
||||
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
|
||||
|
||||
nvidia-smi
|
||||
Sun Nov 2 10:43:25 2025
|
||||
+-----------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
|
||||
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
|
||||
| | | MIG M. |
|
||||
|=========================================+========================+======================|
|
||||
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
|
||||
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
|
||||
| | | N/A |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
```
|
||||
|
||||
## ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
|
||||
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
|
||||
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
|
||||
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
|
||||
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
|
||||
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
|
||||
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
|
||||
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
|
||||
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
|
||||
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
|
||||
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
|
||||
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
|
||||
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
|
||||
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
|
||||
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
|
||||
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
|
||||
## ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
|
||||
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
|
||||
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
|
||||
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
|
||||
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
|
||||
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
|
||||
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
|
||||
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
|
||||
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
|
||||
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
|
||||
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
|
||||
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
|
||||
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
|
||||
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
|
||||
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
|
||||
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
|
||||
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
|
||||
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
|
||||
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
|
||||
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
|
||||
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
|
||||
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
|
||||
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
|
||||
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
|
||||
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
|
||||
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
|
||||
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
|
||||
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
|
||||
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
|
||||
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
|
||||
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
|
||||
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
|
||||
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
|
||||
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
|
||||
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
|
||||
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
|
||||
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
|
||||
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
|
||||
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
|
||||
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
|
||||
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
|
||||
## ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
|
||||
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
|
||||
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
|
||||
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
|
||||
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
|
||||
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
|
||||
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
|
||||
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
|
||||
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
|
||||
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
|
||||
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
|
||||
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
|
||||
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
|
||||
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
|
||||
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
|
||||
11
benches/dgx-spark/run-aime-120b-t8-x8-high.log
Normal file
11
benches/dgx-spark/run-aime-120b-t8-x8-high.log
Normal file
File diff suppressed because one or more lines are too long
@@ -75,7 +75,7 @@ if [ ! -z ${GG_BUILD_ROCM} ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DAMDGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
|
||||
@@ -56,6 +56,8 @@ add_library(${TARGET} STATIC
|
||||
common.h
|
||||
console.cpp
|
||||
console.h
|
||||
download.cpp
|
||||
download.h
|
||||
http.h
|
||||
json-partial.cpp
|
||||
json-partial.h
|
||||
|
||||
1049
common/arg.cpp
1049
common/arg.cpp
File diff suppressed because it is too large
Load Diff
@@ -59,8 +59,8 @@ struct common_arg {
|
||||
common_arg & set_sparam();
|
||||
bool in_example(enum llama_example ex);
|
||||
bool is_exclude(enum llama_example ex);
|
||||
bool get_value_from_env(std::string & output);
|
||||
bool has_value_from_env();
|
||||
bool get_value_from_env(std::string & output) const;
|
||||
bool has_value_from_env() const;
|
||||
std::string to_string();
|
||||
};
|
||||
|
||||
|
||||
217
common/chat.cpp
217
common/chat.cpp
@@ -9,8 +9,11 @@
|
||||
#include <minja/chat-template.hpp>
|
||||
#include <minja/minja.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdio>
|
||||
#include <cctype>
|
||||
#include <exception>
|
||||
#include <functional>
|
||||
#include <iostream>
|
||||
#include <optional>
|
||||
#include <stdexcept>
|
||||
@@ -310,7 +313,6 @@ json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msg
|
||||
}
|
||||
if (!msg.reasoning_content.empty()) {
|
||||
jmsg["reasoning_content"] = msg.reasoning_content;
|
||||
jmsg["thinking"] = msg.reasoning_content; // gpt-oss
|
||||
}
|
||||
if (!msg.tool_name.empty()) {
|
||||
jmsg["name"] = msg.tool_name;
|
||||
@@ -640,6 +642,7 @@ const char * common_chat_format_name(common_chat_format format) {
|
||||
case COMMON_CHAT_FORMAT_SEED_OSS: return "Seed-OSS";
|
||||
case COMMON_CHAT_FORMAT_NEMOTRON_V2: return "Nemotron V2";
|
||||
case COMMON_CHAT_FORMAT_APERTUS: return "Apertus";
|
||||
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS: return "LFM2 with JSON tools";
|
||||
default:
|
||||
throw std::runtime_error("Unknown chat format");
|
||||
}
|
||||
@@ -986,6 +989,126 @@ static common_chat_params common_chat_params_init_mistral_nemo(const common_chat
|
||||
return data;
|
||||
}
|
||||
|
||||
|
||||
// Case-insensitive find
|
||||
static size_t ifind_string(const std::string & haystack, const std::string & needle, size_t pos = 0) {
|
||||
auto it = std::search(
|
||||
haystack.begin() + pos, haystack.end(),
|
||||
needle.begin(), needle.end(),
|
||||
[](char a, char b) { return std::tolower(a) == std::tolower(b); }
|
||||
);
|
||||
return (it == haystack.end()) ? std::string::npos : std::distance(haystack.begin(), it);
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_lfm2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
const auto is_json_schema_provided = !inputs.json_schema.is_null();
|
||||
const auto is_grammar_provided = !inputs.grammar.empty();
|
||||
const auto are_tools_provided = inputs.tools.is_array() && !inputs.tools.empty();
|
||||
|
||||
// the logic requires potentially modifying the messages
|
||||
auto tweaked_messages = inputs.messages;
|
||||
|
||||
auto replace_json_schema_marker = [](json & messages) -> bool {
|
||||
static std::string marker1 = "force json schema.\n";
|
||||
static std::string marker2 = "force json schema.";
|
||||
|
||||
if (messages.empty() || messages.at(0).at("role") != "system") {
|
||||
return false;
|
||||
}
|
||||
|
||||
std::string content = messages.at(0).at("content");
|
||||
|
||||
for (const auto & marker : {marker1, marker2}) {
|
||||
const auto pos = ifind_string(content, marker);
|
||||
if (pos != std::string::npos) {
|
||||
content.replace(pos, marker.length(), "");
|
||||
// inject modified content back into the messages
|
||||
messages.at(0).at("content") = content;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
// Lfm2 model does not natively work with json, but can generally understand the tools structure
|
||||
//
|
||||
// Example of the pytorch dialog structure:
|
||||
// <|startoftext|><|im_start|>system
|
||||
// List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
|
||||
// <|im_start|>user
|
||||
// What is the current status of candidate ID 12345?<|im_end|>
|
||||
// <|im_start|>assistant
|
||||
// <|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
|
||||
// <|im_start|>tool
|
||||
// <|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
|
||||
// <|im_start|>assistant
|
||||
// The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
|
||||
//
|
||||
// For the llama server compatibility with json tools semantic,
|
||||
// the client can add "Follow json schema." line into the system message prompt to force the json output.
|
||||
//
|
||||
if (are_tools_provided && (is_json_schema_provided || is_grammar_provided)) {
|
||||
// server/utils.hpp prohibits that branch for the custom grammar anyways
|
||||
throw std::runtime_error("Tools call must not use \"json_schema\" or \"grammar\", use non-tool invocation if you want to use custom grammar");
|
||||
} else if (are_tools_provided && replace_json_schema_marker(tweaked_messages)) {
|
||||
LOG_INF("%s: Using tools to build a grammar\n", __func__);
|
||||
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
auto schemas = json::array();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
schemas.push_back({
|
||||
{"type", "object"},
|
||||
{"properties", {
|
||||
{"name", {
|
||||
{"type", "string"},
|
||||
{"const", function.at("name")},
|
||||
}},
|
||||
{"arguments", function.at("parameters")},
|
||||
}},
|
||||
{"required", json::array({"name", "arguments", "id"})},
|
||||
});
|
||||
});
|
||||
auto schema = json {
|
||||
{"type", "array"},
|
||||
{"items", schemas.size() == 1 ? schemas[0] : json {{"anyOf", schemas}}},
|
||||
{"minItems", 1},
|
||||
};
|
||||
if (!inputs.parallel_tool_calls) {
|
||||
schema["maxItems"] = 1;
|
||||
}
|
||||
|
||||
builder.add_rule("root", "\"<|tool_call_start|>\"" + builder.add_schema("tool_calls", schema) + "\"<|tool_call_end|>\"");
|
||||
});
|
||||
// model has no concept of tool selection mode choice,
|
||||
// if the system prompt rendered correctly it will produce a tool call
|
||||
// the grammar goes inside the tool call body
|
||||
data.grammar_lazy = true;
|
||||
data.grammar_triggers = {{COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL, "\\s*<\\|tool_call_start\\|>\\s*\\["}};
|
||||
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
|
||||
data.format = COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS;
|
||||
} else if (are_tools_provided && (!is_json_schema_provided && !is_grammar_provided)) {
|
||||
LOG_INF("%s: Using tools without json schema or grammar\n", __func__);
|
||||
// output those tokens
|
||||
data.preserved_tokens = {"<|tool_call_start|>", "<|tool_call_end|>"};
|
||||
} else if (is_json_schema_provided) {
|
||||
LOG_INF("%s: Using provided json schema to build a grammar\n", __func__);
|
||||
data.grammar = json_schema_to_grammar(inputs.json_schema);
|
||||
} else if (is_grammar_provided) {
|
||||
LOG_INF("%s: Using provided grammar\n", __func__);
|
||||
data.grammar = inputs.grammar;
|
||||
} else {
|
||||
LOG_INF("%s: Using content relying on the template\n", __func__);
|
||||
}
|
||||
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override= */ tweaked_messages);
|
||||
LOG_DBG("%s: Prompt: %s\n", __func__, data.prompt.c_str());
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_magistral(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
@@ -1686,7 +1809,23 @@ static void common_chat_parse_deepseek_v3_1(common_chat_msg_parser & builder) {
|
||||
|
||||
static common_chat_params common_chat_params_init_gpt_oss(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
auto prompt = apply(tmpl, inputs);
|
||||
|
||||
// Copy reasoning to the "thinking" field as expected by the gpt-oss template
|
||||
auto adjusted_messages = json::array();
|
||||
for (const auto & msg : inputs.messages) {
|
||||
auto has_reasoning_content = msg.contains("reasoning_content") && msg.at("reasoning_content").is_string();
|
||||
auto has_tool_calls = msg.contains("tool_calls") && msg.at("tool_calls").is_array();
|
||||
|
||||
if (has_reasoning_content && has_tool_calls) {
|
||||
auto adjusted_message = msg;
|
||||
adjusted_message["thinking"] = msg.at("reasoning_content");
|
||||
adjusted_messages.push_back(adjusted_message);
|
||||
} else {
|
||||
adjusted_messages.push_back(msg);
|
||||
}
|
||||
}
|
||||
|
||||
auto prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||||
|
||||
// Check if we need to replace the return token with end token during
|
||||
// inference and without generation prompt. For more details see:
|
||||
@@ -2499,6 +2638,71 @@ static void common_chat_parse_apertus(common_chat_msg_parser & builder) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
}
|
||||
|
||||
|
||||
static void common_chat_parse_lfm2(common_chat_msg_parser & builder) {
|
||||
if (!builder.syntax().parse_tool_calls) {
|
||||
builder.add_content(builder.consume_rest());
|
||||
return;
|
||||
}
|
||||
|
||||
// LFM2 format: <|tool_call_start|>[{"name": "get_current_time", "arguments": {"location": "Paris"}}]<|tool_call_end|>
|
||||
static const common_regex tool_call_start_regex(regex_escape("<|tool_call_start|>"));
|
||||
static const common_regex tool_call_end_regex(regex_escape("<|tool_call_end|>"));
|
||||
|
||||
// Loop through all tool calls
|
||||
while (auto res = builder.try_find_regex(tool_call_start_regex, std::string::npos, /* add_prelude_to_content= */ true)) {
|
||||
builder.move_to(res->groups[0].end);
|
||||
|
||||
// Parse JSON array format: [{"name": "...", "arguments": {...}}]
|
||||
auto tool_calls_data = builder.consume_json();
|
||||
|
||||
// Consume end marker
|
||||
builder.consume_spaces();
|
||||
if (!builder.try_consume_regex(tool_call_end_regex)) {
|
||||
throw common_chat_msg_partial_exception("Expected <|tool_call_end|>");
|
||||
}
|
||||
|
||||
// Process each tool call in the array
|
||||
if (tool_calls_data.json.is_array()) {
|
||||
for (const auto & tool_call : tool_calls_data.json) {
|
||||
if (!tool_call.is_object()) {
|
||||
throw common_chat_msg_partial_exception("Tool call must be an object");
|
||||
}
|
||||
|
||||
if (!tool_call.contains("name")) {
|
||||
throw common_chat_msg_partial_exception("Tool call missing 'name' field");
|
||||
}
|
||||
|
||||
std::string function_name = tool_call.at("name");
|
||||
std::string arguments = "{}";
|
||||
|
||||
if (tool_call.contains("arguments")) {
|
||||
if (tool_call.at("arguments").is_object()) {
|
||||
arguments = tool_call.at("arguments").dump();
|
||||
} else if (tool_call.at("arguments").is_string()) {
|
||||
arguments = tool_call.at("arguments");
|
||||
}
|
||||
}
|
||||
|
||||
if (!builder.add_tool_call(function_name, "", arguments)) {
|
||||
throw common_chat_msg_partial_exception("Incomplete tool call");
|
||||
}
|
||||
}
|
||||
} else {
|
||||
throw common_chat_msg_partial_exception("Expected JSON array for tool calls");
|
||||
}
|
||||
|
||||
// Consume any trailing whitespace after this tool call
|
||||
builder.consume_spaces();
|
||||
}
|
||||
|
||||
// Consume any remaining content after all tool calls
|
||||
auto remaining = builder.consume_rest();
|
||||
if (!string_strip(remaining).empty()) {
|
||||
builder.add_content(remaining);
|
||||
}
|
||||
}
|
||||
|
||||
static void common_chat_parse_seed_oss(common_chat_msg_parser & builder) {
|
||||
// Parse thinking tags first - this handles the main reasoning content
|
||||
builder.try_parse_reasoning("<seed:think>", "</seed:think>");
|
||||
@@ -2748,6 +2952,12 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_apertus(tmpl, params);
|
||||
}
|
||||
|
||||
// LFM2 (w/ tools)
|
||||
if (src.find("List of tools: <|tool_list_start|>[") != std::string::npos &&
|
||||
src.find("]<|tool_list_end|>") != std::string::npos) {
|
||||
return common_chat_params_init_lfm2(tmpl, params);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||||
@@ -2926,6 +3136,9 @@ static void common_chat_parse(common_chat_msg_parser & builder) {
|
||||
case COMMON_CHAT_FORMAT_APERTUS:
|
||||
common_chat_parse_apertus(builder);
|
||||
break;
|
||||
case COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS:
|
||||
common_chat_parse_lfm2(builder);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(std::string("Unsupported format: ") + common_chat_format_name(builder.syntax().format));
|
||||
}
|
||||
|
||||
@@ -116,6 +116,7 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_SEED_OSS,
|
||||
COMMON_CHAT_FORMAT_NEMOTRON_V2,
|
||||
COMMON_CHAT_FORMAT_APERTUS,
|
||||
COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
||||
@@ -908,6 +908,39 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
return cache_directory + filename;
|
||||
}
|
||||
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
std::vector<common_file_info> files;
|
||||
if (path.empty()) return files;
|
||||
|
||||
std::filesystem::path dir(path);
|
||||
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
|
||||
return files;
|
||||
}
|
||||
|
||||
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
|
||||
try {
|
||||
// Only include regular files (skip directories)
|
||||
const auto & p = entry.path();
|
||||
if (std::filesystem::is_regular_file(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
try {
|
||||
info.size = static_cast<size_t>(std::filesystem::file_size(p));
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
info.size = 0;
|
||||
}
|
||||
files.push_back(std::move(info));
|
||||
}
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
// skip entries we cannot inspect
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
return files;
|
||||
}
|
||||
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
||||
@@ -406,6 +406,8 @@ struct common_params {
|
||||
bool mmproj_use_gpu = true; // use GPU for multimodal model
|
||||
bool no_mmproj = false; // explicitly disable multimodal model
|
||||
std::vector<std::string> image; // path to image file(s)
|
||||
int image_min_tokens = -1;
|
||||
int image_max_tokens = -1;
|
||||
|
||||
// finetune
|
||||
struct lr_opt lr;
|
||||
@@ -458,7 +460,8 @@ struct common_params {
|
||||
float slot_prompt_similarity = 0.1f;
|
||||
|
||||
// batched-bench params
|
||||
bool is_pp_shared = false;
|
||||
bool is_pp_shared = false;
|
||||
bool is_tg_separate = false;
|
||||
|
||||
std::vector<int32_t> n_pp;
|
||||
std::vector<int32_t> n_tg;
|
||||
@@ -505,6 +508,10 @@ struct common_params {
|
||||
// return false from callback to abort model loading or true to continue
|
||||
llama_progress_callback load_progress_callback = NULL;
|
||||
void * load_progress_callback_user_data = NULL;
|
||||
|
||||
bool has_speculative() const {
|
||||
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
|
||||
}
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -605,6 +612,13 @@ bool fs_create_directory_with_parents(const std::string & path);
|
||||
std::string fs_get_cache_directory();
|
||||
std::string fs_get_cache_file(const std::string & filename);
|
||||
|
||||
struct common_file_info {
|
||||
std::string path;
|
||||
std::string name;
|
||||
size_t size = 0; // in bytes
|
||||
};
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
1054
common/download.cpp
Normal file
1054
common/download.cpp
Normal file
File diff suppressed because it is too large
Load Diff
55
common/download.h
Normal file
55
common/download.h
Normal file
@@ -0,0 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
struct common_params_model;
|
||||
|
||||
//
|
||||
// download functionalities
|
||||
//
|
||||
|
||||
struct common_cached_model_info {
|
||||
std::string manifest_path;
|
||||
std::string user;
|
||||
std::string model;
|
||||
std::string tag;
|
||||
size_t size = 0; // GGUF size in bytes
|
||||
std::string to_string() const {
|
||||
return user + "/" + model + ":" + tag;
|
||||
}
|
||||
};
|
||||
|
||||
struct common_hf_file_res {
|
||||
std::string repo; // repo name with ":tag" removed
|
||||
std::string ggufFile;
|
||||
std::string mmprojFile;
|
||||
};
|
||||
|
||||
/**
|
||||
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
|
||||
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
|
||||
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
|
||||
*
|
||||
* Return pair of <repo, file> (with "repo" already having tag removed)
|
||||
*
|
||||
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
|
||||
*/
|
||||
common_hf_file_res common_get_hf_file(
|
||||
const std::string & hf_repo_with_tag,
|
||||
const std::string & bearer_token,
|
||||
bool offline);
|
||||
|
||||
// returns true if download succeeded
|
||||
bool common_download_model(
|
||||
const common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
bool offline);
|
||||
|
||||
// returns list of cached models
|
||||
std::vector<common_cached_model_info> common_list_cached_models();
|
||||
|
||||
// resolve and download model from Docker registry
|
||||
// return local path to downloaded model file
|
||||
std::string common_docker_resolve_model(const std::string & docker);
|
||||
@@ -41,9 +41,9 @@ static std::string build_repetition(const std::string & item_rule, int min_items
|
||||
return result;
|
||||
}
|
||||
|
||||
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
|
||||
auto has_min = min_value != std::numeric_limits<int>::min();
|
||||
auto has_max = max_value != std::numeric_limits<int>::max();
|
||||
static void _build_min_max_int(int64_t min_value, int64_t max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
|
||||
auto has_min = min_value != std::numeric_limits<int64_t>::min();
|
||||
auto has_max = max_value != std::numeric_limits<int64_t>::max();
|
||||
|
||||
auto digit_range = [&](char from, char to) {
|
||||
out << "[";
|
||||
@@ -159,7 +159,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
if (has_min) {
|
||||
if (min_value < 0) {
|
||||
out << "\"-\" (";
|
||||
_build_min_max_int(std::numeric_limits<int>::min(), -min_value, out, decimals_left, /* top_level= */ false);
|
||||
_build_min_max_int(std::numeric_limits<int64_t>::min(), -min_value, out, decimals_left, /* top_level= */ false);
|
||||
out << ") | [0] | [1-9] ";
|
||||
more_digits(0, decimals_left - 1);
|
||||
} else if (min_value == 0) {
|
||||
@@ -194,7 +194,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
}
|
||||
digit_range(c, c);
|
||||
out << " (";
|
||||
_build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits<int>::max(), out, less_decimals, /* top_level= */ false);
|
||||
_build_min_max_int(std::stoll(min_s.substr(1)), std::numeric_limits<int64_t>::max(), out, less_decimals, /* top_level= */ false);
|
||||
out << ")";
|
||||
if (c < '9') {
|
||||
out << " | ";
|
||||
@@ -216,7 +216,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
|
||||
_build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true);
|
||||
} else {
|
||||
out << "\"-\" (";
|
||||
_build_min_max_int(-max_value, std::numeric_limits<int>::max(), out, decimals_left, /* top_level= */ false);
|
||||
_build_min_max_int(-max_value, std::numeric_limits<int64_t>::max(), out, decimals_left, /* top_level= */ false);
|
||||
out << ")";
|
||||
}
|
||||
return;
|
||||
@@ -601,7 +601,10 @@ private:
|
||||
}
|
||||
|
||||
std::string _resolve_ref(const std::string & ref) {
|
||||
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
|
||||
auto it = ref.find('#');
|
||||
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
|
||||
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
|
||||
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
|
||||
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
|
||||
_refs_being_resolved.insert(ref);
|
||||
json resolved = _refs[ref];
|
||||
@@ -774,11 +777,24 @@ public:
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
if (target.is_object() && target.contains(sel)) {
|
||||
target = target[sel];
|
||||
} else if (target.is_array()) {
|
||||
size_t sel_index;
|
||||
try {
|
||||
sel_index = std::stoul(sel);
|
||||
} catch (const std::invalid_argument & e) {
|
||||
sel_index = target.size();
|
||||
}
|
||||
if (sel_index >= target.size()) {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel_index];
|
||||
} else {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
_refs[ref] = target;
|
||||
}
|
||||
@@ -925,17 +941,17 @@ public:
|
||||
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
|
||||
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
|
||||
} else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) {
|
||||
int min_value = std::numeric_limits<int>::min();
|
||||
int max_value = std::numeric_limits<int>::max();
|
||||
int64_t min_value = std::numeric_limits<int64_t>::min();
|
||||
int64_t max_value = std::numeric_limits<int64_t>::max();
|
||||
if (schema.contains("minimum")) {
|
||||
min_value = schema["minimum"].get<int>();
|
||||
min_value = schema["minimum"].get<int64_t>();
|
||||
} else if (schema.contains("exclusiveMinimum")) {
|
||||
min_value = schema["exclusiveMinimum"].get<int>() + 1;
|
||||
min_value = schema["exclusiveMinimum"].get<int64_t>() + 1;
|
||||
}
|
||||
if (schema.contains("maximum")) {
|
||||
max_value = schema["maximum"].get<int>();
|
||||
max_value = schema["maximum"].get<int64_t>();
|
||||
} else if (schema.contains("exclusiveMaximum")) {
|
||||
max_value = schema["exclusiveMaximum"].get<int>() - 1;
|
||||
max_value = schema["exclusiveMaximum"].get<int64_t>() - 1;
|
||||
}
|
||||
std::stringstream out;
|
||||
out << "(";
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -139,8 +139,9 @@ models = [
|
||||
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
|
||||
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
|
||||
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
|
||||
{"name": "llada-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base", },
|
||||
{"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
|
||||
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
|
||||
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
|
||||
]
|
||||
|
||||
# some models are known to be broken upstream, so we will skip them as exceptions
|
||||
@@ -435,7 +436,7 @@ for model in models:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
|
||||
else:
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
|
||||
except OSError as e:
|
||||
except (OSError, TypeError) as e:
|
||||
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
|
||||
continue # Skip this model and continue with the next one in the loop
|
||||
|
||||
|
||||
@@ -39,18 +39,23 @@ The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adren
|
||||
| Adreno 830 (Snapdragon 8 Elite) | Support |
|
||||
| Adreno X85 (Snapdragon X Elite) | Support |
|
||||
|
||||
> A6x GPUs with a recent driver and compiler are supported; they are usually found in IoT platforms.
|
||||
However, A6x GPUs in phones are likely not supported due to the outdated driver and compiler.
|
||||
|
||||
## DataType Supports
|
||||
|
||||
| DataType | Status |
|
||||
|:----------------------:|:--------------------------:|
|
||||
| Q4_0 | Support |
|
||||
| Q6_K | Support, but not optimized |
|
||||
| Q8_0 | Support |
|
||||
| MXFP4 | Support |
|
||||
|
||||
## Model Preparation
|
||||
|
||||
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
|
||||
You can refer to the general [llama-quantize tool](/tools/quantize/README.md) for steps to convert a model in Hugging Face safetensor format to GGUF with quantization.
|
||||
|
||||
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
|
||||
Currently we support `Q4_0` quantization and have optimized for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize` (i.e., make all weights in `Q4_0`). For example,
|
||||
|
||||
```sh
|
||||
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
|
||||
@@ -58,6 +63,17 @@ Currently we support `Q4_0` quantization and have optimize for it. To achieve be
|
||||
|
||||
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
|
||||
|
||||
### `MXFP4` MoE Models
|
||||
|
||||
OpenAI gpt-oss models are MoE models in `MXFP4`. The quantized model will be in `MXFP4_MOE`, a mixture of `MXFP4` and `Q8_0`.
|
||||
For this quantization, there is no need to specify `--pure`.
|
||||
For gpt-oss-20b model, you can directly [download](https://huggingface.co/ggml-org/gpt-oss-20b-GGUF) the quantized GGUF file in `MXFP4_MOE` from Hugging Face.
|
||||
|
||||
Although it is possible to quantize gpt-oss-20b model in pure `Q4_0` (all weights in `Q4_0`), it is not recommended since `MXFP4` has been optimized for MoE while `Q4_0` is not. In addition, accuracy should degrade with such pure `Q4_0` quantization.
|
||||
Hence, using the default `MXFP4_MOE` quantization (see the link above) is recommended for this model.
|
||||
|
||||
> Note that the `Q4_0` model found [here](https://huggingface.co/unsloth/gpt-oss-20b-GGUF/blob/main/gpt-oss-20b-Q4_0.gguf) is a mixture of `Q4_0`, `Q8_0` and `MXFP4` and gives better performance than `MXFP4_MOE` quantization.
|
||||
|
||||
## CMake Options
|
||||
|
||||
The OpenCL backend has the following CMake options that control the behavior of the backend.
|
||||
@@ -146,10 +162,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
|
||||
* Ninja
|
||||
* Visual Studio 2022
|
||||
* Powershell 7
|
||||
* Python
|
||||
|
||||
Visual Studio provides necessary headers and libraries although it is not directly used for building.
|
||||
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
> Note that building using Visual Studio's cl compiler is not supported. Clang must be used. Clang depends on libraries provided by Visual Studio to work. Therefore, Visual Studio must be installed. Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
|
||||
|
||||
Powershell 7 is used for the following commands.
|
||||
If an older version of Powershell is used, these commands may not work as they are.
|
||||
|
||||
@@ -201,9 +220,12 @@ ninja
|
||||
|
||||
## Known Issues
|
||||
|
||||
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
|
||||
- Flash attention does not always improve performance.
|
||||
- Currently OpenCL backend works on A6xx GPUs with recent drivers and compilers (usually found in IoT platforms).
|
||||
However, it does not work on A6xx GPUs found in phones with old drivers and compilers.
|
||||
|
||||
## TODO
|
||||
|
||||
- Optimization for Q6_K
|
||||
- Support and optimization for Q4_K
|
||||
- Improve flash attention
|
||||
|
||||
49
docs/backend/hexagon/CMakeUserPresets.json
Normal file
49
docs/backend/hexagon/CMakeUserPresets.json
Normal file
@@ -0,0 +1,49 @@
|
||||
{
|
||||
"version": 4,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
"hidden": true,
|
||||
"architecture": { "value": "arm64", "strategy": "external" },
|
||||
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||
"cacheVariables": {
|
||||
"ANDROID_ABI": "arm64-v8a",
|
||||
"ANDROID_PLATFORM": "android-31",
|
||||
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
|
||||
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
|
||||
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
|
||||
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "android_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
"GGML_OPENCL": "ON",
|
||||
"GGML_HEXAGON": "ON",
|
||||
"LLAMA_CURL": "OFF"
|
||||
}
|
||||
},
|
||||
|
||||
{
|
||||
"name": "arm64-windows-snapdragon",
|
||||
"inherits": [ "base", "arm64-windows-llvm" ],
|
||||
"cacheVariables": {
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "windows_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
"GGML_OPENCL": "ON",
|
||||
"GGML_HEXAGON": "ON",
|
||||
"LLAMA_CURL": "OFF"
|
||||
}
|
||||
},
|
||||
|
||||
{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
|
||||
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },
|
||||
|
||||
{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
|
||||
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
|
||||
]
|
||||
}
|
||||
239
docs/backend/hexagon/README.md
Normal file
239
docs/backend/hexagon/README.md
Normal file
@@ -0,0 +1,239 @@
|
||||
# Snapdragon-based Android devices
|
||||
|
||||
## How to Build
|
||||
|
||||
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
|
||||
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
|
||||
|
||||
This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
|
||||
[d]/> cd /workspace
|
||||
```
|
||||
|
||||
The rest of the Android build process assumes that you're running inside the toolchain container.
|
||||
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
|
||||
|
||||
```
|
||||
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
|
||||
|
||||
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
|
||||
Preset CMake variables:
|
||||
ANDROID_ABI="arm64-v8a"
|
||||
...
|
||||
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
|
||||
GGML_HEXAGON="ON"
|
||||
GGML_OPENCL="ON"
|
||||
GGML_OPENMP="OFF"
|
||||
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
|
||||
...
|
||||
-- Including OpenCL backend
|
||||
-- Including Hexagon backend
|
||||
...
|
||||
-- Build files have been written to: /workspace/build-snapdragon
|
||||
|
||||
[d]/workspace> cmake --build build-snapdragon
|
||||
...
|
||||
[144/356] Performing build step for 'htp-v73'
|
||||
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
|
||||
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
|
||||
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
|
||||
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
|
||||
...
|
||||
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
|
||||
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
|
||||
...
|
||||
```
|
||||
|
||||
To generate an installable "package" simply use cmake --install:
|
||||
|
||||
```
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
|
||||
-- Install configuration: "Release"
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
|
||||
...
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
|
||||
...
|
||||
```
|
||||
|
||||
## How to Install
|
||||
|
||||
For this step, your device needs to be configured for on-device development.
|
||||
Please see https://developer.android.com/studio/debug/dev-options for details.
|
||||
|
||||
Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
|
||||
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
|
||||
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
|
||||
```
|
||||
|
||||
At this point, you should also install some models:
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
|
||||
...
|
||||
2025-10-11 12:04:52 (10.7 MB/s) - ‘Llama-3.2-1B-Instruct-Q4_0.gguf’ saved [773025920/773025920]
|
||||
|
||||
~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
|
||||
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
|
||||
```
|
||||
|
||||
## How to Run
|
||||
|
||||
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
|
||||
|
||||
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
|
||||
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
|
||||
|
||||
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
|
||||
|
||||
Here are some examples of running various llama.cpp tools via ADB.
|
||||
|
||||
Simple question for Llama-3.2-1B
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v79
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
|
||||
...
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 17/17 layers to GPU
|
||||
load_tensors: CPU model buffer size = 225.49 MiB
|
||||
load_tensors: HTP0 model buffer size = 0.26 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
|
||||
...
|
||||
I hope this helps you understand the world's most popular cookies! [end of text]
|
||||
...
|
||||
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
|
||||
llama_perf_context_print: load time = 617.94 ms
|
||||
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
|
||||
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
|
||||
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
|
||||
llama_perf_context_print: graphs reused = 473
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
|
||||
```
|
||||
|
||||
Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v81
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: allocating new session: HTP1
|
||||
...
|
||||
load_tensors: offloading output layer to GPU
|
||||
load_tensors: offloaded 17/17 layers to GPU
|
||||
load_tensors: CPU model buffer size = 143.86 MiB
|
||||
load_tensors: HTP1 model buffer size = 0.23 MiB
|
||||
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
|
||||
load_tensors: HTP0 model buffer size = 0.28 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
|
||||
...
|
||||
llama_context: CPU output buffer size = 0.19 MiB
|
||||
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
|
||||
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
|
||||
llama_context: HTP0 compute buffer size = 15.00 MiB
|
||||
llama_context: HTP1 compute buffer size = 15.00 MiB
|
||||
llama_context: CPU compute buffer size = 24.56 MiB
|
||||
...
|
||||
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
|
||||
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
|
||||
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
|
||||
llama_perf_context_print: graphs reused = 255
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
|
||||
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
|
||||
```
|
||||
|
||||
Op test for MUL_MAT
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
|
||||
...
|
||||
Backend 2/3: HTP0
|
||||
Device description: Hexagon
|
||||
Device memory: 2048 MB (2048 MB free)
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
|
||||
|
||||
~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
|
||||
...
|
||||
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
|
||||
ggml-hex: Hexagon Arch version v79
|
||||
ggml-hex: allocating new session: HTP0
|
||||
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
|
||||
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
|
||||
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
|
||||
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
|
||||
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |
|
||||
|
||||
build: 6a8cf8914 (6733)
|
||||
```
|
||||
|
||||
## Environment variables
|
||||
|
||||
- `GGML_HEXAGON_NDEV=1`
|
||||
Controls the number of devices/sessions to allocate. The default is 1.
|
||||
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.
|
||||
|
||||
- `GGML_HEXAGON_NHVX=0`
|
||||
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).
|
||||
|
||||
- `GGML_HEXAGON_HOSTBUF=1`
|
||||
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
|
||||
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).
|
||||
|
||||
- `GGML_HEXAGON_VERBOSE=1`
|
||||
Enables verbose logging of Ops from the backend. Example output:
|
||||
|
||||
```
|
||||
ggml-hex: HTP0 graph-compute n_nodes 2
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
|
||||
ggml-hex: HTP0 graph-compute n_nodes 1
|
||||
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
|
||||
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
|
||||
```
|
||||
|
||||
- `GGML_HEXAGON_PROFILE=1`
|
||||
Generates a host-side profile for the ggml-hexagon Ops.
|
||||
|
||||
- `GGML_HEXAGON_OPMASK=0x0`
|
||||
Allows enabling specific stages of the processing pipeline:
|
||||
|
||||
- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
|
||||
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
|
||||
- `0x4` Enable Op Compute (MUL_MAT, etc.)
|
||||
|
||||
Examples:
|
||||
|
||||
`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
|
||||
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
|
||||
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)
|
||||
109
docs/backend/hexagon/developer.md
Normal file
109
docs/backend/hexagon/developer.md
Normal file
@@ -0,0 +1,109 @@
|
||||
# Hexagon backend developer details
|
||||
|
||||
## Backend libraries
|
||||
|
||||
The Hexagon backend consist of two parts:
|
||||
|
||||
- `libggml-hexagon`
|
||||
This is the regular CPU-side GGML backend library, either shared or statically linked
|
||||
|
||||
- `libggml-htp-vNN`
|
||||
This is the NPU-side (HTP stands for Hexagon Tensor Processor) shared library that contains the Op dispatcher and kernels.
|
||||
The correct library is selected automatically at runtime based on the HW version.
|
||||
|
||||
Here is an example of the build artifacts
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ ls -l pkg-adb/llama.cpp/lib/libggml*
|
||||
pkg-adb/llama.cpp/lib/libggml-base.so
|
||||
pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
pkg-adb/llama.cpp/lib/libggml-hexagon.so <<< CPU library
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v73.so <<< HTP op/kernels for Hexagon v73
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
```
|
||||
|
||||
## Memory buffers
|
||||
|
||||
Hexagon NPU backend takes advantage of the Snapdragon's unified memory model where all buffers are fully accessible by the CPU and GPU.
|
||||
The NPU does have a dedicated tightly-coupled memory called VTCM but that memory is used only for intermediate data (e.g. dynamically
|
||||
quantized tensors) or temporary data (chunks of the weight tensors fetched via DMA).
|
||||
|
||||
Please note that currently the Hexagon backend does not implement SET/GET_ROWS Ops because there is no advantage in offloading those
|
||||
to the NPU at this point.
|
||||
|
||||
The backend does allocates non-host buffers for the tensors with datatypes that require repacking: Q4_0, Q8_0, MXFP4.
|
||||
From the MMU perspective these buffers are still regular buffers (normal access by the CPU) they are marked as non-host simply to force
|
||||
the repacking.
|
||||
|
||||
## Large model handling
|
||||
|
||||
Hexagon NPU session (aka Process Domain (PD) in the Hexagon docs) is limited to a memory mapping of around 3.5GB.
|
||||
In llama.cpp/GGML the Hexagon session is mapped to a single GGML backend device (HTP0, HTP1, etc).
|
||||
|
||||
In order to map models larger than 3.5GB we need to allocate multiple devices and split the model.
|
||||
For this we're taking advantage of the llama.cpp/GGML multi-GPU layer-splitting support.
|
||||
Each Hexagon device behaves like a GPU from the offload and model splitting perspective.
|
||||
|
||||
Here is an example of running GPT-OSS-20B model on a newer Snapdragon device with 16GB of DDR.
|
||||
|
||||
```
|
||||
M=gpt-oss-20b-Q4_0.gguf NDEV=4 D=HTP0,HTP1,HTP2,HTP3 P=surfing.txt scripts/snapdragon/adb/run-cli.sh -no-cnv -f surfing.txt -n 32
|
||||
...
|
||||
LD_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
|
||||
ADSP_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
|
||||
GGML_HEXAGON_NDEV=4 ./bin/llama-cli --no-mmap -m /data/local/tmp/llama.cpp/../gguf/gpt-oss-20b-Q4_0.gguf
|
||||
-t 4 --ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on -ngl 99 --device HTP0,HTP1,HTP2,HTP3 -no-cnv -f surfing.txt
|
||||
...
|
||||
llama_model_loader: - type f32: 289 tensors
|
||||
llama_model_loader: - type q4_0: 96 tensors
|
||||
llama_model_loader: - type q8_0: 2 tensors
|
||||
llama_model_loader: - type mxfp4: 72 tensors
|
||||
...
|
||||
load_tensors: offloaded 25/25 layers to GPU
|
||||
load_tensors: CPU model buffer size = 1182.09 MiB
|
||||
load_tensors: HTP1 model buffer size = 6.64 MiB
|
||||
load_tensors: HTP1-REPACK model buffer size = 2505.94 MiB
|
||||
load_tensors: HTP3 model buffer size = 5.55 MiB
|
||||
load_tensors: HTP3-REPACK model buffer size = 2088.28 MiB
|
||||
load_tensors: HTP0 model buffer size = 7.75 MiB
|
||||
load_tensors: HTP0-REPACK model buffer size = 2923.59 MiB
|
||||
load_tensors: HTP2 model buffer size = 6.64 MiB
|
||||
load_tensors: HTP2-REPACK model buffer size = 2505.94 MiB
|
||||
...
|
||||
llama_context: n_ctx_per_seq (8192) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
|
||||
llama_context: CPU output buffer size = 0.77 MiB
|
||||
llama_kv_cache_iswa: creating non-SWA KV cache, size = 8192 cells
|
||||
llama_kv_cache: HTP1 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP3 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: HTP2 KV buffer size = 25.50 MiB
|
||||
llama_kv_cache: size = 102.00 MiB ( 8192 cells, 12 layers, 1/1 seqs), K (q8_0): 51.00 MiB, V (q8_0): 51.00 MiB
|
||||
llama_kv_cache_iswa: creating SWA KV cache, size = 256 cells
|
||||
llama_kv_cache: HTP1 KV buffer size = 0.80 MiB
|
||||
llama_kv_cache: HTP3 KV buffer size = 0.53 MiB
|
||||
llama_kv_cache: HTP0 KV buffer size = 1.06 MiB
|
||||
llama_kv_cache: HTP2 KV buffer size = 0.80 MiB
|
||||
llama_kv_cache: size = 3.19 MiB ( 256 cells, 12 layers, 1/1 seqs), K (q8_0): 1.59 MiB, V (q8_0): 1.59 MiB
|
||||
llama_context: HTP0 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP1 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP2 compute buffer size = 16.06 MiB
|
||||
llama_context: HTP3 compute buffer size = 16.06 MiB
|
||||
llama_context: CPU compute buffer size = 98.19 MiB
|
||||
...
|
||||
llama_perf_context_print: prompt eval time = 3843.67 ms / 197 tokens ( 19.51 ms per token, 51.25 tokens per second)
|
||||
llama_perf_context_print: eval time = 1686.13 ms / 31 runs ( 54.39 ms per token, 18.39 tokens per second)
|
||||
llama_perf_context_print: total time = 6266.30 ms / 228 tokens
|
||||
llama_perf_context_print: graphs reused = 30
|
||||
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
|
||||
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP2 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - HTP3 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
|
||||
llama_memory_breakdown_print: | - Host | 1476 = 1208 + 105 + 162 |
|
||||
llama_memory_breakdown_print: | - HTP1-REPACK | 2505 = 2505 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP3-REPACK | 2088 = 2088 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP0-REPACK | 2923 = 2923 + 0 + 0 |
|
||||
llama_memory_breakdown_print: | - HTP2-REPACK | 2505 = 2505 + 0 + 0 |
|
||||
```
|
||||
@@ -178,6 +178,48 @@ GeForce RTX 3070 8.6
|
||||
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
|
||||
```
|
||||
|
||||
### Overriding the CUDA Version
|
||||
|
||||
If you have multiple CUDA installations on your system and want to compile llama.cpp for a specific one, e.g. for CUDA 11.7 installed under `/opt/cuda-11.7`:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_COMPILER=/opt/cuda-11.7/bin/nvcc -DCMAKE_INSTALL_RPATH="/opt/cuda-11.7/lib64;\$ORIGIN" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
|
||||
```
|
||||
|
||||
#### Fixing Compatibility Issues with Old CUDA and New glibc
|
||||
|
||||
If you try to use an old CUDA version (e.g. v11.7) with a new glibc version you can get errors like this:
|
||||
|
||||
```
|
||||
/usr/include/bits/mathcalls.h(83): error: exception specification is
|
||||
incompatible with that of previous function "cospi"
|
||||
|
||||
|
||||
/opt/cuda-11.7/bin/../targets/x86_64-linux/include/crt/math_functions.h(5545):
|
||||
here
|
||||
```
|
||||
|
||||
It seems the least bad solution is to patch the CUDA installation to declare the correct signatures.
|
||||
Replace the following lines in `/path/to/your/cuda/installation/targets/x86_64-linux/include/crt/math_functions.h`:
|
||||
|
||||
```C++
|
||||
// original lines
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x);
|
||||
|
||||
// edited lines
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x) noexcept (true);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x) noexcept (true);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x) noexcept (true);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x) noexcept (true);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x) noexcept (true);
|
||||
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x) noexcept (true);
|
||||
```
|
||||
|
||||
### Runtime CUDA environmental variables
|
||||
|
||||
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
|
||||
@@ -261,10 +303,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build --config Release -- -j 16
|
||||
```
|
||||
|
||||
Note: `GPU_TARGETS` is optional, omitting it will build the code for all GPUs in the current system.
|
||||
|
||||
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
|
||||
|
||||
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
|
||||
@@ -282,17 +326,17 @@ You can download it from your Linux distro's package manager or from here: [ROCm
|
||||
```bash
|
||||
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||
&& cmake --build build -- -j 16
|
||||
```
|
||||
|
||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||
```bash
|
||||
set PATH=%HIP_PATH%\bin;%PATH%
|
||||
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake -S . -B build -G Ninja -DGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build
|
||||
```
|
||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
If necessary, adapt `GPU_TARGETS` to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||
|
||||
|
||||
|
||||
@@ -7,9 +7,9 @@
|
||||
## Images
|
||||
We have three Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
|
||||
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
|
||||
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
|
||||
16
docs/ops.md
16
docs/ops.md
@@ -22,10 +22,11 @@ Legend:
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CONV_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
@@ -41,6 +42,7 @@ Legend:
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
@@ -70,18 +72,19 @@ Legend:
|
||||
| OPT_STEP_SGD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
@@ -97,8 +100,8 @@ Legend:
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
@@ -108,5 +111,6 @@ Legend:
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| TOPK_MOE | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
|
||||
@@ -59,6 +59,14 @@
|
||||
"CPU","EXP","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
|
||||
"CPU","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","CPU"
|
||||
"CPU","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
|
||||
"CPU","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","ABS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","ABS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","SGN","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
@@ -119,6 +127,14 @@
|
||||
"CPU","EXP","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
|
||||
"CPU","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","CPU"
|
||||
"CPU","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","CPU"
|
||||
"CPU","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","CPU"
|
||||
"CPU","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","CPU"
|
||||
"CPU","REGLU","type=f16,ne_a=[128,2,2,2],v=0,swapped=0","support","1","yes","CPU"
|
||||
"CPU","REGLU","type=f16,ne_a=[5,7,11,13],v=0,swapped=0","support","1","yes","CPU"
|
||||
"CPU","REGLU","type=f16,ne_a=[128,2,2,2],v=0,swapped=1","support","1","yes","CPU"
|
||||
|
||||
|
Can't render this file because it is too large.
|
1620
docs/ops/CUDA.csv
1620
docs/ops/CUDA.csv
File diff suppressed because it is too large
Load Diff
@@ -31,6 +31,14 @@
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","XIELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","XIELU","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
@@ -95,6 +103,14 @@
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","XIELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","XIELU","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
@@ -5621,25 +5637,25 @@
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000000,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000000","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000000,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000000","support","0","no","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000000","support","1","yes","SYCL"
|
||||
"SYCL0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000001","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000001,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000001","support","0","no","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000001","support","1","yes","SYCL"
|
||||
"SYCL0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000100","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000100,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000100","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.000100,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000100","support","0","no","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.000100","support","1","yes","SYCL"
|
||||
"SYCL0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.100000","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.100000,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.100000","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=1,eps=0.100000,inplace=0","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.100000","support","0","no","SYCL"
|
||||
"SYCL0","RMS_NORM_BACK","type=f32,ne=[64,5,4,3],eps=0.100000","support","1","yes","SYCL"
|
||||
"SYCL0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM","type=f32,ne=[64,5,4,3],v=0,eps=0.000001,inplace=1","support","1","yes","SYCL"
|
||||
"SYCL0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=0.000000,broadcast=0,multi_add=0","support","1","yes","SYCL"
|
||||
@@ -9291,37 +9307,37 @@
|
||||
"SYCL0","ROPE","type=f16,ne_a=[128,32,2,1],n_dims=128,mode=24,n_ctx=512,fs=1.424500,ef=0.746500,af=1.424500,ff=0,v=0,inplace=1","support","1","yes","SYCL"
|
||||
"SYCL0","ROPE","type=f16,ne_a=[128,32,2,1],n_dims=128,mode=24,n_ctx=512,fs=1.424500,ef=0.746500,af=1.424500,ff=1,v=0,inplace=1","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=0","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=0","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=0","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=0","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=0","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=0","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=0","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=0","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=0","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=1","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=1","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=1","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=1","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=1","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=1","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=1","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=1","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=2","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=2","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=2","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=2","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=2","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=2","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=2","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=2","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=2","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=2","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=2","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=2","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=3","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=3","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=0,v=3","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=3","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=3","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=1,v=3","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","0","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","0","no","SYCL"
|
||||
"SYCL0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","0","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","SYCL"
|
||||
@@ -9363,8 +9379,8 @@
|
||||
"SYCL0","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","SYCL"
|
||||
"SYCL0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","SYCL"
|
||||
"SYCL0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","SYCL"
|
||||
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","no","SYCL"
|
||||
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","SYCL"
|
||||
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","yes","SYCL"
|
||||
"SYCL0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","yes","SYCL"
|
||||
"SYCL0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","0","no","SYCL"
|
||||
"SYCL0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","0","no","SYCL"
|
||||
"SYCL0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","SYCL"
|
||||
|
||||
|
Can't render this file because it is too large.
|
@@ -3263,27 +3263,27 @@
|
||||
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","RMS_NORM_MUL_ADD","type=f32,ne=[64,5,4,3],eps=1.000000,broadcast=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","L2_NORM","type=f32,ne=[64,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","0","no","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[3,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[3,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[3,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1024,1,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1024,4,1],ne_b=[4,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,1536,1,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,1536,4,1],ne_b=[4,1536,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[8,2048,1,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_CONV","type=f32,ne_a=[4,2048,4,1],ne_b=[4,2048,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=16,head_dim=1,n_head=1024,n_group=1,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=128,head_dim=64,n_head=16,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
|
||||
"Vulkan0","SSM_SCAN","type=f32,d_state=256,head_dim=64,n_head=8,n_group=2,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
|
||||
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=1,n_seqs=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","RWKV_WKV6","type=f32,head_count=32,head_size=64,n_seq_tokens=32,n_seqs=4","support","1","yes","Vulkan"
|
||||
|
||||
|
Can't render this file because it is too large.
|
@@ -38,6 +38,7 @@ The above command will output space-separated float values.
|
||||
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
|
||||
| 'json' | openai style |
|
||||
| 'json+' | add cosine similarity matrix |
|
||||
| 'raw' | plain text output |
|
||||
|
||||
### --embd-separator $"string"$
|
||||
| $"string"$ | |
|
||||
|
||||
@@ -70,6 +70,29 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
}
|
||||
|
||||
// plain, pipe-friendly output: one embedding per line
|
||||
static void print_raw_embeddings(const float * emb,
|
||||
int n_embd_count,
|
||||
int n_embd,
|
||||
const llama_model * model,
|
||||
enum llama_pooling_type pooling_type,
|
||||
int embd_normalize) {
|
||||
const uint32_t n_cls_out = llama_model_n_cls_out(model);
|
||||
const bool is_rank = (pooling_type == LLAMA_POOLING_TYPE_RANK);
|
||||
const int cols = is_rank ? std::min<int>(n_embd, (int) n_cls_out) : n_embd;
|
||||
|
||||
for (int j = 0; j < n_embd_count; ++j) {
|
||||
for (int i = 0; i < cols; ++i) {
|
||||
if (embd_normalize == 0) {
|
||||
LOG("%1.0f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
|
||||
} else {
|
||||
LOG("%1.7f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
@@ -372,6 +395,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (notArray) LOG("\n}\n");
|
||||
} else if (params.embd_out == "raw") {
|
||||
print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
|
||||
@@ -184,8 +184,13 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t size = gguf_get_tensor_size (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
const auto type = gguf_get_tensor_type (ctx, i);
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
|
||||
const char * type_name = ggml_type_name(type);
|
||||
const size_t type_size = ggml_type_size(type);
|
||||
const size_t n_elements = size / type_size;
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu, type = %s, n_elts = %zu\n", __func__, i, name, size, offset, type_name, n_elements);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -371,8 +371,17 @@ class SchemaConverter:
|
||||
raise ValueError(f'Unsupported ref {ref}')
|
||||
|
||||
for sel in ref.split('#')[-1].split('/')[1:]:
|
||||
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
assert target is not None, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
if isinstance(target, list):
|
||||
try:
|
||||
sel_index = int(sel)
|
||||
except ValueError:
|
||||
raise ValueError(f'Error resolving ref {ref}: {sel} not in {target}')
|
||||
assert 0 <= sel_index < len(target), f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel_index]
|
||||
else:
|
||||
assert sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
|
||||
self._refs[ref] = target
|
||||
else:
|
||||
@@ -547,7 +556,8 @@ class SchemaConverter:
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
ref_name = ref.split('/')[-1]
|
||||
ref_fragment = ref.split('#')[-1]
|
||||
ref_name = 'ref' + re.sub(r'[^a-zA-Z0-9-]+', '-', ref_fragment)
|
||||
if ref_name not in self._rules and ref not in self._refs_being_resolved:
|
||||
self._refs_being_resolved.add(ref)
|
||||
resolved = self._refs[ref]
|
||||
|
||||
@@ -138,7 +138,10 @@ if model_path is None:
|
||||
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
||||
print("Model type: ", config.model_type)
|
||||
print("Vocab size: ", config.vocab_size)
|
||||
@@ -147,10 +150,6 @@ print("Number of layers: ", config.num_hidden_layers)
|
||||
print("BOS token id: ", config.bos_token_id)
|
||||
print("EOS token id: ", config.eos_token_id)
|
||||
|
||||
print("Loading model and tokenizer using AutoTokenizer:", model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
config = AutoConfig.from_pretrained(model_path)
|
||||
|
||||
if unreleased_model_name:
|
||||
model_name_lower = unreleased_model_name.lower()
|
||||
unreleased_module_path = (
|
||||
@@ -171,7 +170,7 @@ if unreleased_model_name:
|
||||
exit(1)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_path, device_map="auto", offload_folder="offload"
|
||||
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
|
||||
)
|
||||
|
||||
for name, module in model.named_modules():
|
||||
|
||||
@@ -168,7 +168,7 @@ option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
|
||||
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
|
||||
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ON)
|
||||
option(GGML_VXE "ggml: enable vxe" ${GGML_NATIVE})
|
||||
|
||||
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
@@ -251,6 +251,8 @@ option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adr
|
||||
set (GGML_OPENCL_TARGET_VERSION "300" CACHE STRING
|
||||
"gmml: OpenCL API version to target")
|
||||
|
||||
option(GGML_HEXAGON "ggml: enable Hexagon backend" OFF)
|
||||
|
||||
# toolchain for vulkan-shaders-gen
|
||||
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
|
||||
|
||||
|
||||
19
ggml/include/ggml-hexagon.h
Normal file
19
ggml/include/ggml-hexagon.h
Normal file
@@ -0,0 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_hexagon_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_hexagon(ggml_backend_t backend);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_hexagon_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -21,8 +21,7 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c
|
||||
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, uint32_t device, size_t * free, size_t * total);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_rpc_start_server(const char * endpoint, const char * cache_dir,
|
||||
size_t n_threads, size_t n_devices,
|
||||
ggml_backend_dev_t * devices, size_t * free_mem, size_t * total_mem);
|
||||
size_t n_threads, size_t n_devices, ggml_backend_dev_t * devices);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_add_server(const char * endpoint);
|
||||
|
||||
@@ -242,6 +242,7 @@
|
||||
#define GGML_ROPE_TYPE_NEOX 2
|
||||
#define GGML_ROPE_TYPE_MROPE 8
|
||||
#define GGML_ROPE_TYPE_VISION 24
|
||||
#define GGML_ROPE_TYPE_IMROPE 40 // binary: 101000
|
||||
|
||||
#define GGML_MROPE_SECTIONS 4
|
||||
|
||||
@@ -577,6 +578,10 @@ extern "C" {
|
||||
GGML_UNARY_OP_EXP,
|
||||
GGML_UNARY_OP_GELU_ERF,
|
||||
GGML_UNARY_OP_XIELU,
|
||||
GGML_UNARY_OP_FLOOR,
|
||||
GGML_UNARY_OP_CEIL,
|
||||
GGML_UNARY_OP_ROUND,
|
||||
GGML_UNARY_OP_TRUNC,
|
||||
|
||||
GGML_UNARY_OP_COUNT,
|
||||
};
|
||||
@@ -1151,6 +1156,46 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_floor(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_floor_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_ceil(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_ceil_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_round(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_round_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
/**
|
||||
* Truncates the fractional part of each element in the tensor (towards zero).
|
||||
* For example: trunc(3.7) = 3.0, trunc(-2.9) = -2.0
|
||||
* Similar to std::trunc in C/C++.
|
||||
*/
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_trunc(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_trunc_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
|
||||
|
||||
// xIELU activation function
|
||||
// x = x * (c_a(alpha_n) + c_b(alpha_p, beta) * sigmoid(beta * x)) + eps * (x > 0)
|
||||
// where c_a = softplus and c_b(a, b) = softplus(a) + b are constraining functions
|
||||
@@ -2063,6 +2108,7 @@ extern "C" {
|
||||
enum ggml_scale_mode {
|
||||
GGML_SCALE_MODE_NEAREST = 0,
|
||||
GGML_SCALE_MODE_BILINEAR = 1,
|
||||
GGML_SCALE_MODE_BICUBIC = 2,
|
||||
|
||||
GGML_SCALE_MODE_COUNT
|
||||
};
|
||||
|
||||
@@ -304,6 +304,14 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "PowerPC")
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
foreach (feat VXE2 NNPA)
|
||||
set(GGML_INTERNAL_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
@@ -371,6 +379,13 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported PowerPC target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
ggml_add_cpu_backend_variant(z15 Z15 VXE2)
|
||||
ggml_add_cpu_backend_variant(z16 Z16 VXE2 NNPA)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
@@ -390,6 +405,7 @@ ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(zDNN)
|
||||
ggml_add_backend(OpenCL)
|
||||
ggml_add_backend(Hexagon)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
|
||||
|
||||
@@ -226,16 +226,23 @@ static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * al
|
||||
}
|
||||
|
||||
if (best_fit_block == -1) {
|
||||
// no suitable block found, try the last block (this will grow a chunks size)
|
||||
// no suitable block found, try the last block (this may grow a chunks size)
|
||||
int64_t best_reuse = INT64_MIN;
|
||||
for (int c = 0; c < alloc->n_chunks; ++c) {
|
||||
struct tallocr_chunk * chunk = alloc->chunks[c];
|
||||
if (chunk->n_free_blocks > 0) {
|
||||
struct free_block * block = &chunk->free_blocks[chunk->n_free_blocks - 1];
|
||||
max_avail = MAX(max_avail, block->size);
|
||||
if (block->size >= size) {
|
||||
int64_t reuse_factor = chunk->max_size - block->offset - size;
|
||||
// reuse_factor < 0 : amount of extra memory that needs to be allocated
|
||||
// reuse_factor = 0 : allocated free space exactly matches tensor size
|
||||
// reuse_factor > 0 : superfluous memory that will remain unused
|
||||
bool better_reuse = best_reuse < 0 && reuse_factor > best_reuse;
|
||||
bool better_fit = reuse_factor >= 0 && reuse_factor < best_reuse;
|
||||
if (block->size >= size && (better_reuse || better_fit)) {
|
||||
best_fit_chunk = c;
|
||||
best_fit_block = chunk->n_free_blocks - 1;
|
||||
break;
|
||||
best_reuse = reuse_factor;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -268,7 +275,7 @@ static struct buffer_address ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * al
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, addr, tensor);
|
||||
size_t cur_max = addr.offset + size;
|
||||
if (cur_max > alloc->max_size[addr.chunk]) {
|
||||
if (cur_max > chunk->max_size) {
|
||||
// sort allocated_tensors by chunk/offset
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
for (int j = i + 1; j < 1024; j++) {
|
||||
@@ -598,6 +605,26 @@ static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
|
||||
}
|
||||
|
||||
// free the extra space at the end if the new tensor is smaller
|
||||
static void ggml_gallocr_free_extra_space(ggml_gallocr_t galloc, struct ggml_tensor * node, struct ggml_tensor * parent) {
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
|
||||
|
||||
size_t parent_size = ggml_backend_buft_get_alloc_size(galloc->bufts[p_hn->buffer_id], parent);
|
||||
size_t node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
||||
|
||||
GGML_ASSERT(parent_size >= node_size);
|
||||
|
||||
if (parent_size > node_size) {
|
||||
struct ggml_dyn_tallocr * p_alloc = galloc->buf_tallocs[p_hn->buffer_id];
|
||||
struct buffer_address p_addr = p_hn->addr;
|
||||
p_addr.offset += node_size;
|
||||
size_t extra_size = parent_size - node_size;
|
||||
AT_PRINTF("freeing extra %zu bytes from parent %s for %s\n", extra_size, parent->name, node->name);
|
||||
ggml_dyn_tallocr_free_tensor(p_alloc, p_addr, extra_size, parent);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
|
||||
GGML_ASSERT(buffer_id >= 0);
|
||||
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
||||
@@ -643,6 +670,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
hn->addr = p_hn->addr;
|
||||
p_hn->allocated = false; // avoid freeing the parent
|
||||
view_src_hn->allocated = false;
|
||||
ggml_gallocr_free_extra_space(galloc, node, view_src);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
@@ -650,6 +678,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
|
||||
hn->buffer_id = p_hn->buffer_id;
|
||||
hn->addr = p_hn->addr;
|
||||
p_hn->allocated = false; // avoid freeing the parent
|
||||
ggml_gallocr_free_extra_space(galloc, node, parent);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -57,6 +57,10 @@
|
||||
#include "ggml-opencl.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_HEXAGON
|
||||
#include "ggml-hexagon.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
#include "ggml-blas.h"
|
||||
#endif
|
||||
@@ -199,6 +203,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_HEXAGON
|
||||
register_backend(ggml_backend_hexagon_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_CANN
|
||||
register_backend(ggml_backend_cann_reg());
|
||||
#endif
|
||||
@@ -598,6 +605,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_load_best("hexagon", silent, dir_path);
|
||||
ggml_backend_load_best("musa", silent, dir_path);
|
||||
ggml_backend_load_best("cpu", silent, dir_path);
|
||||
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
|
||||
|
||||
89
ggml/src/ggml-cann/acl_tensor.cpp
Executable file → Normal file
89
ggml/src/ggml-cann/acl_tensor.cpp
Executable file → Normal file
@@ -51,28 +51,31 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
|
||||
return ACL_DT_UNDEFINED;
|
||||
}
|
||||
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
size_t* nb, int64_t dims, aclFormat format,
|
||||
size_t offset) {
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne,
|
||||
size_t * nb,
|
||||
int64_t dims,
|
||||
aclFormat format,
|
||||
size_t offset) {
|
||||
// If tensor is bcasted, Up to GGML_MAX_DIMS additional dimensions will be
|
||||
// added.
|
||||
int64_t acl_ne[GGML_MAX_DIMS * 2], acl_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
if (ne == nullptr) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
acl_ne[i] = tensor->ne[i];
|
||||
// The step size of acl is in elements.
|
||||
acl_stride[i] = tensor->nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
} else {
|
||||
// With bcast
|
||||
for (int i = 0; i < dims; i++) {
|
||||
acl_ne[i] = ne[i];
|
||||
acl_ne[i] = ne[i];
|
||||
acl_stride[i] = nb[i] / ggml_element_size(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t final_dims = (dims == 0 ? GGML_MAX_DIMS : dims);
|
||||
int64_t acl_storage_len = 1;
|
||||
for (int i = 0; i < final_dims; i++) {
|
||||
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
|
||||
@@ -84,15 +87,13 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
|
||||
std::reverse(acl_ne, acl_ne + final_dims);
|
||||
std::reverse(acl_stride, acl_stride + final_dims);
|
||||
|
||||
aclTensor* acl_tensor = aclCreateTensor(
|
||||
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
elem_offset, format, &acl_storage_len, 1,
|
||||
tensor->data);
|
||||
aclTensor * acl_tensor = aclCreateTensor(acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
|
||||
elem_offset, format, &acl_storage_len, 1, tensor->data);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (t1->ne[i] != t0->ne[i] && t1->ne[i] != 1) {
|
||||
return true;
|
||||
@@ -101,15 +102,16 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
const ggml_tensor* src1,
|
||||
int64_t* bcast_src0_ne,
|
||||
int64_t* bcast_src1_ne, size_t* bcast_src0_nb,
|
||||
size_t* bcast_src1_nb) {
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
|
||||
const ggml_tensor * src1,
|
||||
int64_t * bcast_src0_ne,
|
||||
int64_t * bcast_src1_ne,
|
||||
size_t * bcast_src0_nb,
|
||||
size_t * bcast_src1_nb) {
|
||||
GGML_ASSERT(ggml_can_repeat(src1, src0));
|
||||
int bcast_dim_cnt = 0;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
int64_t nr = src0->ne[i] / src1->ne[i];
|
||||
bcast_src0_ne[bcast_dim_cnt] = src0->ne[i] / nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = src1->ne[i];
|
||||
bcast_src0_nb[bcast_dim_cnt] = src0->nb[i];
|
||||
@@ -119,21 +121,26 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0,
|
||||
// Need to add an extra dim.
|
||||
bcast_src0_ne[bcast_dim_cnt] = nr;
|
||||
bcast_src1_ne[bcast_dim_cnt] = 1;
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] *
|
||||
bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_src0_nb[bcast_dim_cnt] = bcast_src0_nb[bcast_dim_cnt - 1] * bcast_src0_ne[bcast_dim_cnt - 1];
|
||||
bcast_src1_nb[bcast_dim_cnt] = bcast_src1_nb[bcast_dim_cnt - 1] * bcast_src1_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
return bcast_dim_cnt;
|
||||
}
|
||||
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb) {
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
|
||||
const int64_t * weight_ne,
|
||||
const int64_t * dst_ne,
|
||||
const size_t * input_nb,
|
||||
const size_t * weight_nb,
|
||||
const size_t * dst_nb,
|
||||
int64_t * bcast_input_ne,
|
||||
int64_t * bcast_weight_ne,
|
||||
int64_t * bcast_dst_ne,
|
||||
size_t * bcast_input_nb,
|
||||
size_t * bcast_weight_nb,
|
||||
size_t * bcast_dst_nb) {
|
||||
// input and dst shoule in same shape, except first two dims.
|
||||
GGML_ASSERT(input_ne[2] == dst_ne[2]);
|
||||
GGML_ASSERT(input_ne[3] == dst_ne[3]);
|
||||
@@ -148,34 +155,30 @@ int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
// Do not use bcast in the first two dimensions because we only support
|
||||
// the bcast batch dimension. Just copy them.
|
||||
if (i < 2 || nr == 1) {
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i];
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i];
|
||||
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
} else {
|
||||
// Need to add an extra dim.
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_input_ne[bcast_dim_cnt] = nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = 1;
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = input_nb[i];
|
||||
bcast_dst_nb[bcast_dim_cnt] = dst_nb[i];
|
||||
bcast_weight_nb[bcast_dim_cnt] = weight_nb[i];
|
||||
bcast_dim_cnt++;
|
||||
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_input_ne[bcast_dim_cnt] = input_ne[i] / nr;
|
||||
bcast_dst_ne[bcast_dim_cnt] = dst_ne[i] / nr;
|
||||
bcast_weight_ne[bcast_dim_cnt] = weight_ne[i];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] *
|
||||
bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] *
|
||||
bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] =
|
||||
bcast_weight_nb[bcast_dim_cnt - 1] *
|
||||
bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_input_nb[bcast_dim_cnt] = bcast_input_nb[bcast_dim_cnt - 1] * bcast_input_ne[bcast_dim_cnt - 1];
|
||||
bcast_dst_nb[bcast_dim_cnt] = bcast_dst_nb[bcast_dim_cnt - 1] * bcast_dst_ne[bcast_dim_cnt - 1];
|
||||
bcast_weight_nb[bcast_dim_cnt] = bcast_weight_nb[bcast_dim_cnt - 1] * bcast_weight_ne[bcast_dim_cnt - 1];
|
||||
bcast_dim_cnt++;
|
||||
}
|
||||
}
|
||||
|
||||
97
ggml/src/ggml-cann/acl_tensor.h
Executable file → Normal file
97
ggml/src/ggml-cann/acl_tensor.h
Executable file → Normal file
@@ -62,10 +62,12 @@ aclDataType ggml_cann_type_mapping(ggml_type type);
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = nullptr,
|
||||
size_t* nb = nullptr, int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
aclTensor * ggml_cann_create_tensor(const ggml_tensor * tensor,
|
||||
int64_t * ne = nullptr,
|
||||
size_t * nb = nullptr,
|
||||
int64_t dims = 0,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0);
|
||||
|
||||
/**
|
||||
* @brief Template for creating an ACL tensor from provided parameters. typename TYPE
|
||||
@@ -87,12 +89,15 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne = null
|
||||
* @param offset Offset in bytes for the ACL tensor data. Defaults to 0.
|
||||
* @return Pointer to the created ACL tensor.
|
||||
*/
|
||||
template<typename TYPE>
|
||||
aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
TYPE type_size, int64_t* ne, TYPE* nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
template <typename TYPE>
|
||||
aclTensor * ggml_cann_create_tensor(void * data_ptr,
|
||||
aclDataType dtype,
|
||||
TYPE type_size,
|
||||
int64_t * ne,
|
||||
TYPE * nb,
|
||||
int64_t dims,
|
||||
aclFormat format = ACL_FORMAT_ND,
|
||||
size_t offset = 0) {
|
||||
int64_t tmp_ne[GGML_MAX_DIMS * 2];
|
||||
int64_t tmp_stride[GGML_MAX_DIMS * 2];
|
||||
|
||||
@@ -109,9 +114,8 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
std::reverse(tmp_ne, tmp_ne + dims);
|
||||
std::reverse(tmp_stride, tmp_stride + dims);
|
||||
|
||||
aclTensor* acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size,
|
||||
format, &acl_storage_len, 1, data_ptr);
|
||||
aclTensor * acl_tensor =
|
||||
aclCreateTensor(tmp_ne, dims, dtype, tmp_stride, offset / type_size, format, &acl_storage_len, 1, data_ptr);
|
||||
|
||||
return acl_tensor;
|
||||
}
|
||||
@@ -132,7 +136,7 @@ aclTensor* ggml_cann_create_tensor(void* data_ptr, aclDataType dtype,
|
||||
* to 1. If such a dimension is found, broadcasting is required to align t1
|
||||
* with t0 for element-wise operations.
|
||||
*/
|
||||
bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
bool ggml_cann_need_bcast(const ggml_tensor * t0, const ggml_tensor * t1);
|
||||
|
||||
/**
|
||||
* @brief Computes broadcast shapes and strides for two ggml_tensors.
|
||||
@@ -187,19 +191,21 @@ bool ggml_cann_need_bcast(const ggml_tensor* t0, const ggml_tensor* t1);
|
||||
* dim1 in a inserted dim, should add nb for dim1,
|
||||
* and all other nb moves to next in order.
|
||||
*/
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* src1,
|
||||
int64_t* bcast_ne_src0, int64_t* bcast_ne_src1,
|
||||
size_t* bcast_nb_src0, size_t* bcast_nb_src1);
|
||||
int64_t ggml_cann_get_bcast_shape(const ggml_tensor * src0,
|
||||
const ggml_tensor * src1,
|
||||
int64_t * bcast_ne_src0,
|
||||
int64_t * bcast_ne_src1,
|
||||
size_t * bcast_nb_src0,
|
||||
size_t * bcast_nb_src1);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape( \
|
||||
src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, bcast_##src0##_nb, \
|
||||
bcast_##src1##_nb);
|
||||
#define BCAST_SHAPE(src0, src1) \
|
||||
int64_t bcast_##src0##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##src1##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src0##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##src1##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_bcast_shape(src0, src1, bcast_##src0##_ne, bcast_##src1##_ne, \
|
||||
bcast_##src0##_nb, bcast_##src1##_nb);
|
||||
|
||||
#define BCAST_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
@@ -233,26 +239,31 @@ int64_t ggml_cann_get_bcast_shape(const ggml_tensor* src0, const ggml_tensor* sr
|
||||
* before cast dim.
|
||||
* @sa ggml_cann_get_bcast_shape
|
||||
*/
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(
|
||||
const int64_t* input_ne, const int64_t* weight_ne, const int64_t* dst_ne,
|
||||
const size_t* input_nb, const size_t* weight_nb, const size_t* dst_nb,
|
||||
int64_t* bcast_input_ne, int64_t* bcast_weight_ne, int64_t* bcast_dst_ne,
|
||||
size_t* bcast_input_nb, size_t* bcast_weight_nb, size_t* bcast_dst_nb);
|
||||
int64_t ggml_cann_get_mulmat_bcast_shape(const int64_t * input_ne,
|
||||
const int64_t * weight_ne,
|
||||
const int64_t * dst_ne,
|
||||
const size_t * input_nb,
|
||||
const size_t * weight_nb,
|
||||
const size_t * dst_nb,
|
||||
int64_t * bcast_input_ne,
|
||||
int64_t * bcast_weight_ne,
|
||||
int64_t * bcast_dst_ne,
|
||||
size_t * bcast_input_nb,
|
||||
size_t * bcast_weight_nb,
|
||||
size_t * bcast_dst_nb);
|
||||
|
||||
// Bcast macro to avoid duplicate code.
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, \
|
||||
bcast_##input##_ne, bcast_##weight##_ne, bcast_##dst##_ne, \
|
||||
bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
#define BCAST_MUL_MAT_SHAPE(input, weight, dst) \
|
||||
int64_t bcast_##input##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##weight##_ne[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_##dst##_ne[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##input##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##weight##_nb[GGML_MAX_DIMS * 2]; \
|
||||
size_t bcast_##dst##_nb[GGML_MAX_DIMS * 2]; \
|
||||
int64_t bcast_dims = ggml_cann_get_mulmat_bcast_shape( \
|
||||
input->ne, weight->ne, dst->ne, input->nb, weight->nb, dst->nb, bcast_##input##_ne, bcast_##weight##_ne, \
|
||||
bcast_##dst##_ne, bcast_##input##_nb, bcast_##weight##_nb, bcast_##dst##_nb);
|
||||
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) \
|
||||
bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
#define BCAST_MUL_MAT_PARAM(tensor) bcast_##tensor##_ne, bcast_##tensor##_nb, bcast_dims
|
||||
|
||||
#endif // CANN_ACL_TENSOR_H
|
||||
|
||||
2508
ggml/src/ggml-cann/aclnn_ops.cpp
Executable file → Normal file
2508
ggml/src/ggml-cann/aclnn_ops.cpp
Executable file → Normal file
File diff suppressed because it is too large
Load Diff
401
ggml/src/ggml-cann/aclnn_ops.h
Executable file → Normal file
401
ggml/src/ggml-cann/aclnn_ops.h
Executable file → Normal file
@@ -62,7 +62,7 @@
|
||||
* @param dst The ggml tensor representing the destination, which op is
|
||||
* GGML_OP_REPEAT and specifies the desired dimensions.
|
||||
*/
|
||||
void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_repeat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Leaky ReLU activation function to a tensor using the CANN
|
||||
@@ -82,7 +82,7 @@ void ggml_cann_repeat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result of the Leaky ReLU
|
||||
* activation is stored, which op is `GGML_OP_LEAKY_RELU`
|
||||
*/
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_leaky_relu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Concatenates multiple tensors along a specified dimension using the
|
||||
@@ -97,7 +97,7 @@ void ggml_cann_leaky_relu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @attention tensorList length should be 2 and the dimension using for concat
|
||||
* default to 1.
|
||||
*/
|
||||
void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_concat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Generates a sequence of evenly spaced values within a specified
|
||||
@@ -113,7 +113,7 @@ void ggml_cann_concat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* `start`, 'stop' and 'step' are in dst->op_params and dst->op is
|
||||
* `GGML_OP_ARANGE`.
|
||||
*/
|
||||
void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_arange(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a clamp operation to the elements of a ggml tensor using the
|
||||
@@ -131,7 +131,7 @@ void ggml_cann_arange(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the clamped values will be stored.
|
||||
* dst->op is `GGML_OP_CLAMP`, `min` and `max` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_clamp(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Scales the elements of a ggml tensor by a constant factor using the
|
||||
@@ -148,7 +148,7 @@ void ggml_cann_clamp(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the scaled values will be stored.
|
||||
* dst->op is `GGML_OP_SCALE` and `scale` value is in dst->params.
|
||||
*/
|
||||
void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_scale(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Sorts the elements of a ggml tensor and returns the indices that
|
||||
@@ -163,7 +163,7 @@ void ggml_cann_scale(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the sorted indices will be stored.
|
||||
* dst->op is `GGML_OP_ARGSORT`.
|
||||
*/
|
||||
void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_argsort(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Layer Normalization for a ggml tensor using the CANN
|
||||
@@ -185,7 +185,7 @@ void ggml_cann_argsort(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* @attention `Var` defaults to dst->ne[0].
|
||||
*/
|
||||
void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Group Normalization for a ggml tensor using the CANN
|
||||
@@ -209,7 +209,7 @@ void ggml_cann_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @attention eps defaults to 1e-6f.
|
||||
*/
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_group_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the accumulation of tensors using the CANN backend.
|
||||
@@ -228,7 +228,7 @@ void ggml_cann_group_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the accumulated values will be stored.
|
||||
* `inplace` is in dst->params, and dst->op is `GGML_OP_ACC`.
|
||||
*/
|
||||
void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_acc(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements along the last dimension of a ggml tensor
|
||||
@@ -244,7 +244,7 @@ void ggml_cann_acc(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @attention `reduce_dims` defaults to 3, which means the last dimension.
|
||||
*/
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_sum_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the sum of elements in a ggml tensor.
|
||||
@@ -258,7 +258,7 @@ void ggml_cann_sum_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
*/
|
||||
|
||||
void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_sum(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Upsamples a ggml tensor using nearest neighbor interpolation using
|
||||
@@ -274,8 +274,7 @@ void ggml_cann_sum(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the upsampled values will be stored.
|
||||
* dst->op is `GGML_OP_UPSCALE`.
|
||||
*/
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
ggml_tensor* dst);
|
||||
void ggml_cann_upsample_nearest2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Pads a ggml tensor to match the dimensions of the destination tensor
|
||||
@@ -290,7 +289,7 @@ void ggml_cann_upsample_nearest2d(ggml_backend_cann_context& ctx,
|
||||
* @param dst The destination tensor, which specifies the target dimensions for
|
||||
* padding. dst->op is `GGML_OP_PAD`.
|
||||
*/
|
||||
void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pad(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Executes a 2D pooling operation on a ggml tensor using the CANN
|
||||
@@ -307,7 +306,7 @@ void ggml_cann_pad(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor on which the pooling operation is to be
|
||||
* performed. dst->op is `GGML_OP_POOL_2D`.
|
||||
*/
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pool2d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Duplicates a ggml tensor using the CANN backend.
|
||||
@@ -326,7 +325,7 @@ void ggml_cann_pool2d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* different shape and dst is no-contiguous.
|
||||
* @note: This func need to simplify.
|
||||
*/
|
||||
void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_dup(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the Root Mean Square (RMS) normalization of a ggml tensor
|
||||
@@ -348,7 +347,7 @@ void ggml_cann_dup(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the normalized values will be stored.
|
||||
* dst->op is `GGML_OP_RMS_NORM`.
|
||||
*/
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_rms_norm(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a diagonal mask to the tensor with a specified value.
|
||||
@@ -363,7 +362,7 @@ void ggml_cann_rms_norm(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* `GGML_OP_DIAG_MASK`
|
||||
* @param value The value to use for masking.
|
||||
*/
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float value);
|
||||
void ggml_cann_diag_mask(ggml_backend_cann_context & ctx, ggml_tensor * dst, float value);
|
||||
|
||||
/**
|
||||
* @brief Performs an image-to-column transformation on the input tensor.
|
||||
@@ -378,7 +377,7 @@ void ggml_cann_diag_mask(ggml_backend_cann_context& ctx, ggml_tensor* dst, float
|
||||
* @param dst The destination tensor that stores the result of the operation.
|
||||
* dst->op is `GGML_OP_IM2COL`.
|
||||
*/
|
||||
void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_im2col(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes time step embeddings using sine and cosine functions.
|
||||
@@ -392,10 +391,10 @@ void ggml_cann_im2col(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result of the embedding operation
|
||||
* will be stored. dst->op is `GGML_OP_TIMESTEP_EMBEDDING`.
|
||||
*/
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_timestep_embedding(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
// @see ggml_cann_dup.
|
||||
void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_cpy(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the softmax activation with optional masking.
|
||||
@@ -417,7 +416,7 @@ void ggml_cann_cpy(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored. dst->op is
|
||||
* `GGML_OP_SOFTMAX`.
|
||||
*/
|
||||
void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_softmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Extracts specific rows from a tensor based on indices.
|
||||
@@ -429,7 +428,7 @@ void ggml_cann_softmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the extracted rows will be stored.
|
||||
*/
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_get_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Writes specific rows into a tensor at positions specified by indices.
|
||||
@@ -441,7 +440,7 @@ void ggml_cann_get_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param ctx The backend CANN context for executing operations.
|
||||
* @param dst The destination tensor where the specified rows will be updated.
|
||||
*/
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_set_rows(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Executes matrix multiplication for the given tensor.
|
||||
@@ -454,7 +453,7 @@ void ggml_cann_set_rows(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor for storing the result of the matrix
|
||||
* multiplication. dst->op is `GGML_OP_MUL_MAT`.
|
||||
*/
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mul_mat(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies Rotary Positional Embedding (RoPE) to the input tensor.
|
||||
@@ -477,7 +476,7 @@ void ggml_cann_mul_mat(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @note The function currently does not support cases where the freq_scale is
|
||||
* not equal 1.
|
||||
*/
|
||||
void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the index of the maximum value along the specified dimension
|
||||
@@ -492,7 +491,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the indices of the maximum values will
|
||||
* be stored. dst->op is `GGML_OP_ARGMAX`.
|
||||
*/
|
||||
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_argmax(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Adds two tensors element-wise and stores the result in a destination
|
||||
@@ -509,8 +508,10 @@ void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_add(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src0,
|
||||
aclTensor * acl_src1,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Sub two tensors element-wise and stores the result in a destination
|
||||
@@ -527,8 +528,10 @@ void aclnn_add(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
* @param acl_src1 The second source tensor.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
aclTensor* acl_src1, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_sub(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src0,
|
||||
aclTensor * acl_src1,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Performs element-wise multiplication of two tensors and stores the
|
||||
@@ -546,8 +549,10 @@ void aclnn_sub(ggml_backend_cann_context& ctx, aclTensor* acl_src0,
|
||||
* @param acl_other The second tensor for element-wise multiplication.
|
||||
* @param acl_dst The destination tensor where the result will be stored.
|
||||
*/
|
||||
void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_mul(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src,
|
||||
aclTensor * acl_other,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Matrix division, optionally in-place.
|
||||
@@ -567,8 +572,10 @@ void aclnn_mul(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param inplace Flag indicating whether to perform the operation in-place on
|
||||
* `acl_src`.
|
||||
*/
|
||||
void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_other, aclTensor* acl_dst = nullptr);
|
||||
void aclnn_div(ggml_backend_cann_context & ctx,
|
||||
aclTensor * acl_src,
|
||||
aclTensor * acl_other,
|
||||
aclTensor * acl_dst = nullptr);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise cosine function to the elements of a tensor.
|
||||
@@ -584,8 +591,7 @@ void aclnn_div(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_dst The destination tensor where the cosine results will be
|
||||
* stored.
|
||||
*/
|
||||
void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
void aclnn_cos(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Applies element-wise sine function to the elements of a tensor.
|
||||
@@ -602,8 +608,7 @@ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_src The source tensor on which the sine function will be applied.
|
||||
* @param acl_dst The destination tensor where the sine results will be stored.
|
||||
*/
|
||||
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
aclTensor* acl_dst);
|
||||
void aclnn_sin(ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
|
||||
@@ -621,8 +626,12 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
|
||||
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
|
||||
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
|
||||
*/
|
||||
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
|
||||
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
|
||||
void bcast_shape(ggml_tensor * src0,
|
||||
ggml_tensor * src1,
|
||||
ggml_tensor * dst,
|
||||
aclTensor ** acl_src0,
|
||||
aclTensor ** acl_src1,
|
||||
aclTensor ** acl_dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
|
||||
@@ -637,7 +646,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
|
||||
* @param dst The destination tensor where the transposed convolution result
|
||||
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
|
||||
*/
|
||||
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
|
||||
@@ -662,7 +671,7 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
|
||||
* @param dst The destination tensor where the ELU-activated result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_ELU`.
|
||||
*/
|
||||
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_elu(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
|
||||
@@ -677,7 +686,7 @@ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the mean result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_MEAN`.
|
||||
*/
|
||||
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mean(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
|
||||
@@ -692,7 +701,7 @@ void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the padded result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
|
||||
*/
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
|
||||
@@ -708,7 +717,7 @@ void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
|
||||
*/
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_count_equal(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
|
||||
@@ -723,7 +732,7 @@ void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_STEP`.
|
||||
*/
|
||||
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_step(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Performs the Flash Attention extended operator using the CANN backend.
|
||||
@@ -738,59 +747,46 @@ void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
* @param dst The destination tensor where the result will be stored.
|
||||
* dst->op is expected to be `GGML_OP_FLASH_ATTN_EXT`.
|
||||
*/
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/*
|
||||
* @brief A generic wrapper for ACL resources with custom deleter support.
|
||||
*/
|
||||
using any_acl_resource = std::unique_ptr<void, std::function<void(void*)>>;
|
||||
using any_acl_resource = std::unique_ptr<void, std::function<void(void *)>>;
|
||||
|
||||
/**
|
||||
* @brief Trait structure used to define how to destroy a given ACL resource type.
|
||||
*
|
||||
* @tparam T ACL resource type.
|
||||
*/
|
||||
template<typename T>
|
||||
struct acl_resource_traits;
|
||||
template <typename T> struct acl_resource_traits;
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensor, defines how to destroy an aclTensor resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensor> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensor(static_cast<aclTensor*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclTensor> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyTensor(static_cast<aclTensor *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclIntArray, defines how to destroy an aclIntArray resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclIntArray> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclIntArray> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyIntArray(static_cast<aclIntArray *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclScalar, defines how to destroy an aclScalar resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclScalar> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyScalar(static_cast<aclScalar*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclScalar> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyScalar(static_cast<aclScalar *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Specialization for aclTensorList, defines how to destroy an aclTensorList resource.
|
||||
*/
|
||||
template<>
|
||||
struct acl_resource_traits<aclTensorList> {
|
||||
static void destroy(void* p) {
|
||||
ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList*>(p)));
|
||||
}
|
||||
template <> struct acl_resource_traits<aclTensorList> {
|
||||
static void destroy(void * p) { ACL_CHECK(aclDestroyTensorList(static_cast<aclTensorList *>(p))); }
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -800,14 +796,8 @@ struct acl_resource_traits<aclTensorList> {
|
||||
* @param ptr Raw pointer to ACL resource.
|
||||
* @return any_acl_resource Smart pointer that handles destruction.
|
||||
*/
|
||||
template<typename T>
|
||||
any_acl_resource make_acl_resource(T* ptr) {
|
||||
return any_acl_resource(
|
||||
static_cast<void*>(ptr),
|
||||
[](void* p) {
|
||||
acl_resource_traits<T>::destroy(p);
|
||||
}
|
||||
);
|
||||
template <typename T> any_acl_resource make_acl_resource(T * ptr) {
|
||||
return any_acl_resource(static_cast<void *>(ptr), [](void * p) { acl_resource_traits<T>::destroy(p); });
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -817,8 +807,7 @@ any_acl_resource make_acl_resource(T* ptr) {
|
||||
* @param vec Target vector to hold ACL resources.
|
||||
* @param args Raw pointers to ACL resources.
|
||||
*/
|
||||
template<typename... Args>
|
||||
void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
|
||||
template <typename... Args> void register_acl_resources(std::vector<any_acl_resource> & vec, Args *... args) {
|
||||
(vec.emplace_back(make_acl_resource(args)), ...);
|
||||
}
|
||||
|
||||
@@ -826,39 +815,36 @@ void register_acl_resources(std::vector<any_acl_resource>& vec, Args*... args) {
|
||||
* @brief Task class that wraps the execution of an aclnn function call.
|
||||
*/
|
||||
class aclnn_task : public cann_task {
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func, void * workspace_addr,
|
||||
uint64_t workspace_size, aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_));
|
||||
}
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
public:
|
||||
aclnn_task(aclnn_func_t aclnn_func,
|
||||
void * workspace_addr,
|
||||
uint64_t workspace_size,
|
||||
aclOpExecutor * executor,
|
||||
aclrtStream stream) :
|
||||
aclnn_func_(aclnn_func),
|
||||
workspace_addr_(workspace_addr),
|
||||
workspace_size_(workspace_size),
|
||||
executor_(executor),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override { ACL_CHECK(aclnn_func_(workspace_addr_, workspace_size_, executor_, stream_)); }
|
||||
private:
|
||||
aclnn_func_t aclnn_func_;
|
||||
void * workspace_addr_;
|
||||
uint64_t workspace_size_;
|
||||
aclOpExecutor * executor_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class that releases ACL resources after usage.
|
||||
*/
|
||||
class release_resource_task : public cann_task {
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource>&& resources){
|
||||
resource_ = std::move(resources);
|
||||
}
|
||||
public:
|
||||
release_resource_task(std::vector<any_acl_resource> && resources) { resource_ = std::move(resources); }
|
||||
|
||||
virtual void run_task() override {
|
||||
resource_.clear();
|
||||
}
|
||||
private:
|
||||
virtual void run_task() override { resource_.clear(); }
|
||||
private:
|
||||
std::vector<any_acl_resource> resource_;
|
||||
};
|
||||
|
||||
@@ -866,38 +852,40 @@ private:
|
||||
* @brief Task class for performing asynchronous memory copy operations.
|
||||
*/
|
||||
class async_memcpy_task : public cann_task {
|
||||
public:
|
||||
async_memcpy_task(void* dst, const void* src, size_t size,
|
||||
aclrtMemcpyKind kind, aclrtStream stream)
|
||||
: dst_(dst), src_(src), size_(size), kind_(kind), stream_(stream) {}
|
||||
public:
|
||||
async_memcpy_task(void * dst, const void * src, size_t size, aclrtMemcpyKind kind, aclrtStream stream) :
|
||||
dst_(dst),
|
||||
src_(src),
|
||||
size_(size),
|
||||
kind_(kind),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_));
|
||||
}
|
||||
private:
|
||||
void* dst_;
|
||||
const void* src_;
|
||||
size_t size_;
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemcpyAsync(dst_, size_, src_, size_, kind_, stream_)); }
|
||||
private:
|
||||
void * dst_;
|
||||
const void * src_;
|
||||
size_t size_;
|
||||
aclrtMemcpyKind kind_;
|
||||
aclrtStream stream_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Task class for performing asynchronous memory set operations.
|
||||
*/
|
||||
class async_memset_task : public cann_task {
|
||||
public:
|
||||
async_memset_task(void* buffer, size_t size, int32_t value, aclrtStream stream)
|
||||
: buffer_(buffer), size_(size), value_(value), stream_(stream) {}
|
||||
public:
|
||||
async_memset_task(void * buffer, size_t size, int32_t value, aclrtStream stream) :
|
||||
buffer_(buffer),
|
||||
size_(size),
|
||||
value_(value),
|
||||
stream_(stream) {}
|
||||
|
||||
virtual void run_task() override {
|
||||
ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_));
|
||||
}
|
||||
private:
|
||||
void* buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
virtual void run_task() override { ACL_CHECK(aclrtMemsetAsync(buffer_, size_, value_, size_, stream_)); }
|
||||
private:
|
||||
void * buffer_;
|
||||
size_t size_;
|
||||
int32_t value_;
|
||||
aclrtStream stream_;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -918,25 +906,24 @@ class async_memset_task : public cann_task {
|
||||
* same stream are executed in queue order.
|
||||
*/
|
||||
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor));\
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, \
|
||||
executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream()));\
|
||||
} \
|
||||
#define GGML_CANN_CALL_ACLNN_OP(CTX, OP_NAME, ...) \
|
||||
do { \
|
||||
uint64_t workspaceSize = 0; \
|
||||
aclOpExecutor * executor; \
|
||||
void * workspaceAddr = nullptr; \
|
||||
ACL_CHECK(aclnn##OP_NAME##GetWorkspaceSize(__VA_ARGS__, &workspaceSize, &executor)); \
|
||||
/* workspace should alloced in main thread to keep malloc order when using vmm. */ \
|
||||
if (workspaceSize > 0) { \
|
||||
ggml_cann_pool_alloc workspace_allocator(CTX.pool(), workspaceSize); \
|
||||
workspaceAddr = workspace_allocator.get(); \
|
||||
} \
|
||||
if (CTX.async_mode) { \
|
||||
auto task = \
|
||||
std::make_unique<aclnn_task>(aclnn##OP_NAME, workspaceAddr, workspaceSize, executor, CTX.stream()); \
|
||||
CTX.task_queue.submit_task(std::move(task)); \
|
||||
} else { \
|
||||
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, CTX.stream())); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
@@ -947,11 +934,10 @@ class async_memset_task : public cann_task {
|
||||
* @param ctx Backend context which manages task submission and async mode.
|
||||
* @param args Pointers to ACL resources to be released.
|
||||
*/
|
||||
template <typename... Args>
|
||||
void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
template <typename... Args> void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... args) {
|
||||
std::vector<any_acl_resource> resources;
|
||||
register_acl_resources(resources, std::forward<Args>(args)...);
|
||||
if(ctx.async_mode) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<release_resource_task>(std::move(resources));
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
}
|
||||
@@ -966,8 +952,11 @@ void ggml_cann_release_resources(ggml_backend_cann_context & ctx, Args &&... arg
|
||||
* @param len Size of memory to copy (in bytes).
|
||||
* @param kind Type of memory copy (host-to-device, device-to-host, etc).
|
||||
*/
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
@@ -976,8 +965,11 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context & ctx, void * dst,
|
||||
}
|
||||
}
|
||||
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
|
||||
const void * src, size_t len, aclrtMemcpyKind kind) {
|
||||
inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx,
|
||||
void * dst,
|
||||
const void * src,
|
||||
size_t len,
|
||||
aclrtMemcpyKind kind) {
|
||||
if (ctx->async_mode) {
|
||||
auto task = std::make_unique<async_memcpy_task>(dst, const_cast<void *>(src), len, kind, ctx->stream());
|
||||
ctx->task_queue.submit_task(std::move(task));
|
||||
@@ -994,8 +986,7 @@ inline void ggml_cann_async_memcpy(ggml_backend_cann_context * ctx, void * dst,
|
||||
* @param size Size of the memory buffer (in bytes).
|
||||
* @param value Value to set in the buffer.
|
||||
*/
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer,
|
||||
size_t size, int value) {
|
||||
inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffer, size_t size, int value) {
|
||||
if (ctx.async_mode) {
|
||||
auto task = std::make_unique<async_memset_task>(buffer, size, value, ctx.stream());
|
||||
ctx.task_queue.submit_task(std::move(task));
|
||||
@@ -1029,7 +1020,7 @@ inline void ggml_cann_async_memset(ggml_backend_cann_context & ctx, void * buffe
|
||||
* @param dst The destination tensor where the expert-weighted token outputs are stored.
|
||||
* Expected to be of shape [M, K, N, 1].
|
||||
*/
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Check whether a tensor is a weight tensor for matrix multiplication.
|
||||
@@ -1041,20 +1032,14 @@ void ggml_cann_mul_mat_id(ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
*
|
||||
* @param tensor Pointer to the target ggml_tensor object (const-qualified).
|
||||
*/
|
||||
static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{
|
||||
"output.weight",
|
||||
"attn_q.weight",
|
||||
"attn_k.weight",
|
||||
"attn_v.weight",
|
||||
"attn_output.weight",
|
||||
"ffn_gate.weight",
|
||||
"ffn_up.weight",
|
||||
"ffn_down.weight"
|
||||
};
|
||||
static bool is_matmul_weight(const ggml_tensor * tensor) {
|
||||
std::string name = ggml_get_name(tensor);
|
||||
static const std::unordered_set<std::string> weight_suffixes{ "output.weight", "attn_q.weight",
|
||||
"attn_k.weight", "attn_v.weight",
|
||||
"attn_output.weight", "ffn_gate.weight",
|
||||
"ffn_up.weight", "ffn_down.weight" };
|
||||
|
||||
for (const auto& suffix : weight_suffixes) {
|
||||
for (const auto & suffix : weight_suffixes) {
|
||||
if (name.find(suffix) != std::string::npos) {
|
||||
return true;
|
||||
}
|
||||
@@ -1078,14 +1063,13 @@ static bool is_matmul_weight(const ggml_tensor* tensor) {
|
||||
* @param ctx The CANN backend context used to manage execution and resources.
|
||||
* @param dst The destination tensor.
|
||||
*/
|
||||
template <auto binary_op>
|
||||
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src0 = dst->src[0];
|
||||
ggml_tensor* src1 = dst->src[1];
|
||||
template <auto binary_op> void ggml_cann_binary_op(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src0 = dst->src[0];
|
||||
ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
aclTensor* acl_src0;
|
||||
aclTensor* acl_src1;
|
||||
aclTensor* acl_dst;
|
||||
aclTensor * acl_src0;
|
||||
aclTensor * acl_src1;
|
||||
aclTensor * acl_dst;
|
||||
|
||||
// Need bcast
|
||||
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
|
||||
@@ -1094,7 +1078,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_cann_release_resources(ctx, acl_src0, acl_src1, acl_dst);
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* @brief Applies a unary operation to an input tensor using the CANN backend.
|
||||
*
|
||||
@@ -1107,12 +1090,12 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
* @param ctx The CANN backend context for managing resources and execution.
|
||||
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
|
||||
*/
|
||||
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
|
||||
ggml_tensor* src = dst->src[0];
|
||||
template <void unary_op(ggml_backend_cann_context &, aclTensor *, aclTensor *)>
|
||||
void ggml_cann_op_unary(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src = dst->src[0];
|
||||
|
||||
aclTensor* acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
|
||||
aclTensor * acl_src = ggml_cann_create_tensor(src);
|
||||
aclTensor * acl_dst = ggml_cann_create_tensor(dst);
|
||||
|
||||
unary_op(ctx, acl_src, acl_dst);
|
||||
ggml_cann_release_resources(ctx, acl_src, acl_dst);
|
||||
@@ -1138,9 +1121,9 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY
|
||||
*/
|
||||
void ggml_cann_op_unary(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_op_unary(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
|
||||
ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
|
||||
@@ -1172,9 +1155,9 @@ void ggml_cann_op_unary(
|
||||
*
|
||||
* @see GGML_CANN_CALL_OP_UNARY_GATED
|
||||
*/
|
||||
void ggml_cann_op_unary_gated(
|
||||
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
|
||||
ggml_backend_cann_context& ctx, ggml_tensor* dst);
|
||||
void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, aclTensor *, aclTensor *)> unary_op,
|
||||
ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst);
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
|
||||
@@ -1197,16 +1180,13 @@ void ggml_cann_op_unary_gated(
|
||||
* @see ggml_cann_op_unary
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary(lambda, ctx, dst); \
|
||||
} while (0)
|
||||
|
||||
/**
|
||||
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
|
||||
@@ -1229,15 +1209,12 @@ void ggml_cann_op_unary_gated(
|
||||
* @see ggml_cann_op_unary_gated
|
||||
* @see GGML_CANN_CALL_ACLNN_OP
|
||||
*/
|
||||
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context& ctx, \
|
||||
aclTensor* acl_src, \
|
||||
aclTensor* acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst); \
|
||||
} \
|
||||
while (0)
|
||||
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
|
||||
do { \
|
||||
auto lambda = [](ggml_backend_cann_context & ctx, aclTensor * acl_src, aclTensor * acl_dst) { \
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
|
||||
}; \
|
||||
ggml_cann_op_unary_gated(lambda, ctx, dst); \
|
||||
} while (0)
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
191
ggml/src/ggml-cann/common.h
Executable file → Normal file
191
ggml/src/ggml-cann/common.h
Executable file → Normal file
@@ -44,7 +44,7 @@
|
||||
#include "../include/ggml.h"
|
||||
#include "../ggml-impl.h"
|
||||
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define MATRIX_ROW_PADDING 512
|
||||
#define GGML_CANN_MAX_STREAMS 8
|
||||
|
||||
/**
|
||||
@@ -56,8 +56,7 @@
|
||||
* @param line The line number at which the error occurred.
|
||||
* @param msg The error message.
|
||||
*/
|
||||
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
|
||||
const char* file, int line, const char* msg);
|
||||
[[noreturn]] void ggml_cann_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
|
||||
|
||||
/**
|
||||
* @brief Checks the result of a CANN function call and invokes the error
|
||||
@@ -89,25 +88,24 @@ struct ggml_cann_device_info {
|
||||
* @brief Information about a single CANN device.
|
||||
*/
|
||||
struct cann_device_info {
|
||||
int cc; /**< Compute capability. */
|
||||
int cc; /**< Compute capability. */
|
||||
size_t smpb; /**< Maximum shared memory per block. */
|
||||
bool vmm; /**< Virtual memory support. */
|
||||
bool vmm; /**< Virtual memory support. */
|
||||
size_t vmm_granularity; /**< Granularity of virtual memory. */
|
||||
size_t total_vram; /**< Total video RAM available on the device. */
|
||||
};
|
||||
|
||||
cann_device_info devices[GGML_CANN_MAX_DEVICES] =
|
||||
{}; /**< Array of CANN device information. */
|
||||
cann_device_info devices[GGML_CANN_MAX_DEVICES] = {}; /**< Array of CANN device information. */
|
||||
};
|
||||
|
||||
const ggml_cann_device_info& ggml_cann_info();
|
||||
const ggml_cann_device_info & ggml_cann_info();
|
||||
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
void ggml_cann_set_device(int32_t device);
|
||||
int32_t ggml_cann_get_device();
|
||||
|
||||
std::optional<std::string> get_env(const std::string& name);
|
||||
bool parse_bool(const std::string& value);
|
||||
int parse_integer(const std::string& value);
|
||||
std::optional<std::string> get_env(const std::string & name);
|
||||
bool parse_bool(const std::string & value);
|
||||
int parse_integer(const std::string & value);
|
||||
|
||||
/**
|
||||
* @brief Abstract base class for memory pools used by CANN.
|
||||
@@ -126,7 +124,7 @@ struct ggml_cann_pool {
|
||||
* will be stored.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
virtual void* alloc(size_t size, size_t* actual_size) = 0;
|
||||
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
||||
|
||||
/**
|
||||
* @brief Frees a previously allocated memory block.
|
||||
@@ -136,16 +134,16 @@ struct ggml_cann_pool {
|
||||
* @note Note that all CANN opertors are running async. Make sure memory is
|
||||
* still avaiable before this operator finished.
|
||||
*/
|
||||
virtual void free(void* ptr, size_t size) = 0;
|
||||
virtual void free(void * ptr, size_t size) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief RAII wrapper for managing memory allocations from a CANN memory pool.
|
||||
*/
|
||||
struct ggml_cann_pool_alloc {
|
||||
ggml_cann_pool* pool = nullptr; /**< Pointer to the memory pool. */
|
||||
void* ptr = nullptr; /**< Pointer to the allocated memory block. */
|
||||
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
|
||||
ggml_cann_pool * pool = nullptr; /**< Pointer to the memory pool. */
|
||||
void * ptr = nullptr; /**< Pointer to the allocated memory block. */
|
||||
size_t actual_size = 0; /**< Actual size of the allocated memory block. */
|
||||
|
||||
/**
|
||||
* @brief Default constructor.
|
||||
@@ -156,16 +154,14 @@ struct ggml_cann_pool_alloc {
|
||||
* @brief Constructor that initializes the memory pool.
|
||||
* @param pool Reference to the memory pool.
|
||||
*/
|
||||
explicit ggml_cann_pool_alloc(ggml_cann_pool& pool) : pool(&pool) {}
|
||||
explicit ggml_cann_pool_alloc(ggml_cann_pool & pool) : pool(&pool) {}
|
||||
|
||||
/**
|
||||
* @brief Constructor that initializes the memory pool and allocates memory.
|
||||
* @param pool Reference to the memory pool.
|
||||
* @param size Size of the memory block to allocate.
|
||||
*/
|
||||
ggml_cann_pool_alloc(ggml_cann_pool& pool, size_t size) : pool(&pool) {
|
||||
alloc(size);
|
||||
}
|
||||
ggml_cann_pool_alloc(ggml_cann_pool & pool, size_t size) : pool(&pool) { alloc(size); }
|
||||
|
||||
/**
|
||||
* @brief Destructor that frees the allocated memory block.
|
||||
@@ -181,7 +177,7 @@ struct ggml_cann_pool_alloc {
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(size_t size) {
|
||||
void * alloc(size_t size) {
|
||||
GGML_ASSERT(pool != nullptr);
|
||||
GGML_ASSERT(ptr == nullptr);
|
||||
ptr = pool->alloc(size, &this->actual_size);
|
||||
@@ -194,7 +190,7 @@ struct ggml_cann_pool_alloc {
|
||||
* @param size Size of the memory block to allocate.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* alloc(ggml_cann_pool& pool, size_t size) {
|
||||
void * alloc(ggml_cann_pool & pool, size_t size) {
|
||||
this->pool = &pool;
|
||||
return alloc(size);
|
||||
}
|
||||
@@ -203,25 +199,25 @@ struct ggml_cann_pool_alloc {
|
||||
* @brief Gets the pointer to the allocated memory block.
|
||||
* @return Pointer to the allocated memory block.
|
||||
*/
|
||||
void* get() { return ptr; }
|
||||
void * get() { return ptr; }
|
||||
|
||||
// Deleted copy constructor
|
||||
ggml_cann_pool_alloc(const ggml_cann_pool_alloc&) = delete;
|
||||
ggml_cann_pool_alloc(const ggml_cann_pool_alloc &) = delete;
|
||||
|
||||
// Deleted move constructor
|
||||
ggml_cann_pool_alloc(ggml_cann_pool_alloc&&) = delete;
|
||||
ggml_cann_pool_alloc(ggml_cann_pool_alloc &&) = delete;
|
||||
|
||||
// Deleted copy assignment operator
|
||||
ggml_cann_pool_alloc& operator=(const ggml_cann_pool_alloc&) = delete;
|
||||
ggml_cann_pool_alloc & operator=(const ggml_cann_pool_alloc &) = delete;
|
||||
|
||||
// Deleted move assignment operator
|
||||
ggml_cann_pool_alloc& operator=(ggml_cann_pool_alloc&&) = delete;
|
||||
ggml_cann_pool_alloc & operator=(ggml_cann_pool_alloc &&) = delete;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Function pointer type for ACLNN operator calls.
|
||||
*/
|
||||
using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStream);
|
||||
using aclnn_func_t = aclnnStatus (*)(void *, uint64_t, aclOpExecutor *, aclrtStream);
|
||||
|
||||
/**
|
||||
* @brief Base class for all CANN tasks to be submitted to the task queue.
|
||||
@@ -229,7 +225,7 @@ using aclnn_func_t = aclnnStatus (*)(void*, uint64_t, aclOpExecutor*, aclrtStrea
|
||||
* Users should override the run_task() method with actual task logic.
|
||||
*/
|
||||
class cann_task {
|
||||
public:
|
||||
public:
|
||||
virtual void run_task() {}
|
||||
};
|
||||
|
||||
@@ -237,16 +233,20 @@ public:
|
||||
* @brief A lock-free ring-buffer based task queue for asynchronously executing cann_task instances.
|
||||
*/
|
||||
class cann_task_queue {
|
||||
public:
|
||||
public:
|
||||
/**
|
||||
* @brief Constructs a task queue with a fixed power-of-two capacity for a specific device.
|
||||
*
|
||||
* @param capacity Queue capacity. Must be a power of 2.
|
||||
* @param device Target device ID (used for context setting).
|
||||
*/
|
||||
explicit cann_task_queue(size_t capacity, int32_t device)
|
||||
: buffer_(capacity), capacity_(capacity), head_(0), tail_(0),
|
||||
running_(false), device_(device) {
|
||||
explicit cann_task_queue(size_t capacity, int32_t device) :
|
||||
buffer_(capacity),
|
||||
capacity_(capacity),
|
||||
head_(0),
|
||||
tail_(0),
|
||||
running_(false),
|
||||
device_(device) {
|
||||
GGML_ASSERT((capacity & (capacity - 1)) == 0 && "capacity must be power of 2");
|
||||
mask_ = capacity_ - 1;
|
||||
}
|
||||
@@ -257,7 +257,7 @@ public:
|
||||
* @param item Unique pointer to the task.
|
||||
* @return true if the task was successfully enqueued, false if the queue was full.
|
||||
*/
|
||||
bool enqueue(std::unique_ptr<cann_task>&& item) {
|
||||
bool enqueue(std::unique_ptr<cann_task> && item) {
|
||||
size_t next_tail = (tail_ + 1) & mask_;
|
||||
|
||||
if (next_tail == head_) {
|
||||
@@ -276,17 +276,16 @@ public:
|
||||
*
|
||||
* @param task Task to be submitted.
|
||||
*/
|
||||
void submit_task(std::unique_ptr<cann_task>&& task) {
|
||||
while(!enqueue(std::move(task))) {
|
||||
void submit_task(std::unique_ptr<cann_task> && task) {
|
||||
while (!enqueue(std::move(task))) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!running_) {
|
||||
running_ = true;
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
thread_ = std::thread(&cann_task_queue::execute, this);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -309,7 +308,7 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
private:
|
||||
/**
|
||||
* @brief Worker thread function that continuously dequeues and executes tasks.
|
||||
*/
|
||||
@@ -317,7 +316,7 @@ private:
|
||||
ggml_cann_set_device(device_);
|
||||
|
||||
while (running_) {
|
||||
if(head_ == tail_) {
|
||||
if (head_ == tail_) {
|
||||
std::this_thread::yield();
|
||||
continue;
|
||||
}
|
||||
@@ -330,24 +329,24 @@ private:
|
||||
}
|
||||
|
||||
std::vector<std::unique_ptr<cann_task>> buffer_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
const size_t capacity_;
|
||||
size_t mask_;
|
||||
size_t head_;
|
||||
size_t tail_;
|
||||
bool running_;
|
||||
std::thread thread_;
|
||||
int32_t device_;
|
||||
};
|
||||
|
||||
#ifdef USE_ACL_GRAPH
|
||||
struct ggml_graph_node_properties {
|
||||
// dst tensor
|
||||
void * node_address;
|
||||
void * node_address;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
|
||||
// src tensor
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
void * src_address[GGML_MAX_SRC];
|
||||
int64_t src_ne[GGML_MAX_SRC][GGML_MAX_DIMS];
|
||||
size_t src_nb[GGML_MAX_SRC][GGML_MAX_DIMS];
|
||||
|
||||
@@ -376,13 +375,11 @@ struct ggml_cann_graph {
|
||||
* move existing graphs to the front (most recently used), and clear the cache.
|
||||
*/
|
||||
struct ggml_cann_graph_lru_cache {
|
||||
size_t capacity; /**< Maximum number of graphs in the cache. */
|
||||
size_t capacity; /**< Maximum number of graphs in the cache. */
|
||||
|
||||
std::list<ggml_cann_graph*> cache_list; /**< List storing cached graphs as raw pointers. */
|
||||
std::list<ggml_cann_graph *> cache_list; /**< List storing cached graphs as raw pointers. */
|
||||
|
||||
ggml_cann_graph_lru_cache() {
|
||||
capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12"));
|
||||
}
|
||||
ggml_cann_graph_lru_cache() { capacity = parse_integer(get_env("GGML_CANN_GRAPH_CACHE_CAPACITY").value_or("12")); }
|
||||
|
||||
/**
|
||||
* @brief Push a new graph to the front of the cache.
|
||||
@@ -390,11 +387,11 @@ struct ggml_cann_graph_lru_cache {
|
||||
* @param new_node Pointer to the new ggml_cann_graph to cache.
|
||||
* Ownership is transferred to the cache (cache will delete it).
|
||||
*/
|
||||
void push(ggml_cann_graph* new_node) {
|
||||
void push(ggml_cann_graph * new_node) {
|
||||
if (cache_list.size() >= capacity) {
|
||||
ggml_cann_graph* old = cache_list.back();
|
||||
ggml_cann_graph * old = cache_list.back();
|
||||
cache_list.pop_back();
|
||||
delete old; // free the old graph
|
||||
delete old; // free the old graph
|
||||
}
|
||||
cache_list.push_front(new_node);
|
||||
}
|
||||
@@ -403,7 +400,7 @@ struct ggml_cann_graph_lru_cache {
|
||||
* @brief Move an existing graph to the front of the cache.
|
||||
* @param node Pointer to the ggml_cann_graph to move.
|
||||
*/
|
||||
void move_to_front(ggml_cann_graph* node) {
|
||||
void move_to_front(ggml_cann_graph * node) {
|
||||
cache_list.remove(node);
|
||||
cache_list.push_front(node);
|
||||
}
|
||||
@@ -421,92 +418,89 @@ struct ggml_cann_graph_lru_cache {
|
||||
/**
|
||||
* @brief Destructor that clears the cache and frees all cached graphs.
|
||||
*/
|
||||
~ggml_cann_graph_lru_cache() {
|
||||
clear();
|
||||
}
|
||||
~ggml_cann_graph_lru_cache() { clear(); }
|
||||
};
|
||||
#endif // USE_ACL_GRAPH
|
||||
|
||||
struct ggml_cann_rope_cache {
|
||||
~ggml_cann_rope_cache() {
|
||||
if(theta_scale_cache != nullptr) {
|
||||
if (theta_scale_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(theta_scale_cache));
|
||||
}
|
||||
if(sin_cache != nullptr) {
|
||||
if (sin_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(sin_cache));
|
||||
}
|
||||
if(cos_cache != nullptr) {
|
||||
if (cos_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cos_cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* theta_scale_cache = nullptr;
|
||||
void * theta_scale_cache = nullptr;
|
||||
int64_t theta_scale_length = 0;
|
||||
// sin/cos cache, used only to accelerate first layer on each device
|
||||
void* sin_cache = nullptr;
|
||||
void* cos_cache = nullptr;
|
||||
int64_t position_length = 0;
|
||||
void * sin_cache = nullptr;
|
||||
void * cos_cache = nullptr;
|
||||
int64_t position_length = 0;
|
||||
// Properties to check before reusing the sincos cache
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
};
|
||||
|
||||
struct ggml_cann_tensor_cache {
|
||||
~ggml_cann_tensor_cache() {
|
||||
if(cache != nullptr) {
|
||||
if (cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(cache));
|
||||
}
|
||||
}
|
||||
|
||||
void* cache = nullptr;
|
||||
int64_t size = 0;
|
||||
void * cache = nullptr;
|
||||
int64_t size = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Context for managing CANN backend operations.
|
||||
*/
|
||||
struct ggml_backend_cann_context {
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
int32_t device; /**< Device ID. */
|
||||
std::string name; /**< Name of the device. */
|
||||
std::string description; /**< Description of the device. */
|
||||
aclrtEvent copy_event = nullptr; /**< Event for managing copy operations. */
|
||||
#ifdef USE_ACL_GRAPH
|
||||
/// Cached CANN ACL graph used for executing the current ggml computation graph.
|
||||
ggml_cann_graph_lru_cache graph_lru_cache;
|
||||
bool acl_graph_mode = true;
|
||||
bool acl_graph_mode = true;
|
||||
#endif
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
cann_task_queue task_queue;
|
||||
bool async_mode;
|
||||
// Rope Cache
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
ggml_cann_rope_cache rope_cache;
|
||||
// Constant Pool
|
||||
ggml_cann_tensor_cache rms_norm_one_tensor_cache;
|
||||
ggml_cann_tensor_cache rms_norm_zero_tensor_cache;
|
||||
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = {nullptr}; /**< Array of streams for the device. */
|
||||
aclrtStream streams[GGML_CANN_MAX_STREAMS] = { nullptr }; /**< Array of streams for the device. */
|
||||
|
||||
/**
|
||||
* @brief Constructor for initializing the context with a given device.
|
||||
* @param device Device ID.
|
||||
*/
|
||||
explicit ggml_backend_cann_context(int device)
|
||||
: device(device), name("CANN" + std::to_string(device)), task_queue(1024, device) {
|
||||
explicit ggml_backend_cann_context(int device) :
|
||||
device(device),
|
||||
name("CANN" + std::to_string(device)),
|
||||
task_queue(1024, device) {
|
||||
ggml_cann_set_device(device);
|
||||
description = aclrtGetSocName();
|
||||
|
||||
async_mode = parse_bool(get_env("GGML_CANN_ASYNC_MODE").value_or(""));
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__,
|
||||
device, async_mode ? "ON" : "OFF");
|
||||
GGML_LOG_INFO("%s: device %d async operator submission is %s\n", __func__, device, async_mode ? "ON" : "OFF");
|
||||
#ifdef USE_ACL_GRAPH
|
||||
acl_graph_mode = parse_bool(get_env("GGML_CANN_ACL_GRAPH").value_or("on"));
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n",
|
||||
__func__, device,
|
||||
acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
|
||||
GGML_LOG_INFO("%s: device %d execution mode is %s (%s)\n", __func__, device, acl_graph_mode ? "GRAPH" : "EAGER",
|
||||
acl_graph_mode ? "acl graph enabled" : "acl graph disabled");
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -549,8 +543,7 @@ struct ggml_backend_cann_context {
|
||||
aclrtStream stream() { return stream(0); }
|
||||
|
||||
// TODO: each stream should have a memory pool.
|
||||
std::unique_ptr<ggml_cann_pool>
|
||||
mem_pool; /**< Memory pool for the device. */
|
||||
std::unique_ptr<ggml_cann_pool> mem_pool; /**< Memory pool for the device. */
|
||||
|
||||
/**
|
||||
* @brief Create a new memory pool for a given device.
|
||||
@@ -563,7 +556,7 @@ struct ggml_backend_cann_context {
|
||||
* @brief Get or create the memory pool for the context.
|
||||
* @return Reference to the memory pool.
|
||||
*/
|
||||
ggml_cann_pool& pool() {
|
||||
ggml_cann_pool & pool() {
|
||||
if (mem_pool == nullptr) {
|
||||
mem_pool = new_pool_for_device(device);
|
||||
}
|
||||
|
||||
1130
ggml/src/ggml-cann/ggml-cann.cpp
Executable file → Normal file
1130
ggml/src/ggml-cann/ggml-cann.cpp
Executable file → Normal file
File diff suppressed because it is too large
Load Diff
@@ -126,25 +126,36 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
)
|
||||
if (NOT ARM_MCPU_RESULT)
|
||||
string(REGEX MATCH "-mcpu=[^ ']+" ARM_MCPU_FLAG "${ARM_MCPU}")
|
||||
string(REGEX MATCH "-march=[^ ']+" ARM_MARCH_FLAG "${ARM_MCPU}")
|
||||
|
||||
# on some old GCC we need to read -march=
|
||||
if (ARM_MARCH_FLAG AND NOT "${ARM_MARCH_FLAG}" STREQUAL "-march=native")
|
||||
set(ARM_NATIVE_FLAG "${ARM_MARCH_FLAG}")
|
||||
elseif(ARM_MCPU_FLAG AND NOT "${ARM_MCPU_FLAG}" STREQUAL "-mcpu=native")
|
||||
set(ARM_NATIVE_FLAG "${ARM_MCPU_FLAG}")
|
||||
endif()
|
||||
endif()
|
||||
if ("${ARM_MCPU_FLAG}" STREQUAL "")
|
||||
set(ARM_MCPU_FLAG -mcpu=native)
|
||||
message(STATUS "ARM -mcpu not found, -mcpu=native will be used")
|
||||
|
||||
if ("${ARM_NATIVE_FLAG}" STREQUAL "")
|
||||
set(ARM_NATIVE_FLAG -mcpu=native)
|
||||
message(WARNING "ARM -march/-mcpu not found, -mcpu=native will be used")
|
||||
else()
|
||||
message(STATUS "ARM detected flags: ${ARM_NATIVE_FLAG}")
|
||||
endif()
|
||||
|
||||
include(CheckCXXSourceRuns)
|
||||
|
||||
function(check_arm_feature tag code)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+${tag}")
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_NATIVE_FLAG}+${tag}")
|
||||
check_cxx_source_runs("${code}" GGML_MACHINE_SUPPORTS_${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+${tag}" PARENT_SCOPE)
|
||||
set(ARM_NATIVE_FLAG_FIX "${ARM_NATIVE_FLAG_FIX}+${tag}" PARENT_SCOPE)
|
||||
else()
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+no${tag}")
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARM_NATIVE_FLAG}+no${tag}")
|
||||
check_cxx_source_compiles("int main() { return 0; }" GGML_MACHINE_SUPPORTS_no${tag})
|
||||
if (GGML_MACHINE_SUPPORTS_no${tag})
|
||||
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
|
||||
set(ARM_NATIVE_FLAG_FIX "${ARM_NATIVE_FLAG_FIX}+no${tag}" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
|
||||
@@ -155,7 +166,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
check_arm_feature(sve "#include <arm_sve.h>\nint main() { svfloat32_t _a, _b; volatile svfloat32_t _c = svadd_f32_z(svptrue_b8(), _a, _b); return 0; }")
|
||||
check_arm_feature(sme "#include <arm_sme.h>\n__arm_locally_streaming int main() { __asm__ volatile(\"smstart; smstop;\"); return 0; }")
|
||||
|
||||
list(APPEND ARCH_FLAGS "${ARM_MCPU_FLAG}${ARM_MCPU_FLAG_FIX}")
|
||||
list(APPEND ARCH_FLAGS "${ARM_NATIVE_FLAG}${ARM_NATIVE_FLAG_FIX}")
|
||||
else()
|
||||
if (GGML_CPU_ARM_ARCH)
|
||||
list(APPEND ARCH_FLAGS -march=${GGML_CPU_ARM_ARCH})
|
||||
@@ -466,33 +477,56 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES ggml-cpu/arch/s390/quants.c)
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
ggml-cpu/arch/s390/quants.c)
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
message(STATUS "z16 target")
|
||||
list(APPEND ARCH_FLAGS -march=z16)
|
||||
elseif (${S390X_M} MATCHES "9175|9176")
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=arch15)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
list(APPEND ARCH_FLAGS -march=native -mtune=native)
|
||||
# for native compilation
|
||||
if (GGML_NATIVE)
|
||||
# check machine level to determine target
|
||||
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
|
||||
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
|
||||
|
||||
# TODO: Separation to determine activation of VX/VXE/VXE2
|
||||
if (${S390X_M} MATCHES "8561|8562")
|
||||
message(STATUS "z15 target")
|
||||
list(APPEND ARCH_FLAGS -march=z15)
|
||||
elseif (${S390X_M} MATCHES "3931")
|
||||
message(STATUS "z16 target")
|
||||
list(APPEND ARCH_FLAGS -march=z16)
|
||||
elseif (${S390X_M} MATCHES "9175|9176")
|
||||
# NOTE: Only available from GCC 15.1.0 onwards. Any z17 machine with compile issues must first verify their GCC version.
|
||||
# binutils must also be updated to the latest for the -march=z17 flag to work. Otherwise, use -march=arch15.
|
||||
message(STATUS "z17 target")
|
||||
list(APPEND ARCH_FLAGS -march=arch15)
|
||||
else()
|
||||
message(STATUS "Unknown target")
|
||||
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
|
||||
list(APPEND ARCH_FLAGS -march=native -mtune=native)
|
||||
endif()
|
||||
# for cross-compilation
|
||||
elseif(GGML_CPU_ALL_VARIANTS)
|
||||
# range through IBM z15 to z17
|
||||
# NOTE: update when a new hardware level is released
|
||||
foreach (ZHW RANGE 15 17)
|
||||
if(DEFINED GGML_INTERNAL_Z${ZHW})
|
||||
message(STATUS "z${ZHW} cross-compile target")
|
||||
list(APPEND ARCH_FLAGS -march=z${ZHW})
|
||||
endif()
|
||||
endforeach()
|
||||
endif()
|
||||
|
||||
if (GGML_VXE)
|
||||
message(STATUS "VX/VXE/VXE2 enabled")
|
||||
if (GGML_VXE OR GGML_INTERNAL_VXE2)
|
||||
message(STATUS "VXE2 enabled")
|
||||
list(APPEND ARCH_FLAGS -mvx -mzvector)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_VXE)
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_VXE2)
|
||||
endif()
|
||||
|
||||
if (GGML_INTERNAL_NNPA)
|
||||
message(STATUS "NNPA enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_NNPA)
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} s390 ${ARCH_DEFINITIONS})
|
||||
elseif (CMAKE_SYSTEM_PROCESSOR MATCHES "wasm")
|
||||
message(STATUS "Wasm detected")
|
||||
list (APPEND GGML_CPU_SOURCES ggml-cpu/arch/wasm/quants.c)
|
||||
|
||||
@@ -2044,6 +2044,26 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
}
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
static inline svuint32_t ggml_decode_q4scales_and_mins_for_mmla(const uint32_t * vx_scales) {
|
||||
const svbool_t pg_all = svptrue_pat_b32(SV_VL4);
|
||||
const svbool_t pg_false = svpfalse_b(); // 0x0000
|
||||
const svbool_t pg_lo_8 = svwhilelt_b8_s32(0, 8); // 0x00ff
|
||||
const svbool_t pg_odd = svzip1_b32(pg_false, pg_lo_8);
|
||||
|
||||
svuint32_t vutmp_hi, vutmp_lo;
|
||||
svuint32_t vx01 = svld1_u32(pg_lo_8, vx_scales);
|
||||
vutmp_hi = svzip1_u32(vx01, vx01);
|
||||
vutmp_hi = svlsr_n_u32_m(pg_odd, vutmp_hi, 2);
|
||||
vutmp_hi = svreinterpret_u32_u64(svand_n_u64_x(pg_all, svreinterpret_u64_u32(vutmp_hi), UINT64_C(0x303030303f3f3f3f)));
|
||||
const svuint32_t vx2 = svdup_u32(vx_scales[2]);
|
||||
vutmp_lo = svlsr_u32_x(pg_all, vx2, svreinterpret_u32_s32(svindex_s32(-2, 2)));
|
||||
vutmp_lo = svand_n_u32_z(pg_odd, vutmp_lo, UINT32_C(0x0f0f0f0f));
|
||||
svuint32_t vutmp = svorr_u32_z(pg_all, vutmp_hi, vutmp_lo);
|
||||
return vutmp;
|
||||
}
|
||||
#endif
|
||||
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
#ifdef __ARM_FEATURE_MATMUL_INT8
|
||||
@@ -2066,8 +2086,220 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
static const uint32_t kmask3 = 0x03030303;
|
||||
|
||||
uint32_t utmp[4];
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
#endif
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
svbool_t pg32_2 = svptrue_pat_b32(SV_VL2);
|
||||
|
||||
const block_q4_K * GGML_RESTRICT vx0 = vx;
|
||||
const block_q8_K * GGML_RESTRICT vy0 = vy;
|
||||
const block_q4_K * GGML_RESTRICT vx1 = (const block_q4_K *) ((const uint8_t*)vx + bx);
|
||||
const block_q8_K * GGML_RESTRICT vy1 = (const block_q8_K *) ((const uint8_t*)vy + by);
|
||||
|
||||
union {
|
||||
uint32_t u32[8];
|
||||
uint64_t u64[4];
|
||||
} new_utmp;
|
||||
|
||||
svfloat32_t sumf1 = svdup_n_f32(0);
|
||||
|
||||
switch (vector_length) {
|
||||
case 128:
|
||||
{
|
||||
svbool_t pg_false = svpfalse_b();
|
||||
svbool_t pg_lo_8 = svwhilelt_b8_s32(0, 8);
|
||||
svbool_t vmins_mask1= svzip1_b32(pg_lo_8, pg_false);
|
||||
svbool_t vmins_mask2 = svzip1_b32(pg_false, pg_lo_8);
|
||||
svbool_t pg128_all = svptrue_pat_b8(SV_VL16);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
svfloat32_t vy_d = svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d));
|
||||
svfloat32_t vx_d = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].d)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].d)));
|
||||
svfloat32_t svsuper_block_scales = svmul_f32_x(pg128_all, vy_d, vx_d);
|
||||
svfloat32_t vx_dmins = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].dmin)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].dmin)));
|
||||
svfloat32_t vy_dmins = svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d));
|
||||
svfloat32_t svdmins = svmul_n_f32_x(pg128_all, svmul_f32_x(pg128_all, vy_dmins, vx_dmins), -1);
|
||||
const uint8_t * GGML_RESTRICT q4_0 = vx0[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8_0 = vy0[i].qs;
|
||||
const uint8_t * GGML_RESTRICT q4_1 = vx1[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8_1 = vy1[i].qs;
|
||||
svint16_t lo = svld1_s16(pg128_all, vy0[i].bsums + 0);
|
||||
svint16_t hi = svld1_s16(pg128_all, vy0[i].bsums + 8);
|
||||
svint16_t sum_tmp1 = svuzp1_s16(lo, hi);
|
||||
svint16_t sum_tmp2 = svuzp2_s16(lo, hi);
|
||||
svint16_t svq8sums_0 = svadd_s16_x(pg128_all, sum_tmp1, sum_tmp2);
|
||||
lo = svld1_s16(pg128_all, vy1[i].bsums + 0);
|
||||
hi = svld1_s16(pg128_all, vy1[i].bsums + 8);
|
||||
sum_tmp1 = svuzp1(lo, hi);
|
||||
sum_tmp2 = svuzp2(lo, hi);
|
||||
svint16_t svq8sums_1 = svadd_s16_x(pg128_all, sum_tmp1, sum_tmp2);
|
||||
svuint32_t decoded_scales0 = ggml_decode_q4scales_and_mins_for_mmla((const uint32_t *)vx0[i].scales);
|
||||
svuint32_t decoded_scales1 = ggml_decode_q4scales_and_mins_for_mmla((const uint32_t *)vx1[i].scales);
|
||||
svuint32x2_t decoded_scales = svcreate2_u32(decoded_scales0, decoded_scales1);
|
||||
svst2_u32(pg128_all, new_utmp.u32, decoded_scales);
|
||||
svint16_t svmins8_0 = svreinterpret_s16_u16(svunpklo_u16(svreinterpret_u8_u32(svuzp1_u32(svld1_u32(vmins_mask1, new_utmp.u32+4), svdup_n_u32(0)))));
|
||||
svint16_t svmins8_1 = svreinterpret_s16_u16(svunpklo_u16(svreinterpret_u8_u32(svuzp2_u32(svld1_u32(vmins_mask2, new_utmp.u32+4), svdup_n_u32(0)))));
|
||||
svint32_t svsumfs_tmp1 = svreinterpret_s32_s64(svdot_s64(svdup_n_s64(0), svq8sums_0, svmins8_0));
|
||||
svint32_t svsumfs_tmp2 = svreinterpret_s32_s64(svdot_s64(svdup_n_s64(0), svq8sums_0, svmins8_1));
|
||||
svint32_t svsumfs_tmp3 = svtrn1_s32(svsumfs_tmp1, svsumfs_tmp2);
|
||||
svint32_t svsumfs_tmp4 = svreinterpret_s32_s64(svdot_s64(svdup_n_s64(0), svq8sums_1, svmins8_0));
|
||||
svint32_t svsumfs_tmp5 = svreinterpret_s32_s64(svdot_s64(svdup_n_s64(0), svq8sums_1, svmins8_1));
|
||||
svint32_t svsumfs_tmp6 = svtrn1_s32(svsumfs_tmp4, svsumfs_tmp5);
|
||||
svint32_t svsumfs_tmp7 = svreinterpret_s32_s64(svtrn2_s64(svreinterpret_s64_s32(svsumfs_tmp3), svreinterpret_s64_s32(svsumfs_tmp6)));
|
||||
svint32_t svsumfs_tmp8 = svreinterpret_s32_s64(svtrn1_s64(svreinterpret_s64_s32(svsumfs_tmp3), svreinterpret_s64_s32(svsumfs_tmp6)));
|
||||
svint32_t svsumfs_tmp = svadd_s32_x(pg128_all, svsumfs_tmp7, svsumfs_tmp8);
|
||||
svint32_t svscales, sumi1, sumi2;
|
||||
svint32_t acc_sumif1 = svdup_n_s32(0);
|
||||
svint32_t acc_sumif2 = svdup_n_s32(0);
|
||||
svint8_t q4bytes_0_l, q4bytes_0_h, q4bytes_1_l, q4bytes_1_h, l0, l1, l2, l3,
|
||||
q8bytes_0_h, q8bytes_0_l, q8bytes_1_h, q8bytes_1_l, r0, r1, r2, r3;
|
||||
#pragma GCC unroll 1
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
q4bytes_0_l = svreinterpret_s8_u8(svand_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_0), 0xf));
|
||||
q4bytes_1_l = svreinterpret_s8_u8(svand_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_1), 0xf));
|
||||
q4bytes_0_h = svreinterpret_s8_u8(svand_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_0+16), 0xf));
|
||||
q4bytes_1_h = svreinterpret_s8_u8(svand_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_1+16), 0xf));
|
||||
l0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q4bytes_0_l), svreinterpret_s64_s8(q4bytes_1_l)));
|
||||
l1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q4bytes_0_l), svreinterpret_s64_s8(q4bytes_1_l)));
|
||||
l2 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q4bytes_0_h), svreinterpret_s64_s8(q4bytes_1_h)));
|
||||
l3 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q4bytes_0_h), svreinterpret_s64_s8(q4bytes_1_h)));
|
||||
q8bytes_0_h = svld1_s8(pg128_all, q8_0);
|
||||
q8bytes_1_h = svld1_s8(pg128_all, q8_1);
|
||||
q8bytes_0_l = svld1_s8(pg128_all, q8_0+16);
|
||||
q8bytes_1_l = svld1_s8(pg128_all, q8_1+16);
|
||||
r0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0_h), svreinterpret_s64_s8(q8bytes_1_h)));
|
||||
r1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0_h), svreinterpret_s64_s8(q8bytes_1_h)));
|
||||
r2 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0_l), svreinterpret_s64_s8(q8bytes_1_l)));
|
||||
r3 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0_l), svreinterpret_s64_s8(q8bytes_1_l)));
|
||||
sumi1 = svmmla_s32(svmmla_s32(svmmla_s32(svmmla_s32(svdup_n_s32(0), r0, l0), r1, l1), r2, l2), r3, l3);
|
||||
svscales = svreinterpret_s32_u32(svlsr_n_u32_x(pg128_all, svlsl_n_u32_x(pg128_all, svreinterpret_u32_u64(svdup_n_u64(new_utmp.u64[j/2])), 8*(4-2*(j%2)-1)), 24));
|
||||
acc_sumif1 = svmla_s32_x(pg128_all, acc_sumif1, svscales, sumi1);
|
||||
|
||||
q4bytes_0_l = svreinterpret_s8_u8(svlsr_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_0), 4));
|
||||
q4bytes_1_l = svreinterpret_s8_u8(svlsr_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_1), 4));
|
||||
q4bytes_0_h = svreinterpret_s8_u8(svlsr_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_0+16), 4));
|
||||
q4bytes_1_h = svreinterpret_s8_u8(svlsr_n_u8_x(pg128_all, svld1_u8(pg128_all, q4_1+16), 4));
|
||||
l0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q4bytes_0_l), svreinterpret_s64_s8(q4bytes_1_l)));
|
||||
l1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q4bytes_0_l), svreinterpret_s64_s8(q4bytes_1_l)));
|
||||
l2 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q4bytes_0_h), svreinterpret_s64_s8(q4bytes_1_h)));
|
||||
l3 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q4bytes_0_h), svreinterpret_s64_s8(q4bytes_1_h)));
|
||||
q8bytes_0_h = svld1_s8(pg128_all, q8_0+32);
|
||||
q8bytes_1_h = svld1_s8(pg128_all, q8_1+32);
|
||||
q8bytes_0_l = svld1_s8(pg128_all, q8_0+48);
|
||||
q8bytes_1_l = svld1_s8(pg128_all, q8_1+48);
|
||||
r0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0_h), svreinterpret_s64_s8(q8bytes_1_h)));
|
||||
r1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0_h), svreinterpret_s64_s8(q8bytes_1_h)));
|
||||
r2 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0_l), svreinterpret_s64_s8(q8bytes_1_l)));
|
||||
r3 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0_l), svreinterpret_s64_s8(q8bytes_1_l)));
|
||||
sumi2 = svmmla_s32(svmmla_s32(svmmla_s32(svmmla_s32(svdup_n_s32(0), r0, l0), r1, l1), r2, l2), r3, l3);
|
||||
svscales = svreinterpret_s32_u32(svlsr_n_u32_x(pg128_all, svlsl_n_u32_x(pg128_all, svreinterpret_u32_u64(svdup_n_u64(new_utmp.u64[j/2])), 8*(4-2*(j%2)-2)), 24));
|
||||
acc_sumif2 = svmla_s32_x(pg128_all, acc_sumif2, svscales, sumi2);
|
||||
q4_0 += 32; q4_1 += 32; q8_0 += 64; q8_1 += 64;
|
||||
}
|
||||
sumf1 = svmla_f32_x(pg128_all,
|
||||
svmla_f32_x(pg128_all,
|
||||
sumf1,
|
||||
svcvt_f32_x(pg128_all,
|
||||
svadd_s32_x(pg128_all, acc_sumif1, acc_sumif2)),
|
||||
svsuper_block_scales),
|
||||
svdmins,
|
||||
svcvt_f32_s32_x(pg128_all, svsumfs_tmp));
|
||||
} //end of for nb
|
||||
} // end of case 128
|
||||
break;
|
||||
case 256:
|
||||
case 512:
|
||||
{
|
||||
const svbool_t pg32_4 = svptrue_pat_b32(SV_VL4);
|
||||
const svbool_t pg8_16 = svptrue_pat_b8(SV_VL16);
|
||||
const svbool_t pg256_all = svptrue_pat_b8(SV_ALL);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT q4_0 = vx0[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8_0 = vy0[i].qs;
|
||||
const uint8_t * GGML_RESTRICT q4_1 = vx1[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8_1 = vy1[i].qs;
|
||||
svint32_t svscales, sumi1, sumi2;
|
||||
svint32_t acc_sumif1 = svdup_n_s32(0);
|
||||
svint32_t acc_sumif2 = svdup_n_s32(0);
|
||||
svint8_t l0, l1, l2, l3, r0, r1, r2, r3;
|
||||
svfloat32_t vx_d = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].d)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].d)));
|
||||
svfloat64_t vy_d_tmp = svreinterpret_f64_f32(svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d)));
|
||||
svfloat32_t vy_d = svreinterpret_f32_f64(svuzp1_f64(vy_d_tmp, vy_d_tmp));
|
||||
svfloat32_t svsuper_block_scales = svmul_f32_z(pg32_4, vy_d, vx_d);
|
||||
svfloat32_t vx_dmins = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].dmin)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].dmin)));
|
||||
svfloat64_t vy_dmins_tmp = svreinterpret_f64_f32(svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d)));
|
||||
svfloat32_t vy_dmins = svreinterpret_f32_f64(svuzp1_f64(vy_dmins_tmp, vy_dmins_tmp));
|
||||
svfloat32_t svdmins = svmul_n_f32_x(pg32_4, svmul_f32_x(pg32_4, vx_dmins, vy_dmins), -1);
|
||||
svint16_t rc1 = svuzp1_s16(svld1_s16(pg256_all, vy0[i].bsums), svld1_s16(pg256_all, vy1[i].bsums));
|
||||
svint16_t rc2 = svuzp2_s16(svld1_s16(pg256_all, vy0[i].bsums), svld1_s16(pg256_all, vy1[i].bsums));
|
||||
svint16_t svq8sums = svadd_s16_x(pg256_all, rc1, rc2);
|
||||
svuint32_t decoded_scales0 = ggml_decode_q4scales_and_mins_for_mmla((const uint32_t *)vx0[i].scales);
|
||||
svuint32_t decoded_scales1 = ggml_decode_q4scales_and_mins_for_mmla((const uint32_t *)vx1[i].scales);
|
||||
svuint32x2_t decoded_scales = svcreate2_u32(decoded_scales0, decoded_scales1);
|
||||
svst2_u32(pg8_16, new_utmp.u32, decoded_scales);
|
||||
svint16_t new_svq8sums_0 = svreinterpret_s16_u64(svtrn1_u64(svreinterpret_u64_s16(svq8sums), svreinterpret_u64_s16(svq8sums)));
|
||||
svint16_t new_svq8sums_1 = svreinterpret_s16_u64(svtrn2_u64(svreinterpret_u64_s16(svq8sums), svreinterpret_u64_s16(svq8sums)));
|
||||
svuint64_t new_mins_0 = svdup_u64(new_utmp.u64[2]);
|
||||
svuint64_t new_mins_1 = svdup_u64(new_utmp.u64[3]);
|
||||
svint16_t new_svmins8_0 = svreinterpret_s16_u16(svunpklo_u16(svreinterpret_u8_u64(new_mins_0)));
|
||||
svint16_t new_svmins8_1 = svreinterpret_s16_u16(svunpklo_u16(svreinterpret_u8_u64(new_mins_1)));
|
||||
svint64_t dot_prod_0 = svdot_s64(svdup_s64(0), new_svmins8_0, new_svq8sums_0);
|
||||
svint64_t dot_prod_1 = svdot_s64(dot_prod_0, new_svmins8_1, new_svq8sums_1);
|
||||
svfloat32_t converted_dot_prod_1 = svcvt_f32_s64_x(pg256_all, dot_prod_1);
|
||||
svfloat32_t svsumfs_tmp = svuzp1_f32(converted_dot_prod_1, converted_dot_prod_1);
|
||||
|
||||
#pragma GCC unroll 1
|
||||
for (int j = 0; j < QK_K/64; ++j) {
|
||||
svuint8_t q4bytes_0 = svand_n_u8_x(pg256_all, svld1_u8(pg256_all, q4_0), 0xf);
|
||||
svuint8_t q4bytes_1 = svand_n_u8_x(pg256_all, svld1_u8(pg256_all, q4_1), 0xf);
|
||||
svuint8_t q4bytes_2 = svlsr_n_u8_x(pg256_all, svld1_u8(pg256_all, q4_0), 4);
|
||||
svuint8_t q4bytes_3 = svlsr_n_u8_x(pg256_all, svld1_u8(pg256_all, q4_1), 4);
|
||||
l0 = svreinterpret_s8_u64(svzip1_u64(svreinterpret_u64_u8(q4bytes_0), svreinterpret_u64_u8(q4bytes_1)));
|
||||
l1 = svreinterpret_s8_u64(svzip2_u64(svreinterpret_u64_u8(q4bytes_0), svreinterpret_u64_u8(q4bytes_1)));
|
||||
l2 = svreinterpret_s8_u64(svzip1_u64(svreinterpret_u64_u8(q4bytes_2), svreinterpret_u64_u8(q4bytes_3)));
|
||||
l3 = svreinterpret_s8_u64(svzip2_u64(svreinterpret_u64_u8(q4bytes_2), svreinterpret_u64_u8(q4bytes_3)));
|
||||
svint8_t q8bytes_0 = svld1_s8(pg256_all, q8_0);
|
||||
svint8_t q8bytes_1 = svld1_s8(pg256_all, q8_1);
|
||||
svint8_t q8bytes_2 = svld1_s8(pg256_all, q8_0+32);
|
||||
svint8_t q8bytes_3 = svld1_s8(pg256_all, q8_1+32);
|
||||
r0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
r1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
r2 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_2), svreinterpret_s64_s8(q8bytes_3)));
|
||||
r3 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_2), svreinterpret_s64_s8(q8bytes_3)));
|
||||
sumi1 = svmmla(svmmla(svdup_n_s32(0), r0, l0), r1, l1);
|
||||
svscales = svreinterpret_s32_u32(svlsr_n_u32_x(pg256_all, svlsl_n_u32_x(pg256_all, svreinterpret_u32_u64(svdup_n_u64(new_utmp.u64[j/2])), 8*(4-2*(j%2)-1)), 24));
|
||||
acc_sumif1 = svmla_s32_x(pg256_all, acc_sumif1, svscales, sumi1);
|
||||
sumi2 = svmmla(svmmla(svdup_n_s32(0), r2, l2), r3, l3);
|
||||
svscales = svreinterpret_s32_u32(svlsr_n_u32_x(pg256_all, svlsl_n_u32_x(pg256_all, svreinterpret_u32_u64(svdup_n_u64(new_utmp.u64[j/2])), 8*(4-2*(j%2)-2)), 24));
|
||||
acc_sumif2 = svmla_s32_x(pg256_all, acc_sumif2, svscales, sumi2);
|
||||
q4_0 += 32; q4_1 += 32; q8_0 += 64; q8_1 += 64;
|
||||
}
|
||||
svint32_t acc_sumif = svadd_s32_x(pg256_all, acc_sumif1, acc_sumif2);
|
||||
svint32_t swap_acc_sumif = svext_s32(acc_sumif, acc_sumif, 4);
|
||||
acc_sumif = svadd_s32_x(pg32_4, acc_sumif, swap_acc_sumif);
|
||||
sumf1 = svmla_f32_x(pg32_4,
|
||||
svmla_f32_x(pg32_4,
|
||||
sumf1,
|
||||
svcvt_f32_x(pg32_4, acc_sumif),
|
||||
svsuper_block_scales),
|
||||
svdmins,
|
||||
svsumfs_tmp);
|
||||
} // end of for nb
|
||||
} // end of case 256-512
|
||||
break;
|
||||
default:
|
||||
assert(false && "Unsupported vector length");
|
||||
break;
|
||||
}
|
||||
|
||||
svst1_f32(pg32_2, s, sumf1);
|
||||
svst1_f32(pg32_2, s + bs, svreinterpret_f32_u8(svext_u8(svreinterpret_u8_f32(sumf1), svdup_n_u8(0), 8)));
|
||||
|
||||
return;
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
const block_q4_K * GGML_RESTRICT x0 = x;
|
||||
const block_q4_K * GGML_RESTRICT x1 = (const block_q4_K *) ((const uint8_t *)vx + bx);
|
||||
@@ -2235,7 +2467,6 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const uint8_t * GGML_RESTRICT q4 = x[i].qs;
|
||||
const int8_t * GGML_RESTRICT q8 = y[i].qs;
|
||||
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
const svuint8_t m4b = svdup_n_u8(0xf);
|
||||
const svint32_t mzero = svdup_n_s32(0);
|
||||
svint32_t sumi1 = svdup_n_s32(0);
|
||||
@@ -2480,7 +2711,201 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
#endif
|
||||
#if defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
const svbool_t pg32_2 = svptrue_pat_b32(SV_VL2);
|
||||
|
||||
svfloat32_t sum = svdup_n_f32(0);
|
||||
|
||||
const block_q6_K * GGML_RESTRICT vx0 = vx;
|
||||
const block_q8_K * GGML_RESTRICT vy0 = vy;
|
||||
const block_q6_K * GGML_RESTRICT vx1 = (const block_q6_K *) ((const uint8_t*)vx + bx);
|
||||
const block_q8_K * GGML_RESTRICT vy1 = (const block_q8_K *) ((const uint8_t*)vy + by);
|
||||
|
||||
switch (vector_length) {
|
||||
case 128:
|
||||
{
|
||||
const svbool_t pg128_all = svptrue_pat_b8(SV_ALL);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT ql0 = vx0[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh0 = vx0[i].qh;
|
||||
const uint8_t * GGML_RESTRICT ql1 = vx1[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh1 = vx1[i].qh;
|
||||
const int8_t * GGML_RESTRICT q80 = vy0[i].qs;
|
||||
const int8_t * GGML_RESTRICT q81 = vy1[i].qs;
|
||||
|
||||
const int8_t * GGML_RESTRICT scale0 = vx0[i].scales;
|
||||
const int8_t * GGML_RESTRICT scale1 = vx1[i].scales;
|
||||
|
||||
svfloat32_t vy_d = svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d));
|
||||
svfloat32_t vx_d = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].d)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].d)));
|
||||
svfloat32_t svsuper_block_scales = svmul_f32_x(pg128_all, vy_d, vx_d);
|
||||
// process q8sum summation 128 bit route
|
||||
const svint16_t q8sums_01 = svld1_s16(pg128_all, vy0[i].bsums);
|
||||
const svint16_t q8sums_02 = svld1_s16(pg128_all, vy0[i].bsums + 8);
|
||||
const svint16_t q8sums_11 = svld1_s16(pg128_all, vy1[i].bsums);
|
||||
const svint16_t q8sums_12 = svld1_s16(pg128_all, vy1[i].bsums + 8);
|
||||
const svint64x2_t q6scales_0_tmp = svld2_s64(pg128_all, (const int64_t *)scale0);
|
||||
const svint16_t q6scales_01 = svunpklo_s16(svreinterpret_s8_s64(svget2_s64(q6scales_0_tmp, 0)));
|
||||
const svint16_t q6scales_02 = svunpklo_s16(svreinterpret_s8_s64(svget2_s64(q6scales_0_tmp, 1)));
|
||||
const svint64x2_t q6scales_1_tmp = svld2_s64(pg128_all, (const int64_t *)scale1);
|
||||
const svint16_t q6scales_11 = svunpklo_s16(svreinterpret_s8_s64(svget2_s64(q6scales_1_tmp, 0)));
|
||||
const svint16_t q6scales_12 = svunpklo_s16(svreinterpret_s8_s64(svget2_s64(q6scales_1_tmp, 1)));
|
||||
const svint64_t prod = svdup_n_s64(0);
|
||||
|
||||
svint32_t isum_tmp1 = svreinterpret_s32_s64(svdot_s64(svdot_s64(prod, q8sums_01, q6scales_01), q8sums_02, q6scales_02));
|
||||
svint32_t isum_tmp2 = svreinterpret_s32_s64(svdot_s64(svdot_s64(prod, q8sums_01, q6scales_11), q8sums_02, q6scales_12));
|
||||
svint32_t isum_tmp3 = svtrn1_s32(isum_tmp1, isum_tmp2);
|
||||
svint32_t isum_tmp4 = svreinterpret_s32_s64(svdot_s64(svdot_s64(prod, q8sums_11, q6scales_01), q8sums_12, q6scales_02));
|
||||
svint32_t isum_tmp5 = svreinterpret_s32_s64(svdot_s64(svdot_s64(prod, q8sums_11, q6scales_11), q8sums_12, q6scales_12));
|
||||
svint32_t isum_tmp6 = svtrn1_s32(isum_tmp4, isum_tmp5);
|
||||
svint32_t isum_tmp7 = svreinterpret_s32_s64(svtrn2_s64(svreinterpret_s64_s32(isum_tmp3), svreinterpret_s64_s32(isum_tmp6)));
|
||||
svint32_t isum_tmp8 = svreinterpret_s32_s64(svtrn1_s64(svreinterpret_s64_s32(isum_tmp3), svreinterpret_s64_s32(isum_tmp6)));
|
||||
svint32_t svisum_mins = svadd_s32_x(pg128_all, isum_tmp7, isum_tmp8);
|
||||
|
||||
// process mmla
|
||||
svint8_t l0, l1, r0, r1;
|
||||
svint32_t isum_tmp = svdup_n_s32(0);
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
svuint8_t qhbits_0 = svld1_u8(pg128_all, qh0+16*(k%2));
|
||||
svuint8_t qhbits_1 = svld1_u8(pg128_all, qh1+16*(k%2));
|
||||
svuint8_t q6bits_0 = svld1_u8(pg128_all, ql0+16*(k%4));
|
||||
svuint8_t q6bits_1 = svld1_u8(pg128_all, ql1+16*(k%4));
|
||||
const int ql_pos = (k/4)*4;
|
||||
svuint8_t q6bytes_0_lo = (ql_pos < 4) ? svand_n_u8_x(pg128_all, q6bits_0, 0xf) : svlsr_n_u8_x(pg128_all, q6bits_0, 4);
|
||||
svuint8_t q6bytes_1_lo = (ql_pos < 4) ? svand_n_u8_x(pg128_all, q6bits_1, 0xf) : svlsr_n_u8_x(pg128_all, q6bits_1, 4);
|
||||
const int qh_pos = (k/2)*2;
|
||||
svuint8_t q6bytes_0_hi = svand_n_u8_x(pg128_all, qhbits_0, 0x3 << qh_pos);
|
||||
svuint8_t q6bytes_1_hi = svand_n_u8_x(pg128_all, qhbits_1, 0x3 << qh_pos);
|
||||
svint8_t q6bytes_0, q6bytes_1;
|
||||
if (qh_pos <= 4) {
|
||||
q6bytes_0 = svreinterpret_s8_u8(svmla_n_u8_x(pg128_all, q6bytes_0_lo, q6bytes_0_hi, 1 << (4 - qh_pos)));
|
||||
q6bytes_1 = svreinterpret_s8_u8(svmla_n_u8_x(pg128_all, q6bytes_1_lo, q6bytes_1_hi, 1 << (4 - qh_pos)));
|
||||
} else {
|
||||
q6bytes_0 = svreinterpret_s8_u8(svorr_u8_x(pg128_all, q6bytes_0_lo, svlsr_n_u8_x(pg128_all, q6bytes_0_hi, (qh_pos - 4))));
|
||||
q6bytes_1 = svreinterpret_s8_u8(svorr_u8_x(pg128_all, q6bytes_1_lo, svlsr_n_u8_x(pg128_all, q6bytes_1_hi, (qh_pos - 4))));
|
||||
}
|
||||
svint8_t q8bytes_0 = svld1_s8(pg128_all, q80+16*(k%8));
|
||||
svint8_t q8bytes_1 = svld1_s8(pg128_all, q81+16*(k%8));
|
||||
l0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q6bytes_0), svreinterpret_s64_s8(q6bytes_1)));
|
||||
l1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q6bytes_0), svreinterpret_s64_s8(q6bytes_1)));
|
||||
r0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
r1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
svint32_t svscale = svzip1_s32(svdup_n_s32(scale0[k]), svdup_n_s32(scale1[k]));
|
||||
isum_tmp = svmla_s32_x(pg128_all, isum_tmp, svmmla_s32(svmmla_s32(svdup_n_s32(0), r0, l0), r1, l1), svscale);
|
||||
}
|
||||
qh0 += 32; qh1 += 32;
|
||||
ql0 += 64; ql1 += 64;
|
||||
q80 += 128; q81 += 128;
|
||||
scale0 += 8; scale1 += 8;
|
||||
}
|
||||
sum = svmla_f32_x(pg128_all, sum,
|
||||
svcvt_f32_x(pg128_all, svmla_s32_x(pg128_all, isum_tmp,
|
||||
svisum_mins, svdup_n_s32(-32))),
|
||||
svsuper_block_scales);
|
||||
}
|
||||
} // end of case 128
|
||||
break;
|
||||
case 256:
|
||||
case 512:
|
||||
{
|
||||
const svbool_t pg256_all = svptrue_pat_b8(SV_ALL);
|
||||
const svbool_t pg32_4 = svptrue_pat_b32(SV_VL4);
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const uint8_t * GGML_RESTRICT ql0 = vx0[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh0 = vx0[i].qh;
|
||||
const uint8_t * GGML_RESTRICT ql1 = vx1[i].ql;
|
||||
const uint8_t * GGML_RESTRICT qh1 = vx1[i].qh;
|
||||
const int8_t * GGML_RESTRICT q80 = vy0[i].qs;
|
||||
const int8_t * GGML_RESTRICT q81 = vy1[i].qs;
|
||||
|
||||
const int8_t * GGML_RESTRICT scale0 = vx0[i].scales;
|
||||
const int8_t * GGML_RESTRICT scale1 = vx1[i].scales;
|
||||
svfloat32_t vx_d = svzip1_f32(svdup_n_f32(GGML_FP16_TO_FP32(vx0[i].d)), svdup_n_f32(GGML_FP16_TO_FP32(vx1[i].d)));
|
||||
svfloat64_t vy_d_tmp = svreinterpret_f64_f32(svuzp1_f32(svdup_n_f32(vy0[i].d), svdup_n_f32(vy1[i].d)));
|
||||
svfloat32_t vy_d = svreinterpret_f32_f64(svuzp1_f64(vy_d_tmp, vy_d_tmp));
|
||||
svfloat32_t svsuper_block_scales = svmul_f32_x(pg32_4, vy_d, vx_d);
|
||||
// process q8sum summation 256 bit route
|
||||
const svint16_t q8sums_0 = svld1_s16(pg256_all, vy0[i].bsums);
|
||||
const svint16_t q8sums_1 = svld1_s16(pg256_all, vy1[i].bsums);
|
||||
const svint16_t q6scales_0 = svunpklo_s16(svld1_s8(pg256_all, scale0));
|
||||
const svint16_t q6scales_1 = svunpklo_s16(svld1_s8(pg256_all, scale1));
|
||||
const svint64_t prod = svdup_n_s64(0);
|
||||
svint32_t isum_tmp1 = svreinterpret_s32_s64(svdot_s64(prod, q8sums_0, q6scales_0));
|
||||
svint32_t isum_tmp2 = svreinterpret_s32_s64(svdot_s64(prod, q8sums_0, q6scales_1));
|
||||
svint32_t isum_tmp3 = svreinterpret_s32_s64(svdot_s64(prod, q8sums_1, q6scales_0));
|
||||
svint32_t isum_tmp4 = svreinterpret_s32_s64(svdot_s64(prod, q8sums_1, q6scales_1));
|
||||
svint32_t isum_tmp5 = svtrn1_s32(isum_tmp1, isum_tmp2);
|
||||
svint32_t isum_tmp6 = svtrn1_s32(isum_tmp3, isum_tmp4);
|
||||
svint32_t isum_tmp7 = svreinterpret_s32_s64(svtrn2_s64(svreinterpret_s64_s32(isum_tmp5), svreinterpret_s64_s32(isum_tmp6)));
|
||||
svint32_t isum_tmp8 = svreinterpret_s32_s64(svtrn1_s64(svreinterpret_s64_s32(isum_tmp5), svreinterpret_s64_s32(isum_tmp6)));
|
||||
svint32_t isum_tmp9 = svadd_s32_x(pg256_all, isum_tmp7, isum_tmp8);
|
||||
svint32_t isum_tmp10 = svreinterpret_s32_u8(svext_u8(svreinterpret_u8_s32(isum_tmp9), svreinterpret_u8_s32(isum_tmp9), 16));
|
||||
svint32_t svisum_mins = svadd_s32_z(pg32_4, isum_tmp9, isum_tmp10);
|
||||
|
||||
// process mmla
|
||||
svint8_t l0, l1, r0, r1;
|
||||
svint32_t isum_tmp = svdup_n_s32(0);
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
for (int k = 0; k < 8; k+=2) { // process 2 block
|
||||
svuint8_t qhbits_0 = svld1_u8(pg256_all, qh0);
|
||||
svuint8_t qhbits_1 = svld1_u8(pg256_all, qh1);
|
||||
svuint8_t q6bits_0 = svld1_u8(pg256_all, ql0+32*((k%4)/2));
|
||||
svuint8_t q6bits_1 = svld1_u8(pg256_all, ql1+32*((k%4)/2));
|
||||
const int ql_pos = (k/4)*4;
|
||||
svuint8_t q6bytes_0_lo = (ql_pos < 4) ? svand_n_u8_x(pg256_all, q6bits_0, 0xf) : svlsr_n_u8_x(pg256_all, q6bits_0, 4);
|
||||
svuint8_t q6bytes_1_lo = (ql_pos < 4) ? svand_n_u8_x(pg256_all, q6bits_1, 0xf) : svlsr_n_u8_x(pg256_all, q6bits_1, 4);
|
||||
const int qh_pos = (k/2)*2;
|
||||
svuint8_t q6bytes_0_hi = svand_n_u8_x(pg256_all, qhbits_0, 0x3 << qh_pos);
|
||||
svuint8_t q6bytes_1_hi = svand_n_u8_x(pg256_all, qhbits_1, 0x3 << qh_pos);
|
||||
svint8_t q6bytes_0, q6bytes_1;
|
||||
if (qh_pos <= 4) {
|
||||
q6bytes_0 = svreinterpret_s8_u8(svmla_n_u8_x(pg256_all, q6bytes_0_lo, q6bytes_0_hi, 1 << (4 - qh_pos)));
|
||||
q6bytes_1 = svreinterpret_s8_u8(svmla_n_u8_x(pg256_all, q6bytes_1_lo, q6bytes_1_hi, 1 << (4 - qh_pos)));
|
||||
} else {
|
||||
q6bytes_0 = svreinterpret_s8_u8(svorr_u8_x(pg256_all, q6bytes_0_lo, svlsr_n_u8_x(pg256_all, q6bytes_0_hi, (qh_pos - 4))));
|
||||
q6bytes_1 = svreinterpret_s8_u8(svorr_u8_x(pg256_all, q6bytes_1_lo, svlsr_n_u8_x(pg256_all, q6bytes_1_hi, (qh_pos - 4))));
|
||||
}
|
||||
svint8_t q8bytes_0 = svld1_s8(pg256_all, q80+32*(k/2));
|
||||
svint8_t q8bytes_1 = svld1_s8(pg256_all, q81+32*(k/2));
|
||||
l0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q6bytes_0), svreinterpret_s64_s8(q6bytes_1)));
|
||||
l1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q6bytes_0), svreinterpret_s64_s8(q6bytes_1)));
|
||||
r0 = svreinterpret_s8_s64(svzip1_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
r1 = svreinterpret_s8_s64(svzip2_s64(svreinterpret_s64_s8(q8bytes_0), svreinterpret_s64_s8(q8bytes_1)));
|
||||
svint32_t svscale0 = svzip1_s32(svdup_n_s32(scale0[k]), svdup_n_s32(scale1[k]));
|
||||
svint32_t svscale1 = svzip1_s32(svdup_n_s32(scale0[k+1]), svdup_n_s32(scale1[k+1]));
|
||||
isum_tmp = svmla_s32_x(pg256_all, isum_tmp, svmmla_s32(svdup_n_s32(0), r0, l0), svscale0);
|
||||
isum_tmp = svmla_s32_x(pg256_all, isum_tmp, svmmla_s32(svdup_n_s32(0), r1, l1), svscale1);
|
||||
}
|
||||
qh0 += 32; qh1 += 32;
|
||||
ql0 += 64; ql1 += 64;
|
||||
q80 += 128; q81 += 128;
|
||||
scale0 += 8; scale1 += 8;
|
||||
} // end of for
|
||||
svint32_t swap_isum_tmp = svext_s32(isum_tmp, isum_tmp, 4);
|
||||
isum_tmp = svadd_s32_x(pg32_4, isum_tmp, swap_isum_tmp);
|
||||
sum = svmla_f32_x(pg32_4, sum,
|
||||
svcvt_f32_x(pg32_4, svmla_s32_x(pg32_4, isum_tmp,
|
||||
svisum_mins, svdup_n_s32(-32))),
|
||||
svsuper_block_scales);
|
||||
}
|
||||
} // end of case 256
|
||||
break;
|
||||
default:
|
||||
assert(false && "Unsupported vector length");
|
||||
break;
|
||||
} // end of switch
|
||||
|
||||
svst1_f32(pg32_2, s, sum);
|
||||
svst1_f32(pg32_2, s + bs, svreinterpret_f32_u8(svext_u8(svreinterpret_u8_f32(sum), svdup_n_u8(0), 8)));
|
||||
|
||||
return;
|
||||
}
|
||||
#elif defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
if (nrc == 2) {
|
||||
const block_q6_K * GGML_RESTRICT x0 = x;
|
||||
const block_q6_K * GGML_RESTRICT x1 = (const block_q6_K *) ((const uint8_t *)vx + bx);
|
||||
@@ -2594,27 +3019,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
// adjust bias, apply superblock scale
|
||||
{
|
||||
int32_t bias[4];
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const svbool_t pg16_8 = svptrue_pat_b16(SV_VL8);
|
||||
const svbool_t pg8_8 = svptrue_pat_b8(SV_VL8);
|
||||
const svint16_t y0_q8sums_0 = svld1_s16(pg16_8, y0->bsums);
|
||||
const svint16_t y0_q8sums_1 = svld1_s16(pg16_8, y0->bsums + 8);
|
||||
const svint16_t y1_q8sums_0 = svld1_s16(pg16_8, y1->bsums);
|
||||
const svint16_t y1_q8sums_1 = svld1_s16(pg16_8, y1->bsums + 8);
|
||||
const svint16_t x0_q6scales_0 = svunpklo_s16(svld1_s8(pg8_8, x0->scales));
|
||||
const svint16_t x0_q6scales_1 = svunpklo_s16(svld1_s8(pg8_8, x0->scales + 8));
|
||||
const svint16_t x1_q6scales_0 = svunpklo_s16(svld1_s8(pg8_8, x1->scales));
|
||||
const svint16_t x1_q6scales_1 = svunpklo_s16(svld1_s8(pg8_8, x1->scales + 8));
|
||||
const svint64_t zero = svdup_n_s64(0);
|
||||
bias[0] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y0_q8sums_0, x0_q6scales_0),
|
||||
svdot_s64(zero, y0_q8sums_1, x0_q6scales_1)));
|
||||
bias[1] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y1_q8sums_0, x0_q6scales_0),
|
||||
svdot_s64(zero, y1_q8sums_1, x0_q6scales_1)));
|
||||
bias[2] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y0_q8sums_0, x1_q6scales_0),
|
||||
svdot_s64(zero, y0_q8sums_1, x1_q6scales_1)));
|
||||
bias[3] = svaddv_s64(svptrue_b64(), svadd_s64_x(svptrue_b64(), svdot_s64(zero, y1_q8sums_0, x1_q6scales_0),
|
||||
svdot_s64(zero, y1_q8sums_1, x1_q6scales_1)));
|
||||
#else
|
||||
// NEON doesn't support int16 dot product, fallback to separated mul and add
|
||||
const int16x8x2_t q8sums0 = vld1q_s16_x2(y0->bsums);
|
||||
const int16x8x2_t q8sums1 = vld1q_s16_x2(y1->bsums);
|
||||
@@ -2646,7 +3050,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
vmull_s16(vget_high_s16(q8sums1.val[1]), vget_high_s16(q6scales1.val[1]))));
|
||||
bias[3] = vaddvq_s32(prod);
|
||||
|
||||
#endif
|
||||
const int32x4_t vibias = vmulq_n_s32(vld1q_s32(bias), 32);
|
||||
|
||||
const float32x4_t superblock_scale = {
|
||||
@@ -2672,7 +3075,6 @@ void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
#endif
|
||||
|
||||
#ifdef __ARM_FEATURE_SVE
|
||||
const int vector_length = ggml_cpu_get_sve_cnt()*8;
|
||||
float sum = 0;
|
||||
svuint8_t m4b = svdup_n_u8(0xf);
|
||||
svint32_t vzero = svdup_n_s32(0);
|
||||
|
||||
@@ -700,7 +700,8 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
|
||||
// Compute combined scale for the block 0 and 1
|
||||
const __m128 d_0_1 = (__m128)__lsx_vreplgr2vr_w( GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d) );
|
||||
const float ft0 = GGML_CPU_FP16_TO_FP32(x[ib].d) * GGML_CPU_FP16_TO_FP32(y[ib].d);
|
||||
const __m128 d_0_1 = (__m128)(v4f32){ft0, ft0, ft0, ft0};
|
||||
|
||||
const __m128i tmp_0_1 = __lsx_vld((const __m128i *)x[ib].qs, 0);
|
||||
|
||||
@@ -714,11 +715,9 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
bx_1 = __lsx_vsub_b(bx_1, off);
|
||||
const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
|
||||
|
||||
//_mm_prefetch(&x[ib] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
|
||||
//_mm_prefetch(&y[ib] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 2 and 3
|
||||
const __m128 d_2_3 = (__m128)__lsx_vreplgr2vr_w( GGML_CPU_FP16_TO_FP32(x[ib + 1].d) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d) );
|
||||
const float ft1 = GGML_CPU_FP16_TO_FP32(x[ib + 1].d) * GGML_CPU_FP16_TO_FP32(y[ib + 1].d);
|
||||
const __m128 d_2_3 = (__m128)(v4f32){ft1, ft1, ft1, ft1};
|
||||
|
||||
const __m128i tmp_2_3 = __lsx_vld((const __m128i *)x[ib + 1].qs, 0);
|
||||
|
||||
|
||||
@@ -580,16 +580,19 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const float dmin = -y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin);
|
||||
uint8_t *patmp = atmp;
|
||||
int vsums;
|
||||
int tmp;
|
||||
int tmp, t1, t2, t3, t4, t5, t6, t7;
|
||||
__asm__ __volatile__(
|
||||
"vsetivli zero, 16, e8, m1\n\t"
|
||||
"vmv.v.x v8, zero\n\t"
|
||||
"lb zero, 15(%[sc])\n\t"
|
||||
"vle8.v v1, (%[sc])\n\t"
|
||||
"vle8.v v2, (%[bsums])\n\t"
|
||||
"addi %[tmp], %[bsums], 16\n\t"
|
||||
"vand.vi v0, v1, 0xF\n\t"
|
||||
"vsrl.vi v1, v1, 4\n\t"
|
||||
"vle8.v v3, (%[tmp])\n\t"
|
||||
"vse8.v v0, (%[scale])\n\t"
|
||||
"vsetivli zero, 16, e16, m2\n\t"
|
||||
"vle16.v v2, (%[bsums])\n\t"
|
||||
"vzext.vf2 v0, v1\n\t"
|
||||
"vwmul.vv v4, v0, v2\n\t"
|
||||
"vsetivli zero, 16, e32, m4\n\t"
|
||||
@@ -608,46 +611,89 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
|
||||
for (int j = 0; j < QK_K/128; ++j) {
|
||||
__asm__ __volatile__(
|
||||
"vsetvli zero, %[vl32], e8, m2\n\t"
|
||||
"lb zero, 31(%[q2])\n\t"
|
||||
"addi %[tmp], %[q2], 16\n\t"
|
||||
"addi %[t1], %[q8], 16\n\t"
|
||||
"vsetivli zero, 16, e8, m1\n\t"
|
||||
"vle8.v v0, (%[q2])\n\t"
|
||||
"vle8.v v1, (%[tmp])\n\t"
|
||||
"vsrl.vi v2, v0, 2\n\t"
|
||||
"vsrl.vi v3, v1, 2\n\t"
|
||||
"vsrl.vi v4, v0, 4\n\t"
|
||||
"vsrl.vi v6, v0, 6\n\t"
|
||||
"vand.vi v0, v0, 0x3\n\t"
|
||||
"vand.vi v2, v2, 0x3\n\t"
|
||||
"vand.vi v4, v4, 0x3\n\t"
|
||||
"vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"addi %[tmp], %[q8], 32\n\t"
|
||||
"vle8.v v8, (%[q8])\n\t"
|
||||
"vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"vle8.v v9, (%[t1])\n\t"
|
||||
"addi %[t1], %[t1], 32\n\t"
|
||||
"vsrl.vi v5, v1, 4\n\t"
|
||||
"vsrl.vi v6, v0, 6\n\t"
|
||||
"vsrl.vi v7, v1, 6\n\t"
|
||||
"vle8.v v10, (%[tmp])\n\t"
|
||||
"vle8.v v11, (%[t1])\n\t"
|
||||
"addi %[tmp], %[tmp], 32\n\t"
|
||||
"addi %[t1], %[t1], 32\n\t"
|
||||
"vand.vi v0, v0, 0x3\n\t"
|
||||
"vand.vi v1, v1, 0x3\n\t"
|
||||
"vand.vi v2, v2, 0x3\n\t"
|
||||
"vle8.v v12, (%[tmp])\n\t"
|
||||
"vle8.v v13, (%[t1])\n\t"
|
||||
"addi %[tmp], %[tmp], 32\n\t"
|
||||
"addi %[t1], %[t1], 32\n\t"
|
||||
"vand.vi v3, v3, 0x3\n\t"
|
||||
"vand.vi v4, v4, 0x3\n\t"
|
||||
"vand.vi v5, v5, 0x3\n\t"
|
||||
"vle8.v v14, (%[tmp])\n\t"
|
||||
"vle8.v v15, (%[t1])\n\t"
|
||||
"vwmul.vv v16, v0, v8\n\t"
|
||||
"vwmul.vv v18, v1, v9\n\t"
|
||||
"vwmul.vv v20, v2, v10\n\t"
|
||||
"vwmul.vv v22, v3, v11\n\t"
|
||||
"vwmul.vv v24, v4, v12\n\t"
|
||||
"vsetivli zero, 16, e16, m2\n\t"
|
||||
"vwmul.vv v26, v5, v13\n\t"
|
||||
"vwmul.vv v28, v6, v14\n\t"
|
||||
"vwmul.vv v30, v7, v15\n\t"
|
||||
"vsetivli zero, 8, e16, m1\n\t"
|
||||
"vmv.v.x v0, zero\n\t"
|
||||
"vwredsum.vs v10, v16, v0\n\t"
|
||||
"lbu %[tmp], 0(%[scale])\n\t"
|
||||
"vwredsum.vs v8, v16, v0\n\t"
|
||||
"vwredsum.vs v9, v18, v0\n\t"
|
||||
"vwredsum.vs v8, v20, v0\n\t"
|
||||
"vwredsum.vs v7, v22, v0\n\t"
|
||||
"vwredsum.vs v11, v24, v0\n\t"
|
||||
"vwredsum.vs v12, v26, v0\n\t"
|
||||
"vwredsum.vs v13, v28, v0\n\t"
|
||||
"vwredsum.vs v14, v30, v0\n\t"
|
||||
"lbu %[t1], 1(%[scale])\n\t"
|
||||
"vwredsum.vs v10, v20, v0\n\t"
|
||||
"vwredsum.vs v11, v22, v0\n\t"
|
||||
"lbu %[t2], 2(%[scale])\n\t"
|
||||
"vwredsum.vs v12, v24, v0\n\t"
|
||||
"vwredsum.vs v13, v26, v0\n\t"
|
||||
"lbu %[t3], 3(%[scale])\n\t"
|
||||
"vwredsum.vs v14, v28, v0\n\t"
|
||||
"vwredsum.vs v15, v30, v0\n\t"
|
||||
"lbu %[t4], 4(%[scale])\n\t"
|
||||
"vwredsum.vs v8, v17, v8\n\t"
|
||||
"vwredsum.vs v9, v19, v9\n\t"
|
||||
"lbu %[t5], 5(%[scale])\n\t"
|
||||
"vwredsum.vs v10, v21, v10\n\t"
|
||||
"vwredsum.vs v11, v23, v11\n\t"
|
||||
"lbu %[t6], 6(%[scale])\n\t"
|
||||
"vwredsum.vs v12, v25, v12\n\t"
|
||||
"vwredsum.vs v13, v27, v13\n\t"
|
||||
"lbu %[t7], 7(%[scale])\n\t"
|
||||
"vwredsum.vs v14, v29, v14\n\t"
|
||||
"vwredsum.vs v15, v31, v15\n\t"
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"vslideup.vi v10, v9, 1\n\t"
|
||||
"vslideup.vi v8, v7, 1\n\t"
|
||||
"vslideup.vi v11, v12, 1\n\t"
|
||||
"vslideup.vi v13, v14, 1\n\t"
|
||||
"vslideup.vi v10, v8, 2\n\t"
|
||||
"vslideup.vi v11, v13, 2\n\t"
|
||||
"vsetivli zero, 8, e32, m2\n\t"
|
||||
"vle8.v v15, (%[scale])\n\t"
|
||||
"vzext.vf4 v12, v15\n\t"
|
||||
"vmul.vv v10, v10, v12\n\t"
|
||||
"vredsum.vs v0, v10, v0\n\t"
|
||||
"vmul.vx v0, v8, %[tmp]\n\t"
|
||||
"vmul.vx v1, v9, %[t1]\n\t"
|
||||
"vmacc.vx v0, %[t2], v10\n\t"
|
||||
"vmacc.vx v1, %[t3], v11\n\t"
|
||||
"vmacc.vx v0, %[t4], v12\n\t"
|
||||
"vmacc.vx v1, %[t5], v13\n\t"
|
||||
"vmacc.vx v0, %[t6], v14\n\t"
|
||||
"vmacc.vx v1, %[t7], v15\n\t"
|
||||
"vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[isum], %[isum], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [isum] "+&r" (isum)
|
||||
"vmv.x.s %[t1], v1\n\t"
|
||||
"add %[isum], %[isum], %[tmp]\n\t"
|
||||
"add %[isum], %[isum], %[t1]"
|
||||
: [tmp] "=&r" (tmp), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
|
||||
, [t4] "=&r" (t4), [t5] "=&r" (t5), [t6] "=&r" (t6), [t7] "=&r" (t7)
|
||||
, [isum] "+&r" (isum)
|
||||
: [q2] "r" (q2), [scale] "r" (patmp), [q8] "r" (q8)
|
||||
, [vl32] "r" (32), [vl64] "r" (64), [vl128] "r" (128)
|
||||
: "memory"
|
||||
, "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7"
|
||||
, "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15"
|
||||
@@ -929,7 +975,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
int8_t * scale = (int8_t *)utmp;
|
||||
int tmp;
|
||||
int tmp, t1, t2, t3, t4, t5, t6, t7;
|
||||
__asm__ __volatile__(
|
||||
"vsetivli zero, 12, e8, m1\n\t"
|
||||
"vle8.v v0, (%[s6b])\n\t"
|
||||
@@ -967,19 +1013,23 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
int isum = 0;
|
||||
for (int j = 0; j < QK_K; j += 128) {
|
||||
__asm__ __volatile__(
|
||||
"lb zero, 31(%[q3])\n\t"
|
||||
"vsetvli zero, %[vl32], e8, m2, ta, mu\n\t"
|
||||
"vle8.v v8, (%[q3])\n\t"
|
||||
"vsrl.vi v10, v8, 2\n\t"
|
||||
"vsrl.vi v12, v8, 4\n\t"
|
||||
"vsrl.vi v14, v8, 6\n\t"
|
||||
"lb zero, 64(%[q8])\n\t"
|
||||
"vand.vi v8, v8, 3\n\t"
|
||||
"vand.vi v10, v10, 3\n\t"
|
||||
"vand.vi v12, v12, 3\n\t"
|
||||
"vle8.v v2, (%[qh])\n\t"
|
||||
"lb zero, 127(%[q8])\n\t"
|
||||
"vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"vmseq.vx v0, v4, zero\n\t"
|
||||
"vadd.vi v8, v8, -4, v0.t\n\t"
|
||||
"lb zero, 0(%[q8])\n\t"
|
||||
"vand.vx v4, v2, %[m]\n\t"
|
||||
"slli %[m], %[m], 1\n\t"
|
||||
"vmseq.vx v0, v4, zero\n\t"
|
||||
@@ -994,34 +1044,43 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
"vadd.vi v14, v14, -4, v0.t\n\t"
|
||||
"vsetvli zero, %[vl128], e8, m8\n\t"
|
||||
"vle8.v v0, (%[q8])\n\t"
|
||||
"lb %[tmp], 0(%[scale])\n\t"
|
||||
"lb %[t1], 1(%[scale])\n\t"
|
||||
"lb %[t2], 2(%[scale])\n\t"
|
||||
"lb %[t3], 3(%[scale])\n\t"
|
||||
"vsetvli zero, %[vl64], e8, m4\n\t"
|
||||
"vwmul.vv v16, v0, v8\n\t"
|
||||
"vwmul.vv v24, v4, v12\n\t"
|
||||
"vsetivli zero, 16, e16, m2\n\t"
|
||||
"vmv.v.x v0, zero\n\t"
|
||||
"vwredsum.vs v10, v16, v0\n\t"
|
||||
"vwredsum.vs v8, v16, v0\n\t"
|
||||
"lb %[t4], 4(%[scale])\n\t"
|
||||
"lb %[t5], 5(%[scale])\n\t"
|
||||
"vwredsum.vs v9, v18, v0\n\t"
|
||||
"vwredsum.vs v8, v20, v0\n\t"
|
||||
"vwredsum.vs v7, v22, v0\n\t"
|
||||
"vwredsum.vs v11, v24, v0\n\t"
|
||||
"vwredsum.vs v12, v26, v0\n\t"
|
||||
"vwredsum.vs v13, v28, v0\n\t"
|
||||
"vwredsum.vs v14, v30, v0\n\t"
|
||||
"vwredsum.vs v10, v20, v0\n\t"
|
||||
"vwredsum.vs v11, v22, v0\n\t"
|
||||
"vwredsum.vs v12, v24, v0\n\t"
|
||||
"lb %[t6], 6(%[scale])\n\t"
|
||||
"lb %[t7], 7(%[scale])\n\t"
|
||||
"vwredsum.vs v13, v26, v0\n\t"
|
||||
"vwredsum.vs v14, v28, v0\n\t"
|
||||
"vwredsum.vs v15, v30, v0\n\t"
|
||||
"vsetivli zero, 4, e32, m1\n\t"
|
||||
"vslideup.vi v10, v9, 1\n\t"
|
||||
"vslideup.vi v8, v7, 1\n\t"
|
||||
"vslideup.vi v11, v12, 1\n\t"
|
||||
"vslideup.vi v13, v14, 1\n\t"
|
||||
"vslideup.vi v10, v8, 2\n\t"
|
||||
"vslideup.vi v11, v13, 2\n\t"
|
||||
"vsetivli zero, 8, e32, m2\n\t"
|
||||
"vle8.v v15, (%[scale])\n\t"
|
||||
"vsext.vf4 v12, v15\n\t"
|
||||
"vmul.vv v10, v10, v12\n\t"
|
||||
"vredsum.vs v0, v10, v0\n\t"
|
||||
"vmul.vx v0, v8, %[tmp]\n\t"
|
||||
"vmul.vx v1, v9, %[t1]\n\t"
|
||||
"vmacc.vx v0, %[t2], v10\n\t"
|
||||
"vmacc.vx v1, %[t3], v11\n\t"
|
||||
"vmacc.vx v0, %[t4], v12\n\t"
|
||||
"vmacc.vx v1, %[t5], v13\n\t"
|
||||
"vmacc.vx v0, %[t6], v14\n\t"
|
||||
"vmacc.vx v1, %[t7], v15\n\t"
|
||||
"vmv.x.s %[tmp], v0\n\t"
|
||||
"add %[isum], %[isum], %[tmp]"
|
||||
: [tmp] "=&r" (tmp), [m] "+&r" (m), [isum] "+&r" (isum)
|
||||
"vmv.x.s %[t1], v1\n\t"
|
||||
"add %[isum], %[isum], %[tmp]\n\t"
|
||||
"add %[isum], %[isum], %[t1]"
|
||||
: [tmp] "=&r" (tmp), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
|
||||
, [t4] "=&r" (t4), [t5] "=&r" (t5), [t6] "=&r" (t6), [t7] "=&r" (t7)
|
||||
, [m] "+&r" (m), [isum] "+&r" (isum)
|
||||
: [vl128] "r" (128), [vl64] "r" (64), [vl32] "r" (32)
|
||||
, [q3] "r" (q3), [qh] "r" (qh), [scale] "r" (scale), [q8] "r" (q8)
|
||||
: "memory"
|
||||
|
||||
50
ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp
Normal file
50
ggml/src/ggml-cpu/arch/s390/cpu-feats.cpp
Normal file
@@ -0,0 +1,50 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__s390x__)
|
||||
#include <sys/auxv.h>
|
||||
|
||||
// find hwcap bits in asm/elf.h
|
||||
#ifndef HWCAP_VXRS_EXT2
|
||||
#define HWCAP_VXRS_EXT2 (1 << 15)
|
||||
#endif
|
||||
|
||||
#ifndef HWCAP_NNPA
|
||||
#define HWCAP_NNPA (1 << 20)
|
||||
#endif
|
||||
|
||||
struct s390x_features {
|
||||
bool has_vxe2 = false;
|
||||
bool has_nnpa = false;
|
||||
|
||||
s390x_features() {
|
||||
uint32_t hwcap = getauxval(AT_HWCAP);
|
||||
// NOTE: use hwcap2 with DFLT for z17 and later
|
||||
// uint32_t hwcap2 = getauxval(AT_HWCAP2);
|
||||
|
||||
has_vxe2 = !!(hwcap & HWCAP_VXRS_EXT2);
|
||||
has_nnpa = !!(hwcap & HWCAP_NNPA);
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_s390x_score() {
|
||||
int score = 1;
|
||||
s390x_features sf;
|
||||
|
||||
// IBM z15 / LinuxONE 3
|
||||
#ifdef GGML_USE_VXE2
|
||||
if (!sf.has_vxe2) { return 0; }
|
||||
score += 1 << 1;
|
||||
#endif
|
||||
|
||||
// IBM z16 / LinuxONE 4 and z17 / LinuxONE 5
|
||||
#ifdef GGML_USE_NNPA
|
||||
if (!sf.has_nnpa) { return 0; }
|
||||
score += 1 << 2;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_s390x_score)
|
||||
|
||||
#endif // __s390x__
|
||||
@@ -500,13 +500,15 @@ inline static int32x4_t ggml_vec_dot(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
#if defined(__loongarch_sx)
|
||||
/* float type data load instructions */
|
||||
static __m128 __lsx_vreplfr2vr_s(const float val) {
|
||||
v4f32 res = {val, val, val, val};
|
||||
return (__m128)res;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(__loongarch_asx)
|
||||
static __m256 __lasx_xvreplfr2vr_s(const float val) {
|
||||
v8f32 res = {val, val, val, val, val, val, val, val};
|
||||
return (__m256)res;
|
||||
|
||||
@@ -1613,13 +1613,8 @@ static void ggml_compute_forward_mul_mat_id(
|
||||
chunk_size = 64;
|
||||
}
|
||||
|
||||
#if defined(__aarch64__)
|
||||
// disable for ARM
|
||||
const bool disable_chunking = true;
|
||||
#else
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
#endif // defined(__aarch64__)
|
||||
|
||||
int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
|
||||
int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
|
||||
@@ -2184,6 +2179,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
@@ -3563,13 +3562,17 @@ void ggml_cpu_init(void) {
|
||||
#ifdef GGML_USE_OPENMP
|
||||
//if (!getenv("OMP_WAIT_POLICY")) {
|
||||
// // set the wait policy to active, so that OpenMP threads don't sleep
|
||||
// putenv("OMP_WAIT_POLICY=active");
|
||||
// setenv("OMP_WAIT_POLICY", "active", 0)
|
||||
//}
|
||||
|
||||
if (!getenv("KMP_BLOCKTIME")) {
|
||||
// set the time to wait before sleeping a thread
|
||||
// this is less aggressive than setting the wait policy to active, but should achieve similar results in most cases
|
||||
putenv("KMP_BLOCKTIME=200"); // 200ms
|
||||
#ifdef _WIN32
|
||||
_putenv_s("KMP_BLOCKTIME", "200"); // 200ms
|
||||
#else
|
||||
setenv("KMP_BLOCKTIME", "200", 0); // 200ms
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -5474,7 +5474,7 @@ static void ggml_rope_cache_init(
|
||||
}
|
||||
|
||||
static void ggml_mrope_cache_init(
|
||||
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
|
||||
float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool is_imrope, bool indep_sects,
|
||||
float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
|
||||
float * cache, float sin_sign, float theta_scale) {
|
||||
// ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
|
||||
@@ -5509,14 +5509,26 @@ static void ggml_mrope_cache_init(
|
||||
}
|
||||
|
||||
float theta = theta_t;
|
||||
if (sector >= sections[0] && sector < sec_w) {
|
||||
theta = theta_h;
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections[2]) {
|
||||
theta = theta_w;
|
||||
}
|
||||
else if (sector >= sec_w + sections[2]) {
|
||||
theta = theta_e;
|
||||
if (is_imrope) { // qwen3vl apply interleaved mrope
|
||||
if (sector % 3 == 1 && sector < 3 * sections[1]) {
|
||||
theta = theta_h;
|
||||
} else if (sector % 3 == 2 && sector < 3 * sections[2]) {
|
||||
theta = theta_w;
|
||||
} else if (sector % 3 == 0 && sector < 3 * sections[0]) {
|
||||
theta = theta_t;
|
||||
} else {
|
||||
theta = theta_e;
|
||||
}
|
||||
} else {
|
||||
if (sector >= sections[0] && sector < sec_w) {
|
||||
theta = theta_h;
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections[2]) {
|
||||
theta = theta_w;
|
||||
}
|
||||
else if (sector >= sec_w + sections[2]) {
|
||||
theta = theta_e;
|
||||
}
|
||||
}
|
||||
|
||||
rope_yarn(
|
||||
@@ -5589,6 +5601,7 @@ static void ggml_compute_forward_rope_f32(
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (is_mrope) {
|
||||
@@ -5627,7 +5640,7 @@ static void ggml_compute_forward_rope_f32(
|
||||
const int64_t p_w = pos[i2 + ne2 * 2];
|
||||
const int64_t p_e = pos[i2 + ne2 * 3];
|
||||
ggml_mrope_cache_init(
|
||||
p_t, p_h, p_w, p_e, sections, is_vision,
|
||||
p_t, p_h, p_w, p_e, sections, is_imrope, is_vision,
|
||||
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
|
||||
@@ -5775,6 +5788,7 @@ static void ggml_compute_forward_rope_f16(
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (is_mrope) {
|
||||
@@ -5813,7 +5827,7 @@ static void ggml_compute_forward_rope_f16(
|
||||
const int64_t p_w = pos[i2 + ne2 * 2];
|
||||
const int64_t p_e = pos[i2 + ne2 * 3];
|
||||
ggml_mrope_cache_init(
|
||||
p_t, p_h, p_w, p_e, sections, is_vision,
|
||||
p_t, p_h, p_w, p_e, sections, is_imrope, is_vision,
|
||||
freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
|
||||
}
|
||||
|
||||
@@ -7070,7 +7084,11 @@ static void ggml_compute_forward_conv_2d_dw_cwhn(
|
||||
const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
|
||||
|
||||
#ifdef GGML_SIMD
|
||||
const int64_t pkg_size = GGML_F32_EPR;
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int64_t pkg_size = svcntw();
|
||||
#else
|
||||
const int64_t pkg_size = GGML_F32_EPR;
|
||||
#endif
|
||||
const int64_t pkg_count = c / pkg_size;
|
||||
const int64_t c_pkg_end = pkg_count * pkg_size;
|
||||
#else
|
||||
@@ -7493,10 +7511,17 @@ static void ggml_compute_forward_upscale_f32(
|
||||
float sf1 = (float)ne1/src0->ne[1];
|
||||
float sf2 = (float)ne2/src0->ne[2];
|
||||
float sf3 = (float)ne3/src0->ne[3];
|
||||
float pixel_offset = 0.5f;
|
||||
|
||||
const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
|
||||
const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
|
||||
|
||||
if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
|
||||
pixel_offset = 0.0f;
|
||||
sf0 = ne0 > 1 && ne00 > 1 ? (float)(ne0 - 1) / (ne00 - 1) : sf0;
|
||||
sf1 = ne1 > 1 && ne01 > 1 ? (float)(ne1 - 1) / (ne01 - 1) : sf1;
|
||||
}
|
||||
|
||||
if (mode == GGML_SCALE_MODE_NEAREST) {
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
const int64_t i03 = i3 / sf3;
|
||||
@@ -7516,13 +7541,6 @@ static void ggml_compute_forward_upscale_f32(
|
||||
}
|
||||
}
|
||||
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
|
||||
float pixel_offset = 0.5f;
|
||||
if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
|
||||
pixel_offset = 0.0f;
|
||||
sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
|
||||
sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
|
||||
}
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
const int64_t i03 = i3 / sf3;
|
||||
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
||||
@@ -7557,6 +7575,51 @@ static void ggml_compute_forward_upscale_f32(
|
||||
|
||||
const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
|
||||
|
||||
float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||||
*y_dst = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == GGML_SCALE_MODE_BICUBIC) {
|
||||
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
|
||||
const float a = -0.75f; // use alpha = -0.75 (same as PyTorch)
|
||||
auto weight1 = [a](float x) { return ((a + 2) * x - (a + 3)) * x * x + 1; };
|
||||
auto weight2 = [a](float x) { return ((a * x - 5 * a) * x + 8 * a) * x - 4 * a; };
|
||||
auto bicubic = [=](float p0, float p1, float p2, float p3, float x) {
|
||||
const float w0 = weight2(x + 1);
|
||||
const float w1 = weight1(x + 0);
|
||||
const float w2 = weight1(1 - x);
|
||||
const float w3 = weight2(2 - x);
|
||||
return p0*w0 + p1*w1 + p2*w2 + p3*w3;
|
||||
};
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
const int64_t i03 = i3 / sf3;
|
||||
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
||||
const int64_t i02 = i2 / sf2;
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
|
||||
const int64_t y0 = (int64_t)floorf(y);
|
||||
const float dy = y - (float)y0;
|
||||
|
||||
for (int64_t i0 = 0; i0 < ne0; i0++) {
|
||||
const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
|
||||
const int64_t x0 = (int64_t)floorf(x);
|
||||
const float dx = x - (float)x0;
|
||||
|
||||
auto p = [=](int64_t x_off, int64_t y_off) -> float {
|
||||
int64_t i00 = std::max(int64_t(0), std::min(x0 + x_off, ne00 - 1));
|
||||
int64_t i01 = std::max(int64_t(0), std::min(y0 + y_off, ne01 - 1));
|
||||
return *(const float *)((const char *)src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
};
|
||||
|
||||
const float val = bicubic(
|
||||
bicubic(p(-1,-1), p(0,-1), p(1,-1), p(2,-1), dx),
|
||||
bicubic(p(-1, 0), p(0, 0), p(1, 0), p(2, 0), dx),
|
||||
bicubic(p(-1, 1), p(0, 1), p(1, 1), p(2, 1), dx),
|
||||
bicubic(p(-1, 2), p(0, 2), p(1, 2), p(2, 2), dx), dy);
|
||||
|
||||
float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||||
*y_dst = val;
|
||||
}
|
||||
@@ -7909,10 +7972,10 @@ void ggml_compute_forward_argsort(
|
||||
|
||||
// ggml_compute_forward_flash_attn_ext
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
ggml_tensor * dst,
|
||||
int ir0, int ir1) {
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
@@ -7928,9 +7991,6 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t DK = nek0;
|
||||
const int64_t DV = nev0;
|
||||
const int64_t N = neq1;
|
||||
@@ -7964,16 +8024,6 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
|
||||
// parallelize by q rows using ggml_vec_dot_f32
|
||||
|
||||
// total rows in q
|
||||
const int nr = neq1*neq2*neq3;
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float logit_softcap = 0.0f;
|
||||
@@ -8000,6 +8050,8 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
|
||||
GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
|
||||
|
||||
int ith = params->ith;
|
||||
|
||||
// loop over n_batch and n_head
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// q indices
|
||||
@@ -8147,6 +8199,91 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
|
||||
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
||||
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
||||
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
||||
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
||||
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
||||
|
||||
const int64_t DK = nek0;
|
||||
const int64_t DV = nev0;
|
||||
const int64_t N = neq1;
|
||||
|
||||
GGML_ASSERT(ne0 == DV);
|
||||
GGML_ASSERT(ne2 == N);
|
||||
|
||||
// input tensor rows must be contiguous
|
||||
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
|
||||
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
|
||||
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
|
||||
|
||||
GGML_ASSERT(neq0 == DK);
|
||||
GGML_ASSERT(nek0 == DK);
|
||||
GGML_ASSERT(nev0 == DV);
|
||||
|
||||
GGML_ASSERT(neq1 == N);
|
||||
|
||||
// dst cannot be transposed or permuted
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
GGML_ASSERT(nb0 <= nb1);
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// parallelize by q rows using ggml_vec_dot_f32
|
||||
|
||||
// total rows in q
|
||||
const int64_t nr = neq1*neq2*neq3;
|
||||
|
||||
// rows per thread
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
|
||||
// 4x chunks per thread
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// The number of elements in each chunk
|
||||
const int64_t dr = (nr + nchunk - 1) / nchunk;
|
||||
|
||||
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||||
int current_chunk = ith;
|
||||
|
||||
while (current_chunk < nchunk) {
|
||||
const int64_t ir0 = dr * current_chunk;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1);
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_flash_attn_ext(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -8993,6 +9130,22 @@ void ggml_compute_forward_unary(
|
||||
{
|
||||
ggml_compute_forward_exp(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
{
|
||||
ggml_compute_forward_floor(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
{
|
||||
ggml_compute_forward_ceil(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
{
|
||||
ggml_compute_forward_round(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
{
|
||||
ggml_compute_forward_trunc(params, dst);
|
||||
} break;
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
{
|
||||
ggml_compute_forward_xielu(params, dst);
|
||||
|
||||
@@ -1600,6 +1600,32 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
|
||||
return false;
|
||||
}
|
||||
|
||||
void forward_mul_mat_one_chunk(ggml_compute_params * params, ggml_tensor * op, int64_t src0_start, int64_t src0_end) {
|
||||
const ggml_tensor * src0 = op->src[0];
|
||||
const ggml_tensor * src1 = op->src[1];
|
||||
ggml_tensor * dst = op;
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
const void * src1_wdata = params->wdata;
|
||||
const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10);
|
||||
|
||||
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
|
||||
if (ne11 > 3) {
|
||||
gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
|
||||
(float *) ((char *) dst->data) + src0_start, ne01,
|
||||
(const char *) src0->data + src0_start * nb01,
|
||||
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
|
||||
}
|
||||
for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
|
||||
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
|
||||
(float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
|
||||
(const char *) src0->data + src0_start * nb01,
|
||||
(const char *) src1_wdata + (src1_col_stride * iter), 1,
|
||||
src0_end - src0_start);
|
||||
}
|
||||
}
|
||||
|
||||
void forward_mul_mat(ggml_compute_params * params, ggml_tensor * op) {
|
||||
const ggml_tensor * src0 = op->src[0];
|
||||
const ggml_tensor * src1 = op->src[1];
|
||||
@@ -1643,31 +1669,62 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
|
||||
from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10);
|
||||
}
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
|
||||
// 4x chunks per thread
|
||||
int64_t nr = ggml_nrows(op->src[0]);
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
// Ensure minimum chunk size to avoid alignment issues with high thread counts
|
||||
// Minimum chunk size should be at least NB_COLS to prevent overlapping chunks after alignment
|
||||
const int64_t min_chunk_size = NB_COLS;
|
||||
if (nchunk > 0 && (nr / nchunk) < min_chunk_size && nr >= min_chunk_size) {
|
||||
nchunk = (nr + min_chunk_size - 1) / min_chunk_size;
|
||||
}
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
// Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size
|
||||
// This prevents creating too many tiny chunks that could overlap after alignment
|
||||
const int64_t max_nchunk = (nr + min_chunk_size - 1) / min_chunk_size;
|
||||
if (nchunk > max_nchunk) {
|
||||
nchunk = max_nchunk;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
const void * src1_wdata = params->wdata;
|
||||
const size_t src1_col_stride = ggml_row_size(PARAM_TYPE, ne10);
|
||||
int64_t src0_start = (ith * ne01) / nth;
|
||||
int64_t src0_end = ((ith + 1) * ne01) / nth;
|
||||
src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
|
||||
src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
|
||||
if (src0_start >= src0_end) {
|
||||
return;
|
||||
}
|
||||
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||||
int current_chunk = ith;
|
||||
|
||||
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
|
||||
if (ne11 > 3) {
|
||||
gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
|
||||
(float *) ((char *) dst->data) + src0_start, ne01,
|
||||
(const char *) src0->data + src0_start * nb01,
|
||||
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
|
||||
}
|
||||
for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
|
||||
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
|
||||
(float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
|
||||
(const char *) src0->data + src0_start * nb01,
|
||||
(const char *) src1_wdata + (src1_col_stride * iter), 1,
|
||||
src0_end - src0_start);
|
||||
while (current_chunk < nchunk) {
|
||||
int64_t src0_start = (current_chunk * ne01) / nchunk;
|
||||
int64_t src0_end = ((current_chunk + 1) * ne01) / nchunk;
|
||||
|
||||
// Align boundaries to NB_COLS - round up to ensure all data is included
|
||||
// The chunk size limiting above ensures chunks are large enough to prevent overlaps
|
||||
src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
|
||||
src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
|
||||
if (src0_end > ne01) {
|
||||
src0_end = ne01;
|
||||
}
|
||||
|
||||
if (src0_start >= src0_end) {
|
||||
break;
|
||||
}
|
||||
|
||||
forward_mul_mat_one_chunk(params, dst, src0_start, src0_end);
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1772,8 +1829,12 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
|
||||
int64_t src0_cur_start = (ith * ne01) / nth;
|
||||
int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
|
||||
|
||||
// Align boundaries to NB_COLS - round up to ensure all data is included
|
||||
src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
|
||||
src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
|
||||
if (src0_cur_end > ne01) {
|
||||
src0_cur_end = ne01;
|
||||
}
|
||||
|
||||
if (src0_cur_start >= src0_cur_end) {
|
||||
return;
|
||||
|
||||
@@ -956,7 +956,7 @@ do { \
|
||||
|
||||
#define GGML_F32Cx8 __m256
|
||||
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
|
||||
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
|
||||
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
|
||||
|
||||
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
|
||||
__m256i a;
|
||||
@@ -999,34 +999,34 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
|
||||
|
||||
#define GGML_F32x4 __m128
|
||||
#define GGML_F32x4_ZERO (__m128)__lsx_vldi(0)
|
||||
#define GGML_F32x4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32x4_SET1(x) (__m128)__lsx_vreplfr2vr_s((x))
|
||||
#define GGML_F32x4_LOAD(x) (__m128)__lsx_vld((x), 0)
|
||||
#define GGML_F32x4_STORE(x, y) __lsx_vst(y, x, 0)
|
||||
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
|
||||
#define GGML_F32x4_ADD __lsx_vfadd_s
|
||||
#define GGML_F32x4_MUL __lsx_vfmul_s
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
|
||||
} \
|
||||
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
const __m128 t0 = (__m128)__lsx_vshuf4i_w(tmp, 0x88); \
|
||||
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
|
||||
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
|
||||
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
|
||||
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
|
||||
|
||||
#define GGML_F32x4_REDUCE(res, x) \
|
||||
{ \
|
||||
int offset = GGML_F32_ARR >> 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
offset >>= 1; \
|
||||
for (int i = 0; i < offset; ++i) { \
|
||||
x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
|
||||
} \
|
||||
__m128i t0 = __lsx_vpickev_w((__m128i)x[0], (__m128i)x[0]); \
|
||||
__m128i t1 = __lsx_vpickod_w((__m128i)x[0], (__m128i)x[0]); \
|
||||
__m128 t2 = __lsx_vfadd_s((__m128)t0, (__m128)t1); \
|
||||
__m128i t3 = __lsx_vpickev_w((__m128i)t2, (__m128i)t2); \
|
||||
__m128i t4 = __lsx_vpickod_w((__m128i)t2, (__m128i)t2); \
|
||||
__m128 t5 = __lsx_vfadd_s((__m128)t3, (__m128)t4); \
|
||||
res = (ggml_float) ((v4f32)t5)[0]; \
|
||||
}
|
||||
|
||||
#define GGML_F32_VEC GGML_F32x4
|
||||
@@ -1068,7 +1068,7 @@ static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
|
||||
|
||||
#define GGML_F32Cx4 __m128
|
||||
#define GGML_F32Cx4_ZERO (__m128)__lsx_vldi(0)
|
||||
#define GGML_F32Cx4_SET1(x) (__m128)__lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
|
||||
#define GGML_F32Cx4_SET1(x) (__m128)__lsx_vreplfr2vr_s((x))
|
||||
#define GGML_F32Cx4_LOAD(x) (__m128)__lsx_f16x4_load(x)
|
||||
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
|
||||
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
|
||||
|
||||
@@ -485,8 +485,9 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS> class tensor_
|
||||
int32_t start = ith * task_per_thread;
|
||||
int32_t end = std::min((ith + 1) * task_per_thread, task_count);
|
||||
for (int32_t compute_idx = start; compute_idx < end; compute_idx++) {
|
||||
int32_t gemm_idx = compute_idx / block_size_m;
|
||||
int32_t m_idx = compute_idx % block_size_m * block_size_m;
|
||||
int32_t gemm_idx = compute_idx / per_gemm_block_count_m;
|
||||
int32_t block_idx_in_gemm = compute_idx % per_gemm_block_count_m;
|
||||
int32_t m_idx = block_idx_in_gemm * block_size_m;
|
||||
const qnbitgemm_spacemit_ime_args & data = qnbitgemm_args[gemm_idx];
|
||||
int32_t rows_tobe_handled = (gemm_m - m_idx) > block_size_m ? block_size_m : (gemm_m - m_idx);
|
||||
|
||||
|
||||
@@ -73,6 +73,22 @@ static inline float op_log(float x) {
|
||||
return logf(x);
|
||||
}
|
||||
|
||||
static inline float op_floor(float x) {
|
||||
return floorf(x);
|
||||
}
|
||||
|
||||
static inline float op_ceil(float x) {
|
||||
return ceilf(x);
|
||||
}
|
||||
|
||||
static inline float op_round(float x) {
|
||||
return roundf(x);
|
||||
}
|
||||
|
||||
static inline float op_trunc(float x) {
|
||||
return truncf(x);
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename src0_t, typename dst_t>
|
||||
static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) {
|
||||
constexpr auto src0_to_f32 = type_conversion_table<src0_t>::to_f32;
|
||||
@@ -274,6 +290,22 @@ void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor *
|
||||
unary_op<op_log>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_floor(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_floor>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_ceil(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_ceil>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_round(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_round>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_trunc(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
unary_op<op_trunc>(params, dst);
|
||||
}
|
||||
|
||||
void ggml_compute_forward_xielu(const ggml_compute_params * params, ggml_tensor * dst) {
|
||||
const float alpha_n = ggml_get_op_params_f32(dst, 1);
|
||||
const float alpha_p = ggml_get_op_params_f32(dst, 2);
|
||||
|
||||
@@ -22,6 +22,10 @@ void ggml_compute_forward_sqrt(const struct ggml_compute_params * params, struct
|
||||
void ggml_compute_forward_sin(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_log(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_floor(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_ceil(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_round(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_trunc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_xielu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
@@ -124,6 +124,7 @@ if (CUDAToolkit_FOUND)
|
||||
|
||||
if (GGML_CUDA_DEBUG)
|
||||
list(APPEND CUDA_FLAGS -lineinfo)
|
||||
add_compile_definitions(GGML_CUDA_DEBUG)
|
||||
endif()
|
||||
|
||||
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.8")
|
||||
|
||||
@@ -1,5 +1,81 @@
|
||||
#include "argsort.cuh"
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
# include <cub/cub.cuh>
|
||||
using namespace cub;
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
static __global__ void init_indices(int * indices, const int ncols, const int nrows) {
|
||||
const int col = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int row = blockIdx.y;
|
||||
|
||||
if (col < ncols && row < nrows) {
|
||||
indices[row * ncols + col] = col;
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void init_offsets(int * offsets, const int ncols, const int nrows) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx <= nrows) {
|
||||
offsets[idx] = idx * ncols;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
|
||||
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
|
||||
|
||||
int * temp_indices = temp_indices_alloc.get();
|
||||
float * temp_keys = temp_keys_alloc.get();
|
||||
int * d_offsets = offsets_alloc.get();
|
||||
|
||||
static const int block_size = 256;
|
||||
const dim3 grid_size((ncols + block_size - 1) / block_size, nrows);
|
||||
init_indices<<<grid_size, block_size, 0, stream>>>(temp_indices, ncols, nrows);
|
||||
|
||||
const dim3 offset_grid((nrows + block_size - 1) / block_size);
|
||||
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
|
||||
|
||||
cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
|
||||
|
||||
size_t temp_storage_bytes = 0;
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
|
||||
temp_indices, dst, // values (indices)
|
||||
ncols * nrows, nrows, // num items, num segments
|
||||
d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
|
||||
stream);
|
||||
} else {
|
||||
DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
|
||||
dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
|
||||
sizeof(float) * 8, stream);
|
||||
}
|
||||
|
||||
ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
|
||||
void * d_temp_storage = temp_storage_alloc.get();
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
|
||||
ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
|
||||
stream);
|
||||
} else {
|
||||
DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
|
||||
temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
|
||||
0, sizeof(float) * 8, stream);
|
||||
}
|
||||
}
|
||||
#endif // GGML_CUDA_USE_CUB
|
||||
|
||||
// Bitonic sort implementation
|
||||
template<typename T>
|
||||
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
|
||||
T tmp = a;
|
||||
@@ -11,7 +87,7 @@ template<ggml_sort_order order>
|
||||
static __global__ void k_argsort_f32_i32(const float * x, int * dst, const int ncols, int ncols_pad) {
|
||||
// bitonic sort
|
||||
int col = threadIdx.x;
|
||||
int row = blockIdx.y;
|
||||
int row = blockIdx.x;
|
||||
|
||||
if (col >= ncols_pad) {
|
||||
return;
|
||||
@@ -65,21 +141,28 @@ static int next_power_of_2(int x) {
|
||||
return n;
|
||||
}
|
||||
|
||||
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
|
||||
static void argsort_f32_i32_cuda_bitonic(const float * x,
|
||||
int * dst,
|
||||
const int ncols,
|
||||
const int nrows,
|
||||
ggml_sort_order order,
|
||||
cudaStream_t stream) {
|
||||
// bitonic sort requires ncols to be power of 2
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
|
||||
const dim3 block_dims(ncols_pad, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
|
||||
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
|
||||
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
|
||||
|
||||
if (order == GGML_SORT_ORDER_ASC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>
|
||||
<<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else if (order == GGML_SORT_ORDER_DESC) {
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>
|
||||
<<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@@ -100,5 +183,18 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
||||
|
||||
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
|
||||
#ifdef GGML_CUDA_USE_CUB
|
||||
const int ncols_pad = next_power_of_2(ncols);
|
||||
const size_t shared_mem = ncols_pad * sizeof(int);
|
||||
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
|
||||
|
||||
if (shared_mem > max_shared_mem || ncols > 1024) {
|
||||
ggml_cuda_pool & pool = ctx.pool();
|
||||
argsort_f32_i32_cuda_cub(pool, src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
||||
} else {
|
||||
argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
||||
}
|
||||
#else
|
||||
argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -272,7 +272,7 @@ static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor *
|
||||
const uint3 ne12 = init_fastdiv_values((uint32_t) cne1[2]);
|
||||
const uint3 ne13 = init_fastdiv_values((uint32_t) cne1[3]);
|
||||
|
||||
if (block_nums.z > 65535) {
|
||||
if (block_nums.z > 65535 || block_nums.y > 65535) {
|
||||
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
|
||||
const uint3 prod_012 = init_fastdiv_values((uint32_t) (ne0 * ne1 * ne2));
|
||||
const uint3 prod_01 = init_fastdiv_values((uint32_t) (ne0 * ne1));
|
||||
|
||||
@@ -224,6 +224,11 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define AMD_MFMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
|
||||
// The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#define VOLTA_MMA_AVAILABLE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
#define TURING_MMA_AVAILABLE
|
||||
#endif // !defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
|
||||
@@ -278,7 +283,10 @@ static bool amd_mfma_available(const int cc) {
|
||||
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
}
|
||||
|
||||
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
|
||||
static bool volta_mma_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
|
||||
static bool turing_mma_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
|
||||
}
|
||||
@@ -625,8 +633,11 @@ static __device__ __forceinline__ float ggml_cuda_e8m0_to_fp32(uint8_t x) {
|
||||
// and a shift:
|
||||
//
|
||||
// n/d = (mulhi(n, mp) + n) >> L;
|
||||
static const uint3 init_fastdiv_values(uint32_t d) {
|
||||
GGML_ASSERT(d != 0);
|
||||
static const uint3 init_fastdiv_values(uint64_t d_64) {
|
||||
GGML_ASSERT(d_64 != 0);
|
||||
GGML_ASSERT(d_64 <= std::numeric_limits<uint32_t>::max());
|
||||
|
||||
uint32_t d = (uint32_t)d_64;
|
||||
|
||||
// compute L = ceil(log2(d));
|
||||
uint32_t L = 0;
|
||||
@@ -1005,3 +1016,16 @@ struct ggml_backend_cuda_context {
|
||||
return pool(device);
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_cuda_mm_fusion_args_host {
|
||||
const ggml_tensor * x_bias = nullptr;
|
||||
const ggml_tensor * gate = nullptr;
|
||||
const ggml_tensor * gate_bias = nullptr;
|
||||
ggml_glu_op glu_op;
|
||||
};
|
||||
struct ggml_cuda_mm_fusion_args_device {
|
||||
const void * x_bias = nullptr;
|
||||
const void * gate = nullptr;
|
||||
const void * gate_bias = nullptr;
|
||||
ggml_glu_op glu_op;
|
||||
};
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||
|
||||
@@ -7,6 +7,10 @@
|
||||
|
||||
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
|
||||
|
||||
const int CUDA_CPY_TILE_DIM_2D = 32; // 2D tile dimension for transposed blocks
|
||||
const int CUDA_CPY_BLOCK_NM = 8; // block size of 3rd dimension if available
|
||||
const int CUDA_CPY_BLOCK_ROWS = 8; // block dimension for marching through rows
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_flt(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@@ -35,6 +39,55 @@ static __global__ void cpy_flt(const char * cx, char * cdst, const int ne,
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __global__ void cpy_flt_transpose(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
|
||||
const T* src = reinterpret_cast<const T*>(cx);
|
||||
T* dst = reinterpret_cast<T*>(cdst);
|
||||
|
||||
const int64_t nmat = ne / (ne00 * ne01);
|
||||
const int64_t n = ne00 * ne01;
|
||||
|
||||
const int x = blockIdx.x * CUDA_CPY_TILE_DIM_2D + threadIdx.x;
|
||||
const int y = blockIdx.y * CUDA_CPY_TILE_DIM_2D + threadIdx.y;
|
||||
const int tx = blockIdx.y * CUDA_CPY_TILE_DIM_2D + threadIdx.x; // transpose block offset
|
||||
const int ty = blockIdx.x * CUDA_CPY_TILE_DIM_2D + threadIdx.y;
|
||||
|
||||
__shared__ float tile[CUDA_CPY_TILE_DIM_2D][CUDA_CPY_TILE_DIM_2D+1];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < CUDA_CPY_BLOCK_NM; ++i) {
|
||||
|
||||
const unsigned int imat = blockIdx.z * CUDA_CPY_BLOCK_NM + i;
|
||||
if (imat >= nmat)
|
||||
break;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < CUDA_CPY_TILE_DIM_2D; j += CUDA_CPY_BLOCK_ROWS) {
|
||||
if(x < ne01 && y + j < ne00){
|
||||
const int row = threadIdx.y+j;
|
||||
const int col = threadIdx.x * sizeof(float)/sizeof(T);
|
||||
T *tile2 = reinterpret_cast<T*>(tile[row]);
|
||||
tile2[col] = src[imat*n + (y+j)*ne01 + x];
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < CUDA_CPY_TILE_DIM_2D; j += CUDA_CPY_BLOCK_ROWS) {
|
||||
if (ty + j < ne01 && tx < ne00) {
|
||||
const int col = (threadIdx.y+j)*sizeof(float)/sizeof(T);
|
||||
const T *tile2 = reinterpret_cast<const T*>(tile[threadIdx.x]);
|
||||
dst[imat*n + (ty+j)*ne00 + tx] = tile2[col];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
|
||||
float * cdstf = (float *)(cdsti);
|
||||
|
||||
@@ -113,14 +166,59 @@ static __global__ void cpy_q_f32(const char * cx, char * cdst, const int ne,
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static __global__ void cpy_flt_contiguous(const char * cx, char * cdst, const int64_t ne) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const src_t * x = (const src_t *) cx;
|
||||
dst_t * dst = (dst_t *) cdst;
|
||||
|
||||
dst[i] = ggml_cuda_cast<dst_t>(x[i]);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static void ggml_cpy_flt_contiguous_cuda(
|
||||
const char * cx, char * cdst, const int64_t ne,
|
||||
cudaStream_t stream) {
|
||||
|
||||
const int64_t num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_flt_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t, bool transposed = false>
|
||||
static void ggml_cpy_flt_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_flt<cpy_1_flt<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
if (transposed) {
|
||||
GGML_ASSERT(ne == ne00*ne01*ne02); // ne[3] is 1 assumed
|
||||
int ne00n, ne01n, ne02n;
|
||||
if (nb00 <= nb02) { // most likely safe to handle nb00 = nb02 case here
|
||||
ne00n = ne00;
|
||||
ne01n = ne01;
|
||||
ne02n = ne02;
|
||||
} else if (nb00 > nb02) {
|
||||
ne00n = ne00;
|
||||
ne01n = ne01*ne02;
|
||||
ne02n = 1;
|
||||
}
|
||||
|
||||
dim3 dimGrid( (ne01n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne00n + CUDA_CPY_TILE_DIM_2D - 1) / CUDA_CPY_TILE_DIM_2D,
|
||||
(ne/(ne01n*ne00n) + CUDA_CPY_BLOCK_NM - 1) / CUDA_CPY_BLOCK_NM);
|
||||
dim3 dimBlock(CUDA_CPY_TILE_DIM_2D, CUDA_CPY_BLOCK_ROWS, 1);
|
||||
cpy_flt_transpose<dst_t><<<dimGrid, dimBlock, 0, stream>>>
|
||||
(cx, cdst, ne, ne00n, ne01n, ne02n, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
} else {
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_flt<cpy_1_flt<src_t, dst_t>><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
@@ -285,7 +383,10 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
char * src0_ddc = (char *) src0->data;
|
||||
char * src1_ddc = (char *) src1->data;
|
||||
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
const bool contiguous_srcs = ggml_is_contiguous(src0) && ggml_is_contiguous(src1);
|
||||
const bool can_be_transposed = nb01 == (int64_t)ggml_element_size(src0) && src0->ne[3] == 1;
|
||||
|
||||
if (src0->type == src1->type && contiguous_srcs) {
|
||||
GGML_ASSERT(ggml_nbytes(src0) == ggml_nbytes(src1));
|
||||
#if defined(GGML_USE_MUSA) && defined(GGML_MUSA_MUDNN_COPY)
|
||||
if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) {
|
||||
@@ -296,11 +397,23 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (can_be_transposed) {
|
||||
ggml_cpy_flt_cuda<float, float, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
||||
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, half> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
|
||||
@@ -327,21 +440,53 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
} else if (src0->type == GGML_TYPE_Q5_1 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_q5_1_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (can_be_transposed) {
|
||||
ggml_cpy_flt_cuda<half, half, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<half, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_BF16) {
|
||||
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<half, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<half, float> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<half, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_BF16) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (can_be_transposed) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16, true> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_BF16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<nv_bfloat16, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I32) {
|
||||
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, int32_t> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
if (contiguous_srcs) {
|
||||
ggml_cpy_flt_contiguous_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, main_stream);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<int32_t, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
}
|
||||
} else {
|
||||
GGML_ABORT("%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
|
||||
@@ -895,6 +895,7 @@ void launch_fattn(
|
||||
const dim3 block_dim(warp_size, nwarps, 1);
|
||||
int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
|
||||
CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));
|
||||
GGML_ASSERT(max_blocks_per_sm > 0);
|
||||
int parallel_blocks = max_blocks_per_sm;
|
||||
|
||||
dim3 blocks_num;
|
||||
|
||||
@@ -14,6 +14,10 @@ void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor
|
||||
GGML_ASSERT(V->ne[0] == K->ne[0]);
|
||||
ggml_cuda_flash_attn_ext_tile_case< 64, 64>(ctx, dst);
|
||||
} break;
|
||||
case 72: {
|
||||
GGML_ASSERT(V->ne[0] == K->ne[0]);
|
||||
ggml_cuda_flash_attn_ext_tile_case< 72, 72>(ctx, dst);
|
||||
} break;
|
||||
case 80: {
|
||||
GGML_ASSERT(V->ne[0] == K->ne[0]);
|
||||
ggml_cuda_flash_attn_ext_tile_case< 80, 80>(ctx, dst);
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
// nbatch_K == number of K columns to load in parallel for KQ calculation
|
||||
|
||||
// TODO optimize kernel parameters for FP16 NVIDIA (P100)
|
||||
// TODO optimize kernel parameters for head sizes 40, 80, 96, 112
|
||||
// TODO optimize kernel parameters for head sizes 40, 72, 80, 96, 112
|
||||
|
||||
// The ROCm compiler cannot handle templating in __launch_bounds__.
|
||||
// As a workaround, define a macro to package the kernel parameters as uint32_t:
|
||||
@@ -32,6 +32,12 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 64, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 64, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 64, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 64, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 64, 72)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 64, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 64, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 64, 40)
|
||||
@@ -80,6 +86,12 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_nv
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 16, 128, 3, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
|
||||
@@ -130,6 +142,13 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 256, 2, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 256, 2, 64, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
|
||||
@@ -185,6 +204,13 @@ static constexpr __host__ __device__ uint32_t ggml_cuda_fattn_tile_get_config_am
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 32, 128, 4, 64, 64)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 64, 64, 64, 128, 5, 64, 64)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 2, 64, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 4, 128, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 8, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 16, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 32, 256, 2, 32, 72)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 72, 72, 64, 256, 2, 32, 72)
|
||||
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 2, 64, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 4, 128, 2, 32, 40)
|
||||
GGML_CUDA_FATTN_TILE_CONFIG_CASE( 80, 80, 8, 256, 2, 32, 40)
|
||||
@@ -723,7 +749,7 @@ static __global__ void flash_attn_tile(
|
||||
|
||||
if (
|
||||
#ifdef GGML_USE_WMMA_FATTN
|
||||
(ncols2 != 1 && DV != 40 && DV != 512) ||
|
||||
(ncols2 != 1 && DV != 40 && DV != 72 && DV != 512) ||
|
||||
#endif // GGML_USE_WMMA_FATTN
|
||||
(use_logit_softcap && !(DV == 128 || DV == 256))
|
||||
) {
|
||||
@@ -1198,6 +1224,7 @@ void ggml_cuda_flash_attn_ext_tile(ggml_backend_cuda_context & ctx, ggml_tensor
|
||||
|
||||
extern DECL_FATTN_TILE_CASE( 40, 40);
|
||||
extern DECL_FATTN_TILE_CASE( 64, 64);
|
||||
extern DECL_FATTN_TILE_CASE( 72, 72);
|
||||
extern DECL_FATTN_TILE_CASE( 80, 80);
|
||||
extern DECL_FATTN_TILE_CASE( 96, 96);
|
||||
extern DECL_FATTN_TILE_CASE(112, 112);
|
||||
|
||||
@@ -223,6 +223,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
||||
switch (K->ne[0]) {
|
||||
case 40:
|
||||
case 64:
|
||||
case 72:
|
||||
case 80:
|
||||
case 96:
|
||||
case 128:
|
||||
@@ -275,7 +276,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
||||
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0 && K->ne[1] % FATTN_KQ_STRIDE == 0;
|
||||
|
||||
// If Turing tensor cores available, use them:
|
||||
if (turing_mma_available(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40) {
|
||||
if (turing_mma_available(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 72) {
|
||||
if (can_use_vector_kernel) {
|
||||
if (!ggml_is_quantized(K->type) && !ggml_is_quantized(V->type)) {
|
||||
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
|
||||
@@ -301,7 +302,7 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
|
||||
}
|
||||
|
||||
// Use the WMMA kernel if possible:
|
||||
if (ggml_cuda_should_use_wmma_fattn(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 576) {
|
||||
if (ggml_cuda_should_use_wmma_fattn(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 72 && Q->ne[0] != 576) {
|
||||
if (can_use_vector_kernel && Q->ne[1] <= 2) {
|
||||
return BEST_FATTN_KERNEL_VEC;
|
||||
}
|
||||
|
||||
@@ -50,6 +50,7 @@
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv.cuh"
|
||||
#include "ggml-cuda/gla.cuh"
|
||||
#include "ggml-cuda/set.cuh"
|
||||
#include "ggml-cuda/set-rows.cuh"
|
||||
#include "ggml-cuda/pad_reflect_1d.cuh"
|
||||
#include "ggml.h"
|
||||
@@ -1957,8 +1958,15 @@ static void ggml_cuda_mul_mat_batched_cublas_impl(ggml_backend_cuda_context & ct
|
||||
|
||||
size_t src1_stride_size = sizeof(cuda_t);
|
||||
|
||||
dim3 block_dims(ne13, ne12);
|
||||
k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
|
||||
const int threads_x = 16;
|
||||
const int threads_y = 16;
|
||||
dim3 block_dims(threads_x, threads_y);
|
||||
|
||||
dim3 grid_dims(
|
||||
(ne13 + threads_x - 1) / threads_x,
|
||||
(ne12 + threads_y - 1) / threads_y
|
||||
);
|
||||
k_compute_batched_ptrs<<<grid_dims, block_dims, 0, main_stream>>>(
|
||||
src0_ptr, src1_ptr, dst_t,
|
||||
ptrs_src.get(), ptrs_dst.get(),
|
||||
ne12, ne13,
|
||||
@@ -2007,6 +2015,164 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat(const ggml_tensor * ffn_up,
|
||||
const ggml_tensor * ffn_gate,
|
||||
const ggml_tensor * glu,
|
||||
const ggml_tensor * ffn_up_bias = nullptr,
|
||||
const ggml_tensor * ffn_gate_bias = nullptr) {
|
||||
const bool has_bias = ffn_up_bias != nullptr || ffn_gate_bias != nullptr;
|
||||
|
||||
if (has_bias && (!ffn_up_bias || !ffn_gate_bias)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const bool is_mul_mat = ffn_up->op == GGML_OP_MUL_MAT && ffn_gate->op == GGML_OP_MUL_MAT && glu->op == GGML_OP_GLU;
|
||||
const bool is_mul_mat_id = ffn_up->op == GGML_OP_MUL_MAT_ID && ffn_gate->op == GGML_OP_MUL_MAT_ID && glu->op == GGML_OP_GLU;
|
||||
|
||||
GGML_ASSERT(ffn_up && ffn_gate && glu);
|
||||
|
||||
if (!is_mul_mat && !is_mul_mat_id) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const ggml_op expected_bias_op = is_mul_mat ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (has_bias) {
|
||||
if (ffn_up_bias->op != expected_bias_op || ffn_gate_bias->op != expected_bias_op) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (glu->src[0] != ffn_gate_bias || glu->src[1] != ffn_up_bias) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (expected_bias_op == GGML_OP_ADD) {
|
||||
const bool up_has_mul = ffn_up_bias->src[0] == ffn_up || ffn_up_bias->src[1] == ffn_up;
|
||||
const bool gate_has_mul = ffn_gate_bias->src[0] == ffn_gate || ffn_gate_bias->src[1] == ffn_gate;
|
||||
if (!up_has_mul || !gate_has_mul) {
|
||||
return false;
|
||||
}
|
||||
} else { // GGML_OP_ADD_ID
|
||||
if (ffn_up_bias->src[0] != ffn_up || ffn_gate_bias->src[0] != ffn_gate) {
|
||||
return false;
|
||||
}
|
||||
if (ffn_up_bias->src[2] != ffn_up->src[2] || ffn_gate_bias->src[2] != ffn_gate->src[2]) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (glu->src[0] != ffn_gate && glu->src[1] != ffn_up) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (ffn_up->src[0]->type != ffn_gate->src[0]->type || !ggml_are_same_shape(ffn_up->src[0], ffn_gate->src[0]) ||
|
||||
!ggml_are_same_stride(ffn_up->src[0], ffn_gate->src[0])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ffn_up->src[1] != ffn_gate->src[1]) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (ffn_up->src[2] && (ffn_up->src[2] != ffn_gate->src[2])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
static constexpr std::array<ggml_glu_op, 3> valid_glu_ops = { GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU, GGML_GLU_OP_SWIGLU_OAI };
|
||||
|
||||
if (std::find(valid_glu_ops.begin(), valid_glu_ops.end(), ggml_get_glu_op(glu)) == valid_glu_ops.end()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (const bool swapped = ggml_get_op_params_i32(glu, 1); swapped) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const bool split = ggml_backend_buft_is_cuda_split(ffn_up->src[0]->buffer->buft) ||
|
||||
ggml_backend_buft_is_cuda_split(ffn_gate->src[0]->buffer->buft);
|
||||
|
||||
//TODO: add support for fusion for split buffers
|
||||
if (split) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
|
||||
ggml_tensor * src0 = tensor->src[0];
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
const ggml_tensor * dst = tensor;
|
||||
|
||||
const bool is_mul_mat_id = tensor->op == GGML_OP_MUL_MAT_ID;
|
||||
|
||||
bool use_mul_mat_vec_f =
|
||||
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) &&
|
||||
src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
||||
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
|
||||
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft) ||
|
||||
ggml_backend_buft_is_cuda_split(src1->buffer->buft);
|
||||
|
||||
//TODO: add support for fusion for split buffers
|
||||
if (split) {
|
||||
return false;
|
||||
}
|
||||
|
||||
//we only support fusion for ncols_dst = 1
|
||||
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
return use_mul_mat_vec_f;
|
||||
}
|
||||
|
||||
static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
|
||||
ggml_tensor * src0 = tensor->src[0];
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
const ggml_tensor * dst = tensor;
|
||||
|
||||
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE &&
|
||||
ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) &&
|
||||
src0->view_src;
|
||||
|
||||
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
||||
|
||||
// fusion is not universally faster on Pascal
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
if (cc <= GGML_CUDA_CC_PASCAL) {
|
||||
return false;
|
||||
}
|
||||
//we only support fusion for ncols_dst = 1
|
||||
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft) ||
|
||||
ggml_backend_buft_is_cuda_split(src1->buffer->buft);
|
||||
|
||||
//TODO: add support for fusion for split buffers
|
||||
if (split) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return use_mul_mat_vec_q;
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
||||
|
||||
@@ -2040,16 +2206,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[id].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
} else {
|
||||
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[ctx.device].warp_size;
|
||||
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src1->ne[1]);
|
||||
use_mul_mat_f = use_mul_mat_f && ggml_cuda_should_use_mmf(src0->type, cc, warp_size, src0->ne, src0->nb, src1->ne[1], /*mul_mat_id=*/false);
|
||||
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, src0->nb, src1->ne[1]);
|
||||
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_hardware_available(cc);
|
||||
}
|
||||
|
||||
@@ -2120,7 +2286,7 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src1->ne[2], /*mul_mat_id=*/true)) {
|
||||
if (ggml_cuda_should_use_mmf(src0->type, cc, WARP_SIZE, src0->ne, src0->nb, src1->ne[2], /*mul_mat_id=*/true)) {
|
||||
ggml_cuda_mul_mat_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
@@ -2268,6 +2434,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_SET_ROWS:
|
||||
ggml_cuda_op_set_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SET:
|
||||
ggml_cuda_op_set(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DUP:
|
||||
ggml_cuda_dup(ctx, dst);
|
||||
break;
|
||||
@@ -2346,6 +2515,18 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_UNARY_OP_XIELU:
|
||||
ggml_cuda_op_xielu(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
ggml_cuda_op_floor(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
ggml_cuda_op_ceil(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
ggml_cuda_op_round(ctx, dst);
|
||||
break;
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
ggml_cuda_op_trunc(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -2745,7 +2926,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
||||
}
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_SCALE &&
|
||||
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
|
||||
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
return false;
|
||||
}
|
||||
@@ -2818,43 +2999,74 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
|
||||
#endif
|
||||
|
||||
//TODO: remove special case once ggml_can_fuse can handle empty nodes
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops = ggml_cuda_topk_moe_ops(false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm = ggml_cuda_topk_moe_ops(true);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops =
|
||||
ggml_cuda_topk_moe_ops(/*with_norm*/ false, /*delayed_softmax=*/false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_with_norm =
|
||||
ggml_cuda_topk_moe_ops(/*with_norm=*/true, /*delayed_softmax=*/false);
|
||||
std::initializer_list<enum ggml_op> topk_moe_ops_delayed_softmax =
|
||||
ggml_cuda_topk_moe_ops(/*with_norm=*/false, /*delayed_softmax=*/true);
|
||||
|
||||
if (ops.size() == topk_moe_ops_with_norm.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops_with_norm.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops_with_norm.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops_with_norm.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops_with_norm.begin()[i]) return false;
|
||||
}
|
||||
if (ops.size() == topk_moe_ops_with_norm.size() &&
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 9 })) {
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+8];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx + 9];
|
||||
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops.size() && std::equal(ops.begin(), ops.end(), topk_moe_ops.begin())) {
|
||||
|
||||
if (node_idx + topk_moe_ops.size() > (size_t)cgraph->n_nodes) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < topk_moe_ops.size(); i++) {
|
||||
if (cgraph->nodes[node_idx + i]->op != topk_moe_ops.begin()[i]) return false;
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops.size() &&
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx+4];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx + 4];
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == topk_moe_ops_delayed_softmax.size() &&
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 1, node_idx + 5 })) {
|
||||
ggml_tensor * softmax = cgraph->nodes[node_idx + 4];
|
||||
ggml_tensor * weights = cgraph->nodes[node_idx + 5];
|
||||
|
||||
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
std::initializer_list<enum ggml_op> mul_mat_bias_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_GLU };
|
||||
std::initializer_list<enum ggml_op> mul_mat_id_bias_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_GLU };
|
||||
|
||||
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
|
||||
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
|
||||
|
||||
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
|
||||
|
||||
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
|
||||
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
|
||||
const ggml_tensor * ffn_up_bias = cgraph->nodes[node_idx + 3];
|
||||
const ggml_tensor * glu = cgraph->nodes[node_idx + 4];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu, ffn_up_bias, ffn_gate_bias)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
|
||||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
|
||||
|
||||
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
|
||||
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
|
||||
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu)) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
|
||||
return false;
|
||||
}
|
||||
@@ -2935,8 +3147,17 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
// With the use of CUDA graphs, the execution will be performed by the graph launch.
|
||||
if (!use_cuda_graph || cuda_graph_update_required) {
|
||||
|
||||
[[maybe_unused]] int prev_i = 0;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
#ifdef GGML_CUDA_DEBUG
|
||||
const int nodes_fused = i - prev_i - 1;
|
||||
prev_i = i;
|
||||
if (nodes_fused > 0) {
|
||||
GGML_LOG_INFO("nodes_fused: %d\n", nodes_fused);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
||||
continue;
|
||||
@@ -2946,21 +3167,35 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
if (!disable_fusion) {
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ true), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+8];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ true);
|
||||
i += 8;
|
||||
ggml_tensor * weights = cgraph->nodes[i + 9];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i + 3];
|
||||
ggml_tensor * clamp = cgraph->nodes[i + 7];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ true,
|
||||
/*delayed softmax*/ false, clamp);
|
||||
i += 9;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, ggml_cuda_topk_moe_ops(/*with norm*/ false), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i+4];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i+3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node, weights, selected_experts, /*with norm*/ false);
|
||||
ggml_tensor * weights = cgraph->nodes[i + 4];
|
||||
ggml_tensor * selected_experts = cgraph->nodes[i + 3];
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, selected_experts, /*with norm*/ false,
|
||||
/*delayed softmax*/ false);
|
||||
i += 4;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i,
|
||||
ggml_cuda_topk_moe_ops(/*with norm*/ false, /*delayed softmax*/ true), {})) {
|
||||
ggml_tensor * weights = cgraph->nodes[i + 5];
|
||||
ggml_tensor * ids = cgraph->nodes[i + 1];
|
||||
|
||||
ggml_cuda_op_topk_moe(*cuda_ctx, node->src[0], weights, ids, /*with norm*/ false,
|
||||
/*delayed_softmax*/ true);
|
||||
i += 5;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (node->op == GGML_OP_ADD) {
|
||||
int n_fuse = 0;
|
||||
ggml_op ops[8];
|
||||
@@ -2992,6 +3227,195 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
|
||||
}
|
||||
}
|
||||
|
||||
bool fused_mul_mat_vec = false;
|
||||
int fused_node_count = 0;
|
||||
|
||||
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
|
||||
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { op, bias_op, op, bias_op, GGML_OP_GLU }, {})) {
|
||||
ggml_tensor * glu = cgraph->nodes[i + 4];
|
||||
ggml_tensor * gate_bias_n = glu->src[0];
|
||||
ggml_tensor * up_bias_n = glu->src[1];
|
||||
|
||||
//we don't assume the order for {gate, up}. Instead infer it from the bias tensor
|
||||
ggml_tensor * gate_n = nullptr;
|
||||
ggml_tensor * up_n = nullptr;
|
||||
|
||||
if (gate_bias_n->src[0] == cgraph->nodes[i] || gate_bias_n->src[1] == cgraph->nodes[i]) {
|
||||
gate_n = cgraph->nodes[i];
|
||||
up_n = cgraph->nodes[i + 2];
|
||||
} else if (gate_bias_n->src[0] == cgraph->nodes[i + 2] || gate_bias_n->src[1] == cgraph->nodes[i + 2]) {
|
||||
gate_n = cgraph->nodes[i + 2];
|
||||
up_n = cgraph->nodes[i];
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto get_bias_tensor = [](const ggml_tensor * bias_node, const ggml_tensor * mul_node, ggml_op op_bias) {
|
||||
if (op_bias == GGML_OP_ADD) {
|
||||
if (bias_node->src[0] == mul_node) {
|
||||
return bias_node->src[1];
|
||||
}
|
||||
if (bias_node->src[1] == mul_node) {
|
||||
return bias_node->src[0];
|
||||
}
|
||||
return (ggml_tensor *) nullptr;
|
||||
}
|
||||
GGML_ASSERT(op_bias == GGML_OP_ADD_ID);
|
||||
GGML_ASSERT(bias_node->src[0] == mul_node);
|
||||
return bias_node->src[1];
|
||||
};
|
||||
|
||||
ggml_tensor * up_bias_tensor = get_bias_tensor(up_bias_n, up_n, bias_op);
|
||||
ggml_tensor * gate_bias_tensor = get_bias_tensor(gate_bias_n, gate_n, bias_op);
|
||||
|
||||
if (!up_bias_tensor || !gate_bias_tensor) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// we don't support repeating adds
|
||||
if (bias_op == GGML_OP_ADD &&
|
||||
(!ggml_are_same_shape(gate_bias_n->src[0], gate_bias_n->src[1]) ||
|
||||
!ggml_are_same_shape(up_bias_n->src[0], up_bias_n->src[1]))) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const ggml_tensor * src0 = up_n->src[0];
|
||||
const ggml_tensor * src1 = up_n->src[1];
|
||||
const ggml_tensor * ids = up_n->src[2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(up_n)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate_n->src[0];
|
||||
fusion_data.x_bias = up_bias_tensor;
|
||||
fusion_data.gate_bias = gate_bias_tensor;
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 5;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(up_n)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate_n->src[0];
|
||||
fusion_data.x_bias = up_bias_tensor;
|
||||
fusion_data.gate_bias = gate_bias_tensor;
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 5;
|
||||
break;
|
||||
}
|
||||
} else if (ggml_cuda_can_fuse(cgraph, i, { op, op, GGML_OP_GLU }, {})) {
|
||||
ggml_tensor * glu = cgraph->nodes[i + 2];
|
||||
ggml_tensor * gate = glu->src[0];
|
||||
ggml_tensor * up = glu->src[1];
|
||||
|
||||
bool ok = (gate == cgraph->nodes[i] && up == cgraph->nodes[i + 1])
|
||||
|| (gate == cgraph->nodes[i + 1] && up == cgraph->nodes[i]);
|
||||
|
||||
if (!ok) continue;
|
||||
|
||||
const ggml_tensor * src0 = up->src[0];
|
||||
const ggml_tensor * src1 = up->src[1];
|
||||
const ggml_tensor * ids = up->src[2];
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(up)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate->src[0];
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 3;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(up)) {
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.gate = gate->src[0];
|
||||
fusion_data.glu_op = ggml_get_glu_op(glu);
|
||||
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 3;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (fused_mul_mat_vec) {
|
||||
i += fused_node_count - 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
fused_mul_mat_vec = false;
|
||||
fused_node_count = 0;
|
||||
|
||||
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
|
||||
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
|
||||
|
||||
if (!ggml_can_fuse(cgraph, i, { op, bias_op })) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tensor * mm_node = cgraph->nodes[i];
|
||||
ggml_tensor * bias_node = cgraph->nodes[i + 1];
|
||||
|
||||
ggml_tensor * bias_tensor = nullptr;
|
||||
if (bias_op == GGML_OP_ADD) {
|
||||
if (bias_node->src[0] == mm_node) {
|
||||
bias_tensor = bias_node->src[1];
|
||||
} else if (bias_node->src[1] == mm_node) {
|
||||
bias_tensor = bias_node->src[0];
|
||||
} else {
|
||||
continue;
|
||||
}
|
||||
} else {
|
||||
if (bias_node->src[0] != mm_node) {
|
||||
continue;
|
||||
}
|
||||
bias_tensor = bias_node->src[1];
|
||||
}
|
||||
|
||||
const ggml_tensor * src0 = mm_node->src[0];
|
||||
const ggml_tensor * src1 = mm_node->src[1];
|
||||
const ggml_tensor * ids = mm_node->src[2];
|
||||
|
||||
if (bias_op == GGML_OP_ADD_ID && bias_node->src[2] != ids) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (bias_op == GGML_OP_ADD && !ggml_are_same_shape(bias_node->src[0], bias_node->src[1])) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_cuda_mm_fusion_args_host fusion_data{};
|
||||
fusion_data.x_bias = bias_tensor;
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_f(mm_node)) {
|
||||
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 2;
|
||||
break;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_fuse_mul_mat_vec_q(mm_node)) {
|
||||
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
|
||||
fused_mul_mat_vec = true;
|
||||
fused_node_count = 2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (fused_mul_mat_vec) {
|
||||
i += fused_node_count - 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
|
||||
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
|
||||
@@ -3357,6 +3781,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_UNARY_OP_TANH:
|
||||
case GGML_UNARY_OP_EXP:
|
||||
case GGML_UNARY_OP_ELU:
|
||||
case GGML_UNARY_OP_FLOOR:
|
||||
case GGML_UNARY_OP_CEIL:
|
||||
case GGML_UNARY_OP_ROUND:
|
||||
case GGML_UNARY_OP_TRUNC:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
default:
|
||||
return false;
|
||||
@@ -3471,6 +3899,13 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
op->src[0]->type == GGML_TYPE_F32 &&
|
||||
(op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
const ggml_type t = op->type;
|
||||
return (t == GGML_TYPE_F32 || t == GGML_TYPE_I32) &&
|
||||
t == op->src[0]->type &&
|
||||
t == op->src[1]->type;
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
@@ -3625,12 +4060,16 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_CONV_2D_DW:
|
||||
case GGML_OP_CONV_TRANSPOSE_2D:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM:
|
||||
case GGML_OP_ACC:
|
||||
return true;
|
||||
case GGML_OP_SUM:
|
||||
return ggml_is_contiguous_rows(op->src[0]);
|
||||
case GGML_OP_ARGSORT:
|
||||
// TODO: Support arbitrary column width
|
||||
#ifndef GGML_CUDA_USE_CUB
|
||||
return op->src[0]->ne[0] <= 1024;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
|
||||
@@ -18,6 +18,10 @@
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
// On Volta each warp is doing 4 8x8 mma operations in parallel.
|
||||
// The basic memory layout for a 32x8 output tile is to stack 4 input tiles in I direction and to mirror the B tile.
|
||||
// However, the i indices in this file are by default permuted to simplify the index calculations.
|
||||
// #define GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
|
||||
#if CUDART_VERSION >= 11080
|
||||
|
||||
@@ -73,6 +77,15 @@ namespace ggml_cuda_mma {
|
||||
static constexpr int ne = I * J / 64;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 64 && J == 2) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 32 && J == 4) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 32) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
|
||||
return threadIdx.x % 16;
|
||||
@@ -85,7 +98,8 @@ namespace ggml_cuda_mma {
|
||||
} else if constexpr (I == 32 && J == 32) {
|
||||
return 4 * (threadIdx.x / 32) + 8 * (l / 4) + (l % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -101,22 +115,67 @@ namespace ggml_cuda_mma {
|
||||
} else if constexpr (I == 32 && J == 32) {
|
||||
return threadIdx.x % 32;
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#elif __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 32 && J == 8) {
|
||||
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (l & 2) | (threadIdx.x % 2);
|
||||
#else
|
||||
return (l & 2) | (threadIdx.x & ~2);
|
||||
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 32 && J == 8) {
|
||||
return (threadIdx.x & 2) | (l & (4 + 1));
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr int ne = I * J / 32;
|
||||
T x[ne] = {0};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 4) return true;
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && (J == 4 || J == 8)) {
|
||||
if constexpr (I == 8 && J == 4) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 8 + threadIdx.x / 4;
|
||||
return ((l / 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 16) {
|
||||
return ((l / 2) % 2) * 8 + threadIdx.x / 4;
|
||||
return (((l / 2) % 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return tile<16, 8, T>::get_i(l); // Memory layout simply repeated with same pattern in i direction.
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -124,13 +183,16 @@ namespace ggml_cuda_mma {
|
||||
if constexpr (I == 8 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 8 && J == 8) {
|
||||
return 4 * l + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return 2 * (threadIdx.x % 4) + l % 2;
|
||||
return ((threadIdx.x % 4) * 2) | (l % 2);
|
||||
} else if constexpr (I == 16 && J == 16) {
|
||||
return 8 * (l / 4) + 2 * (threadIdx.x % 4) + l % 2;
|
||||
return ((l / 4) * 8) | ((threadIdx.x % 4) * 2) | (l % 2);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return tile<16, 8, T>::get_j(l); // Memory layout simply repeated with same pattern in i direction.
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#endif // defined(GGML_USE_HIP)
|
||||
@@ -140,32 +202,83 @@ namespace ggml_cuda_mma {
|
||||
struct tile<I_, J_, half2> {
|
||||
static constexpr int I = I_;
|
||||
static constexpr int J = J_;
|
||||
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
static constexpr int ne = I == 8 && J == 8 ? I * J / (WARP_SIZE/4) : I * J / WARP_SIZE;
|
||||
half2 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
|
||||
#else
|
||||
return threadIdx.x;
|
||||
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr ((I == 8 || I == 32) && J == 8) {
|
||||
return l;
|
||||
} else {
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#else
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
half2 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 4) return true;
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
if (I == 16 && J == 16) return true;
|
||||
if (I == 32 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return l * 8 + threadIdx.x / 4;
|
||||
return (l * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l % 2) * 8 + threadIdx.x / 4;
|
||||
return ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return ((l / 4) * 16) | ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return l * 4 + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 4 + threadIdx.x % 4;
|
||||
return ((l / 2) * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 32 && J == 8) {
|
||||
return ((l & 2) * 2) | (threadIdx.x % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
};
|
||||
|
||||
template <int I_, int J_>
|
||||
@@ -175,27 +288,36 @@ namespace ggml_cuda_mma {
|
||||
static constexpr int ne = I * J / WARP_SIZE;
|
||||
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
|
||||
|
||||
static constexpr __device__ bool supported() {
|
||||
if (I == 8 && J == 8) return true;
|
||||
if (I == 16 && J == 4) return true;
|
||||
if (I == 16 && J == 8) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_i(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return threadIdx.x / 4;
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return l * 8 + threadIdx.x / 4;
|
||||
return (l * 8) | (threadIdx.x / 4);
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l % 2) * 8 + threadIdx.x / 4;
|
||||
return ((l % 2) * 8) | (threadIdx.x / 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int get_j(const int l) {
|
||||
if constexpr (I == 8 && J == 8) {
|
||||
return l * 4 + threadIdx.x % 4;
|
||||
return (l * 4) | (threadIdx.x % 4);
|
||||
} else if constexpr (I == 16 && J == 4) {
|
||||
return threadIdx.x % 4;
|
||||
} else if constexpr (I == 16 && J == 8) {
|
||||
return (l / 2) * 4 + threadIdx.x % 4;
|
||||
return ((l / 2) * 4) | (threadIdx.x % 4);
|
||||
} else {
|
||||
static_assert(I == -1 && J == -1, "template specialization not implemented");
|
||||
NO_DEVICE_CODE;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -263,8 +385,12 @@ namespace ggml_cuda_mma {
|
||||
: "=r"(xi[0]), "=r"(xi[1])
|
||||
: "l"(xs));
|
||||
#else
|
||||
load_generic(xs0, stride);
|
||||
GGML_UNUSED(t);
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
GGML_UNUSED_VARS(t, xs0, stride);
|
||||
NO_DEVICE_CODE;
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
@@ -277,11 +403,35 @@ namespace ggml_cuda_mma {
|
||||
asm volatile("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
|
||||
: "=r"(xi[0]), "=r"(xi[1]), "=r"(xi[2]), "=r"(xi[3])
|
||||
: "l"(xs));
|
||||
#else
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
GGML_UNUSED_VARS(t, xs0, stride);
|
||||
NO_DEVICE_CODE;
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#endif // TURING_MMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix(
|
||||
tile<32, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#if 1
|
||||
// TODO: more generic handling
|
||||
static_assert(sizeof(T) == 4, "bad type size");
|
||||
ggml_cuda_memcpy_1<4*sizeof(T)>(t.x + 0, xs0 + t.get_i(0)*stride + 0);
|
||||
ggml_cuda_memcpy_1<4*sizeof(T)>(t.x + 4, xs0 + t.get_i(4)*stride + 4);
|
||||
#else
|
||||
load_generic(t, xs0, stride);
|
||||
#endif // 1
|
||||
#else
|
||||
tile<16, 8, T> * t16 = (tile<16, 8, T> *) &t;
|
||||
load_ldmatrix(t16[0], xs0 + 0*stride, stride);
|
||||
load_ldmatrix(t16[1], xs0 + 16*stride, stride);
|
||||
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static __device__ __forceinline__ void load_ldmatrix_trans(
|
||||
tile<16, 8, T> & t, const T * __restrict__ xs0, const int stride) {
|
||||
@@ -546,4 +696,43 @@ namespace ggml_cuda_mma {
|
||||
NO_DEVICE_CODE;
|
||||
#endif // AMD_MFMA_AVAILABLE
|
||||
}
|
||||
|
||||
template <typename T1, typename T2, int J, int K>
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<32, J, T1> & D, const tile<32, K, T2> & A, const tile<J, K, T2> & B) {
|
||||
tile<16, J, T1> * D16 = (tile<16, J, T1> *) &D;
|
||||
tile<16, K, T2> * A16 = (tile<16, K, T2> *) &A;
|
||||
mma(D16[0], A16[0], B);
|
||||
mma(D16[1], A16[1], B);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void mma(
|
||||
tile<32, 8, float> & D, const tile<32, 8, half2> & A, const tile<8, 8, half2> & B) {
|
||||
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
const int * Axi = (const int *) A.x;
|
||||
const int * Bxi = (const int *) B.x;
|
||||
int * Dxi = (int *) D.x;
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]), "r"(Bxi[1]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[4]), "r"(Axi[5]), "r"(Bxi[4]), "r"(Bxi[5]));
|
||||
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
|
||||
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
|
||||
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
|
||||
: "r"(Axi[6]), "r"(Axi[7]), "r"(Bxi[6]), "r"(Bxi[7]));
|
||||
#else
|
||||
tile<16, 8, float> * D16 = (tile<16, 8, float> *) &D;
|
||||
tile<16, 8, half2> * A16 = (tile<16, 8, half2> *) &A;
|
||||
mma(D16[0], A16[0], B);
|
||||
mma(D16[1], A16[1], B);
|
||||
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
|
||||
}
|
||||
}
|
||||
|
||||
@@ -119,15 +119,27 @@ void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * sr
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne, const int src1_ncols, bool mul_mat_id) {
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * src0_ne,
|
||||
const size_t * src0_nb, const int src1_ncols, bool mul_mat_id) {
|
||||
if (ggml_is_quantized(type)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src0_ne[0] % (warp_size * (4/ggml_type_size(type))) != 0) {
|
||||
const size_t ts = ggml_type_size(type);
|
||||
if (src0_ne[0] % (warp_size * (4/ts)) != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (src0_nb[0] != ts) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pointers not aligned to the size of half2/nv_bfloat162/float2 would result in a crash:
|
||||
for (size_t i = 1; i < GGML_MAX_DIMS; ++i) {
|
||||
if (src0_nb[i] % (2*ts) != 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (src0_ne[1] % MMF_ROWS_PER_BLOCK != 0) {
|
||||
return false;
|
||||
}
|
||||
@@ -148,7 +160,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
|
||||
case GGML_TYPE_F32:
|
||||
return ampere_mma_available(cc);
|
||||
case GGML_TYPE_F16:
|
||||
return turing_mma_available(cc);
|
||||
return volta_mma_available(cc) || turing_mma_available(cc);
|
||||
case GGML_TYPE_BF16:
|
||||
return ampere_mma_available(cc);
|
||||
default:
|
||||
|
||||
@@ -17,7 +17,7 @@ struct mmf_ids_data {
|
||||
|
||||
void ggml_cuda_mul_mat_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const int src1_ncols, bool mul_mat_id);
|
||||
bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const int64_t * scr0_ne, const size_t * src0_nb, const int src1_ncols, bool mul_mat_id);
|
||||
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps, bool has_ids>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
@@ -28,9 +28,19 @@ static __global__ void mul_mat_f(
|
||||
const int channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
|
||||
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
|
||||
|
||||
if (!I_16_supported && !I_32_supported) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
|
||||
|
||||
typedef tile<I_preferred, 8, T> tile_A;
|
||||
typedef tile<8, 8, T> tile_B;
|
||||
typedef tile<I_preferred, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
@@ -232,7 +242,6 @@ static __global__ void mul_mat_f(
|
||||
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
}
|
||||
|
||||
|
||||
//This kernel is for larger batch sizes of mul_mat_id
|
||||
template <typename T, int rows_per_block, int cols_per_block, int nwarps>
|
||||
__launch_bounds__(ggml_cuda_get_physical_warp_size()*nwarps, 1)
|
||||
@@ -245,9 +254,19 @@ static __global__ void mul_mat_f_ids(
|
||||
const int sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const uint3 sis1_fd, const uint3 nch_fd) {
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
typedef tile<16, 8, float> tile_C;
|
||||
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
|
||||
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
|
||||
|
||||
if (!I_16_supported && !I_32_supported) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work butr 16 is ~1% faster.
|
||||
|
||||
typedef tile<I_preferred, 8, T> tile_A;
|
||||
typedef tile<8, 8, T> tile_B;
|
||||
typedef tile<I_preferred, 8, float> tile_C;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
constexpr int tile_k_padded = warp_size + 4;
|
||||
@@ -533,7 +552,8 @@ void mul_mat_f_cuda(
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream, const mmf_ids_data * ids_data) {
|
||||
typedef tile<16, 8, T> tile_A;
|
||||
typedef tile<16, 8, T> tile_A_16;
|
||||
typedef tile<32, 8, T> tile_A_32;
|
||||
typedef tile< 8, 8, T> tile_B;
|
||||
|
||||
GGML_ASSERT(ncols_x % 2 == 0);
|
||||
@@ -544,7 +564,8 @@ void mul_mat_f_cuda(
|
||||
const int64_t channel_ratio = nchannels_dst / nchannels_x;
|
||||
const int64_t sample_ratio = nsamples_dst / nsamples_x;
|
||||
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int device = ggml_cuda_get_device();
|
||||
const int cc = ggml_cuda_info().devices[device].cc;
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
|
||||
int64_t nwarps_best = 1;
|
||||
@@ -559,7 +580,7 @@ void mul_mat_f_cuda(
|
||||
}
|
||||
|
||||
constexpr int rows_per_block = MMF_ROWS_PER_BLOCK;
|
||||
const int nbytes_shared_iter = nwarps_best * tile_A::I * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_iter = nwarps_best * (volta_mma_available(cc) ? tile_A_32::I : tile_A_16::I) * (warp_size + 4) * 4;
|
||||
const int nbytes_shared_combine = GGML_PAD(cols_per_block, tile_B::I) * (nwarps_best*rows_per_block + 4) * 4;
|
||||
const int nbytes_shared = std::max(nbytes_shared_iter, nbytes_shared_combine);
|
||||
const int nbytes_slotmap = ids ? GGML_PAD(cols_per_block, 16) * sizeof(int) : 0;
|
||||
|
||||
@@ -3494,7 +3494,7 @@ static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int col_diff = col_high - col_low;
|
||||
|
||||
for (int j = threadIdx.y*warp_size + threadIdx.x; j < mmq_x; j += nwarps*warp_size) {
|
||||
ids_dst_shared[j] = ids_dst[col_low + j];
|
||||
ids_dst_shared[j] = ids_dst[col_low + jt*mmq_x + j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
#include "ggml.h"
|
||||
#include "common.cuh"
|
||||
#include "convert.cuh"
|
||||
#include "unary.cuh"
|
||||
#include "mmvf.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
|
||||
static __global__ void mul_mat_vec_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
@@ -24,58 +25,164 @@ static __global__ void mul_mat_vec_f(
|
||||
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
|
||||
|
||||
bool use_gate = false;
|
||||
bool use_bias = false;
|
||||
bool use_gate_bias = false;
|
||||
ggml_glu_op glu_op = ggml_glu_op::GGML_GLU_OP_SWIGLU;
|
||||
const T * gate_x = nullptr;
|
||||
const float * x_bias = nullptr;
|
||||
const float * gate_bias = nullptr;
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
use_gate = fusion.gate != nullptr;
|
||||
use_bias = fusion.x_bias != nullptr;
|
||||
use_gate_bias = fusion.gate_bias != nullptr;
|
||||
glu_op = fusion.glu_op;
|
||||
|
||||
if (use_gate) {
|
||||
gate_x = static_cast<const T *>(fusion.gate);
|
||||
}
|
||||
if (use_bias) {
|
||||
x_bias = static_cast<const float *>(fusion.x_bias);
|
||||
}
|
||||
if (use_gate_bias) {
|
||||
gate_bias = static_cast<const float *>(fusion.gate_bias);
|
||||
use_gate_bias = use_gate;
|
||||
} else {
|
||||
use_gate_bias = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (use_gate) {
|
||||
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
|
||||
}
|
||||
if constexpr (has_fusion) {
|
||||
const int channel_bias = ids ? channel_x : channel_dst;
|
||||
if (use_bias) {
|
||||
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
|
||||
}
|
||||
if (use_gate_bias) {
|
||||
gate_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
|
||||
}
|
||||
}
|
||||
|
||||
const float2 * y2 = (const float2 *) y;
|
||||
|
||||
extern __shared__ char data_mmv[];
|
||||
float * buf_iw = (float *) data_mmv;
|
||||
float * buf_iw_gate = nullptr;
|
||||
if constexpr (has_fusion) {
|
||||
buf_iw_gate = (float *) (data_mmv + warp_size*sizeof(float));
|
||||
}
|
||||
|
||||
if (block_size > warp_size) {
|
||||
if (tid < warp_size) {
|
||||
buf_iw[tid] = 0.0f;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
buf_iw_gate[tid] = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float sumf[ncols_dst] = {0.0f};
|
||||
float sumf_gate[ncols_dst];
|
||||
if constexpr (has_fusion) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
sumf_gate[j] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
const float2 * x2 = (const float2 *) x;
|
||||
const float2 * gate_x2 = nullptr;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
gate_x2 = (const float2 *) gate_x;
|
||||
}
|
||||
}
|
||||
|
||||
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
|
||||
const float2 tmpx = x2[col2];
|
||||
float2 tmpx_gate = make_float2(0.0f, 0.0f);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmpx_gate = gate_x2[col2];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if constexpr (std::is_same_v<T, half>) {
|
||||
const half2 * x2 = (const half2 *) x;
|
||||
const half2 * gate_x2 = nullptr;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
gate_x2 = (const half2 *) gate_x;
|
||||
}
|
||||
}
|
||||
|
||||
if (std::is_same_v<type_acc, float>) {
|
||||
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
|
||||
const float2 tmpx = __half22float2(x2[col2]);
|
||||
|
||||
float2 tmpx_gate = make_float2(0.0f, 0.0f);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmpx_gate = __half22float2(gate_x2[col2]);
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
#ifdef FP16_AVAILABLE
|
||||
half2 sumh2[ncols_dst] = {{0.0f, 0.0f}};
|
||||
half2 sumh2_gate[ncols_dst] = {{0.0f, 0.0f}};
|
||||
|
||||
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
|
||||
const half2 tmpx = x2[col2];
|
||||
|
||||
half2 tmpx_gate = make_half2(0.0f, 0.0f);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmpx_gate = gate_x2[col2];
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
sumh2[j] += tmpx * make_half2(tmpy.x, tmpy.y);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
sumh2_gate[j] += tmpx_gate * make_half2(tmpy.x, tmpy.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -83,6 +190,15 @@ static __global__ void mul_mat_vec_f(
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
sumf[j] = __low2float(sumh2[j]) + __high2float(sumh2[j]);
|
||||
}
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
sumf_gate[j] = __low2float(sumh2_gate[j]) + __high2float(sumh2_gate[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
#endif // FP16_AVAILABLE
|
||||
@@ -91,8 +207,20 @@ static __global__ void mul_mat_vec_f(
|
||||
//TODO: add support for ggml_cuda_mad for hip_bfloat162
|
||||
#if defined(GGML_USE_HIP)
|
||||
const int * x2 = (const int *) x;
|
||||
const int * gate_x2 = nullptr;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
gate_x2 = (const int *) gate_x;
|
||||
}
|
||||
}
|
||||
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
|
||||
const int tmpx = x2[col2];
|
||||
int tmpx_gate = 0;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmpx_gate = gate_x2[col2];
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
@@ -100,17 +228,45 @@ static __global__ void mul_mat_vec_f(
|
||||
const float tmpx1 = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]);
|
||||
ggml_cuda_mad(sumf[j], tmpx0, tmpy.x);
|
||||
ggml_cuda_mad(sumf[j], tmpx1, tmpy.y);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
const float tmpx0_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[0]);
|
||||
const float tmpx1_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[1]);
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx0_gate, tmpy.x);
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx1_gate, tmpy.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
const nv_bfloat162 * x2 = (const nv_bfloat162 *) x;
|
||||
const nv_bfloat162 * gate_x2 = nullptr;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
gate_x2 = (const nv_bfloat162 *) gate_x;
|
||||
}
|
||||
}
|
||||
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
|
||||
const nv_bfloat162 tmpx = x2[col2];
|
||||
nv_bfloat162 tmpx_gate;
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmpx_gate = gate_x2[col2];
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
const float2 tmpy = y2[j*stride_col_y2 + col2];
|
||||
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
|
||||
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
@@ -122,13 +278,31 @@ static __global__ void mul_mat_vec_f(
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
|
||||
}
|
||||
}
|
||||
|
||||
if (block_size > warp_size) {
|
||||
buf_iw[tid/warp_size] = sumf[j];
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
buf_iw_gate[tid/warp_size] = sumf_gate[j];
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
if (tid < warp_size) {
|
||||
sumf[j] = buf_iw[tid];
|
||||
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
sumf_gate[j] = buf_iw_gate[tid];
|
||||
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (j < ncols_dst) {
|
||||
__syncthreads();
|
||||
}
|
||||
@@ -139,12 +313,74 @@ static __global__ void mul_mat_vec_f(
|
||||
return;
|
||||
}
|
||||
|
||||
dst[tid*stride_col_dst + row] = sumf[tid];
|
||||
float value = sumf[tid];
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
if (use_bias) {
|
||||
value += x_bias[tid*stride_col_dst + row];
|
||||
}
|
||||
|
||||
if (use_gate) {
|
||||
float gate_value = sumf_gate[tid];
|
||||
if (use_gate_bias) {
|
||||
gate_value += gate_bias[tid*stride_col_dst + row];
|
||||
}
|
||||
switch (glu_op) {
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
value *= ggml_cuda_op_silu_single(gate_value);
|
||||
break;
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
value *= ggml_cuda_op_gelu_single(gate_value);
|
||||
break;
|
||||
case GGML_GLU_OP_SWIGLU_OAI: {
|
||||
value = ggml_cuda_op_swiglu_oai_single(gate_value, value);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dst[tid*stride_col_dst + row] = value;
|
||||
|
||||
if constexpr (!has_fusion) {
|
||||
GGML_UNUSED_VARS(use_gate, use_bias, use_gate_bias, glu_op, gate_x, x_bias, gate_bias, sumf_gate);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
static void mul_mat_vec_f_switch_fusion(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst>
|
||||
static void launch_mul_mat_vec_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
void launch_mul_mat_vec_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
@@ -176,57 +412,59 @@ static void launch_mul_mat_vec_f_cuda(
|
||||
}
|
||||
}
|
||||
|
||||
const int nbytes_shared = warp_size*sizeof(float);
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
|
||||
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
|
||||
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
|
||||
const dim3 block_dims(block_size_best, 1, 1);
|
||||
switch (block_size_best) {
|
||||
case 32: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 64: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 96: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 128: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 160: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 192: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 224: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
case 256: {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -236,7 +474,7 @@ static void launch_mul_mat_vec_f_cuda(
|
||||
|
||||
template <typename T, typename type_acc>
|
||||
static void mul_mat_vec_f_cuda_switch_ncols_dst(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
@@ -246,49 +484,49 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 2:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 3:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 4:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 5:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 6:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 7:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case 8:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
|
||||
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
@@ -300,29 +538,31 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
|
||||
|
||||
template<typename T>
|
||||
static void mul_mat_vec_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, float * dst,
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int stride_col_dst,
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
enum ggml_prec prec, cudaStream_t stream) {
|
||||
|
||||
if constexpr(std::is_same_v<T, half>) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
|
||||
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
return;
|
||||
}
|
||||
}
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
|
||||
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
const ggml_cuda_mm_fusion_args_host * fusion) {
|
||||
GGML_ASSERT( src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
@@ -348,6 +588,30 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
ggml_cuda_mm_fusion_args_device fusion_local{};
|
||||
|
||||
if (fusion) {
|
||||
GGML_ASSERT( !ids || dst->ne[2] == 1);
|
||||
GGML_ASSERT( ids || dst->ne[1] == 1);
|
||||
if (fusion->x_bias) {
|
||||
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
|
||||
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
|
||||
fusion_local.x_bias = fusion->x_bias->data;
|
||||
}
|
||||
if (fusion->gate) {
|
||||
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
|
||||
fusion_local.gate = fusion->gate->data;
|
||||
}
|
||||
if (fusion->gate_bias) {
|
||||
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
|
||||
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
|
||||
fusion_local.gate_bias = fusion->gate_bias->data;
|
||||
}
|
||||
fusion_local.glu_op = fusion->glu_op;
|
||||
}
|
||||
|
||||
const int64_t s01 = src0->nb[1] / ts_src0;
|
||||
const int64_t s11 = src1->nb[1] / ts_src1;
|
||||
const int64_t s1 = dst->nb[1] / ts_dst;
|
||||
@@ -370,19 +634,19 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
} break;
|
||||
@@ -409,7 +673,6 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
const int cc = ggml_cuda_info().devices[id].cc;
|
||||
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
|
||||
|
||||
|
||||
// ggml_cuda_op provides single, contiguous matrices
|
||||
const int64_t stride_row = ne00;
|
||||
const int64_t stride_col_y = ne10;
|
||||
@@ -426,22 +689,23 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
const int64_t stride_sample_y = 0;
|
||||
const int64_t stride_sample_dst = 0;
|
||||
|
||||
ggml_cuda_mm_fusion_args_device empty{};
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
} break;
|
||||
@@ -452,10 +716,23 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
GGML_UNUSED_VARS(ctx, src1, dst, src1_ddq_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11) {
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, const size_t * src0_nb, int64_t ne11) {
|
||||
if (src0_ne[0] % 2 != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const size_t ts = ggml_type_size(type);
|
||||
if (src0_nb[0] != ts) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Pointers not aligned to the size of half2/nv_bfloat162/float2 would result in a crash:
|
||||
for (size_t i = 1; i < GGML_MAX_DIMS; ++i) {
|
||||
if (src0_nb[i] % (2*ts) != 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
if (GGML_CUDA_CC_IS_NVIDIA(cc)) {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#include "common.cuh"
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_f(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
@@ -8,4 +9,4 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, int64_t ne11);
|
||||
bool ggml_cuda_should_use_mmvf(enum ggml_type type, int cc, const int64_t * src0_ne, const size_t * src0_nb, int64_t ne11);
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "mmvq.cuh"
|
||||
#include "quantize.cuh"
|
||||
#include "unary.cuh"
|
||||
#include "vecdotq.cuh"
|
||||
|
||||
#include <cstdint>
|
||||
@@ -82,7 +83,7 @@ static __host__ mmvq_parameter_table_id get_device_table_id(int cc) {
|
||||
return MMVQ_PARAMETERS_GENERIC;
|
||||
}
|
||||
|
||||
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
|
||||
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
|
||||
if (table_id == MMVQ_PARAMETERS_GENERIC) {
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
@@ -136,11 +137,11 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
|
||||
return 1;
|
||||
}
|
||||
|
||||
template <ggml_type type, int ncols_dst>
|
||||
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||
template <ggml_type type, int ncols_dst, bool has_fusion>
|
||||
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
@@ -169,8 +170,56 @@ static __global__ void mul_mat_vec_q(
|
||||
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
|
||||
const uint32_t sample_y = sample_dst;
|
||||
|
||||
bool use_gate = false;
|
||||
bool use_bias = false;
|
||||
bool use_gate_bias = false;
|
||||
const void * vgate = nullptr;
|
||||
const float * x_bias = nullptr;
|
||||
const float * gate_bias = nullptr;
|
||||
ggml_glu_op active_glu;
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
use_gate = fusion.gate != nullptr;
|
||||
use_bias = fusion.x_bias != nullptr;
|
||||
use_gate_bias = fusion.gate_bias != nullptr && use_gate;
|
||||
vgate = fusion.gate;
|
||||
x_bias = (const float *) fusion.x_bias;
|
||||
gate_bias = (const float *) fusion.gate_bias;
|
||||
active_glu = fusion.glu_op;
|
||||
}
|
||||
|
||||
const uint32_t channel_bias = ids ? channel_x : channel_dst;
|
||||
|
||||
float x_biases[ncols_dst] = { 0.0f };
|
||||
float gate_biases[ncols_dst] = { 0.0f };
|
||||
if constexpr (has_fusion) {
|
||||
if (use_bias) {
|
||||
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
|
||||
// 1. Hide latency by prefetching bias and gate here
|
||||
// 2. load only on threads that won't die after partial sum calculation
|
||||
if (threadIdx.x < rows_per_cuda_block && threadIdx.y == 0 &&
|
||||
(rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
x_biases[j] = x_bias[j * stride_col_dst + threadIdx.x];
|
||||
}
|
||||
}
|
||||
}
|
||||
if (use_gate_bias) {
|
||||
gate_bias = gate_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
|
||||
if (threadIdx.x < rows_per_cuda_block && threadIdx.y == 0 &&
|
||||
(rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
gate_biases[j] = gate_bias[j * stride_col_dst + threadIdx.x];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// partial sum for each thread
|
||||
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
|
||||
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
|
||||
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
|
||||
@@ -187,17 +236,35 @@ static __global__ void mul_mat_vec_q(
|
||||
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||
tmp[j][i] += vec_dot_q_cuda(
|
||||
vx, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmp_gate[j][i] += vec_dot_q_cuda(
|
||||
vgate, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
|
||||
__shared__ float tmp_shared_gate[(has_fusion && (nwarps-1 > 0)) ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
|
||||
if constexpr (!has_fusion) {
|
||||
(void) tmp_shared_gate;
|
||||
} else if (!use_gate) {
|
||||
(void) tmp_shared_gate;
|
||||
}
|
||||
|
||||
if (threadIdx.y > 0) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
||||
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmp_shared_gate[threadIdx.y-1][j][i][threadIdx.x] = tmp_gate[j][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -216,14 +283,55 @@ static __global__ void mul_mat_vec_q(
|
||||
#pragma unroll
|
||||
for (int l = 0; l < nwarps-1; ++l) {
|
||||
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmp_gate[j][i] += tmp_shared_gate[l][j][i][threadIdx.x];
|
||||
}
|
||||
}
|
||||
}
|
||||
tmp[j][i] = warp_reduce_sum<warp_size>(tmp[j][i]);
|
||||
if constexpr (has_fusion) {
|
||||
if (use_gate) {
|
||||
tmp_gate[j][i] = warp_reduce_sum<warp_size>(tmp_gate[j][i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
|
||||
dst[j*stride_col_dst + threadIdx.x] = tmp[j][threadIdx.x];
|
||||
float result = tmp[j][threadIdx.x];
|
||||
if constexpr (has_fusion) {
|
||||
if (use_bias) {
|
||||
result += x_biases[j];
|
||||
}
|
||||
if (use_gate) {
|
||||
float gate_value = tmp_gate[j][threadIdx.x];
|
||||
if (use_gate_bias) {
|
||||
gate_value += gate_biases[j];
|
||||
}
|
||||
switch (active_glu) {
|
||||
case GGML_GLU_OP_SWIGLU:
|
||||
result *= ggml_cuda_op_silu_single(gate_value);
|
||||
break;
|
||||
case GGML_GLU_OP_GEGLU:
|
||||
result *= ggml_cuda_op_gelu_single(gate_value);
|
||||
break;
|
||||
case GGML_GLU_OP_SWIGLU_OAI: {
|
||||
result = ggml_cuda_op_swiglu_oai_single(gate_value, result);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
result = result * gate_value;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
dst[j*stride_col_dst + threadIdx.x] = result;
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (!has_fusion) {
|
||||
GGML_UNUSED_VARS(use_gate, use_bias, use_gate_bias, active_glu, gate_bias, x_bias, tmp_gate);
|
||||
}
|
||||
}
|
||||
|
||||
static std::pair<dim3, dim3> calc_launch_params(
|
||||
@@ -235,9 +343,37 @@ static std::pair<dim3, dim3> calc_launch_params(
|
||||
return {block_nums, block_dims};
|
||||
}
|
||||
|
||||
template<ggml_type type, int c_ncols_dst>
|
||||
static void mul_mat_vec_q_switch_fusion(
|
||||
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (c_ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
}
|
||||
|
||||
template <ggml_type type>
|
||||
static void mul_mat_vec_q_switch_ncols_dst(
|
||||
const void * vx, const void * vy, const int32_t * ids, float * dst,
|
||||
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst,
|
||||
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
|
||||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
@@ -256,80 +392,83 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
const int warp_size = ggml_cuda_info().devices[device].warp_size;
|
||||
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
constexpr int c_ncols_dst = 1;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
constexpr int c_ncols_dst = 2;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
constexpr int c_ncols_dst = 3;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
constexpr int c_ncols_dst = 4;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
constexpr int c_ncols_dst = 5;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
constexpr int c_ncols_dst = 6;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
constexpr int c_ncols_dst = 7;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
constexpr int c_ncols_dst = 8;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
|
||||
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
|
||||
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_UNUSED(has_fusion);
|
||||
}
|
||||
static void mul_mat_vec_q_switch_type(
|
||||
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, float * dst,
|
||||
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst,
|
||||
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
|
||||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
@@ -339,143 +478,123 @@ static void mul_mat_vec_q_switch_type(
|
||||
switch (type_x) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_MXFP4:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
|
||||
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -484,7 +603,8 @@ static void mul_mat_vec_q_switch_type(
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_q(
|
||||
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
|
||||
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
const ggml_cuda_mm_fusion_args_host * fusion) {
|
||||
GGML_ASSERT( src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
|
||||
@@ -508,6 +628,31 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
float * dst_d = (float *) dst->data;
|
||||
|
||||
ggml_cuda_mm_fusion_args_device fusion_local{};
|
||||
|
||||
if (fusion) {
|
||||
GGML_ASSERT( !ids || dst->ne[2] == 1);
|
||||
GGML_ASSERT( ids || dst->ne[1] == 1);
|
||||
|
||||
if (fusion->x_bias) {
|
||||
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
|
||||
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
|
||||
fusion_local.x_bias = fusion->x_bias->data;
|
||||
}
|
||||
if (fusion->gate) {
|
||||
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
|
||||
fusion_local.gate = fusion->gate->data;
|
||||
}
|
||||
if (fusion->gate_bias) {
|
||||
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
|
||||
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
|
||||
fusion_local.gate_bias = fusion->gate_bias->data;
|
||||
}
|
||||
fusion_local.glu_op = fusion->glu_op;
|
||||
}
|
||||
|
||||
// If src0 is a temporary compute buffer, clear any potential padding.
|
||||
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
const size_t size_data = ggml_nbytes(src0);
|
||||
@@ -549,10 +694,10 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0->data, src0->type, src1_q8_1.get(), ids_d, dst_d, ne00,
|
||||
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
|
||||
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, stream);
|
||||
ne03, ne3, s03, s13, s3, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
@@ -578,8 +723,9 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
const int stride_row_x = ne00 / ggml_blck_size(src0->type);
|
||||
const int stride_col_y = src1_padded_row_size / QK8_1;
|
||||
|
||||
ggml_cuda_mm_fusion_args_device fusion_local{};
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0_dd_i, src0->type, src1_ddq_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
|
||||
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
|
||||
|
||||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
|
||||
|
||||
void ggml_cuda_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
|
||||
@@ -125,7 +125,7 @@ template<bool forward, bool has_ff, typename T>
|
||||
static __global__ void rope_multi(
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
|
||||
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections) {
|
||||
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections, const bool is_imrope) {
|
||||
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||
|
||||
if (i0 >= ne0) {
|
||||
@@ -152,17 +152,29 @@ static __global__ void rope_multi(
|
||||
const int sector = (i0 / 2) % sect_dims;
|
||||
|
||||
float theta_base = 0.0;
|
||||
if (sector < sections.v[0]) {
|
||||
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
|
||||
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w + sections.v[2]) {
|
||||
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
if (is_imrope) {
|
||||
if (sector % 3 == 1 && sector < 3 * sections.v[1]) { // h
|
||||
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
} else if (sector % 3 == 2 && sector < 3 * sections.v[2]) { // w
|
||||
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
} else if (sector % 3 == 0 && sector < 3 * sections.v[0]) { // t
|
||||
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
} else {
|
||||
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
} else {
|
||||
if (sector < sections.v[0]) {
|
||||
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sections.v[0] && sector < sec_w) {
|
||||
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
|
||||
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
else if (sector >= sec_w + sections.v[2]) {
|
||||
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
|
||||
}
|
||||
}
|
||||
|
||||
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
|
||||
@@ -276,7 +288,7 @@ template<bool forward, typename T>
|
||||
static void rope_multi_cuda(
|
||||
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
|
||||
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
|
||||
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, const bool is_imrope, cudaStream_t stream) {
|
||||
GGML_ASSERT(ne0 % 2 == 0);
|
||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
||||
@@ -287,11 +299,11 @@ static void rope_multi_cuda(
|
||||
if (freq_factors == nullptr) {
|
||||
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
|
||||
} else {
|
||||
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
|
||||
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections);
|
||||
attn_factor, corr_dims, theta_scale, freq_factors, sections, is_imrope);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -369,6 +381,7 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE;
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (is_mrope) {
|
||||
@@ -406,11 +419,11 @@ void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
|
||||
if (src0->type == GGML_TYPE_F32) {
|
||||
rope_multi_cuda<forward>(
|
||||
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
|
||||
} else if (src0->type == GGML_TYPE_F16) {
|
||||
rope_multi_cuda<forward>(
|
||||
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
|
||||
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, is_imrope, stream);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
@@ -4,30 +4,53 @@
|
||||
typedef void (*set_rows_kernel_t)(const char * src, char * dst);
|
||||
|
||||
// Generic quantized set_rows kernel template
|
||||
template<typename idx_t, typename block_type, int qk, void (*quantize_func)(const float*, block_type*)>
|
||||
static __global__ void k_set_rows_quant(
|
||||
const float * __restrict__ src0, const idx_t * __restrict__ src1, block_type * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t s10, const int64_t s11, const int64_t s12,
|
||||
const int64_t s1, const int64_t s2, const int64_t s3) {
|
||||
|
||||
template <typename idx_t, typename block_type, int qk, void (*quantize_func)(const float *, block_type *)>
|
||||
static __global__ void k_set_rows_quant(const float * __restrict__ src0,
|
||||
const idx_t * __restrict__ src1,
|
||||
block_type * __restrict__ dst,
|
||||
const int64_t ne_total,
|
||||
const int64_t ne10,
|
||||
const int64_t ne11,
|
||||
const int64_t ne12,
|
||||
const int64_t ne13,
|
||||
const int64_t s01,
|
||||
const int64_t s02,
|
||||
const int64_t s03,
|
||||
const int64_t s10,
|
||||
const int64_t s11,
|
||||
const int64_t s12,
|
||||
const int64_t s1,
|
||||
const int64_t s2,
|
||||
const int64_t s3,
|
||||
const uint3 ne00,
|
||||
const uint3 ne01,
|
||||
const uint3 ne02,
|
||||
const uint3 ne11_fd,
|
||||
const uint3 ne12_fd) {
|
||||
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
||||
const int64_t ne_total = (ne00 * ne01 * ne02 * ne03) / qk;
|
||||
|
||||
if (i >= ne_total) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i_base = i * qk;
|
||||
const int64_t i03 = i_base / (ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i_base - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
|
||||
const int64_t i01 = (i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
|
||||
const int64_t i00 = i_base - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
|
||||
uint32_t tmp = (uint32_t) i_base;
|
||||
uint2 div_mod;
|
||||
|
||||
const int64_t i12 = i03 % ne12;
|
||||
const int64_t i11 = i02 % ne11;
|
||||
div_mod = fast_div_modulo(tmp, ne00);
|
||||
const int64_t i00 = div_mod.y;
|
||||
tmp = div_mod.x;
|
||||
|
||||
div_mod = fast_div_modulo(tmp, ne01);
|
||||
const int64_t i01 = div_mod.y;
|
||||
tmp = div_mod.x;
|
||||
|
||||
div_mod = fast_div_modulo(tmp, ne02);
|
||||
const int64_t i02 = div_mod.y;
|
||||
const int64_t i03 = div_mod.x;
|
||||
|
||||
const int64_t i12 = fastmodulo((uint32_t) i03, ne12_fd);
|
||||
const int64_t i11 = fastmodulo((uint32_t) i02, ne11_fd);
|
||||
const int64_t i10 = i01;
|
||||
|
||||
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
|
||||
@@ -41,6 +64,8 @@ static __global__ void k_set_rows_quant(
|
||||
quantize_func(src_block, dst_block);
|
||||
|
||||
GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12);
|
||||
GGML_UNUSED(ne13);
|
||||
}
|
||||
|
||||
@@ -71,40 +96,65 @@ static void set_rows_cuda_quant(
|
||||
const int64_t s2 = nb2;
|
||||
const int64_t s3 = nb3;
|
||||
|
||||
if (ne_total > 0) {
|
||||
if (ne_total > 0 && ne00 > 0 && ne01 > 0 && ne02 > 0 && ne11 > 0 && ne12 > 0) {
|
||||
const uint3 ne00_fd = init_fastdiv_values((uint32_t) ne00);
|
||||
const uint3 ne01_fd = init_fastdiv_values((uint32_t) ne01);
|
||||
const uint3 ne02_fd = init_fastdiv_values((uint32_t) ne02);
|
||||
const uint3 ne11_fd = init_fastdiv_values((uint32_t) ne11);
|
||||
const uint3 ne12_fd = init_fastdiv_values((uint32_t) ne12);
|
||||
|
||||
k_set_rows_quant<idx_t, block_type, qk, quantize_func><<<grid_size, block_size, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
s01, s02, s03,
|
||||
s10, s11, s12,
|
||||
s1, s2, s3);
|
||||
src0_d, src1_d, dst_d, ne_total, ne10, ne11, ne12, ne13, s01, s02, s03, s10, s11, s12, s1, s2, s3, ne00_fd,
|
||||
ne01_fd, ne02_fd, ne11_fd, ne12_fd);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename src_t, typename idx_t, typename dst_t>
|
||||
static __global__ void k_set_rows(
|
||||
const src_t * __restrict__ src0, const idx_t * __restrict__ src1, dst_t * __restrict__ dst,
|
||||
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
|
||||
const int64_t ne10, const int64_t ne11, const int64_t ne12, const int64_t ne13,
|
||||
const int64_t s01, const int64_t s02, const int64_t s03,
|
||||
const int64_t s10, const int64_t s11, const int64_t s12,
|
||||
const int64_t s1, const int64_t s2, const int64_t s3) {
|
||||
|
||||
template <typename src_t, typename idx_t, typename dst_t>
|
||||
static __global__ void k_set_rows(const src_t * __restrict__ src0,
|
||||
const idx_t * __restrict__ src1,
|
||||
dst_t * __restrict__ dst,
|
||||
const int64_t ne_total,
|
||||
const int64_t ne10,
|
||||
const int64_t ne11,
|
||||
const int64_t ne12,
|
||||
const int64_t ne13,
|
||||
const int64_t s01,
|
||||
const int64_t s02,
|
||||
const int64_t s03,
|
||||
const int64_t s10,
|
||||
const int64_t s11,
|
||||
const int64_t s12,
|
||||
const int64_t s1,
|
||||
const int64_t s2,
|
||||
const int64_t s3,
|
||||
const uint3 ne00,
|
||||
const uint3 ne01,
|
||||
const uint3 ne02,
|
||||
const uint3 ne11_fd,
|
||||
const uint3 ne12_fd) {
|
||||
const int64_t i = int64_t(blockDim.x) * blockIdx.x + threadIdx.x;
|
||||
const int64_t ne_total = ne00 * ne01 * ne02 * ne03;
|
||||
|
||||
if (i >= ne_total) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t i03 = i / (ne00 * ne01 * ne02);
|
||||
const int64_t i02 = (i - i03 * ne00 * ne01 * ne02) / (ne00 * ne01);
|
||||
const int64_t i01 = (i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01) / ne00;
|
||||
const int64_t i00 = i - i03 * ne00 * ne01 * ne02 - i02 * ne00 * ne01 - i01 * ne00;
|
||||
uint32_t tmp = (uint32_t) i;
|
||||
uint2 div_mod;
|
||||
|
||||
const int64_t i12 = i03 % ne12;
|
||||
const int64_t i11 = i02 % ne11;
|
||||
div_mod = fast_div_modulo(tmp, ne00);
|
||||
const int64_t i00 = div_mod.y;
|
||||
tmp = div_mod.x;
|
||||
|
||||
div_mod = fast_div_modulo(tmp, ne01);
|
||||
const int64_t i01 = div_mod.y;
|
||||
tmp = div_mod.x;
|
||||
|
||||
div_mod = fast_div_modulo(tmp, ne02);
|
||||
const int64_t i02 = div_mod.y;
|
||||
const int64_t i03 = div_mod.x;
|
||||
|
||||
const int64_t i12 = fastmodulo((uint32_t) i03, ne12_fd);
|
||||
const int64_t i11 = fastmodulo((uint32_t) i02, ne11_fd);
|
||||
const int64_t i10 = i01;
|
||||
|
||||
const int64_t dst_row = *(src1 + i10*s10 + i11*s11 + i12*s12);
|
||||
@@ -115,6 +165,8 @@ static __global__ void k_set_rows(
|
||||
dst_row_ptr[i00] = ggml_cuda_cast<dst_t>(src0_row[i00]);
|
||||
|
||||
GGML_UNUSED(ne10);
|
||||
GGML_UNUSED(ne11);
|
||||
GGML_UNUSED(ne12);
|
||||
GGML_UNUSED(ne13);
|
||||
}
|
||||
|
||||
@@ -144,14 +196,16 @@ static void set_rows_cuda(
|
||||
const int64_t s2 = nb2/sizeof(dst_t);
|
||||
const int64_t s3 = nb3/sizeof(dst_t);
|
||||
|
||||
if (ne_total > 0) {
|
||||
k_set_rows<<<grid_size, block_size, 0, stream>>>(
|
||||
src0_d, src1_d, dst_d,
|
||||
ne00, ne01, ne02, ne03,
|
||||
ne10, ne11, ne12, ne13,
|
||||
s01, s02, s03,
|
||||
s10, s11, s12,
|
||||
s1, s2, s3);
|
||||
if (ne_total > 0 && ne00 > 0 && ne01 > 0 && ne02 > 0 && ne11 > 0 && ne12 > 0) {
|
||||
const uint3 ne00_fd = init_fastdiv_values((uint32_t) ne00);
|
||||
const uint3 ne01_fd = init_fastdiv_values((uint32_t) ne01);
|
||||
const uint3 ne02_fd = init_fastdiv_values((uint32_t) ne02);
|
||||
const uint3 ne11_fd = init_fastdiv_values((uint32_t) ne11);
|
||||
const uint3 ne12_fd = init_fastdiv_values((uint32_t) ne12);
|
||||
|
||||
k_set_rows<<<grid_size, block_size, 0, stream>>>(src0_d, src1_d, dst_d, ne_total, ne10, ne11, ne12, ne13, s01,
|
||||
s02, s03, s10, s11, s12, s1, s2, s3, ne00_fd, ne01_fd, ne02_fd,
|
||||
ne11_fd, ne12_fd);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
39
ggml/src/ggml-cuda/set.cu
Normal file
39
ggml/src/ggml-cuda/set.cu
Normal file
@@ -0,0 +1,39 @@
|
||||
#include "set.cuh"
|
||||
#include "cpy.cuh"
|
||||
|
||||
void ggml_cuda_op_set(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32));
|
||||
GGML_ASSERT(src1->type == src0->type);
|
||||
GGML_ASSERT(dst ->type == src0->type);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
const size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
const size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
const size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
const size_t offset = ((int32_t *) dst->op_params)[3];
|
||||
const bool inplace= (bool) ((int32_t *) dst->op_params)[4];
|
||||
|
||||
if (!inplace) {
|
||||
ggml_cuda_cpy(ctx, src0, dst);
|
||||
}
|
||||
|
||||
ggml_tensor dst_view = *dst;
|
||||
dst_view.data = (void *)((char *)dst->data + offset);
|
||||
dst_view.ne[0] = src1->ne[0];
|
||||
dst_view.ne[1] = src1->ne[1];
|
||||
dst_view.ne[2] = src1->ne[2];
|
||||
dst_view.ne[3] = src1->ne[3];
|
||||
|
||||
dst_view.nb[0] = ggml_element_size(dst);
|
||||
dst_view.nb[1] = nb1;
|
||||
dst_view.nb[2] = nb2;
|
||||
dst_view.nb[3] = nb3;
|
||||
|
||||
ggml_cuda_cpy(ctx, src1, &dst_view);
|
||||
}
|
||||
7
ggml/src/ggml-cuda/set.cuh
Normal file
7
ggml/src/ggml-cuda/set.cuh
Normal file
@@ -0,0 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_SET_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_set(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -0,0 +1,5 @@
|
||||
// This file has been autogenerated by generate_cu_files.py, do not edit manually.
|
||||
|
||||
#include "../fattn-tile.cuh"
|
||||
|
||||
DECL_FATTN_TILE_CASE(72, 72);
|
||||
@@ -3,7 +3,7 @@
|
||||
from glob import glob
|
||||
import os
|
||||
|
||||
HEAD_SIZES_KQ = [40, 64, 80, 96, 112, 128, 256, 576]
|
||||
HEAD_SIZES_KQ = [40, 64, 72, 80, 96, 112, 128, 256, 576]
|
||||
|
||||
TYPES_KV = ["GGML_TYPE_F16", "GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0"]
|
||||
|
||||
@@ -81,6 +81,8 @@ for ncols in [8, 16, 32, 64]:
|
||||
for head_size_kq in HEAD_SIZES_KQ:
|
||||
if head_size_kq == 40:
|
||||
continue
|
||||
if head_size_kq == 72:
|
||||
continue
|
||||
if head_size_kq != 576 and ncols2 == 16:
|
||||
continue
|
||||
if head_size_kq == 576 and ncols2 != 16:
|
||||
|
||||
@@ -2,23 +2,70 @@
|
||||
#include "ggml.h"
|
||||
#include "topk-moe.cuh"
|
||||
|
||||
#include <cmath>
|
||||
#include <initializer_list>
|
||||
|
||||
// Warp-local softmax used for both the pre-top-k logits and the post-top-k delayed path.
|
||||
template <int experts_per_thread, bool use_limit>
|
||||
__device__ void softmax_warp_inplace(float (&vals)[experts_per_thread], const int limit, const int lane) {
|
||||
float max_val = -INFINITY;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const int idx = lane + i * WARP_SIZE;
|
||||
const bool active = !use_limit || (idx < limit);
|
||||
if (active) {
|
||||
max_val = max(max_val, vals[i]);
|
||||
}
|
||||
}
|
||||
|
||||
max_val = warp_reduce_max(max_val);
|
||||
|
||||
float sum = 0.f;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const int idx = lane + i * WARP_SIZE;
|
||||
const bool active = !use_limit || (idx < limit);
|
||||
if (active) {
|
||||
const float val = expf(vals[i] - max_val);
|
||||
vals[i] = val;
|
||||
sum += val;
|
||||
} else {
|
||||
vals[i] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
const float inv_sum = 1.0f / sum;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const int idx = lane + i * WARP_SIZE;
|
||||
const bool active = !use_limit || (idx < limit);
|
||||
if (active) {
|
||||
vals[i] *= inv_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
This kernel does the following:
|
||||
1. softmax over the logits per token [n_experts, n_tokens]
|
||||
1. optionally softmax over the logits per token [n_experts, n_tokens]
|
||||
2. argmax reduce over the top-k (n_experts_used) logits
|
||||
3. write weights + ids to global memory
|
||||
4. optionally normalize the weights
|
||||
4. optionally normalize the weights or apply softmax over the selected logits
|
||||
|
||||
It is intended as fusion of softmax->top-k->get_rows pipeline for MoE models
|
||||
*/
|
||||
template <int n_experts, bool with_norm>
|
||||
template <int n_experts, bool with_norm, bool delayed_softmax = false>
|
||||
__launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float * logits,
|
||||
float * weights,
|
||||
int32_t * ids,
|
||||
const int n_rows,
|
||||
const int n_expert_used) {
|
||||
const int n_expert_used,
|
||||
const float clamp_val) {
|
||||
const int row = blockIdx.x * blockDim.y + threadIdx.y;
|
||||
if (row >= n_rows) {
|
||||
return;
|
||||
@@ -30,51 +77,30 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
|
||||
|
||||
constexpr int experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
|
||||
|
||||
float logits_r[experts_per_thread];
|
||||
float wt[experts_per_thread];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < n_experts; i += WARP_SIZE) {
|
||||
const int expert = i + threadIdx.x;
|
||||
logits_r[i / WARP_SIZE] = n_experts % WARP_SIZE == 0 || expert < n_experts ? logits[expert] : -INFINITY;
|
||||
const int expert = i + threadIdx.x;
|
||||
wt[i / WARP_SIZE] = (n_experts % WARP_SIZE == 0 || expert < n_experts) ? logits[expert] : -INFINITY;
|
||||
}
|
||||
|
||||
float max_val = logits_r[0];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 1; i < experts_per_thread; i++) {
|
||||
const float val = logits_r[i];
|
||||
max_val = max(val, max_val);
|
||||
if constexpr (!delayed_softmax) {
|
||||
softmax_warp_inplace<experts_per_thread, false>(wt, n_experts, threadIdx.x);
|
||||
}
|
||||
|
||||
max_val = warp_reduce_max(max_val);
|
||||
|
||||
float wt[experts_per_thread];
|
||||
float tmp = 0.f;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const float val = logits_r[i];
|
||||
wt[i] = expf(val - max_val);
|
||||
tmp += wt[i];
|
||||
}
|
||||
|
||||
tmp = warp_reduce_sum(tmp);
|
||||
|
||||
const float inv_sum = 1.0f / tmp;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
wt[i] = wt[i] * inv_sum;
|
||||
}
|
||||
|
||||
//at this point, each thread holds a portion of softmax,
|
||||
//we do the argmax reduce over n_expert_used, each time marking
|
||||
//at this point, each thread holds either a portion of the softmax distribution
|
||||
//or the raw logits. We do the argmax reduce over n_expert_used, each time marking
|
||||
//the expert weight as -inf to exclude from the next iteration
|
||||
|
||||
float wt_sum = 0.f;
|
||||
|
||||
extern __shared__ float data_topk_shared[];
|
||||
float * wt_shared_ptr = data_topk_shared + threadIdx.y * n_expert_used;
|
||||
float output_weights[experts_per_thread];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
output_weights[i] = 0.f;
|
||||
}
|
||||
|
||||
for (int k = 0; k < n_expert_used; k++) {
|
||||
float max_val = wt[0];
|
||||
@@ -99,11 +125,14 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
|
||||
}
|
||||
}
|
||||
|
||||
if ((k & (WARP_SIZE - 1)) == threadIdx.x) {
|
||||
output_weights[k / WARP_SIZE] = max_val;
|
||||
}
|
||||
|
||||
if ((max_expert & (WARP_SIZE - 1)) == threadIdx.x) {
|
||||
wt[max_expert / WARP_SIZE] = -INFINITY;
|
||||
|
||||
wt_shared_ptr[k] = max_val;
|
||||
ids[k] = max_expert;
|
||||
ids[k] = max_expert;
|
||||
if constexpr (with_norm) {
|
||||
wt_sum += max_val;
|
||||
}
|
||||
@@ -112,73 +141,86 @@ __launch_bounds__(4 * WARP_SIZE, 1) __global__ void topk_moe_cuda(const float *
|
||||
|
||||
if constexpr (with_norm) {
|
||||
wt_sum = warp_reduce_sum(wt_sum);
|
||||
wt_sum = max(wt_sum, clamp_val);
|
||||
const float inv_sum = 1.0f / wt_sum;
|
||||
|
||||
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) {
|
||||
wt_shared_ptr[i] = wt_shared_ptr[i] * inv_sum;
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
output_weights[i] *= inv_sum;
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = threadIdx.x; i < n_expert_used; i += WARP_SIZE) {
|
||||
weights[i] = wt_shared_ptr[i];
|
||||
if constexpr (delayed_softmax) {
|
||||
softmax_warp_inplace<experts_per_thread, true>(output_weights, n_expert_used, threadIdx.x);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < experts_per_thread; i++) {
|
||||
const int idx = i * WARP_SIZE + threadIdx.x;
|
||||
if (idx < n_expert_used) {
|
||||
weights[idx] = output_weights[i];
|
||||
}
|
||||
}
|
||||
|
||||
if (!with_norm) {
|
||||
GGML_UNUSED(clamp_val);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool with_norm>
|
||||
template <bool with_norm, bool delayed_softmax = false>
|
||||
static void launch_topk_moe_cuda(ggml_backend_cuda_context & ctx,
|
||||
const float * logits,
|
||||
float * weights,
|
||||
int32_t * ids,
|
||||
const int n_rows,
|
||||
const int n_expert,
|
||||
const int n_expert_used) {
|
||||
const int n_expert_used,
|
||||
const float clamp_val) {
|
||||
static_assert(!(with_norm && delayed_softmax), "delayed softmax is not supported with weight normalization");
|
||||
const int rows_per_block = 4;
|
||||
dim3 grid_dims((n_rows + rows_per_block - 1) / rows_per_block, 1, 1);
|
||||
dim3 block_dims(WARP_SIZE, rows_per_block, 1);
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
const int nbytes_shared = n_expert_used * rows_per_block * sizeof(float);
|
||||
|
||||
switch (n_expert) {
|
||||
case 1:
|
||||
topk_moe_cuda<1, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<1, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 2:
|
||||
topk_moe_cuda<2, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<2, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 4:
|
||||
topk_moe_cuda<4, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<4, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 8:
|
||||
topk_moe_cuda<8, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<8, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 16:
|
||||
topk_moe_cuda<16, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<16, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 32:
|
||||
topk_moe_cuda<32, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<32, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 64:
|
||||
topk_moe_cuda<64, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<64, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 128:
|
||||
topk_moe_cuda<128, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<128, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 256:
|
||||
topk_moe_cuda<256, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<256, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
case 512:
|
||||
topk_moe_cuda<512, with_norm>
|
||||
<<<grid_dims, block_dims, nbytes_shared, stream>>>(logits, weights, ids, n_rows, n_expert_used);
|
||||
topk_moe_cuda<512, with_norm, delayed_softmax>
|
||||
<<<grid_dims, block_dims, 0, stream>>>(logits, weights, ids, n_rows, n_expert_used, clamp_val);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false && "fatal error");
|
||||
@@ -190,7 +232,9 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * logits,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * ids,
|
||||
const bool with_norm) {
|
||||
const bool with_norm,
|
||||
const bool delayed_softmax,
|
||||
ggml_tensor * clamp) {
|
||||
GGML_ASSERT(logits->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(weights->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
||||
@@ -198,7 +242,7 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
const int n_experts = logits->ne[0];
|
||||
const int n_rows = logits->ne[1];
|
||||
|
||||
const float * logits_d = (const float *) logits->src[0]->data;
|
||||
const float * logits_d = (const float *) logits->data;
|
||||
float * weights_d = (float *) weights->data;
|
||||
int32_t * ids_d = (int32_t *) ids->data;
|
||||
|
||||
@@ -206,14 +250,25 @@ void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
|
||||
const int n_expert_used = weights->ne[1];
|
||||
|
||||
float clamp_val = -INFINITY;
|
||||
if (with_norm) {
|
||||
launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
||||
if (clamp) {
|
||||
clamp_val = ggml_get_op_params_f32(clamp, 0);
|
||||
}
|
||||
launch_topk_moe_cuda<true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used, clamp_val);
|
||||
} else {
|
||||
launch_topk_moe_cuda<false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used);
|
||||
GGML_ASSERT(clamp == nullptr);
|
||||
if (delayed_softmax) {
|
||||
launch_topk_moe_cuda<false, true>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used,
|
||||
clamp_val);
|
||||
} else {
|
||||
launch_topk_moe_cuda<false, false>(ctx, logits_d, weights_d, ids_d, n_rows, n_experts, n_expert_used,
|
||||
clamp_val);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights) {
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights, const ggml_tensor * clamp) {
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
|
||||
@@ -239,19 +294,43 @@ bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tenso
|
||||
return false;
|
||||
}
|
||||
|
||||
if (clamp) {
|
||||
if (clamp->op != GGML_OP_CLAMP) {
|
||||
return false;
|
||||
}
|
||||
float max_val = ggml_get_op_params_f32(clamp, 1);
|
||||
|
||||
if (max_val != INFINITY) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm) {
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool norm, bool delayed_softmax) {
|
||||
static std::initializer_list<enum ggml_op> norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SUM_ROWS, GGML_OP_DIV, GGML_OP_RESHAPE };
|
||||
GGML_OP_SUM_ROWS, GGML_OP_CLAMP, GGML_OP_DIV,
|
||||
GGML_OP_RESHAPE };
|
||||
|
||||
static std::initializer_list<enum ggml_op> no_norm_ops = { GGML_OP_SOFT_MAX, GGML_OP_RESHAPE, GGML_OP_ARGSORT,
|
||||
GGML_OP_VIEW, GGML_OP_GET_ROWS };
|
||||
|
||||
static std::initializer_list<enum ggml_op> delayed_softmax_ops = { GGML_OP_ARGSORT, GGML_OP_VIEW,
|
||||
GGML_OP_GET_ROWS, GGML_OP_RESHAPE,
|
||||
GGML_OP_SOFT_MAX, GGML_OP_RESHAPE };
|
||||
|
||||
GGML_ASSERT(!norm || !delayed_softmax);
|
||||
|
||||
if (delayed_softmax) {
|
||||
return delayed_softmax_ops;
|
||||
}
|
||||
|
||||
if (norm) {
|
||||
return norm_ops;
|
||||
}
|
||||
|
||||
return no_norm_ops;
|
||||
}
|
||||
|
||||
@@ -6,9 +6,11 @@
|
||||
void ggml_cuda_op_topk_moe(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * logits,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * top_k,
|
||||
const bool with_norm);
|
||||
ggml_tensor * ids,
|
||||
const bool with_norm,
|
||||
const bool delayed_softmax = false,
|
||||
ggml_tensor * weight_clamp = nullptr);
|
||||
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights);
|
||||
bool ggml_cuda_should_use_topk_moe(const ggml_tensor * softmax, const ggml_tensor * weights, const ggml_tensor * clamp = nullptr);
|
||||
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool with_norm);
|
||||
std::initializer_list<enum ggml_op> ggml_cuda_topk_moe_ops(bool with_norm, bool delayed_softmax = false);
|
||||
|
||||
@@ -18,10 +18,7 @@ static __device__ __forceinline__ float op_step(float x) {
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_gelu(float x) {
|
||||
const float GELU_COEF_A = 0.044715f;
|
||||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
return ggml_cuda_op_gelu_single(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_gelu_erf(float x) {
|
||||
@@ -37,7 +34,7 @@ static __device__ __forceinline__ float op_gelu_quick(float x) {
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_silu(float x) {
|
||||
return x / (1.0f + expf(-x));
|
||||
return ggml_cuda_op_silu_single(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_tanh(float x) {
|
||||
@@ -88,6 +85,22 @@ static __device__ __forceinline__ float op_elu(float x) {
|
||||
return (x > 0.f) ? x : expm1f(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_floor(float x) {
|
||||
return floorf(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_ceil(float x) {
|
||||
return ceilf(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_round(float x) {
|
||||
return round(x);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float op_trunc(float x) {
|
||||
return trunc(x);
|
||||
}
|
||||
|
||||
template <float (*op)(float), typename T>
|
||||
static __global__ void unary_op_kernel(const T * x, T * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
@@ -204,6 +217,22 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_elu>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_floor(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_floor>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_ceil(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_ceil>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_round(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_round>(ctx, dst);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_trunc(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_unary<op_trunc>(ctx, dst);
|
||||
}
|
||||
/* gated ops */
|
||||
|
||||
template <float (*op)(float), typename T>
|
||||
@@ -317,13 +346,8 @@ static __global__ void swiglu_oai_kernel(const T * x, const T * g, T * dst, cons
|
||||
|
||||
float xi = x[j0];
|
||||
float gi = g[j1];
|
||||
xi = fminf(xi, limit);
|
||||
gi = fmaxf(fminf(gi, limit), -limit);
|
||||
|
||||
float out_glu = xi / (1.0f + expf(-xi * alpha));
|
||||
out_glu = out_glu * (1.0f + gi);
|
||||
|
||||
dst[i] = out_glu;
|
||||
dst[i] = ggml_cuda_op_swiglu_oai_single(xi, gi, alpha, limit);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#pragma once
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_NEG_BLOCK_SIZE 256
|
||||
@@ -62,6 +63,14 @@ void ggml_cuda_op_log(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_elu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_floor(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_ceil(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_round(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_trunc(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_reglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_geglu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -75,3 +84,23 @@ void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
|
||||
__device__ __forceinline__ float ggml_cuda_op_silu_single(float x) {
|
||||
return x / (1.0f + expf(-x));
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float ggml_cuda_op_gelu_single(float x) {
|
||||
const float GELU_COEF_A = 0.044715f;
|
||||
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
return 0.5f * x * (1.0f + tanhf(SQRT_2_OVER_PI * x * (1.0f + GELU_COEF_A * x * x)));
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float ggml_cuda_op_swiglu_oai_single(float x, float g, float alpha = 1.702f, float limit = 7.0f) {
|
||||
x = fminf(x, limit);
|
||||
g = fmaxf(fminf(g, limit), -limit);
|
||||
|
||||
float out_glu = x / (1.0f + expf(-x * alpha));
|
||||
out_glu = out_glu * (1.0f + g);
|
||||
return out_glu;
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user