mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
9 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
851553ea6b | ||
|
|
85a7d8677b | ||
|
|
a8ca18b4b8 | ||
|
|
8284efc35c | ||
|
|
1c1409e131 | ||
|
|
7a0e900e36 | ||
|
|
280d97be96 | ||
|
|
3479efd112 | ||
|
|
463bbf20bf |
@@ -3248,7 +3248,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
|
||||
add_opt(common_arg(
|
||||
{"--embd-output-format"}, "FORMAT",
|
||||
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
|
||||
"empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix, \"raw\" = plain whitespace-delimited output (one embedding per line)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.embd_out = value;
|
||||
}
|
||||
|
||||
@@ -601,7 +601,10 @@ private:
|
||||
}
|
||||
|
||||
std::string _resolve_ref(const std::string & ref) {
|
||||
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
|
||||
auto it = ref.find('#');
|
||||
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
|
||||
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
|
||||
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
|
||||
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
|
||||
_refs_being_resolved.insert(ref);
|
||||
json resolved = _refs[ref];
|
||||
@@ -774,11 +777,24 @@ public:
|
||||
std::vector<std::string> tokens = string_split(pointer, "/");
|
||||
for (size_t i = 1; i < tokens.size(); ++i) {
|
||||
std::string sel = tokens[i];
|
||||
if (target.is_null() || !target.contains(sel)) {
|
||||
if (target.is_object() && target.contains(sel)) {
|
||||
target = target[sel];
|
||||
} else if (target.is_array()) {
|
||||
size_t sel_index;
|
||||
try {
|
||||
sel_index = std::stoul(sel);
|
||||
} catch (const std::invalid_argument & e) {
|
||||
sel_index = target.size();
|
||||
}
|
||||
if (sel_index >= target.size()) {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel_index];
|
||||
} else {
|
||||
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
|
||||
return;
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
_refs[ref] = target;
|
||||
}
|
||||
|
||||
@@ -38,6 +38,7 @@ The above command will output space-separated float values.
|
||||
| | multiple embeddings | $[[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]]$
|
||||
| 'json' | openai style |
|
||||
| 'json+' | add cosine similarity matrix |
|
||||
| 'raw' | plain text output |
|
||||
|
||||
### --embd-separator $"string"$
|
||||
| $"string"$ | |
|
||||
|
||||
@@ -70,6 +70,29 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
|
||||
}
|
||||
}
|
||||
|
||||
// plain, pipe-friendly output: one embedding per line
|
||||
static void print_raw_embeddings(const float * emb,
|
||||
int n_embd_count,
|
||||
int n_embd,
|
||||
const llama_model * model,
|
||||
enum llama_pooling_type pooling_type,
|
||||
int embd_normalize) {
|
||||
const uint32_t n_cls_out = llama_model_n_cls_out(model);
|
||||
const bool is_rank = (pooling_type == LLAMA_POOLING_TYPE_RANK);
|
||||
const int cols = is_rank ? std::min<int>(n_embd, (int) n_cls_out) : n_embd;
|
||||
|
||||
for (int j = 0; j < n_embd_count; ++j) {
|
||||
for (int i = 0; i < cols; ++i) {
|
||||
if (embd_normalize == 0) {
|
||||
LOG("%1.0f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
|
||||
} else {
|
||||
LOG("%1.7f%s", emb[j * n_embd + i], (i + 1 < cols ? " " : ""));
|
||||
}
|
||||
}
|
||||
LOG("\n");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
@@ -372,6 +395,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
if (notArray) LOG("\n}\n");
|
||||
} else if (params.embd_out == "raw") {
|
||||
print_raw_embeddings(emb, n_embd_count, n_embd, model, pooling_type, params.embd_normalize);
|
||||
}
|
||||
|
||||
LOG("\n");
|
||||
|
||||
@@ -371,8 +371,17 @@ class SchemaConverter:
|
||||
raise ValueError(f'Unsupported ref {ref}')
|
||||
|
||||
for sel in ref.split('#')[-1].split('/')[1:]:
|
||||
assert target is not None and sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
assert target is not None, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
if isinstance(target, list):
|
||||
try:
|
||||
sel_index = int(sel)
|
||||
except ValueError:
|
||||
raise ValueError(f'Error resolving ref {ref}: {sel} not in {target}')
|
||||
assert 0 <= sel_index < len(target), f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel_index]
|
||||
else:
|
||||
assert sel in target, f'Error resolving ref {ref}: {sel} not in {target}'
|
||||
target = target[sel]
|
||||
|
||||
self._refs[ref] = target
|
||||
else:
|
||||
@@ -547,7 +556,8 @@ class SchemaConverter:
|
||||
|
||||
|
||||
def _resolve_ref(self, ref):
|
||||
ref_name = ref.split('/')[-1]
|
||||
ref_fragment = ref.split('#')[-1]
|
||||
ref_name = 'ref' + re.sub(r'[^a-zA-Z0-9-]+', '-', ref_fragment)
|
||||
if ref_name not in self._rules and ref not in self._refs_being_resolved:
|
||||
self._refs_being_resolved.add(ref)
|
||||
resolved = self._refs[ref]
|
||||
|
||||
@@ -2234,7 +2234,7 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
theta_scale_ne, theta_scale_nb, 1);
|
||||
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
@@ -2251,7 +2251,7 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void * yarn_ramp_buffer = yarn_ramp_allocator.get();
|
||||
acl_yarn_ramp_tensor = ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float), theta_scale_ne,
|
||||
theta_scale_nb, GGML_MAX_DIMS);
|
||||
theta_scale_nb, 1);
|
||||
float zero_value = 0, one_value = 1;
|
||||
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
|
||||
aclScalar * low = aclCreateScalar(&corr_dims[0], aclDataType::ACL_FLOAT);
|
||||
|
||||
@@ -67,19 +67,30 @@
|
||||
GGML_ABORT("CANN error");
|
||||
}
|
||||
|
||||
// Thread-local variable to record the current device of this thread.
|
||||
thread_local int g_current_cann_device = -1;
|
||||
|
||||
/**
|
||||
* @brief Sets the device to be used by CANN.
|
||||
* @brief Set the CANN device to be used.
|
||||
*
|
||||
* @param device The device ID to set.
|
||||
* @param device The target device ID to set.
|
||||
*/
|
||||
void ggml_cann_set_device(const int32_t device) {
|
||||
int current_device = -1;
|
||||
aclrtGetDevice(¤t_device);
|
||||
// int current_device = -1;
|
||||
// Note: In some CANN versions, if no device has been set yet,
|
||||
// aclrtGetDevice(¤t_device) may return 0 by default.
|
||||
// aclrtGetDevice(¤t_device);
|
||||
|
||||
if (device == current_device) {
|
||||
// If the current device is already the target one, no need to switch.
|
||||
if (device == g_current_cann_device) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Switch to the new device.
|
||||
ACL_CHECK(aclrtSetDevice(device));
|
||||
|
||||
// Update the global device record.
|
||||
g_current_cann_device = device;
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -50,6 +50,7 @@
|
||||
#include "ggml-cuda/upscale.cuh"
|
||||
#include "ggml-cuda/wkv.cuh"
|
||||
#include "ggml-cuda/gla.cuh"
|
||||
#include "ggml-cuda/set.cuh"
|
||||
#include "ggml-cuda/set-rows.cuh"
|
||||
#include "ggml-cuda/pad_reflect_1d.cuh"
|
||||
#include "ggml.h"
|
||||
@@ -2416,6 +2417,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
||||
case GGML_OP_SET_ROWS:
|
||||
ggml_cuda_op_set_rows(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_SET:
|
||||
ggml_cuda_op_set(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_DUP:
|
||||
ggml_cuda_dup(ctx, dst);
|
||||
break;
|
||||
@@ -3842,6 +3846,13 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
op->src[0]->type == GGML_TYPE_F32 &&
|
||||
(op->src[1]->type == GGML_TYPE_I64 || op->src[1]->type == GGML_TYPE_I32);
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
const ggml_type t = op->type;
|
||||
return (t == GGML_TYPE_F32 || t == GGML_TYPE_I32) &&
|
||||
t == op->src[0]->type &&
|
||||
t == op->src[1]->type;
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_type src0_type = op->src[0]->type;
|
||||
|
||||
@@ -343,6 +343,10 @@ static __global__ void mul_mat_vec_f(
|
||||
}
|
||||
|
||||
dst[tid*stride_col_dst + row] = value;
|
||||
|
||||
if constexpr (!has_fusion) {
|
||||
GGML_UNUSED_VARS(use_gate, use_bias, use_gate_bias, glu_op, gate_x, x_bias, gate_bias, sumf_gate);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
|
||||
@@ -310,6 +310,10 @@ static __global__ void mul_mat_vec_q(
|
||||
dst[j*stride_col_dst + threadIdx.x] = result;
|
||||
}
|
||||
}
|
||||
|
||||
if constexpr (!has_fusion) {
|
||||
GGML_UNUSED_VARS(use_gate, use_bias, use_gate_bias, active_glu, gate_bias, x_bias, tmp_gate);
|
||||
}
|
||||
}
|
||||
|
||||
static std::pair<dim3, dim3> calc_launch_params(
|
||||
|
||||
39
ggml/src/ggml-cuda/set.cu
Normal file
39
ggml/src/ggml-cuda/set.cu
Normal file
@@ -0,0 +1,39 @@
|
||||
#include "set.cuh"
|
||||
#include "cpy.cuh"
|
||||
|
||||
void ggml_cuda_op_set(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
GGML_ASSERT((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_I32));
|
||||
GGML_ASSERT(src1->type == src0->type);
|
||||
GGML_ASSERT(dst ->type == src0->type);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
const size_t nb1 = ((int32_t *) dst->op_params)[0];
|
||||
const size_t nb2 = ((int32_t *) dst->op_params)[1];
|
||||
const size_t nb3 = ((int32_t *) dst->op_params)[2];
|
||||
const size_t offset = ((int32_t *) dst->op_params)[3];
|
||||
const bool inplace= (bool) ((int32_t *) dst->op_params)[4];
|
||||
|
||||
if (!inplace) {
|
||||
ggml_cuda_cpy(ctx, src0, dst);
|
||||
}
|
||||
|
||||
ggml_tensor dst_view = *dst;
|
||||
dst_view.data = (void *)((char *)dst->data + offset);
|
||||
dst_view.ne[0] = src1->ne[0];
|
||||
dst_view.ne[1] = src1->ne[1];
|
||||
dst_view.ne[2] = src1->ne[2];
|
||||
dst_view.ne[3] = src1->ne[3];
|
||||
|
||||
dst_view.nb[0] = ggml_element_size(dst);
|
||||
dst_view.nb[1] = nb1;
|
||||
dst_view.nb[2] = nb2;
|
||||
dst_view.nb[3] = nb3;
|
||||
|
||||
ggml_cuda_cpy(ctx, src1, &dst_view);
|
||||
}
|
||||
7
ggml/src/ggml-cuda/set.cuh
Normal file
7
ggml/src/ggml-cuda/set.cuh
Normal file
@@ -0,0 +1,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.cuh"
|
||||
|
||||
#define CUDA_SET_BLOCK_SIZE 256
|
||||
|
||||
void ggml_cuda_op_set(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
||||
@@ -211,7 +211,7 @@ static inline void hex_format_op_names(char * str, const struct ggml_tensor * t)
|
||||
// ** backend sessions
|
||||
|
||||
struct ggml_hexagon_session {
|
||||
ggml_hexagon_session(int dev_id) noexcept(false);
|
||||
ggml_hexagon_session(int dev_id, ggml_backend_dev_t dev) noexcept(false);
|
||||
~ggml_hexagon_session() noexcept(true);
|
||||
|
||||
void allocate(int dev_id) noexcept(false);
|
||||
@@ -1631,10 +1631,13 @@ void ggml_hexagon_session::release() noexcept(true) {
|
||||
}
|
||||
}
|
||||
|
||||
ggml_hexagon_session::ggml_hexagon_session(int dev_id) noexcept(false) {
|
||||
ggml_hexagon_session::ggml_hexagon_session(int dev_id, ggml_backend_dev_t dev) noexcept(false) {
|
||||
buffer_type.context = nullptr;
|
||||
repack_buffer_type.context = nullptr;
|
||||
|
||||
buffer_type.device = dev;
|
||||
repack_buffer_type.device = dev;
|
||||
|
||||
try {
|
||||
allocate(dev_id);
|
||||
|
||||
@@ -3628,7 +3631,7 @@ ggml_hexagon_registry::ggml_hexagon_registry(ggml_backend_reg_t reg) {
|
||||
devices[i].iface = ggml_backend_hexagon_device_i;
|
||||
devices[i].reg = reg;
|
||||
try {
|
||||
devices[i].context = new ggml_hexagon_session(i);
|
||||
devices[i].context = new ggml_hexagon_session(i, &devices[i]);
|
||||
} catch (std::exception const &exc) {
|
||||
GGML_LOG_ERROR("ggml-hex: failed to create device/session %zu\n", i);
|
||||
devices[i].context = nullptr;
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <stdexcept>
|
||||
@@ -37,8 +38,15 @@ llama_kv_cache::llama_kv_cache(
|
||||
|
||||
const uint32_t n_layer_kv = hparams.n_layer_kv();
|
||||
|
||||
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
|
||||
struct ggml_backend_buft_comparator {
|
||||
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
|
||||
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
|
||||
}
|
||||
};
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
@@ -53,13 +61,12 @@ llama_kv_cache::llama_kv_cache(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
ctxs.emplace_back(ctx);
|
||||
ctx_map.emplace(buft, ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
return it->second.get();
|
||||
};
|
||||
|
||||
GGML_ASSERT(n_stream == 1 || n_stream == n_seq_max);
|
||||
@@ -167,11 +174,8 @@ llama_kv_cache::llama_kv_cache(
|
||||
}
|
||||
|
||||
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
||||
for (auto it : ctx_map) {
|
||||
auto * buft = it.first;
|
||||
auto * ctx = it.second;
|
||||
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
for (auto & [buft, ctx] : ctx_map) {
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for kv cache");
|
||||
}
|
||||
@@ -179,7 +183,7 @@ llama_kv_cache::llama_kv_cache(
|
||||
LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||||
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
bufs.emplace_back(buf);
|
||||
ctxs_bufs.emplace_back(std::move(ctx), buf);
|
||||
}
|
||||
|
||||
{
|
||||
@@ -203,7 +207,7 @@ void llama_kv_cache::clear(bool data) {
|
||||
}
|
||||
|
||||
if (data) {
|
||||
for (auto & buf : bufs) {
|
||||
for (auto & [_, buf] : ctxs_bufs) {
|
||||
ggml_backend_buffer_clear(buf.get(), 0);
|
||||
}
|
||||
}
|
||||
@@ -472,8 +476,8 @@ llama_pos llama_kv_cache::seq_pos_max(llama_seq_id seq_id) const {
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_kv_cache::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> ret;
|
||||
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
|
||||
for (const auto & [_, buf] : ctxs_bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
@@ -957,10 +961,14 @@ bool llama_kv_cache::get_has_shift() const {
|
||||
uint32_t llama_kv_cache::get_n_kv(const slot_info & sinfo) const {
|
||||
uint32_t result = 0;
|
||||
|
||||
// pad the n_kv value so that the graph remains constant across batches and can be reused
|
||||
// note: this also helps some backends with performance (f.ex https://github.com/ggml-org/llama.cpp/pull/16812#issuecomment-3455112220)
|
||||
const uint32_t n_pad_cur = std::max(n_pad, 256u);
|
||||
|
||||
for (uint32_t s = 0; s < sinfo.n_stream(); ++s) {
|
||||
const auto & cells = v_cells[sinfo.strm[s]];
|
||||
|
||||
result = std::max(std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))), result);
|
||||
result = std::max(std::min(cells.size(), std::max(n_pad_cur, GGML_PAD(cells.used_max_p1(), n_pad_cur))), result);
|
||||
}
|
||||
|
||||
return result;
|
||||
@@ -1298,7 +1306,7 @@ void llama_kv_cache::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch
|
||||
size_t llama_kv_cache::total_size() const {
|
||||
size_t size = 0;
|
||||
|
||||
for (const auto & buf : bufs) {
|
||||
for (const auto & [_, buf] : ctxs_bufs) {
|
||||
size += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
|
||||
@@ -2010,8 +2018,3 @@ void llama_kv_cache_context::set_input_kq_mask(ggml_tensor * dst, const llama_ub
|
||||
void llama_kv_cache_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const {
|
||||
kv->set_input_pos_bucket(dst, ubatch);
|
||||
}
|
||||
|
||||
uint32_t llama_kv_cache::get_padding(const llama_cparams & cparams) {
|
||||
// the FA kernels require padding to avoid extra runtime boundary checks
|
||||
return cparams.flash_attn ? 256u : 32u;
|
||||
}
|
||||
|
||||
@@ -19,8 +19,6 @@ struct llama_context;
|
||||
|
||||
class llama_kv_cache : public llama_memory_i {
|
||||
public:
|
||||
static uint32_t get_padding(const llama_cparams & cparams);
|
||||
|
||||
struct stream_copy_info {
|
||||
bool empty() const {
|
||||
assert(ssrc.size() == sdst.size());
|
||||
@@ -217,8 +215,8 @@ private:
|
||||
// this is the SWA type of the cache - not to be confused with the model SWA type
|
||||
const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
// ggml contexts for the KV cache along with the allocated backend buffers:
|
||||
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
|
||||
|
||||
// the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
|
||||
// note: this is not part of the KV state and it's only used to speed-up the find_slot() method
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <map>
|
||||
#include <stdexcept>
|
||||
@@ -32,8 +33,15 @@ llama_memory_recurrent::llama_memory_recurrent(
|
||||
cells.clear();
|
||||
cells.resize(mem_size);
|
||||
|
||||
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
|
||||
struct ggml_backend_buft_comparator {
|
||||
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
|
||||
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
|
||||
}
|
||||
};
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
|
||||
|
||||
// create a context for each buffer type
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
|
||||
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
|
||||
auto it = ctx_map.find(buft);
|
||||
if (it == ctx_map.end()) {
|
||||
@@ -48,13 +56,12 @@ llama_memory_recurrent::llama_memory_recurrent(
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ctx_map[buft] = ctx;
|
||||
ctxs.emplace_back(ctx);
|
||||
ctx_map.emplace(buft, ctx);
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
return it->second;
|
||||
return it->second.get();
|
||||
};
|
||||
|
||||
r_l.resize(n_layer);
|
||||
@@ -93,17 +100,14 @@ llama_memory_recurrent::llama_memory_recurrent(
|
||||
}
|
||||
|
||||
// allocate tensors and initialize the buffers to avoid NaNs in the padding
|
||||
for (auto it : ctx_map) {
|
||||
auto * buft = it.first;
|
||||
auto * ctx = it.second;
|
||||
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
|
||||
for (auto & [buft, ctx] : ctx_map) {
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
|
||||
if (!buf) {
|
||||
throw std::runtime_error("failed to allocate buffer for rs cache");
|
||||
}
|
||||
ggml_backend_buffer_clear(buf, 0);
|
||||
LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
|
||||
bufs.emplace_back(buf);
|
||||
ctxs_bufs.emplace_back(std::move(ctx), buf);
|
||||
}
|
||||
|
||||
{
|
||||
@@ -129,7 +133,7 @@ void llama_memory_recurrent::clear(bool data) {
|
||||
used = 0;
|
||||
|
||||
if (data) {
|
||||
for (auto & buf : bufs) {
|
||||
for (auto & [_, buf] : ctxs_bufs) {
|
||||
ggml_backend_buffer_clear(buf.get(), 0);
|
||||
}
|
||||
}
|
||||
@@ -364,8 +368,8 @@ llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
|
||||
|
||||
std::map<ggml_backend_buffer_type_t, size_t> llama_memory_recurrent::memory_breakdown() const {
|
||||
std::map<ggml_backend_buffer_type_t, size_t> ret;
|
||||
for (const ggml_backend_buffer_ptr & buf_ptr : bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf_ptr.get())] += ggml_backend_buffer_get_size(buf_ptr.get());
|
||||
for (const auto & [_, buf] : ctxs_bufs) {
|
||||
ret[ggml_backend_buffer_get_type(buf.get())] += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
@@ -662,7 +666,7 @@ bool llama_memory_recurrent::get_can_shift() const {
|
||||
|
||||
size_t llama_memory_recurrent::total_size() const {
|
||||
size_t size = 0;
|
||||
for (const auto & buf : bufs) {
|
||||
for (const auto & [_, buf] : ctxs_bufs) {
|
||||
size += ggml_backend_buffer_get_size(buf.get());
|
||||
}
|
||||
|
||||
|
||||
@@ -109,8 +109,8 @@ private:
|
||||
|
||||
const uint32_t n_seq_max = 1;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
// ggml contexts for the KV cache along with the allocated backend buffers:
|
||||
std::vector<std::pair<ggml_context_ptr, ggml_backend_buffer_ptr>> ctxs_bufs;
|
||||
|
||||
size_t total_size() const;
|
||||
|
||||
|
||||
@@ -2231,7 +2231,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
// define a comparator for the buft -> ctx map to ensure that the order is well-defined:
|
||||
struct ggml_backend_buft_comparator {
|
||||
bool operator()(const ggml_backend_buffer_type_t & lhs, const ggml_backend_buffer_type_t & rhs) const {
|
||||
return ggml_backend_buft_name(lhs) < ggml_backend_buft_name(rhs);
|
||||
return strcmp(ggml_backend_buft_name(lhs), ggml_backend_buft_name(rhs)) < 0;
|
||||
}
|
||||
};
|
||||
std::map<ggml_backend_buffer_type_t, ggml_context_ptr, ggml_backend_buft_comparator> ctx_map;
|
||||
@@ -19641,7 +19641,7 @@ struct llm_build_apertus : public llm_graph_context {
|
||||
}
|
||||
};
|
||||
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
|
||||
llama_memory_i * llama_model::create_memory(const llama_memory_params & params, const llama_cparams & cparams) const {
|
||||
llama_memory_i * res;
|
||||
|
||||
switch (arch) {
|
||||
@@ -19692,17 +19692,13 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
};
|
||||
}
|
||||
|
||||
const auto padding = llama_kv_cache::get_padding(cparams);
|
||||
|
||||
cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
|
||||
|
||||
res = new llama_memory_hybrid(
|
||||
/* model */ *this,
|
||||
/* attn_type_k */ params.type_k,
|
||||
/* attn_type_v */ params.type_v,
|
||||
/* attn_v_trans */ !cparams.flash_attn,
|
||||
/* attn_kv_size */ cparams.n_ctx,
|
||||
/* attn_n_pad */ padding,
|
||||
/* attn_n_pad */ 1,
|
||||
/* attn_n_swa */ hparams.n_swa,
|
||||
/* attn_swa_type */ hparams.swa_type,
|
||||
/* recurrent_type_k */ GGML_TYPE_F32,
|
||||
@@ -19714,23 +19710,12 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
/* filter_attn */ std::move(filter_attn),
|
||||
/* filter_recr */ std::move(filter_recr));
|
||||
} else {
|
||||
const auto padding = llama_kv_cache::get_padding(cparams);
|
||||
|
||||
uint32_t n_ctx_per_stream = cparams.n_ctx;
|
||||
|
||||
if (!cparams.kv_unified) {
|
||||
n_ctx_per_stream = (cparams.n_ctx + cparams.n_seq_max - 1)/cparams.n_seq_max;
|
||||
n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
|
||||
|
||||
cparams.n_ctx = n_ctx_per_stream*cparams.n_seq_max;
|
||||
} else {
|
||||
n_ctx_per_stream = GGML_PAD(n_ctx_per_stream, padding);
|
||||
|
||||
cparams.n_ctx = n_ctx_per_stream;
|
||||
}
|
||||
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||
|
||||
llama_memory_i::layer_reuse_cb reuse = nullptr;
|
||||
|
||||
if (arch == LLM_ARCH_GEMMA3N) {
|
||||
@@ -19757,7 +19742,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
n_ctx_per_stream,
|
||||
cparams.n_seq_max,
|
||||
cparams.n_ubatch,
|
||||
padding,
|
||||
1,
|
||||
nullptr,
|
||||
reuse);
|
||||
} else {
|
||||
@@ -19772,7 +19757,7 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
||||
cparams.kv_unified,
|
||||
n_ctx_per_stream,
|
||||
cparams.n_seq_max,
|
||||
padding,
|
||||
1,
|
||||
hparams.n_swa,
|
||||
hparams.swa_type,
|
||||
nullptr,
|
||||
|
||||
@@ -500,9 +500,8 @@ struct llama_model {
|
||||
|
||||
ggml_tensor * get_rope_factors(const llama_cparams & cparams, int il) const;
|
||||
|
||||
// note: can mutate `cparams`
|
||||
// TODO: move this to new llm_arch_model_i interface
|
||||
llama_memory_i * create_memory(const llama_memory_params & params, llama_cparams & cparams) const;
|
||||
llama_memory_i * create_memory(const llama_memory_params & params, const llama_cparams & cparams) const;
|
||||
|
||||
// TODO: move this to new llm_arch_model_i interface
|
||||
ggml_cgraph * build_graph(const llm_graph_params & params) const;
|
||||
|
||||
@@ -1124,9 +1124,9 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
})""",
|
||||
R"""(
|
||||
char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4})
|
||||
foo ::= "{" space foo-a-kv "}" space
|
||||
foo-a-kv ::= "\"a\"" space ":" space string
|
||||
root ::= foo
|
||||
ref-definitions-foo ::= "{" space ref-definitions-foo-a-kv "}" space
|
||||
ref-definitions-foo-a-kv ::= "\"a\"" space ":" space string
|
||||
root ::= ref-definitions-foo
|
||||
space ::= | " " | "\n"{1,2} [ \t]{0,20}
|
||||
string ::= "\"" char* "\"" space
|
||||
)"""
|
||||
@@ -1151,20 +1151,58 @@ static void test_all(const std::string & lang, std::function<void(const TestCase
|
||||
"type": "object"
|
||||
})""",
|
||||
R"""(
|
||||
alternative-0 ::= foo
|
||||
alternative-1 ::= bar
|
||||
bar ::= "{" space (bar-b-kv )? "}" space
|
||||
bar-b-kv ::= "\"b\"" space ":" space number
|
||||
alternative-0 ::= ref-definitions-foo
|
||||
alternative-1 ::= ref-definitions-bar
|
||||
decimal-part ::= [0-9]{1,16}
|
||||
foo ::= "{" space (foo-a-kv )? "}" space
|
||||
foo-a-kv ::= "\"a\"" space ":" space number
|
||||
integral-part ::= [0] | [1-9] [0-9]{0,15}
|
||||
number ::= ("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space
|
||||
ref-definitions-bar ::= "{" space (ref-definitions-bar-b-kv )? "}" space
|
||||
ref-definitions-bar-b-kv ::= "\"b\"" space ":" space number
|
||||
ref-definitions-foo ::= "{" space (ref-definitions-foo-a-kv )? "}" space
|
||||
ref-definitions-foo-a-kv ::= "\"a\"" space ":" space number
|
||||
root ::= alternative-0 | alternative-1
|
||||
space ::= | " " | "\n"{1,2} [ \t]{0,20}
|
||||
)"""
|
||||
});
|
||||
|
||||
test({
|
||||
SUCCESS,
|
||||
"anyOf $ref",
|
||||
R"""({
|
||||
"properties": {
|
||||
"a": {
|
||||
"anyOf": [
|
||||
{"type": "string"},
|
||||
{"type": "number"}
|
||||
]
|
||||
},
|
||||
"b": {
|
||||
"anyOf": [
|
||||
{"$ref": "#/properties/a/anyOf/0"},
|
||||
{"type": "boolean"}
|
||||
]
|
||||
}
|
||||
},
|
||||
"type": "object"
|
||||
})""",
|
||||
R"""(
|
||||
a ::= string | number
|
||||
a-kv ::= "\"a\"" space ":" space a
|
||||
a-rest ::= ( "," space b-kv )?
|
||||
b ::= b-0 | boolean
|
||||
b-0 ::= string
|
||||
b-kv ::= "\"b\"" space ":" space b
|
||||
boolean ::= ("true" | "false") space
|
||||
char ::= [^"\\\x7F\x00-\x1F] | [\\] (["\\bfnrt] | "u" [0-9a-fA-F]{4})
|
||||
decimal-part ::= [0-9]{1,16}
|
||||
integral-part ::= [0] | [1-9] [0-9]{0,15}
|
||||
number ::= ("-"? integral-part) ("." decimal-part)? ([eE] [-+]? integral-part)? space
|
||||
root ::= "{" space (a-kv a-rest | b-kv )? "}" space
|
||||
space ::= | " " | "\n"{1,2} [ \t]{0,20}
|
||||
string ::= "\"" char* "\"" space
|
||||
)"""
|
||||
});
|
||||
|
||||
test({
|
||||
SUCCESS,
|
||||
"mix of allOf, anyOf and $ref (similar to https://json.schemastore.org/tsconfig.json)",
|
||||
|
||||
@@ -82,6 +82,9 @@ Using the `-d <n>` option, each test can be run at a specified context depth, pr
|
||||
|
||||
For a description of the other options, see the [main example](../main/README.md).
|
||||
|
||||
> [!NOTE]
|
||||
> The measurements with `llama-bench` do not include the times for tokenization and for sampling.
|
||||
|
||||
## Examples
|
||||
|
||||
### Text generation with different models
|
||||
@@ -131,7 +134,7 @@ $ ./llama-bench -n 0 -n 16 -p 64 -t 1,2,4,8,16,32
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | pp 64 | 33.52 ± 0.03 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 16 | tg 16 | 15.32 ± 0.05 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | pp 64 | 59.00 ± 1.11 |
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 ||
|
||||
| llama 7B mostly Q4_0 | 3.56 GiB | 6.74 B | CPU | 32 | tg 16 | 16.41 ± 0.79 |
|
||||
|
||||
### Different numbers of layers offloaded to the GPU
|
||||
|
||||
|
||||
@@ -345,10 +345,14 @@ export class SchemaConverter {
|
||||
|
||||
const selectors = ref.split('#')[1].split('/').slice(1);
|
||||
for (const sel of selectors) {
|
||||
if (!target || !(sel in target)) {
|
||||
const selIndex = parseInt(sel, 10);
|
||||
if (target && sel in target) {
|
||||
target = target[sel];
|
||||
} else if (target && selIndex in target) {
|
||||
target = target[selIndex];
|
||||
} else {
|
||||
throw new Error(`Error resolving ref ${ref}: ${sel} not in ${JSON.stringify(target)}`);
|
||||
}
|
||||
target = target[sel];
|
||||
}
|
||||
|
||||
this._refs[ref] = target;
|
||||
@@ -594,7 +598,8 @@ export class SchemaConverter {
|
||||
}
|
||||
|
||||
_resolveRef(ref) {
|
||||
let refName = ref.split('/').pop();
|
||||
let refFragment = ref.split('#').pop();
|
||||
let refName = 'ref' + refFragment.replace(/[^a-zA-Z0-9-]+/g, '-');
|
||||
if (!(refName in this._rules) && !this._refsBeingResolved.has(ref)) {
|
||||
this._refsBeingResolved.add(ref);
|
||||
const resolved = this._refs[ref];
|
||||
|
||||
@@ -2866,10 +2866,12 @@ struct server_context {
|
||||
|
||||
// if context shifting is disabled, make sure that we don't run out of context
|
||||
if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
|
||||
slot.truncated = true;
|
||||
slot.stop = STOP_TYPE_LIMIT;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
|
||||
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
|
||||
slot.n_decoded, slot.n_prompt_tokens(), slot.n_past, slot.n_ctx);
|
||||
}
|
||||
|
||||
// check the limits
|
||||
@@ -2929,16 +2931,6 @@ struct server_context {
|
||||
}
|
||||
}
|
||||
|
||||
// if context shift is disabled, we stop when it reaches the context limit
|
||||
if (slot.n_past >= slot.n_ctx) {
|
||||
slot.truncated = true;
|
||||
slot.stop = STOP_TYPE_LIMIT;
|
||||
slot.has_next_token = false;
|
||||
|
||||
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
|
||||
slot.n_decoded, slot.n_prompt_tokens(), slot.n_past, slot.n_ctx);
|
||||
}
|
||||
|
||||
if (llama_vocab_is_eog(vocab, result.tok)) {
|
||||
slot.stop = STOP_TYPE_EOS;
|
||||
slot.has_next_token = false;
|
||||
@@ -2946,19 +2938,6 @@ struct server_context {
|
||||
SLT_DBG(slot, "%s", "stopped by EOS\n");
|
||||
}
|
||||
|
||||
const auto n_ctx_train = llama_model_n_ctx_train(model);
|
||||
|
||||
if (slot.task->params.n_predict < 1 && slot.n_prompt_tokens() + slot.n_decoded >= n_ctx_train) {
|
||||
slot.truncated = true;
|
||||
slot.stop = STOP_TYPE_LIMIT;
|
||||
slot.has_next_token = false; // stop prediction
|
||||
|
||||
SLT_WRN(slot,
|
||||
"n_predict (%d) is set for infinite generation. "
|
||||
"Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
|
||||
slot.task->params.n_predict, n_ctx_train);
|
||||
}
|
||||
|
||||
SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
|
||||
|
||||
return slot.has_next_token; // continue
|
||||
|
||||
@@ -45,7 +45,7 @@ def test_ctx_shift_enabled():
|
||||
|
||||
@pytest.mark.parametrize("n_predict,n_token_output,truncated", [
|
||||
(64, 64, False),
|
||||
(-1, 120, True),
|
||||
(-1, 248, True), # 8 tokens prompt + 248 tokens generated = 256 tokens total
|
||||
])
|
||||
def test_ctx_shift_disabled_short_prompt(n_predict: int, n_token_output: int, truncated: bool):
|
||||
global server
|
||||
|
||||
Reference in New Issue
Block a user