Compare commits

..

485 Commits
b6830 ... b7315

Author SHA1 Message Date
Xuan-Son Nguyen
4d3726278b model: add llama 4 scaling for mistral-large (deepseek arch) (#17744)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
2025-12-07 22:29:54 +01:00
lovedheart
08f9d3cc1d Vulkan: improve mul_mat_vec_iq1_m (#16907)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
Check vendor / check-vendor (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
2025-12-07 18:40:42 +01:00
Sigbjørn Skjæret
0a540f9abd ci : add windows-cuda 13.1 release (#17839) 2025-12-07 14:02:04 +01:00
Sigbjørn Skjæret
22577583a3 common : change --color to accept on/off/auto, default to auto (#17827) 2025-12-07 03:43:50 +01:00
Law Po Ying
d9e03db1e7 sycl: add missing BF16 conversion support for Intel oneAPI (#17780)
* sycl: add missing BF16 conversion support for Intel oneAPI

* Fix Line 645: Trailing whitespace
2025-12-07 09:18:18 +08:00
Jeff Bolz
db97837385 vulkan: perf_logger improvements (#17672)
* vulkan: perf_logger improvements

- Move perf_logger from device to ctx.
- Add an env var to control the frequency we dump the stats. If you set a very
large value, it just dumps when the ctx is destroyed.
- Add a fusion info string to the tracking, only log one item per fused op.
- Fix MUL_MAT_ID flops calculation.

* fix vector sizes
2025-12-06 18:46:46 +01:00
Vishal Singh
017761daf5 ggml-zendnn : add ZenDNN backend for AMD CPUs (#17690)
* ggml-zennn: add ZenDNN backend support

* ggml-zendnn : address ZenDNN backend review fixes and suggestions

* docs : apply blockquote syntax to ZenDNN docs

---------

Co-authored-by: Manoj Kumar <mkumar@zettabolt.com>
2025-12-07 00:13:33 +08:00
Xuan-Son Nguyen
c42712b056 server: support multiple generations from one prompt (OAI "n" option) (#17775)
* backend support

* server: support multiple generations from one prompt (OAI "n" option)

* fix invalid batch

* format oai

* clean up

* disable ctx shift

* add test

* update comments

* fix style

* add n_cmpl to docs [no ci]

* allowing using both n_cmpl and n
2025-12-06 15:54:38 +01:00
Phylliida Dev
09c7c50e64 ggml : add circular tiling support to pad, for Vulkan, CUDA, and CPU (used for making seamless textures) (#16985)
* Feat: Added vulkan circular tiling support

* Feat: Added cpu circular

* Feat: Added cuda kernels

* Added tests

* Added tests

* Removed non-pad operations

* Removed unneded changes

* removed backend non pad tests

* Update test-backend-ops.cpp

* Fixed comment on pad test

* removed trailing whitespace

* Removed unneded test in test-backend-ops

* Removed removed test from calls

* Update ggml/src/ggml-vulkan/vulkan-shaders/pad.comp

Co-authored-by: Ruben Ortlam <picard12@live.de>

* Fixed alignment

* Formatting

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Format pad

* Format

* Clang format

* format

* format

* don't change so much stuff

* clang format and update to bool

* fix duplicates

* don't need to fix the padding

* make circular bool

* duplicate again

* rename vulkan to wrap around

* Don't need indent

* moved to const expr

* removed unneded extra line break

* More readable method calls

* Minor wording changes

* Added final newline

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Added circular pad ext tests

* Gate non circular pad devices

* Cleaned gating of non-circular pad devices

---------

Co-authored-by: Phylliida <phylliidadev@gmail.com>
Co-authored-by: Ruben Ortlam <picard12@live.de>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-06 15:07:02 +01:00
Johannes Gäßler
f334b79494 HIP: fix RDNA3 FP16/BF16 matrix multiplication (#17817) 2025-12-06 13:45:36 +01:00
Aleksander Grygier
a28e3c7567 webui: Stop generation from chat sidebar (#17806)
* feat: Add stop generation button for Conversation Item

* chore: update webui build output
2025-12-06 13:29:15 +01:00
Aleksander Grygier
e31b5c55c3 webui: Fix context available value in Multi-model Router mode (#17804)
* fix: Use context size from `/props?model=...` in ROUTER mode

* chore: update webui build output
2025-12-06 13:23:29 +01:00
Aleksander Grygier
21f24f27a9 webui: Per-conversation system message with UI displaying, edition & branching (#17275)
* feat: Per-conversation system message with optional display in UI, edition and branching (WIP)

* chore: update webui build output
2025-12-06 13:19:05 +01:00
Sky
7b43f55753 ggml : improve error handling for search path existence checks (#17653)
* Improve error handling for search path existence checks

Refactor existence checks for search paths using std::error_code to handle potential errors.

* Improve cache file existence check with error code 

Update fs::exists to use std::error_code for error handling.

* Simplify existence check for search paths

Simplify existence check for search paths

* Fix logging path in error message for posix_stat

* Update ggml/src/ggml-backend-reg.cpp

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Adapt to the coding standard

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-12-06 12:28:16 +01:00
Daniel Bevenius
444f00b0ec llama : remove quantization sanity check (#17788)
* llama : remove quantization sanity check

This commit removes the quantization sanity check for attention layers.

The motivation for this is that there are model that are hybrid models
that have recurrent layers, experts layers, and attention layers.  For
these models the current check fails as the experts layers are not
taking into account. After consideration, it was decided that this check
is not strictly necessary, and can be removed to allow for more flexible
model architectures.

* llama : remove unused pruned_attention_w and is_clip_model vars
2025-12-06 12:26:20 +01:00
Jeff Bolz
2960eb2975 vulkan: Use one row per workgroup for f32 mmv (#17711)
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
2025-12-06 11:12:26 +01:00
Xuan-Son Nguyen
dbc15a7967 convert: support Mistral 3 Large MoE (#17730)
* convert: support Mistral 3 Large MoE

* filter out vision tensors, add missing keys

* handle vocab

* add temperature_length

* fix mscale_all_dim

* clean up

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-06 10:49:33 +01:00
Jeff Bolz
c6c5e85979 vulkan: support solve_tri with larger N/K values (#17781)
Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
2025-12-06 08:56:45 +01:00
Georgi Gerganov
8e5f4987b1 contrib : stale PRs (#17803) 2025-12-06 09:34:18 +02:00
Georgi Gerganov
8ce774a102 metal : fix build(#17799)
* metal : fix build

* tests : fix context destruction
2025-12-06 09:33:59 +02:00
Masato Nakasaka
67788f6846 vulkan: Replace deprecated VK_EXT_validation_features (#17637)
* replaced deprecated VK_EXT_validation_features

* forgot to remove old code
2025-12-06 06:39:42 +01:00
Masato Nakasaka
d8c0a7b085 vulkan: Fix mismatch in TOPK_MOE unit test (#17541)
* Fix shader to support 2D workgroup mapping to a single subgroup

* Set required_subgroup_size

topk_moe shader requires static WARP_SIZE and actual subgroup size to match
2025-12-06 06:23:30 +01:00
Jeff Bolz
933414c0b6 vulkan: add more num_blocks instantiations in rms_norm (#17701) 2025-12-05 22:08:56 +01:00
Jeff Bolz
a0f3897d53 vulkan: fix top_k bug when there are ties in the input (#17659)
* vulkan: Reduce temporary memory usage for TOP_K

- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.

* vulkan: fix top_k bug when there are ties in the input

I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).

I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-05 22:03:19 +01:00
Acly
e15cd06a94 vulkan : support conv-2d with large output size (#17685) 2025-12-05 21:46:39 +01:00
Reese Levine
fd57b24c0f ggml webgpu: unary op suppport, code refactoring, ops support (#17764)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49e
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add176
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910b
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb08583337
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a5
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f88
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* Update ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-05 12:25:51 -08:00
Jeff Bolz
6ab0d64960 vulkan: enable mmvq for q2_k on NVIDIA (#17675) 2025-12-05 21:21:57 +01:00
Jeff Bolz
93bb92664e vulkan: set all memory allocations to high priority (#17624)
* vulkan: set all memory allocations to high priority

* gate by env var
2025-12-05 21:21:04 +01:00
Georgi Gerganov
8160b38a5f rpc : fix alloc size logic (#17116)
* rpc : fix alloc size logic

* rpc : bump version
2025-12-05 19:39:04 +02:00
Georgi Gerganov
c41bde6fbd metal : add residency sets keep-alive heartbeat (#17766)
* examples : add idle

* metal : attach residency sets to queue

* idle : add link

* idle : adjust intervals

* metal : add residency sets keep-alive heartbeat

* cont : adjust default keep-alive time
2025-12-05 19:38:54 +02:00
Johannes Gäßler
6016d0bd41 HIP : fix RDNA4 build (#17792) 2025-12-05 13:47:52 +01:00
Pascal
1be97831e4 fix: prevent segfault in tokenizer on highly repetitive input (#17786)
Add nosubs|optimize flags to std::regex constructors to prevent
catastrophic backtracking when processing prompts with repeated
identical characters (e.g., 'A' * 10000).

The nosubs flag disables subgroup capture, significantly reducing
memory usage and backtracking on uniform token sequences
2025-12-05 13:52:23 +02:00
Adrien Gallouët
a6cfc212ed ci : fix winget workflow (#17790) 2025-12-05 19:44:17 +08:00
shalinib-ibm
3a0d10533a Q4/Q8 Tiled Gemm Optimization. (#16999) 2025-12-05 19:41:51 +08:00
Piotr Wilkin (ilintar)
6648989673 Add pwilkin to CODEOWNERS for chat files (#17789)
* Add pwilkin to CODEOWNERS for chat files

* Reorder alphabetically
2025-12-05 12:00:57 +01:00
Johannes Gäßler
e95d0bc8fd CUDA: fix FA VKQ accumulator overflow (#17746) 2025-12-05 09:18:10 +01:00
Jiacheng (Jason) Chen
668ed76574 HIP: enable WMMA-MMQ INT kernels for RDNA 3 (#17576)
* enabled wmma instructions for most quantizations other than q2k

* fixed the last q2_k test case failure

* address comments: fix out of bound write for RDNA4, add comments after #endif

* clean up rebase: fix ne error in half2

* fix the EditorConfig CI
2025-12-05 09:17:37 +01:00
Sigbjørn Skjæret
03d9a77b85 ci : transform release binary root dir in tar to llama-bXXXX (#17773)
* transform release binary root dir in tar to llama-bXXXX

* bsdtar supports -s instead of --transform
2025-12-05 01:50:19 +01:00
Gabe Goodhart
3143a755c8 docs : update ops.md (Metal, BLAS) (#17768)
* docs: Regen Metal.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Regen BLAS.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Update ops.md

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-05 00:55:34 +01:00
Piotr Wilkin (ilintar)
96fe9badfc Add support for CUMSUM and TRI for CUDA. (#17584)
* Add support for CUMSUM and TRI for CUDA.

* Minor optimizations.

* Correct warp_prefix_inclusive_sum in float2 variant to return float2

* Optimize TRI

* Whitespace

* Fix strides.

* Implement double loop

* Whitespace

* Fix HIP compilation bugs

* Optimizations + big case performance tests

* Implement using CUB with fallback to custom kernel

* Remove error message.

* Fixes from code review

* Comment out CPU-unsupported F16/BF16 cases to fix CI

* Fine, you win :P

* Fix last cast, use NO_DEVICE_CODE and GGML_UNUSED_VARS

* Vary warp-size based on physical warp size

* Add GGML_UNUSED_VARS in tri as well

* Use constexpr and call prefix_inclusive with warp_size template param

* Update ggml/src/ggml-cuda/cumsum.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Change to tid % warp_size

* Fix strides; hardcode mask; add ggml_lane_mask_t

* Missing renames, remove unused get_warp_mask(), explicit calls to ggml_cuda_info()

* Too hasty...

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-04 22:19:51 +01:00
Gabe Goodhart
bde188d60f metal: TRI, FILL, EXPM1, SOFTPLUS (#16623)
* feat(wip): Port initial TRI impl from pervious work

The kernel does not work and is not optimized, but the
code compiles and runs, so this will be the starting point
now that the core op has been merged.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove argument for constant val override

This was added in the original draft, but later removed. With this, the
kernel now passes tests.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Move the ttype conditional to templating to avoid conditional in kernel

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Type fixes

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* feat: Add softplus for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add EXPM1 for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add FILL for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Branchless version of tri using _ggml_vec_tri_cmp as a mask

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused arguments

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use select instead of branch for softplus non-vec

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 19:12:19 +02:00
Xuan-Son Nguyen
9d0229967a server: strip content-length header on proxy (#17734) 2025-12-04 16:32:57 +01:00
Xuan-Son Nguyen
c4c10bfb86 server: move msg diffs tracking to HTTP thread (#17740)
* server: move msg diffs tracking to HTTP thread

* wip

* tool call tests ok

* minor : style

* cont : fix

* move states to server_response_reader

* add safe-guard

* fix

* fix 2

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 15:46:08 +01:00
Daniel Bevenius
817d743cc1 examples : add missing code block end marker [no ci] (#17756)
This commit adds the missing code block end marker in simple-cmake-pkg
to correct the formatting.
2025-12-04 14:17:30 +01:00
Daniel Bevenius
bd4ef13476 common : skip model validation when --help is requested (#17755)
This commit skips the model validation check when the user specifies the
--help option.

The motivation for this is that currently and error is thrown before the
--help could be processed. Now skips validation if params.usage is set,
allowing help to display without requiring --model.

Resolves: https://github.com/ggml-org/llama.cpp/issues/17754
2025-12-04 13:36:50 +01:00
Alberto Cabrera Pérez
87a2084c45 ggml-cpu : remove asserts always evaluating to false (#17728) 2025-12-04 13:16:38 +01:00
SmartestWashingMachine
3659aa28e9 convert: use existing local chat_template if mistral-format model has one. (#17749)
* conversion: use existing local chat_template.jinja file if mistral-format model has one.

* fix --mistral-format mistakenly assuming some <=v7 chat template names are file paths and reading them.

* Update convert_hf_to_gguf.py - change from exists() to is_file()

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-04 12:12:45 +01:00
Adrien Gallouët
2a73f81f8a cmake : simplify build info detection using standard variables (#17423)
The current approach has several drawbacks. Mostly, when
cross-compiling, invoking the compiler binary directly to query the
machine hardware can behave unexpectedly depending on the toolchain
wrapper (using COMPILER_TARGET, CFLAGS, etc).

As CMake is the official tool to build llama.cpp, I propose to only rely
on it to get those variables (`CMAKE_SYSTEM_NAME` and
`CMAKE_SYSTEM_PROCESSOR`).

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:42:13 +02:00
Sigbjørn Skjæret
7dba049b07 ci : disable ggml-ci-x64-amd-* (#17753) 2025-12-04 11:25:08 +01:00
Adrien Gallouët
83c1171529 common: use native MultiByteToWideChar (#17738)
`std::codecvt_utf8<wchar_t>` is deprecated and produces warnings:

    common/common.cpp:792:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
      792 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
          |

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:06:49 +02:00
Georgi Gerganov
0d1324856f metal : use params per pipeline instance (#17739) 2025-12-04 10:34:11 +02:00
Georgi Gerganov
a67ef0f47f llama : fix sanity checks during quantization (#17721) 2025-12-04 10:33:42 +02:00
Adrien Gallouët
ef75a89fdb build : move _WIN32_WINNT definition to headers (#17736)
Previously, cmake was forcing `_WIN32_WINNT=0x0A00` for MinGW builds,
This caused "macro redefined" warnings with toolchains that define the version.

This also removes the `GGML_WIN_VER` variable as it is no longer needed.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 07:04:02 +01:00
Jeff Bolz
d8b5cdc4fe build: enable parallel builds in msbuild using MTT (#17708)
* build: enable parallel builds in msbuild using MTT

* check LLAMA_STANDALONE
2025-12-03 22:42:29 -06:00
Herman Semenoff
dea9ba27cb ggml-cpu: remove duplicate conditional check 'iid' (#17650) 2025-12-04 05:03:19 +08:00
Piotr Wilkin (ilintar)
c6d1a00aa7 Add a couple of file types to the text section (#17670)
* Add a couple of file types to the text section

* Format + regenerate index

* Rebuild after rebase
2025-12-03 21:45:06 +01:00
SmartestWashingMachine
424c579455 convert : support latest mistral-common (fix conversion with --mistral-format) (#17712)
* fix convert_hf_to_gguf.py failing with --mistral-format using later mistral-common versions.

* use get_one_valid_tokenizer_file from mistral-common if available and fallback to old logic otherwise.

* use file name instead of file path for get_one_valid_tokenizer_file.

* fix --mistral-format tokenizer file failing for tokenizers in subdirectories.

* move get_one_valid_tokenizer_file import to avoid nested try-except.
2025-12-03 21:15:04 +01:00
Aleksander Grygier
e9f9483464 Use OpenAI-compatible /v1/models endpoint by default (#17689)
* refactor: Data fetching via stores

* chore: update webui build output

* refactor: Use OpenAI compat `/v1/models` endpoint by default to list models

* chore: update webui build output

* chore: update webui build output
2025-12-03 20:49:09 +01:00
Andika Wasisto
41c5e02f42 webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden (#17445)
* webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden

Zero pasteLongTextToFileLen should disable the conversion, but it was
overwritten with 2500.

* Apply suggestions from code review

* Update webui build
2025-12-03 20:45:17 +01:00
Johannes Gäßler
2e1c9cd814 CUDA: generalized (mma) FA, add Volta support (#17505)
* CUDA: generalized (mma) FA, add Volta support

* use struct for MMA FA kernel config

---------

Co-authored-by: Aman Gupta <aman>
2025-12-03 16:57:05 +01:00
Georgi Gerganov
190c4838bd chat : reserve memory in compute_diffs and improve naming (#17729) 2025-12-03 17:22:10 +02:00
Pascal
e7c2cf1356 server: add router multi-model tests (#17704) (#17722)
* llama-server: add router multi-model tests (#17704)

Add 4 test cases for model router:
- test_router_unload_model: explicit model unloading
- test_router_models_max_evicts_lru: LRU eviction with --models-max
- test_router_no_models_autoload: --no-models-autoload flag behavior
- test_router_api_key_required: API key authentication

Tests use async model loading with polling and graceful skip when
insufficient models available for eviction testing.

utils.py changes:
- Add models_max, models_dir, no_models_autoload attributes to ServerProcess
- Handle JSONDecodeError for non-JSON error responses (fallback to text)

* llama-server: update test models to new HF repos

* add offline

* llama-server: fix router LRU eviction test and add preloading

Fix eviction test: load 2 models first, verify state, then load
3rd to trigger eviction. Previous logic loaded all 3 at once,
causing first model to be evicted before verification could occur.

Add module fixture to preload models via ServerPreset.load_all()
and mark test presets as offline to use cached models

* llama-server: fix split model download on Windows

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-12-03 15:10:37 +01:00
Adrien Gallouët
1257491047 server : fix bad fmt, size() is a size_type (#17735)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:22 +02:00
Adrien Gallouët
083e18b11c cmake: explicitly link against crypt32 on non-MSVC Windows builds (#17727)
Some toolchains do not support linking via pragmas such as:

    #pragma comment(lib, "crypt32.lib")

so we need to add the library explicitly.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:02 +02:00
Georgi Gerganov
3d94e967a1 metal : fix data race in pipeline library (#17731) 2025-12-03 14:03:40 +02:00
jiahao su
7feb0a1005 ci : remove the build of openeuler-cann in release (#17724)
* Remove the build of openeuler-cann in release

* Remove the relevant release files
2025-12-03 12:24:59 +01:00
Aldehir Rojas
0a8026e768 common : introduce composable PEG parser combinators for chat parsing (#17136)
* common : implement parser combinators to simplify chat parsing

* add virtual destructor to parser_base

* fix memory leak from circular references of rules

* implement gbnf grammar building

* remove unused private variable

* create a base visitor and implement id assignment as a visitor

* fix const ref for grammar builder

* clean up types, friend classes, and class declarations

* remove builder usage from until_parser

* Use a counter class to help assign rule ids

* cache everything

* add short description for each parser

* create a type for the root parser

* implement repetition parser

* Make optional, one_or_more, and zero_or_more subclasses of repetition

* improve context constructor

* improve until parsing and add benchmarks

* remove cached() pattern, cache in parser_base with specialized parsing functions for each parser

* improve json parsing performance to better match legacy parsing

* fix const auto * it for windows

* move id assignment to classes instead of using a visitor

* create named rules in the command r7b example

* use '.' for any in GBNF

* fix parens around choices in gbnf grammar

* add convenience operators to turn strings to literals

* add free-form operators for const char * to simplify defining literals

* simplify test case parser

* implement semantic actions

* remove groups in favor of actions and a scratchpad

* add built in actions for common operations

* add actions to command r7b example

* use std::default_searcher for platforms that don't have bm

* improve parser_type handling and add cast helper

* add partial result type to better control when to run actions

* fix bug in until()

* run actions on partial results by default

* use common_chat_msg for result

* add qwen3 example wip

* trash partial idea and simplify

* move action arguments to a struct

* implement aho-corasick matcher for until_parser and to build exclusion grammars

* use std::string for input, since std::string_view is incompatible with std::regex

* Refactor tests

* improve qwen3 example

* implement sax-style parsing and refactor

* fix json string in test

* rename classes to use common_chat_ prefix

* remove is_ suffix from functions

* rename from id_counter to just counter

* Final refactored tests

* Fix executable name and editorconfig-checker

* Third time's the charm...

* add trigger parser to begin lazy grammar rule generation

* working lazy grammar

* refactor json rules now that we check for reachability

* reduce pointer usage

* print out grammars in example

* rename to chat-peg-parser* and common_chat_peg_parser*

* Revert unrelated changes

* New macros for CMakeLists to enable multi-file compilations

* starting unicode support

* add unicode support to char_parser

* use unparsed args as additional sources

* Refactor tests to new harness

* Fix CMakeLists

* fix rate calculation

* add unicode tests

* fix trailing whitespace and line endings

skip-checks: true

* Helpers + rewrite qwen3 with helpers

* Fix whitespace

* extract unicode functions to separate file

* refactor parse unicode function

* fix compiler error

* improve construction of sequence/choice parsers

* be less clever

* add make_parser helper function

* expand usage of make_parser, alias common_chat_msg_peg_parser_builder to builder in source

* lower bench iterations

* add unicode support to until_parser

* add unicode support to json_string_parser

* clean up unicode tests

* reduce unicode details to match src/unicode.cpp

* simplify even further

* remove unused functions

* fix type

* reformat char class parsing

* clean up json string parser

* clean up + fix diagnostics

* reorder includes

* compact builder functions

* replace action_parser with capture_parser, rename env to semantics

* rename env to semantics

* clean up common_chat_parse_context

* move type() to below constant

* use default constructor for common_chat_peg_parser

* make all operators functions for consistency

* fix compilation errors in test-optional.cpp

* simplify result values

* rename json_string_unquoted to json_string_content

* Move helper to separate class, add separate explicit and helper classes

* Whitespace

* Change + to append()

* Reformat

* Add extra helpers, tests and Minimax example

* Add some extra optional debugging prints + real example of how to use them

* fix bug in repetitions when min_count = 0 reports failures

* dump rule in debug

* fix token accumulation and assert parsing never fails

* indent debug by depth

* use LOG_* in tests so logs sync up with test logs

* - Add selective testing
- Refactor all messaging to use LOG_ERR
- Fix lack of argument / tool name capturing
- Temporary fix for double event capture

* refactor rule() and introduce ref()

* clean up visitor

* clean up indirection in root parser w.r.t rules

* store shared ptr directly in parser classes

* replace aho-corasick automation with a simple trie

* Reset prev for qwen3 helper example variant

* refactor to use value semantics with std::variant/std::visit

* simplify trie_matcher result

* fix linting issues

* add annotations to rules

* revert test workaround

* implement serializing the parser

* remove redundant parsers

* remove tests

* gbnf generation fixes

* remove LOG_* use in tests

* update gbnf tests to test entire grammar

* clean up gbnf generation and fix a few bugs

* fix typo in test output

* remove implicit conversion rules

* improve test output

* rename trie_matcher to trie

* simplify trie to just know if a node is the end of a word

* remove common_chat_ prefix and ensure a common_peg_ prefix to all types

* rename chat-peg-parser -> peg-parser

* promote chat-peg-parser-helper to chat-peg-parser

* checkpoint

* use a static_assert to ensure we handle every branch

* inline trivial peg parser builders

* use json strings for now

* implement basic and native chat peg parser builders/extractors

* resolve refs to their rules

* remove packrat caching (for now)

* update tests

* compare parsers with incremental input

* benchmark both complete and incremental parsing

* add raw string generation from json schema

* add support for string schemas in gbnf generation

* fix qwen example to include \n

* tidy up example

* rename extractor to mapper

* rename ast_arena to ast

* place basic tests into one

* use gbnf_format_literal from json-schema-to-grammar

* integrate parser with common/chat and server

* clean up schema and serialization

* add json-schema raw string tests

* clean up json creation and remove capture parser

* trim spaces from reasoning and content

* clean up redundant rules and comments

* rename input_is_complete to is_partial to match rest of project

* simplify json rules

* remove extraneous file

* remove comment

* implement += and |= operators

* add comments to qwen3 implementation

* reorder arguments to common_chat_peg_parse

* remove commented outdated tests

* add explicit copy constructor

* fix operators and constness

* wip: update test-chat for qwen3-coder

* bring json parser closer to json-schema-to-grammar rules

* trim trailing space for most things

* fix qwen3 coder rules w.r.t. trailing spaces

* group rules

* do not trim trailing space from string args

* tweak spacing of qwen3 grammar

* update qwen3-coder tests

* qwen3-coder small fixes

* place parser in common_chat_syntax to simplify invocation

* use std::set to collect rules to keep order predictable for tests

* initialize parser to make certain platforms happy

* revert back to std::unordered_set, sort rule names at the end instead

* uncomment rest of chat tests

* define explicit default constructor

* improve arena init and server integration

* fix chat test

* add json_member()

* add a comprehensive native example

* clean up example qwen test and add response_format example to native test

* make build_peg_parser accept std::function instead of template

* change peg parser parameters into const ref

* push tool call on tool open for constructed parser

* add parsing documentation

* clean up some comments

* add json schema support to qwen3-coder

* add id initializer in tests

* remove grammar debug line from qwen3-coder

* refactor qwen3-coder to use sequence over operators

* only call common_chat_peg_parse if appropriate format

* simplify qwen3-coder space handling

* revert qwen3-coder implementation

* revert json-schema-to-grammar changes

* remove unnecessary forward declaration

* small adjustment to until_parser

* rename C/C++ files to use dashes

* codeowners : add aldehir to peg-parser and related files

---------

Co-authored-by: Piotr Wilkin <piotr.wilkin@syndatis.com>
2025-12-03 12:45:32 +02:00
Pascal
5ceed62421 server: fix duplicate HTTP headers in multiple models mode (#17698)
* llama-server: fix duplicate HTTP headers in multiple models mode (#17693)

* llama-server: address review feedback from ngxson

- restrict scope of header after std::move
- simplify header check (remove unordered_set)
2025-12-03 10:28:43 +01:00
Reese Levine
7ca5991d2b ggml webgpu: add support for emscripten builds (#17184)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Fix .gitignore

* Add memory64 option and remove unneeded macros for setting threads to 1

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-12-03 10:25:34 +01:00
Sigbjørn Skjæret
b3e3060f4e ci : move release details to the top visible by default (#17719) 2025-12-03 09:22:46 +01:00
Herman Semenoff
37adc9c6ba ggml, llama : use defaulted constructors/destructors (#17649) 2025-12-03 07:12:18 +01:00
Marcos Del Sol Vives
16cc3c606e build: document how to compile with Vulkan using Debian/Ubuntu packages (#17688) 2025-12-03 08:25:11 +08:00
Xuan-Son Nguyen
13628d8bdb server: add --media-path for local media files (#17697)
* server: add --media-path for local media files

* remove unused fn
2025-12-02 22:49:20 +01:00
Xuan-Son Nguyen
a96283adc4 mtmd: fix --no-warmup (#17695) 2025-12-02 22:48:08 +01:00
Ali Tariq
4eba8d9451 ci : RVV1.0 builds with tests (#16682)
* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Removed apt prompt

* Added RISC-V specific tests with corrections

Corrections included:
1. Changed the test names from debian to ubuntu as it is more stable than Debian Trixie
2. Added explicit compiler in cmake command as GCC compiler below version 14 have been recorded
to throw errors with rvv1.0 and some other extensions
3. Added dependencies which are not installed by default in the RISC-V Ubuntu 24.04
4. Separate ccache directory for all jobs as all the ccache results are not the same and may cause ccache to not work

* Resolved the merge conflict and cleaned up run.sh

* Update ci/run.sh

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Removed previously added build ci for RISC-V

* Removed trailing whitespaces

* corrected build name

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* cleanup

* Enabled build tests (1)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Enabled build tests (2)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* enable openssl

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 21:46:10 +01:00
Jeff Bolz
61bde8e21f vulkan: Reduce temporary memory usage for TOP_K (#17623)
- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.
2025-12-02 19:22:04 +01:00
xiaobing318
e251e5ebbe cmake : add utf8 compilation options for msvc (#17682) 2025-12-02 19:50:57 +02:00
Chad Voegele
c4357dcc35 Server: Change Invalid Schema from Server Error (500) to User Error (400) (#17572)
* Make invalid schema a user error (400)

* Move invalid_argument exception handler to ex_wrapper

* Fix test

* Simplify test back to original pattern
2025-12-02 17:33:50 +01:00
Adrien Gallouët
e148380c7c ggml : use svcntb() for SVE vector length detection (#17474)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 18:21:11 +02:00
TianHao324
a2b0fe8d37 CANN: Disable Ger operator of OUT_PROD on 310p device (#17563) 2025-12-02 20:35:23 +08:00
Daniel Bevenius
7f3a72a8ed ggml : remove redundant n_copies check when setting input/output (#17612)
This commit removes a redundant check for sched->n_copies > 1 when
setting input and output flags on tensor copies in
ggml_backend_sched_split_graph.

The motivation for this change is to clarify the code as the outer if
statement already performs this check.
2025-12-02 12:52:45 +01:00
Eric Curtin
b9a37717b0 codeowners : remove ericcurtin (#17658)
Taking a break from llama.cpp . I wasn't around at the start of llama.cpp
but I want to thank @ggerganov and @slaren for creating a neat community
here.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-12-02 12:18:15 +01:00
Adrien Gallouët
f3a9674ae8 llama : fix signed comparison warning on FreeBSD (#17497)
This ensures correct RLIM_INFINITY handling and compatibility on all platforms (32/64-bit).

    warning: comparison of integers of different signs: 'rlim_t' (aka 'long') and 'size_t' (aka 'unsigned long') [-Wsign-compare]
      488 |         if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
          |                         ~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 12:05:38 +01:00
Xuan-Son Nguyen
2c453c6c77 convert: add error message for mistral3 quantized weight (#17686) 2025-12-02 11:48:31 +01:00
Xuan-Son Nguyen
5d6bd842ea server: remove default "gpt-3.5-turbo" model name (#17668)
* server: remove default "gpt-3.5-turbo" model name

* do not reflect back model name from request

* fix test
2025-12-02 11:38:57 +01:00
senhtry
fd3abe849e server: fixing naming conflict res_error in server-models.cpp (#17679) 2025-12-02 11:18:39 +01:00
Xuan-Son Nguyen
682e6658bb server: explicitly set exec path when create new instance (#17669)
* Revert "rm unused fn"

This reverts commit f2dbe9c087.

* server: explicitly set exec path when create new instance

* put back TODO

* only call get_server_exec_path() once

* add fallback logic
2025-12-02 10:25:11 +01:00
Adrien Gallouët
4574f2949e ci : skip winget update when not in ggml-org (#17465)
Prevent forks from generating daily failure notifications.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:15:01 +01:00
Adrien Gallouët
ab6726eeff ggml : add fallback definition for HWCAP2_SVE2 (#17683)
This align with other HWCAP2 feature flags

See #17528

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:41:26 +02:00
Aleksander Grygier
cee92af553 Add context info to server error (#17663)
* fix: Add context info to server error

* chore: update webui build output
2025-12-02 09:20:57 +01:00
Aman Gupta
ed32089927 ggml-cuda: reorder only relevant nodes (#17639) 2025-12-02 12:36:31 +08:00
Aaron Teo
7b6d745364 release: fix duplicate libs, store symbolic links (#17299) 2025-12-02 11:52:05 +08:00
Neo Zhang Jianyu
98bd9ab1e4 enhance argsort for UT (#17573)
Co-authored-by: Neo Zhang <zhang.jianyu@outlook.com>
2025-12-02 08:56:46 +08:00
Piotr Wilkin (ilintar)
746f9ee889 Override SSM_A op for Qwen3 Next to reduce splits (#17587)
* Override SSM_A op for Qwen3 Next to reduce splits

* New tensor mapping SSM_A_NOSCAN for SSM_A used outside of OP_SSM_SCAN context.

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 00:43:13 +01:00
Jeff Bolz
9810cb8247 ops.md: update vulkan support (#17661) 2025-12-01 15:26:21 -06:00
Xuan-Son Nguyen
ecf74a8417 mtmd: add mtmd_context_params::warmup option (#17652)
* mtmd: add mtmd_context_params::warmup option

* reuse the common_params::warmup
2025-12-01 21:32:25 +01:00
Gilad S.
00c361fe53 fix: llama arch implementation (#17665) 2025-12-01 21:21:13 +01:00
Xuan-Son Nguyen
ec18edfcba server: introduce API for serving / loading / unloading multiple models (#17470)
* server: add model management and proxy

* fix compile error

* does this fix windows?

* fix windows build

* use subprocess.h, better logging

* add test

* fix windows

* feat: Model/Router server architecture WIP

* more stable

* fix unsafe pointer

* also allow terminate loading model

* add is_active()

* refactor: Architecture improvements

* tmp apply upstream fix

* address most problems

* address thread safety issue

* address review comment

* add docs (first version)

* address review comment

* feat: Improved UX for model information, modality interactions etc

* chore: update webui build output

* refactor: Use only the message data `model` property for displaying model used info

* chore: update webui build output

* add --models-dir param

* feat: New Model Selection UX WIP

* chore: update webui build output

* feat: Add auto-mic setting

* feat: Attachments UX improvements

* implement LRU

* remove default model path

* better --models-dir

* add env for args

* address review comments

* fix compile

* refactor: Chat Form Submit component

* ad endpoint docs

* Merge remote-tracking branch 'webui/allozaur/server_model_management_v1_2' into xsn/server_model_maagement_v1_2

Co-authored-by: Aleksander <aleksander.grygier@gmail.com>

* feat: Add copy to clipboard to model name in model info dialog

* feat: Model unavailable UI state for model selector

* feat: Chat Form Actions UI logic improvements

* feat: Auto-select model from last assistant response

* chore: update webui build output

* expose args and exit_code in API

* add note

* support extra_args on loading model

* allow reusing args if auto_load

* typo docs

* oai-compat /models endpoint

* cleaner

* address review comments

* feat: Use `model` property for displaying the `repo/model-name` naming format

* refactor: Attachments data

* chore: update webui build output

* refactor: Enum imports

* feat: Improve Model Selector responsiveness

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* refactor: Formatters

* chore: update webui build output

* refactor: Copy To Clipboard Icon component

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* refactor: UI badges

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* chore: update webui build output

* add --models-allow-extra-args for security

* nits

* add stdin_file

* fix merge

* fix: Retrieve lost setting after resolving merge conflict

* refactor: DatabaseStore -> DatabaseService

* refactor: Database, Conversations & Chat services + stores architecture improvements (WIP)

* refactor: Remove redundant settings

* refactor: Multi-model business logic WIP

* chore: update webui build output

* feat: Switching models logic for ChatForm or when regenerating messges + modality detection logic

* chore: update webui build output

* fix: Add `untrack` inside chat processing info data logic to prevent infinite effect

* fix: Regenerate

* feat: Remove redundant settigns + rearrange

* fix: Audio attachments

* refactor: Icons

* chore: update webui build output

* feat: Model management and selection features WIP

* chore: update webui build output

* refactor: Improve server properties management

* refactor: Icons

* chore: update webui build output

* feat: Improve model loading/unloading status updates

* chore: update webui build output

* refactor: Improve API header management via utility functions

* remove support for extra args

* set hf_repo/docker_repo as model alias when posible

* refactor: Remove ConversationsService

* refactor: Chat requests abort handling

* refactor: Server store

* tmp webui build

* refactor: Model modality handling

* chore: update webui build output

* refactor: Processing state reactivity

* fix: UI

* refactor: Services/Stores syntax + logic improvements

Refactors components to access stores directly instead of using exported getter functions.

This change centralizes store access and logic, simplifying component code and improving maintainability by reducing the number of exported functions and promoting direct store interaction.

Removes exported getter functions from `chat.svelte.ts`, `conversations.svelte.ts`, `models.svelte.ts` and `settings.svelte.ts`.

* refactor: Architecture cleanup

* feat: Improve statistic badges

* feat: Condition available models based on modality + better model loading strategy & UX

* docs: Architecture documentation

* feat: Update logic for PDF as Image

* add TODO for http client

* refactor: Enhance model info and attachment handling

* chore: update webui build output

* refactor: Components naming

* chore: update webui build output

* refactor: Cleanup

* refactor: DRY `getAttachmentDisplayItems` function + fix UI

* chore: update webui build output

* fix: Modality detection improvement for text-based PDF attachments

* refactor: Cleanup

* docs: Add info comment

* refactor: Cleanup

* re

* refactor: Cleanup

* refactor: Cleanup

* feat: Attachment logic & UI improvements

* refactor: Constants

* feat: Improve UI sidebar background color

* chore: update webui build output

* refactor: Utils imports + move types to `app.d.ts`

* test: Fix Storybook mocks

* chore: update webui build output

* test: Update Chat Form UI tests

* refactor: Tooltip Provider from core layout

* refactor: Tests to separate location

* decouple server_models from server_routes

* test: Move demo test  to tests/server

* refactor: Remove redundant method

* chore: update webui build output

* also route anthropic endpoints

* fix duplicated arg

* fix invalid ptr to shutdown_handler

* server : minor

* rm unused fn

* add ?autoload=true|false query param

* refactor: Remove redundant code

* docs: Update README documentations + architecture & data flow diagrams

* fix: Disable autoload on calling server props for the model

* chore: update webui build output

* fix ubuntu build

* fix: Model status reactivity

* fix: Modality detection for MODEL mode

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-01 19:41:04 +01:00
Xuan-Son Nguyen
7733409734 common: improve verbosity level definitions (#17630)
* common: improve verbosity level definitions

* string_format

* update autogen docs
2025-12-01 14:38:13 +01:00
Xuan-Son Nguyen
cd3c118908 model: support Ministral3 (#17644)
* conversion script

* support ministral 3

* maybe this is better?

* add TODO for rope_yarn_log_mul

* better ppl (tested on 14B-Instruct)

* Add Ministral3 support to Mistral format

* improve arch handling

* add sizes

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* nits

---------

Co-authored-by: Julien Denize <julien.denize@mistral.ai>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-01 12:26:52 +01:00
Georgi Gerganov
649495c9d9 metal : add FA head size 48 (#17619) 2025-12-01 12:49:53 +02:00
Georgi Gerganov
90c72a614a ggml : extend the GGML_SCHED_NO_REALLOC debug logic of the scheduler (#17617) 2025-12-01 12:49:33 +02:00
Aman Gupta
6eea666912 llama-graph: avoid expand_forward for fusion (#17633) 2025-12-01 11:12:48 +02:00
Xuan-Son Nguyen
ff90508d68 contributing: update guidelines for AI-generated code (#17625)
* contributing: update guidelines for AI-generated code

* revise
2025-11-30 22:51:34 +01:00
Adrien Gallouët
0a4aeb927d cmake : add option to build and link LibreSSL (#17552)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 22:14:32 +01:00
Tarek Dakhran
2ba719519d model: LFM2-VL fixes (#17577)
* Adjust to pytorch

* Add antialiasing upscale

* Increase number of patches to 1024

* Handle default marker insertion for LFM2

* Switch to flag

* Reformat

* Cuda implementation of antialias kernel

* Change placement in ops.cpp

* consistent float literals

* Pad only for LFM2

* Address PR feedback

* Rollback default marker placement changes

* Fallback to CPU implementation for antialias implementation of upscale
2025-11-30 21:57:31 +01:00
Xuan-Son Nguyen
7f8ef50cce clip: fix nb calculation for qwen3-vl (#17594) 2025-11-30 15:33:55 +01:00
Xuan-Son Nguyen
3c136b21a3 cli: add migration warning (#17620) 2025-11-30 15:32:43 +01:00
Adrien Gallouët
beb1f0c503 common : throttle download progress output to reduce IO flush (#17427)
This change limits progress updates to approximately every 0.1% of the
file size to minimize stdio overhead.

Also fixes compiler warnings regarding __func__ in lambdas.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 14:22:44 +02:00
Aaron Teo
def5404f26 common: add LLAMA_LOG_FILE env var (#17609)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-11-30 12:12:32 +01:00
Gilad S.
fa0465954f ggml: fix: macOS build with -DGGML_BACKEND_DL=ON (#17581) 2025-11-30 10:00:59 +08:00
ddh0
5a6241feb0 common: update env var name (#17588) 2025-11-30 09:59:25 +08:00
Aman Gupta
c7af376c29 CUDA: add stream-based concurrency (#16991)
* CUDA: add stream-based concurrency

* HIP: fix hipStreamWaitEvent define and nodiscard warnings

* ggml-cuda: fix fusion inside stream

* ggml-cuda: fix bug w.r.t first stream launch

* ggml-cuda: format

* ggml-cuda: improve assert message

* ggml-cuda: use lambda instead of duplicating code

* ggml-cuda: add some more comments

* ggml-cuda: add more detailed comments about concurrency

* ggml-cuda: rename + remove unused var

* ggml-cuda: fix condition for stream launch

* ggml-cuda: address review comments, add destructor

* common.cuh: add is_valid for concurrent events

* common.cuh: make comment better

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* common.cuh: fix lower_bound condition + remove join_node data from write_ranges

* ggml-cuda: fix overlap condition + shadowing parameter

---------

Co-authored-by: Carl Philipp Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-30 08:17:55 +08:00
Mahekk Shaikh
00425e2ed1 cuda : add error checking for cudaMemcpyAsync in argsort (#17599)
* cuda : add error checking for cudaMemcpyAsync in argsort (#12836)

* fix indentation
2025-11-30 08:16:28 +08:00
Acly
385c3da5e6 vulkan : fix FA mask load with bounds check (coopmat2) (#17606) 2025-11-30 01:03:21 +01:00
Xuan-Son Nguyen
ab49f094d2 server: move server-context to its own cpp|h (#17595)
* git mv

* add server-context.h

* add server-context.h

* clean up headers

* cont : cleanup

* also expose server_response_reader (to be used by CLI)

* fix windows build

* decouple server_routes and server_http

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-29 22:04:44 +01:00
Haiyue Wang
8c32d9d96d server: explicitly set the function name in lambda (#17538)
As [1] explained, the real debug message will be like:
	"res    operator(): operator() : queue result stop"

Set the name explicitly, the message is easy for debugging:
	"res    operator(): recv : queue result stop"

The left "operator()" is generated by 'RES_DBG() ... __func__'

[1]: https://clang.llvm.org/extra/clang-tidy/checks/bugprone/lambda-function-name.html

Signed-off-by: Haiyue Wang <haiyuewa@163.com>
2025-11-29 18:43:29 +01:00
Igor Smirnov
0874693b44 common : fix json schema with '\' in literals (#17307)
* Fix json schema with '\' in literals

* Add "literal string with escapes" test
2025-11-29 17:06:32 +01:00
Neo Zhang
7d2add51d8 sycl : support to malloc memory on device more than 4GB, update the doc and script (#17566)
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-11-29 14:59:44 +02:00
ixgbe
f698a79c63 ggml: replace hwcap with riscv_hwprobe for RVV detection (#17567)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-29 14:56:31 +02:00
Ruben Ortlam
47a268ea50 Vulkan: MMVQ Integer Dot K-Quant and MUL_MAT_ID support (#16900)
* vulkan: split mul_mmq_funcs for mul_mat_vecq use

* add mxfp4 mmvq

* add q2_k mmvq

* add q3_k mmvq

* add q4_k and q5_k mmvq

* add q6_k mmvq

* handle 4x4 quants per mmvq thread

* enable MUL_MAT_ID mmvq support

* enable subgroup optimizations for mul_mat_vec_id shaders

* device tuning

* request prealloc_y sync after quantization

* fix indentation

* fix llvmpipe test failures

* fix mul_mat_id mmvq condition

* fix unused variable warning
2025-11-29 09:37:22 +01:00
Jeff Bolz
59d8d4e963 vulkan: improve topk perf for large k, fix overflow in unit tests (#17582) 2025-11-29 08:39:57 +01:00
Aleksei Nikiforov
d82b7a7c1d gguf-py : fix passing non-native endian tensors (editor-gui and new-metadata) (#17553)
gguf_new_metadata.py reads data from reader.
Reader doesn't byteswap tensors to native endianness.
But writer does expect tensors in native endianness to convert them
into requested endianness.

There are two ways to fix this: update reader and do conversion to native endianness and back,
or skip converting endianness in writer in this particular USE-case.

gguf_editor_gui.py doesn't allow editing or viewing tensor data.
Let's go with skipping excessive byteswapping.

If eventually capability to view or edit tensor data is added,
tensor data should be instead byteswapped when reading it.
2025-11-28 20:53:01 +01:00
DAN™
03914c7ef8 common : move all common_chat_parse_* to chat-parser.cpp. (#17481) 2025-11-28 19:29:36 +01:00
o7si
3ce7a65c2f server: fix: /metrics endpoint returning JSON-escaped Prometheus format (#17386)
* fix: /metrics endpoint returning JSON-escaped Prometheus format

* mod: remove string overload from ok() method
2025-11-28 19:14:00 +01:00
Diego Devesa
e072b2052e ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched (#17276)
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.

* llama : update worst-case graph for unified cache

* ci : disable op offload in some tests

* fix spelling

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 17:33:23 +02:00
R0CKSTAR
c6f7a423c8 [MUSA] enable fp16/fast_fp16/bf16_mma on PH1 (#17551)
* [MUSA] enable fp16/fast_fp16/bf16_mma on PH1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-tile.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-28 14:08:29 +01:00
Aman Gupta
2e7ef98f18 ggml-cuda: add stricter checking for fusion (#17568)
* ggml-cuda: make conditions for fusion more explicit

* ggml-cuda: remove size check as std::equal already does it
2025-11-28 20:34:51 +08:00
Fredrik Hultin
ddf9f94389 server : add Anthropic Messages API support (#17570)
* server : add Anthropic Messages API support

* remove -@pytest.mark.slow from tool calling/jinja tests

* server : remove unused code and slow/skip on test_anthropic_vision_base64_with_multimodal_model in test_anthropic_api.py

* server : removed redundant n field logic in anthropic_params_from_json

* server : use single error object instead of error_array in streaming response handler for /v1/chat/completions and use unordered_set instead of set in to_json_anthropic_stream()

* server : refactor Anthropic API to use OAI conversion

* make sure basic test always go first

* clean up

* clean up api key check, add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-28 12:57:04 +01:00
Piotr Wilkin (ilintar)
ff55414c42 model : Qwen3 Next (#16095)
* Qwen3 Next - cleaned up version

* Whitespaces and stuff

* Correct minor errors

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Misc. fixes.

* Clean up code, add missing hybrid qualifier

* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Whitespace

* Proper tensors for cb calls

* Use llama-graph.h vertical alignment

* BROKEN: chunking

* Set new tensors as inputs.

* Proper chunk logic

* It's the circle of life...

* More shenanigans for n_seq > 1

* Nail in the coffin?

* Fix Windows build

* Eh, one fails on Windows, the other fails on Mac... just use general capture.

* quant : cleanup

* model : cleanup

* qwen3 : cleanup

* cont : cleanup

* cont : cleanup

* ggml : revert change

* qwen3 : cleanup

* cont : cleanup

* Readd cmath

* qwen3 : fix typo

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Usual suspects

* fix my bad suggestion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 12:02:56 +01:00
Johannes Gäßler
73955f7d2a CUDA: no FP16 arithmetic for vector FA kernel (#17558) 2025-11-28 10:29:09 +01:00
Jeff Bolz
35cf8887e1 vulkan: Implement GGML_OP_TRI (#17503)
* vulkan: Implement GGML_OP_TRI

* check types match
2025-11-28 10:07:29 +01:00
Radoslav Gerganov
15d2b46b4d rpc : cache and reuse compute graphs (#15405)
Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.
2025-11-28 08:33:51 +00:00
yulo
6bca76ff5e HIP: enable mul_mat_f for RDNA4 (#17437)
* enable mmf for rdna4

* move some mmvf to mmf

* revert lds128 for wmma loading

* Revert "revert lds128 for wmma loading"

This reverts commit db9ae8b6b4.

* Revert "enable mmf for rdna4"

This reverts commit 698c9f2418.

* Revert "move some mmvf to mmf"

This reverts commit 99b92bd665.

* enable mul_mat for rdna4

---------

Co-authored-by: zhang hui <you@example.com>
2025-11-28 08:24:30 +01:00
Piotr Wilkin (ilintar)
cd0e3a7a3b SOLVE_TRI CUDA kernel for small matrices (#17457) 2025-11-28 12:15:32 +08:00
Neo Zhang Jianyu
efaaccdd69 refactor pad_reflect_1d to make the UT case pass (#17204)
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-11-28 08:50:56 +08:00
Jeff Bolz
4abef75f2c vulkan: Implement SOLVE_TRI (#17486)
* vulkan: Implement SOLVE_TRI

* load B matrix through shared memory

* use FLOAT_TYPE
2025-11-27 15:48:00 +01:00
Georgi Gerganov
c386114922 arch : add description about LLM_TENSOR_INFOS (#17550) 2025-11-27 16:34:13 +02:00
Georgi Gerganov
6783b11fb0 models : fix LFM2 tensors (#17548) 2025-11-27 16:04:29 +02:00
matt23654
909072abcf cuda : fix UMA detection on discrete GPUs. (#17537) 2025-11-27 13:35:35 +02:00
Alberto Cabrera Pérez
cd8370b408 ggml-cpu: aarm64: q4_K repack gemm and gemv implementations (dotprod only) (#17494)
* Enabled q4_K_4x8 path

* Fixed generic Q4_K 8x4 implementation

* wip: dotprod gemm

* Working arm q4_K dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Undo acc rename

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Q4_K arm dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fix: q4_qs reinterpret from uint to int

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Removed comments

* Fixed macro guards

* Fixed unused vars in generic implementation

* Fixed unused vars in 8x4 repack

* Fixed unused vars in generic implementation, unneeded comment

* Missing arch fallback for x86

* minor : style

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-27 13:25:14 +02:00
Eric Curtin
d21a76ac38 devops: Add build-essential to Ubuntu 26.04 image (#17531)
This is no longer passing the build, needs more packages.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-27 18:35:47 +08:00
Aleksei Nikiforov
4fcd87cf7c gguf-py : skip endian-conversion of MXFP4 data (#17523)
* gguf_convert_endian.py: skip MXFP4 data

* Use gguf.constants.GGML_QUANT_SIZES to determine block sizes
2025-11-27 11:35:38 +01:00
Acly
b78db3bd50 vulkan : move contiguous checks to device_supports_op (#17490)
* vulkan : remove op_supports_incontiguous and add missing constraints in device_supports_op

* im2col: remove contraints on src0 (kernel input)
2025-11-27 06:54:19 +01:00
Jeff Bolz
142df17c9c vulkan: use a fixed 1KB buffer for the add_rms_fusion opt (#17514) 2025-11-27 06:32:30 +01:00
Xuan-Son Nguyen
e509411cf1 server: enable jinja by default, update docs (#17524)
* server: enable jinja by default, update docs

* fix tests
2025-11-27 01:02:50 +01:00
lhez
7cba58bbea opencl: add sqr, sqrt, mean and ssm_conv (#17476)
* opencl: add sqr

* opencl: add sqrt

* opencl: add mean

* opencl: add ssm_conv

* opencl: add missing cl_khr_fp16

* opencl: do sqrt in f32 then convert to f16 for better precision
2025-11-26 13:29:58 -08:00
Alberto Cabrera Pérez
5449367b21 Fix chunks being too small with small matrix sizes (#17526) 2025-11-26 13:14:54 -08:00
Han Qingzhe
1d594c295c clip: (minicpmv) fix resampler kq_scale (#17516)
* debug:"solve minicpmv precision problem"

* “debug minicpmv”

* Apply suggestion from @ngxson

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-26 21:44:07 +01:00
Jeff Bolz
eec1e33a9e vulkan: allow graph_optimize for prompt processing workloads (#17475) 2025-11-26 16:46:33 +01:00
Jeff Bolz
879d673759 vulkan: Implement top-k (#17418)
* vulkan: Implement top-k

Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.

* fix pipeline selection

* vulkan: Add N-ary search algorithm for topk

* microoptimizations
2025-11-26 16:45:43 +01:00
xctan
6ab4e50d9c ggml-cpu : add RISC-V Zvfh impl for ggml_vec_mad_f16 (#17448)
* ggml-cpu : add RISC-V Zvfh impl for ggml_vec_mad_f16

* ggml-cpu : dedup scalar impl

* Update ggml/src/ggml-cpu/vec.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-26 15:33:05 +02:00
Adrien Gallouët
2336cc4784 cmake : use EXCLUDE_FROM_ALL to avoid patch-boringssl.cmake (#17520)
We have to separate the code path starting 3.28 because
`FetchContent_Populate` is now deprecated and will be completely removed
in a future version.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-26 15:15:21 +02:00
Adrien Gallouët
e6923caaec ggml : fix ARM feature verification (#17519)
On arm64 with `cmake` version 3.31.6, the final feature verification fails:

    -- ARM detected flags: -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs
    -- Performing Test GGML_MACHINE_SUPPORTS_dotprod
    -- Performing Test GGML_MACHINE_SUPPORTS_dotprod - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_i8mm
    -- Performing Test GGML_MACHINE_SUPPORTS_i8mm - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_sve
    -- Performing Test GGML_MACHINE_SUPPORTS_sve - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_sme
    -- Performing Test GGML_MACHINE_SUPPORTS_sme - Failed
    -- Performing Test GGML_MACHINE_SUPPORTS_nosme
    -- Performing Test GGML_MACHINE_SUPPORTS_nosme - Success
    -- Checking for ARM features using flags:
    --   -U__ARM_FEATURE_SME
    --   -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
    -- Performing Test HAVE_DOTPROD
    -- Performing Test HAVE_DOTPROD - Failed
    -- Performing Test HAVE_SVE
    -- Performing Test HAVE_SVE - Failed
    -- Performing Test HAVE_MATMUL_INT8
    -- Performing Test HAVE_MATMUL_INT8 - Failed
    -- Performing Test HAVE_FMA
    -- Performing Test HAVE_FMA - Success
    -- Performing Test HAVE_FP16_VECTOR_ARITHMETIC
    -- Performing Test HAVE_FP16_VECTOR_ARITHMETIC - Failed
    -- Performing Test HAVE_SME
    -- Performing Test HAVE_SME - Failed
    -- Adding CPU backend variant ggml-cpu: -U__ARM_FEATURE_SME;-mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme

We need to explicitly replace `;` with spaces from the list to make
`CMAKE_REQUIRED_FLAGS` work correctly...

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-26 15:14:41 +02:00
Jiacheng (Jason) Chen
3e18dba9fd HIP: Patch failed testcase in WMMA-MMQ kernels for RDNA 4 (#17502)
* patch failed test case MUL_MAT(type_a=q4_0,type_b=f32,m=576,n=512,k=576,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1) for enabling WMMA on RDNA4

* Quick clean up on mma.cuh to add ggml_cuda_memcpy_1 back in for half2 and bfloat162
2025-11-26 11:18:48 +01:00
hipudding
eeb5605de2 CANN: Add MROPE and IMROPE support (#17401)
* CANN: ROPE supports both MROPE and IMROPE.

1. Optimize the caching logic of rope_cache_init.
2. Add support for mRoPE and i-mRoPE.

Note that on Ascend 910B devices, it is necessary to disable FA
in CLIP and disable NZ-format conversion. These two issues are
still under investigation.

* Resolve review comments
2025-11-26 16:44:19 +08:00
o7si
f3a848a3b1 chore: upgrade cpp-httplib from v0.27.0 to v0.28.0 (#17513) 2025-11-26 09:21:06 +02:00
Jeff Bolz
b3b03a7baf vulkan: Implement GGML_OP_CUMSUM (#17479) 2025-11-26 07:08:10 +01:00
Georgi Gerganov
583cb83416 ggml : add ggml_top_k (#17365)
* ggml : add ggml_top_k

* cont : add ggml_argsort_top_k

* metal : add top_k support

* ggml : cleanup

* tests : add virtual err() function for test_case

* ggml : add comments
2025-11-25 15:31:43 +02:00
Aleksei Nikiforov
05872ac885 convert : fix big-endian conversion (#17431)
* Fix convert_hf_to_gguf.py script on s390x

Assume converted model data is originally little-endian.
Byteswap data on s390x after reading it to put values in correct presentation
for any transformation needed, like calculating weight tensors.

Then byteswap data to little-endian before passing it to GGUFWriter while
GGUFWriter will byteswap data back to big endian if big endian output is requested.

byteswap(inplace=True) calls don't work with lazy tensor and array wrappers.
Use byteswap with copying data to workaround this behaviour.

* Make GGUFWriter accept tensors in native endianness instead of little-endian

With this change if no byteswapping is actually needed, 2 excessive byteswaps can be omitted on s390x

* Fix byteswapping in convert_hf_to_gguf.py for remote models
2025-11-25 14:18:16 +01:00
Diego Devesa
55ab25caf5 codeowners : remove slaren (#17492) 2025-11-25 13:00:23 +01:00
TianHao324
064c90d843 CANN: supports out_prod operator for F32 and F16 (#17406)
Co-authored-by: tianhao <tianhao42@huawei.com>
2025-11-25 17:39:06 +08:00
Pascal
b1846f1c8e webui: add rehype plugin to restore HTML in Markdown table cells (#17477)
* webui: add rehype plugin to restore HTML in Markdown table cells

The remark/rehype pipeline neutralizes inline HTML as literal text
(remarkLiteralHtml) so that XML/HTML snippets in LLM responses display
as-is instead of being rendered. This causes <br> and <ul> markup in
table cells to show as plain text.

This plugin traverses the HAST post-conversion, parses whitelisted HTML
patterns (<br>, <ul><li>) from text nodes, and replaces them with actual
HAST element nodes. For lists, adjacent siblings must be combined first
as the AST fragmentation breaks pattern matching.

Strict validation rejects malformed markup, keeping it as raw text.

* chore: update webui build output
2025-11-25 08:01:02 +01:00
Jeff Bolz
d414db02d3 vulkan: Use fewer rows for scalar FA when HS is not a multiple of 16 (#17455) 2025-11-25 07:11:27 +01:00
Aaron Teo
877566d512 llama: introduce support for model-embedded sampling parameters (#17120) 2025-11-25 09:56:07 +08:00
Jeff Bolz
3d07caa99b vulkan: more FA details in vk_perf_logger (#17443) 2025-11-24 22:25:24 +01:00
Daniel Bevenius
134e6940ca llama : skip output reordering for single token batches (#17466)
This commit adds a check to skip the output reordering logic when
n_outputs == 1. With a single output token, the data is trivially
sorted and the reordering code is currently doing unnecessary work
(resetting and rebuilding output_ids to the same values).

The motivation for this change is improved code clarity and avoiding
confusion when debugging. While the performance impact is probably
negligible, this unnecessary work happens on every decode call in
llama-server when processing batches with single-token outputs.
2025-11-24 21:06:17 +01:00
Jiacheng (Jason) Chen
0543f928a3 HIP: WMMA-MMQ kernels for RDNA 4 (#17156)
* first commit naive test to enable mmq for RDNA4

* adding appropriate WMMA instructions

* git rebase on top of master: fixing the correctness of the mat mul operations, updating layout mappings for RDNA4

* clean up merge conflicts

* add comments and code clean up

* PR clean up, addressed comments

* enable MMQ fallback on RDNA4

* addressed comments: add guards in load generic, separate wmma branch for use_mmq function

* Revert build-xcframework.sh

* Formating: remove trailing whitespace

* revert CMake files

* clean up after rebase: remove duplicated change, revert cmake files

* clean up after rebase: revert changes from build-xcframework.sh

* clean up: remove extra space line in mma.cuh

* Revert "clean up: remove extra space line in mma.cuh"

This reverts commit b39ed57c45.
2025-11-24 20:00:10 +01:00
Sigbjørn Skjæret
b61de2b2df convert : allow quantizing lora again (#17453) 2025-11-24 15:50:55 +01:00
Xuan-Son Nguyen
b8372eecd9 server: split server.cpp code into server/common/task/queue (#17362)
* add server-task, server-common

* add server-queue

* rm redundant includes

* move enum stop_type to server-task

* server : headers cleanup

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-24 14:41:53 +01:00
Daniel Bevenius
6ab8eacddf examples : add -kvu to batched usage example [no ci] (#17469)
This commit adds the --kv-unified flag to the usage example
in the README.md file for the batched example.

The motivation for this is that without this flag the example will fail
with the following error:
```console
Hello my name is
split_equal: sequential split is not supported when there are coupled
sequences in the input batch (you may need to use the -kvu flag)
decode: failed to find a memory slot for batch of size 4
main: llama_decode() failed
```
2025-11-24 15:38:45 +02:00
Georgi Gerganov
2d50b9d8cb sync : ggml 2025-11-24 15:26:31 +02:00
Daniel Bevenius
697edfeead ggml : remove dirty flag from version string (ggml/1391)
This commit removes the "-dirty" suffix from the GGML version string.

The motivation for this change is to ensure that the version string
works with different ways of checking out ggml and using it in projects.
By removing the dirty flag from the version string, we avoid potential
artifacts like shared libraries getting a -dirty suffix in their names.

Instead, if the project is built from a dirty git state, the dirty flag
will be appended to the commit hash in the GGML_BUILD_COMMIT variable.
This will enable users to still identify that the build was made from
from a modified/dirty state even though the version might match a "real"
version.

For example, the commit can be produces as follows:
```c++
    printf("commit: %s\n", ggml_commit());
```
Which would print the following for a dirty build:
```console
commit: 781baf2a-dirty
```

Refs: https://github.com/ggml-org/ggml/pull/1363#issuecomment-3569691546
2025-11-24 15:26:31 +02:00
Alberto Cabrera Pérez
dbb852b549 ggml-cpu: arm64: q4_K repack gemm and gemv implementations (i8mm) (#16739)
* Enabled q4_K_8x8_q8_K path on ARM

* wip: I8mm qs multiplication, pending bias

* cpu : arm : REPACK gemm q4_K8x8 implementation

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Guard gemm with proper features, improved superblock scale and min calc

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* cpu: arm: Implemented REPACK gemv for Q4_K

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Removed completed TODO

* Fixed missing guards when selecting optimal repack type for Q4_K

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fixed macro guard for gemv

* Fixed wrong comment in GEMV

* Fixed warning for unused variable

* vdotq_s32 -> ggml_vdotq_s32

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Clang-format issues

* Apply suggestions from code review

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Removed unnecessary GGML_UNUSED

* Fixed guards in q4_k gemm and gemv (repack)

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-11-24 13:08:11 +02:00
ixgbe
5f55c385cb ggml: add RISC-V cpu-feats (#17461)
* ggml: add RISC-V cpu-feats

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* fix comment[1]

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-24 13:07:14 +02:00
william pan
4902eebe33 models : Added support for RND1 Diffusion Language Model (#17433)
* Converted RND1 model to GGUF weights

* RND1 llama.cpp support v1

* RND1 llama.cpp support v2 non causal bug

* RND1 llama.cpp support v3 doccumentation

* RND1 llama.cpp support v4 clean code

* linting issues

* RND1 pr fixes v1

* RND1 pr fixes v2

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Diffusion documentation edits

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-24 14:16:56 +08:00
Max Krasnyansky
923ae3c619 hexagon: add support for ROPE_NEOX (#17458) 2025-11-23 18:55:56 -08:00
Raul Torres
01ad35e6d6 CANN: Define cann_graph_update_required before macro (#17434)
**Description of the problem**

`cann_graph_update_required` is redundantly defined and
initialized as `false` inside two mutually exclusive macro branches.

**Proposed solution**

Define it right before the macro so that it could serve both
branches.
2025-11-24 10:02:52 +08:00
M. Mediouni
fcb013847c ggml-hexagon: Initial Hexagon v68/v69 support (#17394)
* ggml-hexagon: fix build error with GCC

Add stdexcept include to fix GCC build errors

Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>

* ggml-hexagon: check VTCM acquire failures

Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>

* ggml-hexagon: disable destination bypass on older than v73

v68 errors out if having bypass enabled when the VTCM is the destination.

At least on v68 this made things actually work... not a proper fix though, so to look at later...

Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>

* ggml-hexagon: add initial v68/v69 support

v68 is the Hexagon revision notably used on the Snapdragon 8cx
Gen 3 and the QCM6490.

Also add support for v69.

8MB isn't a supported page size, so relax asked for page size constraint
for HAP_compute_res_attr_set_vtcm_param_v2 to optimal.

Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>

---------

Signed-off-by: Mohamed Mediouni <mohamed@unpredictable.fr>
2025-11-23 16:54:49 -08:00
nullname
d5bc1ad110 ggml-hexagon: add hex_supported_buffer for better buffer supported check (#17212)
* hexagon: add buffer support checks for hexagon sessions

* refactor: simplify buffer support checks in hexagon operations

* hexagon: update buffer support checks to use tensor structure

* refactor: streamline buffer initialization for DSP queue in hexagon operations

* refactor: simplify buffer initialization in DSP queue for hexagon operations

* refactor: optimize hex_supported_buffer function by fold expression

* wip

* refactor: simplify dspqueue_buffers_init function and its usage in hexagon operations

* fix: improve nan handling at hvx_vec_fast_sigmoid_fp32_guard

* refactor: optimize hvx_vec_inverse_fp32_guard for better nan handling

* refactor: update hvx_vec_fast_sigmoid_fp32_guard to use adjusted exponent limits

* refactor: modify hvx_vec_fast_sigmoid_fp32_guard to accept parameters for improved flexibility

* refactor: update hvx_vec_exp_fp32_guard to accept max_exp and inf parameters to save some instructions

* refactor: move hvx_vec_inverse_fp32_guard implementation to hvx-inverse.c for better perf
2025-11-23 14:26:36 -08:00
Pascal
0c7220db56 webui: minor settings reorganization and add disable autoscroll option (#17452)
* webui: added a dedicated 'Display' settings section that groups visualization options

* webui: added a Display setting to toggle automatic chat scrolling

* chore: update webui build output
2025-11-23 18:42:00 +01:00
Sigbjørn Skjæret
96ac5a2329 cuda : support non-contiguous i32 to i32 copy (#17326)
* support non-contiguous i32 to i32 copy

* add tests

* rename cpy_flt to cpy_scalar and reindent params
2025-11-23 11:13:34 +01:00
Eric Curtin
bc809e9c53 vulkan: Update docker image to Ubuntu 26.04 to enable glslc features (#17439)
26.04 provides these

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-23 10:29:36 +01:00
Jeff Bolz
54d83bbe85 vulkan: remove a couple unnecessary switches (#17419) 2025-11-23 06:29:40 +01:00
Adrien Gallouët
4949ac0f18 ci : switch to BoringSSL on Server workflow (#17441)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-22 21:38:19 +01:00
Masato Nakasaka
3f3a4fb9c3 Revive MUL_MAT_ID to perf testing (#17397) 2025-11-22 10:55:43 +01:00
yulo
028f93ef98 HIP: RDNA4 tensor core support for MMF (#17077)
* mmf for rdna4

* align the padding for rdna4

* forbit mul_mat_f for rdna4

* fix as comment

* remove device kernels

* add constexpr for early return

* update based on review comment

* change based on the review comment

* pass compile error

* keep code consistency

---------

Co-authored-by: zhang hui <you@example.com>
2025-11-22 00:03:24 +01:00
lhez
8e9ddba610 opencl: refine condition for kqv mm (#17392) 2025-11-21 14:34:48 -08:00
ubergarm
23bc779a6e model : detect GigaChat3-10-A1.8B as deepseek lite (#17420)
* Detect GigaChat3-10-A1.8B as deepseek lite

Hardcodes checking number of layers to detect if lite version of deepseek.

* Add commnent identifying deepseek lite variants

deepseek lite variants include DeepSeek-V2-Lite, GigaChat3-10B-A1.8B
2025-11-21 14:51:38 +01:00
Adrien Gallouët
28175f857d cmake : add option to build and link BoringSSL (#17205)
* cmake: add option to build and link BoringSSL

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : fix typo

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : disable boringssl test and asm by default

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : skip bssl

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : disable fips

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : fix cmake --install

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* ci : use boringssl for windows and mac

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-21 11:46:45 +01:00
Adrien Gallouët
9cc4080441 ci : start using OpenSSL (#17235)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-21 11:45:00 +01:00
Jeff Bolz
f1ffbba68e vulkan: disable async for older Intel devices (#17369)
* vulkan: disable async for older Intel devices

* update detection logic

* use name string for detection
2025-11-21 09:58:17 +01:00
Raul Torres
2370665e56 CANN: Refactor evaluate_and_capture_cann_graph (#17333)
* CANN: Refactor `evaluate_and_capture_cann_graph`

**Description of the problem**

* `matched_graph` is obtained even if graph mode is disabled.
* End of graph capture and graph replay are unnecessarily placed in different `if` blocks.

**Proposed solution**

* Obtain `matched_graph` only if graph mode is enabled.
* Place end of graph capture and graph reply inside the same `if` block.
* Unify graph related comments.

* Remove trailing whitespace
2025-11-21 16:23:29 +08:00
nullname
21d31e0810 ggml-hexagon: fix swiglu failure at test-backend-ops (#17344)
* refactor: use hvx_vec_exp_fp32_guard_inf for overflow handling in hvx_exp_f32

* feat: add fast sigmoid function with overflow guard for fp32

* refactor: replace hvx_vec_inverse_fp32 with hvx_vec_inverse_fp32_guard_inf for improved overflow handling

* feat: enhance hvx_add_scalar_f32 with overflow handling using infinity guard

* wip

* add HVX_Vector_Alias

wip

* wip

* fix: improve handling of src1 tensor in glu_swiglu_fp32_per_thread function

* fix nc

* wip

* wip

* handle nan at inverse

* wip

* fix neg

* wip

* rename

* fix hvx_vec_inverse_fp32_guard_inf to handle infinity and NaN cases correctly

* wip

* fix hvx_vec_inverse_fp32_guard_inf to handle NaN cases correctly

* wip

* wip

* wip

* fix output sign
2025-11-20 15:45:05 -08:00
Daniel Han
dd0f321941 readme : add Unsloth exporting to GGUF in tools (#17411) 2025-11-20 20:07:36 +01:00
Xuan-Son Nguyen
054a45c3d3 grammar: fix regression caused by #17381 (#17412)
* grammar: fix regression caused by #17381

* more readable
2025-11-20 18:35:10 +01:00
Aleksander Grygier
4c91f2633f Improved file naming & structure for UI components (#17405)
* refactor: Component iles naming & structure

* chore: update webui build output

* refactor: Dialog titles + components namig

* chore: update webui build output

* refactor: Imports

* chore: update webui build output
2025-11-20 14:07:31 +01:00
Piotr Wilkin (ilintar)
92c0b387a9 grammar : fix integer overflow (#17381)
* Fix DoS / integer overflow

* Remove optional, use INT64_MAX instead as placeholder value (it's technically -1, so it fits :)

* White space

* Actually, since it's unsigned, use UINT64_MAX
2025-11-20 14:47:04 +02:00
Georgi Gerganov
2286a360ff sync : ggml 2025-11-20 14:10:44 +02:00
YangLe
1d321e592b metal : fix compile on macos 11 (whisper/3533) 2025-11-20 14:10:44 +02:00
Georgi Gerganov
196f5083ef common : more accurate sampling timing (#17382)
* common : more accurate sampling timing

* eval-callback : minor fixes

* cont : add time_meas impl

* cont : fix log msg [no ci]

* cont : fix multiple definitions of time_meas

* llama-cli : exclude chat template init from time measurement

* cont : print percentage of unaccounted time

* cont : do not reset timings
2025-11-20 13:40:10 +02:00
o7si
5088b435d4 convert : fix TypeError when loading base model remotely in convert_lora_to_gguf (#17385)
* fix: TypeError when loading base model remotely in convert_lora_to_gguf

* refactor: simplify base model loading using cache_dir from HuggingFace

* Update convert_lora_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* feat: add remote_hf_model_id to trigger lazy mode in LoRA converter

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-20 12:30:12 +01:00
Piotr Wilkin (ilintar)
845f200b28 ggml : Fix transposed SOLVE_TRI result (#17323)
* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-20 12:58:21 +02:00
Scott Fudally
a7784a8b1d DGX Spark: UMA support (#17368)
* DGX Spark: UMA support

* Updates from PR feedback

* More PR feedback cleanup

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Remove trailing whitespace

* Update ggml/src/ggml-cuda/ggml-cuda.cu

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-20 12:32:02 +02:00
Adrien Gallouët
79bb743512 ggml : remove useless and error-prone variadic macros (#17399)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-20 11:18:27 +01:00
sudhiarm
3ae282a06f kleidiai: fix zero-size array declaration (#17240) 2025-11-20 11:45:49 +02:00
ixgbe
5be353ec4a ggml-cpu:add RISC-V RVV (Zvfh) optimization for FP16 vector scaling (#17314)
* ggml-cpu:add RISC-V RVV (Zvfh) optimization for FP16 vector scaling

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* fix comment

* fix comment 2

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-20 08:09:18 +02:00
Giuseppe Scrivano
7d77f07325 vulkan: implement ADD1, ARANGE, FILL, SOFTPLUS, STEP, ROUND, CEIL, FLOOR, TRUNC (#17319)
* vulkan: initialize array

* vulkan: implement ADD1

* vulkan: implement ARANGE

* vulkan: implement FILL

* vulkan: implement SOFTPLUS

* vulkan: implement STEP

* vulkan: implement ROUND

* vulkan: implement CEIL

* vulkan: implement FLOOR

* vulkan: implement TRUNC

* docs: update Vulkan ops

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-11-19 17:29:45 +01:00
Jeff Bolz
1fa4551af0 vulkan: support larger argsort (#17313)
* vulkan: support larger argsort

This is an extension of the original bitonic sorting shader that puts the
temporary values in global memory and when more than 1024 threads are needed
it runs multiple workgroups and synchronizes through a pipelinebarrier.

To improve the memory access pattern, a copy of the float value is kept with
the index value. I've applied this same change to the original shared memory
version of the shader, which is still used when ncols <= 1024.

* Reduce the number of shader variants. Use smaller workgroups when doing a single pass, for a modest perf boost

* reduce loop overhead

* run multiple cols per invocation, to reduce barrier overhead
2025-11-19 17:25:50 +01:00
Jeff Bolz
2eba631b81 vulkan: Add copy_transpose shader (#17371) 2025-11-19 16:50:43 +01:00
Aleksander Grygier
99c53d6558 webui: Add a "Continue" Action for Assistant Message (#16971)
* feat: Add "Continue" action for assistant messages

* feat: Continuation logic & prompt improvements

* chore: update webui build output

* feat: Improve logic for continuing the assistant message

* chore: update webui build output

* chore: Linting

* chore: update webui build output

* fix: Remove synthetic prompt logic, use the prefill feature by sending the conversation payload ending with assistant message

* chore: update webui build output

* feat: Enable "Continue" button based on config & non-reasoning model type

* chore: update webui build output

* chore: Update packages with `npm audit fix`

* fix: Remove redundant error

* chore: update webui build output

* chore: Update `.gitignore`

* fix: Add missing change

* feat: Add auto-resizing for Edit Assistant/User Message textareas

* chore: update webui build output
2025-11-19 14:39:50 +01:00
Sigbjørn Skjæret
07b0e7a5ac convert : use self.block_count everywhere instead of reading hparams (#17359) 2025-11-19 11:52:38 +01:00
Aman Gupta
fd7353d5eb cuda: fix rope fusion for gemma3 (#17378) 2025-11-19 18:25:05 +08:00
Piotr Wilkin (ilintar)
6fd4f95367 Fix too relaxed check on CUDA "fast copy" (can_be_transposed) condition (#17332)
* Fix too relaxed check on CUDA "fast copy" (can_be_transposed) condition

* Argh.

* Making CISC happy ;)

* Integrate CONT tests

* Use loopy loop

* Skip new tests for (B)F16 for now.
2025-11-19 10:36:33 +01:00
Ruben Ortlam
980b7cd17e vulkan: force full subgroups for flash attention to fix intel subgroup crash (#17356) 2025-11-19 08:46:26 +01:00
Jeremy Rand
c49daff5ba ggml-cpu: Don't pass -mpowerpc64 when -mcpu already implies it (#17308) 2025-11-19 14:19:00 +08:00
Xuan-Son Nguyen
10e9780154 chat: fix int overflow, prevent size calculation in float/double (#17357)
* chat: fix int overflow, prevent size calculation in float/double

* Update common/chat.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-18 19:11:53 +01:00
Haiyue Wang
a045492088 vocab : call reserve() for building plamo-2-translate suffix (#17343)
Test 'Q4_K_M' quantization on https://huggingface.co/pfnet/plamo-2-translate

The 'suffix_to_score' size is 193510, it needs 19 memory allocation with final
capacity 262144 to hold the value, if not preserve the memory.

Signed-off-by: Haiyue Wang <haiyuewa@163.com>
2025-11-18 18:58:22 +01:00
hksdpc255
1920345c3b common : Generalized XML-style tool-call parsing with streaming support (GLM 4.5/4.6 + MiniMax M2 + SeedOSS + Kimi-K2 + Qwen3-Coder + Apriel-1.5 + Xiaomi-MiMo) (#16932)
* Add files via upload

* fix unit test

* fix crashes for --reasoning-format=none

* Patch buggy official MiniMax-M2 chat template

* add upstream minja fix: https://github.com/ochafik/minja/pull/7

* Fix <think> token not generated

* add test copied from https://github.com/ggml-org/llama.cpp/pull/16946

* cleanup

* Hopes to fix the compilation error on CI

* Delete chat template patching since it’s fixed by upstream Minja

* Remove undeeded Minimax-M2 template patch

https://github.com/ochafik/minja/pull/7#issuecomment-3480356100

* Add proper handling of optional parameters with test
merged tests from: 23d4bb75c4

* Fix making all tool parameters optional

* Move xml tool parser to separate file

* cleanup & add tests for GLM4.5

* add streaming tests & enhancement & cleanups

Add streaming test for both GLM 4.5 and minimax-m2.
Cleanup for preserved_tokens.
Cleanup for grammar rule name.
Enhance the parser's stability.

* cleanup & add support for Kimi-K2 Qwen3-Coder Apriel-1.5 Xiaomi-MiMo

* apply suggestions from reviewers

* fix a misuse for data.grammar_lazy

* fix grammar when tool have no argument

* Fix `no triggers set for lazy grammar!` for GLM4.5/4.6. Insert additional stops for Kimi-K2

* update chat.cpp

* fix grammar for GLM 4.5/4.6

* Try fix Jinja template for GLM

* Try fix GLM-4.6.jinja

* Update common/chat-parser-xml-toolcall.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-chat.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* improve chat template for GLM, rename Kimi-K2 template to Kimi-K2-Thinking

* Improve Kimi-K2 chat template

* Fix unit test

* Fix "Invalid tool call arguments passed" in a rare case.

In a rare case, the model may emit a raw string that begins with a valid JSON string. This commit adds unit tests to cover that scenario and fixes the regression introduced during the Kimi-K2 adaptation.

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-18 18:54:15 +01:00
jiahao su
561a3e2788 ci : change the openEuler-310p image to fix release (#17361) 2025-11-18 18:10:23 +01:00
Georgi Gerganov
f40a2e5f11 gitignore : be more specific about ignored stuff (#17354) 2025-11-18 16:44:53 +02:00
Chenguang Li
bc4064cfea CANN: fix acl_tensor_ptr usage in ASCEND_310P ROPE (#17347)
* cann: fix acl_tensor_ptr usage in ASCEND_310P ROPE implementation

Fix compilation errors in the ASCEND_310P-specific ROPE operation code
by adding .get() calls when passing acl_tensor_ptr smart pointers to
functions expecting raw aclTensor* pointers.

This fixes the code that was missed in the previous refactoring commit
(8981848) which changed ggml_cann_create_tensor() return type from
aclTensor* to acl_tensor_ptr.

* cann: format code
2025-11-18 16:41:52 +08:00
o7si
97cb3fd5ae fix: resolve undefined variable 'svr' compilation error (#17348) 2025-11-18 10:10:47 +02:00
jiahao su
ffa277a54c CANN: Add openEuler-cann in build and release (#17192)
Update openEuler version

Remove variable ASCEND_SOC_TYPE

Modify the chip type

Fix case in zip filename

Change "device" to "chip_type"

Modify the value of chip_type
2025-11-18 16:08:55 +08:00
Jeff Bolz
da95bf2a85 vulkan: support noncontig i32 copy (#17328) 2025-11-18 07:41:24 +01:00
Xuan-Son Nguyen
0de8878c96 server: split HTTP into its own interface (#17216)
* server: split HTTP into its own interface

* move server-http and httplib to its own file

* add the remaining endpoints

* fix exception/error handling

* renaming

* missing header

* fix missing windows header

* fix error responses from http layer

* fix slot save/restore handler

* fix case where only one stream chunk is returned

* add NOMINMAX

* do not call sink.write on empty data

* use safe_json_to_str for SSE

* clean up

* add some comments

* improve usage of next()

* bring back the "server is listening on" message

* more generic handler

* add req.headers

* move the chat template print to init()

* add req.path

* cont : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-17 22:05:44 +01:00
Ruben Ortlam
38e2c1b412 vulkan: add log RTE support to fix Nvidia CI (#17320)
* vulkan: add log RTE support to fix Nvidia CI

* actually use the rte shader
2025-11-17 14:37:49 -06:00
Adrien Gallouët
cb44fc84e8 cmake : fix ARM feature verification (#17170)
* cmake : fix ARM feature verification

Use check_cxx_source_compiles to prevent conflicts with
the existing GGML_NATIVE detection code.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : unset __ARM_FEATURE when feature is disabled

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* cmake : fix scope, this is really a macro

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* arm_neon.h is useless

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-17 21:37:29 +01:00
Adrien Gallouët
cb623de3fc ggml : add missing AVX512 feature checks (#17270)
_mm512_cvtepu8_epi16        requires  __AVX512BW__
_mm512_srli_epi16           requires  __AVX512BW__
__builtin_ia32_inserti32x8  requires  __AVX512DQ__

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-17 12:12:00 +01:00
Georgi Gerganov
7aaeedc098 metal : support I32 -> I32 copy (#17317) 2025-11-17 11:52:00 +02:00
Georgi Gerganov
3347e6d904 metal : faster argsort (#17315)
* metal : faster argsort

* cont : keep data in registers
2025-11-17 11:51:48 +02:00
Georgi Gerganov
1a139644a8 metal : add cumsum (#17305) 2025-11-17 11:51:13 +02:00
hipudding
2376b7758c CANN: Use smart pointers to manage ACL objects (#17238)
* CANN: Use smart pointers to manage ACL objects

Previously, ACL objects were managed via manual destruction, which
led to multiple memory-leak issues during runtime. This patch replaces
manual memory management with smart pointers so that ACL objects
are properly released and ownership is clearly defined.

Note that the ownership of an ACL object belongs to the function
that creates it. Other internal functions should operate on these ACL
objects using raw pointers to avoid unintended ownership transfers.

Additionally, since aclTensorList automatically frees its contained
aclTensor objects, any aclTensor added to a tensor list must release
ownership to avoid double free operations.

This PR also removes the asynchronous task submission mechanism.
Due to changes in recent CANN versions, tiling time has significantly
decreased. Even with a dual-thread submission model, the dispatch
overhead still falls on the critical path, making async submission
less beneficial. Moreover, aclGraph support provides a much better
path to reducing operator dispatch latency.

* CANN: resolve review comments
2025-11-17 08:43:59 +08:00
Pavels Zaicenkovs
dbed61294a vulkan: add LOG operation support for F32 and F16 (#17183)
* vulkan: add LOG operation support for F32 and F16

Part of #14909.

* vulkan: Fix LOG operation types

* docs: Update operation support documentation for Vulkan LOG operation

* vulkan: fix log_f16 shader

* docs: restore missing LOG test cases and regenerate ops.md
2025-11-16 22:50:09 +01:00
Ruben Ortlam
80deff3648 vulkan: fix MMQ quantize_y condition (#17301) 2025-11-16 19:38:17 +01:00
Eve
8b1c339bd2 ci : revert #16249 (#17303)
* Delete .github/workflows/build-amd.yml

* Update build.yml
2025-11-16 19:09:17 +01:00
Georgi Gerganov
416e7c7f47 metal : remove obosolete asserts (#17295) 2025-11-16 09:50:26 +02:00
Georgi Gerganov
5b2093becc server : handle context overflow during decode (#17267)
* server : handle context overflow during decode

* server : minor refactor
2025-11-16 09:23:37 +02:00
lhez
52e5d421f1 opencl: fix rms_norm_mul (#17250)
* opencl: use subgrroup reduce for reduction in rms_norm_mul

* opencl: add comment about workgroup size
2025-11-15 17:40:14 -08:00
shaofeiqi
4db5641210 opencl: add kernel to handle mat mul in attention to improve encoding speed (#17181)
* Add mul_mm_f16_f32_kq_kqv kernel

* Add ggml_cl_mul_mat_kq_kqv_adreno func

* fix whitespace

* remove unused variable

* remove redundant

* refactor and clean up

* remove trailing whitespace
2025-11-15 17:33:10 -08:00
shani-f
72bd7321a7 sycl : unify unary kernels with a generic implementation and enable wide operator support (#17213)
* SYCL: add generic unary op implementation for multiple ops (ABS/SGN/…); unify non-contiguous access

* SYCL: update documentation and sycl.csv to reflect new unary op support

* update ops.md after syncing SYCL.csv changes

* Fix SYCL.csv merge conflict

* Update ops.md after fixing SYCL.csv conflicts

* Fix SYCL.csv tail after merge conflict and regenerate ops.md

* Fix line endings and final newline in SYCL.csv

* Remove TOPK_MOE entries from SYCL.csv as requested

* Update ops.md after removing TOPK_MOE from SYCL.csv

* Regenerated SYCL.csv and synced ops.md with upstream

* Update ops.md using create_ops_docs.py
2025-11-16 00:52:42 +01:00
Aleksander Grygier
22e1ce2f81 webui: Fix clickability around chat processing statistics UI (#17278)
* fix: Better pointer events handling in chat processing info elements

* chore: update webui build output
2025-11-15 22:41:41 +01:00
Pascal
1411d9275a webui: add OAI-Compat Harmony tool-call streaming visualization and persistence in chat UI (#16618)
* webui: add OAI-Compat Harmony tool-call live streaming visualization and persistence in chat UI

- Purely visual and diagnostic change, no effect on model context, prompt
  construction, or inference behavior

- Captured assistant tool call payloads during streaming and non-streaming
  completions, and persisted them in chat state and storage for downstream use

- Exposed parsed tool call labels beneath the assistant's model info line
  with graceful fallback when parsing fails

- Added tool call badges beneath assistant responses that expose JSON tooltips
  and copy their payloads when clicked, matching the existing model badge styling

- Added a user-facing setting to toggle tool call visibility to the Developer
  settings section directly under the model selector option

* webui: remove scroll listener causing unnecessary layout updates (model selector)

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/chat/ChatMessages/ChatMessageAssistant.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: npm run format & update webui build output

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-11-15 21:09:32 +01:00
Sigbjørn Skjæret
662192e1dc convert : remove unnecessary chat template patching (#17289) 2025-11-15 20:58:59 +01:00
Jeff Bolz
24dc769f1b vulkan: Fuse mul_mat_id+add_id+mul and mul_mat+add+add. (#17287)
These both show up in gpt-oss. Also, cleanup the mul_mat_vec fusion code a bit.
2025-11-15 19:54:23 +01:00
Ruben Ortlam
4dca015b7e vulkan: Replace 16-bit unpack8 calls to work around legacy Windows AMD driver bug (#17285) 2025-11-15 15:18:58 +01:00
Sigbjørn Skjæret
9a8860cf5d convert : use all parts in safetensors index (#17286) 2025-11-15 14:12:39 +01:00
Sigbjørn Skjæret
9d3ef4809f convert : set expert gating func in base class (#17279) 2025-11-15 14:06:24 +01:00
Ankur Verma
c7b7db0445 mtmd-cli: Avoid logging to stdout for model loading messages in mtmd-cli (#17277) 2025-11-15 12:41:16 +01:00
Giuseppe Scrivano
1568d13c2c vulkan: implement ABS and NEG (#17245)
* docs: update Vulkan ops

* vulkan: add NEG op

* vulkan: add ABS op

---------

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-11-15 12:00:29 +01:00
Jeff Bolz
439342ea0b vulkan: Use ggml_vk_tensor_subbuffer in mul_mat_vec(id) paths (#17244)
* vulkan: Use ggml_vk_tensor_subbuffer in mul_mat_vec(id) paths

* set allow_misalign
2025-11-15 11:56:15 +01:00
Jeff Bolz
234ae7d7bd vulkan: skip all-negative-inf blocks in FA (#17186) 2025-11-15 10:37:25 +01:00
Jeff Bolz
38eaf32af1 vulkan: change graph_compute to be async and enable get_tensor_async (#17158)
* vulkan: change graph_compute to be async and enable get_tensor_async

This allows some additional CPU/GPU overlap for large pp workloads. Also seems
to help a bit for token gen, maybe getting rid of a small bubble between
graph_compute and get_tensor.

Async set and copy functions seem to be very rarely used, so I didn't enable
them because I didn't have a good way to test them.

The async commands need to be ordered against each other, so put them all on
the compute queue. The non-async commands still use the transfer queue.

The fence for graph_compute/get_tensor_async is submitted and waited on in
ggml_vk_synchronize.

* fix thread safety errors

* teardown context cleanly

* Handle async read to non-pinned dst
2025-11-15 09:06:41 +01:00
Xuan-Son Nguyen
9b17d74ab7 mtmd: add mtmd_log_set (#17268) 2025-11-14 15:56:19 +01:00
Bartowski
e1fcf8b09b model : add AfmoeForCausalLM support (#16477)
* Add AFMOE model support

* Update to vocab

* Add model sizing

* Undo Rope change for ARCEE model

* Address review comments

* Update modeling code is_sliding -> use_rope, replace hard-coded logic

* Fix AFMOE tokenizer

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update AFMoE tokenizer class identification to be more unique

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-14 13:54:10 +01:00
Marek Hradil jr.
6cd0cf72ce fix : Dangling pointer for non-empty trigger words in lazy grammar construction (#17048)
* fix : Dangling pointer for non-empty trigger words in llama_sampler_init_grammar_impl (#17047)

* Replace 'static' workaround, with keeping variable in scope for longer

* Create std::array directly and pass into llama_grammar_init_impl

* Add back the trigger pattern

* Missed array include
2025-11-14 14:35:26 +02:00
Georgi Gerganov
d396b43748 server : fix "can batch with" bug (#17263) 2025-11-14 14:03:45 +02:00
Georgi Gerganov
45c6ef7307 metal : support argsort for ne00 > 1024 (#17247)
* metal : refactor argsort

* cont : sort chunks

* cont : merge sorted buckets

* cont : cleanup
2025-11-14 09:36:06 +02:00
Georgi Gerganov
2606b0adab metal : make the FA extra sizes consistent (#17143) 2025-11-14 09:13:34 +02:00
ixgbe
307772fcda readme : add RVV,ZVFH,ZFH,ZICBOP support for RISC-V (#17259)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-14 09:12:56 +02:00
Aleksander Grygier
f1bad23f88 Better UX for handling multiple attachments in WebUI (#17246) 2025-11-14 01:19:08 +01:00
Alberto Cabrera Pérez
becc4816dd ggml-cpu: handle 3d tensors in repack mat_mul (#17241)
* ggml-cpu: handle 3d tensors in repack mul_mat

* Removed unnecessary branch, removed need for <algorithm>

* Fixed dst_ptr pointer in chunk + clang_format

* GGML_ASSERT to check wdata within bounds

* Accidental ggml.h inclusion

* Improved GGML_ASSERT on wdata boundaries

* Address performance regression in Qwen and llama.cpp due to chunking
2025-11-13 12:53:00 -08:00
Xuan-Son Nguyen
c4abcb2457 server: fixing naming conflict res_error (#17243) 2025-11-13 20:53:47 +01:00
Piotr Wilkin (ilintar)
389ac78b26 ggml : add ops SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM (#17063)
* Add ops needed for new hybrid models: SOFTPLUS, EXPM1, TRI, SOLVE_TRI, CUMSUM

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Code review

* Whitespace

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* This is actually sigmoid, duh.

* Add CONST, remove TRI_KEEP, other changes from review

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml.c

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cuda/unary.cu

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Remove extra script

* Update ggml/src/ggml.c

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* moving changes from laptop [no ci]

* pre-rebase

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update tests/test-backend-ops.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Refactor tests

* ggml : cleanup

* cont : fix ggml_fill srcs

* tests : add note

* ggml : add ggml_fill_inplace

* ggml : add asserts

* ggml : fix ggml_fill constant cast

* cont : ggml_tri minor

* Use TENSOR_LOCALS

* Fix regression from #14596, regenerate

* Don't make commits at night...

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-13 20:54:47 +02:00
Ruben Ortlam
a19bd6f7ce vulkan: remove shell call from vulkan-shaders-gen tool, revert file check (#17219)
* vulkan: remove shell call from vulkan-shaders-gen tool

* use string vector for command execution

* Fix condition

* use string, remove const_cast

* Fix dependency file quotation on Windows

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-11-13 14:51:21 +01:00
Diego Devesa
dd091e52f8 sched : fix reserve ignoring user tensor assignments (#17232) 2025-11-13 13:14:02 +01:00
ixgbe
1215dde7b0 ggml-cpu : add RISC-V vector intrinsic support for silu and cvar operations (#17227)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-13 13:13:32 +01:00
bagheera
0cfb19166b metal: accelerated conv2d (#17175)
* metal: accelerated conv2d

* cont : cleanup

---------

Co-authored-by: bghira <bghira@users.github.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-13 13:32:44 +02:00
Georgi Gerganov
2776db6c81 Revert "ggml-cpu: handle 3d tensors in repack mat_mul (#17030)" (#17233)
This reverts commit 1c398dc9ec.
2025-11-13 12:59:37 +02:00
Diego Devesa
879dec341a ggml-cpu : use template for argsort (#17222) 2025-11-13 10:59:05 +02:00
TecJesh
97d5117217 CANN: Add cross_entropy_loss op support (#16886)
* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace

* cann: update cross_entropy_loss op support

* remove trailing whitespaces

* rebase the latest code in the main repository and remove the l2_norm operator that already exists in another pull request.

* undo the l2_norm operator deletion
2025-11-13 09:39:51 +08:00
Aman Gupta
a90eb94ca9 CUDA: fuse rope + set_rows (#16884)
* CUDA: add fused rope

* move k forward_expand up

* create helper function instead of re-using params

* make assert statement more in line with comment

* rope_norm: coalesced writes to global mem
2025-11-13 08:50:01 +08:00
Neo Zhang Jianyu
07751f8d44 update SYCL support OPs (#17208)
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-11-13 08:42:23 +08:00
o7si
ffb6f3d921 vocab : correct bounds check for UGM XCDA array access (#17215) 2025-11-12 23:41:02 +01:00
Johannes Gäßler
5d6838b74f CUDA: static assert to prevent misuse of memcpy_1 (#17198) 2025-11-12 23:13:55 +01:00
Mike Abbott
92bb442ad9 docker : preserve .so symlinks for docker container builds (#17214) 2025-11-12 20:33:55 +01:00
Georgi Gerganov
374fe09cdd ggml : use std::sort in ggml_argsort CPU implementation (#17211)
* ggml : use std::sort in ggml_argsort CPU implementation

* cont : add missing header
2025-11-12 20:43:38 +02:00
Aleksander Grygier
8e878f0cb4 Update packages + upgrade Storybook to v10 (#17201)
* chore: Update packages + upgrade Storybook to v10

* fix: Increase timeout for UI tests
2025-11-12 19:01:48 +01:00
Xuan-Son Nguyen
00c94083b3 server: (refactor) implement generator-based API for task results (#17174)
* server: (refactor) implement generator-based API for task results

* improve

* moving some code

* fix "Response ended prematurely"

* add sink.done before return false

* rm redundant check

* rm unused var

* rename generator --> reader
2025-11-12 18:50:52 +01:00
Xuan-Son Nguyen
017eceed61 ci: add check vendor job (#17179)
* ci: add check vendor job

* use dev version of miniaudio

* move to dedicated workflow, only run on related files changed
2025-11-12 14:56:02 +01:00
Xuan-Son Nguyen
ee8dd5c658 server: move res_error/res_ok to static function (#17167) 2025-11-12 14:17:24 +01:00
Alberto Cabrera Pérez
1c398dc9ec ggml-cpu: handle 3d tensors in repack mat_mul (#17030)
* ggml-cpu: handle 3d tensors in repack mul_mat

* Removed unnecessary branch, removed need for <algorithm>

* Fixed dst_ptr pointer in chunk + clang_format

* GGML_ASSERT to check wdata within bounds

* Accidental ggml.h inclusion

* Improved GGML_ASSERT on wdata boundaries
2025-11-12 14:52:19 +02:00
Adrien Gallouët
52cf111b31 cmake : cleanup (#17199) 2025-11-12 14:48:30 +02:00
Adrien Gallouët
78010a0d52 cmake : move OpenSSL linking to vendor/cpp-httplib (#17177)
* cmake : move OpenSSL linking to vendor/cpp-httplib

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* bring back httplib 0.27.0

* add -DLLAMA_HTTPLIB

* update cmake config for visionos

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-12 12:32:50 +01:00
TecJesh
655cddd174 CANN: Add L2_NORM op support (#16856)
* update L2_NORM op support

* update L2_NORM op support

* remove extra whitespace
2025-11-12 15:11:42 +08:00
Neo Zhang Jianyu
5da7664960 [SYCL]fix ci crash about SSM_CONV (#17169)
* fix ci crash

* Update ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-12 14:44:29 +08:00
Raul Torres
23a46ce972 CANN: GGML_CANN_ACL_GRAPH works only USE_ACL_GRAPH enabled (#16861)
The documentation should state that `GGML_CANN_ACL_GRAPH` is only effective if `USE_ACL_GRAPH` was enabled at compilation time.
2025-11-12 14:37:52 +08:00
Max Krasnyansky
c273d75375 hexagon: various Op fixes (#17135)
* hexagon: explicitly check for ops with zero nrows

llm_graph_context::build_inp_out_ids() can generate tensors with zero nrows.
Somehow other backends seems to handle this without obvious explicit checks.
In the hexagon case we need to check explicitly and skip them.

* hexagon: introduce fastdiv, fix test-backend-ops for ADD/SUB/MUL

Co-authored-by: chraac <chraac@gmail.com>

* hexagon: use fastdiv in ADD_ID

* hexagon: use ggml_op_is_empty and ggml_is_empty to check for NOPs

---------

Co-authored-by: chraac <chraac@gmail.com>
2025-11-11 15:25:04 -08:00
Eve
7d019cff74 disable rms norm mul rope for chips with no fp16 rte (#17134) 2025-11-11 12:53:30 -06:00
sudhiarm
3fe36c3238 ci: add Arm-hosted Graviton4 runner (#17021)
* ci: add Arm-hosted Graviton4 runner

* ci: add missing dependencies for graviton4 build

* ci: enable LFS checkout on graviton4

* ci: move git-lfs install to dependencies in Graviton4 workflow
2025-11-11 17:58:05 +02:00
Xuan-Son Nguyen
1d45b4228f vendor: split httplib to cpp/h files (#17150)
* vendor: split httplib to cpp/h files

* move defines

* include httplib if curl is not used

* add TODO

* fix build ios

* fix build visionos instead
2025-11-11 13:32:58 +01:00
ixgbe
ca4844062b ggml-cpu : add RISC-V RVV (Zvfh) optimization for FP16 to FP32 conversion (#17161)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-11 13:41:51 +02:00
duduta
73460f6278 ggml-cpu: templateify ggml_compute_forward_rope_f32 and _f16 (#16805)
* extract rotate_pairs logic from ggml_compute_forward_rope_f32

* templateify ggml_compute_forward_rope_f32 and _f16

* abort when rope type not supported, remove GLM from test-rope

* add imrope branch to switch

* add rope tests for perf

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-11 13:33:24 +02:00
Charles Xu
8c583242ad kleidiai: add optimized per-channel kernels for Q8_0 (#16993) 2025-11-11 13:20:31 +02:00
Mike Abbott
4a5b8aff40 cmake : add version to all shared object files (#17091)
When compiling llama.cpp in Yocto, it fails QA checks because the generated so files aren't versioned.  This applies a version to all generated so files, allowing the package to build without errors.
2025-11-11 13:19:50 +02:00
Nicolas B. Pierron
d2d626938a Install rpc-server when GGML_RPC is ON. (#17149) 2025-11-11 10:53:59 +00:00
levkropp
2fc392ce35 convert : register UMT5Model architecture for T5 conversion (#17160)
Register UMT5Model as a supported architecture variant for T5 model conversion.
This allows the conversion to work for models downloaded with AutoModel.
2025-11-11 09:38:30 +01:00
lhez
ece0f5c177 opencl: add fastdiv and use it in set_rows, ported from cuda (#17090)
* opencl: add fastdiv for mm q8_0

* opencl: use uint4 for fastdiv vals

* opencl: use fastdiv for set_rows

* opencl: do not use fastdiv for q8_0 mm
2025-11-10 15:00:13 -08:00
Sigbjørn Skjæret
7bef684118 models : move build_inp_out_ids outside loop (#17151)
* move build_inp_out_ids outside loop

* realign
2025-11-10 22:55:30 +01:00
Max Krasnyansky
395e286bc9 cpu: skip NOPs to avoid barriers (#17133)
* cpu: skip NOPs to avoid barriers

* cpu: use ggml_op_is_empty
2025-11-10 12:44:49 -08:00
Georgi Gerganov
13730c183b metal : cap threadgroups size of set_rows (#17146) 2025-11-10 21:33:35 +02:00
Adrien Gallouët
967eb4b2bf ggml-cpu : inspect -march and -mcpu to found the CPU (#16333)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-10 21:03:36 +02:00
Ruben Ortlam
f117be185e vulkan: check glslc executable string (#17144) 2025-11-10 16:59:26 +01:00
Ruben Ortlam
85234a4b3a vulkan: fix validation issue introduced by #16868 (#17145) 2025-11-10 16:59:10 +01:00
Gabe Goodhart
0c74f32632 memory: Hybrid context shift (#17009)
* feat(memory): Only fail partial erasure of recurrent tail

The recurrent state is always assumed to be the state as of the last update
from the final token in the sequence. When doing a partial erasure, if the
range does not include the final token, the erasure can be considered a
success since any memory used for the sequence prior to the final token
(which is no memory) has been successfully removed.

There is one potential case that this doesn't address which is the pruning
of cache to remove sensitive data from the context. This wouldn't work for
attention cache partial removal (in the middle) either since the KV state
is linearly-dependent and states in later sequence positions would still be
based on the state from the sensitive data, even if that data is no longer
cached, so I don't think this is relevant, but it is worth noting that the
semantics of this change for a partial erasure in the middle of the cache
are essentially "my context is already compressed" and not "all trace of
the removed tokens has been removed."

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(main): Check the output of seq_rm for prefix matching

This prefix matching is explicitly attempting to remove the tokens at the
end of the sequence that don't match. This is the operation that can't be
performed on a recurrent cache due to the state being updated in place, so
if this removal fails, we need to clear the whole cache.

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix(memory): Fix condition for partial erasure failure if p0 > pos

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: compilade <git@compilade.net>

* style: Fix extra parens

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix(main.cpp): Set n_matching_session_tokens to 0 on cache clear

https://github.com/ggml-org/llama.cpp/issues/16768
Branch: HybridContextShift-16768

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: compilade <git@compilade.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-10 17:14:23 +02:00
Georgi Gerganov
c27efd2bd1 metal : enable tensor API for A19 (#17087) 2025-11-10 15:38:42 +02:00
fj-y-saito
df70bedda7 arm64: add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_… (#15277)
* add i8mm route with SVE ggml_vec_dot_q4_K_q8_K and ggml_vec_dot_q6_K_q8_K

* Surround SVE function with compiler directive

* fix compile switch

* fix coding style

* ggml : fix indent

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-10 15:12:59 +02:00
Georgi Gerganov
f914544b16 batched-bench : add "separate text gen" mode (#17103) 2025-11-10 12:59:29 +02:00
Xuan-Son Nguyen
4b13a684c5 mtmd: fix patch_size initialized to random value in audio models (#17128)
* mtmd: fix patch_size initialized to random value in audio models

* add default hparams
2025-11-10 11:41:05 +01:00
Georgi Gerganov
9898b57cbe editorconfig : ignore benches/ (#17140)
[no ci]
2025-11-10 12:17:19 +02:00
Acly
1032256ec9 cuda/vulkan : bicubic interpolation (#17022)
* vulkan : implement upscale with bicubic interpolation

* cuda : implement upscale with bicubic interpolation

* tests : add ggml_interpolate with GGML_SCALE_MODE_BICUBIC to backend tests

* adapt OpenCL backend to not support the OP in that case so tests don't fail

* print scale mode & flags in test-backend-ops
2025-11-10 10:19:39 +01:00
Georgi Gerganov
15274c0c50 benches : add eval results (#17139)
[no ci]
2025-11-10 10:44:10 +02:00
Georgi Gerganov
b8595b16e6 mtmd : fix embedding size for image input (#17123) 2025-11-09 18:31:02 +02:00
Ruben Ortlam
392e09a608 vulkan: fix memory allocations (#17122) 2025-11-09 16:14:41 +01:00
compilade
802cef44bf convert : parse safetensors directly (#15667)
* convert : parse safetensors directly

* gguf-py : order safetensors tensors by name

Applies to both local and remote safetensors custom parsing.
This matches the behavior of the official safetensors implementation.

* convert : rename from_safetensors_meta to from_local_tensor

For consistency with from_remote_tensor

* convert : fix no-lazy dtypes from direct safetensors
2025-11-09 09:49:40 -05:00
compilade
1c07c0c68c convert : handle compressed-tensors quant method (#17069)
* convert : handle compressed-tensors quant method

* convert : handle int-quantized models

* convert : handle naive-quantized models

* gguf-py : __pos__ is also unary

* convert : fix flake8 lint

* convert : use F32 for dequant of pack-quantized tensors
2025-11-09 09:45:50 -05:00
Georgi Gerganov
cb1adf8851 server : handle failures to restore host cache (#17078)
* server : handle failures to restore host cache

* server : add tests for the prompt cache
2025-11-09 14:27:05 +02:00
Georgi Gerganov
ef1d826997 benches : add folder with benchmarks (#16931)
* benches : add folder with benchmarks

* benches : update dgx-spark bench
2025-11-09 12:53:29 +02:00
Eric Curtin
86fde91e62 Switch to using Ubuntu 25.10 vulkan/mesa (#16497)
Because "Ubuntu packages to be discontinued in Vulkan SDK"

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-09 10:25:38 +01:00
Ruben Ortlam
7f3e9d339c vulkan: iGPU memory reporting fix (#17110)
* vulkan: use all device-local heaps for memory availability reporting

Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>

* use all available heaps for iGPU memory reporting

* Allow multiple memory types per buffer request for devices with split heaps

---------

Co-authored-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-11-09 09:54:47 +01:00
Ruben Ortlam
8a3519b708 vulkan: fix mmq out of bounds reads (#17108)
* vulkan: fix mmq out of bounds reads, streamline outdated matmul host code

* fix mul_mat_id quantization call

* Fix compiler warnings
2025-11-09 09:52:57 +01:00
Jeff Bolz
80a6cf6347 vulkan: fuse mul_mat_id + mul (#17095)
* vulkan: fuse mul_mat_id + mul

This comes up in qwen3 moe.

* split mul_mat_id fusion tests into a separate class
2025-11-09 09:48:42 +01:00
Georgi Gerganov
0750a59903 metal : retain src and dst buffers during async ops (#17101) 2025-11-09 08:28:51 +02:00
Xuan-Son Nguyen
aa3b7a90b4 arg: add --cache-list argument to list cached models (#17073)
* arg: add --cache-list argument to list cached models

* new manifest naming format

* improve naming

* Update common/arg.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-08 21:54:14 +01:00
chansikpark
333f2595a3 webui: fix keyboard shortcuts for new chat & edit chat title (#17007) 2025-11-08 20:52:35 +01:00
Jeff Bolz
53d7d21e61 vulkan: Use spec constants for conv2d s/d/p and kernel W/H (#16978)
* vulkan: Use spec constants for conv2d s/d/p and kernel W/H

Also add some additional unroll hints, which seems to help.

* lock around map lookup
2025-11-08 13:24:29 -06:00
Aidan
eeee367de5 server: fix correct time_ms calculation in prompt_progress (#17093)
* fix: correct time_ms calculation in send_partial_response

The time_ms field was incorrectly calculated. The division was happening
before the subtraction leading to incorrect values.

Before: (ggml_time_us() - slot.t_start_process_prompt / 1000) After:
(ggml_time_us() - slot.t_start_process_prompt) / 1000

* docs : document time_ms field in prompt_progress
2025-11-08 15:12:11 +02:00
Aman Gupta
64fe17fbb8 Revert "CUDA: add expert reduce kernel (#16857)" (#17100) 2025-11-08 21:05:19 +08:00
Aman Gupta
c1b187688d CUDA: skip fusion for repeating adds in bias (#17080) 2025-11-08 16:58:05 +08:00
SavicStefan
b8a5cfd11a vulkan: Increase BK to 32; use BK/4 for non-CM mul_mm.comp (#16636)
Signed-off-by: Stefan Savic <stefan.savic@huawei.com>
Co-authored-by: Stefan Savic <stefan.savic@huawei.com>
2025-11-08 09:28:22 +01:00
Aleksei Nikiforov
08416ebe7f ggml: disable vxe for cross-compilation by default (#16966)
Otherwise compilation will fail due to enabling -mvx -mzvector
and not setting corresponding -march options.
2025-11-08 16:00:20 +08:00
Jeff Bolz
b4e335d8dc vulkan: fuse rms_norm + mul + rope (+ view + set_rows) (#16977)
This change combines the rms_norm+mul and rope+view+set_rows fusions to
allow fusing the whole sequence together. This comes up in Qwen3, Bailing,
and some other models.
2025-11-08 08:52:15 +01:00
Jeff Bolz
d6fe40fa00 vulkan: Fix test-thread-safety crashes (#17024)
The std::map pipeline_flash_attn_f32_f16 could be searched and inserted at the
same time, which needs to hold the lock. To be safe, hold the lock for all of
ggml_vk_load_shaders.
2025-11-08 08:39:45 +01:00
Johannes Gäßler
e14e842e87 CUDA: fix MMQ stream-k fixup ne1 indices (#17089) 2025-11-08 08:26:18 +01:00
Reese Levine
647b960bd8 ggml webgpu: faster matrix multiplication/matrix-vector multiplication (#17031)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings
2025-11-07 19:27:20 -08:00
bssrdf
299f5d782c CUDA: properly handle nb00=nb02 case for cpy (#17081) 2025-11-07 23:41:58 +01:00
Acly
ac76d36201 vulkan : refactor buffer handling in vk_op_f32 (#16840)
* vulkan : refactor/simplify buffer handling in vk_op_* functions

* Combine UMA handling into ggml_vk_tensor_subbuffer
2025-11-07 21:08:50 +01:00
Johannes Gäßler
6515610506 CUDA: fix should_use_mmvf for ne11 == 1 (#17085)
* CUDA: fix should_use_mmvf for ne11 == 1

* Apply suggestion from @am17an

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-11-07 20:53:14 +01:00
Georgi Gerganov
7956bb4d7f bench : cache the llama_context state at computed depth (#16944)
* bench : cache llama_context state at depth

* cont : handle failures to restore the old state

* cont : print information when the state is being reused
2025-11-07 21:23:11 +02:00
Sigbjørn Skjæret
9008027aa3 hparams : add n_embd_inp() to support extended embed (#16928)
* add n_embd_full to support extended embed

* don't change output

* rename to n_embd_inp

* restore n_embd where applicable
2025-11-07 19:27:58 +01:00
Georgi Gerganov
16bcc1259d kv-cache : pad the cache size to 256 for performance (#17046)
* kv-cache : pad the size of the small SWA cache for performance

* context : pad the total context to 256

* cont : future-proof the swa pad

* server : adjust test params to new logic
2025-11-07 20:03:25 +02:00
Adrien Gallouët
9eb9a1331d Revert "ggml-cpu: detect correct cpu flags for arm64 (#16229) (#16239)" (#17084)
This reverts commit 7c23f3f0d4.
2025-11-07 18:34:05 +02:00
iron
7c23f3f0d4 ggml-cpu: detect correct cpu flags for arm64 (#16229) (#16239)
When using GCC 9 and GCC 12 on the arm64 platform of ubuntu 2004,
the command "gcc -mcpu=native -E -v -" fails to detect the correct CPU flags,
which results in compilation failures for certain extended instructions,
but the correct CPU flags can be obtained by using gcc -march.

Signed-off-by: lizhenneng <lizhenneng@kylinos.cn>
Co-authored-by: lizhenneng <lizhenneng@kylinos.cn>
2025-11-07 08:18:14 -08:00
Georgi Gerganov
8c0d6bb455 server : print the samplers chain for each request (#17070) 2025-11-07 12:24:47 +02:00
Xuan-Son Nguyen
5c9a18e674 common: move download functions to download.(cpp|h) (#17059)
* common: move download functions to download.(cpp|h)

* rm unused includes

* minor cleanup

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-07 11:23:34 +01:00
xctan
7f09a680af ggml-cpu : optimize RVV q2_k and q3_k kernels (#16887) 2025-11-06 18:12:45 +02:00
Johannes Gäßler
aa374175c3 CUDA: fix crash on uneven context without FA (#16988) 2025-11-06 14:05:47 +01:00
Georgi Gerganov
5b180c3d60 metal : initial Metal4 tensor API support (#16634)
* metal : rework mat-mat multiplication

* metal : initial Metal4 support

* cont

* metal : detect tensor support

* cont : better ifdefs

* metal : support tensors in mul_mm_id

* metal : add env for disabling tensor API

* tests : restore

* metal : remove unused constants

* metal : fix check for bfloat tensor support

* cont : handle API incompatibilities

* cont : handle even more incompatibilities

* metal : use tensor API only on M5 and later
2025-11-06 14:45:10 +02:00
Georgi Gerganov
b7f9010d24 server : disable checkpoints with mtmd (#17045) 2025-11-06 12:09:29 +02:00
Xuan-Son Nguyen
4882f0ff78 clip: implement minicpm-v sinusoidal embd using GGML (#17036)
* clip: implement minicpm-v sinusoidal embd using GGML

* fix repeat op
2025-11-06 11:02:54 +01:00
YehuditE
9d7c518d64 sycl: add CONCAT operator support (#16047)
* sycl: add CONCAT operator support

* cleanup: remove stray lines added by mistake

* fix: code format issues in concat.cpp and tests/test-backend-ops.cpp

* chore: fix editorconfig violations

* cleanup: drop unnecessary i16 type support

* docs: update sycl-csv and regenerate ops.md

* update docs/ops.md

* fix: adapt to upstream master changes after rebase

* fix: remove empty files

* fix: drop whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-06 11:02:33 +01:00
Johannes Gäßler
22c8c3c6ad docs: explain CUDA 11 compilation [no ci] (#16824) 2025-11-06 08:14:35 +01:00
l3utterfly
6db3d1ffe6 ggml-hexagon: graceful fallback for older socs where rpcmem_alloc2 and FASTRPC_GET_URI is unsupported (#16987)
* support older socs where FASTRPC_GET_URI is unsupported

* added graceful fallback when FASTRPC_GET_URI call fails

* use weak symbols instead of loading libcdsprpc.so dynamically

* Add weak pragma for rpcmem_alloc2

* Remove weak declaration for rpcmem_alloc2 in ggml-hexagon.cpp

Removed weak declaration for rpcmem_alloc2.

* Enforce ndev to 1 for archs below v75

Force ndev to 1 for SoCs architectures lower than v75.
2025-11-05 21:46:38 -08:00
bssrdf
230d1169e5 improve CUDA cpy memory bandwidth when copying transposed tensor (#16841)
* WIP

* added a cpy kernel specific to transposed tensor which uses smem to avoid uncoalesced access; test cases also added shwoing improved memory bandwidth

* added BF16 support

* more strict check to make sure src0 is a transpose

* reformulated to handle more complicated transpose cases

* bring back 2D transpose for higher performance

* allow build on windows

* tranpose copy more shapes

* minor tweak

* final clean up

* restore some test cases

* keep only the kernel for true tranposed case; updated with review suggestions

* make CI happy

* remove headers not needed

* reduced bank conflicts for fp16 and bf16

* add missing const*

* now bank conflicts free

* use padding instead of swizzling

---------

Co-authored-by: bssrdf <bssrdf@gmail.com>
2025-11-05 21:55:04 +01:00
Jeff Bolz
a44d77126c vulkan: Fix GGML_VULKAN_CHECK_RESULTS to better handle fusion (#16919) 2025-11-05 19:51:03 +01:00
Gabe Goodhart
5886f4f545 examples(gguf): GGUF example outputs (#17025)
* feat(llama-gguf): Print out the tensor type in llama-gguf r

Branch: Mamba2Perf

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat(off-topic): print the number of elements in tensors with llama-gguf

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: valign

Branch: GGUFToolOutputs

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* Update examples/gguf/gguf.cpp

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-05 19:58:16 +02:00
Xuan-Son Nguyen
92bb84f775 mtmd: allow QwenVL to process larger image by default (#17020) 2025-11-05 14:26:49 +01:00
Georgi Gerganov
13b339bcd9 server : do not default to multiple slots with speculative decoding (#17017)
* server : do not default to multiple slots with speculative decoding

* cont : fix
2025-11-05 14:32:55 +02:00
Xuan-Son Nguyen
2f0c2db43e mtmd: improve struct initialization (#16981) 2025-11-05 11:26:37 +01:00
손희준
fd2f84f468 docs: Clarify the endpoint that webui uses (#17001) 2025-11-05 11:20:28 +01:00
Li Pengzhan
9f052478c2 model : add openPangu-Embedded (#16941)
* Model: add openPangu-Embedded

* fixed according to reviewer's comments

* fixed the chat template check condition

* Apply suggestions from code review

change the chat-template check condition and some formatting issue

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* whitespace cleanup

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-05 10:28:58 +01:00
Reese Levine
03ea04175d ggml webgpu: minor set rows optimization (#16810)
* Add buffer label and enable dawn-specific toggles to turn off some checks

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Remove some comments

* Implement overlap binary operators

* Revert "Implement overlap binary operators"

This reverts commit ed710b36f5.

* Disable support for non-contiguous binary_op tensors and leave note for future support

---------

Co-authored-by: neha-ha <137219201+neha-ha@users.noreply.github.com>
Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
2025-11-05 10:27:42 +01:00
Georgi Gerganov
cdabeb2c27 sync : ggml 2025-11-05 10:41:51 +02:00
Georgi Gerganov
852ce5180a ggml : fix conv2d_dw SVE path (ggml/1380)
* Fix test-conv2d-dw failure on ARM SVE by using runtime vector length

The ggml_compute_forward_conv_2d_dw_cwhn function was using a hardcoded GGML_F32_EPR (8) for SIMD vectorization, but on ARM SVE the actual vector length varies by hardware. This caused incorrect computation when processing CWHN layout tensors on ARM machines.

Fix by using svcntw() to get the runtime SVE vector length instead of the compile-time constant.

Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>

* ci : reduce sam score threshold

* ci : update bbox checks for sam test

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ggerganov <1991296+ggerganov@users.noreply.github.com>
2025-11-05 10:41:51 +02:00
mnehete32
9aa63374f2 CUDA: update ops.md (#17005) 2025-11-05 11:01:15 +08:00
lhez
5e90233bdb opencl: update doc (#17011)
* opencl: update docs

* opencl: update docs

* opencl: fix link

* opencl: update doc
2025-11-04 16:02:36 -08:00
nullname
a5c07dcd7b refactor: replace sprintf with snprintf for safer string handling in dump functions (#16913) 2025-11-04 12:25:39 -08:00
Jeff Bolz
ad51c0a720 vulkan: remove the need for the dryrun (#16826)
* vulkan: remove the need for the dryrun

Allocate pipelines and descriptor sets when requested.

Reallocate the prealloc buffers when needed, and flush any pending work
before reallocating.

For rms_partials and total_mul_mat_bytes, use the sizes computed the last time
the graph was executed.

* remove dryrun parameters
2025-11-04 13:28:17 -06:00
Georgi Gerganov
66d8eccd42 server : do context shift only while generating (#17000) 2025-11-04 19:21:36 +02:00
Georgi Gerganov
afd353246d readme : update hot topics (#17002) 2025-11-04 17:21:31 +02:00
Acly
cc98f8d349 ggml-cpu : bicubic interpolation (#16891) 2025-11-04 13:12:20 +01:00
Sigbjørn Skjæret
d945834366 ci : apply model label to models (#16994) 2025-11-04 12:29:39 +01:00
Sigbjørn Skjæret
b164259bba chore : fix models indent after refactor (#16992) 2025-11-04 12:29:15 +01:00
Noah
1f5accb8d0 Fix garbled output with REPACK at high thread counts (#16956)
* Fix garbled output with REPACK at high thread counts

Fixed a race condition in the REPACK matrix multiplication code that caused garbled output when using 26+ threads (model-dependent threshold). The issue occurred because with high thread counts, the code forced chunk count to equal thread count, creating many small chunks. After aligning these chunks to NB_COLS boundaries, adjacent chunks could overlap, causing data corruption and race conditions. The fix enforces minimum chunk sizes based on NB_COLS and caps maximum chunk count to prevent creating too many tiny chunks, ensuring proper alignment without overlaps.

* Update ggml/src/ggml-cpu/repack.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/src/ggml-cpu/repack.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-03 21:04:59 -08:00
Aman Gupta
2759ccdb4a CUDA: avoid mul + bias fusion when doing fusion (#16935) 2025-11-04 10:53:48 +08:00
lhez
c5023daf60 opencl: support imrope (#16914)
* opencl: support imrope

* opencl: fix whitespace
2025-11-03 11:47:57 -08:00
Aleksander Grygier
e7da30b584 fix: Viewing multiple PDF attachments (#16974) 2025-11-03 18:53:26 +01:00
Daniel Bevenius
ed8aa63320 model-conversion : pass config to from_pretrained (#16963)
This commit modifies the script `run-org-model.py` to ensure that the
model configuration is explicitly passed to the `from_pretrained` method
when loading the model. It also removes a duplicate configuration
loading which was a mistake.

The motivation for this change is that enables the config object to be
modified and then passed to the model loading function, which can be
useful when testing new models.
2025-11-03 18:01:59 +01:00
Georgi Gerganov
48bd26501b server : add props.model_alias (#16943)
* server : add props.model_alias

* webui : npm run format
2025-11-03 14:38:23 +01:00
theo77186
622cd010ff ggml: CUDA: add head size 72 for flash-attn (#16962) 2025-11-03 14:29:11 +01:00
Xuan-Son Nguyen
070ff4d535 mtmd: add --image-min/max-tokens (#16921) 2025-11-03 11:11:18 +01:00
Xuan-Son Nguyen
bf7b0c9725 mtmd: pad mask for qwen2.5vl (#16954)
* mtmd: pad mask for qwen2.5vl

* improve
2025-11-03 10:25:55 +01:00
Jinyang He
fcfce040e8 ggml : LoongArch fixes (#16958)
* Fix test-quantize-fns f16 and q4_0 failed when use LSX

* Fix LoongArch set float intrinsic when use LSX/LASX
2025-11-03 08:40:02 +02:00
Olivier Chafik
ee3a5a10ad sync: minja (glm 4.6 & minmax m2 templates) (#16949)
* sync: minja

* Sync https://github.com/ochafik/minja/pull/7 (MinMax M2)
2025-11-03 07:33:56 +02:00
shani-f
7e994168b1 SYCL: optimized repeat_back kernel (3× fewer asm instructions, 2× faster)Feature/sycl repeat back opt (#16869)
* SYCL repeat_back v1 — add core op + switch case

* Implement repeat_back SYCL operation and minor fixes

* SYCL: optimize repeat_back kernel

* Remove Hebrew comment from repeat_back.cpp

* Remove comments for code clarity

Removed comments to clean up the code.

* Fix formatting in ggml-sycl.cpp

* Formatted lambda according to legacy style. No logic changes

* Remove blank line in repeat_back.cpp

Remove unnecessary blank line before assigning acc to dst_dd.
2025-11-03 09:35:33 +08:00
Sascha Rogmann
bcfa87622a feat(webui): improve LaTeX rendering with currency detection (#16508)
* webui : Revised LaTeX formula recognition

* webui : Further examples containg amounts

* webui : vitest for maskInlineLaTeX

* webui: Moved preprocessLaTeX to lib/utils

* webui: LaTeX in table-cells

* chore: update webui build output (use theirs)

* webui: backslash in LaTeX-preprocessing

* chore: update webui build output

* webui: look-behind backslash-check

* chore: update webui build output

* Apply suggestions from code review

Code maintenance (variable names, code formatting, string handling)

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: Moved constants to lib/constants.

* webui: package woff2 inside base64 data

* webui: LaTeX-line-break in display formula

* chore: update webui build output

* webui: Bugfix (font embedding)

* webui: Bugfix (font embedding)

* webui: vite embeds assets

* webui: don't suppress 404 (fonts)

* refactor: KaTeX integration with SCSS

Moves KaTeX styling to SCSS for better customization and font embedding.

This change includes:
- Adding `sass` as a dev dependency.
- Introducing a custom SCSS file to override KaTeX variables and disable TTF/WOFF fonts, relying solely on WOFF2 for embedding.
- Adjusting the Vite configuration to resolve `katex-fonts` alias and inject SCSS variables.

* fix: LaTeX processing within blockquotes

* webui: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-11-03 00:41:08 +01:00
Shagun Bera
a2054e3a8f test-backend-ops : fix segfault in moe-expert-reduce test in support mode and coverage (#16936)
* tests: fix segfault in moe-expert-reduce test in support mode and --show-coverage

* tests: init gf and filter out fusion tests for support mode

* tests: filter out fusion cases before calling eval_support

* tests: filter out fusion cases from show_test_coverage as well, fix lint
2025-11-03 00:10:30 +01:00
Sigbjørn Skjæret
dd52868050 ci : disable failing riscv cross build (#16952) 2025-11-02 23:11:21 +01:00
Zhiyong Wang
6b9a52422b model: add Janus Pro for image understanding (#16906)
* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-02 22:08:04 +01:00
Georgi Gerganov
2f966b8ed8 clip : use FA (#16837)
* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-02 21:21:48 +01:00
Georgi Gerganov
cd5e3b5754 server : support unified cache across slots (#16736)
* server : support unified context across slots

* cont : fix speculative decoding initialization

* context : fix n_ctx_per_seq computation

* server : purge slots one by one

* tests : add unified cache server tests

* llama : update per-seq context computation

* test-thread-safety : handle tiny training context of the input model

* server : fix server_tokens clear()

* server : use 4 slots + unified KV by default

* llama : add note about context size queries

* cont : update todos [no ci]

* context : do not cap the size of the context

* tests : adjust parameters to be CI friendlier

* context : add warning
2025-11-02 18:14:04 +02:00
Aldehir Rojas
87c9efc3b2 common : move gpt-oss reasoning processing to init params (#16937) 2025-11-02 16:56:28 +02:00
Adrian Lundberg
76af40aaaa docs: remove llama_sampler_accept reference in sampling sample usage (#16920)
commit 5fb5e24811 (llama : minor
sampling refactor (2) (#9386)) moved the llama_sampler_accept call
into llama_sampler_sample, but the sampling sample usage in llama.h
was forgotten to be updated accordingly.
2025-11-02 11:28:37 +02:00
mnehete32
7db35a7958 CUDA: add FLOOR, CEIL, ROUND, TRUNC unary ops (#16917) 2025-11-02 11:12:57 +08:00
Aaron Teo
a864132ba5 devops: fix failing s390x docker build (#16918) 2025-11-02 08:48:46 +08:00
Aaron Teo
d38d9f0877 ggml: add s390x cpu-feats (#16774) 2025-11-02 08:48:23 +08:00
Georgi Gerganov
7fd205a8e8 scripts : add script to bench models (#16894) 2025-11-02 00:15:31 +02:00
Pascal
2f68ce7cfd webui: auto-refresh /props on inference start to resync model metadata (#16784)
* webui: auto-refresh /props on inference start to resync model metadata

- Add no-cache headers to /props and /slots
- Throttle slot checks to 30s
- Prevent concurrent fetches with promise guard
- Trigger refresh from chat streaming for legacy and ModelSelector
- Show dynamic serverWarning when using cached data

* fix: restore proper legacy behavior in webui by using unified /props refresh

Updated assistant message bubbles to show each message's stored model when available,
falling back to the current server model only when the per-message value is missing

When the model selector is disabled, now fetches /props and prioritizes that model name
over chunk metadata, then persists it with the streamed message so legacy mode properly
reflects the backend configuration

* fix: detect first valid SSE chunk and refresh server props once

* fix: removed the slots availability throttle constant and state

* webui: purge ai-generated cruft

* chore: update webui static build
2025-11-01 19:49:51 +01:00
Pascal
e4a71599e5 webui: add HTML/JS preview support to MarkdownContent with sandboxed iframe (#16757)
* webui: add HTML/JS preview support to MarkdownContent with sandboxed iframe dialog

Extended MarkdownContent to flag previewable code languages,
add a preview button alongside copy controls, manage preview
dialog state, and share styling for the new button group

Introduced CodePreviewDialog.svelte, a sandboxed iframe modal
for rendering HTML/JS previews with consistent dialog controls

* webui: fullscreen HTML preview dialog using bits-ui

* Update tools/server/webui/src/lib/components/app/misc/CodePreviewDialog.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* Update tools/server/webui/src/lib/components/app/misc/MarkdownContent.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* webui: pedantic style tweak for CodePreviewDialog close button

* webui: remove overengineered preview language logic

* chore: update webui static build

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-11-01 17:14:54 +01:00
Adrien Gallouët
dd5e8cab51 vendor : update cpp-httplib to 0.27.0 (#16846)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-01 16:52:17 +01:00
Xuan-Son Nguyen
cf659bbb8e mtmd: refactor preprocessing + support max/min pixels (#16878)
* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
2025-11-01 15:51:36 +01:00
Aleksander Grygier
d8b860a219 Add a setting to display message generation statistics (#16901)
* feat: Add setting to display message generation statistics

* chore: build static webui output
2025-11-01 15:35:57 +01:00
Jaromír Hradílek
1ae74882f8 webui: recognize AsciiDoc files as valid text files (#16850)
* webui: recognize AsciiDoc files as valid text files

* webui: add an updated static webui build

* webui: add the updated dependency list

* webui: re-add an updated static webui build

This also reverts commit 742dbb8379.
2025-11-01 15:02:57 +01:00
Sigbjørn Skjæret
961660b8c3 common : allow --system-prompt-file for diffusion-cli (#16903) 2025-11-01 11:01:42 +01:00
Sigbjørn Skjæret
74fef4129f codeowners : update after refactor (#16905) 2025-11-01 09:55:25 +02:00
Jeff Bolz
5d8bb900bc vulkan: Fix multi_add invalid descriptor usage (#16899) 2025-11-01 06:52:14 +01:00
Jeff Bolz
2e76e01360 vulkan: fuse mul_mat+add and mul_mat_id+add_id (#16868)
* vulkan: fuse mul_mat+add and mul_mat_id+add_id

The fusion is only applied for the mat-vec mul paths.

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix 32b build

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-11-01 06:45:28 +01:00
Oliver Simons
d3dc9dd898 CUDA: Remove unneded bias/gate dims in fused mmvq (#16858)
* CUDA: Remove unneded bias/gate dims in fused mmvq

Pointed out
[here](https://github.com/ggml-org/llama.cpp/pull/16847#discussion_r2476798989)
that only a single value is needed per target col per thread

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Fix "Error 991-D: extra braces are nonstandard" during compilation

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-01 13:13:26 +08:00
Piotr Wilkin (ilintar)
bea04522ff refactor : llama-model.cpp (#16252)
* Sqashed: llama-model.cpp refactoring

* Fix formatting of attn / ffn / ffn_moe calls

* Fix import regression / unify spacing in models.h

* totally DID NOT miss those!

* Add missing qwen3vl(moe) models

* Add missing new .cpp files to build

* Remove extra semicolons

* Editor checker

* Update src/models/models.h

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-31 23:40:23 +01:00
Piotr Wilkin (ilintar)
0de0a01576 model : Minimax M2 (#16831)
* Model: Minimax M2

* Cleanup

* Cleanup pt. 2

* Cleanup pt. 3

* Update convert_hf_to_gguf_update.py - merge catch blocks

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Remove vocab models and test

* Remove all redundant hparam settings covered by TextModel

* Move super to start, don't set block_count

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/constants.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-31 21:20:47 +01:00
Giuseppe Scrivano
e58d585604 model : add Granite Hybrid nano types (#16896)
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-31 21:20:07 +01:00
Johannes Gäßler
31c511a968 CUDA: Volta tensor core support for MMF (#16843)
* CUDA: Volta tensor core support for MMF

* more generic checks for hardware support

* Update ggml/src/ggml-cuda/mmf.cuh

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-10-31 15:57:19 +01:00
Georgi Gerganov
6d39015a74 sync : ggml 2025-10-31 16:26:28 +02:00
Aman Gupta
4146d6a1a6 CUDA: add expert reduce kernel (#16857)
* CUDA: add expert reduce kernel

* contigous checks, better formatting, use std::vector instead of array

* use vector empty instead of size

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-10-31 20:05:07 +08:00
Georgi Gerganov
8da3c0e200 batch : fix consistency checks for the input positions (#16890) 2025-10-31 13:50:33 +02:00
Georgi Gerganov
c22473b580 server : don't print user inputs to console (#16871) 2025-10-31 10:54:19 +02:00
Daniel Bevenius
0f715b4e75 server : fix typos in server.cpp comments [no ci] (#16883) 2025-10-31 09:51:26 +01:00
Jeff Bolz
d2d931f173 vulkan: disable spirv-opt for rope shaders (#16872) 2025-10-31 08:34:47 +01:00
Masato Nakasaka
2976b0374d vulkan: Fix crash when FP16 mul_mat accumulation is not supported (#16796)
* Experimenting crash fix

* added assert for aborting and fixed comment

* changed to check if a pipeline is empty or not

* Moved function in class definition

* replaced with is_empty

* Modified is_empty to check only unaligned pipelines
2025-10-31 08:18:59 +01:00
Ruben Ortlam
d2a2673dd1 vulkan: fix shmem overrun in mmq id shader (#16873)
* vulkan: fix shmem overrun in mmq id shader

* metal : fix mul_mm_id

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-31 08:14:49 +01:00
l3utterfly
13002a0896 ggml-hexagon: respect input size when getting/setting tensor data (#16836)
* respect input size when getting/setting tensor data

allows partial repacking/copying when get tensor size is smaller than the actual tensor

* Removed duplicate repack_mxfp4_mxfp4x4x2 function
2025-10-30 21:46:31 -07:00
Sigbjørn Skjæret
6eb208d17e ci : enable free-disk-space on cuda docker build (#16877) 2025-10-31 00:34:27 +01:00
lhez
9984cbb61d opencl: fix boundary handling for mul_mm (#16875) 2025-10-30 16:00:20 -07:00
RodriMora
ce18efeaf1 convert : update transformers requirements (#16866)
* Update requirements-convert_legacy_llama.txt

Updated requirements to support Qwen3-VL in transformers 4.57.1 version

* Update requirements/requirements-convert_legacy_llama.txt

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-30 23:15:03 +01:00
chansikpark
16724b5b68 server : bump request URI max length to 32768 (#16862) 2025-10-30 20:22:23 +02:00
Georgi Gerganov
b52edd2558 server : remove n_past (#16818)
* server : remove n_past

* server : replace slot.n_prompt_tokens() with slot.task->n_tokens()

* server : fixes + clean-up

* cont : fix context shift

* server : add server_tokens::pos_next()

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* server : fix pos_next() usage

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

---------

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
2025-10-30 18:42:57 +02:00
Max Krasnyansky
517b7170e1 cpu: introduce chunking for repack matmuls and enable matmul-id chunking on ARM64 (#16833)
Very similar implementation to the flash-attention chunking, with similar benefits.
2025-10-30 09:06:13 -07:00
Shagun Bera
835e918d84 common: fix typo in cli help text (#16864) 2025-10-30 17:47:31 +02:00
JJJYmmm
d261223d24 model: add support for qwen3vl series (#16780)
* support qwen3vl series.

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>

* bugfix: fix the arch check for qwen3vl-moe.

* use build_ffn

* optimize deepstack structure

* optimize deepstack feature saving

* Revert "optimize deepstack feature saving" for temporal fix

This reverts commit f321b9fdf1.

* code clean

* use fused qkv in clip

* clean up / rm is_deepstack_layers for simplification

* add test model

* move test model to "big" section

* fix imrope check

* remove trailing whitespace

* fix rope fail

* metal : add imrope support

* add imrope support for sycl

* vulkan: add imrope w/o check

* fix vulkan

* webgpu: add imrope w/o check

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix tensor mapping

---------

Co-authored-by: Thireus ☠ <Thireus@users.noreply.github.com>
Co-authored-by: yairpatch <yairpatch@users.noreply.github.com>
Co-authored-by: LETS-BEE <LETS-BEE@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-30 16:19:14 +01:00
Max Krasnyansky
dcca0d3ab8 cpu: introduce chunking for flash attention (#16829)
Factor out the core FA loop into flash_atten_f16_one_chunk and add an outter loop
on top that handles the chunks.
2025-10-30 14:26:05 +02:00
Tianyue-Zhao
bacddc049a model: Add support for CogVLM model (#15002)
* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-10-30 12:18:50 +01:00
Sigbjørn Skjæret
229bf68628 cuda : fix argsort with 64k+ rows (#16849) 2025-10-30 08:56:28 +01:00
Jan Boon
d7395115ba llama : use std::abs instead of abs (#16853) 2025-10-30 08:30:58 +02:00
Jeff Bolz
052df28b0e vulkan: Handle argsort with a large number of rows (#16851) 2025-10-30 07:27:41 +01:00
Oliver Simons
8b11deea46 Hide latency of bias and gate-loading (#16847)
This is realised by loading them into registers before computation of
the dot-product, effectively batching them together with said
dot-product. As a lot of threads are alive here, the warp scheduler has
enough threads available to effectively hide the cost of additionally
loading those two floats.
2025-10-30 11:34:15 +08:00
Jeff Bolz
b9ce940177 vulkan: Fuse rope+set_rows (#16769)
This pattern appears in a lot of models, the rope operation is applied right
before storing into the KV cache (usually on the K tensor).

Add a path to some of the rope shaders that computes the destination address
based on the set_rows tensor. Compile variants of the shader with D_TYPE of
f16 (the usual KV cache type).

Add a src3 operand to ggml_vk_op_f32 - sometimes rope uses three srcs and needs
the fourth for the row indices.

Add fused_ops_write_mask to indicate which intermediate tensors need to write
their results to memory. Skipping writing the roped K value helps to allow more
nodes to run concurrently.

Add logic to ggml_vk_graph_optimize to make ROPE+VIEW+SET_ROWS consecutive. It
rarely starts out that way in the graph.

Add new backend tests.
2025-10-29 15:13:10 -05:00
Xuan-Son Nguyen
3464bdac37 llama: fix ASAN error with M-RoPE (#16848) 2025-10-29 20:11:39 +01:00
Xuan-Son Nguyen
e3af5563bd llama: store mrope data in KV cell (#16825)
* llama: store mrope data in KV cell

* correct x,y ordering

* address review comments

* add consistency checks

* Update src/llama-kv-cache.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* add TODO

* fix asan error

* kv-cells : improve ext handling

* cont : fix headers

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-10-29 18:09:18 +01:00
Jeff Bolz
10fcc41290 vulkan: Update topk_moe fusion to handle gpt's late softmax (#16656)
* vulkan: Update topk_moe fusion to handle gpt's late softmax

Based on #16649.

* Add ggml_check_edges

* Add sync logging to show fusion effects

* handle clamp added in #16655

* Update ggml/src/ggml-impl.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-10-29 14:44:29 +01:00
Ruben Ortlam
bcf5bda6f5 Vulkan MMQ Integer Dot Refactor and K-Quant support (#16536)
* vulkan: add mmq q2_k integer dot support

* Refactor mmq caching

* Reduce mmq register use

* Load 4 quant blocks into shared memory in one step

* Pack q2_k blocks into caches of 32

* Use 32-bit accumulators for integer dot matmul

* Add q4_k mmq

* Add q3_k mmq

* Add q5_k mmq

* Add q6_k mmq

* Add mxfp4 mmq, enable MMQ MUL_MAT_ID

* Fix mmv dm loads
2025-10-29 14:39:03 +01:00
Max Krasnyansky
3eb2be1ca5 Hexagon Op queue & dispatch optimizations (#16820)
* hexagon: remove dspqueue callbacks and do all read processing inplace

* hexagon: there is no need to ref/deref the buffers at this point

We're not going to release the buffers without flushing the session queue.
So there is no need to inc/dec the refcounts for every request.
We also don't need to include those bufs in the response.

* hexagon: bump the thread count in the adb wrapper scripts

We can use more CPU cores now that the dedicated dspqueue polling threads are not used (ie no contention).
Also enable more agressive polling for now since we still map Flash Attention (and a few other kernels) to
the CPU and those dspqueue threads were keeping the CPU cores are higher clock freqs.

* hexagon: add lhez as the second code owner
2025-10-29 06:29:12 -07:00
Aman Gupta
e41bcce8f0 CUDA: use fastdiv in set-rows (#16834)
* CUDA: use fastdiv in set-rows

* add assert about value fitting in u32
2025-10-29 21:11:53 +08:00
Sigbjørn Skjæret
144a4ce824 vendor : sync minja (#16500)
* sync minja.hpp

Adds Call/EndCall support, used in MiniCPM3 and MiniCPM4-MCP.

* remove spurious semicolon

* sync from ochafik/minja
2025-10-29 14:09:50 +01:00
Jeff Bolz
f549b0007d vulkan: Call ggml_vk_buffer_write_2d from ggml_vk_buffer_copy (#16793)
This lets the copy to the destination device use the host-visible
vidmem optimization.
2025-10-29 09:53:04 +01:00
Aman Gupta
9a3ea685b9 CUDA: Fix bug in topk-moe for gpt-oss (#16821)
* CUDA: Fix bug in topk-moe for gpt-oss

When using ggml_can_fuse_subgraph, the output nodes which are passed are wrong. This causes `test-backend-ops` to still fuse ndoes (because the nodes are not used elsewhere in the graph),
but it actually doesn't fuse in the actual gpt-oss

* fix for qwen3 too

* change ifndef to ifdef
2025-10-29 15:55:06 +08:00
YaelLogic
338074c383 sycl: add RMS_NORM_BACK operation support (#16808)
* sycl: add RMS_NORM_BACK operation support

* sycl: rms_norm_back: add dual reduction paths (FP64 and FP32) and savepoint before further changes

* sycl: add RMS_NORM_BACK support

Implement RMS_NORM_BACK for the SYCL backend using FP32 compensated parallel reduction. Minimal docs updates (ops.md / SYCL.csv).

* revert: restore .gitignore and tools/run/CMakeLists.txt to upstream

* revert: restore tests/CMakeLists.txt to upstream

* sycl: optimize rms_norm_back

* fix: restore SYCL.csv to correct state with RMS_NORM_BACK support

* Update ggml/src/ggml-sycl/norm.cpp

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* fix: remove trailing whitespace and add missing newline (EditorConfig)

---------

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-10-29 14:14:39 +08:00
YaelGitAccount
851553ea6b cuda: add SET operation support (#16804)
* feat(cuda): add GGML_OP_SET support

Implement CUDA kernel for SET operation with f32 support.

All tests passing (14598/14598).

* cuda(set): add I32 support; keep F32

* refactor(cuda): use ggml_cuda_cpy to unify SET operator logic and remove code duplication

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-cuda/set.cu

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-28 20:10:28 +01:00
Georgi Gerganov
85a7d8677b memory : remove KV cache size padding (#16812)
* memory : remove KV cache size padding

* cont : restore padding for n_kv tensor shape

* server : use slot context size instead of training context size

* server : simplify context limit logic
2025-10-28 20:19:44 +02:00
Georgi Gerganov
a8ca18b4b8 llama-bench : clarify benchmarked parts of the computation (#16823) 2025-10-28 19:41:43 +02:00
l3utterfly
8284efc35c initialise buffer.device in ggml_hexagon_session (#16816) 2025-10-28 08:16:20 -07:00
Sam Malayek
1c1409e131 embedding: add raw option for --embd-output-format (#16541)
* Add --embd-output-format raw for plain numeric embedding output

This new option outputs embeddings as raw space-separated floats, without JSON or 'embedding N:' prefixes. Useful for downstream vector pipelines and scripting.

* Move raw output handling into format handling section

* Move raw output handling into else-if block with other format handlers

* Use LOG instead of printf for raw embedding output

* docs: document 'raw' embedding output format in arg.cpp and README
2025-10-28 12:51:41 +02:00
Johannes Gäßler
7a0e900e36 llama: consistent ctx <-> buf order for KV cache (#16746) 2025-10-28 11:23:54 +01:00
Aldehir Rojas
280d97be96 grammar : support array references in json schema (#16792)
* grammar : support array references in json schema

* Update json-schema-to-grammar.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* grammar : improve regex when naming ref derived rules

* grammar : replace non-conformant definitions array with anyOf test case

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-28 09:37:52 +01:00
Chenguang Li
3479efd112 CANN: Improve device ID handling and aclnnArange checks (#16752)
* cann: improve device ID handling and aclnnArange checks

- Stop relying on CANN's internal device ID retrieval; use a global variable instead.
- Enforce stricter dimension validation in aclnnArange for better compatibility across CANN versions.

* cann: use thread local var
2025-10-28 10:54:53 +08:00
Aman Gupta
463bbf20bf CUDA: add unused vars to mmvf and mmvq (#16807) 2025-10-28 10:31:21 +08:00
tamarPal
ad8d36beff sycl: add SSM_CONV operation support (#16800)
* feat: Add SYCL backend support for SSM_CONV operator

* Implement State Space Model Convolution 1D for SYCL backend
* Add optimized GPU kernel with parallel work distribution
* Support various tensor dimensions and batch sizes
* Full integration with existing SYCL infrastructure
* All tests pass with CPU backend equivalence verification

* feat: Implement SYCL backend support for SSM_CONV operation

- Add ggml-sycl/ssm_conv.cpp and ssm_conv.hpp
- Implement SYCL kernel for state space model convolution
- Ensure numerical correctness matches CPU implementation exactly
- Add proper type checking for F32 tensors in backend support
- All test-backend-ops SSM_CONV tests pass (14490/14490)

* Perfect SSM_CONV SYCL implementation - 100% CPU parity

 Flawless numerical accuracy - matches CPU bit-for-bit
 Optimal SYCL kernel design - efficient parallel execution
 Complete tensor layout compatibility - handles all strides correctly
 Robust error handling - comprehensive assertions and validation
 All official tests pass - 14,490/14,490 backend operations verified
 Production-ready code - clean, documented, maintainable

Implements state-space model 1D convolution with sliding window algorithm.
Eliminates blocking queue.wait() for better async performance.

* Clean SSM_CONV code - remove all comments for production

Removed all inline comments and documentation from the implementation.
Clean, minimal code ready for production merge.

* fix: Final formatting corrections for CI compliance

- Remove all trailing whitespace from SSM_CONV files
- Add proper final newlines to source files
- Fix C++17 compliance issues
- Ready for llama.cpp CI validation

* sycl: fix trailing whitespace and minor safety casts in ssm_conv

* fix: Clean up duplicated content in ssm_conv.hpp header file

---------

Co-authored-by: tamarPal <tamarPal@example.com>
2025-10-28 09:50:33 +08:00
Yuri Khrustalev
c053e18a66 chat: Add LFM2 tool handling (#16763)
* Add LFM2 tool handling

* fmt

* Apply suggestion from @ykhrustalev
2025-10-27 23:54:01 +01:00
Xuan-Son Nguyen
e1ab084803 mtmd : fix idefics3 preprocessing (#16806)
* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite
2025-10-27 23:12:16 +01:00
Diego Devesa
5a4ff43e7d llama : disable pipeline parallelism if compute buffer allocation fails (#16748) 2025-10-27 21:51:28 +01:00
Acly
10640e31aa ggml : fix interpolate with align-corners and ne=1 (#16700)
* ggml : fix interpolate with align-corners and ne=1

* avoid division by zero if one of the spatial dimensions is 1
* cpu, cuda, opencl returned correct result anyway due to clamp
* vulkan didn't clamp for align-corners so results were broken

* fix clang warning
2025-10-27 21:50:22 +01:00
Johannes Gäßler
80d28f104c HIP: fix AMDGPU_TARGETS, update documentation (#16803) 2025-10-27 21:39:49 +01:00
Xuan-Son Nguyen
c55d53acec model : add LightOnOCR-1B model (#16764)
* model : add LightOnOCR-1B model

* add test
2025-10-27 16:02:58 +01:00
Johannes Gäßler
945501f5ea llama: fix leaked buffers for mmap + split files (#16765) 2025-10-27 09:17:31 +01:00
Aman Gupta
75cbdd3fce test-backend-ops: print failed tests at the end (#16785) 2025-10-27 09:25:10 +08:00
tamarPal
2b9bd9bf4e sycl: add ROLL operation support (#16665)
* sycl: add ROLL operation support

- Implement ggml_sycl_roll function for F32 tensors
- Add multi-axis roll operation with SYCL kernel
- Support all 4 tensor dimensions with proper shift normalization
- Add roll.cpp and roll.hpp to SYCL backend
- Update backend dispatch and supports_op for GGML_OP_ROLL
- Tests: 17662/17662 pass with identical CPU reference results

* fix: remove trailing whitespace from roll.cpp

- Fix EditorConfig violations in ggml/src/ggml-sycl/roll.cpp
- Remove trailing spaces from lines 6, 11, 28, 47, 58, 60

* ci: retrigger

* sycl: remove wait() calls from ROLL operation

* fix: editorconfig — LF endings + final newline for roll.hpp

---------

Co-authored-by: tamarPal <tamarPal@example.com>
2025-10-27 09:20:24 +08:00
shani-f
59fc1ec8e8 sycl: add REPEAT_BACK operation support (#16734)
* SYCL repeat_back v1 — add core op + switch case

* Implement repeat_back SYCL operation and minor fixes

* Update ggml/src/ggml-sycl/repeat_back.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-sycl/repeat_back.hpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-27 09:19:50 +08:00
Aman Gupta
75d33b9302 CUDA: support for weight clamp in top-k norm (#16702) 2025-10-27 09:06:16 +08:00
Acly
3470a5c891 ggml-alloc : make gallocr prefer chunks that allow memory reuse (#16788) 2025-10-26 23:19:03 +01:00
Sigbjørn Skjæret
bd562fe4f7 cuda : use fast copy when src and dst are of different type and contiguous (#16789)
* use fast copy when src and dst are contiguous and same shape

* use int64_t ne and ignore shape
2025-10-26 21:31:41 +01:00
leejet
bbac6a26b2 ggml: fix cuda kernel launch configuration for k_compute_batched_ptrs to support large batch (#16744)
* fix k_compute_batched_ptrs

* add backend ops test

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* reduce the batch size

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-10-26 19:13:31 +01:00
Sigbjørn Skjæret
73a48c9790 convert : enable expert group selection for all models with it (#16691) 2025-10-26 17:21:23 +01:00
Sigbjørn Skjæret
f696428ce8 graph : add clamping to ffn_moe_weights_sum to avoid div-by-zero (#16655)
* add missing norm topk bias

* use clamping instead, update number and add comment
2025-10-26 17:20:32 +01:00
Sigbjørn Skjæret
7cce4f8158 model : set res->t_embd in SmallThinker models (#16782) 2025-10-26 16:08:52 +01:00
amirai21
8d8862829c docs : add Jamba to Text-only models list (#16778) 2025-10-26 13:01:20 +01:00
Aman Gupta
f77c13b91f CUDA: General GEMV fusion (#16715) 2025-10-26 19:28:04 +08:00
Gilad S.
3cfa9c3f12 vulkan: deduplicate Microsoft Direct3D12 devices (#16689)
* fix: deduplicate and deprioritize Microsoft Direct3D12 vulkan devices from the `vulkan-dozen` driver

* style: indent

* fix: decrease priority

* fix: switch to `||`
2025-10-26 05:37:38 +01:00
Galunid
5d195f17bc convert : handle mmproj filename/path properly (#16760)
* convert: handle mmproj model output filename properly

* remove redundant commits

* Add model_type to gguf utility

* Use mmproj- prefix instead of suffix

* Apply CISC suggestion

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-10-25 20:41:36 +02:00
Shunta Saito
226f295f4d model : set res->t_embd in PLaMo2 models (#16766) 2025-10-25 12:26:27 +02:00
Giuseppe Scrivano
f90b4a8efe vulkan: delete dead code (#16732)
ggml_vk_create_buffer_temp is not used anywhere, and it is the only
caller for ggml_vk_pool_malloc.

Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
2025-10-25 10:59:54 +02:00
Jeff Bolz
8423d01931 vulkan: Optimize SSM_SCAN (#16645) 2025-10-25 07:04:12 +02:00
compilade
5cca2542ac convert : avoid dequantizing mxfp4 for GPT-OSS (#16756) 2025-10-24 20:52:00 -04:00
leejet
55945d2ef5 ggml: fix CUDA grid launch condition for large block_nums.y in binbcast (#16742)
* Fix CUDA grid launch condition for large block_nums.y

* add backend ops test

* reduce test  repetitions
2025-10-24 21:39:37 +02:00
Aman Gupta
0bcb40b48c CUDA: use CUB for arbitary size argsort (#16754) 2025-10-24 20:46:19 +08:00
Florian Badie
69e9ff0103 webui: support q URL parameter (#16728)
* webui: support q URL parameter

Fixes #16722
I’ve checked that it works with Firefox’s AI tools

* webui: apply suggestions from code review

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui static build

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-10-24 14:10:29 +02:00
Daniel Bevenius
5a91109a5d model-conversion : add trust_remote_code for orig model run [no ci] (#16751)
This commit add the trust_remote_code=True argument when loading models
using AutoConfig, AutoTokenizer, and AutoModelForCausalLM for the run
original model script.

The motivation for this is that some models require custom code to be
loaded properly, and setting trust_remote_code=True avoids a prompt
asking for user confirmation:
```console
(venv) $ make causal-run-original-model
The repository /path/to/model contains custom code which must be
executed to correctly load the model. You can inspect the repository
content at /path/to/model.

Do you wish to run the custom code? [y/N] N
```

Having this as the default seems like a safe choice as we have to clone
or download the models we convert and would be expecting to run any
custom code they have.
2025-10-24 12:02:02 +02:00
741 changed files with 255276 additions and 77933 deletions

View File

@@ -3,7 +3,8 @@
# ==============================================================================
# Define the CANN base image for easier version updates later
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.1.rc1-910b-openeuler22.03-py3.10
ARG CHIP_TYPE=910b
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.3.rc1.alpha001-${CHIP_TYPE}-openeuler22.03-py3.11
# ==============================================================================
# BUILD STAGE
@@ -11,9 +12,6 @@ ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.1.rc1-910b-openeuler22.03-py3.10
# ==============================================================================
FROM ${CANN_BASE_IMAGE} AS build
# Define the Ascend chip model for compilation. Default is Ascend910B3
ARG ASCEND_SOC_TYPE=Ascend910B3
# -- Install build dependencies --
RUN yum install -y gcc g++ cmake make git libcurl-devel python3 python3-pip && \
yum clean all && \
@@ -36,20 +34,21 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
# For brevity, only core variables are listed here. You can paste the original ENV list here.
# -- Build llama.cpp --
# Use the passed ASCEND_SOC_TYPE argument and add general build options
# Use the passed CHIP_TYPE argument and add general build options
ARG CHIP_TYPE
RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh --force \
&& \
cmake -B build \
-DGGML_CANN=ON \
-DCMAKE_BUILD_TYPE=Release \
-DSOC_TYPE=${ASCEND_SOC_TYPE} \
-DSOC_TYPE=ascend${CHIP_TYPE} \
. && \
cmake --build build --config Release -j$(nproc)
# -- Organize build artifacts for copying in later stages --
# Create a lib directory to store all .so files
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
# Create a full directory to store all executables and Python scripts
RUN mkdir -p /app/full && \

View File

@@ -20,7 +20,7 @@ RUN if [ "$TARGETARCH" = "amd64" ] || [ "$TARGETARCH" = "arm64" ]; then \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -25,7 +25,7 @@ RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -21,7 +21,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -32,7 +32,7 @@ RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -34,6 +34,7 @@
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
useRpc ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
@@ -175,6 +176,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
(cmakeBool "GGML_RPC" useRpc)
]
++ optionals useCuda [
(

View File

@@ -45,7 +45,7 @@ RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \
&& find build -name "*.so" -exec cp {} /app/lib \;
&& find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \

View File

@@ -24,8 +24,9 @@ RUN --mount=type=cache,target=/root/.ccache \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_BACKEND_DL=OFF \
-DGGML_NATIVE=OFF \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS && \
cmake --build build --config Release -j $(nproc) && \
@@ -103,6 +104,7 @@ FROM base AS light
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]
@@ -116,6 +118,7 @@ ENV LLAMA_ARG_HOST=0.0.0.0
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-server /llama.cpp/bin
EXPOSE 8080

View File

@@ -1,42 +1,24 @@
ARG UBUNTU_VERSION=24.04
ARG UBUNTU_VERSION=26.04
FROM ubuntu:$UBUNTU_VERSION AS build
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget xz-utils
# Install Vulkan SDK
ARG VULKAN_VERSION=1.4.321.1
RUN ARCH=$(uname -m) && \
wget -qO /tmp/vulkan-sdk.tar.xz https://sdk.lunarg.com/sdk/download/${VULKAN_VERSION}/linux/vulkan-sdk-linux-${ARCH}-${VULKAN_VERSION}.tar.xz && \
mkdir -p /opt/vulkan && \
tar -xf /tmp/vulkan-sdk.tar.xz -C /tmp --strip-components=1 && \
mv /tmp/${ARCH}/* /opt/vulkan/ && \
rm -rf /tmp/*
# Install cURL and Vulkan SDK dependencies
RUN apt install -y libcurl4-openssl-dev curl \
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev
# Set environment variables
ENV VULKAN_SDK=/opt/vulkan
ENV PATH=$VULKAN_SDK/bin:$PATH
ENV LD_LIBRARY_PATH=$VULKAN_SDK/lib:$LD_LIBRARY_PATH
ENV CMAKE_PREFIX_PATH=$VULKAN_SDK:$CMAKE_PREFIX_PATH
ENV PKG_CONFIG_PATH=$VULKAN_SDK/lib/pkgconfig:$PKG_CONFIG_PATH
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libvulkan-dev glslc
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
find build -name "*.so*" -exec cp -P {} /app/lib \;
RUN mkdir -p /app/full \
&& cp build/bin/* /app/full \
@@ -50,7 +32,7 @@ RUN mkdir -p /app/full \
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
@@ -68,6 +50,7 @@ WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
build-essential \
git \
python3 \
python3-pip \

View File

@@ -60,3 +60,11 @@ end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[benches/**]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -65,3 +65,34 @@ runs:
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install Cuda Toolkit 13.1
if: ${{ inputs.cuda_version == '13.1' }}
shell: pwsh
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_crt/windows-x86_64/cuda_crt-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-13.2.0.9-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libnvvm/windows-x86_64/libnvvm-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-13.1.78-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_crt-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cudart-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvcc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvrtc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libcublas-windows-x86_64-13.2.0.9-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libnvvm-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvtx-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_profiler_api-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\visual_studio_integration-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cccl-windows-x86_64-13.1.78-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V13_1=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8

View File

@@ -9,7 +9,7 @@ llama.cpp is a large-scale C/C++ project for efficient LLM (Large Language Model
- **Size**: ~200k+ lines of code across 1000+ files
- **Architecture**: Modular design with main library (`libllama`) and 40+ executable tools/examples
- **Core dependency**: ggml tensor library (vendored in `ggml/` directory)
- **Backends supported**: CPU (AVX/NEON optimized), CUDA, Metal, Vulkan, SYCL, ROCm, MUSA
- **Backends supported**: CPU (AVX/NEON/RVV optimized), CUDA, Metal, Vulkan, SYCL, ROCm, MUSA
- **License**: MIT
## Build Instructions

4
.github/labeler.yml vendored
View File

@@ -76,6 +76,10 @@ ggml:
- changed-files:
- any-glob-to-any-file:
- ggml/**
model:
- changed-files:
- any-glob-to-any-file:
- src/models/**
nix:
- changed-files:
- any-glob-to-any-file:

View File

@@ -1,52 +0,0 @@
name: CI (AMD)
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'.github/workflows/build-amd.yml',
'**/CMakeLists.txt',
'**/.cmake',
'**/*.h',
'**/*.hpp',
'**/*.c',
'**/*.cpp',
'**/*.cu',
'**/*.cuh',
'**/*.comp'
]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp

View File

@@ -4,49 +4,49 @@ on:
workflow_call:
jobs:
ubuntu-24-riscv64-cpu-cross:
runs-on: ubuntu-24.04
# ubuntu-24-riscv64-cpu-cross:
# runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
# steps:
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo dpkg --add-architecture riscv64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# cmake --build build --config Release -j $(nproc)
# ubuntu-24-riscv64-vulkan-cross:
# runs-on: ubuntu-24.04

View File

@@ -1,120 +0,0 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -69,13 +69,6 @@ jobs:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
run: |
@@ -83,6 +76,8 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=OFF \
-DGGML_METAL_SHADER_DEBUG=ON \
@@ -110,13 +105,6 @@ jobs:
key: macOS-latest-cmake-x64
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Build
id: cmake_build
run: |
@@ -126,6 +114,8 @@ jobs:
cmake -B build \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=OFF \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
@@ -151,25 +141,19 @@ jobs:
key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
brew install curl
- name: Dawn Dependency
id: dawn-depends
run: |
DAWN_VERSION="v1.0.0"
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-macos-latest-Release.tar.gz"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar -xvf artifact.tar.gz -C dawn --strip-components=1
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-macos-latest-Release.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
@@ -216,7 +200,7 @@ jobs:
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
python3 python3-pip python3-dev \
libjpeg-dev build-essential libcurl4-openssl-dev \
libjpeg-dev build-essential libssl-dev \
git-lfs
- name: Python Dependencies
@@ -237,6 +221,8 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
@@ -293,13 +279,15 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential libssl-dev
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
@@ -310,6 +298,8 @@ jobs:
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
@@ -334,7 +324,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential libssl-dev
- name: Build
id: cmake_build
@@ -342,6 +332,8 @@ jobs:
mkdir build
cd build
cmake .. \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_LLGUIDANCE=ON
cmake --build . --config Release -j $(nproc)
@@ -372,12 +364,14 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
sudo apt-get install build-essential libssl-dev
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
@@ -404,12 +398,14 @@ jobs:
- name: Dependencies
id: depends
run: |
sudo apt-get install -y glslc libvulkan-dev libcurl4-openssl-dev
sudo apt-get install -y glslc libvulkan-dev libssl-dev
- name: Configure
id: cmake_configure
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
@@ -439,7 +435,7 @@ jobs:
run: |
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
@@ -465,6 +461,8 @@ jobs:
run: |
source ./vulkan_sdk/setup-env.sh
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_VULKAN=ON
cmake --build build --config Release -j $(nproc)
@@ -496,7 +494,7 @@ jobs:
run: |
sudo add-apt-repository -y ppa:kisak/kisak-mesa
sudo apt-get update -y
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
@@ -521,21 +519,25 @@ jobs:
id: dawn-depends
run: |
sudo apt-get install -y libxrandr-dev libxinerama-dev libxcursor-dev mesa-common-dev libx11-xcb-dev libxi-dev
DAWN_VERSION="v1.0.0"
DAWN_VERSION="v2.0.0"
DAWN_OWNER="reeselevine"
DAWN_REPO="dawn"
DAWN_ASSET_NAME="Dawn-a1a6b45cced25a3b7f4fb491e0ae70796cc7f22b-ubuntu-latest-Release.tar.gz"
DAWN_ASSET_NAME="Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.zip"
echo "Fetching release asset from https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
curl -L -o artifact.tar.gz \
curl -L -o artifact.zip \
"https://github.com/${DAWN_OWNER}/${DAWN_REPO}/releases/download/${DAWN_VERSION}/${DAWN_ASSET_NAME}"
mkdir dawn
tar -xvf artifact.tar.gz -C dawn --strip-components=1
unzip artifact.zip
tar -xvf Dawn-5e9a4865b1635796ccc77dd30057f2b4002a1355-ubuntu-latest-Release.tar.gz -C dawn --strip-components=1
- name: Build
id: cmake_build
run: |
export Dawn_DIR=dawn/lib64/cmake/Dawn
cmake -B build -DGGML_WEBGPU=ON
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_WEBGPU=ON
cmake --build build --config Release -j $(nproc)
- name: Test
@@ -545,6 +547,46 @@ jobs:
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-24-wasm-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-wasm-webgpu
evict-old-files: 1d
- name: Install Emscripten
run: |
git clone https://github.com/emscripten-core/emsdk.git
cd emsdk
./emsdk install latest
./emsdk activate latest
- name: Fetch emdawnwebgpu
run: |
DAWN_TAG="v20251027.212519"
EMDAWN_PKG="emdawnwebgpu_pkg-${DAWN_TAG}.zip"
echo "Downloading ${EMDAWN_PKG}"
curl -L -o emdawn.zip \
"https://github.com/google/dawn/releases/download/${DAWN_TAG}/${EMDAWN_PKG}"
unzip emdawn.zip
- name: Build WASM WebGPU
run: |
source emsdk/emsdk_env.sh
emcmake cmake -B build-wasm \
-DGGML_WEBGPU=ON \
-DLLAMA_CURL=OFF \
-DEMDAWNWEBGPU_DIR=emdawnwebgpu_pkg
cmake --build build-wasm --target test-backend-ops -j $(nproc)
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -558,7 +600,7 @@ jobs:
id: depends
run: |
sudo apt-get update
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libssl-dev rocwmma-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -570,6 +612,8 @@ jobs:
id: cmake_build
run: |
cmake -B build -S . \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DGGML_HIP=ON
@@ -588,7 +632,7 @@ jobs:
id: depends
run: |
apt-get update
apt-get install -y build-essential git cmake libcurl4-openssl-dev
apt-get install -y build-essential git cmake libssl-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -600,6 +644,8 @@ jobs:
id: cmake_build
run: |
cmake -B build -S . \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_MUSA=ON
cmake --build build --config Release -j $(nproc)
@@ -624,7 +670,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -646,6 +692,8 @@ jobs:
run: |
source /opt/intel/oneapi/setvars.sh
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx
@@ -672,7 +720,7 @@ jobs:
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
- name: install oneAPI MKL library
shell: bash
@@ -694,6 +742,8 @@ jobs:
run: |
source /opt/intel/oneapi/setvars.sh
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DGGML_SYCL=ON \
-DCMAKE_C_COMPILER=icx \
-DCMAKE_CXX_COMPILER=icpx \
@@ -720,12 +770,6 @@ jobs:
key: macOS-latest-cmake-ios
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
@@ -757,12 +801,6 @@ jobs:
key: macOS-latest-cmake-tvos
evict-old-files: 1d
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
@@ -788,12 +826,6 @@ jobs:
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build
id: cmake_build
run: |
@@ -836,12 +868,6 @@ jobs:
name: llama-xcframework
path: build-apple/llama.xcframework/
- name: Dependencies
id: depends
continue-on-error: true
run: |
brew update
- name: Build llama.cpp with CMake
id: cmake_build
run: |
@@ -993,21 +1019,12 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
-DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
- name: Add libopenblas.dll
id: add_libopenblas_dll
@@ -1051,7 +1068,7 @@ jobs:
DEBIAN_FRONTEND: noninteractive
run: |
apt update
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
apt install -y cmake build-essential ninja-build libgomp1 git libssl-dev
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
@@ -1062,10 +1079,12 @@ jobs:
- name: Build with CMake
run: |
cmake -S . -B build -G Ninja \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_FATAL_WARNINGS=ON \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_CUDA_ARCHITECTURES=89-real \
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_NATIVE=OFF \
-DGGML_CUDA=ON
cmake --build build
@@ -1099,25 +1118,20 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
cmake -S . -B build -G "Ninja Multi-Config" ^
-DLLAMA_BUILD_SERVER=ON ^
-DLLAMA_CURL=OFF ^
-DLLAMA_BUILD_BORINGSSL=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^
-DGGML_RPC=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
-DGGML_RPC=ON
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
@@ -1149,7 +1163,7 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
# TODO: add ssl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
@@ -1206,14 +1220,8 @@ jobs:
key: ${{ github.job }}
evict-old-files: 1d
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
@@ -1222,11 +1230,12 @@ jobs:
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DLLAMA_CURL=OFF `
-DLLAMA_BUILD_BORINGSSL=ON `
-DROCM_DIR="${env:HIP_PATH}" `
-DGGML_HIP=ON `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_RPC=ON `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
-DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
ios-xcode-build:
@@ -1388,14 +1397,10 @@ jobs:
strategy:
matrix:
arch: [x86, aarch64]
cann:
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
- 'Release'
chip_type: ['910b', '310p']
build: ['Release']
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.cann }}
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -1412,7 +1417,7 @@ jobs:
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=${{ matrix.device }}
-DSOC_TYPE=ascend${{ matrix.chip_type }}
cmake --build build -j $(nproc)
# TODO: simplify the following workflows using a matrix
@@ -1597,6 +1602,34 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# ggml-ci-x64-amd-vulkan:
# runs-on: [self-hosted, Linux, X64, AMD]
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
# - name: Test
# id: ggml-ci
# run: |
# vulkaninfo --summary
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# ggml-ci-x64-amd-rocm:
# runs-on: [self-hosted, Linux, X64, AMD]
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
# - name: Test
# id: ggml-ci
# run: |
# amd-smi static
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@@ -1649,3 +1682,381 @@ jobs:
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ubuntu-cpu-cmake-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Check environment
run: |
uname -a
gcc --version
g++ --version
ldd --version
cmake --version
rustc --version
- name: Setup ccache
run: |
# Set unique cache directory for this job
export CCACHE_DIR="$HOME/.ccache/cpu-cmake-rv64-native"
mkdir -p "$CCACHE_DIR"
# Configure ccache for optimal performance
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
# Enable more aggressive caching
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DGGML_RPC=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L 'main|curl' --verbose --timeout 900
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-cmake-sanitizer-riscv64-native:
runs-on: RISCV64
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug]
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
# Unique cache directory per matrix combination
export CCACHE_DIR="$HOME/.ccache/sanitizer-${{ matrix.sanitizer }}-${{ matrix.build_type }}"
mkdir -p "$CCACHE_DIR"
# Configure ccache
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=ON \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-llguidance-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/llguidance-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_LLGUIDANCE=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cmake-rpc-riscv64-native:
runs-on: RISCV64
continue-on-error: true
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/rpc-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose
ggml-ci-arm64-graviton4-kleidiai:
runs-on: ah-ubuntu_22_04-c8g_8x
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
set -euxo pipefail
sudo apt-get update
sudo DEBIAN_FRONTEND=noninteractive NEEDRESTART_MODE=a \
apt-get install -y \
build-essential \
libcurl4-openssl-dev \
python3-venv \
gpg \
wget \
time \
git-lfs
git lfs install
# install the latest cmake
sudo install -d /usr/share/keyrings
wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc \
| gpg --dearmor \
| sudo tee /usr/share/keyrings/kitware-archive-keyring.gpg >/dev/null
echo 'deb [signed-by=/usr/share/keyrings/kitware-archive-keyring.gpg] https://apt.kitware.com/ubuntu/ jammy main' \
| sudo tee /etc/apt/sources.list.d/kitware.list
sudo apt-get update
sudo apt-get install -y cmake
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ggml-ci-arm64-graviton4-kleidiai
evict-old-files: 1d
- name: Test
id: ggml-ci
run: |
GG_BUILD_KLEIDIAI=1 \
GG_BUILD_EXTRA_TESTS_0=1 \
bash ./ci/run.sh ./tmp/results ./tmp/mnt

52
.github/workflows/check-vendor.yml vendored Normal file
View File

@@ -0,0 +1,52 @@
name: Check vendor
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'vendor/**',
'scripts/sync_vendor.py'
]
pull_request:
types: [opened, synchronize, reopened]
paths: [
'vendor/**',
'scripts/sync_vendor.py'
]
jobs:
check-vendor:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Python
uses: actions/setup-python@v4
with:
python-version: '3.x'
- name: Run vendor sync
run: |
set -euo pipefail
python3 scripts/sync_vendor.py
- name: Check for changes
run: |
set -euo pipefail
# detect modified or untracked files
changed=$(git status --porcelain --untracked-files=all || true)
if [ -n "$changed" ]; then
echo "Vendor sync modified files:"
echo "$changed" | awk '{ print $2 }' | sed '/^$/d'
echo "Failing because vendor files mismatch. Please update scripts/sync_vendor.py"
exit 1
else
echo "Vendor files are up-to-date."
fi

View File

@@ -40,7 +40,7 @@ jobs:
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }

View File

@@ -66,14 +66,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz
name: llama-bin-macos-arm64.tar.gz
macOS-x64:
runs-on: macos-15-intel
@@ -120,22 +127,29 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz
name: llama-bin-macos-x64.tar.gz
ubuntu-22-cpu:
strategy:
matrix:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 's390x-z15' # z15 because our CI runners are on z15
os: ubuntu-22.04-s390x
- build: 's390x'
os: ubuntu-24.04-s390x
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64'
# os: ubuntu-22.04-arm
@@ -182,14 +196,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz
name: llama-bin-ubuntu-${{ matrix.build }}.tar.gz
ubuntu-22-vulkan:
runs-on: ubuntu-22.04
@@ -235,14 +256,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz
name: llama-bin-ubuntu-vulkan-x64.tar.gz
windows-cpu:
runs-on: windows-2025
@@ -298,7 +326,7 @@ jobs:
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
7z a -snl llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -380,7 +408,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
7z a -snl llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -393,7 +421,7 @@ jobs:
strategy:
matrix:
cuda: ['12.4']
cuda: ['12.4', '13.1']
steps:
- name: Clone
@@ -434,7 +462,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
7z a -snl llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -448,6 +476,7 @@ jobs:
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\bin\x64" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
@@ -526,7 +555,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
7z a -snl llama-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
@@ -632,7 +661,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
7z a -snl llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -685,13 +714,20 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
zip -y -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
tar -czvf llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz -C build-apple llama.xcframework
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
name: llama-${{ steps.tag.outputs.name }}-xcframework.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
name: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@@ -768,6 +804,7 @@ jobs:
echo "Moving other artifacts..."
mv -v artifact/*.zip release
mv -v artifact/*.tar.gz release
- name: Create release
id: create_release
@@ -776,6 +813,34 @@ jobs:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.tag.outputs.name }}
body: |
> [!WARNING]
> **Release Format Update**: Linux releases will soon use .tar.gz archives instead of .zip. Please make the necessary changes to your deployment scripts.
<details open>
${{ github.event.head_commit.message }}
</details>
**macOS/iOS:**
- [macOS Apple Silicon (arm64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz)
- [macOS Intel (x64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz)
- [iOS XCFramework](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz)
**Linux:**
- [Ubuntu x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.tar.gz)
- [Ubuntu x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz)
- [Ubuntu s390x (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-s390x.tar.gz)
**Windows:**
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
- [Windows x64 (CUDA 12)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (CUDA 13)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-13.1-x64.zip)
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)
- name: Upload release
id: upload_release
@@ -787,7 +852,7 @@ jobs:
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./release')) {
if (path.extname(file) === '.zip') {
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,

View File

@@ -56,7 +56,7 @@ jobs:
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
libssl-dev
- name: Clone
id: checkout
@@ -209,7 +209,7 @@ jobs:
working-directory: tools/server/webui
- name: Run UI tests
run: npm run test:ui
run: npm run test:ui -- --testTimeout=60000
working-directory: tools/server/webui
- name: Run E2E tests
@@ -242,7 +242,7 @@ jobs:
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
libssl-dev
- name: Clone
id: checkout
@@ -283,6 +283,8 @@ jobs:
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
@@ -295,6 +297,8 @@ jobs:
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
@@ -306,6 +310,8 @@ jobs:
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
@@ -345,16 +351,10 @@ jobs:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake -B build -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@@ -368,13 +368,6 @@ jobs:
run: |
pip install -r tools/server/tests/requirements.txt
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}

View File

@@ -9,6 +9,7 @@ jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
if: github.repository_owner == 'ggml-org'
steps:
- name: Install cargo binstall

110
.gitignore vendored
View File

@@ -20,52 +20,40 @@
*.so
*.swp
*.tmp
*.DS_Store
# IDE / OS
.cache/
.ccls-cache/
.direnv/
.DS_Store
.envrc
.idea/
.swiftpm
.vs/
.vscode/
nppBackup
/.cache/
/.ccls-cache/
/.direnv/
/.envrc
/.idea/
/.swiftpm
/.vs/
/.vscode/
/nppBackup
# Coverage
gcovr-report/
lcov-report/
/gcovr-report/
/lcov-report/
# Build Artifacts
tags
.build/
build*
release
debug
!build-info.cmake
!build-info.cpp.in
!build-info.sh
!build.zig
!docs/build.md
/tags
/.build/
/build*
/release
/debug
/libllama.so
/llama-*
/vulkan-shaders-gen
android-ndk-*
arm_neon.h
cmake-build-*
CMakeSettings.json
compile_commands.json
ggml-metal-embed.metal
llama-batched-swift
/rpc-server
out/
tmp/
autogen-*.md
/out/
/tmp/
/autogen-*.md
# Deprecated
@@ -74,44 +62,38 @@ autogen-*.md
# CI
!.github/workflows/*.yml
!/.github/workflows/*.yml
# Models
models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
!models/templates
/models/*
/models-mnt
!/models/.editorconfig
!/models/ggml-vocab-*.gguf*
!/models/templates
# Zig
zig-out/
zig-cache/
# Logs
ppl-*.txt
qnt-*.txt
perf-*.txt
/zig-out/
/zig-cache/
# Examples
examples/jeopardy/results.txt
tools/server/*.css.hpp
tools/server/*.html.hpp
tools/server/*.js.hpp
tools/server/*.mjs.hpp
tools/server/*.gz.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts
!examples/*/*/*.kts
!examples/sycl/*.bat
!examples/sycl/*.sh
/examples/jeopardy/results.txt
/tools/server/*.css.hpp
/tools/server/*.html.hpp
/tools/server/*.js.hpp
/tools/server/*.mjs.hpp
/tools/server/*.gz.hpp
!/build_64.sh
!/examples/*.bat
!/examples/*/*.kts
!/examples/*/*/*.kts
!/examples/sycl/*.bat
!/examples/sycl/*.sh
# Server Web UI temporary files
node_modules
tools/server/webui/dist
/tools/server/webui/node_modules
/tools/server/webui/dist
# Python
@@ -147,8 +129,10 @@ poetry.toml
# Local scripts
/run-vim.sh
/run-chat.sh
.ccache/
/.ccache/
# IDE
*.code-workspace
.windsurf/
/*.code-workspace
/.windsurf/
# emscripten
a.out.*

View File

@@ -33,10 +33,24 @@ endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
option(LLAMA_WASM_MEM64 "llama: use 64-bit memory in WASM builds" ON)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
# Use 64-bit memory to support backend_get_memory queries
# TODO: analyze performance impact, see https://spidermonkey.dev/blog/2025/01/15/is-memory64-actually-worth-using
if (LLAMA_WASM_MEM64)
add_compile_options("-sMEMORY64=1")
add_link_options("-sMEMORY64=1")
endif()
add_link_options("-sALLOW_MEMORY_GROWTH=1")
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" OFF)
option(LLAMA_BUILD_HTML "llama: build HTML file" ON)
if (LLAMA_BUILD_HTML)
set(CMAKE_EXECUTABLE_SUFFIX ".html")
endif()
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -58,6 +72,12 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (LLAMA_STANDALONE)
# enable parallel builds for msbuild
list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
@@ -92,6 +112,7 @@ option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_HTTPLIB "llama: if libcurl is disabled, use httplib to download model from an URL" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
@@ -178,11 +199,6 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#
@@ -200,6 +216,9 @@ endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
if (LLAMA_HTTPLIB)
add_subdirectory(vendor/cpp-httplib)
endif()
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)

View File

@@ -2,23 +2,25 @@
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren @CISC
/.github/actions/ @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/arg.* @ggerganov
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/chat.* @pwilkin
/common/chat-peg-parser.* @aldehir
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/common/unicode.* @aldehir
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
@@ -40,21 +42,14 @@
/examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren
/ggml/src/ggml-alloc.c @slaren
/ggml/src/ggml-backend* @slaren
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/include/ @ggerganov
/ggml/src/ggml-common.h @ggerganov
/ggml/src/ggml-cpu/ @ggerganov
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
@@ -62,19 +57,19 @@
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-impl.h @ggerganov
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-threading.* @ggerganov
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/ggml.c @ggerganov
/ggml/src/ggml.cpp @ggerganov
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC
/media/ @ggerganov
@@ -86,27 +81,22 @@
/src/llama-arch.* @CISC
/src/llama-chat.* @ngxson
/src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tests/test-chat-.* @pwilkin
/tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/* @ngxson @ggerganov # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov

View File

@@ -16,9 +16,10 @@ The project differentiates between 3 levels of contributors:
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
# Pull requests (for maintainers)

View File

@@ -17,14 +17,13 @@ LLM inference in C/C++
## Hot topics
- **[guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)**
- **[[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)**
- **[guide : using the new WebUI of llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/16938)**
- [guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)
- [[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Hot PRs: [All](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+) | [Open](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Apr+label%3Ahot+is%3Aopen)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
@@ -62,6 +61,7 @@ range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- RVV, ZVFH, ZFH and ZICBOP support for RISC-V architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Vulkan and SYCL backend support
@@ -84,6 +84,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [x] [Jamba](https://huggingface.co/ai21labs)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
@@ -241,6 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [crashr/gppm](https://github.com/crashr/gppm) launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
- [unslothai/unsloth](https://github.com/unslothai/unsloth) 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
</details>
@@ -274,6 +276,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [ZenDNN](docs/build.md#zendnn) | AMD CPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
@@ -611,3 +614,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@@ -65,4 +65,6 @@ However, If you have discovered a security vulnerability in this project, please
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
{
"chars": 2296.1916666666666,
"chars:std": 986.051306946325,
"score": 0.925,
"score:std": 0.26339134382131846
}

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,264 @@
## System info
```bash
uname --all
Linux spark-17ed 6.11.0-1016-nvidia #16-Ubuntu SMP PREEMPT_DYNAMIC Sun Sep 21 16:52:46 UTC 2025 aarch64 aarch64 aarch64 GNU/Linux
g++ --version
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
nvidia-smi
Sun Nov 2 10:43:25 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
```
## ggml-org/gpt-oss-20b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
build: eeee367de (6989)
## ggml-org/gpt-oss-120b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
build: eeee367de (6989)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
build: eeee367de (6989)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
build: eeee367de (6989)
## ggml-org/gemma-3-4b-it-qat-GGUF
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
build: eeee367de (6989)

File diff suppressed because one or more lines are too long

View File

@@ -454,6 +454,8 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -468,6 +470,8 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet

View File

@@ -45,7 +45,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=${LLAMA_FATAL_WARNINGS:-ON} -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
@@ -121,7 +121,12 @@ fi
if [ -n "${GG_BUILD_KLEIDIAI}" ]; then
echo ">>===== Enabling KleidiAI support"
CANDIDATES=("armv9-a+dotprod+i8mm" "armv8.6-a+dotprod+i8mm" "armv8.2-a+dotprod")
CANDIDATES=(
"armv9-a+dotprod+i8mm+sve2"
"armv9-a+dotprod+i8mm"
"armv8.6-a+dotprod+i8mm"
"armv8.2-a+dotprod"
)
CPU=""
for cpu in "${CANDIDATES[@]}"; do
@@ -423,10 +428,10 @@ function gg_run_qwen3_0_6b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -518,8 +523,8 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@@ -559,7 +564,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029

View File

@@ -39,26 +39,10 @@ if(Git_FOUND)
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if (CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
if(CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()

View File

@@ -50,12 +50,18 @@ add_library(${TARGET} STATIC
base64.hpp
chat-parser.cpp
chat-parser.h
chat-parser-xml-toolcall.h
chat-parser-xml-toolcall.cpp
chat-peg-parser.cpp
chat-peg-parser.h
chat.cpp
chat.h
common.cpp
common.h
console.cpp
console.h
download.cpp
download.h
http.h
json-partial.cpp
json-partial.h
@@ -65,22 +71,27 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
peg-parser.cpp
peg-parser.h
regex-partial.cpp
regex-partial.h
sampling.cpp
sampling.h
speculative.cpp
speculative.h
unicode.cpp
unicode.h
)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
# TODO: use list(APPEND LLAMA_COMMON_EXTRA_LIBS ...)
set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
# Use curl to download model url
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
@@ -88,42 +99,10 @@ if (LLAMA_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
endif()
if (LLAMA_OPENSSL)
find_package(OpenSSL)
if (OpenSSL_FOUND)
include(CheckCSourceCompiles)
set(SAVED_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
set(CMAKE_REQUIRED_INCLUDES ${OPENSSL_INCLUDE_DIR})
check_c_source_compiles("
#include <openssl/opensslv.h>
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
# if OPENSSL_VERSION_NUMBER < 0x1010107f
# error bad version
# endif
#else
# if OPENSSL_VERSION_NUMBER < 0x30000000L
# error bad version
# endif
#endif
int main() { return 0; }
" OPENSSL_VERSION_SUPPORTED)
set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES})
if (OPENSSL_VERSION_SUPPORTED)
message(STATUS "OpenSSL found: ${OPENSSL_VERSION}")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT)
target_link_libraries(${TARGET} PUBLIC OpenSSL::SSL OpenSSL::Crypto)
if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN)
find_library(CORE_FOUNDATION_FRAMEWORK CoreFoundation REQUIRED)
find_library(SECURITY_FRAMEWORK Security REQUIRED)
target_link_libraries(${TARGET} PUBLIC ${CORE_FOUNDATION_FRAMEWORK} ${SECURITY_FRAMEWORK})
endif()
endif()
else()
message(STATUS "OpenSSL not found, SSL support disabled")
endif()
elseif (LLAMA_HTTPLIB)
# otherwise, use cpp-httplib
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_HTTPLIB)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} cpp-httplib)
endif()
if (LLAMA_LLGUIDANCE)

File diff suppressed because it is too large Load Diff

View File

@@ -59,8 +59,8 @@ struct common_arg {
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output);
bool has_value_from_env();
bool get_value_from_env(std::string & output) const;
bool has_value_from_env() const;
std::string to_string();
};

View File

@@ -0,0 +1,861 @@
#include "chat.h"
#include "chat-parser.h"
#include "common.h"
#include "json-partial.h"
#include "json-schema-to-grammar.h"
#include "log.h"
#include "regex-partial.h"
using json = nlohmann::ordered_json;
class xml_toolcall_syntax_exception : public std::runtime_error {
public:
xml_toolcall_syntax_exception(const std::string & message) : std::runtime_error(message) {}
};
template<typename T>
inline void sort_uniq(std::vector<T> &vec) {
std::sort(vec.begin(), vec.end());
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}
template<typename T>
inline bool all_space(const T &str) {
return std::all_of(str.begin(), str.end(), [](unsigned char ch) { return std::isspace(ch); });
}
static size_t utf8_truncate_safe(const std::string_view s) {
size_t len = s.size();
if (len == 0) return 0;
size_t i = len;
for (size_t back = 0; back < 4 && i > 0; ++back) {
--i;
unsigned char c = s[i];
if ((c & 0x80) == 0) {
return len;
} else if ((c & 0xC0) == 0xC0) {
size_t expected_len = 0;
if ((c & 0xE0) == 0xC0) expected_len = 2;
else if ((c & 0xF0) == 0xE0) expected_len = 3;
else if ((c & 0xF8) == 0xF0) expected_len = 4;
else return i;
if (len - i >= expected_len) {
return len;
} else {
return i;
}
}
}
return len - std::min(len, size_t(3));
}
inline void utf8_truncate_safe_resize(std::string &s) {
s.resize(utf8_truncate_safe(s));
}
inline std::string_view utf8_truncate_safe_view(const std::string_view s) {
return s.substr(0, utf8_truncate_safe(s));
}
static std::optional<common_chat_msg_parser::find_regex_result> try_find_2_literal_splited_by_spaces(common_chat_msg_parser & builder, const std::string & literal1, const std::string & literal2) {
if (literal1.size() == 0) return builder.try_find_literal(literal2);
const auto saved_pos = builder.pos();
while (auto res = builder.try_find_literal(literal1)) {
builder.consume_spaces();
const auto match_len = std::min(literal2.size(), builder.input().size() - builder.pos());
if (builder.input().compare(builder.pos(), match_len, literal2, 0, match_len) == 0) {
if (res->prelude.size() != res->groups[0].begin - saved_pos) {
res->prelude = builder.str({saved_pos, res->groups[0].begin});
}
builder.move_to(builder.pos() + match_len);
res->groups[0].end = builder.pos();
GGML_ASSERT(res->groups[0].begin != res->groups[0].end);
return res;
}
builder.move_to(res->groups[0].begin + 1);
}
builder.move_to(saved_pos);
return std::nullopt;
}
/**
* make a GBNF that accept any strings except those containing any of the forbidden strings.
*/
std::string make_gbnf_excluding(std::vector<std::string> forbids) {
constexpr auto charclass_escape = [](unsigned char c) -> std::string {
if (c == '\\' || c == ']' || c == '^' || c == '-') {
std::string s = "\\";
s.push_back((char)c);
return s;
}
if (isprint(c)) {
return std::string(1, (char)c);
}
char buf[16];
snprintf(buf, 15, "\\x%02X", c);
return std::string(buf);
};
constexpr auto build_expr = [charclass_escape](auto self, const std::vector<std::string>& forbids, int l, int r, int depth) -> std::string {
std::vector<std::pair<unsigned char, std::pair<int,int>>> children;
int i = l;
while (i < r) {
const std::string &s = forbids[i];
if ((int)s.size() == depth) {
++i;
continue;
}
unsigned char c = (unsigned char)s[depth];
int j = i;
while (j < r && (int)forbids[j].size() > depth &&
(unsigned char)forbids[j][depth] == c) {
++j;
}
children.push_back({c, {i, j}});
i = j;
}
std::vector<std::string> alts;
if (!children.empty()) {
std::string cls;
for (auto &ch : children) cls += charclass_escape(ch.first);
alts.push_back(std::string("[^") + cls + "]");
}
for (auto &ch : children) {
std::string childExpr = self(self, forbids, ch.second.first, ch.second.second, depth+1);
if (!childExpr.empty()) {
std::string quoted_ch = "\"";
if (ch.first == '\\') quoted_ch += "\\\\";
else if (ch.first == '"') quoted_ch += "\\\"";
else if (isprint(ch.first)) quoted_ch.push_back(ch.first);
else {
char buf[16];
snprintf(buf, 15, "\\x%02X", ch.first);
quoted_ch += buf;
}
quoted_ch += "\"";
std::string branch = quoted_ch + std::string(" ") + childExpr;
alts.push_back(branch);
}
}
if (alts.empty()) return "";
std::ostringstream oss;
oss << "( ";
for (size_t k = 0; k < alts.size(); ++k) {
if (k) oss << " | ";
oss << alts[k];
}
oss << " )";
return oss.str();
};
if (forbids.empty()) return "( . )*";
sort(forbids.begin(), forbids.end());
std::string expr = build_expr(build_expr, forbids, 0, forbids.size(), 0);
if (expr.empty()) {
std::string cls;
for (auto &s : forbids) if (!s.empty()) cls += charclass_escape((unsigned char)s[0]);
expr = std::string("( [^") + cls + "] )";
}
if (forbids.size() == 1)
return expr + "*";
else
return std::string("( ") + expr + " )*";
}
/**
* Build grammar for xml-style tool call
* form.scope_start and form.scope_end can be empty.
* Requires data.format for model-specific hacks.
*/
void build_grammar_xml_tool_call(common_chat_params & data, const json & tools, const struct xml_tool_call_format & form) {
GGML_ASSERT(!form.tool_start.empty());
GGML_ASSERT(!form.tool_sep.empty());
GGML_ASSERT(!form.key_start.empty());
GGML_ASSERT(!form.val_end.empty());
GGML_ASSERT(!form.tool_end.empty());
std::string key_val_sep = form.key_val_sep;
if (form.key_val_sep2) {
key_val_sep += "\n";
key_val_sep += *form.key_val_sep2;
}
GGML_ASSERT(!key_val_sep.empty());
if (tools.is_array() && !tools.empty()) {
data.grammar = build_grammar([&](const common_grammar_builder &builder) {
auto string_arg_val = form.last_val_end ?
builder.add_rule("string-arg-val", make_gbnf_excluding({form.val_end, *form.last_val_end})) :
builder.add_rule("string-arg-val", make_gbnf_excluding({form.val_end}));
std::vector<std::string> tool_rules;
for (const auto & tool : tools) {
if (!tool.contains("type") || tool.at("type") != "function" || !tool.contains("function")) {
LOG_WRN("Skipping tool without function: %s", tool.dump(2).c_str());
continue;
}
const auto & function = tool.at("function");
if (!function.contains("name") || !function.at("name").is_string()) {
LOG_WRN("Skipping invalid function (invalid name): %s", function.dump(2).c_str());
continue;
}
if (!function.contains("parameters") || !function.at("parameters").is_object()) {
LOG_WRN("Skipping invalid function (invalid parameters): %s", function.dump(2).c_str());
continue;
}
std::string name = function.at("name");
auto parameters = function.at("parameters");
builder.resolve_refs(parameters);
struct parameter_rule {
std::string symbol_name;
bool is_required;
};
std::vector<parameter_rule> arg_rules;
if (!parameters.contains("properties") || !parameters.at("properties").is_object()) {
LOG_WRN("Skipping invalid function (invalid properties): %s", function.dump(2).c_str());
continue;
} else {
std::vector<std::string> requiredParameters;
if (parameters.contains("required")) {
try { parameters.at("required").get_to(requiredParameters); }
catch (const std::runtime_error&) {
LOG_WRN("Invalid function required parameters, ignoring: %s", function.at("required").dump(2).c_str());
}
}
sort_uniq(requiredParameters);
for (const auto & [key, value] : parameters.at("properties").items()) {
std::string quoted_key = key;
bool required = std::binary_search(requiredParameters.begin(), requiredParameters.end(), key);
if (form.key_start.back() == '"' && key_val_sep[0] == '"') {
quoted_key = gbnf_format_literal(key);
quoted_key = quoted_key.substr(1, quoted_key.size() - 2);
}
arg_rules.push_back(parameter_rule {builder.add_rule("func-" + name + "-kv-" + key,
gbnf_format_literal(form.key_start) + " " +
gbnf_format_literal(quoted_key) + " " +
gbnf_format_literal(key_val_sep) + " " +
((value.contains("type") && value["type"].is_string() && value["type"] == "string" && (!form.raw_argval || *form.raw_argval)) ?
(form.raw_argval ?
string_arg_val :
"( " + string_arg_val + " | " + builder.add_schema(name + "-arg-" + key, value) + " )"
) :
builder.add_schema(name + "-arg-" + key, value)
)
), required});
}
}
auto next_arg_with_sep = builder.add_rule(name + "-last-arg-end", form.last_val_end ? gbnf_format_literal(*form.last_val_end) : gbnf_format_literal(form.val_end));
decltype(next_arg_with_sep) next_arg = "\"\"";
for (auto i = arg_rules.size() - 1; /* i >= 0 && */ i < arg_rules.size(); --i) {
std::string include_this_arg = arg_rules[i].symbol_name + " " + next_arg_with_sep;
next_arg = builder.add_rule(name + "-arg-after-" + std::to_string(i), arg_rules[i].is_required ?
include_this_arg : "( " + include_this_arg + " ) | " + next_arg
);
include_this_arg = gbnf_format_literal(form.val_end) + " " + include_this_arg;
next_arg_with_sep = builder.add_rule(name + "-arg-after-" + std::to_string(i) + "-with-sep", arg_rules[i].is_required ?
include_this_arg : "( " + include_this_arg + " ) | " + next_arg_with_sep
);
}
std::string quoted_name = name;
if (form.tool_start.back() == '"' && form.tool_sep[0] == '"') {
quoted_name = gbnf_format_literal(name);
quoted_name = quoted_name.substr(1, quoted_name.size() - 2);
}
quoted_name = gbnf_format_literal(quoted_name);
// Kimi-K2 uses functions.{{ tool_call['function']['name'] }}:{{ loop.index }} as function name
if (data.format == COMMON_CHAT_FORMAT_KIMI_K2) {
quoted_name = "\"functions.\" " + quoted_name + " \":\" [0-9]+";
}
tool_rules.push_back(builder.add_rule(name + "-call",
gbnf_format_literal(form.tool_start) + " " +
quoted_name + " " +
gbnf_format_literal(form.tool_sep) + " " +
next_arg
));
}
auto tool_call_once = builder.add_rule("root-tool-call-once", string_join(tool_rules, " | "));
auto tool_call_more = builder.add_rule("root-tool-call-more", gbnf_format_literal(form.tool_end) + " " + tool_call_once);
auto call_end = builder.add_rule("root-call-end", form.last_tool_end ? gbnf_format_literal(*form.last_tool_end) : gbnf_format_literal(form.tool_end));
auto tool_call_multiple_with_end = builder.add_rule("root-tool-call-multiple-with-end", tool_call_once + " " + tool_call_more + "* " + call_end);
builder.add_rule("root",
(form.scope_start.empty() ? "" : gbnf_format_literal(form.scope_start) + " ") +
tool_call_multiple_with_end + "?" +
(form.scope_end.empty() ? "" : " " + gbnf_format_literal(form.scope_end))
);
});
// grammar trigger for tool call
data.grammar_triggers.push_back({ COMMON_GRAMMAR_TRIGGER_TYPE_WORD, form.scope_start + form.tool_start });
}
}
/**
* Parse XML-Style tool call for given xml_tool_call_format. Return false for invalid syntax and get the position untouched.
* Throws xml_toolcall_syntax_exception if there is invalid syntax and cannot recover the original status for common_chat_msg_parser.
* form.scope_start, form.tool_sep and form.scope_end can be empty.
*/
inline bool parse_xml_tool_calls(common_chat_msg_parser & builder, const struct xml_tool_call_format & form) {
GGML_ASSERT(!form.tool_start.empty());
GGML_ASSERT(!form.key_start.empty());
GGML_ASSERT(!form.key_val_sep.empty());
GGML_ASSERT(!form.val_end.empty());
GGML_ASSERT(!form.tool_end.empty());
// Helper to choose return false or throw error
constexpr auto return_error = [](common_chat_msg_parser & builder, auto &start_pos, const bool &recovery) {
LOG_DBG("Failed to parse XML-Style tool call at position: %s\n", gbnf_format_literal(builder.consume_rest().substr(0, 20)).c_str());
if (recovery) {
builder.move_to(start_pos);
return false;
} else throw xml_toolcall_syntax_exception("Tool call parsing failed with unrecoverable errors. Try using a grammar to constrain the models output.");
};
// Drop substring from needle to end from a JSON
constexpr auto partial_json = [](std::string &json_str, std::string_view needle = "XML_TOOL_CALL_PARTIAL_FLAG") {
auto pos = json_str.rfind(needle);
if (pos == std::string::npos) {
return false;
}
for (auto i = pos + needle.size(); i < json_str.size(); ++i) {
unsigned char ch = static_cast<unsigned char>(json_str[i]);
if (ch != '\'' && ch != '"' && ch != '}' && ch != ':' && !std::isspace(ch)) {
return false;
}
}
if (pos != 0 && json_str[pos - 1] == '"') {
--pos;
}
json_str.resize(pos);
return true;
};
// Helper to generate a partial argument JSON
constexpr auto gen_partial_json = [partial_json](auto set_partial_arg, auto &arguments, auto &builder, auto &function_name) {
auto rest = builder.consume_rest();
utf8_truncate_safe_resize(rest);
set_partial_arg(rest, "XML_TOOL_CALL_PARTIAL_FLAG");
auto tool_str = arguments.dump();
if (partial_json(tool_str)) {
if (builder.add_tool_call(function_name, "", tool_str)) {
return;
}
}
LOG_DBG("Failed to parse partial XML-Style tool call, fallback to non-partial: %s\n", tool_str.c_str());
};
// Helper to find a close (because there may be form.last_val_end or form.last_tool_end)
constexpr auto try_find_close = [](
common_chat_msg_parser & builder,
const std::string & end,
const std::optional<std::string> & alt_end,
const std::string & end_next,
const std::optional<std::string> & alt_end_next
) {
auto saved_pos = builder.pos();
auto tc = builder.try_find_literal(end);
auto val_end_size = end.size();
if (alt_end) {
auto pos_1 = builder.pos();
builder.move_to(saved_pos);
auto tc2 = try_find_2_literal_splited_by_spaces(builder, *alt_end, end_next);
if (alt_end_next) {
builder.move_to(saved_pos);
auto tc3 = try_find_2_literal_splited_by_spaces(builder, *alt_end, *alt_end_next);
if (tc3 && (!tc2 || tc2->prelude.size() > tc3->prelude.size())) {
tc2 = tc3;
}
}
if (tc2 && (!tc || tc->prelude.size() > tc2->prelude.size())) {
tc = tc2;
tc->groups[0].end = std::min(builder.input().size(), tc->groups[0].begin + alt_end->size());
builder.move_to(tc->groups[0].end);
val_end_size = alt_end->size();
} else {
builder.move_to(pos_1);
}
}
return std::make_pair(val_end_size, tc);
};
// Helper to find a val_end or last_val_end, returns matched pattern size
const auto try_find_val_end = [try_find_close, &builder, &form]() {
return try_find_close(builder, form.val_end, form.last_val_end, form.tool_end, form.last_tool_end);
};
// Helper to find a tool_end or last_tool_end, returns matched pattern size
const auto try_find_tool_end = [try_find_close, &builder, &form]() {
return try_find_close(builder, form.tool_end, form.last_tool_end, form.scope_end, std::nullopt);
};
bool recovery = true;
const auto start_pos = builder.pos();
if (!all_space(form.scope_start)) {
if (auto tc = builder.try_find_literal(form.scope_start)) {
if (all_space(tc->prelude)) {
if (form.scope_start.size() != tc->groups[0].end - tc->groups[0].begin)
throw common_chat_msg_partial_exception("Partial literal: " + gbnf_format_literal(form.scope_start));
} else {
builder.move_to(start_pos);
return false;
}
} else return false;
}
while (auto tc = builder.try_find_literal(form.tool_start)) {
if (!all_space(tc->prelude)) {
LOG_DBG("XML-Style tool call: Expected %s, but found %s, trying to match next pattern\n",
gbnf_format_literal(form.tool_start).c_str(),
gbnf_format_literal(tc->prelude).c_str()
);
builder.move_to(tc->groups[0].begin - tc->prelude.size());
break;
}
// Find tool name
auto func_name = builder.try_find_literal(all_space(form.tool_sep) ? form.key_start : form.tool_sep);
if (!func_name) {
auto [sz, tc] = try_find_tool_end();
func_name = tc;
}
if (!func_name) {
// Partial tool name not supported
throw common_chat_msg_partial_exception("incomplete tool_call");
}
// If the model generate multiple tool call and the first tool call has no argument
if (func_name->prelude.find(form.tool_end) != std::string::npos || (form.last_tool_end ? func_name->prelude.find(*form.last_tool_end) != std::string::npos : false)) {
builder.move_to(func_name->groups[0].begin - func_name->prelude.size());
auto [sz, tc] = try_find_tool_end();
func_name = tc;
}
// Parse tool name
builder.move_to(all_space(form.tool_sep) ? func_name->groups[0].begin : func_name->groups[0].end);
std::string function_name = string_strip(func_name->prelude);
// Kimi-K2 uses functions.{{ tool_call['function']['name'] }}:{{ loop.index }} as function name
if (builder.syntax().format == COMMON_CHAT_FORMAT_KIMI_K2) {
if (string_starts_with(function_name, "functions.")) {
static const std::regex re(":\\d+$");
if (std::regex_search(function_name, re)) {
function_name = function_name.substr(10, function_name.rfind(":") - 10);
}
}
}
// Argument JSON
json arguments = json::object();
// Helper to generate a partial argument JSON
const auto gen_partial_args = [&](auto set_partial_arg) {
gen_partial_json(set_partial_arg, arguments, builder, function_name);
};
// Parse all arg_key/arg_value pairs
while (auto tc = builder.try_find_literal(form.key_start)) {
if (!all_space(tc->prelude)) {
LOG_DBG("XML-Style tool call: Expected %s, but found %s, trying to match next pattern\n",
gbnf_format_literal(form.key_start).c_str(),
gbnf_format_literal(tc->prelude).c_str()
);
builder.move_to(tc->groups[0].begin - tc->prelude.size());
break;
}
if (tc->groups[0].end - tc->groups[0].begin != form.key_start.size()) {
auto tool_call_arg = arguments.dump();
if (tool_call_arg.size() != 0 && tool_call_arg[tool_call_arg.size() - 1] == '}') {
tool_call_arg.resize(tool_call_arg.size() - 1);
}
builder.add_tool_call(function_name, "", tool_call_arg);
throw common_chat_msg_partial_exception("Partial literal: " + gbnf_format_literal(form.key_start));
}
// Parse arg_key
auto key_res = builder.try_find_literal(form.key_val_sep);
if (!key_res) {
gen_partial_args([&](auto &rest, auto &needle) {arguments[rest + needle] = "";});
throw common_chat_msg_partial_exception("Expected " + gbnf_format_literal(form.key_val_sep) + " after " + gbnf_format_literal(form.key_start));
}
if (key_res->groups[0].end - key_res->groups[0].begin != form.key_val_sep.size()) {
gen_partial_args([&](auto &, auto &needle) {arguments[key_res->prelude + needle] = "";});
throw common_chat_msg_partial_exception("Partial literal: " + gbnf_format_literal(form.key_val_sep));
}
auto &key = key_res->prelude;
recovery = false;
// Parse arg_value
if (form.key_val_sep2) {
if (auto tc = builder.try_find_literal(*form.key_val_sep2)) {
if (!all_space(tc->prelude)) {
LOG_DBG("Failed to parse XML-Style tool call: Unexcepted %s between %s and %s\n",
gbnf_format_literal(tc->prelude).c_str(),
gbnf_format_literal(form.key_val_sep).c_str(),
gbnf_format_literal(*form.key_val_sep2).c_str()
);
return return_error(builder, start_pos, false);
}
if (tc->groups[0].end - tc->groups[0].begin != form.key_val_sep2->size()) {
gen_partial_args([&](auto &, auto &needle) {arguments[key] = needle;});
throw common_chat_msg_partial_exception("Partial literal: " + gbnf_format_literal(*form.key_val_sep2));
}
} else {
gen_partial_args([&](auto &, auto &needle) {arguments[key] = needle;});
throw common_chat_msg_partial_exception("Expected " + gbnf_format_literal(*form.key_val_sep2) + " after " + gbnf_format_literal(form.key_val_sep));
}
}
auto val_start = builder.pos();
// Test if arg_val is a partial JSON
std::optional<common_json> value_json = std::nullopt;
if (!form.raw_argval || !*form.raw_argval) {
try { value_json = builder.try_consume_json(); }
catch (const std::runtime_error&) { builder.move_to(val_start); }
// TODO: Delete this when json_partial adds top-level support for null/true/false
if (builder.pos() == val_start) {
const static std::regex number_regex(R"([0-9-][0-9]*(\.\d*)?([eE][+-]?\d*)?)");
builder.consume_spaces();
std::string_view sv = utf8_truncate_safe_view(builder.input());
sv.remove_prefix(builder.pos());
std::string rest = "a";
if (sv.size() < 6) rest = sv;
if (string_starts_with("null", rest) || string_starts_with("true", rest) || string_starts_with("false", rest) || std::regex_match(sv.begin(), sv.end(), number_regex)) {
value_json = {123, {"123", "123"}};
builder.consume_rest();
} else {
builder.move_to(val_start);
}
}
}
// If it is a JSON and followed by </arg_value>, parse as json
// cannot support streaming because it may be a plain text starting with JSON
if (value_json) {
auto json_end = builder.pos();
builder.consume_spaces();
if (builder.pos() == builder.input().size()) {
if (form.raw_argval && !*form.raw_argval && (value_json->json.is_string() || value_json->json.is_object() || value_json->json.is_array())) {
arguments[key] = value_json->json;
auto json_str = arguments.dump();
if (!value_json->healing_marker.json_dump_marker.empty()) {
GGML_ASSERT(std::string::npos != json_str.rfind(value_json->healing_marker.json_dump_marker));
json_str.resize(json_str.rfind(value_json->healing_marker.json_dump_marker));
} else {
GGML_ASSERT(json_str.back() == '}');
json_str.resize(json_str.size() - 1);
}
builder.add_tool_call(function_name, "", json_str);
} else {
gen_partial_args([&](auto &, auto &needle) {arguments[key] = needle;});
}
LOG_DBG("Possible JSON arg_value: %s\n", value_json->json.dump().c_str());
throw common_chat_msg_partial_exception("JSON arg_value detected. Waiting for more tokens for validations.");
}
builder.move_to(json_end);
auto [val_end_size, tc] = try_find_val_end();
if (tc && all_space(tc->prelude) && value_json->healing_marker.marker.empty()) {
if (tc->groups[0].end - tc->groups[0].begin != val_end_size) {
gen_partial_args([&](auto &, auto &needle) {arguments[key] = needle;});
LOG_DBG("Possible terminated JSON arg_value: %s\n", value_json->json.dump().c_str());
throw common_chat_msg_partial_exception("Partial literal: " + gbnf_format_literal(form.val_end) + (form.last_val_end ? gbnf_format_literal(*form.last_val_end) : ""));
} else arguments[key] = value_json->json;
} else builder.move_to(val_start);
}
// If not, parse as plain text
if (val_start == builder.pos()) {
if (auto [val_end_size, value_plain] = try_find_val_end(); value_plain) {
auto &value_str = value_plain->prelude;
if (form.trim_raw_argval) value_str = string_strip(value_str);
if (value_plain->groups[0].end - value_plain->groups[0].begin != val_end_size) {
gen_partial_args([&](auto &, auto &needle) {arguments[key] = value_str + needle;});
throw common_chat_msg_partial_exception(
"Expected " + gbnf_format_literal(form.val_end) +
" after " + gbnf_format_literal(form.key_val_sep) +
(form.key_val_sep2 ? " " + gbnf_format_literal(*form.key_val_sep2) : "")
);
}
arguments[key] = value_str;
} else {
if (form.trim_raw_argval) {
gen_partial_args([&](auto &rest, auto &needle) {arguments[key] = string_strip(rest) + needle;});
} else {
gen_partial_args([&](auto &rest, auto &needle) {arguments[key] = rest + needle;});
}
throw common_chat_msg_partial_exception(
"Expected " + gbnf_format_literal(form.val_end) +
" after " + gbnf_format_literal(form.key_val_sep) +
(form.key_val_sep2 ? " " + gbnf_format_literal(*form.key_val_sep2) : "")
);
}
}
}
// Consume closing tag
if (auto [tool_end_size, tc] = try_find_tool_end(); tc) {
if (!all_space(tc->prelude)) {
LOG_DBG("Failed to parse XML-Style tool call: Expected %s, but found %s\n",
gbnf_format_literal(form.tool_end).c_str(),
gbnf_format_literal(tc->prelude).c_str()
);
return return_error(builder, start_pos, recovery);
}
if (tc->groups[0].end - tc->groups[0].begin == tool_end_size) {
// Add the parsed tool call
if (!builder.add_tool_call(function_name, "", arguments.dump())) {
throw common_chat_msg_partial_exception("Failed to add XML-Style tool call");
}
recovery = false;
continue;
}
}
auto tool_call_arg = arguments.dump();
if (tool_call_arg.size() != 0 && tool_call_arg[tool_call_arg.size() - 1] == '}') {
tool_call_arg.resize(tool_call_arg.size() - 1);
}
builder.add_tool_call(function_name, "", tool_call_arg);
throw common_chat_msg_partial_exception("Expected " + gbnf_format_literal(form.tool_end) + " after " + gbnf_format_literal(form.val_end));
}
if (auto tc = builder.try_find_literal(form.scope_end)) {
if (!all_space(tc->prelude)) {
LOG_DBG("Failed to parse XML-Style tool call: Expected %s, but found %s\n",
gbnf_format_literal(form.scope_end).c_str(),
gbnf_format_literal(tc->prelude).c_str()
);
return return_error(builder, start_pos, recovery);
}
} else {
if (all_space(form.scope_end)) return true;
builder.consume_spaces();
if (builder.pos() == builder.input().size())
throw common_chat_msg_partial_exception("incomplete tool calls");
LOG_DBG("Failed to parse XML-Style tool call: Expected %s, but found %s\n",
gbnf_format_literal(form.scope_end).c_str(),
gbnf_format_literal(builder.consume_rest()).c_str()
);
return return_error(builder, start_pos, recovery);
}
return true;
}
/**
* Parse XML-Style tool call for given xml_tool_call_format. Return false for invalid syntax and get the position untouched.
* May cause std::runtime_error if there is invalid syntax because partial valid tool call is already sent out to client.
* form.scope_start, form.tool_sep and form.scope_end can be empty.
*/
bool common_chat_msg_parser::try_consume_xml_tool_calls(const struct xml_tool_call_format & form) {
auto pos = pos_;
auto tsize = result_.tool_calls.size();
try { return parse_xml_tool_calls(*this, form); }
catch (const xml_toolcall_syntax_exception&) {}
move_to(pos);
result_.tool_calls.resize(tsize);
return false;
}
/**
* Parse content uses reasoning and XML-Style tool call
* TODO: Note that form.allow_toolcall_in_think is not tested yet. If anyone confirms it works, this comment can be removed.
*/
inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, const struct xml_tool_call_format & form, const std::string & start_think = "<think>", const std::string & end_think = "</think>") {
constexpr auto rstrip = [](std::string &s) {
s.resize(std::distance(s.begin(), std::find_if(s.rbegin(), s.rend(), [](unsigned char ch) { return !std::isspace(ch); }).base()));
};
// Erase substring from l to r, along with additional spaces nearby
constexpr auto erase_spaces = [](auto &str, size_t l, size_t r) {
while (/* l > -1 && */ --l < str.size() && std::isspace(static_cast<unsigned char>(str[l])));
++l;
while (++r < str.size() && std::isspace(static_cast<unsigned char>(str[r])));
if (l < r) str[l] = '\n';
if (l + 1 < r) str[l + 1] = '\n';
if (l != 0) l += 2;
str.erase(l, r - l);
return l;
};
constexpr auto trim_suffix = [](std::string &content, std::initializer_list<std::string_view> list) {
auto best_match = content.size();
for (auto pattern: list) {
if (pattern.size() == 0) continue;
for (auto match_idx = content.size() - std::min(pattern.size(), content.size()); content.size() > match_idx; match_idx++) {
auto match_len = content.size() - match_idx;
if (content.compare(match_idx, match_len, pattern.data(), match_len) == 0 && best_match > match_idx) {
best_match = match_idx;
}
}
}
if (content.size() > best_match) {
content.erase(best_match);
}
};
const auto trim_potential_partial_word = [&start_think, &end_think, &form, trim_suffix](std::string &content) {
return trim_suffix(content, {
start_think, end_think, form.scope_start, form.tool_start, form.tool_sep, form.key_start,
form.key_val_sep, form.key_val_sep2 ? form.key_val_sep2->c_str() : "",
form.val_end, form.last_val_end ? form.last_val_end->c_str() : "",
form.tool_end, form.last_tool_end ? form.last_tool_end->c_str() : "",
form.scope_end
});
};
// Trim leading spaces without affecting keyword matching
static const common_regex spaces_regex("\\s*");
{
auto tc = builder.consume_regex(spaces_regex);
auto spaces = builder.str(tc.groups[0]);
auto s1 = spaces.size();
trim_potential_partial_word(spaces);
auto s2 = spaces.size();
builder.move_to(builder.pos() - (s1 - s2));
}
// Parse content
bool reasoning_unclosed = builder.syntax().thinking_forced_open;
std::string unclosed_reasoning_content("");
for (;;) {
auto tc = try_find_2_literal_splited_by_spaces(builder, form.scope_start, form.tool_start);
std::string content;
std::string tool_call_start;
if (tc) {
content = std::move(tc->prelude);
tool_call_start = builder.str(tc->groups[0]);
LOG_DBG("Matched tool start: %s\n", gbnf_format_literal(tool_call_start).c_str());
} else {
content = builder.consume_rest();
utf8_truncate_safe_resize(content);
}
// Handle unclosed think block
if (reasoning_unclosed) {
if (auto pos = content.find(end_think); pos == std::string::npos && builder.pos() != builder.input().size()) {
unclosed_reasoning_content += content;
if (form.allow_toolcall_in_think) {
builder.move_to(tc->groups[0].begin);
if (!builder.try_consume_xml_tool_calls(form)) {
unclosed_reasoning_content += tool_call_start;
builder.move_to(tc->groups[0].end);
}
} else {
unclosed_reasoning_content += tool_call_start;
}
continue;
} else {
reasoning_unclosed = false;
std::string reasoning_content;
if (pos == std::string::npos) {
reasoning_content = std::move(content);
} else {
reasoning_content = content.substr(0, pos);
content.erase(0, pos + end_think.size());
}
if (builder.pos() == builder.input().size() && all_space(content)) {
rstrip(reasoning_content);
trim_potential_partial_word(reasoning_content);
rstrip(reasoning_content);
if (reasoning_content.empty()) {
rstrip(unclosed_reasoning_content);
trim_potential_partial_word(unclosed_reasoning_content);
rstrip(unclosed_reasoning_content);
if (unclosed_reasoning_content.empty()) continue;
}
}
if (builder.syntax().reasoning_format == COMMON_REASONING_FORMAT_NONE || builder.syntax().reasoning_in_content) {
builder.add_content(start_think);
builder.add_content(unclosed_reasoning_content);
builder.add_content(reasoning_content);
if (builder.pos() != builder.input().size() || !all_space(content))
builder.add_content(end_think);
} else {
builder.add_reasoning_content(unclosed_reasoning_content);
builder.add_reasoning_content(reasoning_content);
}
unclosed_reasoning_content.clear();
}
}
// Handle multiple think block
bool toolcall_in_think = false;
for (auto think_start = content.find(start_think); think_start != std::string::npos; think_start = content.find(start_think, think_start)) {
if (auto think_end = content.find(end_think, think_start + start_think.size()); think_end != std::string::npos) {
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content) {
auto reasoning_content = content.substr(think_start + start_think.size(), think_end - think_start - start_think.size());
builder.add_reasoning_content(reasoning_content);
think_start = erase_spaces(content, think_start, think_end + end_think.size() - 1);
} else {
think_start = think_end + end_think.size() - 1;
}
} else {
// This <tool_call> start is in thinking block, skip this tool call
auto pos = think_start + start_think.size();
unclosed_reasoning_content = content.substr(pos) + tool_call_start;
reasoning_unclosed = true;
content.resize(think_start);
toolcall_in_think = true;
}
}
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content) {
rstrip(content);
// Handle unclosed </think> token from content: delete all </think> token
if (auto pos = content.rfind(end_think); pos != std::string::npos) {
while (pos != std::string::npos) {
pos = erase_spaces(content, pos, pos + end_think.size() - 1);
pos = content.rfind(end_think, pos);
}
}
// Strip if needed
if (content.size() > 0 && std::isspace(static_cast<unsigned char>(content[0]))) {
content = string_strip(content);
}
}
// remove potential partial suffix
if (content.size() > 0 && builder.pos() == builder.input().size() && unclosed_reasoning_content.empty()) {
rstrip(content);
trim_potential_partial_word(content);
rstrip(content);
}
// Add content
if (content.size() != 0) {
// If there are multiple content blocks
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content && builder.result().content.size() != 0) {
builder.add_content("\n\n");
}
builder.add_content(content);
}
// This <tool_call> start is in thinking block, skip this tool call
if (toolcall_in_think && !form.allow_toolcall_in_think) {
continue;
}
// There is no tool call and all content is parsed
if (!tc) {
GGML_ASSERT(builder.pos() == builder.input().size());
GGML_ASSERT(unclosed_reasoning_content.empty());
GGML_ASSERT(!reasoning_unclosed);
break;
}
builder.move_to(tc->groups[0].begin);
if (builder.try_consume_xml_tool_calls(form)) {
auto end_of_tool = builder.pos();
builder.consume_spaces();
if (builder.pos() != builder.input().size()) {
builder.move_to(end_of_tool);
if (!builder.result().content.empty()) {
builder.add_content("\n\n");
}
}
} else {
static const common_regex next_char_regex(".");
auto c = builder.str(builder.consume_regex(next_char_regex).groups[0]);
rstrip(c);
builder.add_content(c);
}
}
}
/**
* Parse content uses reasoning and XML-Style tool call
* TODO: Note that form.allow_toolcall_in_think is not tested yet. If anyone confirms it works, this comment can be removed.
*/
void common_chat_msg_parser::consume_reasoning_with_xml_tool_calls(const struct xml_tool_call_format & form, const std::string & start_think, const std::string & end_think) {
parse_msg_with_xml_tool_calls(*this, form, start_think, end_think);
}

View File

@@ -0,0 +1,45 @@
#pragma once
#include "chat.h"
#include <nlohmann/json.hpp>
#include <optional>
#include <string>
#include <vector>
// Sample config:
// MiniMax-M2 (left): <minimax:tool_call>\n<invoke name="tool-name">\n<parameter name="key">value</parameter>\n...</invoke>\n...</minimax:tool_call>
// GLM 4.5 (right): <tool_call>function_name\n<arg_key>key</arg_key>\n<arg_value>value</arg_value>\n</tool_call>
struct xml_tool_call_format {
std::string scope_start; // <minimax:tool_call>\n // \n // can be empty
std::string tool_start; // <invoke name=\" // <tool_call>
std::string tool_sep; // \">\n // \n // can be empty only for parse_xml_tool_calls
std::string key_start; // <parameter name=\" // <arg_key>
std::string key_val_sep; // \"> // </arg_key>\n<arg_value>
std::string val_end; // </parameter>\n // </arg_value>\n
std::string tool_end; // </invoke>\n // </tool_call>\n
std::string scope_end; // </minimax:tool_call> // // can be empty
// Set this if there can be dynamic spaces inside key_val_sep.
// e.g. key_val_sep=</arg_key> key_val_sep2=<arg_value> for GLM4.5
std::optional<std::string> key_val_sep2 = std::nullopt;
// Set true if argval should only be raw string. e.g. Hello "world" hi
// Set false if argval should only be json string. e.g. "Hello \"world\" hi"
// Defaults to std::nullopt, both will be allowed.
std::optional<bool> raw_argval = std::nullopt;
std::optional<std::string> last_val_end = std::nullopt;
std::optional<std::string> last_tool_end = std::nullopt;
bool trim_raw_argval = false;
bool allow_toolcall_in_think = false; // TODO: UNTESTED!!!
};
// make a GBNF that accept any strings except those containing any of the forbidden strings.
std::string make_gbnf_excluding(std::vector<std::string> forbids);
/**
* Build grammar for xml-style tool call
* form.scope_start and form.scope_end can be empty.
* Requires data.format for model-specific hacks.
*/
void build_grammar_xml_tool_call(common_chat_params & data, const nlohmann::ordered_json & tools, const struct xml_tool_call_format & form);

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,7 @@
#pragma once
#include "chat.h"
#include "chat-parser-xml-toolcall.h"
#include "json-partial.h"
#include "regex-partial.h"
@@ -119,5 +120,14 @@ class common_chat_msg_parser {
const std::vector<std::vector<std::string>> & content_paths = {}
);
/**
* Parse XML-Style tool call for given xml_tool_call_format. Return false for invalid syntax and get the position untouched.
* form.scope_start, form.tool_sep and form.scope_end can be empty.
*/
bool try_consume_xml_tool_calls(const struct xml_tool_call_format & form);
// Parse content uses reasoning and XML-Style tool call
void consume_reasoning_with_xml_tool_calls(const struct xml_tool_call_format & form, const std::string & start_think = "<think>", const std::string & end_think = "</think>");
void clear_tools();
};

114
common/chat-peg-parser.cpp Normal file
View File

@@ -0,0 +1,114 @@
#include "chat-peg-parser.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
static std::string_view trim_trailing_space(std::string_view sv) {
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
sv.remove_suffix(1);
}
return sv;
}
void common_chat_peg_mapper::from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result) {
arena.visit(result, [this](const common_peg_ast_node & node) {
map(node);
});
}
void common_chat_peg_mapper::map(const common_peg_ast_node & node) {
bool is_reasoning = node.tag == common_chat_peg_builder::REASONING;
bool is_content = node.tag == common_chat_peg_builder::CONTENT;
if (is_reasoning) {
result.reasoning_content = std::string(trim_trailing_space(node.text));
}
if (is_content) {
result.content = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_native_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_native_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_native_builder::TOOL_NAME;
bool is_tool_id = node.tag == common_chat_peg_native_builder::TOOL_ID;
bool is_tool_args = node.tag == common_chat_peg_native_builder::TOOL_ARGS;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
}
if (is_tool_id && current_tool) {
current_tool->id = std::string(trim_trailing_space(node.text));
}
if (is_tool_name && current_tool) {
current_tool->name = std::string(trim_trailing_space(node.text));
}
if (is_tool_args && current_tool) {
current_tool->arguments = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_constructed_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_constructed_builder::TOOL_NAME;
bool is_tool_close = node.tag == common_chat_peg_constructed_builder::TOOL_CLOSE;
bool is_arg_open = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_OPEN;
bool is_arg_close = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_CLOSE;
bool is_arg_name = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_NAME;
bool is_arg_string = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_STRING_VALUE;
bool is_arg_json = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_JSON_VALUE;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
arg_count = 0;
}
if (is_tool_name) {
current_tool->name = std::string(node.text);
current_tool->arguments = "{";
}
if (is_arg_open) {
needs_closing_quote = false;
}
if (is_arg_name && current_tool) {
if (arg_count > 0) {
current_tool->arguments += ",";
}
current_tool->arguments += json(trim_trailing_space(node.text)).dump() + ":";
++arg_count;
}
if (is_arg_string && current_tool) {
// Serialize to JSON, but exclude the end quote
std::string dumped = json(node.text).dump();
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
needs_closing_quote = true;
}
if (is_arg_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
}
}
if (is_arg_json && current_tool) {
current_tool->arguments += std::string(trim_trailing_space(node.text));
}
if (is_tool_close && current_tool) {
current_tool->arguments += "}";
}
}

105
common/chat-peg-parser.h Normal file
View File

@@ -0,0 +1,105 @@
#pragma once
#include "chat.h"
#include "peg-parser.h"
class common_chat_peg_builder : public common_peg_parser_builder {
public:
static constexpr const char * REASONING_BLOCK = "reasoning-block";
static constexpr const char * REASONING = "reasoning";
static constexpr const char * CONTENT = "content";
common_peg_parser reasoning_block(const common_peg_parser & p) { return tag(REASONING_BLOCK, p); }
common_peg_parser reasoning(const common_peg_parser & p) { return tag(REASONING, p); }
common_peg_parser content(const common_peg_parser & p) { return tag(CONTENT, p); }
};
inline common_peg_arena build_chat_peg_parser(const std::function<common_peg_parser(common_chat_peg_builder & builder)> & fn) {
common_chat_peg_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_mapper {
public:
common_chat_msg & result;
common_chat_peg_mapper(common_chat_msg & msg) : result(msg) {}
virtual void from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result);
virtual void map(const common_peg_ast_node & node);
};
class common_chat_peg_native_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_ID = "tool-id";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARGS = "tool-args";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_id(const common_peg_parser & p) { return atomic(tag(TOOL_ID, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_args(const common_peg_parser & p) { return tag(TOOL_ARGS, p); }
};
class common_chat_peg_native_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
public:
common_chat_peg_native_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_native_parser(const std::function<common_peg_parser(common_chat_peg_native_builder & builder)> & fn) {
common_chat_peg_native_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_constructed_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARG = "tool-arg";
static constexpr const char * TOOL_ARG_OPEN = "tool-arg-open";
static constexpr const char * TOOL_ARG_CLOSE = "tool-arg-close";
static constexpr const char * TOOL_ARG_NAME = "tool-arg-name";
static constexpr const char * TOOL_ARG_STRING_VALUE = "tool-arg-string-value";
static constexpr const char * TOOL_ARG_JSON_VALUE = "tool-arg-json-value";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_arg(const common_peg_parser & p) { return tag(TOOL_ARG, p); }
common_peg_parser tool_arg_open(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_OPEN, p)); }
common_peg_parser tool_arg_close(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_CLOSE, p)); }
common_peg_parser tool_arg_name(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_NAME, p)); }
common_peg_parser tool_arg_string_value(const common_peg_parser & p) { return tag(TOOL_ARG_STRING_VALUE, p); }
common_peg_parser tool_arg_json_value(const common_peg_parser & p) { return tag(TOOL_ARG_JSON_VALUE, p); }
};
class common_chat_peg_constructed_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
int arg_count = 0;
bool needs_closing_quote = false;
public:
common_chat_peg_constructed_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_constructed_parser(const std::function<common_peg_parser(common_chat_peg_constructed_builder & builder)> & fn) {
common_chat_peg_constructed_builder builder;
builder.set_root(fn(builder));
return builder.build();
}

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@
#pragma once
#include "common.h"
#include "peg-parser.h"
#include <functional>
#include <chrono>
#include <string>
@@ -76,7 +77,7 @@ struct common_chat_msg_diff {
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
@@ -116,6 +117,18 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS,
COMMON_CHAT_FORMAT_GLM_4_5,
COMMON_CHAT_FORMAT_MINIMAX_M2,
COMMON_CHAT_FORMAT_KIMI_K2,
COMMON_CHAT_FORMAT_QWEN3_CODER_XML,
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,
COMMON_CHAT_FORMAT_PEG_NATIVE,
COMMON_CHAT_FORMAT_PEG_CONSTRUCTED,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -147,6 +160,7 @@ struct common_chat_params {
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
std::string parser;
};
struct common_chat_syntax {
@@ -156,6 +170,7 @@ struct common_chat_syntax {
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
common_peg_arena parser = {};
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
@@ -199,6 +214,7 @@ const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);

View File

@@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@@ -26,7 +27,6 @@
#include <sstream>
#include <string>
#include <thread>
#include <unordered_map>
#include <unordered_set>
#include <vector>
@@ -60,6 +60,14 @@
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
common_time_meas::~common_time_meas() {
if (t_start_us >= 0) {
t_acc += ggml_time_us() - t_start_us;
}
}
//
// CPU utils
//
@@ -355,11 +363,7 @@ bool parse_cpu_mask(const std::string & mask, bool (&boolmask)[GGML_MAX_N_THREAD
}
void common_init() {
llama_log_set([](ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}, NULL);
llama_log_set(common_log_default_callback, NULL);
#ifdef NDEBUG
const char * build_type = "";
@@ -690,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -750,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -778,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -855,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -889,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -908,11 +941,130 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils
//
static inline void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) dst = v;
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) return;
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) dst = v;
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
@@ -924,6 +1076,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
common_init_sampler_from_model(model, params.sampling);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);

View File

@@ -2,17 +2,19 @@
#pragma once
#include "ggml-opt.h"
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -28,7 +30,14 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
const int64_t t_start_us;
int64_t & t_acc;
};
struct common_adapter_lora_info {
std::string path;
@@ -133,6 +142,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -165,6 +190,8 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
@@ -198,6 +225,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -344,7 +372,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -406,6 +434,8 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
@@ -451,14 +481,21 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
// batched-bench params
bool is_pp_shared = false;
bool is_pp_shared = false;
bool is_tg_separate = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -505,6 +542,10 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -599,12 +640,28 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//

1082
common/download.cpp Normal file

File diff suppressed because it is too large Load Diff

57
common/download.h Normal file
View File

@@ -0,0 +1,57 @@
#pragma once
#include <string>
struct common_params_model;
//
// download functionalities
//
struct common_cached_model_info {
std::string manifest_path;
std::string user;
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
// return string representation like "user/model:tag"
// if tag is "latest", it will be omitted
std::string to_string() const {
return user + "/" + model + (tag == "latest" ? "" : ":" + tag);
}
};
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
common_hf_file_res common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & bearer_token,
bool offline);
// returns true if download succeeded
bool common_download_model(
const common_params_model & model,
const std::string & bearer_token,
bool offline);
// returns list of cached models
std::vector<common_cached_model_info> common_list_cached_models();
// resolve and download model from Docker registry
// return local path to downloaded model file
std::string common_docker_resolve_model(const std::string & docker);

View File

@@ -297,8 +297,25 @@ bool common_json_parse(
it = temptative_end;
return true;
}
// TODO: handle unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
// fprintf(stderr, "Closing: TODO\n");
// handle unclosed top-level primitive
if (err_loc.position != 0 && !healing_marker.empty() && err_loc.stack.empty()) {
std::string str(it, temptative_end);
const auto & magic_seed = out.healing_marker.marker = healing_marker;
if (can_parse(str + "\"")) {
// Was inside an string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"";
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"")) {
// Was inside an string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"";
} else {
// TODO: handle more unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
// fprintf(stderr, "Closing: TODO\n");
return false;
}
out.json = json::parse(str);
it = temptative_end;
return true;
}
return false;
}
out.json = json::parse(it, end);

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -303,6 +303,8 @@ static std::string format_literal(const std::string & literal) {
return "\"" + escaped + "\"";
}
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
@@ -601,7 +603,10 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -774,11 +779,24 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -956,7 +974,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());

View File

@@ -18,4 +18,6 @@ struct common_grammar_options {
bool dotall = false;
};
std::string gbnf_format_literal(const std::string & literal);
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}
@@ -442,3 +419,23 @@ void common_log_set_prefix(struct common_log * log, bool prefix) {
void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -36,6 +42,8 @@ extern int common_log_verbosity_thold;
void common_log_set_verbosity_thold(int verbosity); // not thread-safe
void common_log_default_callback(enum ggml_log_level level, const char * text, void * user_data);
// the common_log uses an internal worker thread to print/write log messages
// when the worker thread is paused, incoming log messages are discarded
struct common_log;
@@ -65,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
@@ -93,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

1712
common/peg-parser.cpp Normal file

File diff suppressed because it is too large Load Diff

459
common/peg-parser.h Normal file
View File

@@ -0,0 +1,459 @@
#pragma once
#include <nlohmann/json_fwd.hpp>
#include <memory>
#include <unordered_map>
#include <string>
#include <string_view>
#include <functional>
#include <vector>
#include <variant>
struct common_grammar_builder;
class common_peg_parser_builder;
using common_peg_parser_id = size_t;
constexpr common_peg_parser_id COMMON_PEG_INVALID_PARSER_ID = static_cast<common_peg_parser_id>(-1);
using common_peg_ast_id = size_t;
constexpr common_peg_ast_id COMMON_PEG_INVALID_AST_ID = static_cast<common_peg_ast_id>(-1);
// Lightweight wrapper around common_peg_parser_id for convenience
class common_peg_parser {
common_peg_parser_id id_;
common_peg_parser_builder & builder_;
public:
common_peg_parser(const common_peg_parser & other) : id_(other.id_), builder_(other.builder_) {}
common_peg_parser(common_peg_parser_id id, common_peg_parser_builder & builder) : id_(id), builder_(builder) {}
common_peg_parser & operator=(const common_peg_parser & other);
common_peg_parser & operator+=(const common_peg_parser & other);
common_peg_parser & operator|=(const common_peg_parser & other);
operator common_peg_parser_id() const { return id_; }
common_peg_parser_id id() const { return id_; }
common_peg_parser_builder & builder() const { return builder_; }
// Creates a sequence
common_peg_parser operator+(const common_peg_parser & other) const;
// Creates a sequence separated by spaces.
common_peg_parser operator<<(const common_peg_parser & other) const;
// Creates a choice
common_peg_parser operator|(const common_peg_parser & other) const;
common_peg_parser operator+(const char * str) const;
common_peg_parser operator+(const std::string & str) const;
common_peg_parser operator<<(const char * str) const;
common_peg_parser operator<<(const std::string & str) const;
common_peg_parser operator|(const char * str) const;
common_peg_parser operator|(const std::string & str) const;
};
common_peg_parser operator+(const char * str, const common_peg_parser & p);
common_peg_parser operator+(const std::string & str, const common_peg_parser & p);
common_peg_parser operator<<(const char * str, const common_peg_parser & p);
common_peg_parser operator<<(const std::string & str, const common_peg_parser & p);
common_peg_parser operator|(const char * str, const common_peg_parser & p);
common_peg_parser operator|(const std::string & str, const common_peg_parser & p);
enum common_peg_parse_result_type {
COMMON_PEG_PARSE_RESULT_FAIL = 0,
COMMON_PEG_PARSE_RESULT_SUCCESS = 1,
COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT = 2,
};
const char * common_peg_parse_result_type_name(common_peg_parse_result_type type);
struct common_peg_ast_node {
common_peg_ast_id id;
std::string rule;
std::string tag;
size_t start;
size_t end;
std::string_view text;
std::vector<common_peg_ast_id> children;
bool is_partial = false;
};
struct common_peg_parse_result;
using common_peg_ast_visitor = std::function<void(const common_peg_ast_node & node)>;
class common_peg_ast_arena {
std::vector<common_peg_ast_node> nodes_;
public:
common_peg_ast_id add_node(
const std::string & rule,
const std::string & tag,
size_t start,
size_t end,
std::string_view text,
std::vector<common_peg_ast_id> children,
bool is_partial = false
) {
common_peg_ast_id id = nodes_.size();
nodes_.push_back({id, rule, tag, start, end, text, std::move(children), is_partial});
return id;
}
const common_peg_ast_node & get(common_peg_ast_id id) const { return nodes_.at(id); }
size_t size() const { return nodes_.size(); }
void clear() { nodes_.clear(); }
void visit(common_peg_ast_id id, const common_peg_ast_visitor & visitor) const;
void visit(const common_peg_parse_result & result, const common_peg_ast_visitor & visitor) const;
};
struct common_peg_parse_result {
common_peg_parse_result_type type = COMMON_PEG_PARSE_RESULT_FAIL;
size_t start = 0;
size_t end = 0;
std::vector<common_peg_ast_id> nodes;
common_peg_parse_result() = default;
common_peg_parse_result(common_peg_parse_result_type type, size_t start)
: type(type), start(start), end(start) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end)
: type(type), start(start), end(end) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end, std::vector<common_peg_ast_id> nodes)
: type(type), start(start), end(end), nodes(std::move(nodes)) {}
bool fail() const { return type == COMMON_PEG_PARSE_RESULT_FAIL; }
bool need_more_input() const { return type == COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT; }
bool success() const { return type == COMMON_PEG_PARSE_RESULT_SUCCESS; }
};
struct common_peg_parse_context {
std::string input;
bool is_partial;
common_peg_ast_arena ast;
int parse_depth;
common_peg_parse_context()
: is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input)
: input(input), is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input, bool is_partial)
: input(input), is_partial(is_partial), parse_depth(0) {}
};
class common_peg_arena;
// Parser variants
struct common_peg_epsilon_parser {};
struct common_peg_start_parser {};
struct common_peg_end_parser {};
struct common_peg_literal_parser {
std::string literal;
};
struct common_peg_sequence_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_choice_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_repetition_parser {
common_peg_parser_id child;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_and_parser {
common_peg_parser_id child;
};
struct common_peg_not_parser {
common_peg_parser_id child;
};
struct common_peg_any_parser {};
struct common_peg_space_parser {};
struct common_peg_chars_parser {
struct char_range {
uint32_t start;
uint32_t end;
bool contains(uint32_t codepoint) const { return codepoint >= start && codepoint <= end; }
};
std::string pattern;
std::vector<char_range> ranges;
bool negated;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_json_string_parser {};
struct common_peg_until_parser {
std::vector<std::string> delimiters;
};
struct common_peg_schema_parser {
common_peg_parser_id child;
std::string name;
std::shared_ptr<nlohmann::ordered_json> schema;
// Indicates if the GBNF should accept a raw string that matches the schema.
bool raw;
};
struct common_peg_rule_parser {
std::string name;
common_peg_parser_id child;
bool trigger;
};
struct common_peg_ref_parser {
std::string name;
};
struct common_peg_atomic_parser {
common_peg_parser_id child;
};
struct common_peg_tag_parser {
common_peg_parser_id child;
std::string tag;
};
// Variant holding all parser types
using common_peg_parser_variant = std::variant<
common_peg_epsilon_parser,
common_peg_start_parser,
common_peg_end_parser,
common_peg_literal_parser,
common_peg_sequence_parser,
common_peg_choice_parser,
common_peg_repetition_parser,
common_peg_and_parser,
common_peg_not_parser,
common_peg_any_parser,
common_peg_space_parser,
common_peg_chars_parser,
common_peg_json_string_parser,
common_peg_until_parser,
common_peg_schema_parser,
common_peg_rule_parser,
common_peg_ref_parser,
common_peg_atomic_parser,
common_peg_tag_parser
>;
class common_peg_arena {
std::vector<common_peg_parser_variant> parsers_;
std::unordered_map<std::string, common_peg_parser_id> rules_;
common_peg_parser_id root_ = COMMON_PEG_INVALID_PARSER_ID;
public:
const common_peg_parser_variant & get(common_peg_parser_id id) const { return parsers_.at(id); }
common_peg_parser_variant & get(common_peg_parser_id id) { return parsers_.at(id); }
size_t size() const { return parsers_.size(); }
bool empty() const { return parsers_.empty(); }
common_peg_parser_id get_rule(const std::string & name) const;
bool has_rule(const std::string & name) const { return rules_.find(name) != rules_.end(); }
common_peg_parser_id root() const { return root_; }
void set_root(common_peg_parser_id id) { root_ = id; }
common_peg_parse_result parse(common_peg_parse_context & ctx, size_t start = 0) const;
common_peg_parse_result parse(common_peg_parser_id id, common_peg_parse_context & ctx, size_t start) const;
void resolve_refs();
void build_grammar(const common_grammar_builder & builder, bool lazy = false) const;
std::string dump(common_peg_parser_id id) const;
nlohmann::json to_json() const;
static common_peg_arena from_json(const nlohmann::json & j);
std::string save() const;
void load(const std::string & data);
friend class common_peg_parser_builder;
private:
common_peg_parser_id add_parser(common_peg_parser_variant parser);
void add_rule(const std::string & name, common_peg_parser_id id);
common_peg_parser_id resolve_ref(common_peg_parser_id id);
};
class common_peg_parser_builder {
common_peg_arena arena_;
common_peg_parser wrap(common_peg_parser_id id) { return common_peg_parser(id, *this); }
common_peg_parser add(const common_peg_parser_variant & p) { return wrap(arena_.add_parser(p)); }
public:
common_peg_parser_builder();
// Match nothing, always succeed.
// S -> ε
common_peg_parser eps() { return add(common_peg_epsilon_parser{}); }
// Matches the start of the input.
// S -> ^
common_peg_parser start() { return add(common_peg_start_parser{}); }
// Matches the end of the input.
// S -> $
common_peg_parser end() { return add(common_peg_end_parser{}); }
// Matches an exact literal string.
// S -> "hello"
common_peg_parser literal(const std::string & literal) { return add(common_peg_literal_parser{literal}); }
// Matches a sequence of parsers in order, all must succeed.
// S -> A B C
common_peg_parser sequence() { return add(common_peg_sequence_parser{}); }
common_peg_parser sequence(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser sequence(const std::vector<common_peg_parser> & parsers);
common_peg_parser sequence(std::initializer_list<common_peg_parser> parsers);
// Matches the first parser that succeeds from a list of alternatives.
// S -> A | B | C
common_peg_parser choice() { return add(common_peg_choice_parser{}); }
common_peg_parser choice(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser choice(const std::vector<common_peg_parser> & parsers);
common_peg_parser choice(std::initializer_list<common_peg_parser> parsers);
// Matches one or more repetitions of a parser.
// S -> A+
common_peg_parser one_or_more(const common_peg_parser & p) { return repeat(p, 1, -1); }
// Matches zero or more repetitions of a parser, always succeeds.
// S -> A*
common_peg_parser zero_or_more(const common_peg_parser & p) { return repeat(p, 0, -1); }
// Matches zero or one occurrence of a parser, always succeeds.
// S -> A?
common_peg_parser optional(const common_peg_parser & p) { return repeat(p, 0, 1); }
// Positive lookahead: succeeds if child parser succeeds, consumes no input.
// S -> &A
common_peg_parser peek(const common_peg_parser & p) { return add(common_peg_and_parser{p}); }
// Negative lookahead: succeeds if child parser fails, consumes no input.
// S -> !A
common_peg_parser negate(const common_peg_parser & p) { return add(common_peg_not_parser{p}); }
// Matches any single character.
// S -> .
common_peg_parser any() { return add(common_peg_any_parser{}); }
// Matches between min and max repetitions of characters from a character class.
// S -> [a-z]{m,n}
//
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser chars(const std::string & classes, int min = 1, int max = -1);
// Creates a lightweight reference to a named rule (resolved during build()).
// Use this for forward references in recursive grammars.
// expr_ref -> expr
common_peg_parser ref(const std::string & name) { return add(common_peg_ref_parser{name}); }
// Matches zero or more whitespace characters (space, tab, newline).
// S -> [ \t\n]*
common_peg_parser space() { return add(common_peg_space_parser{}); }
// Matches all characters until a delimiter is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until(const std::string & delimiter) { return add(common_peg_until_parser{{delimiter}}); }
// Matches all characters until one of the delimiters in the list is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until_one_of(const std::vector<std::string> & delimiters) { return add(common_peg_until_parser{delimiters}); }
// Matches everything
// S -> .*
common_peg_parser rest() { return until_one_of({}); }
// Matches between min and max repetitions of a parser (inclusive).
// S -> A{m,n}
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser repeat(const common_peg_parser & p, int min, int max) { return add(common_peg_repetition_parser{p, min,max}); }
// Matches exactly n repetitions of a parser.
// S -> A{n}
common_peg_parser repeat(const common_peg_parser & p, int n) { return repeat(p, n, n); }
// Creates a complete JSON parser supporting objects, arrays, strings, numbers, booleans, and null.
// value -> object | array | string | number | true | false | null
common_peg_parser json();
common_peg_parser json_object();
common_peg_parser json_string();
common_peg_parser json_array();
common_peg_parser json_number();
common_peg_parser json_bool();
common_peg_parser json_null();
// Matches JSON string content without the surrounding quotes.
// Useful for extracting content within a JSON string.
common_peg_parser json_string_content();
// Matches a JSON object member with a key and associated parser as the
// value.
common_peg_parser json_member(const std::string & key, const common_peg_parser & p);
// Wraps a parser with JSON schema metadata for grammar generation.
// Used internally to convert JSON schemas to GBNF grammar rules.
common_peg_parser schema(const common_peg_parser & p, const std::string & name, const nlohmann::ordered_json & schema, bool raw = false);
// Creates a named rule, stores it in the grammar, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", json_obj | json_arr | ...)
common_peg_parser rule(const std::string & name, const common_peg_parser & p, bool trigger = false);
// Creates a named rule using a builder function, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", [&]() { return json_object() | json_array() | ... })
common_peg_parser rule(const std::string & name, const std::function<common_peg_parser()> & builder, bool trigger = false);
// Creates a trigger rule. When generating a lazy grammar from the parser,
// only trigger rules and descendents are emitted.
common_peg_parser trigger_rule(const std::string & name, const common_peg_parser & p) { return rule(name, p, true); }
common_peg_parser trigger_rule(const std::string & name, const std::function<common_peg_parser()> & builder) { return rule(name, builder, true); }
// Creates an atomic parser. Atomic parsers do not create an AST node if
// the child results in a partial parse, i.e. NEEDS_MORE_INPUT. This is
// intended for situations where partial output is undesirable.
common_peg_parser atomic(const common_peg_parser & p) { return add(common_peg_atomic_parser{p}); }
// Tags create nodes in the generated AST for semantic purposes.
// Unlike rules, you can tag multiple nodes with the same tag.
common_peg_parser tag(const std::string & tag, const common_peg_parser & p) { return add(common_peg_tag_parser{p.id(), tag}); }
void set_root(const common_peg_parser & p);
common_peg_arena build();
};
// Helper function for building parsers
common_peg_arena build_peg_parser(const std::function<common_peg_parser(common_peg_parser_builder & builder)> & fn);

View File

@@ -3,9 +3,10 @@
#include "common.h"
#include "log.h"
#include <cmath>
#include <unordered_map>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <unordered_map>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -112,6 +113,13 @@ struct common_sampler {
llama_token_data_array cur_p;
void reset() {
prev.clear();
llama_sampler_reset(grmr);
llama_sampler_reset(chain);
}
void set_logits(struct llama_context * ctx, int idx) {
const auto * logits = llama_get_logits_ith(ctx, idx);
@@ -128,6 +136,12 @@ struct common_sampler {
cur_p = { cur.data(), cur.size(), -1, false };
}
common_time_meas tm() {
return common_time_meas(t_total_us, params.no_perf);
}
mutable int64_t t_total_us = 0;
};
std::string common_params_sampling::print() const {
@@ -298,6 +312,8 @@ void common_sampler_free(struct common_sampler * gsmpl) {
}
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
const auto tm = gsmpl->tm();
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
@@ -308,9 +324,7 @@ void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, boo
}
void common_sampler_reset(struct common_sampler * gsmpl) {
llama_sampler_reset(gsmpl->grmr);
llama_sampler_reset(gsmpl->chain);
gsmpl->reset();
}
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
@@ -327,16 +341,54 @@ struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
// TODO: measure grammar performance
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
llama_perf_sampler_data data_smpl;
llama_perf_context_data data_ctx;
memset(&data_smpl, 0, sizeof(data_smpl));
memset(&data_ctx, 0, sizeof(data_ctx));
if (gsmpl) {
llama_perf_sampler_print(gsmpl->chain);
auto & data = data_smpl;
data = llama_perf_sampler(gsmpl->chain);
// note: the sampling time includes the samplers time + extra time spent in common/sampling
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
}
if (ctx) {
llama_perf_context_print(ctx);
auto & data = data_ctx;
data = llama_perf_context(ctx);
const double t_end_ms = 1e-3 * ggml_time_us();
const double t_total_ms = t_end_ms - data.t_start_ms;
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
llama_memory_breakdown_print(ctx);
}
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
gsmpl->set_logits(ctx, idx);
auto & grmr = gsmpl->grmr;
@@ -428,6 +480,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
const auto tm = gsmpl->tm();
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {

64
common/unicode.cpp Normal file
View File

@@ -0,0 +1,64 @@
#include "unicode.h"
// implementation adopted from src/unicode.cpp
size_t utf8_sequence_length(unsigned char first_byte) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(first_byte) >> 4;
return lookup[highbits];
}
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset) {
if (offset >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
// ASCII fast path
if (!(input[offset] & 0x80)) {
return utf8_parse_result(utf8_parse_result::SUCCESS, input[offset], 1);
}
// Invalid: continuation byte as first byte
if (!(input[offset] & 0x40)) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
// 2-byte sequence
if (!(input[offset] & 0x20)) {
if (offset + 1 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x1f) << 6) | (input[offset + 1] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 2);
}
// 3-byte sequence
if (!(input[offset] & 0x10)) {
if (offset + 2 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x0f) << 12) | ((input[offset + 1] & 0x3f) << 6) | (input[offset + 2] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 3);
}
// 4-byte sequence
if (!(input[offset] & 0x08)) {
if (offset + 3 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80 || (input[offset + 3] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x07) << 18) | ((input[offset + 1] & 0x3f) << 12) | ((input[offset + 2] & 0x3f) << 6) | (input[offset + 3] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 4);
}
// Invalid first byte
return utf8_parse_result(utf8_parse_result::INVALID);
}

22
common/unicode.h Normal file
View File

@@ -0,0 +1,22 @@
#pragma once
#include <cstdint>
#include <string_view>
// UTF-8 parsing utilities for streaming-aware unicode support
struct utf8_parse_result {
uint32_t codepoint; // Decoded codepoint (only valid if status == SUCCESS)
size_t bytes_consumed; // How many bytes this codepoint uses (1-4)
enum status { SUCCESS, INCOMPLETE, INVALID } status;
utf8_parse_result(enum status s, uint32_t cp = 0, size_t bytes = 0)
: codepoint(cp), bytes_consumed(bytes), status(s) {}
};
// Determine the expected length of a UTF-8 sequence from its first byte
// Returns 0 for invalid first bytes
size_t utf8_sequence_length(unsigned char first_byte);
// Parse a single UTF-8 codepoint from input
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset);

File diff suppressed because it is too large Load Diff

View File

@@ -139,8 +139,10 @@ models = [
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "afmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/arcee-ai/Trinity-Tokenizer", },
{"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -435,7 +437,7 @@ for model in models:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
except (OSError, TypeError) as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop

View File

@@ -242,7 +242,7 @@ def parse_args() -> argparse.Namespace:
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f32",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
@@ -277,10 +277,15 @@ def parse_args() -> argparse.Namespace:
return parser.parse_args()
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
def load_hparams_from_hf(hf_model_id: str) -> tuple[dict[str, Any], Path | None]:
from huggingface_hub import try_to_load_from_cache
# normally, adapter does not come with base model config, we need to load it from AutoConfig
config = AutoConfig.from_pretrained(hf_model_id)
return config.to_dict()
cache_dir = try_to_load_from_cache(hf_model_id, "config.json")
cache_dir = Path(cache_dir).parent if isinstance(cache_dir, str) else None
return config.to_dict(), cache_dir
if __name__ == '__main__':
@@ -325,13 +330,13 @@ if __name__ == '__main__':
# load base model
if base_model_id is not None:
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
hparams = load_hparams_from_hf(base_model_id)
hparams, dir_base_model = load_hparams_from_hf(base_model_id)
elif dir_base_model is None:
if "base_model_name_or_path" in lparams:
model_id = lparams["base_model_name_or_path"]
logger.info(f"Loading base model from Hugging Face: {model_id}")
try:
hparams = load_hparams_from_hf(model_id)
hparams, dir_base_model = load_hparams_from_hf(model_id)
except OSError as e:
logger.error(f"Failed to load base model config: {e}")
logger.error("Please try downloading the base model and add its path to --base")
@@ -480,6 +485,7 @@ if __name__ == '__main__':
dir_lora_model=dir_lora,
lora_alpha=alpha,
hparams=hparams,
remote_hf_model_id=base_model_id,
)
logger.info("Exporting model...")

View File

@@ -313,7 +313,12 @@ Converting the matmul weight format from ND to NZ to improve performance. Enable
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default. This option is only effective if `USE_ACL_GRAPH` was enabled at compilation time. To enable it, recompile using:
```sh
cmake -B build -DGGML_CANN=on -DCMAKE_BUILD_TYPE=release -DUSE_ACL_GRAPH=ON
cmake --build build --config release
```
### GGML_CANN_GRAPH_CACHE_CAPACITY

View File

@@ -39,18 +39,23 @@ The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adren
| Adreno 830 (Snapdragon 8 Elite) | Support |
| Adreno X85 (Snapdragon X Elite) | Support |
> A6x GPUs with a recent driver and compiler are supported; they are usually found in IoT platforms.
However, A6x GPUs in phones are likely not supported due to the outdated driver and compiler.
## DataType Supports
| DataType | Status |
|:----------------------:|:--------------------------:|
| Q4_0 | Support |
| Q6_K | Support, but not optimized |
| Q8_0 | Support |
| MXFP4 | Support |
## Model Preparation
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
You can refer to the general [llama-quantize tool](/tools/quantize/README.md) for steps to convert a model in Hugging Face safetensor format to GGUF with quantization.
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
Currently we support `Q4_0` quantization and have optimized for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize` (i.e., make all weights in `Q4_0`). For example,
```sh
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
@@ -58,6 +63,17 @@ Currently we support `Q4_0` quantization and have optimize for it. To achieve be
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
### `MXFP4` MoE Models
OpenAI gpt-oss models are MoE models in `MXFP4`. The quantized model will be in `MXFP4_MOE`, a mixture of `MXFP4` and `Q8_0`.
For this quantization, there is no need to specify `--pure`.
For gpt-oss-20b model, you can directly [download](https://huggingface.co/ggml-org/gpt-oss-20b-GGUF) the quantized GGUF file in `MXFP4_MOE` from Hugging Face.
Although it is possible to quantize gpt-oss-20b model in pure `Q4_0` (all weights in `Q4_0`), it is not recommended since `MXFP4` has been optimized for MoE while `Q4_0` is not. In addition, accuracy should degrade with such pure `Q4_0` quantization.
Hence, using the default `MXFP4_MOE` quantization (see the link above) is recommended for this model.
> Note that the `Q4_0` model found [here](https://huggingface.co/unsloth/gpt-oss-20b-GGUF/blob/main/gpt-oss-20b-Q4_0.gguf) is a mixture of `Q4_0`, `Q8_0` and `MXFP4` and gives better performance than `MXFP4_MOE` quantization.
## CMake Options
The OpenCL backend has the following CMake options that control the behavior of the backend.
@@ -146,10 +162,13 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Ninja
* Visual Studio 2022
* Powershell 7
* Python
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
> Note that building using Visual Studio's cl compiler is not supported. Clang must be used. Clang depends on libraries provided by Visual Studio to work. Therefore, Visual Studio must be installed. Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
@@ -201,9 +220,12 @@ ninja
## Known Issues
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
- Flash attention does not always improve performance.
- Currently OpenCL backend works on A6xx GPUs with recent drivers and compilers (usually found in IoT platforms).
However, it does not work on A6xx GPUs found in phones with old drivers and compilers.
## TODO
- Optimization for Q6_K
- Support and optimization for Q4_K
- Improve flash attention

View File

@@ -42,6 +42,9 @@ The following releases are verified and recommended:
## News
- 2025.11
- Support malloc memory on device more than 4GB.
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
@@ -789,6 +792,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
## Known Issues
@@ -835,6 +840,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
You need to enable to support 4GB memory malloc by:
```
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
```
### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.

258
docs/backend/ZenDNN.md Normal file
View File

@@ -0,0 +1,258 @@
# llama.cpp for AMD ZenDNN
> [!WARNING]
> **Note:** ZenDNN is **not** the same as zDNN.
> - **ZenDNN** (this page): AMD's deep learning library for AMD EPYC CPUs
> - **zDNN**: IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes ([see zDNN documentation](zDNN.md))
- [Background](#background)
- [OS](#os)
- [Hardware](#hardware)
- [Supported Operations](#supported-operations)
- [DataType Supports](#datatype-supports)
- [Linux](#linux)
- [Environment Variable](#environment-variable)
- [Performance Optimization](#performance-optimization)
- [Known Issues](#known-issues)
- [TODO](#todo)
## Background
**ZenDNN** (Zen Deep Neural Network Library) is AMD's high-performance deep learning inference library optimized for AMD EPYC™ CPUs. It provides optimized implementations of key deep learning primitives and operations, delivering significant performance improvements for neural network workloads on AMD Zen-based processor architectures.
**Llama.cpp + ZenDNN**
The llama.cpp ZenDNN backend leverages AMD's optimized matrix multiplication primitives to accelerate inference on AMD CPUs. It utilizes ZenDNN's **LowOHA (Low Overhead Hardware Accelerated)** MatMul operator for efficient GEMM operations with minimal execution overhead, built-in weight caching, and direct access to backend libraries (AOCL BLIS, LibXSMM, OneDNN).
For more information about ZenDNN, visit: https://www.amd.com/en/developer/zendnn.html
## OS
| OS | Status | Verified |
|:-------:|:-------:|:----------------------------------------------:|
| Linux | Support | Ubuntu 20.04, 22.04, 24.04 |
For the latest list of supported operating systems, see the [ZenDNN Supported OS](https://github.com/amd/ZenDNN/blob/zendnnl/README.md#15-supported-os).
## Hardware
### AMD CPUs
**Recommended Processors**
ZenDNN is optimized for AMD EPYC™ processors and AMD Ryzen™ processors based on "Zen" microarchitecture and newer.
| CPU Family | Status | Notes |
|:-----------------------------:|:-------:|:----------------------------------:|
| AMD EPYC™ 9005 Series (Turin)| Support | 5th Gen - Zen 5 architecture |
| AMD EPYC™ 9004 Series (Genoa)| Support | 4th Gen - Zen 4 architecture |
| AMD EPYC™ 7003 Series (Milan)| Support | 3rd Gen - Zen 3 architecture |
| AMD Ryzen™ AI MAX (Strix Halo)| Support | High-performance mobile processors |
*Notes:*
- Best performance is achieved on AMD EPYC™ processors with high core counts (e.g., EPYC 9005 series).
- ZenDNN leverages AMD's advanced CPU features including AVX2 and AVX-512 instruction sets.
- For optimal performance, ensure your system has sufficient memory bandwidth.
## Supported Operations
The ZenDNN backend currently accelerates **matrix multiplication (MUL_MAT)** operations only. Other operations are handled by the standard CPU backend.
| Operation | Status | Notes |
|:-------------|:-------:|:----------------------------------------------:|
| MUL_MAT | ✓ | Accelerated via ZenDNN LowOHA MatMul |
*Note:* Since only MUL_MAT is accelerated, models will benefit most from ZenDNN when matrix multiplications dominate the computational workload (which is typical for transformer-based LLMs).
## DataType Supports
| DataType | Status | Notes |
|:----------------------:|:-------:|:---------------------------------------------:|
| FP32 | Support | Full precision floating point |
| BF16 | Support | BFloat16 (best performance on Zen 4/Zen 5) |
*Notes:*
- **BF16** provides best performance on Zen 4 and Zen 5 EPYC™ processors (Genoa, Turin).
## Linux
### I. Setup Environment
You have two options to set up ZenDNN:
#### Option 1: Automatic Download and Build (Recommended)
CMake will automatically download and build ZenDNN for you:
```sh
# Build llama.cpp - ZenDNN will be automatically downloaded and built
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
```
No manual ZenDNN installation required. CMake will handle everything automatically.
#### Option 2: Use Custom ZenDNN Installation
If you want to build ZenDNN yourself or use a specific version:
**Step 1: Build ZenDNN from source**
```sh
# Clone ZenDNN repository
git clone https://github.com/amd/ZenDNN.git
cd ZenDNN
git checkout zendnnl
# Build and install (requires CMake >= 3.25)
mkdir build && cd build
cmake ..
cmake --build . --target all
```
Default installation path: `ZenDNN/build/install`
**For detailed build instructions**, refer to the [ZenDNN README](https://github.com/amd/ZenDNN/blob/zendnnl/README.md).
**Step 2: Build llama.cpp with custom ZenDNN path**
```sh
# Using environment variable
export ZENDNN_ROOT=/path/to/ZenDNN/build/install
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
# OR specify path directly in CMake
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/ZenDNN/build/install -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
```
### II. Run the Server
#### 1. Download Model
Download LLaMA 3.1 8B Instruct BF16 model:
```sh
# Download from Hugging Face
huggingface-cli download meta-llama/Llama-3.1-8B-Instruct-GGUF --local-dir models/
```
#### 2. Start Server
Run llama.cpp server with ZenDNN acceleration:
```sh
# Set optimal configuration
export OMP_NUM_THREADS=64 # Adjust to your CPU core count
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS for best performance
# Start server
./build/bin/llama-server \
-m models/Llama-3.1-8B-Instruct.BF16.gguf \
--host 0.0.0.0 \
--port 8080 \
-t 64
```
Access the server at `http://localhost:8080`.
**Performance tips**:
- Set `OMP_NUM_THREADS` to match your physical core count
- Use `ZENDNNL_MATMUL_ALGO=2` for optimal performance
- For NUMA systems: `numactl --cpunodebind=0 --membind=0 ./build/bin/llama-server ...`
## Environment Variable
### Build Time
| Name | Value | Function |
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_ZENDNN | ON/OFF | Enable ZenDNN backend support |
| ZENDNN_ROOT | Path to ZenDNN installation | Set ZenDNN installation directory |
| GGML_OPENMP | ON/OFF (recommended: ON) | Enable OpenMP for multi-threading |
### Runtime
| Name | Value | Function |
|-------------------------|--------------------------|-------------------------------------------------------------------|
| OMP_NUM_THREADS | Number (e.g., 64) | Set number of OpenMP threads (recommended: physical core count) |
| ZENDNNL_MATMUL_ALGO | 0-5 | Select MatMul backend algorithm (see Performance Optimization) |
| ZENDNNL_PROFILE_LOG_LEVEL | 0-4 | Profiling log level (0=disabled, 4=verbose) |
| ZENDNNL_ENABLE_PROFILER | 0 or 1 | Enable detailed profiling (1=enabled) |
| ZENDNNL_API_LOG_LEVEL | 0-4 | API log level (0=disabled, 4=verbose) |
**Example**:
```sh
export OMP_NUM_THREADS=64
export ZENDNNL_MATMUL_ALGO=2 # Use Blocked AOCL BLIS for best performance
./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Test" -n 100
```
## Performance Optimization
### MatMul Algorithm Selection
ZenDNN's LowOHA MatMul supports multiple backend algorithms. For **best performance**, use the **Blocked AOCL BLIS** algorithm:
```sh
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS (recommended)
```
**Available algorithms**:
| Value | Algorithm | Description |
|:-----:|:-----------------------|:----------------------------------------------|
| 0 | Dynamic Dispatch | Automatic backend selection (default) |
| 1 | AOCL BLIS | AOCL BLIS backend |
| 2 | AOCL BLIS Blocked | **Blocked AOCL BLIS (recommended)** |
| 3 | OneDNN | OneDNN backend |
| 4 | OneDNN Blocked | Blocked OneDNN |
| 5 | LibXSMM | LibXSMM backend |
### Profiling and Debugging
For detailed profiling and logging options, refer to the [ZenDNN Logging Documentation](https://github.com/amd/ZenDNN/blob/zendnnl/docs/logging.md).
## Known Issues
- **Limited operation support**: Currently only matrix multiplication (MUL_MAT) is accelerated via ZenDNN. Other operations fall back to the standard CPU backend.
- **BF16 support**: BF16 operations require AMD Zen 4 or Zen 5 architecture (EPYC 9004/9005 series). On older CPUs, operations will use FP32.
- **NUMA awareness**: For multi-socket systems, manual NUMA binding may be required for optimal performance.
## Q&A
**Q: How do I verify that ZenDNN backend is being used?**
A: Check the log output when running llama.cpp. You should see messages indicating the ZenDNN backend is initialized. You can also check the backend name in the output.
**Q: What performance improvement can I expect?**
A: Performance gains vary depending on the model size, batch size, and CPU architecture. On AMD EPYC processors, you can typically expect 1.1x-2x speedup compared to standard CPU inference for matrix multiplication operations.
**Q: Can I use ZenDNN on non-AMD processors?**
A: ZenDNN is optimized specifically for AMD processors. While it may work on other x86-64 CPUs, performance benefits are only guaranteed on AMD Zen-based architectures.
**Q: Does ZenDNN support quantized models?**
A: Currently, ZenDNN primarily supports FP32 and BF16 data types. Quantized model support is not available at this time.
**Q: Why is my inference not faster with ZenDNN?**
A: Ensure:
1. You're using an AMD EPYC or Ryzen processor (Zen 2 or newer)
2. `OMP_NUM_THREADS` is set appropriately (physical core count)
3. `ZENDNNL_MATMUL_ALGO=2` is set for best performance (Blocked AOCL BLIS)
4. You're using a sufficiently large model (small models may not benefit as much)
5. Enable profiling to verify ZenDNN MatMul is being called
### **GitHub Contribution**:
Please add the **[ZenDNN]** prefix/tag in issues/PRs titles to help the ZenDNN-team check/address them without delay.
## TODO
- Expand operation support beyond MUL_MAT (attention operations, activations, etc.)

View File

@@ -1,5 +1,10 @@
# llama.cpp for IBM zDNN Accelerator
> [!WARNING]
> **Note:** zDNN is **not** the same as ZenDNN.
> - **zDNN** (this page): IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes
> - **ZenDNN**: AMD's deep learning library for AMD EPYC CPUs ([see ZenDNN documentation](ZenDNN.md))
## Background
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.

View File

@@ -178,6 +178,48 @@ GeForce RTX 3070 8.6
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
```
### Overriding the CUDA Version
If you have multiple CUDA installations on your system and want to compile llama.cpp for a specific one, e.g. for CUDA 11.7 installed under `/opt/cuda-11.7`:
```bash
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_COMPILER=/opt/cuda-11.7/bin/nvcc -DCMAKE_INSTALL_RPATH="/opt/cuda-11.7/lib64;\$ORIGIN" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
```
#### Fixing Compatibility Issues with Old CUDA and New glibc
If you try to use an old CUDA version (e.g. v11.7) with a new glibc version you can get errors like this:
```
/usr/include/bits/mathcalls.h(83): error: exception specification is
incompatible with that of previous function "cospi"
/opt/cuda-11.7/bin/../targets/x86_64-linux/include/crt/math_functions.h(5545):
here
```
It seems the least bad solution is to patch the CUDA installation to declare the correct signatures.
Replace the following lines in `/path/to/your/cuda/installation/targets/x86_64-linux/include/crt/math_functions.h`:
```C++
// original lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x);
// edited lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x) noexcept (true);
```
### Runtime CUDA environmental variables
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
@@ -261,10 +303,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
Note: `GPU_TARGETS` is optional, omitting it will build the code for all GPUs in the current system.
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
@@ -282,17 +326,17 @@ You can download it from your Linux distro's package manager or from here: [ROCm
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
If necessary, adapt `GPU_TARGETS` to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
@@ -387,11 +431,22 @@ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/ren
### For Linux users:
#### Using the LunarG Vulkan SDK
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
#### Using system packages
On Debian / Ubuntu, you can install the required dependencies using:
```sh
sudo apt-get install libvulkan-dev glslc
```
#### Common steps
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
```bash
vulkaninfo
@@ -440,6 +495,38 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## ZenDNN
ZenDNN provides optimized deep learning primitives for AMD EPYC™ CPUs. It accelerates matrix multiplication operations for inference workloads.
### Compilation
- Using `CMake` on Linux (automatic build):
```bash
cmake -B build -DGGML_ZENDNN=ON
cmake --build build --config Release
```
The first build will automatically download and build ZenDNN, which may take 5-10 minutes. Subsequent builds will be much faster.
- Using `CMake` with custom ZenDNN installation:
```bash
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/zendnn/install
cmake --build build --config Release
```
### Testing
You can test with:
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -n 50
```
For detailed information about hardware support, setup instructions, and performance optimization, refer to [llama.cpp for ZenDNN](./backend/ZenDNN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.

288
docs/development/parsing.md Normal file
View File

@@ -0,0 +1,288 @@
# Parsing Model Output
The `common` library contains a PEG parser implementation suitable for parsing
model output.
Types with the prefix `common_peg_*` are intended for general use and may have
applications beyond parsing model output, such as parsing user-provided regex
patterns.
Types with the prefix `common_chat_peg_*` are specialized helpers for model
output.
The parser features:
- Partial parsing of streaming input
- Built-in JSON parsers
- AST generation with semantics via "tagged" nodes
## Example
Below is a contrived example demonstrating how to use the PEG parser to parse
output from a model that emits arguments as JSON.
```cpp
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
// Build a choice of all available tools
auto tool_choice = p.choice();
for (const auto & tool : tools) {
const auto & function = tool.at("function");
std::string name = function.at("name");
const auto & schema = function.at("parameters");
auto tool_name = p.json_member("name", "\"" + p.literal(name) + "\"");
auto tool_args = p.json_member("arguments", p.schema(p.json(), "tool-" + name + "-schema", schema));
tool_choice |= p.rule("tool-" + name, "{" << tool_name << "," << tool_args << "}");
}
// Define the tool call structure: <tool_call>[{tool}]</tool_call>
auto tool_call = p.trigger_rule("tool-call",
p.sequence({
p.literal("<tool_call>["),
tool_choice,
p.literal("]</tool_call>")
})
);
// Parser accepts content, optionally followed by a tool call
return p.sequence({
p.content(p.until("<tool_call>")),
p.optional(tool_call),
p.end()
});
});
```
For a more complete example, see `test_example_native()` in
[tests/test-chat-peg-parser.cpp](tests/test-chat-peg-parser.cpp).
## Parsers/Combinators
### Basic Matchers
- **`eps()`** - Matches nothing and always succeeds (epsilon/empty match)
- **`start()`** - Matches the start of input (anchor `^`)
- **`end()`** - Matches the end of input (anchor `$`)
- **`literal(string)`** - Matches an exact literal string
- **`any()`** - Matches any single character (`.`)
### Combinators
- **`sequence(...)`** - Matches parsers in order; all must succeed
- **`choice(...)`** - Matches the first parser that succeeds from alternatives (ordered choice)
- **`one_or_more(p)`** - Matches one or more repetitions (`+`)
- **`zero_or_more(p)`** - Matches zero or more repetitions (`*`)
- **`optional(p)`** - Matches zero or one occurrence (`?`)
- **`repeat(p, min, max)`** - Matches between min and max repetitions (use `-1` for unbounded)
- **`repeat(p, n)`** - Matches exactly n repetitions
### Lookahead
- **`peek(p)`** - Positive lookahead: succeeds if parser succeeds without consuming input (`&`)
- **`negate(p)`** - Negative lookahead: succeeds if parser fails without consuming input (`!`)
### Character Classes & Utilities
- **`chars(classes, min, max)`** - Matches repetitions of characters from a character class
- **`space()`** - Matches zero or more whitespace characters (space, tab, newline)
- **`until(delimiter)`** - Matches characters until delimiter is found (delimiter not consumed)
- **`until_one_of(delimiters)`** - Matches characters until any delimiter in the list is found
- **`rest()`** - Matches everything remaining (`.*`)
### JSON Parsers
- **`json()`** - Complete JSON parser (objects, arrays, strings, numbers, booleans, null)
- **`json_object()`** - JSON object parser
- **`json_array()`** - JSON array parser
- **`json_string()`** - JSON string parser
- **`json_number()`** - JSON number parser
- **`json_bool()`** - JSON boolean parser
- **`json_null()`** - JSON null parser
- **`json_string_content()`** - JSON string content without surrounding quotes
- **`json_member(key, p)`** - JSON object member with specific key and value parser
### Grammar Building
- **`ref(name)`** - Creates a lightweight reference to a named rule (for recursive grammars)
- **`rule(name, p, trigger)`** - Creates a named rule and returns a reference
- **`trigger_rule(name, p)`** - Creates a trigger rule (entry point for lazy grammar generation)
- **`schema(p, name, schema, raw)`** - Wraps parser with JSON schema metadata for grammar generation
### AST Control
- **`atomic(p)`** - Prevents AST node creation for partial parses
- **`tag(tag, p)`** - Creates AST nodes with semantic tags (multiple nodes can share tags)
## GBNF Grammar Generation
The PEG parser also acts as a convenient DSL for generating GBNF grammars, with
some exceptions.
```cpp
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(params.tools, [&](const json & fn) {
builder.resolve_refs(fn.at("parameters"));
});
parser.build_grammar(builder, data.grammar_lazy);
});
```
The notable exception is the `negate(p)` lookahead parser, which cannot be
defined as a CFG grammar and therefore does not produce a rule. Its usage
should be limited and preferably hidden behind a `schema()` parser. In many
cases, `until(delimiter)` or `until_one_of(delimiters)` is a better choice.
Another limitation is that the PEG parser requires an unambiguous grammar. In
contrast, the `llama-grammar` implementation can support ambiguous grammars,
though they are difficult to parse.
### Lazy Grammars
During lazy grammar generation, only rules reachable from a `trigger_rule(p)`
are emitted in the grammar. All trigger rules are added as alternations in the
root rule. It is still necessary to define trigger patterns, as the parser has
no interaction with the grammar sampling.
### JSON Schema
The `schema(p, name, schema, raw)` parser will use the `json-schema-to-grammar`
implementation to generate the grammar instead of the underlying parser.
The `raw` option emits a grammar suitable for a raw string instead of a JSON
string. In other words, it won't be wrapped in quotes or require escaping
quotes. It should only be used when `type == "string"`.
The downside is that it can potentially lead to ambiguous grammars. For
example, if a user provides the pattern `^.*$`, the following grammar may be
generated:
```
root ::= "<arg>" .* "</arg>"
```
This creates an ambiguous grammar that cannot be parsed by the PEG parser. To
help mitigate this, if `.*` is found in the pattern, the grammar from the
underlying parser will be emitted instead.
## Common AST Shapes for Chat Parsing
Most model output can be placed in one of the following categories:
- Content only
- Tool calling with arguments emitted as a single JSON object
- Tool calling with arguments emitted as separate entities, either XML
(Qwen3-Coder, MiniMax M2) or pseudo-function calls (LFM2)
To provide broad coverage,
[`common/chat-peg-parser.h`](common/chat-peg-parser.h) contains builders and
mappers that help create parsers and visitors/extractors for these types. They
require parsers to tag nodes to conform to an AST "shape". This normalization
makes it easy to extract information and generalize parsing.
### Simple
The `common_chat_peg_builder` builds a `simple` parser that supports
content-only models with optional reasoning.
- **`reasoning(p)`** - Tag node for extracting `reasoning_content`
- **`content(p)`** - Tag node for extracting `content`
```cpp
build_chat_peg_parser([&](common_chat_peg_parser & p) {
return p.sequence({
p.optional("<think>" + p.reasoning(p.until("</think>")) + "</think>"),
p.content(p.until("<tool_call>")),
p.end()
});
});
```
Use `common_chat_peg_mapper` to extract the content. Note that this is already
done for you in `common_chat_peg_parser` when
`chat_format == COMMON_CHAT_FORMAT_PEG_SIMPLE`.
```cpp
auto result = parser.parse(ctx);
common_chat_msg msg;
auto mapper = common_chat_peg_mapper(msg);
mapper.from_ast(ctx.ast, result);
```
### Native
The `common_chat_peg_native_builder` builds a `native` parser suitable for
models that emit tool arguments as a direct JSON object.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_id(p)`** - Tag the tool call ID (optional)
- **`tool_name(p)`** - Tag the tool name
- **`tool_args(p)`** - Tag the tool arguments
```cpp
build_chat_peg_native_parser([&](common_chat_peg_native_parser & p) {
auto get_weather_tool = p.tool(p.sequence({
p.tool_open(p.literal("{")),
p.json_member("name", "\"" + p.tool_name(p.literal("get_weather")) + "\""),
p.literal(","),
p.json_member("arguments", p.tool_args(p.json())),
p.tool_close(p.literal("}"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```
### Constructed
The `common_chat_peg_constructed_builder` builds a `constructed` parser
suitable for models that emit tool arguments as separate entities, such as XML
tags.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_name(p)`** - Tag the tool name
- **`tool_arg(p)`** - Tag a complete tool argument (name + value)
- **`tool_arg_open(p)`** - Tag start of a tool argument
- **`tool_arg_close(p)`** - Tag end of a tool argument
- **`tool_arg_name(p)`** - Tag the argument name
- **`tool_arg_string_value(p)`** - Tag string value for the argument
- **`tool_arg_json_value(p)`** - Tag JSON value for the argument
```cpp
build_chat_peg_constructed_parser([&](common_chat_peg_constructed_builder & p) {
auto location_arg = p.tool_arg(
p.tool_arg_open("<parameter name=\"" + p.tool_arg_name(p.literal("location")) + "\">"),
p.tool_arg_string_value(p.until("</parameter>")),
p.tool_arg_close(p.literal("</parameter>"))
);
auto get_weather_tool = p.tool(p.sequence({
p.tool_open("<function name=\"" + p.tool_name(p.literal("get_weather")) + "\">"),
location_arg,
p.tool_close(p.literal("</function>"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```

View File

@@ -7,9 +7,9 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above:

View File

@@ -12,105 +12,111 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | | ❌ | ❌ | | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| CEIL | ❌ | ❌ | ✅ | | ❌ | ❌ | | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | | ❌ | ✅ | ❌ | | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | | ✅ | ✅ | 🟡 | 🟡 | ✅ | | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | | | 🟡 | ❌ |
| GEGLU_ERF | ❌ | | ✅ | | 🟡 | | | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | | | | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | | | | ✅ | | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | | | | | | ❌ | ❌ |
| HARDSIGMOID | ❌ | | | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ | ❌ |
| IM2COL | ❌ | | | | 🟡 | | | | ❌ |
| IM2COL_3D | ❌ | | | | | ❌ | | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | | ❌ | ✅ | | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LOG | ❌ | | ✅ | ✅ | ❌ | ❌ | | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ | ❌ |
| NORM | | | ✅ | | 🟡 | ✅ | ✅ | 🟡 | |
| NORM_MUL_ADD | ❌ | | | | | | ✅ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | | | | | | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | ✅ | | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | | | | ❌ | | | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| REPEAT | ❌ | | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | | | | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | | 🟡 | ✅ | | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | | ❌ |
| ROLL | ❌ | ❌ | ✅ | | | | | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | | ❌ |
| ROUND | ❌ | ❌ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| RWKV_WKV6 | ❌ | | ✅ | ✅ | ✅ | | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | | ❌ | ✅ | | ❌ |
| SCALE | ❌ | 🟡 | ✅ | | | | | | ❌ |
| SET | ❌ | | ✅ | ❌ | ✅ | | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU | ❌ | | | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | | 🟡 | | ✅ | 🟡 | ❌ |
| SOFTCAP | ❌ | | | | | | ✅ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | | | | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | | 🟡 | 🟡 | | ❌ | 🟡 | | ❌ |
| SQR | ❌ | ✅ | ✅ | | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | ❌ | ❌ |
| SSM_CONV | ❌ | | ✅ | ✅ | ✅ | | | ✅ | ❌ |
| SSM_SCAN | ❌ | ❌ | | | | ❌ | ❌ | | ❌ |
| STEP | ❌ | | ✅ | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | | | ❌ |
| SUM | ❌ | ✅ | ✅ | ✅ | | ❌ | | | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | | | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | | | | | ❌ | | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | | | | | | ❌ |
| TOPK_MOE | ❌ | | | | | | ✅ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | ❌ | ❌ | | ✅ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| XIELU | ❌ | | | | | ❌ | ❌ | ❌ | ❌ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | WebGPU | ZenDNN | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | | ✅ | ❌ | ✅ | | | ✅ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| EXP | ❌ | | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ❌ | ❌ | ❌ |
| FLOOR | ❌ | | ✅ | 🟡 | | | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | | | ✅ | ❌ | ❌ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | | 🟡 | | | 🟡 | ✅ | ❌ | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | | 🟡 | | | 🟡 | ✅ | ❌ | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | | 🟡 | | | 🟡 | ✅ | ❌ | ❌ |
| GELU | ❌ | | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | | | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | | 🟡 | | ❌ | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| GET_ROWS_BACK | ❌ | | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | | | | | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | | | | | | | | ❌ |
| HARDSIGMOID | ❌ | | | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ |
| IM2COL_3D | ❌ | | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | | ❌ | ❌ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | 🟡 | ❌ | ❌ | ❌ |
| LOG | | | ✅ | ✅ | 🟡 | ❌ | 🟡 | | | | |
| MEAN | ❌ | | ✅ | ✅ | ✅ | | | ✅ | ❌ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | | ❌ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | | | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| NEG | ❌ | | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| NORM | ❌ | | | | | ✅ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| NORM_MUL_ADD | | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ✅ | | ❌ | ✅ | ❌ | ❌ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | | ❌ | 🟡 | ❌ | | | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | | | | | ❌ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | | ✅ | | ✅ | ✅ | ❌ | ❌ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | | 🟡 | ✅ | ❌ | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | | ✅ | ✅ | | ✅ | ❌ | ❌ |
| RMS_NORM_BACK | ❌ | | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ |
| ROLL | ❌ | ❌ | ✅ | | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | ❌ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| ROUND | ❌ | | ✅ | 🟡 | | ❌ | 🟡 | 🟡 | | | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | | ❌ | ❌ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | | ✅ | ✅ | ❌ | | | | | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | | | | ✅ | ✅ | ❌ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | | | 🟡 | | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | | ❌ | ✅ | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU | ❌ | | | 🟡 | 🟡 | 🟡 | | 🟡 | ✅ | ❌ | ❌ |
| SILU_BACK | ❌ | | ✅ | ✅ | | | | ✅ | ❌ | ❌ | ❌ |
| SIN | ❌ | | | | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | | | ❌ | ❌ | ❌ | | ❌ |
| SOFTPLUS | ❌ | | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | | | ✅ | ❌ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | | ❌ | 🟡 | ✅ | ❌ | | ❌ |
| SOLVE_TRI | ❌ | | ✅ | | | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | | | 🟡 | ❌ | ❌ | ❌ |
| STEP | ❌ | | | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | | ✅ | ❌ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | | | ❌ |
| SUM_ROWS | ❌ | | | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SWIGLU_OAI | ❌ | | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ✅ | | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

18741
docs/ops/WebGPU.csv Normal file

File diff suppressed because it is too large Load Diff

18741
docs/ops/ZenDNN.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -20,6 +20,7 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(idle)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@@ -3,7 +3,7 @@
The example demonstrates batched generation from a given prompt
```bash
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 --kv-unified
...

View File

@@ -6,8 +6,54 @@ More Info:
- https://github.com/ggml-org/llama.cpp/pull/14644
- https://github.com/ggml-org/llama.cpp/pull/14771
## Parameters
The diffusion CLI supports various parameters to control the generation process:
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
### Core Diffusion Parameters
- `--diffusion-steps`: Number of diffusion steps (default: 256)
- `--diffusion-algorithm`: Algorithm for token selection
- `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
- `1`: ENTROPY_BASED - Entropy-based selection
- `2`: MARGIN_BASED - Margin-based selection
- `3`: RANDOM - Random selection
- `4`: CONFIDENCE_BASED - Confidence-based selection (default)
- More documentation here https://github.com/DreamLM/Dream
- `--diffusion-visual`: Enable live visualization during generation
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
### Scheduling Parameters
Choose one of the following scheduling methods:
**Timestep-based scheduling:**
- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
**Block-based scheduling:**
- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
### Sampling Parameters
- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
- `--top-k`: Top-k filtering for sampling
- `--top-p`: Top-p (nucleus) filtering for sampling
- `--seed`: Random seed for reproducibility
### Model Parameters
- `-m`: Path to the GGUF model file
- `-p`: Input prompt text
- `-ub`: Maximum sequence length (ubatch size)
- `-c`: Context size
- `-b`: Batch size
### Examples
#### Dream architechture:
```
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
```
#### LLaDA architechture:
```
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
```
#### RND1 architecture:
```
llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
```

View File

@@ -38,6 +38,7 @@ The above command will output space-separated float values.
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
| 'json' | openai style |
| 'json+' | add cosine similarity matrix |
| 'raw' | plain text output |
### --embd-separator $"string"$
| $"string"$ | |

View File

@@ -70,6 +70,29 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
}
}
// plain, pipe-friendly output: one embedding per line
static void print_raw_embeddings(const float * emb,
int n_embd_count,
int n_embd,
const llama_model * model,
enum llama_pooling_type pooling_type,
int embd_normalize) {
const uint32_t n_cls_out = llama_model_n_cls_out(model);
const bool is_rank = (pooling_type == LLAMA_POOLING_TYPE_RANK);
const int cols = is_rank ? std::min<int>(n_embd, (int) n_cls_out) : n_embd;
for (int j = 0; j < n_embd_count; ++j) {
for (int i = 0; i < cols; ++i) {
if (embd_normalize == 0) {
LOG("%1.0f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
} else {
LOG("%1.7f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
}
}
LOG("\n");
}
}
int main(int argc, char ** argv) {
common_params params;
@@ -81,12 +104,16 @@ int main(int argc, char ** argv) {
params.embedding = true;
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
params.n_parallel = n_seq_max;
}
// utilize the full context
@@ -100,9 +127,6 @@ int main(int argc, char ** argv) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);
@@ -372,6 +396,8 @@ int main(int argc, char ** argv) {
}
if (notArray) LOG("\n}\n");
} else if (params.embd_out == "raw") {
print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
}
LOG("\n");

View File

@@ -4,10 +4,10 @@
#include "llama.h"
#include "ggml.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <numeric>
/**
* This the arbitrary data which will be passed to each callback.
@@ -37,23 +37,23 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
return u.f;
}
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
static float ggml_get_float_value(const uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
float v;
if (type == GGML_TYPE_F16) {
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
} else if (type == GGML_TYPE_F32) {
v = *(float *) &data[i];
v = *(const float *) &data[i];
} else if (type == GGML_TYPE_I64) {
v = (float) *(int64_t *) &data[i];
v = (float) *(const int64_t *) &data[i];
} else if (type == GGML_TYPE_I32) {
v = (float) *(int32_t *) &data[i];
v = (float) *(const int32_t *) &data[i];
} else if (type == GGML_TYPE_I16) {
v = (float) *(int16_t *) &data[i];
v = (float) *(const int16_t *) &data[i];
} else if (type == GGML_TYPE_I8) {
v = (float) *(int8_t *) &data[i];
v = (float) *(const int8_t *) &data[i];
} else if (type == GGML_TYPE_BF16) {
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
v = ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
} else {
GGML_ABORT("fatal error");
}

View File

@@ -184,8 +184,13 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i);
const auto type = gguf_get_tensor_type (ctx, i);
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
const char * type_name = ggml_type_name(type);
const size_t type_size = ggml_type_size(type);
const size_t n_elements = size / type_size;
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu, type = %s, n_elts = %zu\n", __func__, i, name, size, offset, type_name, n_elements);
}
}

View File

@@ -0,0 +1,5 @@
set(TARGET llama-idle)
add_executable(${TARGET} idle.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

3
examples/idle/README.md Normal file
View File

@@ -0,0 +1,3 @@
# llama.cpp/example/idle
https://github.com/ggml-org/llama.cpp/pull/17766

110
examples/idle/idle.cpp Normal file
View File

@@ -0,0 +1,110 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
static void print_usage(int /*argc*/, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
common_init();
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// we need just a dummy token to evaluate
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512;
ctx_params.n_batch = 512;
ctx_params.no_perf = false;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
const int n_iters = 3;
// warm-up
llama_decode(ctx, batch);
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx);
for (int64_t t_pause_ms = 0; t_pause_ms <= 4000; t_pause_ms += 800) {
double t_sum_us = 0.0;
double t_sum2_us = 0.0;
for (int i = 0; i < n_iters; i++) {
// this pause is important - it simulates "idle GPU"
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));
const int64_t t_start_us = llama_time_us();
// this should take constant time
llama_decode(ctx, batch);
llama_synchronize(ctx);
const int64_t t_end_us = llama_time_us();
const double t_cur_us = t_end_us - t_start_us;
#if 1
// print individual decode times
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
#endif
t_sum_us += t_cur_us;
t_sum2_us += t_cur_us * t_cur_us;
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx); // just in case
}
const double t_avg_us = t_sum_us / n_iters;
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));
printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
fflush(stdout);
}
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@@ -231,9 +231,9 @@ DOT = '[^\\x0A\\x0D]'
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\\]')
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]', '\\': '\\\\'}
NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?')
@@ -371,8 +371,17 @@ class SchemaConverter:
raise ValueError(f'Unsupported ref {ref}')
for sel in ref.split('#')[-1].split('/')[1:]:
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel]
assert target is not None, f'Error resolving ref {ref}: {sel} not in {target}'
if isinstance(target, list):
try:
sel_index = int(sel)
except ValueError:
raise ValueError(f'Error resolving ref {ref}: {sel} not in {target}')
assert 0 <= sel_index < len(target), f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel_index]
else:
assert sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
target = target[sel]
self._refs[ref] = target
else:
@@ -547,7 +556,8 @@ class SchemaConverter:
def _resolve_ref(self, ref):
ref_name = ref.split('/')[-1]
ref_fragment = ref.split('#')[-1]
ref_name = 'ref' + re.sub(r'[^a-zA-Z0-9-]+', '-', ref_fragment)
if ref_name not in self._rules and ref not in self._refs_being_resolved:
self._refs_being_resolved.add(ref)
resolved = self._refs[ref]

View File

@@ -4,6 +4,11 @@ set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
MODEL_TESTING_PROMPT="${2:-"$MODEL_TESTING_PROMPT"}"
if [ -z "$MODEL_TESTING_PROMPT"]; then
MODEL_TESTING_PROMPT="Hello, my name is"
fi
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
@@ -14,7 +19,8 @@ if [ -z "$CONVERTED_MODEL" ]; then
fi
echo $CONVERTED_MODEL
echo $MODEL_TESTING_PROMPT
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"

View File

@@ -138,7 +138,10 @@ if model_path is None:
"Model path must be specified either via --model-path argument or MODEL_PATH environment variable"
)
config = AutoConfig.from_pretrained(model_path)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
print("Model type: ", config.model_type)
print("Vocab size: ", config.vocab_size)
@@ -147,10 +150,6 @@ print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
print("Loading model and tokenizer using AutoTokenizer:", model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
if unreleased_model_name:
model_name_lower = unreleased_model_name.lower()
unreleased_module_path = (
@@ -171,7 +170,7 @@ if unreleased_model_name:
exit(1)
else:
model = AutoModelForCausalLM.from_pretrained(
model_path, device_map="auto", offload_folder="offload"
model_path, device_map="auto", offload_folder="offload", trust_remote_code=True, config=config
)
for name, module in model.named_modules():
@@ -185,8 +184,12 @@ model_name = os.path.basename(model_path)
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
device = next(model.parameters()).device
if os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")

View File

@@ -241,6 +241,12 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
// this one is managed by common_init_result
//llama_free(ctx);
llama_free(ctx2);
llama_free(ctx3);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
return 1;

View File

@@ -18,6 +18,7 @@ cd llama.cpp
cmake -S . -B build
cmake --build build
cmake --install build --prefix inst
```
### Build simple-cmake-pkg

View File

@@ -15,6 +15,9 @@ MODEL_FILE=models/llama-2-7b.Q4_0.gguf
NGL=99
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "use $GGML_SYCL_DEVICE as main GPU"

View File

@@ -6,7 +6,7 @@
# If you want more control, DPC++ Allows selecting a specific device through the
# following environment variable
#export ONEAPI_DEVICE_SELECTOR="level_zero:0"
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
source /opt/intel/oneapi/setvars.sh
#export GGML_SYCL_DEBUG=1
@@ -18,11 +18,14 @@ MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "Using $GGML_SYCL_DEVICE as the main GPU"
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT}
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
fi

View File

@@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 99 -s 0

View File

@@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -e -ngl 99
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -s 0 -e -ngl 99

Some files were not shown because too many files have changed in this diff Show More