Compare commits

..

1 Commits

Author SHA1 Message Date
Jared Van Bortel
b06a954bbc llama_encode : only force non-causal attention for enc-dec models 2025-05-19 13:43:59 -04:00
1575 changed files with 90733 additions and 448838 deletions

View File

@@ -22,15 +22,8 @@ AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
# Treat CUDA keywords/attributes as "attribute macros" and avoid breaking lines inside them
AttributeMacros:
- __host__
- __device__
- __global__
- __forceinline__
- __launch_bounds__
BinPackArguments: true
BinPackParameters: false # OnePerLine
BinPackParameters: true # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach
BraceWrapping:
@@ -77,17 +70,14 @@ ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '".*"'
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*\.h>'
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '^<.*'
Priority: 3
SortPriority: 0
- Regex: '.*'
Priority: 4
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''

View File

@@ -17,7 +17,6 @@ Checks: >
clang-analyzer-*,
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
-performance-enum-size,
portability-*,
-portability-simd-intrinsics,
misc-*,

View File

@@ -1,130 +0,0 @@
# ==============================================================================
# ARGUMENTS
# ==============================================================================
# Define the CANN base image for easier version updates later
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.1.rc1-910b-openeuler22.03-py3.10
# ==============================================================================
# BUILD STAGE
# Compile all binary files and libraries
# ==============================================================================
FROM ${CANN_BASE_IMAGE} AS build
# Define the Ascend chip model for compilation. Default is Ascend910B3
ARG ASCEND_SOC_TYPE=Ascend910B3
# -- Install build dependencies --
RUN yum install -y gcc g++ cmake make git libcurl-devel python3 python3-pip && \
yum clean all && \
rm -rf /var/cache/yum
# -- Set the working directory --
WORKDIR /app
# -- Copy project files --
COPY . .
# -- Set CANN environment variables (required for compilation) --
# Using ENV instead of `source` allows environment variables to persist across the entire image layer
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
# ... You can add other environment variables from the original file as needed ...
# For brevity, only core variables are listed here. You can paste the original ENV list here.
# -- Build llama.cpp --
# Use the passed ASCEND_SOC_TYPE argument and add general build options
RUN source /usr/local/Ascend/ascend-toolkit/set_env.sh --force \
&& \
cmake -B build \
-DGGML_CANN=ON \
-DCMAKE_BUILD_TYPE=Release \
-DSOC_TYPE=${ASCEND_SOC_TYPE} \
. && \
cmake --build build --config Release -j$(nproc)
# -- Organize build artifacts for copying in later stages --
# Create a lib directory to store all .so files
RUN mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
# Create a full directory to store all executables and Python scripts
RUN mkdir -p /app/full && \
cp build/bin/* /app/full/ && \
cp *.py /app/full/ && \
cp -r gguf-py /app/full/ && \
cp -r requirements /app/full/ && \
cp requirements.txt /app/full/
# If you have a tools.sh script, make sure it is copied here
# cp .devops/tools.sh /app/full/tools.sh
# ==============================================================================
# BASE STAGE
# Create a minimal base image with CANN runtime and common libraries
# ==============================================================================
FROM ${CANN_BASE_IMAGE} AS base
# -- Install runtime dependencies --
RUN yum install -y libgomp curl && \
yum clean all && \
rm -rf /var/cache/yum
# -- Set CANN environment variables (required for runtime) --
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LD_LIBRARY_PATH=/app:${ASCEND_TOOLKIT_HOME}/lib64:${LD_LIBRARY_PATH}
ENV PATH=${ASCEND_TOOLKIT_HOME}/bin:${PATH}
ENV ASCEND_OPP_PATH=${ASCEND_TOOLKIT_HOME}/opp
# ... You can add other environment variables from the original file as needed ...
WORKDIR /app
# Copy compiled .so files from the build stage
COPY --from=build /app/lib/ /app
# ==============================================================================
# FINAL STAGES (TARGETS)
# ==============================================================================
### Target: full
# Complete image with all tools, Python bindings, and dependencies
# ==============================================================================
FROM base AS full
COPY --from=build /app/full /app
# Install Python dependencies
RUN yum install -y git python3 python3-pip && \
pip3 install --no-cache-dir --upgrade pip setuptools wheel && \
pip3 install --no-cache-dir -r requirements.txt && \
yum clean all && \
rm -rf /var/cache/yum
# You need to provide a tools.sh script as the entrypoint
ENTRYPOINT ["/app/tools.sh"]
# If there is no tools.sh, you can set the default to start the server
# ENTRYPOINT ["/app/llama-server"]
### Target: light
# Lightweight image containing only llama-cli
# ==============================================================================
FROM base AS light
COPY --from=build /app/full/llama-cli /app
ENTRYPOINT [ "/app/llama-cli" ]
### Target: server
# Dedicated server image containing only llama-server
# ==============================================================================
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
COPY --from=build /app/full/llama-server /app
HEALTHCHECK --interval=5m CMD [ "curl", "-f", "http://localhost:8080/health" ]
ENTRYPOINT [ "/app/llama-server" ]

22
.devops/cloud-v-pipeline Normal file
View File

@@ -0,0 +1,22 @@
node('x86_runner1'){ // Running on x86 runner containing latest vector qemu, latest vector gcc and all the necessary libraries
stage('Cleanup'){
cleanWs() // Cleaning previous CI build in workspace
}
stage('checkout repo'){
retry(5){ // Retry if the cloning fails due to some reason
checkout scm // Clone the repo on Runner
}
}
stage('Compiling llama.cpp'){
sh'''#!/bin/bash
make RISCV=1 RISCV_CROSS_COMPILE=1 # Compiling llama for RISC-V
'''
}
stage('Running llama.cpp'){
sh'''#!/bin/bash
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./llama-cli -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
cat llama_log.txt # Printing results
'''
}
}

View File

@@ -4,6 +4,8 @@ FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
@@ -11,8 +13,10 @@ WORKDIR /app
COPY . .
RUN if [ "$TARGETARCH" = "amd64" ] || [ "$TARGETARCH" = "arm64" ]; then \
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_TESTS=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \

View File

@@ -61,7 +61,7 @@ RUN apt-get update \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install --break-system-packages -r requirements.txt \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@@ -1,8 +1,8 @@
ARG ONEAPI_VERSION=2025.2.2-0-devel-ubuntu24.04
ARG ONEAPI_VERSION=2025.1.1-0-devel-ubuntu24.04
## Build Image
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS build
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
ARG GGML_SYCL_F16=OFF
RUN apt-get update && \
@@ -31,7 +31,7 @@ RUN mkdir -p /app/full \
&& cp requirements.txt /app/full \
&& cp .devops/tools.sh /app/full/tools.sh
FROM intel/deep-learning-essentials:$ONEAPI_VERSION AS base
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
@@ -49,23 +49,19 @@ COPY --from=build /app/full /app
WORKDIR /app
RUN apt-get update && \
apt-get install -y \
git \
python3 \
python3-pip \
python3-venv && \
python3 -m venv /opt/venv && \
. /opt/venv/bin/activate && \
pip install --upgrade pip setuptools wheel && \
pip install -r requirements.txt && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
RUN apt-get update \
&& apt-get install -y \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
&& find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete \
&& find /var/cache -type f -delete
ENV PATH="/opt/venv/bin:$PATH"
ENTRYPOINT ["/app/tools.sh"]

View File

@@ -1,10 +1,10 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc4.3.0
ARG MUSA_VERSION=rc3.1.1
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}-amd64
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}-amd64
ARG BASE_MUSA_RUN_CONTAINER=mthreads/musa:${MUSA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
FROM ${BASE_MUSA_DEV_CONTAINER} AS build
@@ -21,14 +21,21 @@ RUN apt-get update && \
libcurl4-openssl-dev \
libgomp1
COPY requirements.txt requirements.txt
COPY requirements requirements
RUN pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt
WORKDIR /app
COPY . .
# Use the default MUSA archs if not specified
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_BUILD_TESTS=OFF ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -34,7 +34,6 @@
rocmGpuTargets ? builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets,
enableCurl ? true,
useVulkan ? false,
useRpc ? false,
llamaVersion ? "0.0.0", # Arbitrary version, substituted by the flake
# It's necessary to consistently use backendStdenv when building with CUDA support,
@@ -48,7 +47,6 @@ let
inherit (lib)
cmakeBool
cmakeFeature
optionalAttrs
optionals
strings
;
@@ -129,6 +127,10 @@ effectiveStdenv.mkDerivation (finalAttrs: {
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
@@ -176,7 +178,6 @@ effectiveStdenv.mkDerivation (finalAttrs: {
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)
(cmakeBool "GGML_RPC" useRpc)
]
++ optionals useCuda [
(
@@ -196,7 +197,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
];
# Environment variables needed for ROCm
env = optionalAttrs useRocm {
env = optionals useRocm {
ROCM_PATH = "${rocmPackages.clr}";
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
};

View File

@@ -1,10 +1,10 @@
ARG UBUNTU_VERSION=24.04
# This needs to generally match the container host's environment.
ARG ROCM_VERSION=7.0
ARG AMDGPU_VERSION=7.0
ARG ROCM_VERSION=6.3
ARG AMDGPU_VERSION=6.3
# Target the ROCm build image
# Target the CUDA build image
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
### Build image
@@ -13,14 +13,18 @@ FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx906, gfx1032, gfx1101, gfx1102,not officialy supported
# check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.4.1/reference/system-requirements.html
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
ARG ROCM_DOCKER_ARCH='gfx803;gfx900;gfx906;gfx908;gfx90a;gfx942;gfx1010;gfx1030;gfx1032;gfx1100;gfx1101;gfx1102;gfx1200;gfx1201;gfx1151'
#ARG ROCM_DOCKER_ARCH='gfx1151'
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
#ARG ROCM_DOCKER_ARCH=gfx1100
# Set ROCm architectures
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
# Enable ROCm
# ENV CC=/opt/rocm/llvm/bin/clang
# ENV CXX=/opt/rocm/llvm/bin/clang++
RUN apt-get update \
&& apt-get install -y \
@@ -36,12 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build \
-DGGML_HIP=ON \
-DGGML_HIP_ROCWMMA_FATTN=ON \
-DAMDGPU_TARGETS="$ROCM_DOCKER_ARCH" \
-DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON \
-DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_BUILD_TESTS=OFF \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -1,126 +0,0 @@
ARG GCC_VERSION=15.2.0
ARG UBUNTU_VERSION=24.04
### Build Llama.cpp stage
FROM gcc:${GCC_VERSION} AS build
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt upgrade -y && \
apt install -y --no-install-recommends \
git cmake ccache ninja-build \
# WARNING: Do not use libopenblas-openmp-dev. libopenblas-dev is faster.
libopenblas-dev libcurl4-openssl-dev && \
rm -rf /var/lib/apt/lists/*
WORKDIR /app
COPY . .
RUN --mount=type=cache,target=/root/.ccache \
--mount=type=cache,target=/app/build \
cmake -S . -B build -G Ninja \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_NATIVE=OFF \
-DGGML_BACKEND_DL=ON \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS && \
cmake --build build --config Release -j $(nproc) && \
cmake --install build --prefix /opt/llama.cpp
COPY *.py /opt/llama.cpp/bin
COPY .devops/tools.sh /opt/llama.cpp/bin
COPY gguf-py /opt/llama.cpp/gguf-py
COPY requirements.txt /opt/llama.cpp/gguf-py
COPY requirements /opt/llama.cpp/gguf-py/requirements
### Collect all llama.cpp binaries, libraries and distro libraries
FROM scratch AS collector
# Copy llama.cpp binaries and libraries
COPY --from=build /opt/llama.cpp/bin /llama.cpp/bin
COPY --from=build /opt/llama.cpp/lib /llama.cpp/lib
COPY --from=build /opt/llama.cpp/gguf-py /llama.cpp/gguf-py
### Base image
FROM ubuntu:${UBUNTU_VERSION} AS base
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y --no-install-recommends \
# WARNING: Do not use libopenblas-openmp-dev. libopenblas-dev is faster.
# See: https://github.com/ggml-org/llama.cpp/pull/15915#issuecomment-3317166506
curl libgomp1 libopenblas-dev && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
# Copy llama.cpp libraries
COPY --from=collector /llama.cpp/lib /usr/lib/s390x-linux-gnu
### Full
FROM base AS full
ENV PATH="/root/.cargo/bin:${PATH}"
WORKDIR /app
RUN --mount=type=cache,target=/var/cache/apt,sharing=locked \
--mount=type=cache,target=/var/lib/apt/lists,sharing=locked \
apt update -y && \
apt install -y \
git cmake libjpeg-dev \
python3 python3-pip python3-dev && \
apt autoremove -y && \
apt clean -y && \
rm -rf /tmp/* /var/tmp/* && \
find /var/cache/apt/archives /var/lib/apt/lists -not -name lock -type f -delete && \
find /var/cache -type f -delete
RUN curl https://sh.rustup.rs -sSf | bash -s -- -y
COPY --from=collector /llama.cpp/bin /app
COPY --from=collector /llama.cpp/gguf-py /app/gguf-py
RUN pip install --no-cache-dir --break-system-packages \
-r /app/gguf-py/requirements.txt
ENTRYPOINT [ "/app/tools.sh" ]
### CLI Only
FROM base AS light
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]
### Server
FROM base AS server
ENV LLAMA_ARG_HOST=0.0.0.0
WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-server /llama.cpp/bin
EXPOSE 8080
ENTRYPOINT [ "/llama.cpp/bin/llama-server" ]

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
set -e
# Read the first argument into a variable

View File

@@ -1,22 +1,22 @@
ARG UBUNTU_VERSION=25.10
ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
# Install build tools
RUN apt update && apt install -y git build-essential cmake wget xz-utils
RUN apt update && apt install -y git build-essential cmake wget
# Install cURL and Vulkan SDK dependencies
RUN apt install -y libcurl4-openssl-dev curl \
libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libvulkan-dev glslc
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=ON -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_BUILD_TESTS=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
@@ -34,7 +34,7 @@ RUN mkdir -p /app/full \
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@@ -48,23 +48,3 @@ end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[vendor/miniaudio/miniaudio.h]
trim_trailing_whitespace = unset
insert_final_newline = unset
[tools/server/webui/**]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset
[benches/**]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -40,7 +40,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true

View File

@@ -42,7 +42,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
options: [AMX, BLAS, CPU, CUDA, HIP, Kompute, Metal, Musa, RPC, SYCL, Vulkan]
multiple: true
validations:
required: true

View File

@@ -1,36 +0,0 @@
name: "Install exe"
description: "Download and install exe"
inputs:
url:
description: "URL of the exe installer"
required: true
args:
description: "Installer arguments"
required: true
timeout:
description: "Timeout (in ms)"
required: false
default: "600000"
runs:
using: "composite"
steps:
- name: Install EXE
shell: pwsh
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading Installer EXE"
Invoke-WebRequest -Uri "${{ inputs.url }}" -OutFile "${env:RUNNER_TEMP}\temp-install.exe"
write-host "Installing"
$proc = Start-Process "${env:RUNNER_TEMP}\temp-install.exe" -ArgumentList '${{ inputs.args }}' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(${{ inputs.timeout }})
if (-not $completed) {
Write-Error "Installer timed out. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "Installer failed with exit code $($proc.ExitCode)"
exit 1
}
write-host "Completed installation"

View File

@@ -1,20 +0,0 @@
name: "Linux - Setup SpacemiT Toolchain"
description: "Setup SpacemiT Toolchain for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "SpacemiT toolchain version"
required: true
runs:
using: "composite"
steps:
- name: Setup SpacemiT Toolchain
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v${{ inputs.version }}.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -1,20 +0,0 @@
name: "Linux - Setup Vulkan SDK"
description: "Setup Vulkan SDK for Linux"
inputs:
path:
description: "Installation path"
required: true
version:
description: "Vulkan SDK version"
required: true
runs:
using: "composite"
steps:
- name: Setup Vulkan SDK
id: setup
uses: ./.github/actions/unarchive-tar
with:
url: https://sdk.lunarg.com/sdk/download/${{ inputs.version }}/linux/vulkan_sdk.tar.xz
path: ${{ inputs.path }}
strip: 1

View File

@@ -1,27 +0,0 @@
name: "Unarchive tar"
description: "Download and unarchive tar into directory"
inputs:
url:
description: "URL of the tar archive"
required: true
path:
description: "Directory to unarchive into"
required: true
type:
description: "Compression type (tar option)"
required: false
default: "J"
strip:
description: "Strip components"
required: false
default: "0"
runs:
using: "composite"
steps:
- name: Unarchive into directory
shell: bash
run: |
mkdir -p ${{ inputs.path }}
cd ${{ inputs.path }}
curl --no-progress-meter ${{ inputs.url }} | tar -${{ inputs.type }}x --strip-components=${{ inputs.strip }}

View File

@@ -1,15 +0,0 @@
name: "Windows - Setup ROCm"
description: "Setup ROCm for Windows"
inputs:
version:
description: "ROCm version"
required: true
runs:
using: "composite"
steps:
- name: Setup ROCm
uses: ./.github/actions/install-exe
with:
url: https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ inputs.version }}-WinSvr2022-For-HIP.exe
args: -install

View File

@@ -1,262 +0,0 @@
# Copilot Instructions for llama.cpp
## Repository Overview
llama.cpp is a large-scale C/C++ project for efficient LLM (Large Language Model) inference with minimal setup and dependencies. The project enables running language models on diverse hardware with state-of-the-art performance.
**Key Facts:**
- **Primary language**: C/C++ with Python utility scripts
- **Size**: ~200k+ lines of code across 1000+ files
- **Architecture**: Modular design with main library (`libllama`) and 40+ executable tools/examples
- **Core dependency**: ggml tensor library (vendored in `ggml/` directory)
- **Backends supported**: CPU (AVX/NEON optimized), CUDA, Metal, Vulkan, SYCL, ROCm, MUSA
- **License**: MIT
## Build Instructions
### Prerequisites
- CMake 3.14+ (primary build system)
- C++17 compatible compiler (GCC 13.3+, Clang, MSVC)
- Optional: ccache for faster compilation
### Basic Build (CPU-only)
**ALWAYS run these commands in sequence:**
```bash
cmake -B build
cmake --build build --config Release -j $(nproc)
```
**Build time**: ~10 minutes on 4-core system with ccache enabled, ~25 minutes without ccache.
**Important Notes:**
- The Makefile is deprecated - always use CMake
- ccache is automatically detected and used if available
- Built binaries are placed in `build/bin/`
- Parallel builds (`-j`) significantly reduce build time
### Backend-Specific Builds
For CUDA support:
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release -j $(nproc)
```
For Metal (macOS):
```bash
cmake -B build -DGGML_METAL=ON
cmake --build build --config Release -j $(nproc)
```
**Important Note**: While all backends can be built as long as the correct requirements for that backend are installed, you will not be able to run them without the correct hardware. The only backend that can be run for testing and validation is the CPU backend.
### Debug Builds
Single-config generators:
```bash
cmake -B build -DCMAKE_BUILD_TYPE=Debug
cmake --build build
```
Multi-config generators:
```bash
cmake -B build -G "Xcode"
cmake --build build --config Debug
```
### Common Build Issues
- **Issue**: Network tests fail in isolated environments
**Solution**: Expected behavior - core functionality tests will still pass
## Testing
### Running Tests
```bash
ctest --test-dir build --output-on-failure -j $(nproc)
```
**Test suite**: 38 tests covering tokenizers, grammar parsing, sampling, backends, and integration
**Expected failures**: 2-3 tests may fail if network access is unavailable (they download models)
**Test time**: ~30 seconds for passing tests
### Server Unit Tests
Run server-specific unit tests after building the server:
```bash
# Build the server first
cmake --build build --target llama-server
# Navigate to server tests and run
cd tools/server/tests
source ../../../.venv/bin/activate
./tests.sh
```
**Server test dependencies**: The `.venv` environment includes the required dependencies for server unit tests (pytest, aiohttp, etc.). Tests can be run individually or with various options as documented in `tools/server/tests/README.md`.
### Test Categories
- Tokenizer tests: Various model tokenizers (BERT, GPT-2, LLaMA, etc.)
- Grammar tests: GBNF parsing and validation
- Backend tests: Core ggml operations across different backends
- Integration tests: End-to-end workflows
### Manual Testing Commands
```bash
# Test basic inference
./build/bin/llama-cli --version
# Test model loading (requires model file)
./build/bin/llama-cli -m path/to/model.gguf -p "Hello" -n 10
```
## Code Quality and Linting
### C++ Code Formatting
**ALWAYS format C++ code before committing:**
```bash
git clang-format
```
Configuration is in `.clang-format` with these key rules:
- 4-space indentation
- 120 column limit
- Braces on same line for functions
- Pointer alignment: `void * ptr` (middle)
- Reference alignment: `int & ref` (middle)
### Python Code
**ALWAYS activate the Python environment in `.venv` and use tools from that environment:**
```bash
# Activate virtual environment
source .venv/bin/activate
```
Configuration files:
- `.flake8`: flake8 settings (max-line-length=125, excludes examples/tools)
- `pyrightconfig.json`: pyright type checking configuration
### Pre-commit Hooks
Run before committing:
```bash
pre-commit run --all-files
```
## Continuous Integration
### GitHub Actions Workflows
Key workflows that run on every PR:
- `.github/workflows/build.yml`: Multi-platform builds
- `.github/workflows/server.yml`: Server functionality tests
- `.github/workflows/python-lint.yml`: Python code quality
- `.github/workflows/python-type-check.yml`: Python type checking
### Local CI Validation
**Run full CI locally before submitting PRs:**
```bash
mkdir tmp
# CPU-only build
bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
**CI Runtime**: 30-60 minutes depending on backend configuration
### Triggering CI
Add `ggml-ci` to commit message to trigger heavy CI workloads on the custom CI infrastructure.
## Project Layout and Architecture
### Core Directories
- **`src/`**: Main llama library implementation (`llama.cpp`, `llama-*.cpp`)
- **`include/`**: Public API headers, primarily `include/llama.h`
- **`ggml/`**: Core tensor library (submodule with custom GGML framework)
- **`examples/`**: 30+ example applications and tools
- **`tools/`**: Additional development and utility tools (server benchmarks, tests)
- **`tests/`**: Comprehensive test suite with CTest integration
- **`docs/`**: Detailed documentation (build guides, API docs, etc.)
- **`scripts/`**: Utility scripts for CI, data processing, and automation
- **`common/`**: Shared utility code used across examples
### Key Files
- **`CMakeLists.txt`**: Primary build configuration
- **`include/llama.h`**: Main C API header (~2000 lines)
- **`src/llama.cpp`**: Core library implementation (~8000 lines)
- **`CONTRIBUTING.md`**: Coding guidelines and PR requirements
- **`.clang-format`**: C++ formatting rules
- **`.pre-commit-config.yaml`**: Git hook configuration
### Built Executables (in `build/bin/`)
Primary tools:
- **`llama-cli`**: Main inference tool
- **`llama-server`**: OpenAI-compatible HTTP server
- **`llama-quantize`**: Model quantization utility
- **`llama-perplexity`**: Model evaluation tool
- **`llama-bench`**: Performance benchmarking
- **`llama-convert-llama2c-to-ggml`**: Model conversion utilities
### Configuration Files
- **CMake**: `CMakeLists.txt`, `cmake/` directory
- **Linting**: `.clang-format`, `.clang-tidy`, `.flake8`
- **CI**: `.github/workflows/`, `ci/run.sh`
- **Git**: `.gitignore` (includes build artifacts, models, cache)
### Dependencies
- **System**: OpenMP, libcurl (for model downloading)
- **Optional**: CUDA SDK, Metal framework, Vulkan SDK, Intel oneAPI
- **Bundled**: httplib, json (header-only libraries in vendored form)
## Common Validation Steps
### After Making Changes
1. **Format code**: `git clang-format`
2. **Build**: `cmake --build build --config Release`
3. **Test**: `ctest --test-dir build --output-on-failure`
4. **Server tests** (if modifying server): `cd tools/server/tests && source ../../../.venv/bin/activate && ./tests.sh`
5. **Manual validation**: Test relevant tools in `build/bin/`
### Performance Validation
```bash
# Benchmark inference performance
./build/bin/llama-bench -m model.gguf
# Evaluate model perplexity
./build/bin/llama-perplexity -m model.gguf -f dataset.txt
```
### Backend Validation
```bash
# Test backend operations
./build/bin/test-backend-ops
```
## Environment Setup
### Required Tools
- CMake 3.14+ (install via system package manager)
- Modern C++ compiler with C++17 support
- Git (for submodule management)
- Python 3.9+ with virtual environment (`.venv` is provided)
### Optional but Recommended
- ccache: `apt install ccache` or `brew install ccache`
- clang-format 15+: Usually included with LLVM/Clang installation
- pre-commit: `pip install pre-commit`
### Backend-Specific Requirements
- **CUDA**: NVIDIA CUDA Toolkit 11.2+
- **Metal**: Xcode command line tools (macOS only)
- **Vulkan**: Vulkan SDK
- **SYCL**: Intel oneAPI toolkit
## Important Guidelines
### Code Changes
- **Minimal dependencies**: Avoid adding new external dependencies
- **Cross-platform compatibility**: Test on Linux, macOS, Windows when possible
- **Performance focus**: This is a performance-critical inference library
- **API stability**: Changes to `include/llama.h` require careful consideration
### Git Workflow
- Always create feature branches from `master`
- **Never** commit build artifacts (`build/`, `.ccache/`, `*.o`, `*.gguf`)
- Use descriptive commit messages following project conventions
### Trust These Instructions
Only search for additional information if these instructions are incomplete or found to be incorrect. This document contains validated build and test procedures that work reliably across different environments.

27
.github/labeler.yml vendored
View File

@@ -1,4 +1,10 @@
# https://github.com/actions/labeler
Kompute:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-kompute.h
- ggml/src/ggml-kompute/**
- README-kompute.md
Apple Metal:
- changed-files:
- any-glob-to-any-file:
@@ -22,11 +28,6 @@ Vulkan:
- any-glob-to-any-file:
- ggml/include/ggml-vulkan.h
- ggml/src/ggml-vulkan/**
IBM zDNN:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-zdnn.h
- ggml/src/ggml-zdnn/**
documentation:
- changed-files:
- any-glob-to-any-file:
@@ -76,10 +77,6 @@ ggml:
- changed-files:
- any-glob-to-any-file:
- ggml/**
model:
- changed-files:
- any-glob-to-any-file:
- src/models/**
nix:
- changed-files:
- any-glob-to-any-file:
@@ -89,15 +86,3 @@ nix:
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/
Ascend NPU:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-cann.h
- ggml/src/ggml-cann/**
- docs/backend/CANN.md
OpenCL:
- changed-files:
- any-glob-to-any-file:
- ggml/include/ggml-opencl.h
- ggml/src/ggml-opencl/**

View File

@@ -1,52 +0,0 @@
name: CI (AMD)
on:
workflow_dispatch: # allows manual triggering
push:
branches:
- master
paths: [
'.github/workflows/build-amd.yml',
'**/CMakeLists.txt',
'**/.cmake',
'**/*.h',
'**/*.hpp',
'**/*.c',
'**/*.cpp',
'**/*.cu',
'**/*.cuh',
'**/*.comp'
]
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp

View File

@@ -1,89 +0,0 @@
name: Build Actions Cache
on:
workflow_dispatch: # allows manual triggering
schedule:
- cron: '0 * * * *'
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
ubuntu-24-vulkan-cache:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Get latest Vulkan SDK version
id: vulkan_sdk_version
run: |
echo "VULKAN_SDK_VERSION=$(curl https://vulkan.lunarg.com/sdk/latest/linux.txt)" >> "$GITHUB_ENV"
- name: Setup Cache
uses: actions/cache@v4
id: cache-sdk
with:
path: ./vulkan_sdk
key: vulkan-sdk-${{ env.VULKAN_SDK_VERSION }}-${{ runner.os }}
- name: Setup Vulkan SDK
if: steps.cache-sdk.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-vulkan
with:
path: ./vulkan_sdk
version: ${{ env.VULKAN_SDK_VERSION }}
ubuntu-24-spacemit-cache:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-linux-cross.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
windows-2022-rocm-cache:
runs-on: windows-2022
env:
# Make sure this is in sync with build.yml
HIPSDK_INSTALLER_VERSION: "25.Q3"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup Cache
uses: actions/cache@v4
id: cache-rocm
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
- name: Setup ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
uses: ./.github/actions/windows-setup-rocm
with:
version: ${{ env.HIPSDK_INSTALLER_VERSION }}

View File

@@ -1,51 +0,0 @@
name: Build relocatable cmake package
on:
workflow_dispatch:
workflow_call:
jobs:
linux:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y build-essential tcl
- name: Build
run: |
PREFIX="$(pwd)"/inst
cmake -S . -B build -DCMAKE_PREFIX_PATH="$PREFIX" \
-DLLAMA_CURL=OFF -DLLAMA_BUILD_TESTS=OFF -DLLAMA_BUILD_TOOLS=OFF \
-DLLAMA_BUILD_EXAMPLES=OFF -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release
cmake --install build --prefix "$PREFIX" --config Release
export LLAMA_CONFIG="$PREFIX"/lib/cmake/llama/llama-config.cmake
tclsh <<'EOF'
set build(commit) [string trim [exec git rev-parse --short HEAD]]
set build(number) [string trim [exec git rev-list --count HEAD]]
set build(version) "0.0.$build(number)"
set llamaconfig [read [open "$env(LLAMA_CONFIG)" r]]
set checks [list "set\\(LLAMA_VERSION \\s+$build(version)\\)" \
"set\\(LLAMA_BUILD_COMMIT\\s+$build(commit)\\)" \
"set\\(LLAMA_BUILD_NUMBER\\s+$build(number)\\)"]
puts -nonewline "Checking llama-config.cmake version... "
foreach check $checks {
if {![regexp -expanded -- $check $llamaconfig]} {
puts "\"$check\" failed!"
exit 1
}
}
puts "success."
EOF
cd examples/simple-cmake-pkg
cmake -S . -B build -DCMAKE_PREFIX_PATH="$PREFIX"/lib/cmake
cmake --build build

View File

@@ -4,294 +4,230 @@ on:
workflow_call:
jobs:
# ubuntu-24-riscv64-cpu-cross:
# runs-on: ubuntu-24.04
# steps:
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo dpkg --add-architecture riscv64
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# cmake --build build --config Release -j $(nproc)
# ubuntu-24-riscv64-vulkan-cross:
# runs-on: ubuntu-24.04
# steps:
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo dpkg --add-architecture riscv64
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# libvulkan-dev:riscv64
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# cmake --build build --config Release -j $(nproc)
# ubuntu-24-arm64-vulkan-cross:
# runs-on: ubuntu-24.04
# steps:
# - uses: actions/checkout@v4
# - name: Setup Arm64
# run: |
# sudo dpkg --add-architecture arm64
# # Add arch-specific repositories for non-amd64 architectures
# cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
# deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
# EOF
# sudo apt-get update || true ;# Prevent failure due to missing URLs.
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# glslc \
# crossbuild-essential-arm64 \
# libvulkan-dev:arm64
# - name: Build
# run: |
# cmake -B build -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_VULKAN=ON \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=aarch64 \
# -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
# -DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
# cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-cpu-cross:
ubuntu-24-riscv64-cpu-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
- name: Setup Riscv
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
sudo dpkg --add-architecture riscv64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
debian-13-loongarch64-vulkan-cross:
ubuntu-24-riscv64-vulkan-cross:
runs-on: ubuntu-24.04
container: debian@sha256:653dfb9f86c3782e8369d5f7d29bb8faba1f4bff9025db46e807fa4c22903671
steps:
- uses: actions/checkout@v4
- name: Setup LoongArch
- name: Setup Riscv
run: |
rm -f /etc/apt/sources.list.d/*
cat << EOF | tee /etc/apt/sources.list.d/debian-ports.list
deb http://snapshot.debian.org/archive/debian/20250515T202920Z/ trixie main
EOF
( echo 'quiet "true";'; \
echo 'APT::Get::Assume-Yes "true";'; \
echo 'APT::Install-Recommends "false";'; \
echo 'Acquire::Check-Valid-Until "false";'; \
echo 'Acquire::Retries "5";'; \
) > /etc/apt/apt.conf.d/99snapshot-repos
apt-get update
apt-get install -y ca-certificates debian-ports-archive-keyring cmake git zip
dpkg --add-architecture loong64
sudo dpkg --add-architecture riscv64
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | tee /etc/apt/sources.list.d/loong64-ports.list
deb [arch=loong64] http://snapshot.debian.org/archive/debian-ports/20250515T194251Z/ sid main
cat << EOF | sudo tee /etc/apt/sources.list.d/riscv64-ports.list
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=riscv64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get update || true ;# Prevent failure due to missing URLs.
apt-get install -y --no-install-recommends \
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-loongarch64-linux-gnu \
g++-14-loongarch64-linux-gnu \
libvulkan-dev:loong64
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=loongarch64 \
-DCMAKE_C_COMPILER=loongarch64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=loongarch64-linux-gnu-g++-14 \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/loongarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-riscv64-cpu-spacemit-ime-cross:
ubuntu-24-arm64-vulkan-cross:
runs-on: ubuntu-24.04
env:
# Make sure this is in sync with build-cache.yml
SPACEMIT_IME_TOOLCHAIN_VERSION: "1.1.2"
steps:
- uses: actions/checkout@v4
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
- name: Use SpacemiT Toolchain Cache
uses: actions/cache@v4
id: cache-toolchain
with:
path: ./spacemit_toolchain
key: spacemit-ime-toolchain-v${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}-${{ runner.os }}
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/arm64-ports.list
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=arm64] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
- name: Setup SpacemiT Toolchain
if: steps.cache-toolchain.outputs.cache-hit != 'true'
uses: ./.github/actions/linux-setup-spacemit
with:
path: ./spacemit_toolchain
version: ${{ env.SPACEMIT_IME_TOOLCHAIN_VERSION }}
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
- name: Build
run: |
export RISCV_ROOT_PATH=${PWD}/spacemit_toolchain
cmake -B build -DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-cpu-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup PowerPC64le
run: |
sudo dpkg --add-architecture ppc64el
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libcurl4-openssl-dev:ppc64el
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-24-ppc64el-vulkan-cross:
runs-on: ubuntu-24.04
steps:
- uses: actions/checkout@v4
- name: Setup PowerPC64le
run: |
sudo dpkg --add-architecture ppc64el
# Add arch-specific repositories for non-amd64 architectures
cat << EOF | sudo tee /etc/apt/sources.list.d/ppc64el-ports.list
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-updates main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-security main universe
deb [arch=ppc64el] http://ports.ubuntu.com/ubuntu-ports/ noble-backports main universe
EOF
sudo apt-get update || true ;# Prevent failure due to missing URLs.
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-powerpc64le-linux-gnu \
g++-14-powerpc64le-linux-gnu \
libvulkan-dev:ppc64el \
libcurl4-openssl-dev:ppc64el
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=ppc64 \
-DCMAKE_C_COMPILER=powerpc64le-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=powerpc64le-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/powerpc64le-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

View File

@@ -1,120 +0,0 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

File diff suppressed because it is too large Load Diff

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactoring,help wanted,good first issue,research 🔬,bug,roadmap"
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View File

@@ -1,57 +0,0 @@
name: "Copilot Setup Steps"
# Automatically run the setup steps when they are changed to allow for easy validation, and
# allow manual testing through the repository's "Actions" tab
on:
workflow_dispatch:
push:
paths:
- .github/workflows/copilot-setup-steps.yml
pull_request:
paths:
- .github/workflows/copilot-setup-steps.yml
jobs:
# The job MUST be called `copilot-setup-steps` or it will not be picked up by Copilot.
copilot-setup-steps:
runs-on: ubuntu-latest
# Set the permissions to the lowest permissions possible needed for your steps.
# Copilot will be given its own token for its operations.
permissions:
# If you want to clone the repository as part of your setup steps, for example to install dependencies, you'll need the `contents: read` permission. If you don't clone the repository in your setup steps, Copilot will do this for you automatically after the steps complete.
contents: read
# You can define any steps you want, and they will run before the agent starts.
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: copilot-setup-steps
evict-old-files: 1d
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get install build-essential libcurl4-openssl-dev
# Install git-clang-format script for formatting only changed code
wget -O /tmp/git-clang-format https://raw.githubusercontent.com/llvm/llvm-project/release/18.x/clang/tools/clang-format/git-clang-format
sudo cp /tmp/git-clang-format /usr/local/bin/git-clang-format
sudo chmod +x /usr/local/bin/git-clang-format
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python3 -m venv .venv
.venv/bin/activate
pip install -r requirements/requirements-all.txt -r tools/server/tests/requirements.txt
pip install flake8 pyright pre-commit

View File

@@ -28,7 +28,7 @@ jobs:
push_to_registry:
name: Push Docker image to Docker Hub
runs-on: ${{ matrix.config.runs_on }}
runs-on: ubuntu-22.04
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
@@ -39,12 +39,11 @@ jobs:
# Note: the arm64 images are failing, which prevents the amd64 images from being built
# https://github.com/ggml-org/llama.cpp/issues/11888
#- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true, runs_on: "ubuntu-22.04" }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04" }
- { tag: "s390x", dockerfile: ".devops/s390x.Dockerfile", platforms: "linux/s390x", full: true, light: true, server: true, free_disk_space: false, runs_on: "ubuntu-22.04-s390x" }
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
@@ -54,7 +53,6 @@ jobs:
fetch-depth: 0 # preserve git history, so we can determine the build number
- name: Set up QEMU
if: ${{ matrix.config.tag != 's390x' }}
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
@@ -69,19 +67,22 @@ jobs:
username: ${{ github.repository_owner }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Determine image tag name
- name: Determine tag name
id: tag
shell: bash
run: |
BUILD_NUMBER="$(git rev-list --count HEAD)"
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
REPO_OWNER="${GITHUB_REPOSITORY_OWNER@L}" # to lower case
REPO_NAME="${{ github.event.repository.name }}"
# determine tag name postfix (build number, commit hash)
if [[ "${{ env.GITHUB_BRANCH_NAME }}" == "master" ]]; then
TAG_POSTFIX="-b${BUILD_NUMBER}"
else
SAFE_NAME=$(echo "${{ env.GITHUB_BRANCH_NAME }}" | tr '/' '-')
TAG_POSTFIX="-${SAFE_NAME}-${SHORT_HASH}"
fi
# list all tags possible
if [[ "${{ matrix.config.tag }}" == "cpu" ]]; then
TYPE=""
@@ -89,19 +90,17 @@ jobs:
TYPE="-${{ matrix.config.tag }}"
fi
PREFIX="ghcr.io/${REPO_OWNER}/${REPO_NAME}:"
CACHETAGS="${PREFIX}buildcache${TYPE}"
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}-${{ steps.srctag.outputs.name }}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}-${{ steps.srctag.outputs.name }}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}-${{ steps.srctag.outputs.name }}"
echo "cache_output_tags=$CACHETAGS" >> $GITHUB_OUTPUT
FULLTAGS="${PREFIX}full${TYPE},${PREFIX}full${TYPE}${TAG_POSTFIX}"
LIGHTTAGS="${PREFIX}light${TYPE},${PREFIX}light${TYPE}${TAG_POSTFIX}"
SERVERTAGS="${PREFIX}server${TYPE},${PREFIX}server${TYPE}${TAG_POSTFIX}"
echo "full_output_tags=$FULLTAGS" >> $GITHUB_OUTPUT
echo "light_output_tags=$LIGHTTAGS" >> $GITHUB_OUTPUT
echo "server_output_tags=$SERVERTAGS" >> $GITHUB_OUTPUT
echo "cache_output_tags=$CACHETAGS" # print out for debugging
echo "full_output_tags=$FULLTAGS" # print out for debugging
echo "light_output_tags=$LIGHTTAGS" # print out for debugging
echo "server_output_tags=$SERVERTAGS" # print out for debugging
env:
GITHUB_BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
GITHUB_REPOSITORY_OWNER: '${{ github.repository_owner }}'
- name: Free Disk Space (Ubuntu)
@@ -134,14 +133,11 @@ jobs:
target: full
provenance: false
# using github experimental cache
#cache-from: type=gha
#cache-to: type=gha,mode=max
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Light Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.light == true }}
@@ -156,14 +152,11 @@ jobs:
target: light
provenance: false
# using github experimental cache
#cache-from: type=gha
#cache-to: type=gha,mode=max
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
- name: Build and push Server Docker image (tagged + versioned)
if: ${{ (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'workflow_dispatch') && matrix.config.server == true }}
@@ -178,37 +171,8 @@ jobs:
target: server
provenance: false
# using github experimental cache
#cache-from: type=gha
#cache-to: type=gha,mode=max
cache-from: type=gha
cache-to: type=gha,mode=max
# return to this if the experimental github cache is having issues
#cache-to: type=local,dest=/tmp/.buildx-cache
#cache-from: type=local,src=/tmp/.buildx-cache
# using registry cache (no storage limit)
cache-from: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }}
cache-to: type=registry,ref=${{ steps.tag.outputs.cache_output_tags }},mode=max
create_tag:
name: Create and push git tag
runs-on: ubuntu-22.04
permissions:
contents: write
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Determine source tag name
id: srctag
uses: ./.github/actions/get-tag-name
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
- name: Create and push git tag
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
git tag ${{ steps.srctag.outputs.name }} || exit 0
git push origin ${{ steps.srctag.outputs.name }} || exit 0

View File

@@ -1,45 +0,0 @@
name: Check Pre-Tokenizer Hashes
on:
push:
paths:
- 'convert_hf_to_gguf.py'
- 'convert_hf_to_gguf_update.py'
pull_request:
paths:
- 'convert_hf_to_gguf.py'
- 'convert_hf_to_gguf_update.py'
jobs:
pre-tokenizer-hashes:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python3 -m venv .venv
.venv/bin/pip install -r requirements/requirements-convert_hf_to_gguf_update.txt
- name: Update pre-tokenizer hashes
run: |
cp convert_hf_to_gguf.py /tmp
.venv/bin/python convert_hf_to_gguf_update.py --check-missing
- name: Check if committed pre-tokenizer hashes matches generated version
run: |
if ! diff -q convert_hf_to_gguf.py /tmp/convert_hf_to_gguf.py; then
echo "Model pre-tokenizer hashes (in convert_hf_to_gguf.py) do not match generated hashes (from convert_hf_to_gguf_update.py)."
echo "To fix: run ./convert_hf_to_gguf_update.py and commit the updated convert_hf_to_gguf.py along with your changes"
echo "Differences found:"
diff convert_hf_to_gguf.py /tmp/convert_hf_to_gguf.py || true
exit 1
fi
echo "Model pre-tokenizer hashes are up to date."

View File

@@ -1,4 +1,4 @@
name: Release
name: Create Release
on:
workflow_dispatch: # allows manual triggering
@@ -32,7 +32,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
@@ -49,8 +49,7 @@ jobs:
run: |
sysctl -a
cmake -B build \
-DCMAKE_INSTALL_RPATH='@loader_path' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
@@ -75,7 +74,7 @@ jobs:
name: llama-bin-macos-arm64.zip
macOS-x64:
runs-on: macos-15-intel
runs-on: macos-13
steps:
- name: Clone
@@ -85,7 +84,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: macOS-latest-cmake-x64
evict-old-files: 1d
@@ -104,12 +103,10 @@ jobs:
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggml-org/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -B build \
-DCMAKE_INSTALL_RPATH='@loader_path' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DCMAKE_BUILD_RPATH="@loader_path" \
-DLLAMA_FATAL_WARNINGS=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON \
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
-DGGML_RPC=ON
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Determine tag name
@@ -134,11 +131,8 @@ jobs:
include:
- build: 'x64'
os: ubuntu-22.04
- build: 's390x'
os: ubuntu-24.04-s390x
# GGML_BACKEND_DL and GGML_CPU_ALL_VARIANTS are not currently supported on arm
# - build: 'arm64'
# os: ubuntu-22.04-arm
- build: 'arm64'
os: ubuntu-22.04-arm
runs-on: ${{ matrix.os }}
@@ -150,9 +144,9 @@ jobs:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-cpu-cmake-${{ matrix.build }}
key: ubuntu-cpu-cmake
evict-old-files: 1d
- name: Dependencies
@@ -165,11 +159,6 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DLLAMA_FATAL_WARNINGS=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@@ -201,7 +190,7 @@ jobs:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: ubuntu-22-cmake-vulkan
evict-old-files: 1d
@@ -218,11 +207,6 @@ jobs:
id: cmake_build
run: |
cmake -B build \
-DCMAKE_INSTALL_RPATH='$ORIGIN' \
-DCMAKE_BUILD_WITH_INSTALL_RPATH=ON \
-DGGML_BACKEND_DL=ON \
-DGGML_NATIVE=OFF \
-DGGML_CPU_ALL_VARIANTS=ON \
-DGGML_VULKAN=ON \
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j $(nproc)
@@ -243,105 +227,64 @@ jobs:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
windows-cpu:
runs-on: windows-2025
strategy:
matrix:
include:
- arch: 'x64'
- arch: 'arm64'
steps:
- name: Clone
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: windows-latest-cmake-cpu-${{ matrix.arch }}
variant: ccache
evict-old-files: 1d
- name: Install Ninja
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" ${{ matrix.arch == 'x64' && 'x64' || 'amd64_arm64' }}
cmake -S . -B build -G "Ninja Multi-Config" ^
-D CMAKE_TOOLCHAIN_FILE=cmake/${{ matrix.arch }}-windows-llvm.cmake ^
-DGGML_NATIVE=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=${{ matrix.arch == 'x64' && 'ON' || 'OFF' }} ^
-DGGML_OPENMP=ON ^
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
${{ env.CMAKE_ARGS }}
cmake --build build --config Release
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-cpu-${{ matrix.arch }}.zip
name: llama-bin-win-cpu-${{ matrix.arch }}.zip
windows:
runs-on: windows-2025
runs-on: windows-latest
env:
OPENBLAS_VERSION: 0.3.23
VULKAN_VERSION: 1.4.313.2
VULKAN_VERSION: 1.4.309.0
strategy:
matrix:
include:
- backend: 'vulkan'
- build: 'cpu-x64'
arch: 'x64'
defines: '-DGGML_VULKAN=ON'
target: 'ggml-vulkan'
- backend: 'opencl-adreno'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF'
#- build: 'openblas-x64'
# arch: 'x64'
# defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=ON -DGGML_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
- build: 'vulkan-x64'
arch: 'x64'
defines: '-DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON'
- build: 'cpu-arm64'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF'
- build: 'opencl-adreno-arm64'
arch: 'arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
target: 'ggml-opencl'
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-${{ matrix.backend }}-${{ matrix.arch }}
key: windows-latest-cmake-${{ matrix.build }}
variant: ccache
evict-old-files: 1d
- name: Download OpenBLAS
id: get_openblas
if: ${{ matrix.build == 'openblas-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
mkdir $env:RUNNER_TEMP/openblas
tar.exe -xvf $env:RUNNER_TEMP/openblas.zip -C $env:RUNNER_TEMP/openblas
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
- name: Install Vulkan SDK
id: get_vulkan
if: ${{ matrix.backend == 'vulkan' }}
if: ${{ matrix.build == 'vulkan-x64' }}
run: |
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/vulkansdk-windows-X64-${env:VULKAN_VERSION}.exe"
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
@@ -353,7 +296,7 @@ jobs:
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.backend == 'opencl-adreno' && matrix.arch == 'arm64' }}
if: ${{ matrix.build == 'opencl-adreno-arm64' }}
run: |
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
@@ -371,37 +314,63 @@ jobs:
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build build-arm64-release --target install --config release
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
with:
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -S . -B build ${{ matrix.defines }} -DGGML_NATIVE=OFF -DGGML_CPU=OFF -DGGML_BACKEND_DL=ON -DLLAMA_CURL=OFF
cmake --build build --config Release --target ${{ matrix.target }}
cmake -S . -B build ${{ matrix.defines }} `
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
- name: Add libopenblas.dll
id: add_libopenblas_dll
if: ${{ matrix.build == 'openblas-x64' }}
run: |
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
name: llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
name: llama-bin-win-${{ matrix.build }}.zip
windows-cuda:
runs-on: windows-2022
runs-on: windows-2019
strategy:
matrix:
cuda: ['12.4']
cuda: ['12.4', '11.7']
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Install ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-cuda-${{ matrix.cuda }}
variant: ccache
@@ -417,30 +386,45 @@ jobs:
run: |
choco install ninja
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
shell: cmd
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvars64.bat"
cmake -S . -B build -G "Ninja Multi-Config" ^
-DGGML_BACKEND_DL=ON ^
-DGGML_NATIVE=OFF ^
-DGGML_CPU=OFF ^
-DGGML_BACKEND_DL=ON ^
-DGGML_CPU_ALL_VARIANTS=ON ^
-DGGML_CUDA=ON ^
-DLLAMA_CURL=OFF
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include" ^
${{ env.CMAKE_ARGS }}
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
cmake --build build --config Release -j %NINJA_JOBS% --target ggml-cuda
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
cmake --build build --config Release
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\Release\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
- name: Copy and pack Cuda runtime
run: |
@@ -448,33 +432,34 @@ jobs:
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
7z a cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
uses: actions/upload-artifact@v4
with:
path: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip
path: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
name: cudart-llama-bin-win-cuda${{ matrix.cuda }}-x64.zip
windows-sycl:
runs-on: windows-2022
runs-on: windows-latest
defaults:
run:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/24751ead-ddc5-4479-b9e6-f9fe2ff8b9f2/intel-deep-learning-essentials-2025.2.1.25_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7cd9bba0-7aab-4e30-b3ae-2221006a4a05/intel-oneapi-base-toolkit-2025.1.1.34_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel:intel.oneapi.win.dnnl:intel.oneapi.win.tbb.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-sycl
variant: ccache
@@ -484,18 +469,15 @@ jobs:
run: |
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
- name: Build
id: cmake_build
shell: cmd
run: |
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
cmake -G "Ninja" -B build ^
-DCMAKE_C_COMPILER=cl -DCMAKE_CXX_COMPILER=icx ^
-DCMAKE_BUILD_TYPE=Release ^
-DGGML_BACKEND_DL=ON -DBUILD_SHARED_LIBS=ON ^
-DGGML_CPU=OFF -DGGML_SYCL=ON ^
-DLLAMA_CURL=OFF
cmake --build build --target ggml-sycl -j
run: examples/sycl/win-build-sycl.bat
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Build the release package
id: pack_artifacts
@@ -507,7 +489,6 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_level_zero_v2.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_adapter_opencl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_loader.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/ur_win_proxy_loader.dll" ./build/bin
@@ -516,132 +497,106 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/tcm.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tcm/latest/bin/libhwloc-15.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-sycl-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
name: llama-bin-win-sycl-x64.zip
windows-hip:
runs-on: windows-2022
env:
HIPSDK_INSTALLER_VERSION: "25.Q3"
runs-on: windows-latest
strategy:
matrix:
include:
- name: "radeon"
gpu_targets: "gfx1151;gfx1200;gfx1201;gfx1100;gfx1101;gfx1102;gfx1030;gfx1031;gfx1032"
gpu_target: [gfx1100, gfx1101, gfx1030]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Grab rocWMMA package
id: grab_rocwmma
run: |
curl -o rocwmma.deb "https://repo.radeon.com/rocm/apt/7.0.1/pool/main/r/rocwmma-dev/rocwmma-dev_2.0.0.70001-42~24.04_amd64.deb"
7z x rocwmma.deb
7z x data.tar
- name: Cache ROCm Installation
id: cache-rocm
uses: actions/cache@v4
with:
path: C:\Program Files\AMD\ROCm
key: rocm-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ runner.os }}
fetch-depth: 0
- name: Clone rocWMMA repository
id: clone_rocwmma
run: |
git clone https://github.com/rocm/rocwmma --branch rocm-6.2.4 --depth 1
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
uses: hendrikmuhs/ccache-action@v1.2.16
with:
key: windows-latest-cmake-hip-${{ env.HIPSDK_INSTALLER_VERSION }}-${{ matrix.name }}-x64
key: windows-latest-cmake-hip-release
evict-old-files: 1d
- name: Install ROCm
if: steps.cache-rocm.outputs.cache-hit != 'true'
- name: Install
id: depends
run: |
$ErrorActionPreference = "Stop"
write-host "Downloading AMD HIP SDK Installer"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-${{ env.HIPSDK_INSTALLER_VERSION }}-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-24.Q3-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
write-host "Installing AMD HIP SDK"
$proc = Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -PassThru
$completed = $proc.WaitForExit(600000)
if (-not $completed) {
Write-Error "ROCm installation timed out after 10 minutes. Killing the process"
$proc.Kill()
exit 1
}
if ($proc.ExitCode -ne 0) {
Write-Error "ROCm installation failed with exit code $($proc.ExitCode)"
exit 1
}
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
write-host "Completed AMD HIP SDK installation"
- name: Verify ROCm
id: verify
run: |
# Find and test ROCm installation
$clangPath = Get-ChildItem 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | Select-Object -First 1
if (-not $clangPath) {
Write-Error "ROCm installation not found"
exit 1
}
& $clangPath.FullName --version
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
- name: libCURL
id: get_libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . `
-DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" `
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-7.0.1/include/ -Wno-ignored-attributes -Wno-nested-anon-types" `
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/rocwmma/library/include/" `
-DCMAKE_BUILD_TYPE=Release `
-DGGML_BACKEND_DL=ON `
-DGGML_NATIVE=OFF `
-DGGML_CPU=OFF `
-DAMDGPU_TARGETS="${{ matrix.gpu_targets }}" `
-DAMDGPU_TARGETS=${{ matrix.gpu_target }} `
-DGGML_HIP_ROCWMMA_FATTN=ON `
-DGGML_HIP=ON `
-DLLAMA_CURL=OFF
cmake --build build --target ggml-hip -j ${env:NUMBER_OF_PROCESSORS}
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include" `
${{ env.CMAKE_ARGS }}
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
md "build\bin\hipblaslt\library"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\hipblaslt.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "build\bin\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblaslt\library\*" "build\bin\hipblaslt\library\"
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
id: pack_artifacts
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
cp $env:CURL_PATH\bin\libcurl-x64.dll .\build\bin\libcurl-x64.dll
7z a llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-bin-win-hip-${{ matrix.name }}-x64.zip
name: llama-bin-win-hip-${{ matrix.name }}-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
name: llama-bin-win-hip-x64-${{ matrix.gpu_target }}.zip
ios-xcode-build:
runs-on: macos-15
runs-on: macos-latest
steps:
- name: Checkout code
@@ -649,10 +604,6 @@ jobs:
with:
fetch-depth: 0
- name: Setup Xcode
run: |
sudo xcode-select -s /Applications/Xcode_16.4.app
- name: Build
id: cmake_build
run: |
@@ -704,16 +655,14 @@ jobs:
runs-on: ubuntu-latest
needs:
- ubuntu-22-cpu
- ubuntu-22-vulkan
- windows
- windows-cpu
- windows-cuda
- windows-sycl
- windows-hip
- ubuntu-22-cpu
- ubuntu-22-vulkan
- macOS-arm64
- macOS-x64
- ios-xcode-build
steps:
- name: Clone
@@ -731,43 +680,10 @@ jobs:
uses: actions/download-artifact@v4
with:
path: ./artifact
merge-multiple: true
- name: Move artifacts
id: move_artifacts
run: |
mkdir -p release
echo "Adding CPU backend files to existing zips..."
for arch in x64 arm64; do
cpu_zip="artifact/llama-bin-win-cpu-${arch}.zip"
temp_dir=$(mktemp -d)
echo "Extracting CPU backend for $arch..."
unzip "$cpu_zip" -d "$temp_dir"
echo "Adding CPU files to $arch zips..."
for target_zip in artifact/llama-bin-win-*-${arch}.zip; do
if [[ "$target_zip" == "$cpu_zip" ]]; then
continue
fi
echo "Adding CPU backend to $(basename "$target_zip")"
realpath_target_zip=$(realpath "$target_zip")
(cd "$temp_dir" && zip -r "$realpath_target_zip" .)
done
rm -rf "$temp_dir"
done
echo "Renaming and moving zips to release..."
for zip_file in artifact/llama-bin-win-*.zip; do
base_name=$(basename "$zip_file" .zip)
zip_name="llama-${{ steps.tag.outputs.name }}-${base_name#llama-}.zip"
echo "Moving $zip_file to release/$zip_name"
mv "$zip_file" "release/$zip_name"
done
echo "Moving other artifacts..."
mv -v artifact/*.zip release
run: mkdir -p ./artifact/release && mv ./artifact/*/*.zip ./artifact/release
- name: Create release
id: create_release
@@ -786,7 +702,7 @@ jobs:
const path = require('path');
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./release')) {
for (let file of await fs.readdirSync('./artifact/release')) {
if (path.extname(file) === '.zip') {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
@@ -794,7 +710,7 @@ jobs:
repo: context.repo.repo,
release_id: release_id,
name: file,
data: await fs.readFileSync(`./release/${file}`)
data: await fs.readFileSync(`./artifact/release/${file}`)
});
}
}

View File

@@ -76,206 +76,51 @@ jobs:
run: |
pip install -r tools/server/tests/requirements.txt
webui-setup:
name: WebUI Setup
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
# Setup nodejs (to be used for verifying bundled index.html)
- uses: actions/setup-node@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
node-version: '22.11.0'
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Cache node_modules
uses: actions/cache@v4
id: cache-node-modules
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Install dependencies
if: steps.cache-node-modules.outputs.cache-hit != 'true'
run: npm ci
working-directory: tools/server/webui
webui-check:
needs: webui-setup
name: WebUI Check
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Run type checking
run: npm run check
working-directory: tools/server/webui
- name: Run linting
run: npm run lint
working-directory: tools/server/webui
webui-build:
needs: webui-check
name: WebUI Build
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Build application
run: npm run build
working-directory: tools/server/webui
webui-tests:
needs: webui-build
name: Run WebUI tests
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Install Playwright browsers
run: npx playwright install --with-deps
working-directory: tools/server/webui
- name: Build Storybook
run: npm run build-storybook
working-directory: tools/server/webui
- name: Run Client tests
run: npm run test:client
working-directory: tools/server/webui
- name: Run Server tests
run: npm run test:server
working-directory: tools/server/webui
- name: Run UI tests
run: npm run test:ui
working-directory: tools/server/webui
- name: Run E2E tests
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
needs: [webui-tests]
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
- name: WebUI - Install dependencies
id: webui_lint
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libcurl4-openssl-dev
cd tools/server/webui
npm ci
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
- name: WebUI - Check code format
id: webui_format
run: |
pip install -r tools/server/tests/requirements.txt
git config --global --add safe.directory $(realpath .)
cd tools/server/webui
git status
- name: Setup Node.js for WebUI
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
npm run format
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Files do not follow coding style. To fix: npm run format"
echo "${modified_files}"
exit 1
fi
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Verify bundled index.html
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd tools/server/webui
git status
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
npm run build
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Repository is dirty or server/webui is not built as expected"
echo "Hint: You may need to follow Web UI build guide in server/README.md"
echo "${modified_files}"
exit 1
fi
- name: Build (no OpenMP)
id: cmake_build_no_openmp
@@ -335,7 +180,7 @@ jobs:
server-windows:
runs-on: windows-2022
runs-on: windows-2019
steps:
- name: Clone

View File

@@ -1,42 +0,0 @@
name: Update Operations Documentation
on:
push:
paths:
- 'docs/ops.md'
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'
pull_request:
paths:
- 'docs/ops.md'
- 'docs/ops/**'
- 'scripts/create_ops_docs.py'
jobs:
update-ops-docs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.x'
- name: Generate operations documentation to temporary file
run: |
mkdir -p /tmp/ops_check
./scripts/create_ops_docs.py /tmp/ops_check/ops.md
- name: Check if docs/ops.md matches generated version
run: |
if ! diff -q docs/ops.md /tmp/ops_check/ops.md; then
echo "Operations documentation (docs/ops.md) is not up to date with the backend CSV files."
echo "To fix: run ./scripts/create_ops_docs.py and commit the updated docs/ops.md along with your changes"
echo "Differences found:"
diff docs/ops.md /tmp/ops_check/ops.md || true
exit 1
fi
echo "Operations documentation is up to date."

View File

@@ -1,42 +0,0 @@
name: Update Winget Package
on:
workflow_dispatch: # allows manual triggering
schedule:
- cron: '28 5 * * *' # Update every day at 5:28 UTC
jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
steps:
- name: Install cargo binstall
uses: cargo-bins/cargo-binstall@268643a6b5ea099f5718ee5cd3ff7dc89a5eb49b
- name: Install komac
run: |
cargo binstall komac@2.11.2 -y
- name: Find latest release
id: find_latest_release
uses: actions/github-script@v6
with:
script: |
const { data: releases } = await github.rest.repos.listReleases({
owner: context.repo.owner,
repo: context.repo.repo,
});
console.log("Latest release:", releases[0].tag_name);
return releases[0].tag_name;
- name: Update manifest
env:
VERSION: ${{ steps.find_latest_release.outputs.result }}
run: |
echo "Updating manifest..."
komac update --version ${{ env.VERSION }} \
--urls "https://github.com/ggml-org/llama.cpp/releases/download/${{ env.VERSION }}/llama-${{ env.VERSION }}-bin-win-vulkan-x64.zip" \
--token ${{ secrets.WINGET_GITHUB_TOKEN }} \
--submit \
ggml.llamacpp

6
.gitignore vendored
View File

@@ -82,7 +82,6 @@ models/*
models-mnt
!models/.editorconfig
!models/ggml-vocab-*.gguf*
!models/templates
# Zig
zig-out/
@@ -147,8 +146,3 @@ poetry.toml
# Local scripts
/run-vim.sh
/run-chat.sh
.ccache/
# IDE
*.code-workspace
.windsurf/

3
.gitmodules vendored
View File

@@ -0,0 +1,3 @@
[submodule "kompute"]
path = ggml/src/ggml-kompute/kompute
url = https://github.com/nomic-ai/kompute.git

View File

@@ -12,8 +12,6 @@ if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")
endif()
message("CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}")
# Add path to modules
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
@@ -58,12 +56,6 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
set(LLAMA_TOOLS_INSTALL_DEFAULT ${LLAMA_STANDALONE})
endif()
#
# option list
#
@@ -88,25 +80,15 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_DEFAULT})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" OFF)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
if (NOT DEFINED LLAMA_BUILD_NUMBER)
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
endif()
if (NOT DEFINED LLAMA_BUILD_COMMIT)
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
endif()
set(LLAMA_INSTALL_VERSION 0.0.${LLAMA_BUILD_NUMBER})
# override ggml options
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
@@ -130,6 +112,7 @@ endfunction()
llama_option_depr(FATAL_ERROR LLAMA_CUBLAS GGML_CUDA)
llama_option_depr(WARNING LLAMA_CUDA GGML_CUDA)
llama_option_depr(WARNING LLAMA_KOMPUTE GGML_KOMPUTE)
llama_option_depr(WARNING LLAMA_METAL GGML_METAL)
llama_option_depr(WARNING LLAMA_METAL_EMBED_LIBRARY GGML_METAL_EMBED_LIBRARY)
llama_option_depr(WARNING LLAMA_NATIVE GGML_NATIVE)
@@ -172,17 +155,10 @@ if (LLAMA_USE_SYSTEM_GGML)
endif()
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
set(GGML_BUILD_NUMBER ${LLAMA_BUILD_NUMBER})
set(GGML_BUILD_COMMIT ${LLAMA_BUILD_COMMIT})
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#
@@ -223,6 +199,10 @@ endif()
include(GNUInstallDirs)
include(CMakePackageConfigHelpers)
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location of header files")
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")

View File

@@ -55,17 +55,6 @@
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-apple-clang.cmake"
}
},
{
"name": "x64-linux-gcc", "hidden": true,
"cacheVariables": {
"CMAKE_C_COMPILER": "gcc",
"CMAKE_CXX_COMPILER": "g++"
}
},
{ "name": "x64-linux-gcc-debug", "inherits": [ "base", "x64-linux-gcc", "debug" ] },
{ "name": "x64-linux-gcc-release", "inherits": [ "base", "x64-linux-gcc", "release" ] },
{ "name": "x64-linux-gcc-reldbg", "inherits": [ "base", "x64-linux-gcc", "reldbg" ] },
{ "name": "x64-linux-gcc+static-release", "inherits": [ "base", "x64-linux-gcc", "release", "static" ] },
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },

View File

@@ -1,118 +1,11 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
/examples/convert-llama2c-to-ggml/ @ggerganov
/examples/deprecation-warning/ @ggerganov
/examples/diffusion/ @am17an
/examples/embedding/ @ggerganov
/examples/eval-callback/ @ggerganov
/examples/export-docs/ @ggerganov
/examples/gen-docs/ @ggerganov
/examples/gguf/ @ggerganov
/examples/llama.android/ @ggerganov
/examples/llama.swiftui/ @ggerganov
/examples/llama.vim @ggerganov
/examples/lookahead/ @ggerganov
/examples/lookup/ @JohannesGaessler
/examples/model-conversion/ @danbev
/examples/parallel/ @ggerganov
/examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren
/ggml/src/ggml-alloc.c @slaren
/ggml/src/ggml-backend* @slaren
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC
/media/ @ggerganov
/scripts/gen* @ggerganov
/scripts/get* @ggerganov
/scripts/sync* @ggerganov
/src/ @ggerganov
/src/llama-adapter.* @CISC
/src/llama-arch.* @CISC
/src/llama-chat.* @ngxson
/src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov
/LICENSE @ggerganov
/README.md @ggerganov
/SECURITY.md @ggerganov
/build-xcframework.sh @danbev
requirements*.txt @CISC
/ci/ @ggerganov
/.devops/*.Dockerfile @ngxson
/tools/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler

View File

@@ -1,12 +1,4 @@
# Contributors
The project differentiates between 3 levels of contributors:
- Contributors: people who have contributed before (no special privileges)
- Collaborators (Triage): people with significant contributions, who may be responsible for some parts of the code, and are expected to maintain and review contributions for the code they own
- Maintainers: responsible for reviewing and merging PRs, after approval from the code owners
# Pull requests (for contributors & collaborators)
# Pull requests (for contributors)
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
- Test your changes:
@@ -17,17 +9,13 @@ The project differentiates between 3 levels of contributors:
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
# Pull requests (for maintainers)
# Pull requests (for collaborators)
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Let other maintainers merge their own PRs
- When merging a PR, make sure you have a good understanding of the changes
- Be mindful of maintenance: most of the work going into a feature happens after the PR is merged. If the PR author is not committed to contribute long-term, someone else needs to take responsibility (you)
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines
@@ -126,21 +114,6 @@ The project differentiates between 3 levels of contributors:
#endif // FOO
```
# Code maintenance
- Existing code should have designated collaborators and/or maintainers specified in the [CODEOWNERS](CODEOWNERS) file reponsible for:
- Reviewing and merging related PRs
- Fixing related bugs
- Providing developer guidance/support
- When adding or modifying a large piece of code:
- If you are a collaborator, make sure to add yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- If you are a contributor, find an existing collaborator who is willing to review and maintain your code long-term
- Provide the necessary CI workflow (and hardware) to test your changes (see [ci/README.md](https://github.com/ggml-org/llama.cpp/tree/master/ci))
- New code should follow the guidelines (coding, naming, etc.) outlined in this document. Exceptions are allowed in isolated, backend-specific parts of the code that do not interface directly with the `ggml` interfaces.
_(NOTE: for legacy reasons, existing code is not required to follow this guideline)_
# Documentation
- Documentation is a community effort

1611
Makefile

File diff suppressed because it is too large Load Diff

View File

@@ -3,12 +3,11 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Release](https://img.shields.io/github/v/release/ggml-org/llama.cpp)](https://github.com/ggml-org/llama.cpp/releases)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml) / [ops](https://github.com/ggml-org/llama.cpp/blob/master/docs/ops.md)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
LLM inference in C/C++
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
## Recent API changes
@@ -17,42 +16,18 @@ LLM inference in C/C++
## Hot topics
- **[guide : using the new WebUI of llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/16938)**
- [guide : running gpt-oss with llama.cpp](https://github.com/ggml-org/llama.cpp/discussions/15396)
- [[FEEDBACK] Better packaging for llama.cpp to support downstream consumers 🤗](https://github.com/ggml-org/llama.cpp/discussions/15313)
- Support for the `gpt-oss` model with native MXFP4 format has been added | [PR](https://github.com/ggml-org/llama.cpp/pull/15091) | [Collaboration with NVIDIA](https://blogs.nvidia.com/blog/rtx-ai-garage-openai-oss) | [Comment](https://github.com/ggml-org/llama.cpp/discussions/15095)
- Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- 🔥 Multimodal support arrived in `llama-server`: [#12898](https://github.com/ggml-org/llama.cpp/pull/12898) | [documentation](./docs/multimodal.md)
- **GGML developer experience survey (organized and reviewed by NVIDIA):** [link](https://forms.gle/Gasw3cRgyhNEnrwK9)
- A new binary `llama-mtmd-cli` is introduced to replace `llava-cli`, `minicpmv-cli`, `gemma3-cli` ([#13012](https://github.com/ggml-org/llama.cpp/pull/13012)) and `qwen2vl-cli` ([#13141](https://github.com/ggml-org/llama.cpp/pull/13141)), `libllava` will be deprecated
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
----
## Quick start
Getting started with llama.cpp is straightforward. Here are several ways to install it on your machine:
- Install `llama.cpp` using [brew, nix or winget](docs/install.md)
- Run with Docker - see our [Docker documentation](docs/docker.md)
- Download pre-built binaries from the [releases page](https://github.com/ggml-org/llama.cpp/releases)
- Build from source by cloning this repository - check out [our build guide](docs/build.md)
Once installed, you'll need a model to work with. Head to the [Obtaining and quantizing models](#obtaining-and-quantizing-models) section to learn more.
Example command:
```sh
# Use a local model file
llama-cli -m my_model.gguf
# Or download and run a model directly from Hugging Face
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
# Launch OpenAI-compatible API server
llama-server -hf ggml-org/gemma-3-1b-it-GGUF
```
## Description
The main goal of `llama.cpp` is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
@@ -62,7 +37,7 @@ range of hardware - locally and in the cloud.
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
@@ -83,7 +58,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
- [x] [Jamba](https://huggingface.co/ai21labs)
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
@@ -136,9 +110,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
- [x] [LFM2 models](https://huggingface.co/collections/LiquidAI/lfm2-686d721927015b2ad73eaa38)
- [x] [Hunyuan models](https://huggingface.co/collections/tencent/hunyuan-dense-model-6890632cda26b19119c9c5e7)
- [x] [BailingMoeV2 (Ring/Ling 2.0) models](https://huggingface.co/collections/inclusionAI/ling-v2-68bf1dd2fc34c306c1fa6f86)
#### Multimodal
@@ -153,14 +124,12 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
- [x] [LFM2-VL](https://huggingface.co/collections/LiquidAI/lfm2-vl-68963bbc84a610f7638d5ffa)
</details>
<details>
<summary>Bindings</summary>
- Python: [ddh0/easy-llama](https://github.com/ddh0/easy-llama)
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp)
@@ -179,7 +148,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Java: [QuasarByte/llama-cpp-jna](https://github.com/QuasarByte/llama-cpp-jna)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
@@ -188,7 +156,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
</details>
@@ -247,7 +214,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
<details>
<summary>Infrastructure</summary>
- [Paddler](https://github.com/intentee/paddler) - Open-source LLMOps platform for hosting and scaling AI in your own infrastructure
- [Paddler](https://github.com/distantmagic/paddler) - Stateful load balancer custom-tailored for llama.cpp
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
@@ -262,7 +229,6 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
</details>
## Supported backends
| Backend | Target devices |
@@ -271,16 +237,23 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [BLAS](docs/build.md#blas-build) | All |
| [BLIS](docs/backend/BLIS.md) | All |
| [SYCL](docs/backend/SYCL.md) | Intel and Nvidia GPU |
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
| [MUSA](docs/build.md#musa) | Moore Threads MTT GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [IBM zDNN](docs/backend/zDNN.md) | IBM Z & LinuxONE |
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
## Building the project
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
## Obtaining and quantizing models
@@ -289,11 +262,7 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`. For example:
```sh
llama-cli -hf ggml-org/gemma-3-1b-it-GGUF
```
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
@@ -445,7 +414,7 @@ To learn more about model quantization, [read this documentation](tools/quantize
## [`llama-perplexity`](tools/perplexity)
#### A tool for measuring the [perplexity](tools/perplexity/README.md) [^1] (and other quality metrics) of a model over a given text.
#### A tool for measuring the perplexity [^1][^2] (and other quality metrics) of a model over a given text.
- <details open>
<summary>Measure the perplexity over a text file</summary>
@@ -468,7 +437,8 @@ To learn more about model quantization, [read this documentation](tools/quantize
</details>
[^1]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
[^1]: [tools/perplexity/README.md](./tools/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](tools/llama-bench)
@@ -525,8 +495,8 @@ To learn more about model quantization, [read this documentation](tools/quantize
## Contributing
- Contributors can open PRs
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Maintainers can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Any help with managing issues, PRs and projects is very appreciated!
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
@@ -610,4 +580,3 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain

View File

@@ -1,6 +0,0 @@
{
"chars": 2296.1916666666666,
"chars:std": 986.051306946325,
"score": 0.925,
"score:std": 0.26339134382131846
}

File diff suppressed because one or more lines are too long

View File

@@ -1,264 +0,0 @@
## System info
```bash
uname --all
Linux spark-17ed 6.11.0-1016-nvidia #16-Ubuntu SMP PREEMPT_DYNAMIC Sun Sep 21 16:52:46 UTC 2025 aarch64 aarch64 aarch64 GNU/Linux
g++ --version
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
nvidia-smi
Sun Nov 2 10:43:25 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
```
## ggml-org/gpt-oss-20b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
build: eeee367de (6989)
## ggml-org/gpt-oss-120b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
build: eeee367de (6989)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
build: eeee367de (6989)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
build: eeee367de (6989)
## ggml-org/gemma-3-4b-it-qat-GGUF
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
build: eeee367de (6989)

File diff suppressed because one or more lines are too long

View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
@@ -422,7 +422,6 @@ echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \

View File

@@ -1,35 +0,0 @@
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc4.3.0-devel-ubuntu22.04-amd64
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -1,10 +1,18 @@
# CI
This CI implements heavy-duty workflows that run on self-hosted runners. Typically the purpose of these workflows is to
cover hardware configurations that are not available from Github-hosted runners and/or require more computational
resource than normally available.
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
It is a good practice, before publishing changes to execute the full CI locally on your machine. For example:
https://github.com/ggml-org/ci
It monitors the `master` branch for new commits and runs the
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
to cover various hardware architectures, including GPU and Apple Silicon instances.
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
Only the branches of this repo are monitored for this keyword.
It is a good practice, before publishing changes to execute the full CI locally on your machine:
```bash
mkdir tmp
@@ -21,13 +29,40 @@ GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# etc.
```
# Adding self-hosted runners
## Running MUSA CI in a Docker Container
- Add a self-hosted `ggml-ci` workflow to [[.github/workflows/build.yml]] with an appropriate label
- Request a runner token from `ggml-org` (for example, via a comment in the PR or email)
- Set-up a machine using the received token ([docs](https://docs.github.com/en/actions/how-tos/manage-runners/self-hosted-runners/add-runners))
- Optionally update [ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) to build and run on the target platform by gating the implementation with a `GG_BUILD_...` env
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

558
ci/run.sh
View File

@@ -1,4 +1,4 @@
#!/usr/bin/env bash
#!/bin/bash
#
# sample usage:
#
@@ -16,15 +16,9 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with WebGPU support
# GG_BUILD_WEBGPU=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with KLEIDIAI support
# GG_BUILD_KLEIDIAI=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -37,45 +31,22 @@ mkdir -p "$2"
OUT=$(realpath "$1")
MNT=$(realpath "$2")
rm -f $OUT/*.log
rm -f $OUT/*.exit
rm -f $OUT/*.md
rm -f "$OUT/*.log"
rm -f "$OUT/*.exit"
rm -f "$OUT/*.md"
sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON"
if command -v nvidia-smi >/dev/null 2>&1; then
CUDA_ARCH=$(nvidia-smi --query-gpu=compute_cap --format=csv,noheader,nounits 2>/dev/null | head -1 | tr -d '.')
if [[ -n "$CUDA_ARCH" && "$CUDA_ARCH" =~ ^[0-9]+$ ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=${CUDA_ARCH}"
else
echo "Warning: Using fallback CUDA architectures"
CMAKE_EXTRA="${CMAKE_EXTRA} -DCMAKE_CUDA_ARCHITECTURES=61;70;75;80;86;89"
fi
else
echo "Error: nvidia-smi not found, cannot build with CUDA"
exit 1
fi
fi
if [ ! -z ${GG_BUILD_ROCM} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_HIP=ON"
if [ -z ${GG_BUILD_AMDGPU_TARGETS} ]; then
echo "Missing GG_BUILD_AMDGPU_TARGETS, please set it to your GPU architecture (e.g. gfx90a, gfx1100, etc.)"
exit 1
fi
CMAKE_EXTRA="${CMAKE_EXTRA} -DGPU_TARGETS=${GG_BUILD_AMDGPU_TARGETS}"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
@@ -95,16 +66,6 @@ fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
# if on Mac, disable METAL
if [[ "$OSTYPE" == "darwin"* ]]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=OFF -DGGML_BLAS=OFF"
fi
fi
if [ ! -z ${GG_BUILD_WEBGPU} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_WEBGPU=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
@@ -112,40 +73,6 @@ if [ ! -z ${GG_BUILD_MUSA} ]; then
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
if [ ! -z ${GG_BUILD_NO_SVE} ]; then
# arm 9 and newer enables sve by default, adjust these flags depending on the cpu used
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm"
fi
if [ -n "${GG_BUILD_KLEIDIAI}" ]; then
echo ">>===== Enabling KleidiAI support"
CANDIDATES=("armv9-a+dotprod+i8mm" "armv8.6-a+dotprod+i8mm" "armv8.2-a+dotprod")
CPU=""
for cpu in "${CANDIDATES[@]}"; do
if echo 'int main(){}' | ${CXX:-c++} -march="$cpu" -x c++ - -c -o /dev/null >/dev/null 2>&1; then
CPU="$cpu"
break
fi
done
if [ -z "$CPU" ]; then
echo "ERROR: None of the required ARM baselines (armv9/armv8.6/armv8.2 + dotprod) are supported by this compiler."
exit 1
fi
echo ">>===== Using ARM baseline: ${CPU}"
CMAKE_EXTRA="${CMAKE_EXTRA:+$CMAKE_EXTRA } \
-DGGML_NATIVE=OFF \
-DGGML_CPU_KLEIDIAI=ON \
-DGGML_CPU_AARCH64=ON \
-DGGML_CPU_ARM_ARCH=${CPU} \
-DBUILD_SHARED_LIBS=OFF"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -159,7 +86,7 @@ function gg_wget {
cd $out
# should not re-download if file is the same
wget -nv -c -N $url
wget -nv -N $url
cd $cwd
}
@@ -203,7 +130,7 @@ function gg_run_ctest_debug {
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E "test-opt|test-backend-ops" ) 2>&1 | tee -a $OUT/${ci}-ctest.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
}
@@ -253,9 +180,33 @@ function gg_sum_ctest_release {
gg_printf '```\n'
}
# test_scripts
# test_scripts_debug
function gg_run_test_scripts {
function gg_run_test_scripts_debug {
cd ${SRC}
set -e
(cd ./tools/gguf-split && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
(cd ./tools/quantize && time bash tests.sh "$SRC/build-ci-debug/bin" "$MNT/models") 2>&1 | tee -a $OUT/${ci}-scripts.log
set +e
}
function gg_sum_test_scripts_debug {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts in debug mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
gg_printf '```\n'
gg_printf '\n'
}
# test_scripts_release
function gg_run_test_scripts_release {
cd ${SRC}
set -e
@@ -266,10 +217,10 @@ function gg_run_test_scripts {
set +e
}
function gg_sum_test_scripts {
function gg_sum_test_scripts_release {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test scripts\n'
gg_printf 'Runs test scripts in release mode\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-scripts.log)"
@@ -278,9 +229,15 @@ function gg_sum_test_scripts {
}
function gg_get_model {
local gguf_0="$MNT/models/qwen3/0.6B/ggml-model-f16.gguf"
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
@@ -293,9 +250,7 @@ function gg_run_ctest_with_model_debug {
local model; model=$(gg_get_model)
cd build-ci-debug
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
set +e
cd ..
}
@@ -306,15 +261,7 @@ function gg_run_ctest_with_model_release {
local model; model=$(gg_get_model)
cd build-ci-release
set -e
(LLAMACPP_TEST_MODELFILE="$model" time ctest --output-on-failure -L model) 2>&1 | tee -a $OUT/${ci}-ctest.log
# test memory leaks
#if [[ ! -z ${GG_BUILD_METAL} ]]; then
# # TODO: this hangs for some reason ...
# (time leaks -quiet -atExit -- ./bin/test-thread-safety -m $model --parallel 2 -t 2 -p "hello") 2>&1 | tee -a $OUT/${ci}-leaks.log
#fi
set +e
cd ..
}
@@ -339,22 +286,24 @@ function gg_sum_ctest_with_model_release {
gg_printf '```\n'
}
# qwen3_0_6b
# open_llama_7b_v2
function gg_run_qwen3_0_6b {
function gg_run_open_llama_7b_v2 {
cd ${SRC}
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/config.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/tokenizer.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/tokenizer_config.json
#gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/raw/main/special_tokens_map.json
gg_wget models-mnt/qwen3/0.6B/ https://huggingface.co/Qwen/Qwen3-0.6B-Base/resolve/main/model.safetensors
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/qwen3/0.6B"
path_models="../models-mnt/open-llama/7B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
@@ -364,11 +313,9 @@ function gg_run_qwen3_0_6b {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf --outtype f16
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-bf16.gguf --outtype bf16
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_bf16="${path_models}/ggml-model-bf16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
@@ -382,51 +329,179 @@ function gg_run_qwen3_0_6b {
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_bf16} ${model_q8_0} q8_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_0} q4_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_1} q4_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_0} q5_0 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_1} q5_1 $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q2_k} q2_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q3_k} q3_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q4_k} q4_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q5_k} q5_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q6_k} q6_k $(nproc)
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
if [ -z ${GG_BUILD_NO_BF16} ]; then
(time ./bin/llama-perplexity --model ${model_bf16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
fi
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_7b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 7B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 0 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test_60} -ngl 99 -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -442,9 +517,6 @@ function gg_run_qwen3_0_6b {
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
if [ -z ${GG_BUILD_NO_BF16} ]; then
check_ppl "bf16" "$(cat $OUT/${ci}-tg-bf16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
fi
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
@@ -461,17 +533,147 @@ function gg_run_qwen3_0_6b {
set +e
}
function gg_sum_qwen3_0_6b {
function gg_sum_pythia_1_4b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Qwen3 0.6B:\n'
gg_printf 'Pythia 1.4B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
if [ -z ${GG_BUILD_NO_BF16} ]; then
gg_printf '- bf16:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-bf16.log)"
fi
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_2_8b
function gg_run_pythia_2_8b {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
./bin/llama-quantize ${model_f16} ${model_q4_0} q4_0
./bin/llama-quantize ${model_f16} ${model_q4_1} q4_1
./bin/llama-quantize ${model_f16} ${model_q5_0} q5_0
./bin/llama-quantize ${model_f16} ${model_q5_1} q5_1
./bin/llama-quantize ${model_f16} ${model_q2_k} q2_k
./bin/llama-quantize ${model_f16} ${model_q3_k} q3_k
./bin/llama-quantize ${model_f16} ${model_q4_k} q4_k
./bin/llama-quantize ${model_f16} ${model_q5_k} q5_k
./bin/llama-quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/llama-cli -no-cnv --model ${model_f16} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -t 1 -ngl 99 -c 0 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_2_8b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
@@ -543,7 +745,12 @@ function gg_run_rerank_tiny {
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/tokenizer_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/special_tokens_map.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/resolve/main/pytorch_model.bin
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/sentence_bert_config.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/vocab.txt
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/modules.json
gg_wget models-mnt/rerank-tiny/ https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/config.json
gg_wget models-mnt/rerank-tiny/1_Pooling https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/raw/main/1_Pooling/config.json
path_models="../models-mnt/rerank-tiny"
@@ -559,7 +766,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?</s></s>hi\nwhat is panda?</s></s>it's a bear\nwhat is panda?</s></s>The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029
@@ -633,8 +840,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -642,15 +851,24 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_release
fi
test $ret -eq 0 && gg_run qwen3_0_6b
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
else
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi
cat $OUT/README.md
exit $ret

View File

@@ -1,29 +0,0 @@
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR riscv64)
set(CMAKE_SYSTEM_VERSION 1)
if (CMAKE_HOST_SYSTEM_PROCESSOR MATCHES "^(riscv)")
message(STATUS "HOST SYSTEM ${CMAKE_HOST_SYSTEM_PROCESSOR}")
else()
set(GNU_MACHINE riscv64-unknown-linux-gnu CACHE STRING "GNU compiler triple")
if (DEFINED ENV{RISCV_ROOT_PATH})
file(TO_CMAKE_PATH $ENV{RISCV_ROOT_PATH} RISCV_ROOT_PATH)
else()
message(FATAL_ERROR "RISCV_ROOT_PATH env must be defined")
endif()
set(RISCV_ROOT_PATH ${RISCV_ROOT_PATH} CACHE STRING "root path to riscv toolchain")
set(CMAKE_C_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-gcc)
set(CMAKE_CXX_COMPILER ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-g++)
set(CMAKE_STRIP ${RISCV_ROOT_PATH}/bin/riscv64-unknown-linux-gnu-strip)
set(CMAKE_FIND_ROOT_PATH "${RISCV_ROOT_PATH}/riscv64-unknown-linux-gnu")
set(CMAKE_SYSROOT "${RISCV_ROOT_PATH}/sysroot")
endif()
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
set(CMAKE_C_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CMAKE_C_FLAGS}")
set(CMAKE_CXX_FLAGS "-march=rv64gcv_zfh_zba_zicbop -mabi=lp64d ${CXX_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -latomic")

View File

@@ -7,8 +7,8 @@ llama_add_compile_flags()
# Build info header
#
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../.git")
# Is git submodule
if(NOT IS_DIRECTORY "${GIT_DIR}")
@@ -18,26 +18,36 @@ if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
if (SLASH_POS EQUAL 0)
set(GIT_DIR "${REAL_GIT_DIR}")
else()
set(GIT_DIR "${PROJECT_SOURCE_DIR}/${REAL_GIT_DIR}")
set(GIT_DIR "${CMAKE_CURRENT_SOURCE_DIR}/../${REAL_GIT_DIR}")
endif()
endif()
if(EXISTS "${GIT_DIR}/index")
# For build-info.cpp below
set_property(DIRECTORY APPEND PROPERTY CMAKE_CONFIGURE_DEPENDS "${GIT_DIR}/index")
set(GIT_INDEX "${GIT_DIR}/index")
else()
message(WARNING "Git index not found in git repository.")
set(GIT_INDEX "")
endif()
else()
message(WARNING "Git repository not found; to enable automatic generation of build info, make sure Git is installed and the project is a Git repository.")
set(GIT_INDEX "")
endif()
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/build-info.cpp")
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
# Add a custom command to rebuild build-info.cpp when .git/index changes
add_custom_command(
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp"
COMMENT "Generating build details from Git"
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION}
-DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_SYSTEM_NAME=${CMAKE_SYSTEM_NAME} -DCMAKE_SYSTEM_PROCESSOR=${CMAKE_SYSTEM_PROCESSOR}
-P "${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info-gen-cpp.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}/.."
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/build-info.cpp.in" ${GIT_INDEX}
VERBATIM
)
set(TARGET build_info)
add_library(${TARGET} OBJECT ${OUTPUT_FILE})
add_library(${TARGET} OBJECT build-info.cpp)
if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
@@ -48,23 +58,19 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat-parser.cpp
chat-parser.h
chat.cpp
chat.h
common.cpp
common.h
console.cpp
console.h
download.cpp
download.h
http.h
json-partial.cpp
json-partial.h
json-schema-to-grammar.cpp
json.hpp
llguidance.cpp
log.cpp
log.h
minja/chat-template.hpp
minja/minja.hpp
ngram-cache.cpp
ngram-cache.h
regex-partial.cpp
@@ -89,44 +95,9 @@ if (LLAMA_CURL)
endif()
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARIES})
endif()
if (LLAMA_OPENSSL)
find_package(OpenSSL)
if (OpenSSL_FOUND)
include(CheckCSourceCompiles)
set(SAVED_CMAKE_REQUIRED_INCLUDES ${CMAKE_REQUIRED_INCLUDES})
set(CMAKE_REQUIRED_INCLUDES ${OPENSSL_INCLUDE_DIR})
check_c_source_compiles("
#include <openssl/opensslv.h>
#if defined(OPENSSL_IS_BORINGSSL) || defined(LIBRESSL_VERSION_NUMBER)
# if OPENSSL_VERSION_NUMBER < 0x1010107f
# error bad version
# endif
#else
# if OPENSSL_VERSION_NUMBER < 0x30000000L
# error bad version
# endif
#endif
int main() { return 0; }
" OPENSSL_VERSION_SUPPORTED)
set(CMAKE_REQUIRED_INCLUDES ${SAVED_CMAKE_REQUIRED_INCLUDES})
if (OPENSSL_VERSION_SUPPORTED)
message(STATUS "OpenSSL found: ${OPENSSL_VERSION}")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_OPENSSL_SUPPORT)
target_link_libraries(${TARGET} PUBLIC OpenSSL::SSL OpenSSL::Crypto)
if (APPLE AND CMAKE_SYSTEM_NAME STREQUAL "Darwin")
target_compile_definitions(${TARGET} PUBLIC CPPHTTPLIB_USE_CERTS_FROM_MACOSX_KEYCHAIN)
find_library(CORE_FOUNDATION_FRAMEWORK CoreFoundation REQUIRED)
find_library(SECURITY_FRAMEWORK Security REQUIRED)
target_link_libraries(${TARGET} PUBLIC ${CORE_FOUNDATION_FRAMEWORK} ${SECURITY_FRAMEWORK})
endif()
endif()
else()
message(STATUS "OpenSSL not found, SSL support disabled")
endif()
endif()
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
@@ -150,13 +121,13 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v1.0.1:
GIT_TAG d795912fedc7d393de740177ea9ea761e7905774
# v0.7.20 (+ fix to build on GCC 15):
GIT_TAG b5b8b64dba11c4e4ee6b1d1450d3a3ae279891e8
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release --package llguidance
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
@@ -172,7 +143,7 @@ if (LLAMA_LLGUIDANCE)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_include_directories(${TARGET} PUBLIC . ../vendor)
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

File diff suppressed because it is too large Load Diff

View File

@@ -59,8 +59,8 @@ struct common_arg {
common_arg & set_sparam();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output) const;
bool has_value_from_env() const;
bool get_value_from_env(std::string & output);
bool has_value_from_env();
std::string to_string();
};
@@ -78,6 +78,7 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// function to be used by test-arg-parser
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
bool common_has_curl();
struct common_remote_params {
std::vector<std::string> headers;

View File

@@ -1,4 +1,4 @@
int LLAMA_BUILD_NUMBER = @LLAMA_BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@LLAMA_BUILD_COMMIT@";
int LLAMA_BUILD_NUMBER = @BUILD_NUMBER@;
char const *LLAMA_COMMIT = "@BUILD_COMMIT@";
char const *LLAMA_COMPILER = "@BUILD_COMPILER@";
char const *LLAMA_BUILD_TARGET = "@BUILD_TARGET@";

View File

@@ -1,534 +0,0 @@
#include "chat-parser.h"
#include "common.h"
#include "log.h"
#include "regex-partial.h"
#include <algorithm>
#include <cctype>
#include <optional>
#include <stdexcept>
#include <string>
#include <string_view>
#include <vector>
using json = nlohmann::ordered_json;
common_chat_msg_parser::common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax)
: input_(input), is_partial_(is_partial), syntax_(syntax)
{
result_.role = "assistant";
while (true) {
std::string id = std::to_string(std::rand());
if (input.find(id) == std::string::npos) {
healing_marker_ = id;
break;
}
}
}
std::string common_chat_msg_parser::str(const common_string_range & rng) const {
GGML_ASSERT(rng.begin <= rng.end);
return input_.substr(rng.begin, rng.end - rng.begin);
}
void common_chat_msg_parser::add_content(const std::string &content) {
result_.content += content;
}
void common_chat_msg_parser::add_reasoning_content(const std::string &reasoning_content) {
result_.reasoning_content += reasoning_content;
}
bool common_chat_msg_parser::add_tool_call(const std::string & name, const std::string & id, const std::string & arguments) {
if (name.empty()) {
return false;
}
common_chat_tool_call tool_call;
tool_call.name = name;
tool_call.arguments = arguments;
tool_call.id = id;
// LOG_DBG("Tool call arguments:\n\traw: %s\n\tresult: %s\n", arguments.c_str(), tool_call.arguments.c_str());
result_.tool_calls.emplace_back(tool_call);
return true;
}
bool common_chat_msg_parser::add_tool_call(const json & tool_call) {
std::string name = tool_call.contains("name") ? tool_call.at("name") : "";
std::string id = tool_call.contains("id") ? tool_call.at("id") : "";
std::string arguments = "";
if (tool_call.contains("arguments")) {
if (tool_call.at("arguments").is_object()) {
arguments = tool_call.at("arguments").dump();
} else {
arguments = tool_call.at("arguments");
}
}
return add_tool_call(name, id, arguments);
}
bool common_chat_msg_parser::add_tool_calls(const json & arr) {
for (const auto & item : arr) {
if (!add_tool_call(item)) {
return false;
}
}
return true;
}
bool common_chat_msg_parser::add_tool_call_short_form(const json & tool_call) {
if (!tool_call.is_object() || tool_call.size() != 1) {
return false;
}
// Get the tool name (the single key in the object)
auto it = tool_call.begin();
std::string name = it.key();
if (name.empty()) {
return false;
}
// Get the arguments (the nested object)
const json & args_json = it.value();
std::string arguments = "";
if (args_json.is_object()) {
arguments = args_json.dump();
} else if (args_json.is_string()) {
arguments = args_json;
} else if (!args_json.is_null()) {
// For other types, convert to string representation
arguments = args_json.dump();
}
return add_tool_call(name, "", arguments);
}
void common_chat_msg_parser::finish() {
if (!is_partial_ && pos_ != input_.size()) {
throw std::runtime_error("Unexpected content at end of input");// + input_.substr(pos_));
}
}
bool common_chat_msg_parser::consume_spaces() {
const auto length = input_.size();
auto consumed = false;
while (pos_ < length && std::isspace(input_[pos_])) {
++pos_;
consumed = true;
}
return consumed;
}
bool common_chat_msg_parser::try_consume_literal(const std::string & literal) {
auto pos = pos_;
for (auto i = 0u; i < literal.size(); ++i) {
if (pos >= input_.size()) {
return false;
}
if (input_[pos] != literal[i]) {
return false;
}
++pos;
}
pos_ = pos;
return true;
}
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_literal(const std::string & literal) {
auto idx = input_.find(literal, pos_);
if (idx != std::string::npos) {
find_regex_result res;
res.prelude = input_.substr(pos_, idx - pos_);
auto end = idx + literal.size();
res.groups.emplace_back(common_string_range{idx, end});
move_to(end);
return res;
}
if (is_partial_) {
idx = string_find_partial_stop(input_, literal);
if (idx != std::string::npos && idx >= pos_) {
find_regex_result res;
res.prelude = input_.substr(pos_, idx - pos_);
auto end = input_.size();
res.groups.emplace_back(common_string_range{idx, end});
move_to(end);
return res;
}
}
return std::nullopt;
}
void common_chat_msg_parser::consume_literal(const std::string & literal) {
if (!try_consume_literal(literal)) {
throw common_chat_msg_partial_exception(literal);
}
}
bool common_chat_msg_parser::try_parse_reasoning(const std::string & start_think, const std::string & end_think) {
std::string pending_reasoning_prefix;
if (syntax_.reasoning_format == COMMON_REASONING_FORMAT_NONE) {
return false;
}
auto set_reasoning_prefix = [&](size_t prefix_pos) {
if (!syntax_.thinking_forced_open || syntax_.reasoning_in_content) {
return;
}
if (prefix_pos + start_think.size() > input_.size()) {
pending_reasoning_prefix.clear();
return;
}
// Capture the exact literal that opened the reasoning section so we can
// surface it back to callers. This ensures formats that force the
// reasoning tag open (e.g. DeepSeek R1) retain their original prefix
// instead of dropping it during parsing.
pending_reasoning_prefix = input_.substr(prefix_pos, start_think.size());
};
auto handle_reasoning = [&](const std::string & reasoning, bool closed) {
auto stripped_reasoning = string_strip(reasoning);
if (stripped_reasoning.empty()) {
return;
}
if (syntax_.reasoning_in_content) {
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "<think>" : start_think);
add_content(stripped_reasoning);
if (closed) {
add_content(syntax_.reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK ? "</think>" : end_think);
}
} else {
if (!pending_reasoning_prefix.empty()) {
add_reasoning_content(pending_reasoning_prefix);
pending_reasoning_prefix.clear();
}
add_reasoning_content(stripped_reasoning);
}
};
const size_t saved_pos = pos_;
const size_t saved_content_size = result_.content.size();
const size_t saved_reasoning_size = result_.reasoning_content.size();
auto restore_state = [&]() {
move_to(saved_pos);
result_.content.resize(saved_content_size);
result_.reasoning_content.resize(saved_reasoning_size);
};
// Allow leading whitespace to be preserved as content when reasoning is present at the start
size_t cursor = pos_;
size_t whitespace_end = cursor;
while (whitespace_end < input_.size() && std::isspace(static_cast<unsigned char>(input_[whitespace_end]))) {
++whitespace_end;
}
if (whitespace_end >= input_.size()) {
restore_state();
if (syntax_.thinking_forced_open) {
auto rest = input_.substr(saved_pos);
if (!rest.empty()) {
handle_reasoning(rest, /* closed */ !is_partial());
}
move_to(input_.size());
return true;
}
return false;
}
cursor = whitespace_end;
const size_t remaining = input_.size() - cursor;
const size_t start_prefix = std::min(start_think.size(), remaining);
const bool has_start_tag = input_.compare(cursor, start_prefix, start_think, 0, start_prefix) == 0;
if (has_start_tag && start_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
if (has_start_tag) {
if (whitespace_end > pos_) {
add_content(input_.substr(pos_, whitespace_end - pos_));
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
} else if (syntax_.thinking_forced_open) {
cursor = whitespace_end;
} else {
restore_state();
return false;
}
while (true) {
if (cursor >= input_.size()) {
move_to(input_.size());
return true;
}
size_t end_pos = input_.find(end_think, cursor);
if (end_pos == std::string::npos) {
std::string_view remaining_view(input_.data() + cursor, input_.size() - cursor);
size_t partial_off = string_find_partial_stop(remaining_view, end_think);
size_t reasoning_end = partial_off == std::string::npos ? input_.size() : cursor + partial_off;
if (reasoning_end > cursor) {
handle_reasoning(input_.substr(cursor, reasoning_end - cursor), /* closed */ partial_off == std::string::npos && !is_partial());
}
move_to(input_.size());
return true;
}
if (end_pos > cursor) {
handle_reasoning(input_.substr(cursor, end_pos - cursor), /* closed */ true);
} else {
handle_reasoning("", /* closed */ true);
}
cursor = end_pos + end_think.size();
while (cursor < input_.size() && std::isspace(static_cast<unsigned char>(input_[cursor]))) {
++cursor;
}
const size_t next_remaining = input_.size() - cursor;
if (next_remaining == 0) {
move_to(cursor);
return true;
}
const size_t next_prefix = std::min(start_think.size(), next_remaining);
if (input_.compare(cursor, next_prefix, start_think, 0, next_prefix) == 0) {
if (next_prefix < start_think.size()) {
move_to(input_.size());
return true;
}
set_reasoning_prefix(cursor);
cursor += start_think.size();
continue;
}
move_to(cursor);
return true;
}
}
std::string common_chat_msg_parser::consume_rest() {
auto rest = input_.substr(pos_);
pos_ = input_.size();
return rest;
}
// Tries to find the regex, consumes it (pos right after it) and gives the prelude (right before it) and the groups to the callback.
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_find_regex(const common_regex & regex, size_t from, bool add_prelude_to_content) {
auto m = regex.search(input_, from == std::string::npos ? pos_ : from);
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
return std::nullopt;
}
auto prelude = input_.substr(pos_, m.groups[0].begin - pos_);
pos_ = m.groups[0].end;
if (add_prelude_to_content) {
add_content(prelude);
}
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
if (is_partial()) {
throw common_chat_msg_partial_exception(regex.str());
}
return std::nullopt;
}
return find_regex_result{prelude, m.groups};
}
common_chat_msg_parser::find_regex_result common_chat_msg_parser::consume_regex(const common_regex & regex) {
if (auto result = try_consume_regex(regex)) {
return *result;
}
throw common_chat_msg_partial_exception(regex.str());
}
std::optional<common_chat_msg_parser::find_regex_result> common_chat_msg_parser::try_consume_regex(const common_regex & regex) {
auto m = regex.search(input_, pos_);
if (m.type == COMMON_REGEX_MATCH_TYPE_NONE) {
return std::nullopt;
}
if (m.type == COMMON_REGEX_MATCH_TYPE_PARTIAL) {
if (is_partial()) {
throw common_chat_msg_partial_exception(regex.str());
}
return std::nullopt;
}
if (m.groups[0].begin != pos_) {
// Didn't match at the current position.
return std::nullopt;
}
pos_ = m.groups[0].end;
return find_regex_result {
/* .prelude = */ "",
m.groups,
};
}
std::optional<common_json> common_chat_msg_parser::try_consume_json() {
auto it = input_.cbegin() + pos_;
const auto end = input_.cend();
common_json result;
if (!common_json_parse(it, end, healing_marker_, result)) {
return std::nullopt;
}
pos_ = std::distance(input_.cbegin(), it);
if (result.healing_marker.marker.empty()) {
// No healing marker, just return the parsed json
return result;
}
if (!is_partial()) {
throw common_chat_msg_partial_exception("JSON");
}
return result;
}
common_json common_chat_msg_parser::consume_json() {
if (auto result = try_consume_json()) {
return *result;
}
throw common_chat_msg_partial_exception("JSON");
}
common_chat_msg_parser::consume_json_result common_chat_msg_parser::consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths,
const std::vector<std::vector<std::string>> & content_paths
) {
if (auto result = try_consume_json_with_dumped_args(args_paths, content_paths)) {
return *result;
}
throw common_chat_msg_partial_exception("JSON");
}
std::optional<common_chat_msg_parser::consume_json_result> common_chat_msg_parser::try_consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths,
const std::vector<std::vector<std::string>> & content_paths
) {
auto partial = try_consume_json();
if (!partial) {
return std::nullopt;
}
auto is_arguments_path = [&](const std::vector<std::string> & path) {
return std::find(args_paths.begin(), args_paths.end(), path) != args_paths.end();
};
auto is_content_path = [&](const std::vector<std::string> & path) {
return std::find(content_paths.begin(), content_paths.end(), path) != content_paths.end();
};
if (partial->healing_marker.marker.empty()) {
if (args_paths.empty()) {
// No arguments to dump, and JSON was parsed fully.
return consume_json_result {
partial->json,
/* .is_partial = */ false,
};
}
if (is_arguments_path({})) {
// Entire JSON is the arguments and was parsed fully.
return consume_json_result {
partial->json.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true),
/* .is_partial = */ false,
};
}
}
LOG_DBG("Parsed partial JSON: %s (json_healing_marker: %s)\n", partial->json.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
auto found_healing_marker = false;
std::vector<std::string> path;
std::function<json(const json &)> remove_unsupported_healings_and_dump_args = [&](const json & j) -> json {
if (is_arguments_path(path)) {
auto arguments = j.dump(/* indent */ -1, /* indent_char */ ' ', /* ensure_ascii */ true);
if (is_partial() && !partial->healing_marker.marker.empty()) {
auto idx = arguments.find(partial->healing_marker.json_dump_marker);
if (idx != std::string::npos) {
arguments.resize(idx);
found_healing_marker = true;
}
if (arguments == "\"") {
// This happens because of completing `:"$magic` after `"arguments"`
arguments = "";
}
}
return arguments;
}
if (is_content_path(path)) {
if (!j.is_string()) {
throw std::runtime_error("Content path must be a string");
}
std::string str = j;
auto idx = str.find(partial->healing_marker.marker); // not using json_dump_marker as we're inside a string
if (idx != std::string::npos) {
str.resize(idx);
found_healing_marker = true;
}
return str;
}
if (j.is_object()) {
auto obj = json::object();
for (const auto & p : j.items()) {
const auto & key = p.key();
const auto & value = p.value();
const std::string key_str = key; // NOLINT
auto idx = key_str.find(healing_marker_);
if (idx != std::string::npos) {
found_healing_marker = true;
break;
}
path.push_back(key_str);
if (value.is_string()) {
const std::string value_str = value;
if (value_str.find(healing_marker_) != std::string::npos) {
found_healing_marker = true;
if (is_content_path(path)) {
if (partial->healing_marker.marker == partial->healing_marker.json_dump_marker) {
// The healing occurred inside the string: good. Otherwise we just ditch the entire key/value pair.
obj[key] = remove_unsupported_healings_and_dump_args(value);
}
}
break;
}
obj[key] = value;
} else {
obj[key] = remove_unsupported_healings_and_dump_args(value);
}
path.pop_back();
}
return obj;
}
if (j.is_array()) {
auto arr = json::array();
for (const auto & value : j) {
if (value.is_string()) {
std::string str = value;
auto idx = str.find(healing_marker_);
if (idx != std::string::npos) {
// Don't heal array values that aren't in the arguments.
found_healing_marker = true;
break;
}
}
arr.push_back(remove_unsupported_healings_and_dump_args(value));
}
return arr;
}
return j;
};
auto cleaned = remove_unsupported_healings_and_dump_args(partial->json);
LOG_DBG("Cleaned up JSON %s to %s (json_healing_marker : '%s')\n", partial->json.dump().c_str(), cleaned.dump().c_str(), partial->healing_marker.json_dump_marker.c_str());
return consume_json_result {
cleaned,
/* .is_partial = */ found_healing_marker,
};
}
void common_chat_msg_parser::clear_tools() {
result_.tool_calls.clear();
}

View File

@@ -1,123 +0,0 @@
#pragma once
#include "chat.h"
#include "json-partial.h"
#include "regex-partial.h"
#include <nlohmann/json.hpp>
#include <optional>
#include <string>
#include <vector>
class common_chat_msg_partial_exception : public std::runtime_error {
public:
common_chat_msg_partial_exception(const std::string & message) : std::runtime_error(message) {}
};
class common_chat_msg_parser {
std::string input_;
bool is_partial_;
common_chat_syntax syntax_;
std::string healing_marker_;
size_t pos_ = 0;
common_chat_msg result_;
public:
common_chat_msg_parser(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
const std::string & input() const { return input_; }
size_t pos() const { return pos_; }
const std::string & healing_marker() const { return healing_marker_; }
const bool & is_partial() const { return is_partial_; }
const common_chat_msg & result() const { return result_; }
const common_chat_syntax & syntax() const { return syntax_; }
void move_to(size_t pos) {
if (pos > input_.size()) {
throw std::runtime_error("Invalid position!");
}
pos_ = pos;
}
void move_back(size_t n) {
if (pos_ < n) {
throw std::runtime_error("Can't move back that far!");
}
pos_ -= n;
}
// Get the substring of the input at the given range
std::string str(const common_string_range & rng) const;
// Appends to the result.content field
void add_content(const std::string & content);
// Appends to the result.reasoning_content field
void add_reasoning_content(const std::string & reasoning_content);
// Adds a tool call to the result. If the tool call is too incomplete (e.g. name empty), it won't add anything.
bool add_tool_call(const std::string & name, const std::string & id, const std::string & arguments);
// Adds a tool call using the "name", "id" and "arguments" fields of the json object
bool add_tool_call(const nlohmann::ordered_json & tool_call);
// Adds an array of tool calls using their "name", "id" and "arguments" fields.
bool add_tool_calls(const nlohmann::ordered_json & arr);
// Adds a tool call using the short form: { "tool_name": { "arg1": val, "arg2": val } }
bool add_tool_call_short_form(const nlohmann::ordered_json & tool_call);
void finish();
bool consume_spaces();
void consume_literal(const std::string & literal);
bool try_parse_reasoning(const std::string & start_think, const std::string & end_think);
std::string consume_rest();
struct find_regex_result {
std::string prelude;
std::vector<common_string_range> groups;
};
std::optional<find_regex_result> try_find_regex(const common_regex & regex, size_t from = std::string::npos, bool add_prelude_to_content = true);
bool try_consume_literal(const std::string & literal);
std::optional<find_regex_result> try_find_literal(const std::string & literal);
find_regex_result consume_regex(const common_regex & regex);
std::optional<find_regex_result> try_consume_regex(const common_regex & regex);
std::optional<common_json> try_consume_json();
common_json consume_json();
struct consume_json_result {
nlohmann::ordered_json value;
bool is_partial;
};
/*
Consume (possibly partial) json and converts specific subtrees to (possibly truncated) JSON strings.
By default, object keys can't be truncated, nor can string values (their corresponding key is removed,
e.g. `{"foo": "bar", "baz": "b` -> `{"foo": "bar"}`
But one can allow subpaths to be kept truncated, and possibly json-dumped to truncated json strings
- with `content_paths={{"foo"}}` -> `{"foo": "b` -> {"foo": "b"}`
- with `args_paths={{"foo"}}` -> `{"foo": {"b` -> `{"foo": "{b"}`
*/
consume_json_result consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths = {},
const std::vector<std::vector<std::string>> & content_paths = {}
);
std::optional<consume_json_result> try_consume_json_with_dumped_args(
const std::vector<std::vector<std::string>> & args_paths = {},
const std::vector<std::vector<std::string>> & content_paths = {}
);
void clear_tools();
};

File diff suppressed because it is too large Load Diff

View File

@@ -3,11 +3,9 @@
#pragma once
#include "common.h"
#include <functional>
#include <chrono>
#include <string>
#include <vector>
#include <map>
struct common_chat_templates;
@@ -15,74 +13,21 @@ struct common_chat_tool_call {
std::string name;
std::string arguments;
std::string id;
bool operator==(const common_chat_tool_call & other) const {
return name == other.name && arguments == other.arguments && id == other.id;
}
};
struct common_chat_msg_content_part {
std::string type;
std::string text;
bool operator==(const common_chat_msg_content_part & other) const {
return type == other.type && text == other.text;
}
};
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_chat_msg_content_part> content_parts;
std::vector<common_chat_tool_call> tool_calls;
std::vector<common_chat_msg_content_part> content_parts = {};
std::vector<common_chat_tool_call> tool_calls = {};
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
template <class T> T to_json_oaicompat() const;
bool empty() const {
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
}
void set_tool_call_ids(std::vector<std::string> & ids_cache, const std::function<std::string()> & gen_tool_call_id) {
for (auto i = 0u; i < tool_calls.size(); i++) {
if (ids_cache.size() <= i) {
auto id = tool_calls[i].id;
if (id.empty()) {
id = gen_tool_call_id();
}
ids_cache.push_back(id);
}
tool_calls[i].id = ids_cache[i];
}
}
bool operator==(const common_chat_msg & other) const {
return role == other.role
&& content == other.content
&& content_parts == other.content_parts
&& tool_calls == other.tool_calls
&& reasoning_content == other.reasoning_content
&& tool_name == other.tool_name
&& tool_call_id == other.tool_call_id;
}
bool operator!=(const common_chat_msg & other) const {
return !(*this == other);
}
};
struct common_chat_msg_diff {
std::string reasoning_content_delta;
std::string content_delta;
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
&& tool_call_index == other.tool_call_index
&& tool_call_delta == other.tool_call_delta;
}
};
struct common_chat_tool {
@@ -101,22 +46,17 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_MAGISTRAL,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_DEEPSEEK_V3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_GRANITE,
COMMON_CHAT_FORMAT_GPT_OSS,
COMMON_CHAT_FORMAT_SEED_OSS,
COMMON_CHAT_FORMAT_NEMOTRON_V2,
COMMON_CHAT_FORMAT_APERTUS,
COMMON_CHAT_FORMAT_LFM2_WITH_JSON_TOOLS,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -131,12 +71,8 @@ struct common_chat_templates_inputs {
std::vector<common_chat_tool> tools;
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
bool parallel_tool_calls = false;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
bool enable_thinking = true;
bool extract_reasoning = true;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
std::map<std::string, std::string> chat_template_kwargs;
bool add_bos = false;
bool add_eos = false;
};
struct common_chat_params {
@@ -144,21 +80,11 @@ struct common_chat_params {
std::string prompt;
std::string grammar;
bool grammar_lazy = false;
bool thinking_forced_open = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
struct common_chat_syntax {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_NONE;
// Whether reasoning_content should be inlined in the content (e.g. for reasoning_format=deepseek in stream mode)
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
@@ -193,18 +119,13 @@ std::string common_chat_format_single(
// Returns an example of formatted chat
std::string common_chat_format_example(
const struct common_chat_templates * tmpls,
bool use_jinja,
const std::map<std::string, std::string> & chat_template_kwargs);
bool use_jinja);
const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
@@ -214,5 +135,3 @@ template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
template <class T> T common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);

View File

@@ -0,0 +1,24 @@
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
set(TEMPLATE_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp.in")
set(OUTPUT_FILE "${CMAKE_CURRENT_SOURCE_DIR}/common/build-info.cpp")
# Only write the build info if it changed
if(EXISTS ${OUTPUT_FILE})
file(READ ${OUTPUT_FILE} CONTENTS)
string(REGEX MATCH "LLAMA_COMMIT = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMMIT ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_COMPILER = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_COMPILER ${CMAKE_MATCH_1})
string(REGEX MATCH "LLAMA_BUILD_TARGET = \"([^\"]*)\";" _ ${CONTENTS})
set(OLD_TARGET ${CMAKE_MATCH_1})
if (
NOT OLD_COMMIT STREQUAL BUILD_COMMIT OR
NOT OLD_COMPILER STREQUAL BUILD_COMPILER OR
NOT OLD_TARGET STREQUAL BUILD_TARGET
)
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()
else()
configure_file(${TEMPLATE_FILE} ${OUTPUT_FILE})
endif()

View File

@@ -14,7 +14,6 @@
#include <climits>
#include <cmath>
#include <codecvt>
#include <chrono>
#include <cstdarg>
#include <cstring>
#include <ctime>
@@ -42,7 +41,6 @@
#endif
#include <locale>
#include <windows.h>
#include <string.h>
#include <fcntl.h>
#include <io.h>
#else
@@ -51,11 +49,6 @@
#include <unistd.h>
#endif
#if defined(__linux__)
#include <sys/types.h>
#include <pwd.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
@@ -210,7 +203,6 @@ bool set_process_priority(enum ggml_sched_priority prio) {
DWORD p = NORMAL_PRIORITY_CLASS;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = BELOW_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_NORMAL: p = NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_MEDIUM: p = ABOVE_NORMAL_PRIORITY_CLASS; break;
case GGML_SCHED_PRIO_HIGH: p = HIGH_PRIORITY_CLASS; break;
@@ -236,7 +228,6 @@ bool set_process_priority(enum ggml_sched_priority prio) {
int p = 0;
switch (prio) {
case GGML_SCHED_PRIO_LOW: p = 5; break;
case GGML_SCHED_PRIO_NORMAL: p = 0; break;
case GGML_SCHED_PRIO_MEDIUM: p = -5; break;
case GGML_SCHED_PRIO_HIGH: p = -10; break;
@@ -455,15 +446,6 @@ void string_replace_all(std::string & s, const std::string & search, const std::
bool string_ends_with(const std::string_view & str, const std::string_view & suffix) {
return str.size() >= suffix.size() && str.compare(str.size()-suffix.size(), suffix.size(), suffix) == 0;
}
bool string_remove_suffix(std::string & str, const std::string_view & suffix) {
bool has_suffix = string_ends_with(str, suffix);
if (has_suffix) {
str = str.substr(0, str.size() - suffix.size());
}
return has_suffix;
}
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop) {
if (!str.empty() && !stop.empty()) {
const char text_last_char = str.back();
@@ -482,7 +464,7 @@ size_t string_find_partial_stop(const std::string_view & str, const std::string_
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$&");
return std::regex_replace(s, special_chars, "\\$0");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
@@ -564,6 +546,13 @@ std::string string_from(const struct llama_context * ctx, const std::vector<llam
auto detokenized = common_token_to_piece(ctx, token);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf << "'" << detokenized << "'"
<< ":" << std::to_string(token);
}
@@ -588,6 +577,13 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
auto detokenized = common_token_to_piece(ctx, batch.token[i]);
detokenized.erase(
std::remove_if(
detokenized.begin(),
detokenized.end(),
[](const unsigned char c) { return !std::isprint(c); }),
detokenized.end());
buf << "\n" << std::to_string(i)
<< ", token '" << detokenized << "'"
<< ", pos " << std::to_string(batch.pos[i])
@@ -708,17 +704,11 @@ bool fs_validate_filename(const std::string & filename) {
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
filename_utf32 = converter.from_bytes(filename);
@@ -775,9 +765,6 @@ bool fs_validate_filename(const std::string & filename) {
return true;
}
#include <iostream>
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
@@ -795,16 +782,9 @@ bool fs_create_directory_with_parents(const std::string & path) {
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
pos_slash += 1;
// skip the drive letter, in some systems it can return an access denied error
if (subpath.length() == 2 && subpath[1] == ':') {
continue;
}
const bool success = CreateDirectoryW(subpath.c_str(), NULL);
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
@@ -818,6 +798,8 @@ bool fs_create_directory_with_parents(const std::string & path) {
return false;
}
}
pos_slash += 1;
}
return true;
@@ -867,23 +849,11 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else if (std::getenv("HOME")) {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
} else {
#if defined(__linux__)
/* no $HOME is defined, fallback to getpwuid */
struct passwd *pw = getpwuid(getuid());
if ((!pw) || (!pw->pw_dir)) {
throw std::runtime_error("Failed to find $HOME directory");
}
cache_directory = std::string(pw->pw_dir) + std::string("/.cache/");
#else /* defined(__linux__) */
throw std::runtime_error("Failed to find $HOME directory");
#endif /* defined(__linux__) */
cache_directory = std::getenv("HOME") + std::string("/.cache/");
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
@@ -908,39 +878,6 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list_files(const std::string & path) {
std::vector<common_file_info> files;
if (path.empty()) return files;
std::filesystem::path dir(path);
if (!std::filesystem::exists(dir) || !std::filesystem::is_directory(dir)) {
return files;
}
for (const auto & entry : std::filesystem::directory_iterator(dir)) {
try {
// Only include regular files (skip directories)
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
continue;
}
}
return files;
}
//
// Model utils
@@ -952,24 +889,47 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return iparams;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.reranking) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, reranking will not work\n", __func__);
ok = false;
}
if (llama_vocab_sep(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a SEP token, reranking will not work\n", __func__);
ok = false;
}
if (!ok) {
llama_model_free(model);
return iparams;
}
}
auto cparams = common_context_params_to_llama(params);
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -1001,33 +961,6 @@ struct common_init_result common_init_from_params(common_params & params) {
}
}
if (llama_pooling_type(lctx) == LLAMA_POOLING_TYPE_RANK) {
bool ok = true;
if (llama_vocab_bos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have a BOS token, reranking will not work\n", __func__);
ok = false;
}
bool has_eos = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
bool has_sep = llama_vocab_sep(vocab) != LLAMA_TOKEN_NULL;
bool has_rerank_prompt = llama_model_chat_template(model, "rerank") != NULL;
if (!has_eos && !has_sep && !has_rerank_prompt) {
LOG_WRN("%s: warning: vocab does not have an EOS token, SEP token, or rerank prompt. Reranking will not work\n", __func__);
ok = false;
} else if (!has_eos) {
LOG_WRN("%s: warning: vocab does not have an EOS token, using SEP token as fallback\n", __func__);
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
}
}
// load and optionally apply lora adapters
for (auto & la : params.lora_adapters) {
llama_adapter_lora_ptr lora;
@@ -1039,12 +972,7 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
char buf[1024];
la.ptr = lora.get();
llama_adapter_meta_val_str(la.ptr, "adapter.lora.task_name", buf, sizeof(buf));
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
}
@@ -1057,19 +985,13 @@ struct common_init_result common_init_from_params(common_params & params) {
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias.push_back({i, -INFINITY});
}
}
}
if (params.sampling.penalty_last_n == -1) {
@@ -1114,7 +1036,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_memory_clear(llama_get_memory(lctx), true);
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
@@ -1165,8 +1087,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;
mparams.no_host = params.no_host;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
@@ -1182,9 +1102,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
mparams.progress_callback = params.load_progress_callback;
mparams.progress_callback_user_data = params.load_progress_callback_user_data;
return mparams;
}
@@ -1209,14 +1126,18 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
cparams.pooling_type = params.pooling_type;
cparams.attention_type = params.attention_type;
cparams.flash_attn_type = params.flash_attn_type;
cparams.defrag_thold = params.defrag_thold;
cparams.cb_eval = params.cb_eval;
cparams.cb_eval_user_data = params.cb_eval_user_data;
cparams.offload_kqv = !params.no_kv_offload;
cparams.flash_attn = params.flash_attn;
cparams.no_perf = params.no_perf;
cparams.op_offload = !params.no_op_offload;
cparams.swa_full = params.swa_full;
cparams.kv_unified = params.kv_unified;
if (params.reranking) {
cparams.embeddings = true;
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;
@@ -1350,9 +1271,6 @@ std::vector<llama_token> common_tokenize(
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens == std::numeric_limits<int32_t>::min()) {
throw std::runtime_error("Tokenization failed: input text too large, tokenization result exceeds int32_t limit");
}
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
@@ -1407,6 +1325,81 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
return text;
}
//
// KV cache utils
//
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = ".123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
int seq_count = 0;
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) { seq_count++; }
}
putchar(slot_chars[std::min(sizeof(slot_chars) - 2, size_t(seq_count))]);
}
printf("\n=== Done dumping\n");
}
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size) {
static const char slot_chars[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
printf("=== Dumping KV cache. total cells %d, max sequences per cell %d, populated cells %d, total tokens in cache %d, largest empty slot=%d @ %d\n",
view.n_cells, view.n_seq_max, view.used_cells, view.token_count, view.max_contiguous, view.max_contiguous_idx);
std::unordered_map<llama_seq_id, size_t> seqs;
llama_kv_cache_view_cell * c_curr = view.cells;
llama_seq_id * cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] < 0) { continue; }
if (seqs.find(cs_curr[j]) == seqs.end()) {
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
const size_t sz = seqs.size();
seqs[cs_curr[j]] = sz;
}
}
if (seqs.size() + 1 >= sizeof(slot_chars)) { break; }
}
printf("=== Sequence legend: ");
for (const auto & it : seqs) {
printf("%zu=%d, ", it.second, it.first);
}
printf("'+'=other sequence ids");
c_curr = view.cells;
cs_curr = view.cells_sequences;
for (int i = 0; i < view.n_cells; i++, c_curr++, cs_curr += view.n_seq_max) {
if (i % row_size == 0) {
printf("\n%5d: ", i);
}
for (int j = 0; j < view.n_seq_max; j++) {
if (cs_curr[j] >= 0) {
const auto & it = seqs.find(cs_curr[j]);
putchar(it != seqs.end() ? int(slot_chars[it->second]) : '+');
} else {
putchar('.');
}
}
putchar(' ');
}
printf("\n=== Done dumping\n");
}
//
// Embedding utils
//
@@ -1608,56 +1601,3 @@ ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std
return result;
}
ggml_opt_optimizer_params common_opt_lr_pars(void * userdata) {
ggml_opt_optimizer_params result = ggml_opt_get_default_optimizer_params(nullptr);
const lr_opt & d = *(lr_opt *) userdata;
result.adamw.alpha = result.sgd.alpha = d.get_lr(d.epoch);
result.sgd.wd = result.adamw.wd = d.wd;
return result;
}
// TODO make all command line args case-insensitive
static inline bool eq_case_insensitive(char const* a, char const* b) {
return !
#if defined(_MSC_VER)
_stricmp
#else
strcasecmp
#endif // defined(_MSC_VER)
(a, b);
}
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char * n) {
if (eq_case_insensitive("adamw", n)) {
return GGML_OPT_OPTIMIZER_TYPE_ADAMW;
}
if (eq_case_insensitive("sgd", n)) {
return GGML_OPT_OPTIMIZER_TYPE_SGD;
}
return GGML_OPT_OPTIMIZER_TYPE_COUNT;
}
// TODO simplify to use just log and exp
static float const k_log_2 = std::log(2.f);
void lr_opt::init() {
if (lr_min > 0 && lr_min < lr0) {
float nhalf = std::log(lr0 / lr_min) / k_log_2;
float e = epochs;
if (decay_epochs > 0 && decay_epochs < e) {
e = decay_epochs;
} else {
decay_epochs = e;
}
scale_epoch = nhalf / e;
}
}
float lr_opt::get_lr(float epoch) const {
float r = lr_min <= 0 ? lr0 :
epoch >= decay_epochs ? lr_min :
lr0 * std::pow(0.5f, epoch * scale_epoch);
LOG_INF("epoch %.2g lr=%.2g\n", epoch, r);
return r;
}

View File

@@ -2,17 +2,13 @@
#pragma once
#include "llama-cpp.h"
#include <set>
#include <sstream>
#include <string>
#include <string_view>
#include <vector>
#include <map>
#include <sstream>
#include <cmath>
#include "ggml-opt.h"
#include "llama-cpp.h"
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
@@ -34,9 +30,6 @@ struct common_adapter_lora_info {
std::string path;
float scale;
std::string task_name;
std::string prompt_prefix;
struct llama_adapter_lora * ptr;
};
@@ -83,12 +76,10 @@ enum llama_example {
LLAMA_EXAMPLE_SERVER,
LLAMA_EXAMPLE_CVECTOR_GENERATOR,
LLAMA_EXAMPLE_EXPORT_LORA,
LLAMA_EXAMPLE_MTMD,
LLAMA_EXAMPLE_LLAVA,
LLAMA_EXAMPLE_LOOKUP,
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_COUNT,
};
@@ -124,7 +115,7 @@ enum common_grammar_trigger_type {
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
};
struct common_grammar_trigger {
@@ -185,19 +176,17 @@ struct common_params_sampling {
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
// print the parameters into a string
std::string print() const;
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
};
struct common_params_speculative {
@@ -209,11 +198,6 @@ struct common_params_speculative {
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
@@ -229,50 +213,11 @@ struct common_params_vocoder {
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
struct common_params_diffusion {
int32_t steps = 128;
bool visual_mode = false;
float eps = 0; // epsilon for timesteps
int32_t block_length = 0; // block length for generation
int32_t algorithm = 4; // default algorithm: low-confidence
float alg_temp = 0.0f; // algorithm temperature
float cfg_scale = 0; // classifier-free guidance scale
bool add_gumbel_noise = false; // add gumbel noise to the logits if temp > 0.0
};
// reasoning API response format (not to be confused as chat template's reasoning format)
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_AUTO, // Same as deepseek, using `message.reasoning_content`
COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
// do not extend this enum unless you absolutely have to
// in most cases, use COMMON_REASONING_FORMAT_AUTO
// see: https://github.com/ggml-org/llama.cpp/pull/15408
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
};
struct lr_opt {
float lr0 = 1e-5; // learning rate at first epoch
float lr_min = -1;
float decay_epochs = -1; // if >0, the learning rate starts at lr0 and decays to lr_min after this many epochs
float scale_epoch = 0;
float wd = 0;
unsigned epochs = 2;
unsigned epoch; // set by optimizer outer (epochs) loop
// learning rate decay - constant LR per epoch only for now
float get_lr(float e) const;
float get_lr() const { return get_lr(epoch); }
// must call after arg parse, before get_lr
void init();
};
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
@@ -288,10 +233,11 @@ struct common_params {
float rope_freq_base = 0.0f; // RoPE base frequency
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
float yarn_attn_factor = -1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = -1.0f; // YaRN low correction dim
float yarn_beta_slow = -1.0f; // YaRN high correction dim
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = 0.1f; // KV cache defragmentation threshold
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
@@ -313,12 +259,10 @@ struct common_params {
enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
enum llama_flash_attn_type flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO; // whether to use Flash Attention
struct common_params_sampling sampling;
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
struct common_params_diffusion diffusion;
struct common_params_model model;
@@ -347,7 +291,6 @@ struct common_params {
int32_t verbosity = 0;
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
@@ -377,22 +320,20 @@ struct common_params {
bool multiline_input = false; // reverse the usage of `\`
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool flash_attn = false; // flash attention
bool no_perf = false; // disable performance metrics
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
bool ctx_shift = true; // context shift on inifinite text generation
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
bool no_kv_offload = false; // disable KV offloading
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool no_op_offload = false; // globally disable offload host tensor operations to device
bool no_extra_bufts = false; // disable extra buffer types (used for weight repacking)
bool no_host = false; // bypass host buffer allowing extra buffers to be used
bool single_turn = false; // single turn chat conversation
@@ -406,38 +347,27 @@ struct common_params {
bool mmproj_use_gpu = true; // use GPU for multimodal model
bool no_mmproj = false; // explicitly disable multimodal model
std::vector<std::string> image; // path to image file(s)
int image_min_tokens = -1;
int image_max_tokens = -1;
// finetune
struct lr_opt lr;
enum ggml_opt_optimizer_type optimizer = GGML_OPT_OPTIMIZER_TYPE_ADAMW;
float val_split = 0.05f; // fraction of the data used for the validation set
// embedding
bool embedding = false; // get only sentence embedding
int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
std::string embd_sep = "\n"; // separator of embeddings
std::string cls_sep = "\t"; // separator of classification sequences
bool reranking = false; // enable reranking support on server
// server params
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
int32_t n_ctx_checkpoints = 8; // max number of context checkpoints per slot
int32_t cache_ram_mib = 8192; // -1 = no limit, 0 - disable, 1 = 1 MiB, etc.
int32_t port = 8080; // server listens on this network port
int32_t timeout_read = 600; // http read timeout in seconds
int32_t timeout_write = timeout_read; // http write timeout in seconds
int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
std::vector<std::string> api_keys;
@@ -445,11 +375,9 @@ struct common_params {
std::string ssl_file_key = ""; // NOLINT
std::string ssl_file_cert = ""; // NOLINT
std::map<std::string, std::string> default_template_kwargs;
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = true;
bool endpoint_slots = false;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
@@ -457,11 +385,10 @@ struct common_params {
std::string slot_save_path;
float slot_prompt_similarity = 0.1f;
float slot_prompt_similarity = 0.5f;
// batched-bench params
bool is_pp_shared = false;
bool is_tg_separate = false;
bool is_pp_shared = false;
std::vector<int32_t> n_pp;
std::vector<int32_t> n_tg;
@@ -482,12 +409,10 @@ struct common_params {
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
int8_t imat_dat = 0; // whether the legacy imatrix.dat format should be output (gguf <= 0 < dat)
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
bool show_statistics = false; // show imatrix statistics per tensor
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
bool process_output = false; // collect data for the output tensor
bool compute_ppl = true; // whether to compute perplexity
bool parse_special = false; // whether to parse special tokens during imatrix tokenization
// cvector-generator params
int n_pca_batch = 100;
@@ -503,15 +428,6 @@ struct common_params {
// common params
std::string out_file; // output filename for all example programs
// optional callback for model loading progress and cancellation:
// called with a progress value between 0.0 and 1.0.
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -591,7 +507,6 @@ static bool string_starts_with(const std::string & str,
// While we wait for C++20's std::string::ends_with...
bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
bool string_remove_suffix(std::string & str, const std::string_view & suffix);
size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
@@ -612,13 +527,6 @@ bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
};
std::vector<common_file_info> fs_list_files(const std::string & path);
//
// Model utils
//
@@ -708,6 +616,16 @@ std::string common_detokenize(
const std::vector<llama_token> & tokens,
bool special = true);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void common_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void common_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
//
@@ -750,25 +668,8 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
}
//
// MoE utils
//
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
static std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
}
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
}
//
// training utils
//
ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);
// "adamw" or "sgd" (case insensitive)
enum ggml_opt_optimizer_type common_opt_get_optimizer(const char *);

File diff suppressed because it is too large Load Diff

View File

@@ -1,55 +0,0 @@
#pragma once
#include <string>
struct common_params_model;
//
// download functionalities
//
struct common_cached_model_info {
std::string manifest_path;
std::string user;
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
std::string to_string() const {
return user + "/" + model + ":" + tag;
}
};
struct common_hf_file_res {
std::string repo; // repo name with ":tag" removed
std::string ggufFile;
std::string mmprojFile;
};
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
common_hf_file_res common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & bearer_token,
bool offline);
// returns true if download succeeded
bool common_download_model(
const common_params_model & model,
const std::string & bearer_token,
bool offline);
// returns list of cached models
std::vector<common_cached_model_info> common_list_cached_models();
// resolve and download model from Docker registry
// return local path to downloaded model file
std::string common_docker_resolve_model(const std::string & docker);

View File

@@ -1,73 +0,0 @@
#pragma once
#include <cpp-httplib/httplib.h>
struct common_http_url {
std::string scheme;
std::string user;
std::string password;
std::string host;
std::string path;
};
static common_http_url common_http_parse_url(const std::string & url) {
common_http_url parts;
auto scheme_end = url.find("://");
if (scheme_end == std::string::npos) {
throw std::runtime_error("invalid URL: no scheme");
}
parts.scheme = url.substr(0, scheme_end);
if (parts.scheme != "http" && parts.scheme != "https") {
throw std::runtime_error("unsupported URL scheme: " + parts.scheme);
}
auto rest = url.substr(scheme_end + 3);
auto at_pos = rest.find('@');
if (at_pos != std::string::npos) {
auto auth = rest.substr(0, at_pos);
auto colon_pos = auth.find(':');
if (colon_pos != std::string::npos) {
parts.user = auth.substr(0, colon_pos);
parts.password = auth.substr(colon_pos + 1);
} else {
parts.user = auth;
}
rest = rest.substr(at_pos + 1);
}
auto slash_pos = rest.find('/');
if (slash_pos != std::string::npos) {
parts.host = rest.substr(0, slash_pos);
parts.path = rest.substr(slash_pos);
} else {
parts.host = rest;
parts.path = "/";
}
return parts;
}
static std::pair<httplib::Client, common_http_url> common_http_client(const std::string & url) {
common_http_url parts = common_http_parse_url(url);
if (parts.host.empty()) {
throw std::runtime_error("error: invalid URL format");
}
httplib::Client cli(parts.scheme + "://" + parts.host);
if (!parts.user.empty()) {
cli.set_basic_auth(parts.user, parts.password);
}
cli.set_follow_location(true);
return { std::move(cli), std::move(parts) };
}
static std::string common_http_show_masked_url(const common_http_url & parts) {
return parts.scheme + "://" + (parts.user.empty() ? "" : "****:****@") + parts.host + parts.path;
}

View File

@@ -1,307 +0,0 @@
#include "json-partial.h"
#include "log.h"
#include <nlohmann/json.hpp>
#include <string>
#include <regex>
using json = nlohmann::ordered_json;
enum common_json_stack_element_type {
COMMON_JSON_STACK_ELEMENT_OBJECT,
COMMON_JSON_STACK_ELEMENT_KEY,
COMMON_JSON_STACK_ELEMENT_ARRAY,
};
struct common_json_stack_element {
common_json_stack_element_type type;
std::string key;
};
bool common_json_parse(
const std::string & input,
const std::string & healing_marker,
common_json & out)
{
std::string::const_iterator it = input.begin();
const auto end = input.end();
return common_json_parse(it, end, healing_marker, out);
}
bool common_json_parse(
std::string::const_iterator & it,
const std::string::const_iterator & end,
const std::string & healing_marker,
common_json & out)
{
// // https://json.nlohmann.me/features/parsing/sax_interface/
struct json_error_locator : public nlohmann::json_sax<json> {
std::size_t position;
bool found_error;
std::string last_token;
std::string exception_message;
std::vector<common_json_stack_element> stack;
json_error_locator() : position(0), found_error(false) {}
bool parse_error(std::size_t position, const std::string & last_token, const json::exception & ex) override { // NOLINT
this->position = position - 1;
this->found_error = true;
this->last_token = last_token;
this->exception_message = ex.what();
return false;
}
void close_value() {
if (!stack.empty() && (stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY)) {
stack.pop_back();
}
}
bool null() override { // NOLINT
close_value();
return true;
}
bool boolean(bool) override { // NOLINT
close_value();
return true;
}
bool number_integer(number_integer_t) override { // NOLINT
close_value();
return true;
}
bool number_unsigned(number_unsigned_t) override { // NOLINT
close_value();
return true;
}
bool number_float(number_float_t, const string_t &) override { // NOLINT
close_value();
return true;
}
bool string(string_t &) override { // NOLINT
close_value();
return true;
}
bool binary(binary_t &) override { // NOLINT
close_value();
return true;
}
bool start_object(std::size_t) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_OBJECT, ""});
return true;
}
bool end_object() override {
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT);
stack.pop_back();
close_value();
return true;
}
bool key(string_t & key) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_KEY, key});
return true;
}
bool start_array(std::size_t) override { // NOLINT
stack.push_back({COMMON_JSON_STACK_ELEMENT_ARRAY, ""});
return true;
}
bool end_array() override {
GGML_ASSERT(!stack.empty() && stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY);
stack.pop_back();
close_value();
return true;
}
};
json_error_locator err_loc;
auto start = it;
json::sax_parse(it, end, &err_loc);
if (err_loc.found_error) {
it = start;
auto temptative_end = it + err_loc.position;
// LOG_DBG("Error at position %zu (is_end = %s): %s\n", err_loc.position, temptative_end == end ? "true" : "false", err_loc.exception_message.c_str());
auto input = std::string(it, temptative_end);
try {
out.json = json::parse(input);
// out.json = json::parse(it, temptative_end);
it = temptative_end;
return true;
} catch (const std::exception & ex) {
// No, needs healing.
LOG_DBG("Failed to parse up to error: %s: <<<%s>>>\n", ex.what(), std::string(it, temptative_end).c_str());
}
auto can_parse = [](const std::string & str) {
try {
auto _ = json::parse(str); // NOLINT
return true;
} catch (const std::exception &) {
return false;
}
};
if (!healing_marker.empty() && !err_loc.stack.empty()) {
std::string str(it, temptative_end);
auto last_non_sp_pos = str.find_last_not_of(" \n\r\t");
if (last_non_sp_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
}
auto last_non_sp_char = str[last_non_sp_pos];
// Used to detect stops on a number, which may not be complete.
auto was_maybe_number = [&]() {
if (!str.empty() && std::isspace(str.back())) {
return false;
}
return std::isdigit(last_non_sp_char) ||
last_non_sp_char == '.' ||
last_non_sp_char == 'e' ||
last_non_sp_char == 'E' ||
last_non_sp_char == '-';
};
std::string closing;
for (size_t i = err_loc.stack.size(); i > 0; i--) {
auto & el = err_loc.stack[i - 1];
if (el.type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
closing += "}";
} else if (el.type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
closing += "]";
} else if (el.type != COMMON_JSON_STACK_ELEMENT_KEY) {
throw std::runtime_error("Unexpected stack element type");
}
}
// Matches a potentially partial unicode escape sequence, e.g. \u, \uX, \uXX, \uXXX, \uXXXX
static const std::regex partial_unicode_regex(R"(\\u(?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F](?:[0-9a-fA-F])?)?)?)?$)");
auto is_high_surrogate = [&](const std::string & s) {
// Check if a partial of a high surrogate (U+D800-U+DBFF)
return s.length() >= 4 &&
s[0] == '\\' && s[1] == 'u' &&
std::tolower(s[2]) == 'd' &&
(s[3] == '8' || s[3] == '9' || std::tolower(s[3]) == 'a' || std::tolower(s[3]) == 'b');
};
// Initialize the unicode marker to a low surrogate to handle the edge case
// where a high surrogate (U+D800-U+DBFF) is immediately followed by a
// backslash (\)
std::string unicode_marker_padding = "udc00";
std::smatch last_unicode_seq;
if (std::regex_search(str, last_unicode_seq, partial_unicode_regex)) {
std::smatch second_last_seq;
std::string prelude = str.substr(0, last_unicode_seq.position());
// Pad the escape sequence with 0s until it forms a complete sequence of 6 characters
unicode_marker_padding = std::string(6 - last_unicode_seq.length(), '0');
if (is_high_surrogate(last_unicode_seq.str())) {
// If the sequence is a partial match for a high surrogate, add a low surrogate (U+DC00-U+UDFF)
unicode_marker_padding += "\\udc00";
} else if (std::regex_search(prelude, second_last_seq, partial_unicode_regex)) {
if (is_high_surrogate(second_last_seq.str())) {
// If this follows a high surrogate, pad it to be a low surrogate
if (last_unicode_seq.length() == 2) {
unicode_marker_padding = "dc00";
} else if (last_unicode_seq.length() == 3) {
unicode_marker_padding = "c00";
} else {
// The original unicode_marker_padding is already padded with 0s
}
}
}
}
const auto & magic_seed = out.healing_marker.marker = healing_marker;//"$llama.cpp.json$";
if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_KEY) {
// We're inside an object value
if (last_non_sp_char == ':' && can_parse(str + "1" + closing)) {
// Was about to create an object value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
} else if (can_parse(str + ": 1" + closing)) {
str += (out.healing_marker.json_dump_marker = ":\"" + magic_seed) + "\"" + closing;
} else if (last_non_sp_char == '{' && can_parse(str + closing)) {
// Was about to create an object
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + "\"" + closing)) {
// Was inside an object value string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an object value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an object value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else {
// find last :
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON that stopped in an unknown location");
}
// Cutting back to opening : for object value
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_ARRAY) {
if ((last_non_sp_char == ',' || last_non_sp_char == '[') && can_parse(str + "1" + closing)) {
// Was about to create an array value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
} else if (can_parse(str + "\"" + closing)) {
// Was inside an array value string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\"" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\"" + closing)) {
// Was inside an array value string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\"" + closing;
} else if (can_parse(str + unicode_marker_padding + "\"" + closing)) {
// Was inside an array value string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\"" + closing;
} else if (!was_maybe_number() && can_parse(str + ", 1" + closing)) {
// Had just finished a value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\"" + closing;
} else {
auto last_pos = str.find_last_of("[,");
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON array stopped in an unknown location");
}
// Cutting back to last [ or , for array value
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else if (err_loc.stack.back().type == COMMON_JSON_STACK_ELEMENT_OBJECT) {
if ((last_non_sp_char == '{' && can_parse(str + closing)) ||
(last_non_sp_char == ',' && can_parse(str + "\"\": 1" + closing))) {
// Was about to create an object key+value
str += (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\": 1" + closing;
} else if (!was_maybe_number() && can_parse(str + ",\"\": 1" + closing)) {
// Was about to create an object key+value
str += (out.healing_marker.json_dump_marker = ",\"" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + "\": 1" + closing)) {
// Was inside an object key string
str += (out.healing_marker.json_dump_marker = magic_seed) + "\": 1" + closing;
} else if (str[str.length() - 1] == '\\' && can_parse(str + "\\\": 1" + closing)) {
// Was inside an object key string after an escape
str += (out.healing_marker.json_dump_marker = "\\" + magic_seed) + "\": 1" + closing;
} else if (can_parse(str + unicode_marker_padding + "\": 1" + closing)) {
// Was inside an object key string after a partial unicode escape
str += (out.healing_marker.json_dump_marker = unicode_marker_padding + magic_seed) + "\": 1" + closing;
} else {
auto last_pos = str.find_last_of(':');
if (last_pos == std::string::npos) {
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
}
// fprintf(stderr, "Cutting back to last : for object key+value\n");
str = str.substr(0, last_pos + 1) + (out.healing_marker.json_dump_marker = "\"" + magic_seed) + "\"" + closing;
}
} else {
throw std::runtime_error("Cannot heal a truncated JSON object stopped in an unknown location");
}
// fprintf(stderr, "HEALED:\nSTRING <<<\n%s\n>>>\n\nmagic_cut: <<<\n%s\n>>>\n\n", str.c_str(), out.healing_marker.json_dump_marker.c_str());
out.json = json::parse(str);
it = temptative_end;
return true;
}
// TODO: handle unclosed top-level primitive if the stack was empty but we got an error (e.g. "tru", "\"", etc...)
// fprintf(stderr, "Closing: TODO\n");
return false;
}
out.json = json::parse(it, end);
it = end;
return true;
}

View File

@@ -1,38 +0,0 @@
#pragma once
#include <nlohmann/json.hpp>
// Healing marker (empty if the JSON was fully parsed / wasn't healed).
struct common_healing_marker {
// Raw marker.
std::string marker;
// Cutting the `common_json.json.dump()` string at the (only) occurrence of this marker should yield the original partial JSON string (modulo spaces / if it had the same dump format).
std::string json_dump_marker;
};
// Represents a parsed JSON object, with its optional healing marker (a JSON dump fragment that can be used to find the position of healing in the JSON dump string)
struct common_json {
nlohmann::ordered_json json;
common_healing_marker healing_marker;
};
// Parse the JSON string, healing (closing) any partial JSON if `healing_marker` is not empty.
//
// Healing completes partial JSON strings by adding a (possibly modified) healing marker, then whatever is needed to close the JSON.
// This allows to parse the resulting healed JSON string, yet be able to cut it again if needed at the healing marker.
// (this is used when parsing JSON outputs from the models, then crafting partial JSONs for the partial tool calls in OAI format).
//
// For instance, parsing `{` with a healing marker `foo` will produce a healed JSON `{"foo":1}`, w/ json_dump_marker = `"foo"` (which can be used to break the JSON again).
bool common_json_parse(
const std::string & input,
const std::string & healing_marker,
common_json & out);
// Parse the JSON string (see overload above), but advancing an iterator to the end of the input when the (potentially partial) parsing succeeds.
bool common_json_parse(
std::string::const_iterator & it,
const std::string::const_iterator & end,
const std::string & healing_marker,
common_json & out);

View File

@@ -1,9 +1,8 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <nlohmann/json.hpp>
#include <algorithm>
#include <fstream>
#include <map>
#include <regex>
#include <sstream>
@@ -41,9 +40,52 @@ static std::string build_repetition(const std::string & item_rule, int min_items
return result;
}
static void _build_min_max_int(int64_t min_value, int64_t max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int64_t>::min();
auto has_max = max_value != std::numeric_limits<int64_t>::max();
/* Minimalistic replacement for std::string_view, which is only available from C++17 onwards */
class string_view {
const std::string & _str;
const size_t _start;
const size_t _end;
public:
string_view(const std::string & str, size_t start = 0, size_t end = std::string::npos) : _str(str), _start(start), _end(end == std::string::npos ? str.length() : end) {}
size_t size() const {
return _end - _start;
}
size_t length() const {
return size();
}
operator std::string() const {
return str();
}
std::string str() const {
return _str.substr(_start, _end - _start);
}
string_view substr(size_t pos, size_t len = std::string::npos) const {
return string_view(_str, _start + pos, len == std::string::npos ? _end : _start + pos + len);
}
char operator[](size_t pos) const {
auto index = _start + pos;
if (index >= _end) {
throw std::out_of_range("string_view index out of range");
}
return _str[_start + pos];
}
bool operator==(const string_view & other) const {
std::string this_str = *this;
std::string other_str = other;
return this_str == other_str;
}
};
static void _build_min_max_int(int min_value, int max_value, std::stringstream & out, int decimals_left = 16, bool top_level = true) {
auto has_min = min_value != std::numeric_limits<int>::min();
auto has_max = max_value != std::numeric_limits<int>::max();
auto digit_range = [&](char from, char to) {
out << "[";
@@ -69,14 +111,14 @@ static void _build_min_max_int(int64_t min_value, int64_t max_value, std::string
}
out << "}";
};
std::function<void(const std::string_view &, const std::string_view &)> uniform_range =
[&](const std::string_view & from, const std::string_view & to) {
std::function<void(const string_view &, const string_view &)> uniform_range =
[&](const string_view & from, const string_view & to) {
size_t i = 0;
while (i < from.length() && i < to.length() && from[i] == to[i]) {
i++;
}
if (i > 0) {
out << "\"" << from.substr(0, i) << "\"";
out << "\"" << from.substr(0, i).str() << "\"";
}
if (i < from.length() && i < to.length()) {
if (i > 0) {
@@ -159,7 +201,7 @@ static void _build_min_max_int(int64_t min_value, int64_t max_value, std::string
if (has_min) {
if (min_value < 0) {
out << "\"-\" (";
_build_min_max_int(std::numeric_limits<int64_t>::min(), -min_value, out, decimals_left, /* top_level= */ false);
_build_min_max_int(std::numeric_limits<int>::min(), -min_value, out, decimals_left, /* top_level= */ false);
out << ") | [0] | [1-9] ";
more_digits(0, decimals_left - 1);
} else if (min_value == 0) {
@@ -194,7 +236,7 @@ static void _build_min_max_int(int64_t min_value, int64_t max_value, std::string
}
digit_range(c, c);
out << " (";
_build_min_max_int(std::stoll(min_s.substr(1)), std::numeric_limits<int64_t>::max(), out, less_decimals, /* top_level= */ false);
_build_min_max_int(std::stoi(min_s.substr(1)), std::numeric_limits<int>::max(), out, less_decimals, /* top_level= */ false);
out << ")";
if (c < '9') {
out << " | ";
@@ -216,7 +258,7 @@ static void _build_min_max_int(int64_t min_value, int64_t max_value, std::string
_build_min_max_int(0, max_value, out, decimals_left, /* top_level= */ true);
} else {
out << "\"-\" (";
_build_min_max_int(-max_value, std::numeric_limits<int64_t>::max(), out, decimals_left, /* top_level= */ false);
_build_min_max_int(-max_value, std::numeric_limits<int>::max(), out, decimals_left, /* top_level= */ false);
out << ")";
}
return;
@@ -257,13 +299,12 @@ std::unordered_map<std::string, BuiltinRule> STRING_FORMAT_RULES = {
};
static bool is_reserved_name(const std::string & name) {
static const std::unordered_set<std::string> RESERVED_NAMES = [] {
std::unordered_set<std::string> s;
s.insert("root");
for (const auto & p : PRIMITIVE_RULES) s.insert(p.first);
for (const auto & p : STRING_FORMAT_RULES) s.insert(p.first);
return s;
}();
static std::unordered_set<std::string> RESERVED_NAMES;
if (RESERVED_NAMES.empty()) {
RESERVED_NAMES.insert("root");
for (const auto &p : PRIMITIVE_RULES) RESERVED_NAMES.insert(p.first);
for (const auto &p : STRING_FORMAT_RULES) RESERVED_NAMES.insert(p.first);
}
return RESERVED_NAMES.find(name) != RESERVED_NAMES.end();
}
@@ -601,10 +642,7 @@ private:
}
std::string _resolve_ref(const std::string & ref) {
auto it = ref.find('#');
std::string ref_fragment = it != std::string::npos ? ref.substr(it + 1) : ref;
static const std::regex nonalphanumeric_regex(R"([^a-zA-Z0-9-]+)");
std::string ref_name = "ref" + std::regex_replace(ref_fragment, nonalphanumeric_regex, "-");
std::string ref_name = ref.substr(ref.find_last_of('/') + 1);
if (_rules.find(ref_name) == _rules.end() && _refs_being_resolved.find(ref) == _refs_being_resolved.end()) {
_refs_being_resolved.insert(ref);
json resolved = _refs[ref];
@@ -777,24 +815,11 @@ public:
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_object() && target.contains(sel)) {
target = target[sel];
} else if (target.is_array()) {
size_t sel_index;
try {
sel_index = std::stoul(sel);
} catch (const std::invalid_argument & e) {
sel_index = target.size();
}
if (sel_index >= target.size()) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel_index];
} else {
if (target.is_null() || !target.contains(sel)) {
_errors.push_back("Error resolving ref " + ref + ": " + sel + " not in " + target.dump());
return;
}
target = target[sel];
}
_refs[ref] = target;
}
@@ -860,10 +885,9 @@ public:
_build_object_rule(
properties, required, name,
schema.contains("additionalProperties") ? schema["additionalProperties"] : json()));
} else if ((schema_type.is_null() || schema_type == "object" || schema_type == "string") && schema.contains("allOf")) {
} else if ((schema_type.is_null() || schema_type == "object") && schema.contains("allOf")) {
std::unordered_set<std::string> required;
std::vector<std::pair<std::string, json>> properties;
std::map<std::string, size_t> enum_values;
std::string hybrid_name = name;
std::function<void(const json &, bool)> add_component = [&](const json & comp_schema, bool is_required) {
if (comp_schema.contains("$ref")) {
@@ -875,14 +899,6 @@ public:
required.insert(prop.key());
}
}
} else if (comp_schema.contains("enum")) {
for (const auto & v : comp_schema["enum"]) {
const auto rule = _generate_constant_rule(v);
if (enum_values.find(rule) == enum_values.end()) {
enum_values[rule] = 0;
}
enum_values[rule] += 1;
}
} else {
// todo warning
}
@@ -896,17 +912,6 @@ public:
add_component(t, true);
}
}
if (!enum_values.empty()) {
std::vector<std::string> enum_intersection;
for (const auto & p : enum_values) {
if (p.second == schema["allOf"].size()) {
enum_intersection.push_back(p.first);
}
}
if (!enum_intersection.empty()) {
return _add_rule(rule_name, "(" + string_join(enum_intersection, " | ") + ") space");
}
}
return _add_rule(rule_name, _build_object_rule(properties, required, hybrid_name, json()));
} else if ((schema_type.is_null() || schema_type == "array") && (schema.contains("items") || schema.contains("prefixItems"))) {
json items = schema.contains("items") ? schema["items"] : schema["prefixItems"];
@@ -941,17 +946,17 @@ public:
int max_len = schema.contains("maxLength") ? schema["maxLength"].get<int>() : std::numeric_limits<int>::max();
return _add_rule(rule_name, "\"\\\"\" " + build_repetition(char_rule, min_len, max_len) + " \"\\\"\" space");
} else if (schema_type == "integer" && (schema.contains("minimum") || schema.contains("exclusiveMinimum") || schema.contains("maximum") || schema.contains("exclusiveMaximum"))) {
int64_t min_value = std::numeric_limits<int64_t>::min();
int64_t max_value = std::numeric_limits<int64_t>::max();
int min_value = std::numeric_limits<int>::min();
int max_value = std::numeric_limits<int>::max();
if (schema.contains("minimum")) {
min_value = schema["minimum"].get<int64_t>();
min_value = schema["minimum"].get<int>();
} else if (schema.contains("exclusiveMinimum")) {
min_value = schema["exclusiveMinimum"].get<int64_t>() + 1;
min_value = schema["exclusiveMinimum"].get<int>() + 1;
}
if (schema.contains("maximum")) {
max_value = schema["maximum"].get<int64_t>();
max_value = schema["maximum"].get<int>();
} else if (schema.contains("exclusiveMaximum")) {
max_value = schema["exclusiveMaximum"].get<int64_t>() - 1;
max_value = schema["exclusiveMaximum"].get<int>() - 1;
}
std::stringstream out;
out << "(";

View File

@@ -1,9 +1,9 @@
#pragma once
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <string>
#include "ggml.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);

File diff suppressed because it is too large Load Diff

View File

@@ -4,52 +4,17 @@
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include <sstream>
#include <thread>
#include <vector>
#if defined(_WIN32)
# include <io.h>
# include <windows.h>
# define isatty _isatty
# define fileno _fileno
#else
# include <unistd.h>
#endif // defined(_WIN32)
int common_log_verbosity_thold = LOG_DEFAULT_LLAMA;
void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -388,11 +353,6 @@ struct common_log * common_log_init() {
struct common_log * common_log_main() {
static struct common_log log;
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
});
return &log;
}
@@ -420,19 +380,8 @@ void common_log_set_file(struct common_log * log, const char * file) {
log->set_file(file);
}
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
return;
}
if (colors == LOG_COLORS_DISABLED) {
log->set_colors(false);
return;
}
GGML_ASSERT(colors == LOG_COLORS_ENABLED);
log->set_colors(true);
void common_log_set_colors(struct common_log * log, bool colors) {
log->set_colors(colors);
}
void common_log_set_prefix(struct common_log * log, bool prefix) {

View File

@@ -24,12 +24,6 @@
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
enum log_colors {
LOG_COLORS_AUTO = -1,
LOG_COLORS_DISABLED = 0,
LOG_COLORS_ENABLED = 1,
};
// needed by the LOG_TMPL macro to avoid computing log arguments if the verbosity lower
// set via common_log_set_verbosity()
extern int common_log_verbosity_thold;
@@ -71,10 +65,10 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, bool colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold

View File

@@ -22,7 +22,7 @@
#include <string>
#include <vector>
#include <nlohmann/json.hpp>
#include <json.hpp>
using json = nlohmann::ordered_json;
@@ -162,22 +162,10 @@ class chat_template {
}), false);
caps_.supports_tools = contains(out, "some_tool");
const auto render_with_content = [&](const json & content) {
const json assistant_msg {{"role", "assistant"}, {"content", content}};
// Render two assistant messages as some templates like QwQ-32B are handling
// the content differently depending on whether it's the last message or not
// (to remove the <think> tag in all but the last message).
return try_raw_render(json::array({dummy_user_msg, assistant_msg, dummy_user_msg, assistant_msg}), {}, false);
};
auto out_empty = render_with_content("");
auto out_null = render_with_content(json());
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
json j_null;
auto make_tool_calls_msg = [&](const json & tool_calls) {
return json {
{"role", "assistant"},
{"content", caps_.requires_non_null_content? "" : j_null},
{"content", nullptr},
{"tool_calls", tool_calls},
};
};
@@ -192,28 +180,24 @@ class chat_template {
};
};
const json dummy_args_obj {{"argument_needle", "print('Hello, World!')"}};
const auto contains_arg_needle = [&](const std::string & out_str) {
return contains(out_str, "<parameter=argument_needle>")
|| contains(out_str, "\"argument_needle\":")
|| contains(out_str, "'argument_needle':")
|| contains(out_str, ">argument_needle<")
|| contains(out_str, "<parameter name=\"argument_needle\">");
};
// Note: the arguments are rendered in both cases, but may be double-escaped, which we don't want.
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj.dump())})),
}), {}, false);
auto tool_call_renders_str_arguments = contains_arg_needle(out);
auto tool_call_renders_str_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj)})),
}), {}, false);
auto tool_call_renders_obj_arguments = contains_arg_needle(out);
auto tool_call_renders_obj_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
if (caps_.supports_tool_calls) {
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
@@ -250,7 +234,7 @@ class chat_template {
};
const json tool_call_msg {
{"role", "assistant"},
{"content", caps_.requires_non_null_content ? "" : j_null},
{"content", nullptr},
{"tool_calls", json::array({
{
// TODO: detect if requires numerical id or fixed length == 6 like Nemo

View File

@@ -29,7 +29,7 @@
#include <utility>
#include <vector>
#include <nlohmann/json.hpp>
#include <json.hpp>
using json = nlohmann::ordered_json;
@@ -55,7 +55,7 @@ inline std::string normalize_newlines(const std::string & s) {
}
/* Values that behave roughly like in Python. */
class Value {
class Value : public std::enable_shared_from_this<Value> {
public:
using CallableType = std::function<Value(const std::shared_ptr<Context> &, ArgumentsValue &)>;
using FilterType = std::function<Value(const std::shared_ptr<Context> &, ArgumentsValue &)>;
@@ -158,14 +158,12 @@ public:
Value(const json & v) {
if (v.is_object()) {
auto object = std::make_shared<ObjectType>();
object->reserve(v.size());
for (auto it = v.begin(); it != v.end(); ++it) {
object->emplace_back(it.key(), Value(it.value()));
(*object)[it.key()] = it.value();
}
object_ = std::move(object);
} else if (v.is_array()) {
auto array = std::make_shared<ArrayType>();
array->reserve(v.size());
for (const auto& item : v) {
array->push_back(Value(item));
}
@@ -612,7 +610,7 @@ static std::string error_location_suffix(const std::string & source, size_t pos)
return out.str();
}
class Context {
class Context : public std::enable_shared_from_this<Context> {
protected:
Value values_;
std::shared_ptr<Context> parent_;
@@ -708,7 +706,7 @@ enum SpaceHandling { Keep, Strip, StripSpaces, StripNewline };
class TemplateToken {
public:
enum class Type { Text, Expression, If, Else, Elif, EndIf, For, EndFor, Generation, EndGeneration, Set, EndSet, Comment, Macro, EndMacro, Filter, EndFilter, Break, Continue, Call, EndCall };
enum class Type { Text, Expression, If, Else, Elif, EndIf, For, EndFor, Generation, EndGeneration, Set, EndSet, Comment, Macro, EndMacro, Filter, EndFilter, Break, Continue };
static std::string typeToString(Type t) {
switch (t) {
@@ -731,8 +729,6 @@ public:
case Type::EndGeneration: return "endgeneration";
case Type::Break: return "break";
case Type::Continue: return "continue";
case Type::Call: return "call";
case Type::EndCall: return "endcall";
}
return "Unknown";
}
@@ -850,17 +846,6 @@ struct LoopControlTemplateToken : public TemplateToken {
LoopControlTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, LoopControlType control_type) : TemplateToken(Type::Break, loc, pre, post), control_type(control_type) {}
};
struct CallTemplateToken : public TemplateToken {
std::shared_ptr<Expression> expr;
CallTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post, std::shared_ptr<Expression> && e)
: TemplateToken(Type::Call, loc, pre, post), expr(std::move(e)) {}
};
struct EndCallTemplateToken : public TemplateToken {
EndCallTemplateToken(const Location & loc, SpaceHandling pre, SpaceHandling post)
: TemplateToken(Type::EndCall, loc, pre, post) {}
};
class TemplateNode {
Location location_;
protected:
@@ -1062,48 +1047,36 @@ public:
}
}
}
void do_render(std::ostringstream &, const std::shared_ptr<Context> & context) const override {
void do_render(std::ostringstream &, const std::shared_ptr<Context> & macro_context) const override {
if (!name) throw std::runtime_error("MacroNode.name is null");
if (!body) throw std::runtime_error("MacroNode.body is null");
// Use init-capture to avoid dangling 'this' pointer and circular references
auto callable = Value::callable([weak_context = std::weak_ptr<Context>(context),
name = name, params = params, body = body,
named_param_positions = named_param_positions]
(const std::shared_ptr<Context> & call_context, ArgumentsValue & args) {
auto context_locked = weak_context.lock();
if (!context_locked) throw std::runtime_error("Macro context no longer valid");
auto execution_context = Context::make(Value::object(), context_locked);
if (call_context->contains("caller")) {
execution_context->set("caller", call_context->get("caller"));
}
auto callable = Value::callable([&](const std::shared_ptr<Context> & context, ArgumentsValue & args) {
auto call_context = macro_context;
std::vector<bool> param_set(params.size(), false);
for (size_t i = 0, n = args.args.size(); i < n; i++) {
auto & arg = args.args[i];
if (i >= params.size()) throw std::runtime_error("Too many positional arguments for macro " + name->get_name());
param_set[i] = true;
const auto & param_name = params[i].first;
execution_context->set(param_name, arg);
auto & param_name = params[i].first;
call_context->set(param_name, arg);
}
for (auto & [arg_name, value] : args.kwargs) {
auto it = named_param_positions.find(arg_name);
if (it == named_param_positions.end()) throw std::runtime_error("Unknown parameter name for macro " + name->get_name() + ": " + arg_name);
execution_context->set(arg_name, value);
call_context->set(arg_name, value);
param_set[it->second] = true;
}
// Set default values for parameters that were not passed
for (size_t i = 0, n = params.size(); i < n; i++) {
if (!param_set[i] && params[i].second != nullptr) {
auto val = params[i].second->evaluate(call_context);
execution_context->set(params[i].first, val);
auto val = params[i].second->evaluate(context);
call_context->set(params[i].first, val);
}
}
return body->render(execution_context);
return body->render(call_context);
});
context->set(name->get_name(), callable);
macro_context->set(name->get_name(), callable);
}
};
@@ -1318,12 +1291,6 @@ public:
}
};
static bool in(const Value & value, const Value & container) {
return (((container.is_array() || container.is_object()) && container.contains(value)) ||
(value.is_string() && container.is_string() &&
container.to_str().find(value.to_str()) != std::string::npos));
}
class BinaryOpExpr : public Expression {
public:
enum class Op { StrConcat, Add, Sub, Mul, MulMul, Div, DivDiv, Mod, Eq, Ne, Lt, Gt, Le, Ge, And, Or, In, NotIn, Is, IsNot };
@@ -1388,8 +1355,8 @@ public:
case Op::Gt: return l > r;
case Op::Le: return l <= r;
case Op::Ge: return l >= r;
case Op::In: return in(l, r);
case Op::NotIn: return !in(l, r);
case Op::In: return (r.is_array() || r.is_object()) && r.contains(l);
case Op::NotIn: return !(r.is_array() && r.contains(l));
default: break;
}
throw std::runtime_error("Unknown binary operator");
@@ -1528,13 +1495,6 @@ public:
} else if (method->get_name() == "pop") {
vargs.expectArgs("pop method", {1, 1}, {0, 0});
return obj.pop(vargs.args[0]);
} else if (method->get_name() == "keys") {
vargs.expectArgs("keys method", {0, 0}, {0, 0});
auto result = Value::array();
for (const auto& key : obj.keys()) {
result.push_back(Value(key));
}
return result;
} else if (method->get_name() == "get") {
vargs.expectArgs("get method", {1, 2}, {0, 0});
auto key = vargs.args[0];
@@ -1576,16 +1536,6 @@ public:
} else if (method->get_name() == "capitalize") {
vargs.expectArgs("capitalize method", {0, 0}, {0, 0});
return Value(capitalize(str));
} else if (method->get_name() == "upper") {
vargs.expectArgs("upper method", {0, 0}, {0, 0});
auto result = str;
std::transform(result.begin(), result.end(), result.begin(), ::toupper);
return Value(result);
} else if (method->get_name() == "lower") {
vargs.expectArgs("lower method", {0, 0}, {0, 0});
auto result = str;
std::transform(result.begin(), result.end(), result.begin(), ::tolower);
return Value(result);
} else if (method->get_name() == "endswith") {
vargs.expectArgs("endswith method", {1, 1}, {0, 0});
auto suffix = vargs.args[0].get<std::string>();
@@ -1602,19 +1552,6 @@ public:
else res[i] = std::tolower(res[i]);
}
return res;
} else if (method->get_name() == "replace") {
vargs.expectArgs("replace method", {2, 3}, {0, 0});
auto before = vargs.args[0].get<std::string>();
auto after = vargs.args[1].get<std::string>();
auto count = vargs.args.size() == 3 ? vargs.args[2].get<int64_t>()
: str.length();
size_t start_pos = 0;
while ((start_pos = str.find(before, start_pos)) != std::string::npos &&
count-- > 0) {
str.replace(start_pos, before.length(), after);
start_pos += after.length();
}
return str;
}
}
throw std::runtime_error("Unknown method: " + method->get_name());
@@ -1638,44 +1575,6 @@ public:
}
};
class CallNode : public TemplateNode {
std::shared_ptr<Expression> expr;
std::shared_ptr<TemplateNode> body;
public:
CallNode(const Location & loc, std::shared_ptr<Expression> && e, std::shared_ptr<TemplateNode> && b)
: TemplateNode(loc), expr(std::move(e)), body(std::move(b)) {}
void do_render(std::ostringstream & out, const std::shared_ptr<Context> & context) const override {
if (!expr) throw std::runtime_error("CallNode.expr is null");
if (!body) throw std::runtime_error("CallNode.body is null");
// Use init-capture to avoid dangling 'this' pointer and circular references
auto caller = Value::callable([weak_context = std::weak_ptr<Context>(context), body=body]
(const std::shared_ptr<Context> &, ArgumentsValue &) -> Value {
auto context_locked = weak_context.lock();
if (!context_locked) throw std::runtime_error("Caller context no longer valid");
return Value(body->render(context_locked));
});
context->set("caller", caller);
auto call_expr = dynamic_cast<CallExpr*>(expr.get());
if (!call_expr) {
throw std::runtime_error("Invalid call block syntax - expected function call");
}
Value function = call_expr->object->evaluate(context);
if (!function.is_callable()) {
throw std::runtime_error("Call target must be callable: " + function.dump());
}
ArgumentsValue args = call_expr->args.evaluate(context);
Value result = function.call(context, args);
out << result.to_str();
}
};
class FilterExpr : public Expression {
std::vector<std::shared_ptr<Expression>> parts;
public:
@@ -2205,7 +2104,7 @@ private:
auto value = parseValue();
while (it != end && consumeSpaces() && peekSymbols({ "[", ".", "(" })) {
while (it != end && consumeSpaces() && peekSymbols({ "[", "." })) {
if (!consumeToken("[").empty()) {
std::shared_ptr<Expression> index;
auto slice_loc = get_location();
@@ -2229,7 +2128,7 @@ private:
}
}
if ((has_first_colon || has_second_colon)) {
if ((has_first_colon || has_second_colon) && (start || end || step)) {
index = std::make_shared<SliceExpr>(slice_loc, std::move(start), std::move(end), std::move(step));
} else {
index = std::move(start);
@@ -2250,13 +2149,15 @@ private:
auto key = std::make_shared<LiteralExpr>(identifier->location, Value(identifier->get_name()));
value = std::make_shared<SubscriptExpr>(identifier->location, std::move(value), std::move(key));
}
} else if (peekSymbols({ "(" })) {
auto callParams = parseCallArgs();
value = std::make_shared<CallExpr>(get_location(), std::move(value), std::move(callParams));
}
consumeSpaces();
}
if (peekSymbols({ "(" })) {
auto location = get_location();
auto callParams = parseCallArgs();
value = std::make_shared<CallExpr>(location, std::move(value), std::move(callParams));
}
return value;
}
@@ -2383,7 +2284,7 @@ private:
static std::regex comment_tok(R"(\{#([-~]?)([\s\S]*?)([-~]?)#\})");
static std::regex expr_open_regex(R"(\{\{([-~])?)");
static std::regex block_open_regex(R"(^\{%([-~])?\s*)");
static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|generation|endgeneration|set|endset|block|endblock|macro|endmacro|filter|endfilter|break|continue|call|endcall)\b)");
static std::regex block_keyword_tok(R"((if|else|elif|endif|for|endfor|generation|endgeneration|set|endset|block|endblock|macro|endmacro|filter|endfilter|break|continue)\b)");
static std::regex non_text_open_regex(R"(\{\{|\{%|\{#)");
static std::regex expr_close_regex(R"(\s*([-~])?\}\})");
static std::regex block_close_regex(R"(\s*([-~])?%\})");
@@ -2506,15 +2407,6 @@ private:
} else if (keyword == "endmacro") {
auto post_space = parseBlockClose();
tokens.push_back(std::make_unique<EndMacroTemplateToken>(location, pre_space, post_space));
} else if (keyword == "call") {
auto expr = parseExpression();
if (!expr) throw std::runtime_error("Expected expression in call block");
auto post_space = parseBlockClose();
tokens.push_back(std::make_unique<CallTemplateToken>(location, pre_space, post_space, std::move(expr)));
} else if (keyword == "endcall") {
auto post_space = parseBlockClose();
tokens.push_back(std::make_unique<EndCallTemplateToken>(location, pre_space, post_space));
} else if (keyword == "filter") {
auto filter = parseExpression();
if (!filter) throw std::runtime_error("Expected expression in filter block");
@@ -2647,12 +2539,6 @@ private:
throw unterminated(**start);
}
children.emplace_back(std::make_shared<MacroNode>(token->location, std::move(macro_token->name), std::move(macro_token->params), std::move(body)));
} else if (auto call_token = dynamic_cast<CallTemplateToken*>(token.get())) {
auto body = parseTemplate(begin, it, end);
if (it == end || (*(it++))->type != TemplateToken::Type::EndCall) {
throw unterminated(**start);
}
children.emplace_back(std::make_shared<CallNode>(token->location, std::move(call_token->expr), std::move(body)));
} else if (auto filter_token = dynamic_cast<FilterTemplateToken*>(token.get())) {
auto body = parseTemplate(begin, it, end);
if (it == end || (*(it++))->type != TemplateToken::Type::EndFilter) {
@@ -2666,7 +2552,6 @@ private:
} else if (dynamic_cast<EndForTemplateToken*>(token.get())
|| dynamic_cast<EndSetTemplateToken*>(token.get())
|| dynamic_cast<EndMacroTemplateToken*>(token.get())
|| dynamic_cast<EndCallTemplateToken*>(token.get())
|| dynamic_cast<EndFilterTemplateToken*>(token.get())
|| dynamic_cast<EndIfTemplateToken*>(token.get())
|| dynamic_cast<ElseTemplateToken*>(token.get())
@@ -2736,18 +2621,22 @@ inline std::shared_ptr<Context> Context::builtins() {
globals.set("raise_exception", simple_function("raise_exception", { "message" }, [](const std::shared_ptr<Context> &, Value & args) -> Value {
throw std::runtime_error(args.at("message").get<std::string>());
}));
globals.set("tojson", simple_function("tojson", { "value", "indent", "ensure_ascii" }, [](const std::shared_ptr<Context> &, Value & args) {
globals.set("tojson", simple_function("tojson", { "value", "indent" }, [](const std::shared_ptr<Context> &, Value & args) {
return Value(args.at("value").dump(args.get<int64_t>("indent", -1), /* to_json= */ true));
}));
globals.set("items", simple_function("items", { "object" }, [](const std::shared_ptr<Context> &, Value & args) {
auto items = Value::array();
if (args.contains("object")) {
auto & obj = args.at("object");
if (!obj.is_object()) {
throw std::runtime_error("Can only get item pairs from a mapping");
}
for (auto & key : obj.keys()) {
items.push_back(Value::array({key, obj.at(key)}));
if (obj.is_string()) {
auto json_obj = json::parse(obj.get<std::string>());
for (const auto & kv : json_obj.items()) {
items.push_back(Value::array({kv.key(), kv.value()}));
}
} else if (!obj.is_null()) {
for (auto & key : obj.keys()) {
items.push_back(Value::array({key, obj.at(key)}));
}
}
}
return items;
@@ -2875,9 +2764,6 @@ inline std::shared_ptr<Context> Context::builtins() {
if (!items.is_array()) throw std::runtime_error("object is not iterable");
return items;
}));
globals.set("in", simple_function("in", { "item", "items" }, [](const std::shared_ptr<Context> &, Value & args) -> Value {
return in(args.at("item"), args.at("items"));
}));
globals.set("unique", simple_function("unique", { "items" }, [](const std::shared_ptr<Context> &, Value & args) -> Value {
auto & items = args.at("items");
if (!items.is_array()) throw std::runtime_error("object is not iterable");

View File

@@ -161,7 +161,7 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<std::string> trigger_patterns;
std::vector<std::string> patterns_at_start;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
@@ -173,13 +173,10 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
{
patterns_anywhere.push_back(trigger.value);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL:
{
trigger_patterns.push_back(trigger.value);
const auto & pattern = trigger.value;
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
@@ -193,6 +190,10 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
}
}
std::vector<std::string> trigger_patterns;
if (!patterns_at_start.empty()) {
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}
@@ -332,7 +333,6 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
if (ctx) {
llama_perf_context_print(ctx);
llama_memory_breakdown_print(ctx);
}
}
@@ -427,29 +427,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
// helpers
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
auto * res = &gsmpl->cur_p;
if (do_sort && !res->sorted) {
// remember the selected token before sorting
const llama_token id = res->data[res->selected].id;
std::sort(res->data, res->data + res->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.p > b.p;
});
// restore the selected token after sorting
for (size_t i = 0; i < res->size; ++i) {
if (res->data[i].id == id) {
res->selected = i;
break;
}
}
res->sorted = true;
}
return res;
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl) {
return &gsmpl->cur_p;
}
llama_token common_sampler_last(const struct common_sampler * gsmpl) {

View File

@@ -86,9 +86,7 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
// helpers
// access the internal list of current candidate tokens
// if do_sort == true, the candidates are guaranteed to be sorted afterwards (in descending order of probability)
// the .sorted flag of the result indicates whether the returned candidates are sorted
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort);
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl);
// get the last accepted token
llama_token common_sampler_last(const struct common_sampler * gsmpl);

View File

@@ -1,39 +1,30 @@
#include "speculative.h"
#include "ggml.h"
#include "llama.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include <cstring>
#include <algorithm>
#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative {
struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
struct llama_context * ctx_dft;
struct llama_context * ctx;
struct common_sampler * smpl;
llama_batch batch;
llama_tokens prompt_dft;
bool vocab_dft_compatible = true; // whether retokenization is needed
std::map<std::string, std::string> tgt_dft_replacements = {};
llama_tokens prompt;
};
struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft) {
auto * result = new common_speculative {
/* .ctx_tgt = */ ctx_tgt,
/* .ctx_dft = */ ctx_dft,
/* .smpl = */ nullptr,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .prompt_dft = */ {},
/* .vocab_dft_compatible = */ false,
/* .ctx = */ ctx_dft,
/* .smpl = */ nullptr,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .prompt = */ {},
};
// TODO: optimize or pass from outside?
@@ -68,9 +59,6 @@ struct common_speculative * common_speculative_init(
}
#endif
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
return result;
}
@@ -87,8 +75,8 @@ void common_speculative_free(struct common_speculative * spec) {
}
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) {
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft);
@@ -102,32 +90,31 @@ bool common_speculative_are_compatible(
LOG_DBG("%s: vocab_type dft: %d\n", __func__, vocab_type_dft);
if (vocab_type_tgt != vocab_type_dft) {
LOG_DBG("%s: draft model vocab type must match target model to use speculation but ", __func__);
LOG_DBG("vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
LOG_ERR("%s: draft model vocab type must match target model to use speculation but "
"vocab_type_dft = %d while vocab_type_tgt = %d\n", __func__, vocab_type_dft, vocab_type_tgt);
return false;
}
if (
llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
if (llama_vocab_get_add_bos(vocab_tgt) != llama_vocab_get_add_bos(vocab_dft) ||
llama_vocab_get_add_eos(vocab_tgt) != llama_vocab_get_add_eos(vocab_dft) ||
llama_vocab_bos(vocab_tgt) != llama_vocab_bos(vocab_dft) ||
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)
) {
LOG_DBG("%s: draft model special tokens must match target model to use speculation\n", __func__);
llama_vocab_eos(vocab_tgt) != llama_vocab_eos(vocab_dft)) {
LOG_ERR("%s: draft vocab special tokens must match target vocab to use speculation\n", __func__);
LOG_ERR("%s: tgt: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_tgt), llama_vocab_get_add_bos(vocab_tgt), llama_vocab_eos(vocab_tgt), llama_vocab_get_add_eos(vocab_tgt));
LOG_ERR("%s: dft: bos = %d (%d), eos = %d (%d)\n", __func__, llama_vocab_bos(vocab_dft), llama_vocab_get_add_bos(vocab_dft), llama_vocab_eos(vocab_dft), llama_vocab_get_add_eos(vocab_dft));
return false;
}
{
const int n_vocab_tgt = llama_vocab_n_tokens(vocab_tgt);
const int n_vocab_dft = llama_vocab_n_tokens(vocab_dft);
const int vocab_diff = n_vocab_tgt > n_vocab_dft
? n_vocab_tgt - n_vocab_dft
: n_vocab_dft - n_vocab_tgt;
const int vocab_diff = std::abs(n_vocab_tgt - n_vocab_dft);
if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
LOG_DBG("%s: draft model vocab must closely match target model to use speculation but ", __func__);
LOG_DBG("target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
LOG_ERR("%s: draft model vocab must closely match target model to use speculation but "
"target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
__func__, n_vocab_tgt, llama_vocab_n_tokens(vocab_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
return false;
}
@@ -135,8 +122,8 @@ bool common_speculative_are_compatible(
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
LOG_ERR("%s: draft vocab vocab must match target vocab to use speculation but "
"token %d content differs - target '%s', draft '%s'\n", __func__, i,
common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str());
return false;
@@ -147,93 +134,30 @@ bool common_speculative_are_compatible(
return true;
}
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest) {
spec->tgt_dft_replacements[source] = dest;
}
static std::string replace_to_dft(
struct common_speculative * spec,
const std::string& input) {
std::string result = input;
for (const auto & pair : spec->tgt_dft_replacements) {
size_t pos = result.find(pair.first);
while (pos != std::string::npos) {
result.replace(pos, pair.first.length(), pair.second);
pos = result.find(pair.first, pos + pair.second.length());
}
}
return result;
}
static std::string replace_to_tgt(
struct common_speculative * spec,
const std::string& input) {
std::string result = input;
for (const auto& pair : spec->tgt_dft_replacements) {
size_t pos = result.find(pair.second);
while (pos != std::string::npos) {
result.replace(pos, pair.second.length(), pair.first);
pos = result.find(pair.second, pos + pair.first.length());
}
}
return result;
}
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
const llama_tokens & prompt_tgt,
llama_token id_last) {
auto & batch = spec->batch;
auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & ctx = spec->ctx;
auto & smpl = spec->smpl;
auto & prompt_dft = spec->prompt_dft;
auto * mem_dft = llama_get_memory(ctx_dft);
auto & prompt = spec->prompt;
int reuse_i = 0;
int reuse_n = 0;
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
llama_tokens prompt_tgt_draft_model;
if (!spec->vocab_dft_compatible) {
std::string text;
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
text = replace_to_dft(spec, text);
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
const auto * model_tgt = llama_get_model(ctx_tgt);
const auto * vocab_tgt = llama_model_get_vocab(model_tgt);
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
text.resize(-n_chars);
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
text = replace_to_dft(spec, text);
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
id_last = common_tokenize(ctx_dft, text, false, true)[0];
}
// prompt_tgt's tokens will always be compatible with ctx_dft
const llama_tokens &prompt_tgt =
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
const int n_ctx = llama_n_ctx(ctx) - params.n_draft;
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
for (int i = 0; i < (int) prompt.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_tgt.size() &&
i + cur < (int) prompt_dft.size() &&
prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
i + cur < (int) prompt.size() &&
prompt_tgt[i_start + cur] == prompt[i + cur]) {
cur++;
}
@@ -243,20 +167,21 @@ llama_tokens common_speculative_gen_draft(
}
}
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt_dft.size());
LOG_DBG("%s: reuse_i = %d, reuse_n = %d, prompt = %d\n", __func__, reuse_i, reuse_n, (int) prompt.size());
llama_tokens result;
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_memory_clear(mem_dft, false);
prompt_dft.clear();
llama_kv_self_clear(ctx);
prompt.clear();
} else {
// this happens when a previous draft has been discarded (for example, due to being too small), but the
// target model agreed with it. in this case, we simply pass back the previous results to save compute
if (reuse_i + reuse_n < (int) prompt_dft.size() && prompt_dft[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt_dft.size(); ++i) {
result.push_back(prompt_dft[i]);
if (reuse_i + reuse_n < (int) prompt.size() && prompt[reuse_i + reuse_n] == id_last) {
for (int i = reuse_i + reuse_n + 1; i < (int) prompt.size(); ++i) {
result.push_back(prompt[i]);
if (params.n_draft <= (int) result.size()) {
break;
@@ -267,15 +192,16 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_memory_seq_rm (mem_dft, 0, 0, reuse_i);
llama_memory_seq_add(mem_dft, 0, reuse_i, -1, -reuse_i);
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt_dft.erase(prompt_dft.begin(), prompt_dft.begin() + reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt_dft.size()) {
llama_memory_seq_rm (mem_dft, 0, reuse_n, -1);
prompt_dft.erase(prompt_dft.begin() + reuse_n, prompt_dft.end());
if (reuse_n < (int) prompt.size()) {
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}
}
@@ -286,28 +212,28 @@ llama_tokens common_speculative_gen_draft(
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
prompt_dft.push_back(prompt_tgt[i]);
prompt.push_back(prompt_tgt[i]);
}
// we should rarely end-up here during normal decoding
if (batch.n_tokens > 0) {
//LOG_DBG("%s: draft prompt batch: %s\n", __func__, string_from(ctx, batch).c_str());
llama_decode(ctx_dft, batch);
llama_decode(ctx, batch);
}
const llama_pos n_past = prompt_dft.size();
const llama_pos n_past = prompt.size();
LOG_DBG("%s: n_past = %d\n", __func__, n_past);
common_batch_clear(batch);
common_batch_add (batch, id_last, n_past, { 0 }, true);
prompt_dft.push_back(id_last);
prompt.push_back(id_last);
LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx_dft, prompt_dft).c_str());
//LOG_DBG("%s: draft prompt: %s\n", __func__, string_from(ctx, prompt).c_str());
llama_decode(ctx_dft, batch);
llama_decode(ctx, batch);
common_sampler_reset(smpl);
@@ -315,13 +241,13 @@ llama_tokens common_speculative_gen_draft(
for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch);
common_sampler_sample(smpl, ctx_dft, 0, true);
common_sampler_sample(smpl, ctx, 0, true);
const auto * cur_p = common_sampler_get_candidates(smpl, true);
const auto * cur_p = common_sampler_get_candidates(smpl);
for (int k = 0; k < std::min(3, (int) cur_p->size); ++k) {
LOG_DBG(" - draft candidate %3d, pos %3d: %6d (%8.3f) '%s'\n",
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx_dft, cur_p->data[k].id).c_str());
k, i, cur_p->data[k].id, cur_p->data[k].p, common_token_to_piece(ctx, cur_p->data[k].id).c_str());
}
// add drafted token for each sequence
@@ -343,19 +269,10 @@ llama_tokens common_speculative_gen_draft(
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model
llama_decode(ctx_dft, batch);
llama_decode(ctx, batch);
prompt_dft.push_back(id);
prompt.push_back(id);
}
if (!spec->vocab_dft_compatible) {
std::string detokenized = common_detokenize(ctx_dft, result, true);
detokenized = replace_to_tgt(spec, detokenized);
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
result = common_tokenize(ctx_tgt, detokenized, false, true);
if (result.size() > (size_t)params.n_draft) {
result.resize(params.n_draft);
}
}
return result;
}

View File

@@ -12,10 +12,7 @@ struct common_speculative_params {
float p_min = 0.75f; // min probability required to accept a token in the draft
};
struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft
);
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);
void common_speculative_free(struct common_speculative * spec);
@@ -23,10 +20,6 @@ bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft);
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest);
// sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,

File diff suppressed because it is too large Load Diff

View File

@@ -1,15 +1,37 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# This script downloads the tokenizer models of the specified models from Huggingface and
# generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
#
# This is necessary in order to analyze the type of pre-tokenizer used by the model and
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
#
# Instructions:
#
# - Add a new model to the "models" list
# - Run the script with your huggingface token:
#
# python3 convert_hf_to_gguf_update.py <huggingface_token>
#
# - The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
# - Update llama.cpp with the new pre-tokenizer if necessary
#
# TODO: generate tokenizer tests for llama.cpp
#
import logging
import os
import pathlib
import re
import requests
import sys
import json
import shutil
import argparse
from hashlib import sha256
from enum import IntEnum, auto
@@ -19,11 +41,6 @@ logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("convert_hf_to_gguf_update")
sess = requests.Session()
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
hf_token_pth = pathlib.Path.home() / ".cache" / "huggingface" / "token"
hf_token = hf_token_pth.read_text(encoding="utf-8").strip() if hf_token_pth.exists() else None
class TOKENIZER_TYPE(IntEnum):
SPM = auto()
@@ -32,56 +49,20 @@ class TOKENIZER_TYPE(IntEnum):
UGM = auto()
DOC_STRING = """
This script downloads the tokenizer models of the specified models from Huggingface and
generates the get_vocab_base_pre() function for convert_hf_to_gguf.py
/!\\ It is intended to be used by contributors and is not meant to be run by end users
This is necessary in order to analyze the type of pre-tokenizer used by the model and
provide the necessary information to llama.cpp via the GGUF header in order to implement
the same pre-tokenizer.
ref: https://github.com/ggml-org/llama.cpp/pull/6920
Instructions:
- Add a new model to the "models" list
- Run the script with your huggingface token
By default, token will be read from ~/.cache/huggingface/token
- The convert_hf_to_gguf.py script will have had its get_vocab_base_pre() function updated
- Update llama.cpp with the new pre-tokenizer if necessary
"""
# TODO: generate tokenizer tests for llama.cpp
parser = argparse.ArgumentParser(description=DOC_STRING, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--full", action="store_true",
help="download full list of models - make sure you have access to all of them",
)
parser.add_argument(
"--check-missing", action="store_true",
help="only check for missing pre-tokenizer hashes",
)
parser.add_argument(
"hf_token",
help="optional HF token",
nargs="?",
)
args = parser.parse_args()
hf_token = args.hf_token if args.hf_token is not None else hf_token
if hf_token is None:
logger.warning("HF token not found. You can provide it as an argument or set it in ~/.cache/huggingface/token")
if args.check_missing and args.full:
logger.warning("Downloading full list of models requested, ignoring --check-missing!")
args.check_missing = False
# TODO: this string has to exercise as much pre-tokenizer functionality as possible
# will be updated with time - contributions welcome
CHK_TXT = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
if len(sys.argv) == 2:
token = sys.argv[1]
if not token.startswith("hf_"):
logger.info("Huggingface token seems invalid")
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
else:
logger.info("Usage: python convert_hf_to_gguf_update.py <huggingface_token>")
sys.exit(1)
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
@@ -122,6 +103,7 @@ models = [
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
@@ -132,41 +114,14 @@ models = [
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
{"name": "a.x-4.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/skt/A.X-4.0", },
{"name": "midm-2.0", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct", },
{"name": "lfm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LiquidAI/LFM2-Tokenizer"},
{"name": "exaone4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B", },
{"name": "mellum", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/JetBrains/Mellum-4b-base", },
{"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
pre_computed_hashes = [
# chatglm-bpe has 2 hashes, why?
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b"},
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
# falcon-h1 series uses 4 different tokenizers across model sizes (0.5b - 34b), hence we need to define 4 different hashes
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base", "chkhsh": "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-1B-Base", "chkhsh": "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-7B-Base", "chkhsh": "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896"},
{"name": "falcon-h1", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon-H1-34B-Base", "chkhsh": "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b"},
{"name": "kimi-k2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/moonshotai/Kimi-K2-Base", "chkhsh": "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890"},
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B", "chkhsh": "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c"},
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
]
def download_file_with_auth(url, token, save_path):
headers = {"Authorization": f"Bearer {token}"} if token else None
headers = {"Authorization": f"Bearer {token}"}
response = sess.get(url, headers=headers)
response.raise_for_status()
os.makedirs(os.path.dirname(save_path), exist_ok=True)
@@ -214,91 +169,61 @@ def download_model(model):
if os.path.isfile(save_path):
logger.info(f"{name}: File {save_path} already exists - skipping")
continue
download_file_with_auth(f"{repo}/resolve/main/{file}", hf_token, save_path)
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
# get list of existing models and chkhsh from the convert_hf_to_gguf.py file
# returns mapping res --> chkhsh
def get_existing_models(convert_py):
pattern = r'if chkhsh == "([a-f0-9]{64})":\s*\n\s*.*\s*res = "([^"]+)"'
matches = re.findall(pattern, convert_py)
output = {}
for chkhsh, res in matches:
output[res] = chkhsh
return output
existing_models = {}
all_models = models.copy()
if not args.full:
# Filter out models that already exist in convert_hf_to_gguf.py
existing_models = get_existing_models(convert_py)
all_models = models.copy()
models = [model for model in all_models if model["name"] not in existing_models]
if not args.check_missing:
logging.info(f"Downloading {len(models)} models...")
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
for model in models:
try:
download_model(model)
except Exception as e:
logger.error(f"Failed to download model {model['name']}. Error: {e}")
# generate the source code for the convert_hf_to_gguf.py:get_vocab_base_pre() function:
src_ifs = ""
for model in [*pre_computed_hashes, *all_models]:
for model in models:
name = model["name"]
tokt = model["tokt"]
chkhsh = model.get("chkhsh")
if tokt == TOKENIZER_TYPE.SPM or tokt == TOKENIZER_TYPE.UGM:
continue
# Skip if the tokenizer folder does not exist or there are other download issues previously
if not os.path.exists(f"models/tokenizers/{name}"):
logger.warning(f"Directory for tokenizer {name} not found. Skipping...")
continue
# create the tokenizer
if chkhsh is not None:
# if the model has a pre-computed hash, use it
logger.info(f"Using pre-computed hash for model {name}: {chkhsh}")
elif name in existing_models:
# if the model already exists in convert_hf_to_gguf.py, skip compute hash
chkhsh = existing_models[name]
else:
# otherwise, compute the hash of the tokenizer
try:
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except OSError as e:
logger.error(f"Error loading tokenizer for model {name}. The model may not exist or is not accessible with the provided token. Error: {e}")
continue # Skip to the next model if the tokenizer can't be loaded
# Fail if the tokenizer folder with config does not exist or there are other download issues previously
if not os.path.isfile(f"models/tokenizers/{name}/tokenizer_config.json"):
raise OSError(f"Config for tokenizer {name} not found. The model may not exist or is not accessible with the provided token.")
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
try:
logger.info(f"Loading tokenizer from {f'models/tokenizers/{name}'}...")
if name == "t5":
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except Exception as e:
raise OSError(f"Error loading tokenizer for model {name}.") from e
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
chktok = tokenizer.encode(CHK_TXT)
chkhsh = sha256(str(chktok).encode()).hexdigest()
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info(f"model: {name}")
logger.info(f"tokt: {tokt}")
logger.info(f"repo: {model['repo']}")
logger.info(f"chktok: {chktok}")
logger.info(f"chkhsh: {chkhsh}")
# print the "pre_tokenizer" content from the tokenizer.json
with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f:
cfg = json.load(f)
normalizer = cfg["normalizer"]
logger.info("normalizer: " + json.dumps(normalizer, indent=4))
pre_tokenizer = cfg["pre_tokenizer"]
logger.info("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4))
if "ignore_merges" in cfg["model"]:
logger.info("ignore_merges: " + json.dumps(cfg["model"]["ignore_merges"], indent=4))
logger.info("")
logger.info("")
src_ifs += f" if chkhsh == \"{chkhsh}\":\n"
src_ifs += f" # ref: {model['repo']}\n"
@@ -346,6 +271,8 @@ src_func = f"""
return res
"""
convert_py_pth = pathlib.Path("convert_hf_to_gguf.py")
convert_py = convert_py_pth.read_text(encoding="utf-8")
convert_py = re.sub(
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
lambda m: m.group(1) + src_func + m.group(3),
@@ -361,7 +288,7 @@ logger.info("+++ convert_hf_to_gguf.py was updated")
tests = [
"ied 4 ½ months",
"Äpfel",
"Führer",
"",
" ",
" ",
@@ -436,14 +363,10 @@ for model in models:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}", use_fast=False)
else:
tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}")
except (OSError, TypeError) as e:
except OSError as e:
logger.error(f"Failed to load tokenizer for model {name}. Error: {e}")
continue # Skip this model and continue with the next one in the loop
if not os.path.exists(f"models/ggml-vocab-{name}.gguf"):
logger.info(f"Skip vocab files for model {name}, no GGUF file found")
continue
with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f:
for text in tests:
f.write(f"{text}")

View File

@@ -12,7 +12,7 @@ import json
from math import prod
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Iterable, Iterator, Sequence, SupportsIndex, cast
from transformers import AutoConfig, AutoTokenizer
from transformers import AutoConfig
import torch
@@ -26,8 +26,6 @@ import gguf
# reuse model definitions from convert_hf_to_gguf.py
from convert_hf_to_gguf import LazyTorchTensor, ModelBase
from gguf.constants import GGUFValueType
logger = logging.getLogger("lora-to-gguf")
@@ -342,7 +340,7 @@ if __name__ == '__main__':
sys.exit(1)
else:
logger.info(f"Loading base model: {dir_base_model.name}")
hparams = ModelBase.load_hparams(dir_base_model, False)
hparams = ModelBase.load_hparams(dir_base_model)
with torch.inference_mode():
try:
@@ -371,31 +369,7 @@ if __name__ == '__main__':
self.gguf_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
def set_gguf_parameters(self):
logger.debug("GGUF KV: %s = %d", gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
self.gguf_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, self.lora_alpha)
alora_invocation_tokens = lparams.get("alora_invocation_tokens")
invocation_string = lparams.get("invocation_string")
if invocation_string and not alora_invocation_tokens:
logger.debug("Tokenizing invocation_string -> alora_invocation_tokens")
base_model_path_or_id = hparams.get("_name_or_path")
try:
tokenizer = AutoTokenizer.from_pretrained(base_model_path_or_id)
except ValueError:
logger.error("Unable to load tokenizer from %s", base_model_path_or_id)
raise
# NOTE: There's an off-by-one with the older aLoRAs where
# the invocation string includes the "<|start_of_turn|>"
# token, but the adapters themselves were trained to
# activate _after_ that first token, so we drop it here.
alora_invocation_tokens = tokenizer(invocation_string)["input_ids"][1:]
if alora_invocation_tokens:
logger.debug("GGUF KV: %s = %s", gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS, alora_invocation_tokens)
self.gguf_writer.add_key_value(
gguf.Keys.Adapter.ALORA_INVOCATION_TOKENS,
alora_invocation_tokens,
GGUFValueType.ARRAY,
GGUFValueType.UINT32,
)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Never add extra tensors (e.g. rope_freqs) for LoRA adapters

169
docs/backend/CANN.md Executable file → Normal file
View File

@@ -8,7 +8,6 @@
- [DataType Supports](#datatype-supports)
- [Docker](#docker)
- [Linux](#linux)
- [Environment variable setup](#environment-variable-setup)
- [TODO](#todo)
@@ -57,82 +56,60 @@ The llama.cpp CANN backend is designed to support Ascend NPU. It utilize the abi
## Model Supports
| Model Name | FP16 | Q4_0 | Q8_0 |
| Model Name | FP16 | Q8_0 | Q4_0 |
|:----------------------------|:-----:|:----:|:----:|
| Llama-2 | √ | √ | √ |
| Llama-3 | √ | √ | √ |
| Mistral-7B | √ | √ | √ |
| Mistral MOE | √ | √ | √ |
| DBRX | - | - | - |
| Falcon | √ | | √ |
| Chinese LLaMA/Alpaca | | | |
| Vigogne(French) | | | |
| BERT | x | x | x |
| Koala | √ | √ | √ |
| Baichuan | √ | | |
| Aquila 1 & 2 | √ | | |
| Starcoder models | √ | | |
| Refact | | | |
| MPT | √ | √ | √ |
| Bloom | √ | √ | √ |
| Yi models | √ | √ | √ |
| stablelm models | | | |
| DeepSeek models | x | x | x |
| Qwen models | √ | √ | √ |
| PLaMo-13B | √ | √ | √ |
| Phi models | √ | √ | √ |
| PhiMoE | √ | √ | √ |
| GPT-2 | √ | √ | √ |
| Orion | √ | √ | √ |
| InternlLM2 | √ | √ | √ |
| CodeShell | √ | √ | √ |
| Gemma | √ | √ | √ |
| Mamba | √ | √ | √ |
| Xverse | √ | √ | √ |
| command-r models | √ | √ | √ |
| Grok-1 | - | - | - |
| SEA-LION | √ | √ | √ |
| AquilaChat2-7B | √ | √ | √ |
| Baichuan-7b | √ | √ | √ |
| Baichuan2-7B-Chat | √ | √ | √ |
| bitnet_b1_58-large | √ | √ | √ |
| bloom-560m | | x | |
| bloomz-alpaca-560m | √ | x | √ |
| c4ai-command-r-35B-v01 | x | x | x |
| chatglm3-6B | x | x | x |
| chinese-alpaca-2-1.3b | | | |
| CodeShell-7B | √ | √ | √ |
| deepseek-ai_deepseek-coder-1.3B-base | x | x | x |
| deepseek-ai_DeepSeek-V2-Lite | x | x | x |
| deepseek-coder-6.7B-instruct | x | x | x |
| DeepSeek-V2-Lite-64x1.5B | x | x | x |
| falcon-7b-instruct | √ | √ | √ |
| flan-t5-large | √ | √ | √ |
| gemma-2-9b-it | √ | √ | √ |
| glm-4-9B | x | x | x |
| gpt2 | | | |
| Gpt2-163M | √ | √ | √ |
| granite-3B-code-instruct | √ | √ | √ |
| GritLM-7B | √ | √ | √ |
| OLMo | √ | √ | √ |
| OLMo 2 | √ | √ | √ |
| OLMoE | √ | √ | √ |
| Granite models | √ | √ | √ |
| GPT-NeoX | √ | √ | √ |
| Pythia | √ | √ | √ |
| Snowflake-Arctic MoE | - | - | - |
| Smaug | √ | √ | √ |
| Poro 34B | √ | √ | √ |
| Bitnet b1.58 models | | x | x |
| Flan-T5 | √ | √ | √ |
| Open Elm models | x | √ | √ |
| chatGLM3-6B + ChatGLM4-9b + GLMEdge-1.5b + GLMEdge-4b | √ | √ | √ |
| GLM-4-0414 | √ | √ | √ |
| SmolLM | | | |
| EXAONE-3.0-7.8B-Instruct | | | |
| FalconMamba Models | √ | √ | √ |
| Jais Models | - | x | x |
| Bielik-11B-v2.3 | | | |
| RWKV-6 | - | √ | √ |
| QRWKV-6 | √ | | √ |
| GigaChat-20B-A3B | x | x | x |
| Trillion-7B-preview | √ | √ | √ |
| Ling models | | | |
**Multimodal**
| Model Name | FP16 | Q4_0 | Q8_0 |
|:----------------------------|:-----:|:----:|:----:|
| LLaVA 1.5 models, LLaVA 1.6 models | x | x | x |
| BakLLaVA | √ | √ | √ |
| Obsidian | √ | - | - |
| ShareGPT4V | x | - | - |
| MobileVLM 1.7B/3B models | - | - | - |
| Yi-VL | - | - | - |
| Mini CPM | √ | √ | √ |
| Moondream | √ | √ | √ |
| Bunny | √ | - | - |
| GLM-EDGE | √ | √ | √ |
| Qwen2-VL | √ | √ | √ |
| internlm2_5-7b-chat | √ | √ | √ |
| koala-7B-HF | √ | √ | √ |
| Llama-2-7b-chat-hf | √ | √ | √ |
| Llama-3-Smaug-8B | √ | √ | √ |
| Llama2-Chinese-7b-Chat | √ | √ | √ |
| Llama3-8B | √ | √ | √ |
| Llama3-8b-chinese | | | |
| mamba-130m-hf | √ | √ | √ |
| Mistral-7B-Instruct-v0.2 | √ | √ | √ |
| Mixtral-8x7B-Instruct-v0.1 | x | | |
| mpt-7B | √ | √ | √ |
| OLMo-1B-hf | | √ | √ |
| OpenELM-3B-Instruct | √ | √ | √ |
| Orion-14b-base | √ | √ | √ |
| phi1 | x | x | x |
| phi2 | x | x | x |
| Phi-3-mini-4k-instruct | √ | √ | √ |
| plamo-13b | | | |
| pythia-70M | x | x | x |
| Qwen-7B | | √ | √ |
| Qwen2-1.5B-Instruct | √ | x | √ |
| Refact-1_6B-fim | | | |
| SmolLM-135M | √ | √ | √ |
| stablelm-zephyr | x | x | x |
| stablelm-2-zephyr-1_6b | x | x | x |
| starcoderbase-1b | √ | √ | √ |
| starcoder2-3b | √ | √ | √ |
| vigogne-7b-chat | | √ | √ |
| xverse-7b-chat | √ | √ | √ |
| Yi-6b-Chat | | | |
@@ -281,44 +258,6 @@ cmake --build build --config release
### **GitHub contribution**:
Please add the **[CANN]** prefix/tag in issues/PRs titles to help the CANN-team check/address them without delay.
## Updates
### Basic Flash Attention Support
The basic FA kernel with aclnnops has been added in aclnn_ops.cpp.
Currently, the FA only supports the cases with FP16 KV tensors and NO logit softcap.
Since the aclnn interface for flash attention cannot support the logit softcap, we will only update the quantized version in the future.
Authors from Peking University: Bizhao Shi (bshi@pku.edu.cn), Yuxin Yang (yxyang@pku.edu.cn), Ruiyang Ma (ruiyang@stu.pku.edu.cn), and Guojie Luo (gluo@pku.edu.cn).
We would like to thank Tuo Dai, Shanni Li, and all of the project maintainers from Huawei Technologies Co., Ltd for their help during the code development and pull request.
## Environment variable setup
### GGML_CANN_MEM_POOL
Specifies the memory pool management strategy, Default is vmm.
- vmm: Utilizes a virtual memory manager pool. If hardware support for VMM is unavailable, falls back to the legacy (leg) memory pool.
- prio: Employs a priority queue-based memory pool management.
- leg: Uses a fixed-size buffer pool.
### GGML_CANN_DISABLE_BUF_POOL_CLEAN
Controls automatic cleanup of the memory pool. This option is only effective when using the prio or leg memory pool strategies.
### GGML_CANN_WEIGHT_NZ
Converting the matmul weight format from ND to NZ to improve performance. Enabled by default.
### GGML_CANN_ACL_GRAPH
Operators are executed using ACL graph execution, rather than in op-by-op (eager) mode. Enabled by default.
### GGML_CANN_GRAPH_CACHE_CAPACITY
Maximum number of compiled CANN graphs kept in the LRU cache, default is 12. When the number of cached graphs exceeds this capacity, the least recently used graph will be evicted.
### GGML_CANN_PREFILL_USE_GRAPH
Enable ACL graph execution during the prefill stage, default is false. This option is only effective when FA is enabled.
## TODO
- Support more models and data types.

View File

@@ -39,23 +39,18 @@ The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adren
| Adreno 830 (Snapdragon 8 Elite) | Support |
| Adreno X85 (Snapdragon X Elite) | Support |
> A6x GPUs with a recent driver and compiler are supported; they are usually found in IoT platforms.
However, A6x GPUs in phones are likely not supported due to the outdated driver and compiler.
## DataType Supports
| DataType | Status |
|:----------------------:|:--------------------------:|
| Q4_0 | Support |
| Q6_K | Support, but not optimized |
| Q8_0 | Support |
| MXFP4 | Support |
## Model Preparation
You can refer to the general [llama-quantize tool](/tools/quantize/README.md) for steps to convert a model in Hugging Face safetensor format to GGUF with quantization.
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
Currently we support `Q4_0` quantization and have optimized for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize` (i.e., make all weights in `Q4_0`). For example,
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
```sh
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
@@ -63,17 +58,6 @@ Currently we support `Q4_0` quantization and have optimized for it. To achieve b
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
### `MXFP4` MoE Models
OpenAI gpt-oss models are MoE models in `MXFP4`. The quantized model will be in `MXFP4_MOE`, a mixture of `MXFP4` and `Q8_0`.
For this quantization, there is no need to specify `--pure`.
For gpt-oss-20b model, you can directly [download](https://huggingface.co/ggml-org/gpt-oss-20b-GGUF) the quantized GGUF file in `MXFP4_MOE` from Hugging Face.
Although it is possible to quantize gpt-oss-20b model in pure `Q4_0` (all weights in `Q4_0`), it is not recommended since `MXFP4` has been optimized for MoE while `Q4_0` is not. In addition, accuracy should degrade with such pure `Q4_0` quantization.
Hence, using the default `MXFP4_MOE` quantization (see the link above) is recommended for this model.
> Note that the `Q4_0` model found [here](https://huggingface.co/unsloth/gpt-oss-20b-GGUF/blob/main/gpt-oss-20b-Q4_0.gguf) is a mixture of `Q4_0`, `Q8_0` and `MXFP4` and gives better performance than `MXFP4_MOE` quantization.
## CMake Options
The OpenCL backend has the following CMake options that control the behavior of the backend.
@@ -162,13 +146,10 @@ A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the followi
* Ninja
* Visual Studio 2022
* Powershell 7
* Python
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
> Note that building using Visual Studio's cl compiler is not supported. Clang must be used. Clang depends on libraries provided by Visual Studio to work. Therefore, Visual Studio must be installed. Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
@@ -220,12 +201,9 @@ ninja
## Known Issues
- Flash attention does not always improve performance.
- Currently OpenCL backend works on A6xx GPUs with recent drivers and compilers (usually found in IoT platforms).
However, it does not work on A6xx GPUs found in phones with old drivers and compilers.
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
## TODO
- Optimization for Q6_K
- Support and optimization for Q4_K
- Improve flash attention

View File

@@ -145,13 +145,12 @@ The docker build option is currently limited to *Intel GPU* targets.
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
To build in default FP32 *(Slower than FP16 alternative)*, set `--build-arg="GGML_SYCL_F16=OFF"` in the previous command.
You can also use the `.devops/llama-server-intel.Dockerfile`, which builds the *"server"* alternative.
Check the [documentation for Docker](../docker.md) to see the available images.
@@ -161,7 +160,7 @@ Check the [documentation for Docker](../docker.md) to see the available images.
# First, find all the DRI cards
ls -la /dev/dri
# Then, pick the card that you want to use (here for e.g. /dev/dri/card1).
docker run -it --rm -v "/path/to/models:/models" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card0:/dev/dri/card0 llama-cpp-sycl -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -c 4096 -s 0
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-sycl -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
*Notes:*
@@ -216,19 +215,9 @@ To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
- **For Intel GPU**
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Linux, and preferably keep the default installation values unchanged, notably the installation path *(`/opt/intel/oneapi` by default)*.
@@ -236,12 +225,6 @@ Following guidelines/code snippets assume the default installation values. Other
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|Verified release|
|-|
|2025.2.1|
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
@@ -272,11 +255,10 @@ sycl-ls
When targeting an intel GPU, the user should expect one or more devices among the available SYCL devices. Please make sure that at least one GPU is present via `sycl-ls`, for instance `[level_zero:gpu]` in the sample output below:
```
[level_zero:gpu][level_zero:0] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) Arc(TM) A770 Graphics 12.55.8 [1.3.29735+27]
[level_zero:gpu][level_zero:1] Intel(R) oneAPI Unified Runtime over Level-Zero, Intel(R) UHD Graphics 730 12.2.0 [1.3.29735+27]
[opencl:cpu][opencl:0] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i5-13400 OpenCL 3.0 (Build 0) [2025.20.8.0.06_160000]
[opencl:gpu][opencl:1] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [24.39.31294]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
```
- **Nvidia GPU**
@@ -371,7 +353,7 @@ cmake --build build --config Release -j -v
#### Retrieve and prepare model
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/resolve/main/llama-2-7b.Q4_0.gguf?download=true) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model preparation, or download an already quantized model like [llama-2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Llama-2-7B-GGUF/blob/main/llama-2-7b.Q4_0.gguf) or [Meta-Llama-3-8B-Instruct-Q4_0.gguf](https://huggingface.co/aptha/Meta-Llama-3-8B-Instruct-Q4_0-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf).
##### Check device
@@ -484,17 +466,7 @@ If you already have a recent version of Microsoft Visual Studio, you can skip th
3. Install Intel® oneAPI Base toolkit
SYCL backend depends on:
- Intel® oneAPI DPC++/C++ compiler/running-time.
- Intel® oneAPI DPC++/C++ library (oneDPL).
- Intel® oneAPI Deep Neural Network Library (oneDNN).
- Intel® oneAPI Math Kernel Library (oneMKL).
All above are included in both **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** packages.
It's recommended to install **Intel® Deep Learning Essentials** which only provides the necessary libraries with less size.
The **Intel® oneAPI Base toolkit** and **Intel® Deep Learning Essentials** can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
The base toolkit can be obtained from the official [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit.html) page.
Please follow the instructions for downloading and installing the Toolkit for Windows, and preferably keep the default installation values unchanged, notably the installation path *(`C:\Program Files (x86)\Intel\oneAPI` by default)*.
@@ -785,7 +757,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |

View File

@@ -1,49 +0,0 @@
{
"version": 4,
"configurePresets": [
{
"name": "arm64-android-snapdragon",
"hidden": true,
"architecture": { "value": "arm64", "strategy": "external" },
"toolset": { "value": "host=x86_64", "strategy": "external" },
"cacheVariables": {
"ANDROID_ABI": "arm64-v8a",
"ANDROID_PLATFORM": "android-31",
"CMAKE_TOOLCHAIN_FILE": "$env{ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake",
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -fno-finite-math-only -flto -D_GNU_SOURCE",
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "android_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{
"name": "arm64-windows-snapdragon",
"inherits": [ "base", "arm64-windows-llvm" ],
"cacheVariables": {
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"PREBUILT_LIB_DIR": "windows_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"LLAMA_CURL": "OFF"
}
},
{ "name": "arm64-android-snapdragon-debug" , "inherits": [ "base", "arm64-android-snapdragon", "debug" ] },
{ "name": "arm64-android-snapdragon-release", "inherits": [ "base", "arm64-android-snapdragon", "release" ] },
{ "name": "arm64-windows-snapdragon-debug" , "inherits": [ "base", "arm64-windows-snapdragon", "debug" ] },
{ "name": "arm64-windows-snapdragon-release", "inherits": [ "base", "arm64-windows-snapdragon", "release" ] }
]
}

View File

@@ -1,239 +0,0 @@
# Snapdragon-based Android devices
## How to Build
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
This method works on Linux, macOS, and Windows. macOS and Windows users should install Docker Desktop.
```
~/src/llama.cpp$ docker run -it -u $(id -u):$(id -g) --volume $(pwd):/workspace --platform linux/amd64 ghcr.io/snapdragon-toolchain/arm64-android:v0.3
[d]/> cd /workspace
```
The rest of the Android build process assumes that you're running inside the toolchain container.
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:
ANDROID_ABI="arm64-v8a"
...
CMAKE_TOOLCHAIN_FILE="/opt/android-ndk-r28b/build/cmake/android.toolchain.cmake"
GGML_HEXAGON="ON"
GGML_OPENCL="ON"
GGML_OPENMP="OFF"
HEXAGON_SDK_ROOT="/opt/hexagon/6.4.0.2"
...
-- Including OpenCL backend
-- Including Hexagon backend
...
-- Build files have been written to: /workspace/build-snapdragon
[d]/workspace> cmake --build build-snapdragon
...
[144/356] Performing build step for 'htp-v73'
[1/16] Generating htp_iface_skel.c, htp_iface_stub.c, htp_iface.h
[2/16] Building C object CMakeFiles/ggml-htp-v73.dir/hvx-sigmoid.c.obj
[3/16] Building C object CMakeFiles/ggml-htp-v73.dir/htp-dma.c.obj
[4/16] Building C object CMakeFiles/ggml-htp-v73.dir/worker-pool.c.obj
...
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v73.so
-- Installing: /workspace/build-snapdragon/ggml/src/ggml-hexagon/libggml-htp-v75.so
...
```
To generate an installable "package" simply use cmake --install:
```
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
-- Install configuration: "Release"
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
...
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
...
```
## How to Install
For this step, your device needs to be configured for on-device development.
Please see https://developer.android.com/studio/debug/dev-options for details.
Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
```
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
```
At this point, you should also install some models:
```
~/src/llama.cpp$ wget https://huggingface.co/bartowski/Llama-3.2-1B-Instruct-GGUF/resolve/main/Llama-3.2-1B-Instruct-Q4_0.gguf
...
2025-10-11 12:04:52 (10.7 MB/s) - Llama-3.2-1B-Instruct-Q4_0.gguf saved [773025920/773025920]
~/src/llama.cpp$ adb push Llama-3.2-1B-Instruct-Q4_0.gguf /data/local/tmp/gguf
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
```
## How to Run
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
llama.cpp supports three backends on Snapdragon-based devices: CPU, Adreno GPU (GPUOpenCL), and Hexagon NPU (HTP0-4).
You can select which backend to run the model on using the `D=` variable, which maps to the `--device` option.
Hexagon NPU behaves as a "GPU" device when it comes to `-ngl` and other offload-related options.
Here are some examples of running various llama.cpp tools via ADB.
Simple question for Llama-3.2-1B
```
~/src/llama.cpp$ M=Llama-3.2-1B-Instruct-Q4_0.gguf D=HTP0 ./scripts/snapdragon/adb/run-cli.sh -no-cnv -p "what is the most popular cookie in the world?"
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb4000072c7955e50
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 225.49 MiB
load_tensors: HTP0 model buffer size = 0.26 MiB
load_tensors: HTP0-REPACK model buffer size = 504.00 MiB
...
I hope this helps you understand the world's most popular cookies! [end of text]
...
llama_perf_sampler_print: sampling time = 30.08 ms / 487 runs ( 0.06 ms per token, 16191.77 tokens per second)
llama_perf_context_print: load time = 617.94 ms
llama_perf_context_print: prompt eval time = 80.76 ms / 11 tokens ( 7.34 ms per token, 136.21 tokens per second)
llama_perf_context_print: eval time = 9210.59 ms / 475 runs ( 19.39 ms per token, 51.57 tokens per second)
llama_perf_context_print: total time = 9454.92 ms / 486 tokens
llama_perf_context_print: graphs reused = 473
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 439 = 225 + 136 + 77 |
llama_memory_breakdown_print: | - HTP0-REPACK | 504 = 504 + 0 + 0 |
```
Summary request for OLMoE-1B-7B. This is a large model that requires two HTP sessions/devices
```
~/src/llama.cpp$ M=OLMoE-1B-7B-0125-Instruct-Q4_0.gguf NDEV=2 D=HTP0,HTP1 ./scripts/snapdragon/adb/run-cli.sh -f surfing.txt -no-cnv
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v81
ggml-hex: allocating new session: HTP0
ggml-hex: allocating new session: HTP1
...
load_tensors: offloading output layer to GPU
load_tensors: offloaded 17/17 layers to GPU
load_tensors: CPU model buffer size = 143.86 MiB
load_tensors: HTP1 model buffer size = 0.23 MiB
load_tensors: HTP1-REPACK model buffer size = 1575.00 MiB
load_tensors: HTP0 model buffer size = 0.28 MiB
load_tensors: HTP0-REPACK model buffer size = 2025.00 MiB
...
llama_context: CPU output buffer size = 0.19 MiB
llama_kv_cache: HTP1 KV buffer size = 238.00 MiB
llama_kv_cache: HTP0 KV buffer size = 306.00 MiB
llama_kv_cache: size = 544.00 MiB ( 8192 cells, 16 layers, 1/1 seqs), K (q8_0): 272.00 MiB, V (q8_0): 272.00 MiB
llama_context: HTP0 compute buffer size = 15.00 MiB
llama_context: HTP1 compute buffer size = 15.00 MiB
llama_context: CPU compute buffer size = 24.56 MiB
...
llama_perf_context_print: prompt eval time = 1730.57 ms / 212 tokens ( 8.16 ms per token, 122.50 tokens per second)
llama_perf_context_print: eval time = 5624.75 ms / 257 runs ( 21.89 ms per token, 45.69 tokens per second)
llama_perf_context_print: total time = 7377.33 ms / 469 tokens
llama_perf_context_print: graphs reused = 255
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 742 = 144 + 544 + 54 |
llama_memory_breakdown_print: | - HTP1-REPACK | 1575 = 1575 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2025 = 2025 + 0 + 0 |
```
Op test for MUL_MAT
```
~/src/llama.cpp$ HB=0 ./scripts/snapdragon/adb/run-tool.sh test-backend-ops -b HTP0 -o MUL_MAT
...
Backend 2/3: HTP0
Device description: Hexagon
Device memory: 2048 MB (2048 MB free)
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=1,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=2,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
MUL_MAT(type_a=q4_0,type_b=f32,m=16,n=3,k=256,bs=[1,1],nr=[1,1],per=[0,1,2,3],v=0,o=1): OK
~/src/llama.cpp-hexagon$ M=Llama-3.2-1B-Instruct-Q4_0.gguf ./scripts/snapdragon/adb/run-bench.sh -p 128 -n 64
...
ggml-hex: Hexagon backend (experimental) : allocating new registry : ndev 1
ggml-hex: Hexagon Arch version v79
ggml-hex: allocating new session: HTP0
ggml-hex: new session: HTP0 : session-id 0 domain-id 3 uri file:///libggml-htp-v79.so?htp_iface_skel_handle_invoke&_modver=1.0&_dom=cdsp&_session=0 handle 0xb400007d4b231090
| model | size | params | backend | ngl | threads | n_batch | mmap | test | t/s |
| ---------------| ---------: | -----: | ---------- | --: | ------: | ------: | ---: | ----: | ------------: |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | pp128 | 169.42 ± 1.75 |
| llama 1B Q4_0 | 729.75 MiB | 1.24 B | HTP | 99 | 4 | 128 | 0 | tg64 | 51.54 ± 1.13 |
build: 6a8cf8914 (6733)
```
## Environment variables
- `GGML_HEXAGON_NDEV=1`
Controls the number of devices/sessions to allocate. The default is 1.
Most quantized models under 4B fit into a single session; an 8B model needs two, and a 20B model needs four.
- `GGML_HEXAGON_NHVX=0`
Controls the number of HVX hardware threads to use. The default is all (actual number varies depending on the hardware version).
- `GGML_HEXAGON_HOSTBUF=1`
Controls whether the Hexagon backend allocates host buffers. By default, all buffers except for REPACK are host buffers.
This option is required for testing Ops that require REPACK buffers (MUL_MAT and MUL_MAT_ID).
- `GGML_HEXAGON_VERBOSE=1`
Enables verbose logging of Ops from the backend. Example output:
```
ggml-hex: HTP0 graph-compute n_nodes 2
ggml-hex: HTP0 matmul : blk.27.ffn_up.weight x ffn_norm-27 -> ffn_up-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x1
ggml-hex: HTP0 matmul : blk.27.ffn_gate.weight x ffn_norm-27 -> ffn_gate-27 : 3072:8192 x 3072:1 -> 8192:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x3
ggml-hex: HTP0 graph-compute n_nodes 1
ggml-hex: HTP0 matmul : blk.27.ffn_down.weight x ffn_gate_par-27 -> ffn_out-27 : 8192:3072 x 8192:1 -> 3072:1 : q4_0 x f32 -> f32 : HTP0 x HTP0 -> HTP0 : flags 0x0
ggml-hex: HTP0 get-tensor result_output : data 0x7592487000 offset 0 size 513024
```
- `GGML_HEXAGON_PROFILE=1`
Generates a host-side profile for the ggml-hexagon Ops.
- `GGML_HEXAGON_OPMASK=0x0`
Allows enabling specific stages of the processing pipeline:
- `0x1` Enable Op Queue (i.e., queuing Ops into NPU)
- `0x2` Enable Dynamic Quantizer (if needed for the Op)
- `0x4` Enable Op Compute (MUL_MAT, etc.)
Examples:
`GGML_HEXAGON_OPMASK=0x1 llama-cli ...` - Ops are enqueued but NPU-side processing is stubbed out
`GGML_HEXAGON_OPMASK=0x3 llama-cli ...` - NPU performs dynamic quantization and skips the rest
`GGML_HEXAGON_OPMASK=0x7 llama-cli ...` - Full queuing and processing of Ops (default)

View File

@@ -1,109 +0,0 @@
# Hexagon backend developer details
## Backend libraries
The Hexagon backend consist of two parts:
- `libggml-hexagon`
This is the regular CPU-side GGML backend library, either shared or statically linked
- `libggml-htp-vNN`
This is the NPU-side (HTP stands for Hexagon Tensor Processor) shared library that contains the Op dispatcher and kernels.
The correct library is selected automatically at runtime based on the HW version.
Here is an example of the build artifacts
```
~/src/llama.cpp$ ls -l pkg-adb/llama.cpp/lib/libggml*
pkg-adb/llama.cpp/lib/libggml-base.so
pkg-adb/llama.cpp/lib/libggml-cpu.so
pkg-adb/llama.cpp/lib/libggml-hexagon.so <<< CPU library
pkg-adb/llama.cpp/lib/libggml-htp-v73.so <<< HTP op/kernels for Hexagon v73
pkg-adb/llama.cpp/lib/libggml-htp-v75.so
pkg-adb/llama.cpp/lib/libggml-htp-v79.so
pkg-adb/llama.cpp/lib/libggml-htp-v81.so
```
## Memory buffers
Hexagon NPU backend takes advantage of the Snapdragon's unified memory model where all buffers are fully accessible by the CPU and GPU.
The NPU does have a dedicated tightly-coupled memory called VTCM but that memory is used only for intermediate data (e.g. dynamically
quantized tensors) or temporary data (chunks of the weight tensors fetched via DMA).
Please note that currently the Hexagon backend does not implement SET/GET_ROWS Ops because there is no advantage in offloading those
to the NPU at this point.
The backend does allocates non-host buffers for the tensors with datatypes that require repacking: Q4_0, Q8_0, MXFP4.
From the MMU perspective these buffers are still regular buffers (normal access by the CPU) they are marked as non-host simply to force
the repacking.
## Large model handling
Hexagon NPU session (aka Process Domain (PD) in the Hexagon docs) is limited to a memory mapping of around 3.5GB.
In llama.cpp/GGML the Hexagon session is mapped to a single GGML backend device (HTP0, HTP1, etc).
In order to map models larger than 3.5GB we need to allocate multiple devices and split the model.
For this we're taking advantage of the llama.cpp/GGML multi-GPU layer-splitting support.
Each Hexagon device behaves like a GPU from the offload and model splitting perspective.
Here is an example of running GPT-OSS-20B model on a newer Snapdragon device with 16GB of DDR.
```
M=gpt-oss-20b-Q4_0.gguf NDEV=4 D=HTP0,HTP1,HTP2,HTP3 P=surfing.txt scripts/snapdragon/adb/run-cli.sh -no-cnv -f surfing.txt -n 32
...
LD_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
ADSP_LIBRARY_PATH=/data/local/tmp/llama.cpp/lib
GGML_HEXAGON_NDEV=4 ./bin/llama-cli --no-mmap -m /data/local/tmp/llama.cpp/../gguf/gpt-oss-20b-Q4_0.gguf
-t 4 --ctx-size 8192 --batch-size 128 -ctk q8_0 -ctv q8_0 -fa on -ngl 99 --device HTP0,HTP1,HTP2,HTP3 -no-cnv -f surfing.txt
...
llama_model_loader: - type f32: 289 tensors
llama_model_loader: - type q4_0: 96 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type mxfp4: 72 tensors
...
load_tensors: offloaded 25/25 layers to GPU
load_tensors: CPU model buffer size = 1182.09 MiB
load_tensors: HTP1 model buffer size = 6.64 MiB
load_tensors: HTP1-REPACK model buffer size = 2505.94 MiB
load_tensors: HTP3 model buffer size = 5.55 MiB
load_tensors: HTP3-REPACK model buffer size = 2088.28 MiB
load_tensors: HTP0 model buffer size = 7.75 MiB
load_tensors: HTP0-REPACK model buffer size = 2923.59 MiB
load_tensors: HTP2 model buffer size = 6.64 MiB
load_tensors: HTP2-REPACK model buffer size = 2505.94 MiB
...
llama_context: n_ctx_per_seq (8192) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.77 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 8192 cells
llama_kv_cache: HTP1 KV buffer size = 25.50 MiB
llama_kv_cache: HTP3 KV buffer size = 25.50 MiB
llama_kv_cache: HTP0 KV buffer size = 25.50 MiB
llama_kv_cache: HTP2 KV buffer size = 25.50 MiB
llama_kv_cache: size = 102.00 MiB ( 8192 cells, 12 layers, 1/1 seqs), K (q8_0): 51.00 MiB, V (q8_0): 51.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 256 cells
llama_kv_cache: HTP1 KV buffer size = 0.80 MiB
llama_kv_cache: HTP3 KV buffer size = 0.53 MiB
llama_kv_cache: HTP0 KV buffer size = 1.06 MiB
llama_kv_cache: HTP2 KV buffer size = 0.80 MiB
llama_kv_cache: size = 3.19 MiB ( 256 cells, 12 layers, 1/1 seqs), K (q8_0): 1.59 MiB, V (q8_0): 1.59 MiB
llama_context: HTP0 compute buffer size = 16.06 MiB
llama_context: HTP1 compute buffer size = 16.06 MiB
llama_context: HTP2 compute buffer size = 16.06 MiB
llama_context: HTP3 compute buffer size = 16.06 MiB
llama_context: CPU compute buffer size = 98.19 MiB
...
llama_perf_context_print: prompt eval time = 3843.67 ms / 197 tokens ( 19.51 ms per token, 51.25 tokens per second)
llama_perf_context_print: eval time = 1686.13 ms / 31 runs ( 54.39 ms per token, 18.39 tokens per second)
llama_perf_context_print: total time = 6266.30 ms / 228 tokens
llama_perf_context_print: graphs reused = 30
llama_memory_breakdown_print: | memory breakdown [MiB] | total free self model context compute unaccounted |
llama_memory_breakdown_print: | - HTP0 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP1 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP2 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - HTP3 (Hexagon) | 2048 = 2048 + ( 0 = 0 + 0 + 0) + 0 |
llama_memory_breakdown_print: | - Host | 1476 = 1208 + 105 + 162 |
llama_memory_breakdown_print: | - HTP1-REPACK | 2505 = 2505 + 0 + 0 |
llama_memory_breakdown_print: | - HTP3-REPACK | 2088 = 2088 + 0 + 0 |
llama_memory_breakdown_print: | - HTP0-REPACK | 2923 = 2923 + 0 + 0 |
llama_memory_breakdown_print: | - HTP2-REPACK | 2505 = 2505 + 0 + 0 |
```

View File

@@ -1,61 +0,0 @@
# llama.cpp for IBM zDNN Accelerator
## Background
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.
### Llama.cpp + IBM zDNN
The llama.cpp zDNN backend is designed to enable llama.cpp on IBM z17 and later systems via the IBM zDNN hardware acceleration library.
## Software & Hardware Support
| Hardware Level | Status | Verified |
| -------------------- | ------------- | -------------------------- |
| IBM z17 / LinuxONE 5 | Supported | RHEL 9.6, IBM z17, 40 IFLs |
| IBM z16 / LinuxONE 4 | Not Supported | |
## Data Types Supported
| Data Type | Status |
| --------- | --------- |
| F32 | Supported |
| F16 | Supported |
| BF16 | Supported |
## CMake Options
The IBM zDNN backend has the following CMake options that control the behaviour of the backend.
| CMake Option | Default Value | Description |
| ------------ | ------------- | ----------------------------------- |
| `GGML_ZDNN` | `OFF` | Compile llama.cpp with zDNN support |
| `ZDNN_ROOT` | `""` | Override zDNN library lookup |
## 1. Install zDNN Library
Note: Using the zDNN library provided via `apt` or `yum` may not work correctly as reported in [#15772](https://github.com/ggml-org/llama.cpp/issues/15772). It is preferred that you compile from source.
```sh
git clone --recurse-submodules https://github.com/IBM/zDNN
cd zDNN
autoreconf .
./configure --prefix=/opt/zdnn-libs
make build
sudo make install
```
## 2. Build llama.cpp
```sh
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
cmake -S . -G Ninja -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_ZDNN=ON \
-DZDNN_ROOT=/opt/zdnn-libs
cmake --build build --config Release -j$(nproc)
```

View File

@@ -1,89 +0,0 @@
> [!IMPORTANT]
> This build documentation is specific only to RISC-V SpacemiT SOCs.
## Build llama.cpp locally (for riscv64)
1. Prepare Toolchain For RISCV
~~~
wget https://archive.spacemit.com/toolchain/spacemit-toolchain-linux-glibc-x86_64-v1.1.2.tar.xz
~~~
2. Build
Below is the build script: it requires utilizing RISC-V vector instructions for acceleration. Ensure the `GGML_CPU_RISCV64_SPACEMIT` compilation option is enabled. The currently supported optimization version is `RISCV64_SPACEMIT_IME1`, corresponding to the `RISCV64_SPACEMIT_IME_SPEC` compilation option. Compiler configurations are defined in the `riscv64-spacemit-linux-gnu-gcc.cmake` file. Please ensure you have installed the RISC-V compiler and set the environment variable via `export RISCV_ROOT_PATH={your_compiler_path}`.
```bash
cmake -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_CPU_RISCV64_SPACEMIT=ON \
-DLLAMA_CURL=OFF \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed
cmake --build build --parallel $(nproc) --config Release
pushd build
make install
popd
```
## Simulation
You can use QEMU to perform emulation on non-RISC-V architectures.
1. Download QEMU
~~~
wget https://archive.spacemit.com/spacemit-ai/qemu/jdsk-qemu-v0.0.14.tar.gz
~~~
2. Run Simulation
After build your llama.cpp, you can run the executable file via QEMU for simulation, for example:
~~~
export QEMU_ROOT_PATH={your QEMU file path}
export RISCV_ROOT_PATH_IME1={your RISC-V compiler path}
${QEMU_ROOT_PATH}/bin/qemu-riscv64 -L ${RISCV_ROOT_PATH_IME1}/sysroot -cpu max,vlen=256,elen=64,vext_spec=v1.0 ${PWD}/build/bin/llama-cli -m ${PWD}/models/Qwen2.5-0.5B-Instruct-Q4_0.gguf -t 1
~~~
## Performance
#### Quantization Support For Matrix
~~~
model name : Spacemit(R) X60
isa : rv64imafdcv_zicbom_zicboz_zicntr_zicond_zicsr_zifencei_zihintpause_zihpm_zfh_zfhmin_zca_zcd_zba_zbb_zbc_zbs_zkt_zve32f_zve32x_zve64d_zve64f_zve64x_zvfh_zvfhmin_zvkt_sscofpmf_sstc_svinval_svnapot_svpbmt
mmu : sv39
uarch : spacemit,x60
mvendorid : 0x710
marchid : 0x8000000058000001
~~~
Q4_0
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | pp512|64.12 ± 0.26|
Qwen2.5 0.5B |403.20 MiB|630.17 M| cpu | 4 | tg128|10.03 ± 0.01|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | pp512|24.16 ± 0.02|
Qwen2.5 1.5B |1011.16 MiB| 1.78 B | cpu | 4 | tg128|3.83 ± 0.06|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | pp512|12.08 ± 0.02|
Qwen2.5 3B | 1.86 GiB | 3.40 B | cpu | 4 | tg128|2.23 ± 0.02|
Q4_1
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | pp512|62.07 ± 0.12|
Qwen2.5 0.5B |351.50 MiB|494.03 M| cpu | 4 | tg128|9.91 ± 0.01|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | pp512|22.95 ± 0.25|
Qwen2.5 1.5B |964.06 MiB| 1.54 B | cpu | 4 | tg128|4.01 ± 0.15|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | pp512|11.55 ± 0.16|
Qwen2.5 3B | 1.85 GiB | 3.09 B | cpu | 4 | tg128|2.25 ± 0.04|
Q4_K
| Model | Size | Params | backend | threads | test | t/s |
| -----------| -------- | ------ | ------- | ------- | ---- |------|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | pp512|9.29 ± 0.05|
Qwen2.5 0.5B |462.96 MiB|630.17 M| cpu | 4 | tg128|5.67 ± 0.04|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | pp512|10.38 ± 0.10|
Qwen2.5 1.5B | 1.04 GiB | 1.78 B | cpu | 4 | tg128|3.17 ± 0.08|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | pp512|4.23 ± 0.04|
Qwen2.5 3B | 1.95 GiB | 3.40 B | cpu | 4 | tg128|1.73 ± 0.00|

View File

@@ -1,275 +0,0 @@
> [!IMPORTANT]
> This build documentation is specific only to IBM Z & LinuxONE mainframes (s390x). You can find the build documentation for other architectures: [build.md](build.md).
# Build llama.cpp locally (for s390x)
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the code:**
```bash
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
## CPU Build with BLAS
Building llama.cpp with BLAS support is highly recommended as it has shown to provide performance improvements. Make sure to have OpenBLAS installed in your environment.
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Release -j $(nproc)
```
**Notes**:
- For faster repeated compilation, install [ccache](https://ccache.dev/)
- By default, VXE/VXE2 is enabled. To disable it (not recommended):
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DGGML_VXE=OFF
cmake --build build --config Release -j $(nproc)
```
- For debug builds:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Debug \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS
cmake --build build --config Debug -j $(nproc)
```
- For static builds, add `-DBUILD_SHARED_LIBS=OFF`:
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_BLAS=ON \
-DGGML_BLAS_VENDOR=OpenBLAS \
-DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(nproc)
```
## IBM zDNN Accelerator
This provides acceleration using the IBM zAIU co-processor located in the Telum I and Telum II processors. Make sure to have the [IBM zDNN library](https://github.com/IBM/zDNN) installed.
#### Compile from source from IBM
You may find the official build instructions here: [Building and Installing zDNN](https://github.com/IBM/zDNN?tab=readme-ov-file#building-and-installing-zdnn)
### Compilation
```bash
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_ZDNN=ON
cmake --build build --config Release -j$(nproc)
```
## Getting GGUF Models
All models need to be converted to Big-Endian. You can achieve this in three cases:
1. **Use pre-converted models verified for use on IBM Z & LinuxONE (easiest)**
![File Type - gguf](https://img.shields.io/badge/File_Type-gguf-fff)
You can find popular models pre-converted and verified at [s390x Verified Models](https://huggingface.co/collections/taronaeo/s390x-verified-models-672765393af438d0ccb72a08) or [s390x Runnable Models](https://huggingface.co/collections/taronaeo/s390x-runnable-models-686e951824198df12416017e).
These models have already been converted from `safetensors` to `GGUF` Big-Endian and their respective tokenizers verified to run correctly on IBM z15 and later system.
2. **Convert safetensors model to GGUF Big-Endian directly (recommended)**
![File Type - safetensors](https://img.shields.io/badge/File_Type-safetensors-da1e28)
The model you are trying to convert must be in `safetensors` file format (for example [IBM Granite 3.3 2B](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct)). Make sure you have downloaded the model repository for this case.
Ensure that you have installed the required packages in advance
```bash
pip3 install -r requirements.txt
```
Convert the `safetensors` model to `GGUF`
```bash
python3 convert_hf_to_gguf.py \
--outfile model-name-be.f16.gguf \
--outtype f16 \
--bigendian \
model-directory/
```
For example,
```bash
python3 convert_hf_to_gguf.py \
--outfile granite-3.3-2b-instruct-be.f16.gguf \
--outtype f16 \
--bigendian \
granite-3.3-2b-instruct/
```
3. **Convert existing GGUF Little-Endian model to Big-Endian**
![File Type - gguf](https://img.shields.io/badge/File_Type-gguf-fff)
The model you are trying to convert must be in `gguf` file format (for example [IBM Granite 3.3 2B GGUF](https://huggingface.co/ibm-granite/granite-3.3-2b-instruct-GGUF)). Make sure you have downloaded the model file for this case.
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py model-name.f16.gguf BIG
```
For example,
```bash
python3 gguf-py/gguf/scripts/gguf_convert_endian.py granite-3.3-2b-instruct-le.f16.gguf BIG
mv granite-3.3-2b-instruct-le.f16.gguf granite-3.3-2b-instruct-be.f16.gguf
```
**Notes:**
- The GGUF endian conversion script may not support all data types at the moment and may fail for some models/quantizations. When that happens, please try manually converting the safetensors model to GGUF Big-Endian via Step 2.
## IBM Accelerators
### 1. SIMD Acceleration
Only available in IBM z15/LinuxONE 3 or later system with the `-DGGML_VXE=ON` (turned on by default) compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z14/arch12. In such systems, the APIs can still run but will use a scalar implementation.
### 2. zDNN Accelerator (WIP)
Only available in IBM z17/LinuxONE 5 or later system with the `-DGGML_ZDNN=ON` compile flag. No hardware acceleration is possible with llama.cpp with older systems, such as IBM z15/arch13. In such systems, the APIs will default back to CPU routines.
### 3. Spyre Accelerator
_Only available with IBM z17 / LinuxONE 5 or later system. No support currently available._
## Performance Tuning
### 1. Virtualization Setup
It is strongly recommended to use only LPAR (Type-1) virtualization to get the most performance.
Note: Type-2 virtualization is not supported at the moment, while you can get it running, the performance will not be the best.
### 2. IFL (Core) Count
It is recommended to allocate a minimum of 8 shared IFLs assigned to the LPAR. Increasing the IFL count past 8 shared IFLs will only improve Prompt Processing performance but not Token Generation.
Note: IFL count does not equate to vCPU count.
### 3. SMT vs NOSMT (Simultaneous Multithreading)
It is strongly recommended to disable SMT via the kernel boot parameters as it negatively affects performance. Please refer to your Linux distribution's guide on disabling SMT via kernel boot parameters.
### 4. BLAS vs NOBLAS
IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongly recommended to use BLAS.
## Frequently Asked Questions (FAQ)
1. I'm getting the following error message while trying to load a model: `gguf_init_from_file_impl: failed to load model: this GGUF file version 50331648 is extremely large, is there a mismatch between the host and model endianness?`
Answer: Please ensure that the model you have downloaded/converted is GGUFv3 Big-Endian. These models are usually denoted with the `-be` suffix, i.e., `granite-3.3-2b-instruct-be.F16.gguf`.
You may refer to the [Getting GGUF Models](#getting-gguf-models) section to manually convert a `safetensors` model to `GGUF` Big Endian.
2. I'm getting extremely poor performance when running inference on a model
Answer: Please refer to the [Appendix B: SIMD Support Matrix](#appendix-b-simd-support-matrix) to check if your model quantization is supported by SIMD acceleration.
3. I'm building on IBM z17 and getting the following error messages: `invalid switch -march=z17`
Answer: Please ensure that your GCC compiler is of minimum GCC 15.1.0 version, and have `binutils` updated to the latest version. If this does not fix the problem, kindly open an issue.
4. Failing to install the `sentencepiece` package using GCC 15+
Answer: The `sentencepiece` team are aware of this as seen in [this issue](https://github.com/google/sentencepiece/issues/1108).
As a temporary workaround, please run the installation command with the following environment variables.
```bash
export CXXFLAGS="-include cstdint"
```
For example,
```bash
CXXFLAGS="-include cstdint" pip3 install -r requirements.txt
```
## Getting Help on IBM Z & LinuxONE
1. **Bugs, Feature Requests**
Please file an issue in llama.cpp and ensure that the title contains "s390x".
2. **Other Questions**
Please reach out directly to [aionz@us.ibm.com](mailto:aionz@us.ibm.com).
## Appendix A: Hardware Support Matrix
| | Support | Minimum Compiler Version |
| -------- | ------- | ------------------------ |
| IBM z15 | ✅ | |
| IBM z16 | ✅ | |
| IBM z17 | ✅ | GCC 15.1.0 |
| IBM zDNN | ✅ | |
- ✅ - supported and verified to run as intended
- 🚫 - unsupported, we are unlikely able to provide support
## Appendix B: SIMD Support Matrix
| | VX/VXE/VXE2 | zDNN | Spyre |
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ |
| BF16 | 🚫 | ✅ | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| Q5_0 | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ❓ | ❓ |
| Q2_K | 🚫 | ❓ | ❓ |
| Q3_K | ✅ | ❓ | ❓ |
| Q4_K | ✅ | ❓ | ❓ |
| Q5_K | ✅ | ❓ | ❓ |
| Q6_K | ✅ | ❓ | ❓ |
| TQ1_0 | 🚫 | ❓ | ❓ |
| TQ2_0 | 🚫 | ❓ | ❓ |
| IQ2_XXS | 🚫 | ❓ | ❓ |
| IQ2_XS | 🚫 | ❓ | ❓ |
| IQ2_S | 🚫 | ❓ | ❓ |
| IQ3_XXS | 🚫 | ❓ | ❓ |
| IQ3_S | 🚫 | ❓ | ❓ |
| IQ1_S | 🚫 | ❓ | ❓ |
| IQ1_M | 🚫 | ❓ | ❓ |
| IQ4_NL | ✅ | ❓ | ❓ |
| IQ4_XS | ✅ | ❓ | ❓ |
| FP32->FP16 | 🚫 | ❓ | ❓ |
| FP16->FP32 | 🚫 | ❓ | ❓ |
- ✅ - acceleration available
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 7, 2025.

View File

@@ -1,9 +1,5 @@
# Build llama.cpp locally
The main product of this project is the `llama` library. Its C-style interface can be found in [include/llama.h](../include/llama.h).
The project also includes many example programs and tools using the `llama` library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server.
**To get the Code:**
```bash
@@ -59,16 +55,14 @@ cmake --build build --config Release
cmake --preset arm64-windows-llvm-release -D GGML_OPENMP=OFF
cmake --build build-arm64-windows-llvm-release
```
Building for arm64 can also be done with the MSVC compiler with the build-arm64-windows-MSVC preset, or the standard CMake build instructions. However, note that the MSVC compiler does not support inline ARM assembly code, used e.g. for the accelerated Q4_0_N_M CPU kernels.
For building with ninja generator and clang compiler as default:
-set path:set LIB=C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\um\x64;C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.41.34120\lib\x64\uwp;C:\Program Files (x86)\Windows Kits\10\Lib\10.0.22621.0\ucrt\x64
```bash
cmake --preset x64-windows-llvm-release
cmake --build build-x64-windows-llvm-release
```
- Curl usage is enabled by default and can be turned off with `-DLLAMA_CURL=OFF`. Otherwise you need to install development libraries for libcurl.
- **Debian / Ubuntu:** `sudo apt-get install libcurl4-openssl-dev` # (or `libcurl4-gnutls-dev` if you prefer GnuTLS)
- **Fedora / RHEL / Rocky / Alma:** `sudo dnf install libcurl-devel`
- **Arch / Manjaro:** `sudo pacman -S curl` # includes libcurl headers
## BLAS Build
@@ -178,48 +172,6 @@ GeForce RTX 3070 8.6
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
```
### Overriding the CUDA Version
If you have multiple CUDA installations on your system and want to compile llama.cpp for a specific one, e.g. for CUDA 11.7 installed under `/opt/cuda-11.7`:
```bash
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_COMPILER=/opt/cuda-11.7/bin/nvcc -DCMAKE_INSTALL_RPATH="/opt/cuda-11.7/lib64;\$ORIGIN" -DCMAKE_BUILD_WITH_INSTALL_RPATH=ON
```
#### Fixing Compatibility Issues with Old CUDA and New glibc
If you try to use an old CUDA version (e.g. v11.7) with a new glibc version you can get errors like this:
```
/usr/include/bits/mathcalls.h(83): error: exception specification is
incompatible with that of previous function "cospi"
/opt/cuda-11.7/bin/../targets/x86_64-linux/include/crt/math_functions.h(5545):
here
```
It seems the least bad solution is to patch the CUDA installation to declare the correct signatures.
Replace the following lines in `/path/to/your/cuda/installation/targets/x86_64-linux/include/crt/math_functions.h`:
```C++
// original lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x);
// edited lines
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double cospi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float cospif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double sinpi(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float sinpif(float x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ double rsqrt(double x) noexcept (true);
extern __DEVICE_FUNCTIONS_DECL__ __device_builtin__ float rsqrtf(float x) noexcept (true);
```
### Runtime CUDA environmental variables
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
@@ -237,12 +189,13 @@ The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enab
The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models. There may be issues with numerical overflows (except for CDNA and RDNA4) and memory use will be higher. Prompt processing may become faster on recent datacenter GPUs (the custom kernels were tuned primarily for RTX 3000/4000). |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
## MUSA
@@ -303,12 +256,10 @@ You can download it from your Linux distro's package manager or from here: [ROCm
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
Note: `GPU_TARGETS` is optional, omitting it will build the code for all GPUs in the current system.
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
@@ -326,17 +277,17 @@ You can download it from your Linux distro's package manager or from here: [ROCm
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIP=ON -DGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
If necessary, adapt `GPU_TARGETS` to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
@@ -349,8 +300,9 @@ On Linux it is possible to use unified memory architecture (UMA) to share main m
## Vulkan
### For Windows Users:
**w64devkit**
**Windows**
### w64devkit
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
@@ -377,7 +329,7 @@ cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
**Git Bash MINGW64**
### Git Bash MINGW64
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
@@ -400,8 +352,7 @@ Now you can load the model in conversation mode using `Vulkan`
build/bin/Release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
```
**MSYS2**
### MSYS2
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
```sh
pacman -S git \
@@ -417,9 +368,9 @@ cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
### For Docker users:
**With docker**:
You don't need to install the Vulkan SDK. It will be installed inside the container.
You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
@@ -429,29 +380,32 @@ docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
```
### For Linux users:
**Without docker**:
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
Firstly, you need to make sure you have installed [Vulkan SDK](https://vulkan.lunarg.com/doc/view/latest/linux/getting_started_ubuntu.html)
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
For example, on Ubuntu 22.04 (jammy), use the command below:
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
```bash
wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add -
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list
apt update -y
apt-get install -y vulkan-sdk
# To verify the installation, use the command below:
vulkaninfo
```
Then, assuming you have `cd` into your llama.cpp folder and there are no errors with running `vulkaninfo`, you can proceed to build llama.cpp using the CMake commands below:
Alternatively your package manager might be able to provide the appropriate libraries.
For example for Ubuntu 22.04 you can install `libvulkan-dev` instead.
For Fedora 40, you can install `vulkan-devel`, `glslc` and `glslang` packages.
Then, build llama.cpp using the cmake command below:
```bash
cmake -B build -DGGML_VULKAN=1
cmake --build build --config Release
```
Finally, after finishing your build, you should be able to do something like this:
```bash
# Test the output binary
# "-ngl 99" should offload all of the layers to GPU for most (if not all) models.
./build/bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -ngl 99
# Test the output binary (with "-ngl 33" to offload all layers to GPU)
./bin/llama-cli -m "PATH_TO_MODEL" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
# You should see in the output, ggml_vulkan detected your GPU. For example:
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
@@ -598,27 +552,6 @@ ninja
To read documentation for how to build on Android, [click here](./android.md)
## WebGPU [In Progress]
The WebGPU backend relies on [Dawn](https://dawn.googlesource.com/dawn). Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/docs/quickstart-cmake.md) to install Dawn locally so that llama.cpp can find it using CMake. The currrent implementation is up-to-date with Dawn commit `bed1a61`.
In the llama.cpp directory, build with CMake:
```
cmake -B build -DGGML_WEBGPU=ON
cmake --build build --config Release
```
### Browser Support
WebGPU allows cross-platform access to the GPU from supported browsers. We utilize [Emscripten](https://emscripten.org/) to compile ggml's WebGPU backend to WebAssembly. Emscripten does not officially support WebGPU bindings yet, but Dawn currently maintains its own WebGPU bindings called emdawnwebgpu.
Follow the instructions [here](https://dawn.googlesource.com/dawn/+/refs/heads/main/src/emdawnwebgpu/) to download or build the emdawnwebgpu package (Note that it might be safer to build the emdawbwebgpu package locally, so that it stays in sync with the version of Dawn you have installed above). When building using CMake, the path to the emdawnwebgpu port file needs to be set with the flag `EMDAWNWEBGPU_DIR`.
## IBM Z & LinuxONE
To read documentation for how to build on IBM Z & LinuxONE, [click here](./build-s390x.md)
## Notes about GPU-accelerated backends
The GPU may still be used to accelerate some parts of the computation even when using the `-ngl 0` option. You can fully disable GPU acceleration by using `--device none`.

View File

@@ -23,19 +23,11 @@ The convert script reads the model configuration, tokenizer, tensor names+data a
The required steps to implement for an HF model are:
1. Define the model `ModelBase.register` annotation in a new `TextModel` or `MmprojModel` subclass, example:
1. Define the model `Model.register` annotation in a new `Model` subclass, example:
```python
@ModelBase.register("MyModelForCausalLM")
class MyModel(TextModel):
model_arch = gguf.MODEL_ARCH.MYMODEL
```
or
```python
@ModelBase.register("MyModelForConditionalGeneration")
class MyModel(MmprojModel):
@Model.register("MyModelForCausalLM")
class MyModel(Model):
model_arch = gguf.MODEL_ARCH.MYMODEL
```
@@ -83,31 +75,28 @@ block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
`transformer.blocks.{bid}.norm_1` will be mapped to `blk.{bid}.attn_norm` in GGUF.
Depending on the model configuration, tokenizer, code and tensors layout, you will have to override:
- `TextModel#set_gguf_parameters`
- `MmprojModel#set_gguf_parameters`
- `ModelBase#set_vocab`
- `ModelBase#modify_tensors`
- `Model#set_gguf_parameters`
- `Model#set_vocab`
- `Model#write_tensors`
NOTE: Tensor names must end with `.weight` or `.bias` suffixes, that is the convention and several tools like `quantize` expect this to proceed the weights.
### 2. Define the model architecture in `llama.cpp`
The model params and tensors layout must be defined in `llama.cpp` source files:
1. Define a new `llm_arch` enum value in `src/llama-arch.h`.
2. In `src/llama-arch.cpp`:
- Add the architecture name to the `LLM_ARCH_NAMES` map.
- Add the tensor mappings to the `LLM_TENSOR_NAMES` map.
3. Add any non-standard metadata loading in the `llama_model_loader` constructor in `src/llama-model-loader.cpp`.
4. If the model has a RoPE operation, add a case for the architecture in `llama_model_rope_type` function in `src/llama-model.cpp`.
The model params and tensors layout must be defined in `llama.cpp`:
1. Define a new `llm_arch`
2. Define the tensors layout in `LLM_TENSOR_NAMES`
3. Add any non-standard metadata in `llm_load_hparams`
4. Create the tensors for inference in `llm_load_tensors`
5. If the model has a RoPE operation, add the rope type in `llama_rope_type`
NOTE: The dimensions in `ggml` are typically in the reverse order of the `pytorch` dimensions.
### 3. Build the GGML graph implementation
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `src/llama-model.cpp`.
Create a new struct that inherits from `llm_graph_context` and implement the graph-building logic in its constructor.
Have a look at existing implementations like `llm_build_llama`, `llm_build_dbrx` or `llm_build_bert`.
Then, in the `llama_model::build_graph` method, add a case for your architecture to instantiate your new graph-building struct.
This is the funniest part, you have to provide the inference graph implementation of the new model architecture in `llama_build_graph`.
Have a look at existing implementations like `build_llama`, `build_dbrx` or `build_bert`.
Some `ggml` backends do not support all operations. Backend implementations can be added in a separate PR.

View File

@@ -7,9 +7,9 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
Additionally, there the following images, similar to the above:
@@ -25,9 +25,6 @@ Additionally, there the following images, similar to the above:
- `ghcr.io/ggml-org/llama.cpp:full-intel`: Same as `full` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-intel`: Same as `light` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-intel`: Same as `server` but compiled with SYCL support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:full-vulkan`: Same as `full` but compiled with Vulkan support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-vulkan`: Same as `light` but compiled with Vulkan support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-vulkan`: Same as `server` but compiled with Vulkan support. (platforms: `linux/amd64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
@@ -110,7 +107,7 @@ You may want to pass in some different `ARGS`, depending on the MUSA environment
The defaults are:
- `MUSA_VERSION` set to `rc4.3.0`
- `MUSA_VERSION` set to `rc3.1.1`
The resulting images, are essentially the same as the non-MUSA images:

View File

@@ -2,6 +2,7 @@
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
- `llama-server` when started w/ `--jinja` flag
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
## Universal support w/ Native & Generic handlers
@@ -11,7 +12,7 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
- Functionary v3.1 / v3.2
- Hermes 2/3, Qwen 2.5
- Qwen 2.5 Coder
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
- Mistral Nemo
- Firefunction v2
- Command R7B
@@ -21,8 +22,6 @@ Function calling is supported for all models (see https://github.com/ggml-org/ll
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
- Multiple/parallel tool calling is supported on some models but disabled by default, enable it by passing `"parallel_tool_calls": true` in the completion endpoint payload.
<details>
<summary>Show some common templates and which format handler they use</summary>
@@ -326,65 +325,36 @@ To get the official template from original HuggingFace repos, you can use [scrip
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
> [!CAUTION]
> Beware of extreme KV quantizations (e.g. `-ctk q4_0`), they can substantially degrade the model's tool calling performance.
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
```bash
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "system", "content": "You are a chatbot that uses tools/functions. Dont overthink things."},
{"role": "user", "content": "What is the weather in Istanbul?"}
],
"tools": [{
"type":"function",
"function":{
"name":"get_current_weather",
"description":"Get the current weather in a given location",
"parameters":{
"type":"object",
"properties":{
"location":{
"type":"string",
"description":"The city and country/state, e.g. `San Francisco, CA`, or `Paris, France`"
}
},
"required":["location"]
}
}
}]
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
```

View File

@@ -1,42 +1,28 @@
# Install pre-built version of llama.cpp
| Install via | Windows | Mac | Linux |
|-------------|---------|-----|-------|
| Winget | ✅ | | |
| Homebrew | | ✅ | ✅ |
| MacPorts | | ✅ | |
| Nix | | ✅ | ✅ |
## Homebrew
## Winget (Windows)
```sh
winget install llama.cpp
```
The package is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/issues/8188
## Homebrew (Mac and Linux)
On Mac and Linux, the homebrew package manager can be used via
```sh
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts (Mac)
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
See also: https://ports.macports.org/port/llama.cpp/details/
## Nix
## Nix (Mac and Linux)
On Mac and Linux, the Nix package manager can be used via
```sh
nix profile install nixpkgs#llama-cpp
```
For flake enabled installs.
Or
@@ -48,3 +34,13 @@ nix-env --file '<nixpkgs>' --install --attr llama-cpp
For non-flake enabled installs.
This expression is automatically updated within the [nixpkgs repo](https://github.com/NixOS/nixpkgs/blob/nixos-24.05/pkgs/by-name/ll/llama-cpp/package.nix#L164).
## Flox
On Mac and Linux, Flox can be used to install llama.cpp within a Flox environment via
```sh
flox install llama-cpp
```
Flox follows the nixpkgs build of llama.cpp.

Some files were not shown because too many files have changed in this diff Show More