Compare commits

...

15 Commits
b6830 ... b6845

Author SHA1 Message Date
Sigbjørn Skjæret
73a48c9790 convert : enable expert group selection for all models with it (#16691) 2025-10-26 17:21:23 +01:00
Sigbjørn Skjæret
f696428ce8 graph : add clamping to ffn_moe_weights_sum to avoid div-by-zero (#16655)
* add missing norm topk bias

* use clamping instead, update number and add comment
2025-10-26 17:20:32 +01:00
Sigbjørn Skjæret
7cce4f8158 model : set res->t_embd in SmallThinker models (#16782) 2025-10-26 16:08:52 +01:00
amirai21
8d8862829c docs : add Jamba to Text-only models list (#16778) 2025-10-26 13:01:20 +01:00
Aman Gupta
f77c13b91f CUDA: General GEMV fusion (#16715) 2025-10-26 19:28:04 +08:00
Gilad S.
3cfa9c3f12 vulkan: deduplicate Microsoft Direct3D12 devices (#16689)
* fix: deduplicate and deprioritize Microsoft Direct3D12 vulkan devices from the `vulkan-dozen` driver

* style: indent

* fix: decrease priority

* fix: switch to `||`
2025-10-26 05:37:38 +01:00
Galunid
5d195f17bc convert : handle mmproj filename/path properly (#16760)
* convert: handle mmproj model output filename properly

* remove redundant commits

* Add model_type to gguf utility

* Use mmproj- prefix instead of suffix

* Apply CISC suggestion

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-25 20:41:36 +02:00
Shunta Saito
226f295f4d model : set res->t_embd in PLaMo2 models (#16766) 2025-10-25 12:26:27 +02:00
Giuseppe Scrivano
f90b4a8efe vulkan: delete dead code (#16732)
ggml_vk_create_buffer_temp is not used anywhere, and it is the only
caller for ggml_vk_pool_malloc.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-25 10:59:54 +02:00
Jeff Bolz
8423d01931 vulkan: Optimize SSM_SCAN (#16645) 2025-10-25 07:04:12 +02:00
compilade
5cca2542ac convert : avoid dequantizing mxfp4 for GPT-OSS (#16756) 2025-10-24 20:52:00 -04:00
leejet
55945d2ef5 ggml: fix CUDA grid launch condition for large block_nums.y in binbcast (#16742)
* Fix CUDA grid launch condition for large block_nums.y

* add backend ops test

* reduce test  repetitions
2025-10-24 21:39:37 +02:00
Aman Gupta
0bcb40b48c CUDA: use CUB for arbitary size argsort (#16754) 2025-10-24 20:46:19 +08:00
Florian Badie
69e9ff0103 webui: support q URL parameter (#16728)
* webui: support q URL parameter

Fixes #16722
I’ve checked that it works with Firefox’s AI tools

* webui: apply suggestions from code review

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui static build

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-24 14:10:29 +02:00
Daniel Bevenius
5a91109a5d model-conversion : add trust_remote_code for orig model run [no ci] (#16751)
This commit add the trust_remote_code=True argument when loading models
using AutoConfig, AutoTokenizer, and AutoModelForCausalLM for the run
original model script.

The motivation for this is that some models require custom code to be
loaded properly, and setting trust_remote_code=True avoids a prompt
asking for user confirmation:
```console
(venv) $ make causal-run-original-model
The repository /path/to/model contains custom code which must be
executed to correctly load the model. You can inspect the repository
content at /path/to/model.

Do you wish to run the custom code? [y/N] N
```

Having this as the default seems like a safe choice as we have to clone
or download the models we convert and would be expecting to run any
custom code they have.
2025-10-24 12:02:02 +02:00
22 changed files with 1298 additions and 288 deletions

View File

@@ -84,6 +84,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [x] [Jamba](https://huggingface.co/ai21labs)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)

View File

@@ -742,6 +742,12 @@ class TextModel(ModelBase):
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
if (n_expert_groups := self.hparams.get("n_group")) is not None:
self.gguf_writer.add_expert_group_count(n_expert_groups)
logger.info(f"gguf: expert groups count = {n_expert_groups}")
if (n_group_used := self.hparams.get("topk_group")) is not None:
self.gguf_writer.add_expert_group_used_count(n_group_used)
logger.info(f"gguf: expert groups used count = {n_group_used}")
if (head_dim := self.hparams.get("head_dim")) is not None:
self.gguf_writer.add_key_length(head_dim)
@@ -1497,6 +1503,17 @@ class MmprojModel(ModelBase):
def set_type(self):
self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
def prepare_metadata(self, vocab_only: bool):
super().prepare_metadata(vocab_only=vocab_only)
output_type: str = self.ftype.name.partition("_")[2]
if self.fname_out.is_dir():
fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
else:
self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
def set_gguf_parameters(self):
self.gguf_writer.add_file_type(self.ftype)
@@ -8222,8 +8239,6 @@ class BailingMoeV2Model(TextModel):
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_expert_count(hparams["num_experts"])
self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
self.gguf_writer.add_expert_group_count(hparams["n_group"])
self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
if hparams["score_function"] == "sigmoid":
@@ -8943,6 +8958,13 @@ class SmolLM3Model(LlamaModel):
class GptOssModel(TextModel):
model_arch = gguf.MODEL_ARCH.GPT_OSS
# TODO: remove once MXFP4 is supported more generally
def dequant_model(self):
quant_config = self.hparams.get("quantization_config")
if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
return
return super().dequant_model()
def transform_nibble_layout(self, tensor):
assert tensor.dtype == torch.uint8
assert tensor.shape[-1] == 16
@@ -9722,10 +9744,6 @@ def main() -> None:
logger.info(f"Loading model: {dir_model.name}")
if args.mmproj:
if "mmproj" not in fname_out.name:
fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
is_mistral_format = args.mistral_format
if is_mistral_format and not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)

View File

@@ -138,7 +138,7 @@ if model_path is None:
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
config = AutoConfig.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
@@ -148,8 +148,8 @@ print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
@@ -171,7 +171,7 @@ if unreleased_model_name:
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload"
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True
)
for name, module in model.named_modules():

View File

@@ -1,5 +1,81 @@
#include "argsort.cuh"
#ifdef GGML_CUDA_USE_CUB
# include <cub/cub.cuh>
using namespace cub;
#endif // GGML_CUDA_USE_CUB
static __global__ void init_indices(int * indices, const int ncols, const int nrows) {
const int col = blockIdx.x * blockDim.x + threadIdx.x;
const int row = blockIdx.y;
if (col < ncols && row < nrows) {
indices[row * ncols + col] = col;
}
}
static __global__ void init_offsets(int * offsets, const int ncols, const int nrows) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx <= nrows) {
offsets[idx] = idx * ncols;
}
}
#ifdef GGML_CUDA_USE_CUB
static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
const float * x,
int * dst,
const int ncols,
const int nrows,
ggml_sort_order order,
cudaStream_t stream) {
ggml_cuda_pool_alloc<int> temp_indices_alloc(pool, ncols * nrows);
ggml_cuda_pool_alloc<float> temp_keys_alloc(pool, ncols * nrows);
ggml_cuda_pool_alloc<int> offsets_alloc(pool, nrows + 1);
int * temp_indices = temp_indices_alloc.get();
float * temp_keys = temp_keys_alloc.get();
int * d_offsets = offsets_alloc.get();
static const int block_size = 256;
const dim3 grid_size((ncols + block_size - 1) / block_size, nrows);
init_indices<<<grid_size, block_size, 0, stream>>>(temp_indices, ncols, nrows);
const dim3 offset_grid((nrows + block_size - 1) / block_size);
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
size_t temp_storage_bytes = 0;
if (order == GGML_SORT_ORDER_ASC) {
DeviceSegmentedRadixSort::SortPairs(nullptr, temp_storage_bytes, temp_keys, temp_keys, // keys (in-place)
temp_indices, dst, // values (indices)
ncols * nrows, nrows, // num items, num segments
d_offsets, d_offsets + 1, 0, sizeof(float) * 8, // all bits
stream);
} else {
DeviceSegmentedRadixSort::SortPairsDescending(nullptr, temp_storage_bytes, temp_keys, temp_keys, temp_indices,
dst, ncols * nrows, nrows, d_offsets, d_offsets + 1, 0,
sizeof(float) * 8, stream);
}
ggml_cuda_pool_alloc<uint8_t> temp_storage_alloc(pool, temp_storage_bytes);
void * d_temp_storage = temp_storage_alloc.get();
if (order == GGML_SORT_ORDER_ASC) {
DeviceSegmentedRadixSort::SortPairs(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys, temp_indices, dst,
ncols * nrows, nrows, d_offsets, d_offsets + 1, 0, sizeof(float) * 8,
stream);
} else {
DeviceSegmentedRadixSort::SortPairsDescending(d_temp_storage, temp_storage_bytes, temp_keys, temp_keys,
temp_indices, dst, ncols * nrows, nrows, d_offsets, d_offsets + 1,
0, sizeof(float) * 8, stream);
}
}
#endif // GGML_CUDA_USE_CUB
// Bitonic sort implementation
template<typename T>
static inline __device__ void ggml_cuda_swap(T & a, T & b) {
T tmp = a;
@@ -65,7 +141,12 @@ static int next_power_of_2(int x) {
return n;
}
static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, const int nrows, ggml_sort_order order, cudaStream_t stream) {
static void argsort_f32_i32_cuda_bitonic(const float * x,
int * dst,
const int ncols,
const int nrows,
ggml_sort_order order,
cudaStream_t stream) {
// bitonic sort requires ncols to be power of 2
const int ncols_pad = next_power_of_2(ncols);
@@ -77,9 +158,11 @@ static void argsort_f32_i32_cuda(const float * x, int * dst, const int ncols, co
GGML_ASSERT(shared_mem <= ggml_cuda_info().devices[ggml_cuda_get_device()].smpb);
if (order == GGML_SORT_ORDER_ASC) {
k_argsort_f32_i32<GGML_SORT_ORDER_ASC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
k_argsort_f32_i32<GGML_SORT_ORDER_ASC>
<<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else if (order == GGML_SORT_ORDER_DESC) {
k_argsort_f32_i32<GGML_SORT_ORDER_DESC><<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
k_argsort_f32_i32<GGML_SORT_ORDER_DESC>
<<<block_nums, block_dims, shared_mem, stream>>>(x, dst, ncols, ncols_pad);
} else {
GGML_ABORT("fatal error");
}
@@ -100,5 +183,18 @@ void ggml_cuda_op_argsort(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
argsort_f32_i32_cuda(src0_d, (int *)dst_d, ncols, nrows, order, stream);
#ifdef GGML_CUDA_USE_CUB
const int ncols_pad = next_power_of_2(ncols);
const size_t shared_mem = ncols_pad * sizeof(int);
const size_t max_shared_mem = ggml_cuda_info().devices[ggml_cuda_get_device()].smpb;
if (shared_mem > max_shared_mem || ncols > 1024) {
ggml_cuda_pool & pool = ctx.pool();
argsort_f32_i32_cuda_cub(pool, src0_d, (int *) dst_d, ncols, nrows, order, stream);
} else {
argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
}
#else
argsort_f32_i32_cuda_bitonic(src0_d, (int *) dst_d, ncols, nrows, order, stream);
#endif
}

View File

@@ -272,7 +272,7 @@ static void launch_bin_bcast_pack(const ggml_tensor * src0, const ggml_tensor *
const uint3 ne12 = init_fastdiv_values((uint32_t) cne1[2]);
const uint3 ne13 = init_fastdiv_values((uint32_t) cne1[3]);
if (block_nums.z > 65535) {
if (block_nums.z > 65535 || block_nums.y > 65535) {
int block_num = (ne0 * ne1 * ne2 * ne3 + block_size - 1) / block_size;
const uint3 prod_012 = init_fastdiv_values((uint32_t) (ne0 * ne1 * ne2));
const uint3 prod_01 = init_fastdiv_values((uint32_t) (ne0 * ne1));

View File

@@ -1005,3 +1005,16 @@ struct ggml_backend_cuda_context {
return pool(device);
}
};
struct ggml_cuda_mm_fusion_args_host {
const ggml_tensor * x_bias = nullptr;
const ggml_tensor * gate = nullptr;
const ggml_tensor * gate_bias = nullptr;
ggml_glu_op glu_op;
};
struct ggml_cuda_mm_fusion_args_device {
const void * x_bias = nullptr;
const void * gate = nullptr;
const void * gate_bias = nullptr;
ggml_glu_op glu_op;
};

View File

@@ -1,3 +1,4 @@
#pragma once
#include "common.cuh"
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256

View File

@@ -2007,6 +2007,147 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
}
static bool ggml_cuda_should_fuse_mul_mat(const ggml_tensor * ffn_up,
const ggml_tensor * ffn_gate,
const ggml_tensor * glu,
const ggml_tensor * ffn_up_bias = nullptr,
const ggml_tensor * ffn_gate_bias = nullptr) {
const bool has_bias = ffn_up_bias != nullptr || ffn_gate_bias != nullptr;
if (has_bias && (!ffn_up_bias || !ffn_gate_bias)) {
return false;
}
const bool is_mul_mat = ffn_up->op == GGML_OP_MUL_MAT && ffn_gate->op == GGML_OP_MUL_MAT && glu->op == GGML_OP_GLU;
const bool is_mul_mat_id = ffn_up->op == GGML_OP_MUL_MAT_ID && ffn_gate->op == GGML_OP_MUL_MAT_ID && glu->op == GGML_OP_GLU;
GGML_ASSERT(ffn_up && ffn_gate && glu);
if (!is_mul_mat && !is_mul_mat_id) {
return false;
}
const ggml_op expected_bias_op = is_mul_mat ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (has_bias) {
if (ffn_up_bias->op != expected_bias_op || ffn_gate_bias->op != expected_bias_op) {
return false;
}
if (glu->src[0] != ffn_gate_bias || glu->src[1] != ffn_up_bias) {
return false;
}
if (expected_bias_op == GGML_OP_ADD) {
const bool up_has_mul = ffn_up_bias->src[0] == ffn_up || ffn_up_bias->src[1] == ffn_up;
const bool gate_has_mul = ffn_gate_bias->src[0] == ffn_gate || ffn_gate_bias->src[1] == ffn_gate;
if (!up_has_mul || !gate_has_mul) {
return false;
}
} else { // GGML_OP_ADD_ID
if (ffn_up_bias->src[0] != ffn_up || ffn_gate_bias->src[0] != ffn_gate) {
return false;
}
if (ffn_up_bias->src[2] != ffn_up->src[2] || ffn_gate_bias->src[2] != ffn_gate->src[2]) {
return false;
}
}
} else {
if (glu->src[0] != ffn_gate && glu->src[1] != ffn_up) {
return false;
}
}
if (ffn_up->src[0]->type != ffn_gate->src[0]->type || !ggml_are_same_shape(ffn_up->src[0], ffn_gate->src[0]) ||
!ggml_are_same_stride(ffn_up->src[0], ffn_gate->src[0])) {
return false;
}
if (ffn_up->src[1] != ffn_gate->src[1]) {
return false;
}
if (ffn_up->src[2] && (ffn_up->src[2] != ffn_gate->src[2])) {
return false;
}
static constexpr std::array<ggml_glu_op, 3> valid_glu_ops = { GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU, GGML_GLU_OP_SWIGLU_OAI };
if (std::find(valid_glu_ops.begin(), valid_glu_ops.end(), ggml_get_glu_op(glu)) == valid_glu_ops.end()) {
return false;
}
if (const bool swapped = ggml_get_op_params_i32(glu, 1); swapped) {
return false;
}
const bool split = ggml_backend_buft_is_cuda_split(ffn_up->src[0]->buffer->buft) ||
ggml_backend_buft_is_cuda_split(ffn_gate->src[0]->buffer->buft);
//TODO: add support for fusion for split buffers
if (split) {
return false;
}
return true;
}
static bool ggml_cuda_should_fuse_mul_mat_vec_f(const ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
const ggml_tensor * dst = tensor;
const bool is_mul_mat_id = tensor->op == GGML_OP_MUL_MAT_ID;
bool use_mul_mat_vec_f =
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_BF16) &&
src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
use_mul_mat_vec_f = use_mul_mat_vec_f && ggml_cuda_should_use_mmvf(src0->type, cc, src0->ne, is_mul_mat_id ? src1->ne[2] : src1->ne[1]);
//we only support fusion for ncols_dst = 1
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
return false;
}
return use_mul_mat_vec_f;
}
static bool ggml_cuda_should_fuse_mul_mat_vec_q(const ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
const ggml_tensor * dst = tensor;
const bool bad_padding_clear = ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE &&
ggml_nbytes(src0) != ggml_backend_buffer_get_alloc_size(src0->buffer, src0) &&
src0->view_src;
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) && !bad_padding_clear && src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
// fusion is not universally faster on Pascal
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (cc <= GGML_CUDA_CC_PASCAL) {
return false;
}
//we only support fusion for ncols_dst = 1
if (tensor->op == GGML_OP_MUL_MAT && dst->ne[1] != 1) {
return false;
}
if (tensor->op == GGML_OP_MUL_MAT_ID && dst->ne[2] != 1) {
return false;
}
return use_mul_mat_vec_q;
}
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
@@ -2745,7 +2886,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
}
}
if (node->op == GGML_OP_SCALE &&
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
@@ -2854,6 +2995,38 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
std::initializer_list<enum ggml_op> mul_mat_bias_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_MUL_MAT, GGML_OP_ADD, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_id_bias_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_MUL_MAT_ID, GGML_OP_ADD_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
const ggml_tensor * ffn_up_bias = cgraph->nodes[node_idx + 3];
const ggml_tensor * glu = cgraph->nodes[node_idx + 4];
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu, ffn_up_bias, ffn_gate_bias)) {
return true;
}
}
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
if (ggml_cuda_should_fuse_mul_mat(ffn_up, ffn_gate, glu)) {
return true;
}
}
if (!ggml_can_fuse(cgraph, node_idx, ops)) {
return false;
}
@@ -3004,6 +3177,184 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
}
bool fused_mul_mat_vec = false;
int fused_node_count = 0;
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (ggml_cuda_can_fuse(cgraph, i, { op, bias_op, op, bias_op, GGML_OP_GLU }, {})) {
ggml_tensor * glu = cgraph->nodes[i + 4];
ggml_tensor * gate_bias_n = glu->src[0];
ggml_tensor * up_bias_n = glu->src[1];
//we don't assume the order for {gate, up}. Instead infer it from the bias tensor
ggml_tensor * gate_n = nullptr;
ggml_tensor * up_n = nullptr;
if (gate_bias_n->src[0] == cgraph->nodes[i] || gate_bias_n->src[1] == cgraph->nodes[i]) {
gate_n = cgraph->nodes[i];
up_n = cgraph->nodes[i + 2];
} else if (gate_bias_n->src[0] == cgraph->nodes[i + 2] || gate_bias_n->src[1] == cgraph->nodes[i + 2]) {
gate_n = cgraph->nodes[i + 2];
up_n = cgraph->nodes[i];
} else {
continue;
}
auto get_bias_tensor = [](const ggml_tensor * bias_node, const ggml_tensor * mul_node, ggml_op op_bias) {
if (op_bias == GGML_OP_ADD) {
if (bias_node->src[0] == mul_node) {
return bias_node->src[1];
}
if (bias_node->src[1] == mul_node) {
return bias_node->src[0];
}
return (ggml_tensor *) nullptr;
}
GGML_ASSERT(op_bias == GGML_OP_ADD_ID);
GGML_ASSERT(bias_node->src[0] == mul_node);
return bias_node->src[1];
};
ggml_tensor * up_bias_tensor = get_bias_tensor(up_bias_n, up_n, bias_op);
ggml_tensor * gate_bias_tensor = get_bias_tensor(gate_bias_n, gate_n, bias_op);
if (!up_bias_tensor || !gate_bias_tensor) {
continue;
}
const ggml_tensor * src0 = up_n->src[0];
const ggml_tensor * src1 = up_n->src[1];
const ggml_tensor * ids = up_n->src[2];
if (ggml_cuda_should_fuse_mul_mat_vec_f(up_n)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate_n->src[0];
fusion_data.x_bias = up_bias_tensor;
fusion_data.gate_bias = gate_bias_tensor;
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 5;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(up_n)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate_n->src[0];
fusion_data.x_bias = up_bias_tensor;
fusion_data.gate_bias = gate_bias_tensor;
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 5;
break;
}
} else if (ggml_cuda_can_fuse(cgraph, i, { op, op, GGML_OP_GLU }, {})) {
ggml_tensor * glu = cgraph->nodes[i + 2];
ggml_tensor * gate = glu->src[0];
ggml_tensor * up = glu->src[1];
bool ok = (gate == cgraph->nodes[i] && up == cgraph->nodes[i + 1])
|| (gate == cgraph->nodes[i + 1] && up == cgraph->nodes[i]);
if (!ok) continue;
const ggml_tensor * src0 = up->src[0];
const ggml_tensor * src1 = up->src[1];
const ggml_tensor * ids = up->src[2];
if (ggml_cuda_should_fuse_mul_mat_vec_f(up)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate->src[0];
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 3;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(up)) {
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.gate = gate->src[0];
fusion_data.glu_op = ggml_get_glu_op(glu);
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, glu, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 3;
break;
}
}
}
if (fused_mul_mat_vec) {
i += fused_node_count - 1;
continue;
}
fused_mul_mat_vec = false;
fused_node_count = 0;
for (ggml_op op : { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT_ID }) {
const ggml_op bias_op = op == GGML_OP_MUL_MAT ? GGML_OP_ADD : GGML_OP_ADD_ID;
if (!ggml_can_fuse(cgraph, i, { op, bias_op })) {
continue;
}
ggml_tensor * mm_node = cgraph->nodes[i];
ggml_tensor * bias_node = cgraph->nodes[i + 1];
ggml_tensor * bias_tensor = nullptr;
if (bias_op == GGML_OP_ADD) {
if (bias_node->src[0] == mm_node) {
bias_tensor = bias_node->src[1];
} else if (bias_node->src[1] == mm_node) {
bias_tensor = bias_node->src[0];
} else {
continue;
}
} else {
if (bias_node->src[0] != mm_node) {
continue;
}
bias_tensor = bias_node->src[1];
}
const ggml_tensor * src0 = mm_node->src[0];
const ggml_tensor * src1 = mm_node->src[1];
const ggml_tensor * ids = mm_node->src[2];
if (bias_op == GGML_OP_ADD_ID && bias_node->src[2] != ids) {
continue;
}
ggml_cuda_mm_fusion_args_host fusion_data{};
fusion_data.x_bias = bias_tensor;
if (ggml_cuda_should_fuse_mul_mat_vec_f(mm_node)) {
ggml_cuda_mul_mat_vec_f(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 2;
break;
}
if (ggml_cuda_should_fuse_mul_mat_vec_q(mm_node)) {
ggml_cuda_mul_mat_vec_q(*cuda_ctx, src0, src1, ids, bias_node, &fusion_data);
fused_mul_mat_vec = true;
fused_node_count = 2;
break;
}
}
if (fused_mul_mat_vec) {
i += fused_node_count - 1;
continue;
}
if (ggml_cuda_can_fuse(cgraph, i, { GGML_OP_RMS_NORM, GGML_OP_MUL, GGML_OP_ADD}, {})) {
ggml_cuda_op_rms_norm_fused_add(*cuda_ctx, node, cgraph->nodes[i+1], cgraph->nodes[i+2]);
@@ -3642,8 +3993,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_SUM:
return ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_ARGSORT:
// TODO: Support arbitrary column width
#ifndef GGML_CUDA_USE_CUB
return op->src[0]->ne[0] <= 1024;
#else
return true;
#endif
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_GROUP_NORM:

View File

@@ -1,11 +1,12 @@
#include "ggml.h"
#include "common.cuh"
#include "convert.cuh"
#include "unary.cuh"
#include "mmvf.cuh"
#include "convert.cuh"
template <typename T, typename type_acc, int ncols_dst, int block_size>
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
static __global__ void mul_mat_vec_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, float * __restrict__ dst,
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
@@ -24,58 +25,164 @@ static __global__ void mul_mat_vec_f(
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
bool use_gate = false;
bool use_bias = false;
bool use_gate_bias = false;
ggml_glu_op glu_op = ggml_glu_op::GGML_GLU_OP_SWIGLU;
const T * gate_x = nullptr;
const float * x_bias = nullptr;
const float * gate_bias = nullptr;
if constexpr (has_fusion) {
use_gate = fusion.gate != nullptr;
use_bias = fusion.x_bias != nullptr;
use_gate_bias = fusion.gate_bias != nullptr;
glu_op = fusion.glu_op;
if (use_gate) {
gate_x = static_cast<const T *>(fusion.gate);
}
if (use_bias) {
x_bias = static_cast<const float *>(fusion.x_bias);
}
if (use_gate_bias) {
gate_bias = static_cast<const float *>(fusion.gate_bias);
use_gate_bias = use_gate;
} else {
use_gate_bias = false;
}
}
if (use_gate) {
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
}
if constexpr (has_fusion) {
const int channel_bias = ids ? channel_x : channel_dst;
if (use_bias) {
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
}
if (use_gate_bias) {
gate_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
}
}
const float2 * y2 = (const float2 *) y;
extern __shared__ char data_mmv[];
float * buf_iw = (float *) data_mmv;
float * buf_iw_gate = nullptr;
if constexpr (has_fusion) {
buf_iw_gate = (float *) (data_mmv + warp_size*sizeof(float));
}
if (block_size > warp_size) {
if (tid < warp_size) {
buf_iw[tid] = 0.0f;
if constexpr (has_fusion) {
if (use_gate) {
buf_iw_gate[tid] = 0.0f;
}
}
}
__syncthreads();
}
float sumf[ncols_dst] = {0.0f};
float sumf_gate[ncols_dst];
if constexpr (has_fusion) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
sumf_gate[j] = 0.0f;
}
}
if constexpr (std::is_same_v<T, float>) {
const float2 * x2 = (const float2 *) x;
const float2 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const float2 *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = x2[col2];
float2 tmpx_gate = make_float2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
} else if constexpr (std::is_same_v<T, half>) {
const half2 * x2 = (const half2 *) x;
const half2 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const half2 *) gate_x;
}
}
if (std::is_same_v<type_acc, float>) {
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const float2 tmpx = __half22float2(x2[col2]);
float2 tmpx_gate = make_float2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = __half22float2(gate_x2[col2]);
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
} else {
#ifdef FP16_AVAILABLE
half2 sumh2[ncols_dst] = {{0.0f, 0.0f}};
half2 sumh2_gate[ncols_dst] = {{0.0f, 0.0f}};
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const half2 tmpx = x2[col2];
half2 tmpx_gate = make_half2(0.0f, 0.0f);
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
sumh2[j] += tmpx * make_half2(tmpy.x, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
sumh2_gate[j] += tmpx_gate * make_half2(tmpy.x, tmpy.y);
}
}
}
}
@@ -83,6 +190,15 @@ static __global__ void mul_mat_vec_f(
for (int j = 0; j < ncols_dst; ++j) {
sumf[j] = __low2float(sumh2[j]) + __high2float(sumh2[j]);
}
if constexpr (has_fusion) {
if (use_gate) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
sumf_gate[j] = __low2float(sumh2_gate[j]) + __high2float(sumh2_gate[j]);
}
}
}
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
@@ -91,8 +207,20 @@ static __global__ void mul_mat_vec_f(
//TODO: add support for ggml_cuda_mad for hip_bfloat162
#if defined(GGML_USE_HIP)
const int * x2 = (const int *) x;
const int * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const int *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const int tmpx = x2[col2];
int tmpx_gate = 0;
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
@@ -100,17 +228,45 @@ static __global__ void mul_mat_vec_f(
const float tmpx1 = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx)[1]);
ggml_cuda_mad(sumf[j], tmpx0, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx1, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
const float tmpx0_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[0]);
const float tmpx1_gate = ggml_cuda_cast<float>(reinterpret_cast<const nv_bfloat16 *>(&tmpx_gate)[1]);
ggml_cuda_mad(sumf_gate[j], tmpx0_gate, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx1_gate, tmpy.y);
}
}
}
}
#else
const nv_bfloat162 * x2 = (const nv_bfloat162 *) x;
const nv_bfloat162 * gate_x2 = nullptr;
if constexpr (has_fusion) {
if (use_gate) {
gate_x2 = (const nv_bfloat162 *) gate_x;
}
}
for (int col2 = tid; col2 < ncols2; col2 += block_size) {
const nv_bfloat162 tmpx = x2[col2];
nv_bfloat162 tmpx_gate;
if constexpr (has_fusion) {
if (use_gate) {
tmpx_gate = gate_x2[col2];
}
}
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
const float2 tmpy = y2[j*stride_col_y2 + col2];
ggml_cuda_mad(sumf[j], tmpx.x, tmpy.x);
ggml_cuda_mad(sumf[j], tmpx.y, tmpy.y);
if constexpr (has_fusion) {
if (use_gate) {
ggml_cuda_mad(sumf_gate[j], tmpx_gate.x, tmpy.x);
ggml_cuda_mad(sumf_gate[j], tmpx_gate.y, tmpy.y);
}
}
}
}
#endif
@@ -122,13 +278,31 @@ static __global__ void mul_mat_vec_f(
for (int j = 0; j < ncols_dst; ++j) {
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
if constexpr (has_fusion) {
if (use_gate) {
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
}
}
if (block_size > warp_size) {
buf_iw[tid/warp_size] = sumf[j];
if constexpr (has_fusion) {
if (use_gate) {
buf_iw_gate[tid/warp_size] = sumf_gate[j];
}
}
__syncthreads();
if (tid < warp_size) {
sumf[j] = buf_iw[tid];
sumf[j] = warp_reduce_sum<warp_size>(sumf[j]);
if constexpr (has_fusion) {
if (use_gate) {
sumf_gate[j] = buf_iw_gate[tid];
sumf_gate[j] = warp_reduce_sum<warp_size>(sumf_gate[j]);
}
}
}
if (j < ncols_dst) {
__syncthreads();
}
@@ -139,12 +313,70 @@ static __global__ void mul_mat_vec_f(
return;
}
dst[tid*stride_col_dst + row] = sumf[tid];
float value = sumf[tid];
if constexpr (has_fusion) {
if (use_bias) {
value += x_bias[tid*stride_col_dst + row];
}
if (use_gate) {
float gate_value = sumf_gate[tid];
if (use_gate_bias) {
gate_value += gate_bias[tid*stride_col_dst + row];
}
switch (glu_op) {
case GGML_GLU_OP_SWIGLU:
value *= ggml_cuda_op_silu_single(gate_value);
break;
case GGML_GLU_OP_GEGLU:
value *= ggml_cuda_op_gelu_single(gate_value);
break;
case GGML_GLU_OP_SWIGLU_OAI: {
value = ggml_cuda_op_swiglu_oai_single(gate_value, value);
break;
}
default:
break;
}
}
}
dst[tid*stride_col_dst + row] = value;
}
template<typename T, typename type_acc, int ncols_dst, int block_size>
static void mul_mat_vec_f_switch_fusion(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
}
template <typename T, typename type_acc, int ncols_dst>
static void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
@@ -176,57 +408,59 @@ static void launch_mul_mat_vec_f_cuda(
}
}
const int nbytes_shared = warp_size*sizeof(float);
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec_f<T, type_acc, ncols_dst, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 64: {
mul_mat_vec_f<T, type_acc, ncols_dst, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 96: {
mul_mat_vec_f<T, type_acc, ncols_dst, 96><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 128: {
mul_mat_vec_f<T, type_acc, ncols_dst, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 160: {
mul_mat_vec_f<T, type_acc, ncols_dst, 160><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 192: {
mul_mat_vec_f<T, type_acc, ncols_dst, 192><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 224: {
mul_mat_vec_f<T, type_acc, ncols_dst, 224><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
case 256: {
mul_mat_vec_f<T, type_acc, ncols_dst, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
} break;
default: {
GGML_ABORT("fatal error");
@@ -236,7 +470,7 @@ static void launch_mul_mat_vec_f_cuda(
template <typename T, typename type_acc>
static void mul_mat_vec_f_cuda_switch_ncols_dst(
const T * x, const float * y, const int32_t * ids, float * dst,
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
@@ -246,49 +480,49 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
switch (ncols_dst) {
case 1:
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 2:
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 3:
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 4:
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 5:
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 6:
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 7:
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case 8:
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
(x, y, ids, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
@@ -300,29 +534,31 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
template<typename T>
static void mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, float * dst,
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows, const int64_t ncols_dst,
const int64_t stride_row, const int64_t stride_col_y, const int stride_col_dst,
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
enum ggml_prec prec, cudaStream_t stream) {
if constexpr(std::is_same_v<T, half>) {
if (prec == GGML_PREC_DEFAULT) {
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
return;
}
}
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
(x, y, ids, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
}
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -348,6 +584,30 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
ggml_cuda_mm_fusion_args_device fusion_local{};
if (fusion) {
GGML_ASSERT( !ids || dst->ne[2] == 1);
GGML_ASSERT( ids || dst->ne[1] == 1);
if (fusion->x_bias) {
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
fusion_local.x_bias = fusion->x_bias->data;
}
if (fusion->gate) {
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
fusion_local.gate = fusion->gate->data;
}
if (fusion->gate_bias) {
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
fusion_local.gate_bias = fusion->gate_bias->data;
}
fusion_local.glu_op = fusion->glu_op;
}
const int64_t s01 = src0->nb[1] / ts_src0;
const int64_t s11 = src1->nb[1] / ts_src1;
const int64_t s1 = dst->nb[1] / ts_dst;
@@ -370,19 +630,19 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
} break;
@@ -409,7 +669,6 @@ void ggml_cuda_op_mul_mat_vec_f(
const int cc = ggml_cuda_info().devices[id].cc;
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
// ggml_cuda_op provides single, contiguous matrices
const int64_t stride_row = ne00;
const int64_t stride_col_y = ne10;
@@ -426,22 +685,23 @@ void ggml_cuda_op_mul_mat_vec_f(
const int64_t stride_sample_y = 0;
const int64_t stride_sample_dst = 0;
ggml_cuda_mm_fusion_args_device empty{};
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
} break;

View File

@@ -1,6 +1,7 @@
#include "common.cuh"
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
void ggml_cuda_op_mul_mat_vec_f(
ggml_backend_cuda_context & ctx,

View File

@@ -1,5 +1,6 @@
#include "mmvq.cuh"
#include "quantize.cuh"
#include "unary.cuh"
#include "vecdotq.cuh"
#include <cstdint>
@@ -82,7 +83,7 @@ static __host__ mmvq_parameter_table_id get_device_table_id(int cc) {
return MMVQ_PARAMETERS_GENERIC;
}
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
static constexpr __host__ __device__ int calc_nwarps(int ncols_dst, mmvq_parameter_table_id table_id) {
if (table_id == MMVQ_PARAMETERS_GENERIC) {
switch (ncols_dst) {
case 1:
@@ -136,11 +137,11 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
return 1;
}
template <ggml_type type, int ncols_dst>
// tell the compiler to use as many registers as it wants, see nwarps definition below
template <ggml_type type, int ncols_dst, bool has_fusion>
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, float * __restrict__ dst,
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
@@ -169,8 +170,38 @@ static __global__ void mul_mat_vec_q(
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
const uint32_t sample_y = sample_dst;
bool use_gate = false;
bool use_bias = false;
bool use_gate_bias = false;
const void * vgate = nullptr;
const float * x_bias = nullptr;
const float * gate_bias = nullptr;
ggml_glu_op active_glu;
if constexpr (has_fusion) {
use_gate = fusion.gate != nullptr;
use_bias = fusion.x_bias != nullptr;
use_gate_bias = fusion.gate_bias != nullptr && use_gate;
vgate = fusion.gate;
x_bias = (const float *) fusion.x_bias;
gate_bias = (const float *) fusion.gate_bias;
active_glu = fusion.glu_op;
}
const uint32_t channel_bias = ids ? channel_x : channel_dst;
if constexpr (has_fusion) {
if (use_bias) {
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
}
if (use_gate_bias) {
gate_bias = gate_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
}
}
// partial sum for each thread
float tmp[ncols_dst][rows_per_cuda_block] = {{0.0f}};
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
@@ -187,17 +218,35 @@ static __global__ void mul_mat_vec_q(
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(
vx, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] += vec_dot_q_cuda(
vgate, &y[j*stride_col_y + kby], kbx_offset + i*stride_row_x + kbx, kqs);
}
}
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
__shared__ float tmp_shared_gate[(has_fusion && (nwarps-1 > 0)) ? nwarps-1 : 1][ncols_dst][rows_per_cuda_block][warp_size];
if constexpr (!has_fusion) {
(void) tmp_shared_gate;
} else if (!use_gate) {
(void) tmp_shared_gate;
}
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
if constexpr (has_fusion) {
if (use_gate) {
tmp_shared_gate[threadIdx.y-1][j][i][threadIdx.x] = tmp_gate[j][i];
}
}
}
}
}
@@ -216,12 +265,49 @@ static __global__ void mul_mat_vec_q(
#pragma unroll
for (int l = 0; l < nwarps-1; ++l) {
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] += tmp_shared_gate[l][j][i][threadIdx.x];
}
}
}
tmp[j][i] = warp_reduce_sum<warp_size>(tmp[j][i]);
if constexpr (has_fusion) {
if (use_gate) {
tmp_gate[j][i] = warp_reduce_sum<warp_size>(tmp_gate[j][i]);
}
}
}
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || uint32_t(row0 + threadIdx.x) < stride_col_dst)) {
dst[j*stride_col_dst + threadIdx.x] = tmp[j][threadIdx.x];
float result = tmp[j][threadIdx.x];
if constexpr (has_fusion) {
if (use_bias) {
result += x_bias[j*stride_col_dst + threadIdx.x];
}
if (use_gate) {
float gate_value = tmp_gate[j][threadIdx.x];
if (use_gate_bias) {
gate_value += gate_bias[j*stride_col_dst + threadIdx.x];
}
switch (active_glu) {
case GGML_GLU_OP_SWIGLU:
result *= ggml_cuda_op_silu_single(gate_value);
break;
case GGML_GLU_OP_GEGLU:
result *= ggml_cuda_op_gelu_single(gate_value);
break;
case GGML_GLU_OP_SWIGLU_OAI: {
result = ggml_cuda_op_swiglu_oai_single(gate_value, result);
break;
}
default:
result = result * gate_value;
break;
}
}
}
dst[j*stride_col_dst + threadIdx.x] = result;
}
}
}
@@ -235,9 +321,37 @@ static std::pair<dim3, dim3> calc_launch_params(
return {block_nums, block_dims};
}
template<ggml_type type, int c_ncols_dst>
static void mul_mat_vec_q_switch_fusion(
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (c_ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
}
template <ggml_type type>
static void mul_mat_vec_q_switch_ncols_dst(
const void * vx, const void * vy, const int32_t * ids, float * dst,
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
@@ -256,80 +370,83 @@ static void mul_mat_vec_q_switch_ncols_dst(
const int warp_size = ggml_cuda_info().devices[device].warp_size;
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
GGML_ASSERT(!ids || ncols_dst == 1);
switch (ncols_dst) {
case 1: {
constexpr int c_ncols_dst = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 2: {
constexpr int c_ncols_dst = 2;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 3: {
constexpr int c_ncols_dst = 3;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 4: {
constexpr int c_ncols_dst = 4;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 5: {
constexpr int c_ncols_dst = 5;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 6: {
constexpr int c_ncols_dst = 6;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 7: {
constexpr int c_ncols_dst = 7;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
case 8: {
constexpr int c_ncols_dst = 8;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, nsamples_dst, warp_size, table_id);
mul_mat_vec_q<type, c_ncols_dst><<<dims.first, dims.second, 0, stream>>>
(vx, vy, ids, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
} break;
default:
GGML_ABORT("fatal error");
break;
}
}
GGML_UNUSED(has_fusion);
}
static void mul_mat_vec_q_switch_type(
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, float * dst,
const void * vx, const ggml_type type_x, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int ncols_x, const int nrows_x, const int ncols_dst,
const int stride_row_x, const int stride_col_y, const int stride_col_dst,
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
@@ -339,143 +456,123 @@ static void mul_mat_vec_q_switch_type(
switch (type_x) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
(vx, vy, ids, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
break;
default:
GGML_ABORT("fatal error");
@@ -484,7 +581,8 @@ static void mul_mat_vec_q_switch_type(
}
void ggml_cuda_mul_mat_vec_q(
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst) {
ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion) {
GGML_ASSERT( src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!ids || ids->type == GGML_TYPE_I32); // Optional, used for batched GGML_MUL_MAT_ID.
@@ -508,6 +606,31 @@ void ggml_cuda_mul_mat_vec_q(
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
float * dst_d = (float *) dst->data;
ggml_cuda_mm_fusion_args_device fusion_local{};
if (fusion) {
GGML_ASSERT( !ids || dst->ne[2] == 1);
GGML_ASSERT( ids || dst->ne[1] == 1);
if (fusion->x_bias) {
GGML_ASSERT(fusion->x_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->x_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->x_bias->ne[1] == src0->ne[2]);
fusion_local.x_bias = fusion->x_bias->data;
}
if (fusion->gate) {
GGML_ASSERT(fusion->gate->type == src0->type && ggml_are_same_stride(fusion->gate, src0));
fusion_local.gate = fusion->gate->data;
}
if (fusion->gate_bias) {
GGML_ASSERT(fusion->gate_bias->type == GGML_TYPE_F32);
GGML_ASSERT(fusion->gate_bias->ne[0] == dst->ne[0]);
GGML_ASSERT(!ids || fusion->gate_bias->ne[1] == src0->ne[2]);
fusion_local.gate_bias = fusion->gate_bias->data;
}
fusion_local.glu_op = fusion->glu_op;
}
// If src0 is a temporary compute buffer, clear any potential padding.
if (ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
const size_t size_data = ggml_nbytes(src0);
@@ -549,10 +672,10 @@ void ggml_cuda_mul_mat_vec_q(
const int64_t stride_channel_y = ids ? s11 : s12;
mul_mat_vec_q_switch_type(
src0->data, src0->type, src1_q8_1.get(), ids_d, dst_d, ne00,
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, stream);
ne03, ne3, s03, s13, s3, stream);
}
void ggml_cuda_op_mul_mat_vec_q(
@@ -578,8 +701,9 @@ void ggml_cuda_op_mul_mat_vec_q(
const int stride_row_x = ne00 / ggml_blck_size(src0->type);
const int stride_col_y = src1_padded_row_size / QK8_1;
ggml_cuda_mm_fusion_args_device fusion_local{};
mul_mat_vec_q_switch_type(
src0_dd_i, src0->type, src1_ddq_i, nullptr, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);

View File

@@ -3,7 +3,7 @@
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
void ggml_cuda_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst);
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,

View File

@@ -18,10 +18,7 @@ static __device__ __forceinline__ float op_step(float x) {
}
static __device__ __forceinline__ float op_gelu(float x) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
return ggml_cuda_op_gelu_single(x);
}
static __device__ __forceinline__ float op_gelu_erf(float x) {
@@ -37,7 +34,7 @@ static __device__ __forceinline__ float op_gelu_quick(float x) {
}
static __device__ __forceinline__ float op_silu(float x) {
return x / (1.0f + expf(-x));
return ggml_cuda_op_silu_single(x);
}
static __device__ __forceinline__ float op_tanh(float x) {
@@ -317,13 +314,8 @@ static __global__ void swiglu_oai_kernel(const T * x, const T * g, T * dst, cons
float xi = x[j0];
float gi = g[j1];
xi = fminf(xi, limit);
gi = fmaxf(fminf(gi, limit), -limit);
float out_glu = xi / (1.0f + expf(-xi * alpha));
out_glu = out_glu * (1.0f + gi);
dst[i] = out_glu;
dst[i] = ggml_cuda_op_swiglu_oai_single(xi, gi, alpha, limit);
}
template <typename T>

View File

@@ -1,3 +1,4 @@
#pragma once
#include "common.cuh"
#define CUDA_NEG_BLOCK_SIZE 256
@@ -75,3 +76,23 @@ void ggml_cuda_op_geglu_erf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_geglu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_xielu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
__device__ __forceinline__ float ggml_cuda_op_silu_single(float x) {
return x / (1.0f + expf(-x));
}
__device__ __forceinline__ float ggml_cuda_op_gelu_single(float x) {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
return 0.5f * x * (1.0f + tanhf(SQRT_2_OVER_PI * x * (1.0f + GELU_COEF_A * x * x)));
}
__device__ __forceinline__ float ggml_cuda_op_swiglu_oai_single(float x, float g, float alpha = 1.702f, float limit = 7.0f) {
x = fminf(x, limit);
g = fmaxf(fminf(g, limit), -limit);
float out_glu = x / (1.0f + expf(-x * alpha));
out_glu = out_glu * (1.0f + g);
return out_glu;
}

View File

@@ -96,8 +96,6 @@ static bool is_pow2(uint32_t x) { return x > 1 && (x & (x-1)) == 0; }
#define GGML_VK_MAX_NODES 8192
#define MAX_VK_BUFFERS 256
#define VK_CHECK(err, msg) \
do { \
vk::Result err_ = (err); \
@@ -1311,7 +1309,6 @@ struct ggml_vk_garbage_collector {
std::vector<vk_semaphore> tl_semaphores;
std::vector<vk_semaphore> semaphores;
std::vector<vk::Event> events;
std::vector<vk_buffer> temp_buffers;
std::vector<vk_context> contexts;
};
@@ -1482,8 +1479,6 @@ struct ggml_backend_vk_context {
// and set to true after the buffer contents are consumed.
bool prealloc_x_need_sync, prealloc_y_need_sync, prealloc_split_k_need_sync;
vk_buffer buffer_pool[MAX_VK_BUFFERS];
vk_context_ref compute_ctx;
vk_context_ref transfer_ctx;
@@ -3623,8 +3618,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_rwkv_wkv7_f32, "rwkv_wkv7_f32", rwkv_wkv7_f32_len, rwkv_wkv7_f32_data, "main", 8, sizeof(vk_op_rwkv_wkv7_push_constants), {1, 1, 1}, {device->subgroup_size}, 1);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1);
if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_subgroup_f32_len, ssm_scan_subgroup_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
} else {
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d128, "ssm_scan_128_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {128, device->subgroup_size, 16}, 1, true, true);
ggml_vk_create_pipeline(device, device->pipeline_ssm_scan_f32_d256, "ssm_scan_256_f32", ssm_scan_f32_len, ssm_scan_f32_data, "main", 8, sizeof(vk_op_ssm_scan_push_constants), {1, 1, 1}, {256, device->subgroup_size, 16}, 1, true, true);
}
ggml_vk_create_pipeline(device, device->pipeline_ssm_conv_f32, "ssm_conv_f32", ssm_conv_f32_len, ssm_conv_f32_data, "main", 3, sizeof(vk_op_ssm_conv_push_constants), {32, 1, 1}, {32}, 1);
@@ -4733,7 +4733,14 @@ static void ggml_vk_instance_init() {
vk::PhysicalDeviceIDProperties old_id;
old_props.pNext = &old_id;
devices[k].getProperties2(&old_props);
return std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID));
bool equals = std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID));
equals = equals || (
old_id.deviceLUIDValid && new_id.deviceLUIDValid &&
std::equal(std::begin(old_id.deviceLUID), std::end(old_id.deviceLUID), std::begin(new_id.deviceLUID))
);
return equals;
}
);
if (old_device == vk_instance.device_indices.end()) {
@@ -4771,6 +4778,7 @@ static void ggml_vk_instance_init() {
#endif
break;
}
driver_priorities[vk::DriverId::eMesaDozen] = 100;
if (driver_priorities.count(old_driver.driverID)) {
old_priority = driver_priorities[old_driver.driverID];
@@ -5144,71 +5152,6 @@ static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context
return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type];
}
static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) {
VK_LOG_DEBUG("ggml_vk_pool_malloc(" << size << ")");
VK_LOG_MEMORY("ggml_vk_pool_malloc");
int best_i = -1;
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
int worst_i = -1;
size_t worst_size = 0; //largest unused buffer seen so far
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
vk_buffer &b = ctx->buffer_pool[i];
if (b != nullptr && b->size >= size && b->size < best_size) {
best_i = i;
best_size = b->size;
}
if (b != nullptr && b->size > worst_size) {
worst_i = i;
worst_size = b->size;
}
}
if(best_i != -1) {
//found the smallest buffer that fits our needs
vk_buffer b = ctx->buffer_pool[best_i];
ctx->buffer_pool[best_i].reset();
return b;
}
if(worst_i != -1) {
//no buffer that fits our needs, resize largest one to save memory
vk_buffer& b = ctx->buffer_pool[worst_i];
ggml_vk_destroy_buffer(b);
}
return ggml_vk_create_buffer_device(ctx->device, size);
}
static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) {
VK_LOG_DEBUG("ggml_vk_pool_free(" << buffer->size << ")");
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
vk_buffer& b = ctx->buffer_pool[i];
if (b == nullptr) {
b = buffer;
return;
}
}
std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl;
ggml_vk_destroy_buffer(buffer);
}
// Returns an available temporary buffer that may only be used temporarily, it will be reused
static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) {
// Try to find existing temp buffer with enough capacity
for (auto& buffer : ctx->gc.temp_buffers) {
if (buffer->size >= size) {
return buffer;
}
}
VK_LOG_MEMORY("ggml_vk_create_buffer_temp(" << size << ")");
// Otherwise create new buffer
vk_buffer buf = ggml_vk_pool_malloc(ctx, size);
ctx->gc.temp_buffers.push_back(buf);
return buf;
}
static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")");
vk_buffer buf = ggml_vk_create_buffer(device, size,
@@ -11789,10 +11732,6 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_cgraph *
// Clean up after graph processing is done
static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
VK_LOG_DEBUG("ggml_vk_graph_cleanup()");
for (auto& buffer : ctx->gc.temp_buffers) {
ggml_vk_pool_free(ctx, buffer);
}
ctx->gc.temp_buffers.clear();
ctx->prealloc_y_last_pipeline_used = {};
ctx->unsynced_nodes_written.clear();
@@ -11835,10 +11774,6 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
ctx->prealloc_y_last_pipeline_used = nullptr;
for (auto& buffer : ctx->buffer_pool) {
ggml_vk_destroy_buffer(buffer);
}
ctx->prealloc_size_x = 0;
ctx->prealloc_size_y = 0;
ctx->prealloc_size_split_k = 0;

View File

@@ -1,6 +1,9 @@
#version 450
#extension GL_EXT_control_flow_attributes : require
#if USE_SUBGROUP_ADD
#extension GL_KHR_shader_subgroup_arithmetic : enable
#endif
#include "types.glsl"
@@ -84,35 +87,47 @@ void main() {
}
barrier();
for (uint w = D_STATE; w > SUBGROUP_SIZE; w >>= 1) {
[[unroll]] for (uint j = 0; j < ((w >> 1) * SPLIT_H + D_STATE - 1) / D_STATE; j++) {
const uint k = (tid % (w >> 1)) +
(D_STATE * (tid / (w >> 1))) +
j * D_STATE * (D_STATE / (w >> 1));
if (k < SPLIT_H * D_STATE && (k + (w >> 1)) < SPLIT_H * D_STATE) {
stateC[k] += stateC[k + (w >> 1)];
[[unroll]]
for (uint w = D_STATE / 2; w >= SUBGROUP_SIZE; w >>= 1) {
[[unroll]] for (uint j = 0; j < (w * SPLIT_H + D_STATE - 1) / D_STATE; j++) {
const uint k = (tid % w) + (D_STATE * (tid / w)) + j * D_STATE * (D_STATE / w);
if (k < SPLIT_H * D_STATE && (k + w) < SPLIT_H * D_STATE) {
stateC[k] += stateC[k + w];
}
}
barrier();
}
[[unroll]] for (uint j = 0; j <= SPLIT_H / (D_STATE / SUBGROUP_SIZE); j++) {
[[unroll]] for (uint j = 0; j < max(1, SPLIT_H / (D_STATE / SUBGROUP_SIZE)); j++) {
const uint idx = (tid % SUBGROUP_SIZE) +
D_STATE * (tid / SUBGROUP_SIZE) +
j * D_STATE * (D_STATE / SUBGROUP_SIZE);
const uint max_idx = SUBGROUP_SIZE - 1 +
D_STATE * ((D_STATE - 1) / SUBGROUP_SIZE) +
j * D_STATE * (D_STATE / SUBGROUP_SIZE);
uint lane = tid % SUBGROUP_SIZE;
[[unroll]] for (uint offset = SUBGROUP_SIZE / 2; offset > 0; offset >>= 1) {
if (idx + offset < SPLIT_H * D_STATE) {
stateC[idx] += stateC[idx + offset];
if (idx < SPLIT_H * D_STATE ||
max_idx < SPLIT_H * D_STATE) {
float sc;
#if USE_SUBGROUP_ADD
sc = stateC[idx];
sc = subgroupAdd(sc);
#else
[[unroll]] for (uint offset = SUBGROUP_SIZE / 2; offset > 0; offset >>= 1) {
if (idx + offset < SPLIT_H * D_STATE) {
stateC[idx] += stateC[idx + offset];
}
barrier();
}
barrier();
}
if (tid % SUBGROUP_SIZE == 0) {
sc = stateC[idx];
}
#endif
if (idx < SPLIT_H * D_STATE && tid % SUBGROUP_SIZE == 0) {
const uint k = tid / SUBGROUP_SIZE + j * (D_STATE / SUBGROUP_SIZE);
d[y_base_idx + i * stride_y + k] = stateC[idx];
if (tid % SUBGROUP_SIZE == 0) {
const uint k = tid / SUBGROUP_SIZE + j * (D_STATE / SUBGROUP_SIZE);
d[y_base_idx + i * stride_y + k] = sc;
}
}
}

View File

@@ -916,7 +916,8 @@ void process_shaders() {
string_to_spv("multi_add_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "0"}});
string_to_spv("multi_add_rms_f32", "multi_add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}, {"RTE16", "1"}, {"ADD_RMS" , "1"}});
string_to_spv("ssm_scan_f32", "ssm_scan.comp", {{"A_TYPE", "float"}});
string_to_spv("ssm_scan_f32", "ssm_scan.comp", {{"A_TYPE", "float"}});
string_to_spv("ssm_scan_subgroup_f32", "ssm_scan.comp", {{"A_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}});
string_to_spv("ssm_conv_f32", "ssm_conv.comp", {{"A_TYPE", "float"}});

View File

@@ -810,6 +810,9 @@ ggml_tensor * llm_graph_context::build_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
if (gate && type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
@@ -1006,10 +1009,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
if (arch == LLM_ARCH_BAILINGMOE2) {
weights_sum = ggml_scale_bias(ctx0, weights_sum, 1.0, 1e-20);
cb(weights_sum, "ffn_moe_weights_sum_biased", il);
}
// Avoid division by zero, clamp to smallest number representable by F16
weights_sum = ggml_clamp(ctx0, weights_sum, 6.103515625e-5, INFINITY);
cb(weights_sum, "ffn_moe_weights_sum_clamped", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
@@ -1091,6 +1093,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
GGML_ABORT("fatal error");
}
//expand here so that we can fuse ffn gate
ggml_build_forward_expand(gf, cur);
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);

View File

@@ -6369,6 +6369,8 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
@@ -6469,8 +6471,6 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: n_expert_groups = %d\n", __func__, hparams.n_expert_groups);
LLAMA_LOG_INFO("%s: n_group_used = %d\n", __func__, hparams.n_group_used);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
@@ -17965,6 +17965,8 @@ struct llm_build_plamo2 : public llm_graph_context_mamba {
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
@@ -19337,6 +19339,7 @@ struct llm_build_smallthinker : public llm_graph_context{
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// lm_head
cur = build_lora_mm(model.output, cur);

View File

@@ -4721,6 +4721,140 @@ struct test_topk_moe: public test_case {
}
};
struct test_mul_mat_vec_fusion : public test_case {
const ggml_type type;
const ggml_glu_op glu_op;
const int64_t m;
const int64_t n;
const int64_t k;
const bool use_id;
const int n_mats;
const int n_used;
const bool b; // broadcast b matrix (only for use_id)
const bool with_bias;
const bool with_gate;
test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k,
bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true)
: type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) {
if (use_id) {
GGML_ASSERT(n_used <= n_mats);
}
}
std::string vars() override {
return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate);
}
std::string op_desc(ggml_tensor * t) override {
GGML_UNUSED(t);
return "MUL_MAT_VEC_FUSION";
}
bool run_whole_graph() override { return true; }
ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) {
ggml_tensor * out = nullptr;
if (with_gate) {
if (glu_op == GGML_GLU_OP_SWIGLU_OAI) {
constexpr float alpha = 1.702f;
constexpr float limit = 7.0f;
out = ggml_swiglu_oai(ctx, ffn_gate, ffn_up, alpha, limit);
} else {
out = ggml_glu_split(ctx, ffn_gate, ffn_up, glu_op);
}
}
return out;
}
ggml_tensor * build_graph(ggml_context * ctx) override {
if (!use_id) {
std::array<int64_t, 4> ne = {k, m, 1, 1};
std::array<int64_t, 4> ne0 = {k, n, 1, 1};
ggml_tensor * cur = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne.data());
ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, 4, ne0.data()) : nullptr;
ggml_tensor * up = ggml_new_tensor(ctx, type, 4, ne0.data());
ggml_tensor * ffn_up = ggml_mul_mat(ctx, up, cur);
if (with_bias) {
std::array<int64_t, 4> bias_ne = {ffn_up->ne[0], 1, 1, 1};
ggml_tensor * up_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
ffn_up = ggml_add(ctx, ffn_up, up_bias);
}
ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, gate, cur) : nullptr;
if (with_bias && with_gate) {
std::array<int64_t, 4> bias_ne = {ffn_gate->ne[0], 1, 1, 1};
ggml_tensor * gate_bias = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, bias_ne.data());
ffn_gate = ggml_add(ctx, ffn_gate, gate_bias);
}
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
ggml_set_name(out, "out");
return out;
} else {
ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, k, n, n_mats);
ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, m);
if (n_used != n_mats) {
ids = ggml_view_2d(ctx, ids, n_used, m, ids->nb[1], 0);
}
ggml_tensor * cur = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, k, this->b ? 1 : n_used, m);
ggml_set_name(cur, "cur");
ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, ups, cur, ids);
if (with_bias) {
ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_up->ne[0], n_mats);
ffn_up = ggml_add_id(ctx, ffn_up, up_bias_param, ids);
}
ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, gates, cur, ids) : nullptr;
if (with_bias && with_gate) {
ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ffn_gate->ne[0], n_mats);
ffn_gate = ggml_add_id(ctx, ffn_gate, gate_bias_param, ids);
}
ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up;
ggml_set_name(out, "out");
return out;
}
}
void initialize_tensors(ggml_context * ctx) override {
if (!use_id) {
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
init_tensor_uniform(t);
}
} else {
std::random_device rd;
std::default_random_engine rng(rd());
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
if (t->type == GGML_TYPE_I32) {
if (ggml_is_view_op(t->op)) { continue; }
// ids
for (int64_t r = 0; r < ggml_nrows(t); r++) {
std::vector<int32_t> data(t->ne[0]);
for (int i = 0; i < t->ne[0]; i++) {
data[i] = i % n_mats;
}
std::shuffle(data.begin(), data.end(), rng);
ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
}
} else {
init_tensor_uniform(t);
}
}
}
}
double max_nmse_err() override {
return 5e-3;
}
};
// GGML_OP_SUM
struct test_sum : public test_case {
const ggml_type type;
@@ -6407,6 +6541,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1});
//add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
//add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
}
@@ -6982,6 +7117,33 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
test_cases.emplace_back(new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3}));
for (ggml_type type : base_types) {
for (bool with_gate : {false, true}) {
for (bool use_id : {false, true}) {
for (bool b : {false, true}) {
if (!use_id && b) {
continue;
}
for (bool with_bias : {false, true}) {
if (!with_gate && !with_bias) {
continue;
}
for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) {
if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) {
continue;
}
if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) {
continue;
}
test_cases.emplace_back(new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256,
use_id, 16, 8, b, with_bias, with_gate));
}
}
}
}
}
}
for (bool with_norm : {false, true}) {
test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));

Binary file not shown.

View File

@@ -2,6 +2,9 @@
import { ChatScreen } from '$lib/components/app';
import { chatStore, isInitialized } from '$lib/stores/chat.svelte';
import { onMount } from 'svelte';
import { page } from '$app/state';
let qParam = $derived(page.url.searchParams.get('q'));
onMount(async () => {
if (!isInitialized) {
@@ -9,6 +12,11 @@
}
chatStore.clearActiveConversation();
if (qParam !== null) {
await chatStore.createConversation();
await chatStore.sendMessage(qParam);
}
});
</script>