mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
229 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e39502e74b | ||
|
|
1d2a1ab73d | ||
|
|
c8554b66e0 | ||
|
|
2fa51c19b0 | ||
|
|
951520ddb0 | ||
|
|
68522c678d | ||
|
|
f896d2c34f | ||
|
|
e4e9c4329c | ||
|
|
636fc17a37 | ||
|
|
51e0c2d917 | ||
|
|
37a4f63244 | ||
|
|
2bc96931d2 | ||
|
|
5814b4dce1 | ||
|
|
79d61896d3 | ||
|
|
4d3726278b | ||
|
|
08f9d3cc1d | ||
|
|
0a540f9abd | ||
|
|
22577583a3 | ||
|
|
d9e03db1e7 | ||
|
|
db97837385 | ||
|
|
017761daf5 | ||
|
|
c42712b056 | ||
|
|
09c7c50e64 | ||
|
|
f334b79494 | ||
|
|
a28e3c7567 | ||
|
|
e31b5c55c3 | ||
|
|
21f24f27a9 | ||
|
|
7b43f55753 | ||
|
|
444f00b0ec | ||
|
|
2960eb2975 | ||
|
|
dbc15a7967 | ||
|
|
c6c5e85979 | ||
|
|
8e5f4987b1 | ||
|
|
8ce774a102 | ||
|
|
67788f6846 | ||
|
|
d8c0a7b085 | ||
|
|
933414c0b6 | ||
|
|
a0f3897d53 | ||
|
|
e15cd06a94 | ||
|
|
fd57b24c0f | ||
|
|
6ab0d64960 | ||
|
|
93bb92664e | ||
|
|
8160b38a5f | ||
|
|
c41bde6fbd | ||
|
|
6016d0bd41 | ||
|
|
1be97831e4 | ||
|
|
a6cfc212ed | ||
|
|
3a0d10533a | ||
|
|
6648989673 | ||
|
|
e95d0bc8fd | ||
|
|
668ed76574 | ||
|
|
03d9a77b85 | ||
|
|
3143a755c8 | ||
|
|
96fe9badfc | ||
|
|
bde188d60f | ||
|
|
9d0229967a | ||
|
|
c4c10bfb86 | ||
|
|
817d743cc1 | ||
|
|
bd4ef13476 | ||
|
|
87a2084c45 | ||
|
|
3659aa28e9 | ||
|
|
2a73f81f8a | ||
|
|
7dba049b07 | ||
|
|
83c1171529 | ||
|
|
0d1324856f | ||
|
|
a67ef0f47f | ||
|
|
ef75a89fdb | ||
|
|
d8b5cdc4fe | ||
|
|
dea9ba27cb | ||
|
|
c6d1a00aa7 | ||
|
|
424c579455 | ||
|
|
e9f9483464 | ||
|
|
41c5e02f42 | ||
|
|
2e1c9cd814 | ||
|
|
190c4838bd | ||
|
|
e7c2cf1356 | ||
|
|
1257491047 | ||
|
|
083e18b11c | ||
|
|
3d94e967a1 | ||
|
|
7feb0a1005 | ||
|
|
0a8026e768 | ||
|
|
5ceed62421 | ||
|
|
7ca5991d2b | ||
|
|
b3e3060f4e | ||
|
|
37adc9c6ba | ||
|
|
16cc3c606e | ||
|
|
13628d8bdb | ||
|
|
a96283adc4 | ||
|
|
4eba8d9451 | ||
|
|
61bde8e21f | ||
|
|
e251e5ebbe | ||
|
|
c4357dcc35 | ||
|
|
e148380c7c | ||
|
|
a2b0fe8d37 | ||
|
|
7f3a72a8ed | ||
|
|
b9a37717b0 | ||
|
|
f3a9674ae8 | ||
|
|
2c453c6c77 | ||
|
|
5d6bd842ea | ||
|
|
fd3abe849e | ||
|
|
682e6658bb | ||
|
|
4574f2949e | ||
|
|
ab6726eeff | ||
|
|
cee92af553 | ||
|
|
ed32089927 | ||
|
|
7b6d745364 | ||
|
|
98bd9ab1e4 | ||
|
|
746f9ee889 | ||
|
|
9810cb8247 | ||
|
|
ecf74a8417 | ||
|
|
00c361fe53 | ||
|
|
ec18edfcba | ||
|
|
7733409734 | ||
|
|
cd3c118908 | ||
|
|
649495c9d9 | ||
|
|
90c72a614a | ||
|
|
6eea666912 | ||
|
|
ff90508d68 | ||
|
|
0a4aeb927d | ||
|
|
2ba719519d | ||
|
|
7f8ef50cce | ||
|
|
3c136b21a3 | ||
|
|
beb1f0c503 | ||
|
|
def5404f26 | ||
|
|
fa0465954f | ||
|
|
5a6241feb0 | ||
|
|
c7af376c29 | ||
|
|
00425e2ed1 | ||
|
|
385c3da5e6 | ||
|
|
ab49f094d2 | ||
|
|
8c32d9d96d | ||
|
|
0874693b44 | ||
|
|
7d2add51d8 | ||
|
|
f698a79c63 | ||
|
|
47a268ea50 | ||
|
|
59d8d4e963 | ||
|
|
d82b7a7c1d | ||
|
|
03914c7ef8 | ||
|
|
3ce7a65c2f | ||
|
|
e072b2052e | ||
|
|
c6f7a423c8 | ||
|
|
2e7ef98f18 | ||
|
|
ddf9f94389 | ||
|
|
ff55414c42 | ||
|
|
73955f7d2a | ||
|
|
35cf8887e1 | ||
|
|
15d2b46b4d | ||
|
|
6bca76ff5e | ||
|
|
cd0e3a7a3b | ||
|
|
efaaccdd69 | ||
|
|
4abef75f2c | ||
|
|
c386114922 | ||
|
|
6783b11fb0 | ||
|
|
909072abcf | ||
|
|
cd8370b408 | ||
|
|
d21a76ac38 | ||
|
|
4fcd87cf7c | ||
|
|
b78db3bd50 | ||
|
|
142df17c9c | ||
|
|
e509411cf1 | ||
|
|
7cba58bbea | ||
|
|
5449367b21 | ||
|
|
1d594c295c | ||
|
|
eec1e33a9e | ||
|
|
879d673759 | ||
|
|
6ab4e50d9c | ||
|
|
2336cc4784 | ||
|
|
e6923caaec | ||
|
|
3e18dba9fd | ||
|
|
eeb5605de2 | ||
|
|
f3a848a3b1 | ||
|
|
b3b03a7baf | ||
|
|
583cb83416 | ||
|
|
05872ac885 | ||
|
|
55ab25caf5 | ||
|
|
064c90d843 | ||
|
|
b1846f1c8e | ||
|
|
d414db02d3 | ||
|
|
877566d512 | ||
|
|
3d07caa99b | ||
|
|
134e6940ca | ||
|
|
0543f928a3 | ||
|
|
b61de2b2df | ||
|
|
b8372eecd9 | ||
|
|
6ab8eacddf | ||
|
|
2d50b9d8cb | ||
|
|
697edfeead | ||
|
|
dbb852b549 | ||
|
|
5f55c385cb | ||
|
|
4902eebe33 | ||
|
|
923ae3c619 | ||
|
|
01ad35e6d6 | ||
|
|
fcb013847c | ||
|
|
d5bc1ad110 | ||
|
|
0c7220db56 | ||
|
|
96ac5a2329 | ||
|
|
bc809e9c53 | ||
|
|
54d83bbe85 | ||
|
|
4949ac0f18 | ||
|
|
3f3a4fb9c3 | ||
|
|
028f93ef98 | ||
|
|
8e9ddba610 | ||
|
|
23bc779a6e | ||
|
|
28175f857d | ||
|
|
9cc4080441 | ||
|
|
f1ffbba68e | ||
|
|
2370665e56 | ||
|
|
21d31e0810 | ||
|
|
dd0f321941 | ||
|
|
054a45c3d3 | ||
|
|
4c91f2633f | ||
|
|
92c0b387a9 | ||
|
|
2286a360ff | ||
|
|
1d321e592b | ||
|
|
196f5083ef | ||
|
|
5088b435d4 | ||
|
|
845f200b28 | ||
|
|
a7784a8b1d | ||
|
|
79bb743512 | ||
|
|
3ae282a06f | ||
|
|
5be353ec4a | ||
|
|
7d77f07325 | ||
|
|
1fa4551af0 | ||
|
|
2eba631b81 | ||
|
|
99c53d6558 | ||
|
|
07b0e7a5ac | ||
|
|
fd7353d5eb | ||
|
|
6fd4f95367 | ||
|
|
980b7cd17e |
@@ -1,9 +1,7 @@
|
||||
ARG UBUNTU_VERSION=25.10
|
||||
ARG UBUNTU_VERSION=26.04
|
||||
|
||||
FROM ubuntu:$UBUNTU_VERSION AS build
|
||||
|
||||
# Ref: https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html
|
||||
|
||||
# Install build tools
|
||||
RUN apt update && apt install -y git build-essential cmake wget xz-utils
|
||||
|
||||
@@ -52,6 +50,7 @@ WORKDIR /app
|
||||
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
build-essential \
|
||||
git \
|
||||
python3 \
|
||||
python3-pip \
|
||||
|
||||
31
.github/actions/windows-setup-cuda/action.yml
vendored
31
.github/actions/windows-setup-cuda/action.yml
vendored
@@ -65,3 +65,34 @@ runs:
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
- name: Install Cuda Toolkit 13.1
|
||||
if: ${{ inputs.cuda_version == '13.1' }}
|
||||
shell: pwsh
|
||||
run: |
|
||||
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
|
||||
choco install unzip -y
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_crt/windows-x86_64/cuda_crt-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-13.2.0.9-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libnvvm/windows-x86_64/libnvvm-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-13.1.68-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-13.1.80-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-13.1.68-archive.zip"
|
||||
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-13.1.78-archive.zip"
|
||||
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_crt-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cudart-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvcc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvrtc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libcublas-windows-x86_64-13.2.0.9-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libnvvm-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvtx-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_profiler_api-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\visual_studio_integration-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cccl-windows-x86_64-13.1.78-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
|
||||
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
|
||||
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
echo "CUDA_PATH_V13_1=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
|
||||
|
||||
1
.github/workflows/build-linux-cross.yml
vendored
1
.github/workflows/build-linux-cross.yml
vendored
@@ -291,6 +291,7 @@ jobs:
|
||||
-DGGML_RVV=ON \
|
||||
-DGGML_RV_ZFH=ON \
|
||||
-DGGML_RV_ZICBOP=ON \
|
||||
-DGGML_RV_ZIHINTPAUSE=ON \
|
||||
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
|
||||
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake
|
||||
|
||||
|
||||
120
.github/workflows/build-riscv-native.yml
vendored
120
.github/workflows/build-riscv-native.yml
vendored
@@ -1,120 +0,0 @@
|
||||
name: Build on RISCV Linux Machine by Cloud-V
|
||||
on:
|
||||
pull_request:
|
||||
workflow_dispatch:
|
||||
workflow_call:
|
||||
|
||||
jobs:
|
||||
debian-13-riscv64-native: # Bianbu 2.2
|
||||
runs-on: [self-hosted, RISCV64]
|
||||
|
||||
steps:
|
||||
- name: Install prerequisites
|
||||
run: |
|
||||
sudo apt-get update || true
|
||||
sudo apt-get install -y libatomic1
|
||||
- uses: actions/checkout@v4
|
||||
- name: Setup Riscv
|
||||
run: |
|
||||
sudo apt-get update || true
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
gcc-14-riscv64-linux-gnu \
|
||||
g++-14-riscv64-linux-gnu \
|
||||
ccache \
|
||||
cmake
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
mkdir -p $HOME/.ccache
|
||||
ccache -M 5G -d $HOME/.ccache
|
||||
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
|
||||
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
|
||||
echo "$GITHUB_WORKSPACE"
|
||||
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
|
||||
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
|
||||
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
|
||||
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=Linux \
|
||||
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
|
||||
# runs-on: [self-hosted, RISCV64]
|
||||
|
||||
# steps:
|
||||
# - name: Install prerequisites
|
||||
# run: |
|
||||
# sudo apt-get update || true
|
||||
# sudo apt-get install -y libatomic1
|
||||
# - uses: actions/checkout@v4
|
||||
# - name: Setup Riscv
|
||||
# run: |
|
||||
# sudo apt-get update || true
|
||||
# sudo apt-get install -y --no-install-recommends \
|
||||
# build-essential \
|
||||
# gcc-14-riscv64-linux-gnu \
|
||||
# g++-14-riscv64-linux-gnu \
|
||||
# ccache \
|
||||
# cmake
|
||||
# sudo apt-get upgrade binutils -y
|
||||
|
||||
# - name: Setup ccache
|
||||
# run: |
|
||||
# mkdir -p $HOME/.ccache
|
||||
# ccache -M 5G -d $HOME/.ccache
|
||||
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
|
||||
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
|
||||
# echo "$GITHUB_WORKSPACE"
|
||||
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
|
||||
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
|
||||
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
|
||||
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
|
||||
|
||||
# - name: Build
|
||||
# run: |
|
||||
# cmake -B build \
|
||||
# -DLLAMA_CURL=OFF \
|
||||
# -DCMAKE_BUILD_TYPE=Release \
|
||||
# -DGGML_OPENMP=OFF \
|
||||
# -DLLAMA_BUILD_EXAMPLES=ON \
|
||||
# -DLLAMA_BUILD_TOOLS=ON \
|
||||
# -DLLAMA_BUILD_TESTS=OFF \
|
||||
# -DCMAKE_SYSTEM_NAME=Linux \
|
||||
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
|
||||
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
|
||||
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
|
||||
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
|
||||
# -DGGML_RVV=ON \
|
||||
# -DGGML_RV_ZFH=ON \
|
||||
# -DGGML_RV_ZICBOP=ON \
|
||||
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
|
||||
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
|
||||
|
||||
# cmake --build build --config Release -j $(nproc)
|
||||
554
.github/workflows/build.yml
vendored
554
.github/workflows/build.yml
vendored
@@ -69,13 +69,6 @@ jobs:
|
||||
key: macOS-latest-cmake-arm64
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -83,6 +76,8 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_BORINGSSL=ON \
|
||||
-DGGML_METAL_USE_BF16=ON \
|
||||
-DGGML_METAL_EMBED_LIBRARY=OFF \
|
||||
-DGGML_METAL_SHADER_DEBUG=ON \
|
||||
@@ -110,13 +105,6 @@ jobs:
|
||||
key: macOS-latest-cmake-x64
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -126,6 +114,8 @@ jobs:
|
||||
cmake -B build \
|
||||
-DCMAKE_BUILD_RPATH="@loader_path" \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_BUILD_BORINGSSL=ON \
|
||||
-DGGML_METAL=OFF \
|
||||
-DGGML_RPC=ON \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=13.3
|
||||
@@ -151,13 +141,6 @@ jobs:
|
||||
key: macOS-latest-cmake-arm64-webgpu
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
brew install curl
|
||||
|
||||
- name: Dawn Dependency
|
||||
id: dawn-depends
|
||||
run: |
|
||||
@@ -217,7 +200,7 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y --no-install-recommends \
|
||||
python3 python3-pip python3-dev \
|
||||
libjpeg-dev build-essential libcurl4-openssl-dev \
|
||||
libjpeg-dev build-essential libssl-dev \
|
||||
git-lfs
|
||||
|
||||
- name: Python Dependencies
|
||||
@@ -238,6 +221,8 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
@@ -294,13 +279,15 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
sudo apt-get install build-essential libssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
@@ -311,6 +298,8 @@ jobs:
|
||||
if: ${{ matrix.sanitizer == 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
@@ -335,7 +324,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
sudo apt-get install build-essential libssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -343,6 +332,8 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_LLGUIDANCE=ON
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
@@ -373,12 +364,14 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential libcurl4-openssl-dev
|
||||
sudo apt-get install build-essential libssl-dev
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -405,12 +398,14 @@ jobs:
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get install -y glslc libvulkan-dev libcurl4-openssl-dev
|
||||
sudo apt-get install -y glslc libvulkan-dev libssl-dev
|
||||
|
||||
- name: Configure
|
||||
id: cmake_configure
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
|
||||
-DGGML_BACKEND_DL=ON \
|
||||
-DGGML_CPU_ALL_VARIANTS=ON \
|
||||
@@ -440,7 +435,7 @@ jobs:
|
||||
run: |
|
||||
sudo add-apt-repository -y ppa:kisak/kisak-mesa
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
|
||||
|
||||
- name: Get latest Vulkan SDK version
|
||||
id: vulkan_sdk_version
|
||||
@@ -466,6 +461,8 @@ jobs:
|
||||
run: |
|
||||
source ./vulkan_sdk/setup-env.sh
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_VULKAN=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -497,7 +494,7 @@ jobs:
|
||||
run: |
|
||||
sudo add-apt-repository -y ppa:kisak/kisak-mesa
|
||||
sudo apt-get update -y
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libcurl4-openssl-dev
|
||||
sudo apt-get install -y build-essential mesa-vulkan-drivers libxcb-xinput0 libxcb-xinerama0 libxcb-cursor-dev libssl-dev
|
||||
|
||||
- name: Get latest Vulkan SDK version
|
||||
id: vulkan_sdk_version
|
||||
@@ -537,7 +534,10 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
export Dawn_DIR=dawn/lib64/cmake/Dawn
|
||||
cmake -B build -DGGML_WEBGPU=ON
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_WEBGPU=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -547,6 +547,46 @@ jobs:
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 3600
|
||||
|
||||
ubuntu-24-wasm-webgpu:
|
||||
runs-on: ubuntu-24.04
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
with:
|
||||
key: ubuntu-latest-wasm-webgpu
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Install Emscripten
|
||||
run: |
|
||||
git clone https://github.com/emscripten-core/emsdk.git
|
||||
cd emsdk
|
||||
./emsdk install latest
|
||||
./emsdk activate latest
|
||||
|
||||
- name: Fetch emdawnwebgpu
|
||||
run: |
|
||||
DAWN_TAG="v20251027.212519"
|
||||
EMDAWN_PKG="emdawnwebgpu_pkg-${DAWN_TAG}.zip"
|
||||
echo "Downloading ${EMDAWN_PKG}"
|
||||
curl -L -o emdawn.zip \
|
||||
"https://github.com/google/dawn/releases/download/${DAWN_TAG}/${EMDAWN_PKG}"
|
||||
unzip emdawn.zip
|
||||
|
||||
- name: Build WASM WebGPU
|
||||
run: |
|
||||
source emsdk/emsdk_env.sh
|
||||
emcmake cmake -B build-wasm \
|
||||
-DGGML_WEBGPU=ON \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DEMDAWNWEBGPU_DIR=emdawnwebgpu_pkg
|
||||
|
||||
cmake --build build-wasm --target test-backend-ops -j $(nproc)
|
||||
|
||||
ubuntu-22-cmake-hip:
|
||||
runs-on: ubuntu-22.04
|
||||
container: rocm/dev-ubuntu-22.04:6.1.2
|
||||
@@ -560,7 +600,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libcurl4-openssl-dev rocwmma-dev
|
||||
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev libssl-dev rocwmma-dev
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
@@ -572,6 +612,8 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" \
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON \
|
||||
-DGGML_HIP=ON
|
||||
@@ -590,7 +632,7 @@ jobs:
|
||||
id: depends
|
||||
run: |
|
||||
apt-get update
|
||||
apt-get install -y build-essential git cmake libcurl4-openssl-dev
|
||||
apt-get install -y build-essential git cmake libssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
@@ -602,6 +644,8 @@ jobs:
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -S . \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_MUSA=ON
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
@@ -626,7 +670,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -648,6 +692,8 @@ jobs:
|
||||
run: |
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_SYCL=ON \
|
||||
-DCMAKE_C_COMPILER=icx \
|
||||
-DCMAKE_CXX_COMPILER=icpx
|
||||
@@ -674,7 +720,7 @@ jobs:
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libcurl4-openssl-dev
|
||||
sudo apt install intel-oneapi-compiler-dpcpp-cpp libssl-dev
|
||||
|
||||
- name: install oneAPI MKL library
|
||||
shell: bash
|
||||
@@ -696,6 +742,8 @@ jobs:
|
||||
run: |
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DGGML_SYCL=ON \
|
||||
-DCMAKE_C_COMPILER=icx \
|
||||
-DCMAKE_CXX_COMPILER=icpx \
|
||||
@@ -722,12 +770,6 @@ jobs:
|
||||
key: macOS-latest-cmake-ios
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -759,12 +801,6 @@ jobs:
|
||||
key: macOS-latest-cmake-tvos
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -790,12 +826,6 @@ jobs:
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -838,12 +868,6 @@ jobs:
|
||||
name: llama-xcframework
|
||||
path: build-apple/llama.xcframework/
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build llama.cpp with CMake
|
||||
id: cmake_build
|
||||
run: |
|
||||
@@ -995,21 +1019,12 @@ jobs:
|
||||
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
|
||||
cmake --build build-arm64-release --target install --config release
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
with:
|
||||
architecture: ${{ matrix.arch == 'x64' && 'win64' || 'win64a' }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -S . -B build ${{ matrix.defines }} `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
-DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
cp $env:CURL_PATH/bin/libcurl-*.dll build/bin/Release
|
||||
|
||||
- name: Add libopenblas.dll
|
||||
id: add_libopenblas_dll
|
||||
@@ -1053,7 +1068,7 @@ jobs:
|
||||
DEBIAN_FRONTEND: noninteractive
|
||||
run: |
|
||||
apt update
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libcurl4-openssl-dev
|
||||
apt install -y cmake build-essential ninja-build libgomp1 git libssl-dev
|
||||
|
||||
- name: ccache
|
||||
uses: ggml-org/ccache-action@v1.2.16
|
||||
@@ -1064,10 +1079,12 @@ jobs:
|
||||
- name: Build with CMake
|
||||
run: |
|
||||
cmake -S . -B build -G Ninja \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DCMAKE_CUDA_ARCHITECTURES=89-real \
|
||||
-DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DGGML_CUDA=ON
|
||||
cmake --build build
|
||||
@@ -1101,25 +1118,20 @@ jobs:
|
||||
run: |
|
||||
choco install ninja
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
shell: cmd
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" x64
|
||||
cmake -S . -B build -G "Ninja Multi-Config" ^
|
||||
-DLLAMA_BUILD_SERVER=ON ^
|
||||
-DLLAMA_CURL=OFF ^
|
||||
-DLLAMA_BUILD_BORINGSSL=ON ^
|
||||
-DGGML_NATIVE=OFF ^
|
||||
-DGGML_BACKEND_DL=ON ^
|
||||
-DGGML_CPU_ALL_VARIANTS=ON ^
|
||||
-DGGML_CUDA=ON ^
|
||||
-DGGML_RPC=ON ^
|
||||
-DCURL_LIBRARY="%CURL_PATH%/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="%CURL_PATH%/include"
|
||||
-DGGML_RPC=ON
|
||||
set /A NINJA_JOBS=%NUMBER_OF_PROCESSORS%-1
|
||||
cmake --build build --config Release -j %NINJA_JOBS% -t ggml
|
||||
cmake --build build --config Release
|
||||
@@ -1151,7 +1163,7 @@ jobs:
|
||||
run: |
|
||||
scripts/install-oneapi.bat $WINDOWS_BASEKIT_URL $WINDOWS_DPCPP_MKL
|
||||
|
||||
# TODO: add libcurl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
# TODO: add ssl support ; we will also need to modify win-build-sycl.bat to accept user-specified args
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
@@ -1208,14 +1220,8 @@ jobs:
|
||||
key: ${{ github.job }}
|
||||
evict-old-files: 1d
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||
@@ -1224,11 +1230,12 @@ jobs:
|
||||
-DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" `
|
||||
-DCMAKE_CXX_FLAGS="-I$($PWD.Path.Replace('\', '/'))/opt/rocm-${{ env.ROCM_VERSION }}/include/" `
|
||||
-DCMAKE_BUILD_TYPE=Release `
|
||||
-DLLAMA_CURL=OFF `
|
||||
-DLLAMA_BUILD_BORINGSSL=ON `
|
||||
-DROCM_DIR="${env:HIP_PATH}" `
|
||||
-DGGML_HIP=ON `
|
||||
-DGGML_HIP_ROCWMMA_FATTN=ON `
|
||||
-DGGML_RPC=ON `
|
||||
-DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
-DGGML_RPC=ON
|
||||
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
ios-xcode-build:
|
||||
@@ -1595,33 +1602,33 @@ jobs:
|
||||
run: |
|
||||
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
|
||||
|
||||
ggml-ci-x64-amd-vulkan:
|
||||
runs-on: [self-hosted, Linux, X64, AMD]
|
||||
# ggml-ci-x64-amd-vulkan:
|
||||
# runs-on: [self-hosted, Linux, X64, AMD]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# id: checkout
|
||||
# uses: actions/checkout@v4
|
||||
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
vulkaninfo --summary
|
||||
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
|
||||
# - name: Test
|
||||
# id: ggml-ci
|
||||
# run: |
|
||||
# vulkaninfo --summary
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
|
||||
|
||||
ggml-ci-x64-amd-rocm:
|
||||
runs-on: [self-hosted, Linux, X64, AMD]
|
||||
# ggml-ci-x64-amd-rocm:
|
||||
# runs-on: [self-hosted, Linux, X64, AMD]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# id: checkout
|
||||
# uses: actions/checkout@v4
|
||||
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
amd-smi static
|
||||
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
|
||||
# - name: Test
|
||||
# id: ggml-ci
|
||||
# run: |
|
||||
# amd-smi static
|
||||
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
|
||||
|
||||
ggml-ci-mac-metal:
|
||||
runs-on: [self-hosted, macOS, ARM64]
|
||||
@@ -1675,6 +1682,337 @@ jobs:
|
||||
run: |
|
||||
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ubuntu-cpu-cmake-riscv64-native:
|
||||
runs-on: RISCV64
|
||||
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
|
||||
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
|
||||
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
|
||||
|
||||
# Install Rust stable version
|
||||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check environment
|
||||
run: |
|
||||
uname -a
|
||||
gcc --version
|
||||
g++ --version
|
||||
ldd --version
|
||||
cmake --version
|
||||
rustc --version
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
# Set unique cache directory for this job
|
||||
export CCACHE_DIR="$HOME/.ccache/cpu-cmake-rv64-native"
|
||||
mkdir -p "$CCACHE_DIR"
|
||||
|
||||
# Configure ccache for optimal performance
|
||||
ccache --set-config=max_size=5G
|
||||
ccache --set-config=compression=true
|
||||
ccache --set-config=compression_level=6
|
||||
ccache --set-config=cache_dir="$CCACHE_DIR"
|
||||
|
||||
# Enable more aggressive caching
|
||||
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
|
||||
ccache --set-config=hash_dir=false
|
||||
|
||||
# Export for subsequent steps
|
||||
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
|
||||
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=ON \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DGGML_RPC=ON \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L 'main|curl' --verbose --timeout 900
|
||||
|
||||
- name: Test llama2c conversion
|
||||
id: llama2c_test
|
||||
run: |
|
||||
cd build
|
||||
echo "Fetch tokenizer"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
|
||||
echo "Fetch llama2c model"
|
||||
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
|
||||
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
|
||||
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
|
||||
|
||||
ubuntu-cmake-sanitizer-riscv64-native:
|
||||
runs-on: RISCV64
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug]
|
||||
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
|
||||
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
|
||||
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
|
||||
|
||||
# Install Rust stable version
|
||||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
g++ --version
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
# Unique cache directory per matrix combination
|
||||
export CCACHE_DIR="$HOME/.ccache/sanitizer-${{ matrix.sanitizer }}-${{ matrix.build_type }}"
|
||||
mkdir -p "$CCACHE_DIR"
|
||||
|
||||
# Configure ccache
|
||||
ccache --set-config=max_size=5G
|
||||
ccache --set-config=compression=true
|
||||
ccache --set-config=compression_level=6
|
||||
ccache --set-config=cache_dir="$CCACHE_DIR"
|
||||
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
|
||||
ccache --set-config=hash_dir=false
|
||||
|
||||
# Export for subsequent steps
|
||||
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
|
||||
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=ON \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
|
||||
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
id: cmake_build_no_openmp
|
||||
if: ${{ matrix.sanitizer == 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
|
||||
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
|
||||
ubuntu-llguidance-riscv64-native:
|
||||
runs-on: RISCV64
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
|
||||
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
|
||||
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
|
||||
|
||||
# Install Rust stable version
|
||||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
g++ --version
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
export CCACHE_DIR="$HOME/.ccache/llguidance-riscv64"
|
||||
mkdir -p "$CCACHE_DIR"
|
||||
|
||||
ccache --set-config=max_size=5G
|
||||
ccache --set-config=compression=true
|
||||
ccache --set-config=compression_level=6
|
||||
ccache --set-config=cache_dir="$CCACHE_DIR"
|
||||
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
|
||||
ccache --set-config=hash_dir=false
|
||||
|
||||
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
|
||||
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DLLAMA_LLGUIDANCE=ON \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose --timeout 900
|
||||
|
||||
|
||||
ubuntu-cmake-rpc-riscv64-native:
|
||||
runs-on: RISCV64
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
|
||||
# Install necessary packages
|
||||
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
|
||||
|
||||
# Set gcc-14 and g++-14 as the default compilers
|
||||
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
|
||||
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
|
||||
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
|
||||
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
|
||||
|
||||
# Install Rust stable version
|
||||
rustup install stable
|
||||
rustup default stable
|
||||
|
||||
- name: GCC version check
|
||||
run: |
|
||||
gcc --version
|
||||
g++ --version
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Setup ccache
|
||||
run: |
|
||||
export CCACHE_DIR="$HOME/.ccache/rpc-riscv64"
|
||||
mkdir -p "$CCACHE_DIR"
|
||||
|
||||
ccache --set-config=max_size=5G
|
||||
ccache --set-config=compression=true
|
||||
ccache --set-config=compression_level=6
|
||||
ccache --set-config=cache_dir="$CCACHE_DIR"
|
||||
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
|
||||
ccache --set-config=hash_dir=false
|
||||
|
||||
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
|
||||
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DCMAKE_BUILD_TYPE=Release \
|
||||
-DGGML_OPENMP=OFF \
|
||||
-DLLAMA_BUILD_EXAMPLES=ON \
|
||||
-DLLAMA_BUILD_TOOLS=ON \
|
||||
-DLLAMA_BUILD_TESTS=ON \
|
||||
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
|
||||
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
|
||||
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
|
||||
-DGGML_RPC=ON
|
||||
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main --verbose
|
||||
|
||||
ggml-ci-arm64-graviton4-kleidiai:
|
||||
runs-on: ah-ubuntu_22_04-c8g_8x
|
||||
|
||||
|
||||
143
.github/workflows/release.yml
vendored
143
.github/workflows/release.yml
vendored
@@ -66,14 +66,21 @@ jobs:
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
|
||||
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (zip)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
|
||||
name: llama-bin-macos-arm64.zip
|
||||
|
||||
- name: Upload artifacts (tar)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz
|
||||
name: llama-bin-macos-arm64.tar.gz
|
||||
|
||||
macOS-x64:
|
||||
runs-on: macos-15-intel
|
||||
|
||||
@@ -120,14 +127,21 @@ jobs:
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
|
||||
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (zip)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
|
||||
name: llama-bin-macos-x64.zip
|
||||
|
||||
- name: Upload artifacts (tar)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz
|
||||
name: llama-bin-macos-x64.tar.gz
|
||||
|
||||
ubuntu-22-cpu:
|
||||
strategy:
|
||||
matrix:
|
||||
@@ -182,14 +196,21 @@ jobs:
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
|
||||
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (zip)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
|
||||
name: llama-bin-ubuntu-${{ matrix.build }}.zip
|
||||
|
||||
- name: Upload artifacts (tar)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz
|
||||
name: llama-bin-ubuntu-${{ matrix.build }}.tar.gz
|
||||
|
||||
ubuntu-22-vulkan:
|
||||
runs-on: ubuntu-22.04
|
||||
|
||||
@@ -235,14 +256,21 @@ jobs:
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
|
||||
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (zip)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
|
||||
name: llama-bin-ubuntu-vulkan-x64.zip
|
||||
|
||||
- name: Upload artifacts (tar)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz
|
||||
name: llama-bin-ubuntu-vulkan-x64.tar.gz
|
||||
|
||||
windows-cpu:
|
||||
runs-on: windows-2025
|
||||
|
||||
@@ -298,7 +326,7 @@ jobs:
|
||||
run: |
|
||||
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
|
||||
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
|
||||
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
7z a -snl llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -380,7 +408,7 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
|
||||
7z a -snl llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -393,7 +421,7 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.4']
|
||||
cuda: ['12.4', '13.1']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -434,7 +462,7 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
|
||||
7z a -snl llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -448,6 +476,7 @@ jobs:
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
robocopy "${{env.CUDA_PATH}}\bin\x64" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
@@ -517,6 +546,8 @@ jobs:
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-fallback-bfloat16.spv" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-native-bfloat16.spv" ./build/bin
|
||||
|
||||
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
|
||||
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
|
||||
@@ -526,7 +557,7 @@ jobs:
|
||||
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
|
||||
|
||||
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
|
||||
7z a -snl llama-bin-win-sycl-x64.zip ./build/bin/*
|
||||
|
||||
- name: Upload the release package
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -632,7 +663,7 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
|
||||
7z a -snl llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
|
||||
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
@@ -685,58 +716,20 @@ jobs:
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
run: |
|
||||
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
|
||||
zip -y -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
|
||||
tar -czvf llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz -C build-apple llama.xcframework
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (zip)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework.zip
|
||||
|
||||
openEuler-cann:
|
||||
strategy:
|
||||
matrix:
|
||||
arch: [x86, aarch64]
|
||||
chip_type: ['910b', '310p']
|
||||
build: ['Release']
|
||||
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
|
||||
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
yum update -y
|
||||
yum install -y git gcc gcc-c++ make cmake libcurl-devel
|
||||
git config --global --add safe.directory "$GITHUB_WORKSPACE"
|
||||
|
||||
- name: Build
|
||||
run: |
|
||||
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
|
||||
|
||||
cmake -S . -B build \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
|
||||
-DGGML_CANN=on \
|
||||
-DSOC_TYPE=ascend${{ matrix.chip_type }}
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
uses: ./.github/actions/get-tag-name
|
||||
|
||||
- name: Pack artifacts
|
||||
run: |
|
||||
cp LICENSE ./build/bin/
|
||||
zip -r llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip ./build/bin/*
|
||||
|
||||
- name: Upload artifacts
|
||||
- name: Upload artifacts (tar)
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
path: llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
|
||||
name: llama-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
|
||||
path: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
|
||||
name: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
@@ -759,7 +752,6 @@ jobs:
|
||||
- macOS-arm64
|
||||
- macOS-x64
|
||||
- ios-xcode-build
|
||||
- openEuler-cann
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@@ -814,6 +806,7 @@ jobs:
|
||||
|
||||
echo "Moving other artifacts..."
|
||||
mv -v artifact/*.zip release
|
||||
mv -v artifact/*.tar.gz release
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
@@ -822,6 +815,34 @@ jobs:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ steps.tag.outputs.name }}
|
||||
body: |
|
||||
> [!WARNING]
|
||||
> **Release Format Update**: Linux releases will soon use .tar.gz archives instead of .zip. Please make the necessary changes to your deployment scripts.
|
||||
|
||||
<details open>
|
||||
|
||||
${{ github.event.head_commit.message }}
|
||||
|
||||
</details>
|
||||
|
||||
**macOS/iOS:**
|
||||
- [macOS Apple Silicon (arm64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz)
|
||||
- [macOS Intel (x64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz)
|
||||
- [iOS XCFramework](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz)
|
||||
|
||||
**Linux:**
|
||||
- [Ubuntu x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.tar.gz)
|
||||
- [Ubuntu x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz)
|
||||
- [Ubuntu s390x (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-s390x.tar.gz)
|
||||
|
||||
**Windows:**
|
||||
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
|
||||
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
|
||||
- [Windows x64 (CUDA 12)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
|
||||
- [Windows x64 (CUDA 13)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-13.1-x64.zip)
|
||||
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
|
||||
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
|
||||
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
@@ -833,7 +854,7 @@ jobs:
|
||||
const fs = require('fs');
|
||||
const release_id = '${{ steps.create_release.outputs.id }}';
|
||||
for (let file of await fs.readdirSync('./release')) {
|
||||
if (path.extname(file) === '.zip') {
|
||||
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
|
||||
console.log('uploadReleaseAsset', file);
|
||||
await github.repos.uploadReleaseAsset({
|
||||
owner: context.repo.owner,
|
||||
|
||||
25
.github/workflows/server.yml
vendored
25
.github/workflows/server.yml
vendored
@@ -56,7 +56,7 @@ jobs:
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -242,7 +242,7 @@ jobs:
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
libcurl4-openssl-dev
|
||||
libssl-dev
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -283,6 +283,8 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
@@ -295,6 +297,8 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
@@ -306,6 +310,8 @@ jobs:
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_CURL=OFF \
|
||||
-DLLAMA_OPENSSL=ON \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
@@ -345,16 +351,10 @@ jobs:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: libCURL
|
||||
id: get_libcurl
|
||||
uses: ./.github/actions/windows-setup-curl
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
|
||||
cmake -B build -DLLAMA_CURL=OFF -DLLAMA_BUILD_BORINGSSL=ON
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@@ -368,13 +368,6 @@ jobs:
|
||||
run: |
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Copy Libcurl
|
||||
id: prepare_libcurl
|
||||
env:
|
||||
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
|
||||
run: |
|
||||
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
||||
|
||||
1
.github/workflows/winget.yml
vendored
1
.github/workflows/winget.yml
vendored
@@ -9,6 +9,7 @@ jobs:
|
||||
update:
|
||||
name: Update Winget Package
|
||||
runs-on: ubuntu-latest
|
||||
if: github.repository_owner == 'ggml-org'
|
||||
|
||||
steps:
|
||||
- name: Install cargo binstall
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -134,3 +134,5 @@ poetry.toml
|
||||
# IDE
|
||||
/*.code-workspace
|
||||
/.windsurf/
|
||||
# emscripten
|
||||
a.out.*
|
||||
|
||||
@@ -33,10 +33,24 @@ endif()
|
||||
|
||||
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
|
||||
|
||||
option(LLAMA_WASM_MEM64 "llama: use 64-bit memory in WASM builds" ON)
|
||||
|
||||
if (EMSCRIPTEN)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
|
||||
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
|
||||
# Use 64-bit memory to support backend_get_memory queries
|
||||
# TODO: analyze performance impact, see https://spidermonkey.dev/blog/2025/01/15/is-memory64-actually-worth-using
|
||||
if (LLAMA_WASM_MEM64)
|
||||
add_compile_options("-sMEMORY64=1")
|
||||
add_link_options("-sMEMORY64=1")
|
||||
endif()
|
||||
add_link_options("-sALLOW_MEMORY_GROWTH=1")
|
||||
|
||||
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" OFF)
|
||||
option(LLAMA_BUILD_HTML "llama: build HTML file" ON)
|
||||
if (LLAMA_BUILD_HTML)
|
||||
set(CMAKE_EXECUTABLE_SUFFIX ".html")
|
||||
endif()
|
||||
else()
|
||||
if (MINGW)
|
||||
set(BUILD_SHARED_LIBS_DEFAULT OFF)
|
||||
@@ -58,6 +72,12 @@ if (MSVC)
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
|
||||
endif()
|
||||
|
||||
if (LLAMA_STANDALONE)
|
||||
# enable parallel builds for msbuild
|
||||
list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
|
||||
list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
|
||||
endif()
|
||||
|
||||
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
|
||||
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
|
||||
else()
|
||||
@@ -179,11 +199,6 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
|
||||
# ... otherwise assume ggml is added by a parent CMakeLists.txt
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
# Target Windows 8 for PrefetchVirtualMemory
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
# build the library
|
||||
#
|
||||
|
||||
41
CODEOWNERS
41
CODEOWNERS
@@ -2,23 +2,25 @@
|
||||
# multiplie collaborators per item can be specified
|
||||
|
||||
/.devops/*.Dockerfile @ngxson
|
||||
/.github/actions/ @slaren @CISC
|
||||
/.github/actions/ @CISC
|
||||
/.github/workflows/ @CISC
|
||||
/.github/workflows/release.yml @slaren
|
||||
/.github/workflows/winget.yml @slaren
|
||||
/ci/ @ggerganov
|
||||
/cmake/ @ggerganov
|
||||
/common/CMakeLists.txt @ggerganov
|
||||
/common/arg.* @ggerganov @ericcurtin
|
||||
/common/arg.* @ggerganov
|
||||
/common/base64.hpp.* @ggerganov
|
||||
/common/build-info.* @ggerganov
|
||||
/common/chat.* @pwilkin
|
||||
/common/chat-peg-parser.* @aldehir
|
||||
/common/common.* @ggerganov
|
||||
/common/console.* @ggerganov
|
||||
/common/http.* @angt
|
||||
/common/llguidance.* @ggerganov
|
||||
/common/log.* @ggerganov
|
||||
/common/peg-parser.* @aldehir
|
||||
/common/sampling.* @ggerganov
|
||||
/common/speculative.* @ggerganov
|
||||
/common/unicode.* @aldehir
|
||||
/convert_*.py @CISC
|
||||
/examples/batched.swift/ @ggerganov
|
||||
/examples/batched/ @ggerganov
|
||||
@@ -40,21 +42,14 @@
|
||||
/examples/passkey/ @ggerganov
|
||||
/examples/retrieval/ @ggerganov
|
||||
/examples/save-load-state/ @ggerganov
|
||||
/examples/simple-chat/ @slaren
|
||||
/examples/simple/ @slaren
|
||||
/examples/speculative-simple/ @ggerganov
|
||||
/examples/speculative/ @ggerganov
|
||||
/ggml/cmake/ @ggerganov
|
||||
/ggml/include/ @ggerganov @slaren
|
||||
/ggml/src/ggml-alloc.c @slaren
|
||||
/ggml/src/ggml-backend* @slaren
|
||||
/ggml/src/ggml-blas/ @slaren
|
||||
/ggml/src/ggml-common.h @ggerganov @slaren
|
||||
/ggml/src/ggml-cpu/ @ggerganov @slaren
|
||||
/ggml/include/ @ggerganov
|
||||
/ggml/src/ggml-common.h @ggerganov
|
||||
/ggml/src/ggml-cpu/ @ggerganov
|
||||
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
|
||||
/ggml/src/ggml-cuda/common.cuh @slaren
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
|
||||
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
|
||||
@@ -62,19 +57,19 @@
|
||||
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
|
||||
/ggml/src/ggml-hip/ @IMbackK
|
||||
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
|
||||
/ggml/src/ggml-impl.h @ggerganov @slaren
|
||||
/ggml/src/ggml-impl.h @ggerganov
|
||||
/ggml/src/ggml-metal/ @ggerganov
|
||||
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
|
||||
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/ggml-quants.* @ggerganov
|
||||
/ggml/src/ggml-rpc/ @rgerganov
|
||||
/ggml/src/ggml-threading.* @ggerganov @slaren
|
||||
/ggml/src/ggml-threading.* @ggerganov
|
||||
/ggml/src/ggml-vulkan/ @0cc4m
|
||||
/ggml/src/ggml-webgpu/ @reeselevine
|
||||
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
|
||||
/ggml/src/ggml.c @ggerganov @slaren
|
||||
/ggml/src/ggml.cpp @ggerganov @slaren
|
||||
/ggml/src/ggml.c @ggerganov
|
||||
/ggml/src/ggml.cpp @ggerganov
|
||||
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
|
||||
/gguf-py/ @CISC
|
||||
/media/ @ggerganov
|
||||
@@ -86,28 +81,22 @@
|
||||
/src/llama-arch.* @CISC
|
||||
/src/llama-chat.* @ngxson
|
||||
/src/llama-graph.* @CISC
|
||||
/src/llama-model-loader.* @slaren
|
||||
/src/llama-model.* @CISC
|
||||
/src/llama-vocab.* @CISC
|
||||
/src/models/ @CISC
|
||||
/tests/ @ggerganov
|
||||
/tests/test-backend-ops.cpp @slaren
|
||||
/tests/test-thread-safety.cpp @slaren
|
||||
/tests/test-chat-.* @pwilkin
|
||||
/tools/batched-bench/ @ggerganov
|
||||
/tools/llama-bench/ @slaren
|
||||
/tools/main/ @ggerganov
|
||||
/tools/mtmd/ @ngxson
|
||||
/tools/perplexity/ @ggerganov
|
||||
/tools/quantize/ @ggerganov
|
||||
/tools/rpc/ @rgerganov
|
||||
/tools/run/ @ericcurtin
|
||||
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
|
||||
/tools/server/* @ngxson @ggerganov # no subdir
|
||||
/tools/server/webui/ @allozaur
|
||||
/tools/tokenize/ @ggerganov
|
||||
/tools/tts/ @ggerganov
|
||||
/vendor/ @ggerganov
|
||||
/.clang-format @slaren
|
||||
/.clang-tidy @slaren
|
||||
/AUTHORS @ggerganov
|
||||
/CMakeLists.txt @ggerganov
|
||||
/CONTRIBUTING.md @ggerganov
|
||||
|
||||
@@ -16,9 +16,10 @@ The project differentiates between 3 levels of contributors:
|
||||
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
|
||||
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
|
||||
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
|
||||
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
|
||||
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
|
||||
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
|
||||
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
|
||||
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
|
||||
|
||||
# Pull requests (for maintainers)
|
||||
|
||||
|
||||
@@ -61,7 +61,7 @@ range of hardware - locally and in the cloud.
|
||||
- Plain C/C++ implementation without any dependencies
|
||||
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2, AVX512 and AMX support for x86 architectures
|
||||
- RVV, ZVFH, ZFH and ZICBOP support for RISC-V architectures
|
||||
- RVV, ZVFH, ZFH, ZICBOP and ZIHINTPAUSE support for RISC-V architectures
|
||||
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
|
||||
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
|
||||
- Vulkan and SYCL backend support
|
||||
@@ -242,6 +242,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [crashr/gppm](https://github.com/crashr/gppm) – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
|
||||
- [gpustack/gguf-parser](https://github.com/gpustack/gguf-parser-go/tree/main/cmd/gguf-parser) - review/check the GGUF file and estimate the memory usage
|
||||
- [Styled Lines](https://marketplace.unity.com/packages/tools/generative-ai/styled-lines-llama-cpp-model-292902) (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
|
||||
- [unslothai/unsloth](https://github.com/unslothai/unsloth) – 🦥 exports/saves fine-tuned and trained models to GGUF (Apache-2.0)
|
||||
|
||||
</details>
|
||||
|
||||
@@ -275,6 +276,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
|
||||
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
|
||||
| [HIP](docs/build.md#hip) | AMD GPU |
|
||||
| [ZenDNN](docs/build.md#zendnn) | AMD CPU |
|
||||
| [Vulkan](docs/build.md#vulkan) | GPU |
|
||||
| [CANN](docs/build.md#cann) | Ascend NPU |
|
||||
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
|
||||
@@ -612,3 +614,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
|
||||
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
|
||||
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
|
||||
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
|
||||
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain
|
||||
|
||||
@@ -65,4 +65,6 @@ However, If you have discovered a security vulnerability in this project, please
|
||||
|
||||
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
|
||||
|
||||
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
|
||||
|
||||
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
|
||||
|
||||
16
ci/run.sh
16
ci/run.sh
@@ -45,7 +45,7 @@ sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
|
||||
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=${LLAMA_FATAL_WARNINGS:-ON} -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
|
||||
|
||||
if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
|
||||
@@ -428,10 +428,10 @@ function gg_run_qwen3_0_6b {
|
||||
|
||||
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
|
||||
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
@@ -523,8 +523,8 @@ function gg_run_embd_bge_small {
|
||||
|
||||
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
|
||||
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
|
||||
set +e
|
||||
}
|
||||
@@ -564,7 +564,7 @@ function gg_run_rerank_tiny {
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
|
||||
# for this model, the SEP token is "</s>"
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
|
||||
|
||||
# sample output
|
||||
# rerank score 0: 0.029
|
||||
|
||||
@@ -39,26 +39,10 @@ if(Git_FOUND)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(MSVC)
|
||||
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
|
||||
if (CMAKE_VS_PLATFORM_NAME)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
else()
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} --version
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
|
||||
set(BUILD_COMPILER ${OUT})
|
||||
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
|
||||
|
||||
execute_process(
|
||||
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
|
||||
OUTPUT_VARIABLE OUT
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
)
|
||||
set(BUILD_TARGET ${OUT})
|
||||
if(CMAKE_VS_PLATFORM_NAME)
|
||||
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
|
||||
else()
|
||||
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
endif()
|
||||
|
||||
@@ -52,6 +52,8 @@ add_library(${TARGET} STATIC
|
||||
chat-parser.h
|
||||
chat-parser-xml-toolcall.h
|
||||
chat-parser-xml-toolcall.cpp
|
||||
chat-peg-parser.cpp
|
||||
chat-peg-parser.h
|
||||
chat.cpp
|
||||
chat.h
|
||||
common.cpp
|
||||
@@ -69,12 +71,16 @@ add_library(${TARGET} STATIC
|
||||
log.h
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
peg-parser.cpp
|
||||
peg-parser.h
|
||||
regex-partial.cpp
|
||||
regex-partial.h
|
||||
sampling.cpp
|
||||
sampling.h
|
||||
speculative.cpp
|
||||
speculative.h
|
||||
unicode.cpp
|
||||
unicode.h
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
||||
134
common/arg.cpp
134
common/arg.cpp
@@ -30,6 +30,7 @@
|
||||
#include <thread> // for hardware_concurrency
|
||||
#include <vector>
|
||||
|
||||
#ifndef __EMSCRIPTEN__
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
@@ -41,6 +42,8 @@
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
@@ -212,13 +215,13 @@ struct handle_model_result {
|
||||
static handle_model_result common_params_handle_model(
|
||||
struct common_params_model & model,
|
||||
const std::string & bearer_token,
|
||||
const std::string & model_path_default,
|
||||
bool offline) {
|
||||
handle_model_result result;
|
||||
// handle pre-fill default model path and url based on hf_repo and hf_file
|
||||
{
|
||||
if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
|
||||
model.path = common_docker_resolve_model(model.docker_repo);
|
||||
model.name = model.docker_repo; // set name for consistency
|
||||
} else if (!model.hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
if (model.hf_file.empty()) {
|
||||
@@ -227,7 +230,8 @@ static handle_model_result common_params_handle_model(
|
||||
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
|
||||
exit(1); // built without CURL, error message already printed
|
||||
}
|
||||
model.hf_repo = auto_detected.repo;
|
||||
model.name = model.hf_repo; // repo name with tag
|
||||
model.hf_repo = auto_detected.repo; // repo name without tag
|
||||
model.hf_file = auto_detected.ggufFile;
|
||||
if (!auto_detected.mmprojFile.empty()) {
|
||||
result.found_mmproj = true;
|
||||
@@ -257,8 +261,6 @@ static handle_model_result common_params_handle_model(
|
||||
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
|
||||
}
|
||||
|
||||
} else if (model.path.empty()) {
|
||||
model.path = model_path_default;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -405,7 +407,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
|
||||
// handle model and download
|
||||
{
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
|
||||
auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
|
||||
if (params.no_mmproj) {
|
||||
params.mmproj = {};
|
||||
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
|
||||
@@ -415,12 +417,18 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
// only download mmproj if the current example is using it
|
||||
for (auto & ex : mmproj_examples) {
|
||||
if (ctx_arg.ex == ex) {
|
||||
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
|
||||
common_params_handle_model(params.mmproj, params.hf_token, params.offline);
|
||||
break;
|
||||
}
|
||||
}
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
|
||||
}
|
||||
|
||||
// model is required (except for server)
|
||||
// TODO @ngxson : maybe show a list of available models in CLI in this case
|
||||
if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage) {
|
||||
throw std::invalid_argument("error: --model is required\n");
|
||||
}
|
||||
|
||||
if (params.escape) {
|
||||
@@ -694,6 +702,14 @@ static bool is_autoy(const std::string & value) {
|
||||
}
|
||||
|
||||
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
|
||||
// default values specific to example
|
||||
// note: we place it here instead of inside server.cpp to allow llama-gen-docs to pick it up
|
||||
if (ex == LLAMA_EXAMPLE_SERVER) {
|
||||
params.use_jinja = true;
|
||||
}
|
||||
|
||||
params.use_color = tty_can_use_colors();
|
||||
|
||||
// load dynamic backends
|
||||
ggml_backend_load_all();
|
||||
|
||||
@@ -776,10 +792,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN}));
|
||||
add_opt(common_arg(
|
||||
{"-co", "--color"},
|
||||
string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
|
||||
[](common_params & params) {
|
||||
params.use_color = true;
|
||||
{"-co", "--color"}, "[on|off|auto]",
|
||||
"Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')\n"
|
||||
"'auto' enables colors when output is to a terminal",
|
||||
[](common_params & params, const std::string & value) {
|
||||
if (is_truthy(value)) {
|
||||
params.use_color = true;
|
||||
} else if (is_falsey(value)) {
|
||||
params.use_color = false;
|
||||
} else if (is_autoy(value)) {
|
||||
params.use_color = tty_can_use_colors();
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
string_format("error: unknown value for --color: '%s'\n", value.c_str()));
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
|
||||
add_opt(common_arg(
|
||||
@@ -974,7 +1000,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.kv_unified = true;
|
||||
}
|
||||
).set_env("LLAMA_ARG_KV_SPLIT"));
|
||||
).set_env("LLAMA_ARG_KV_UNIFIED"));
|
||||
add_opt(common_arg(
|
||||
{"--no-context-shift"},
|
||||
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
|
||||
@@ -1008,7 +1034,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
|
||||
string_format("error: unknown value for --flash-attn: '%s'\n", value.c_str()));
|
||||
}
|
||||
}).set_env("LLAMA_ARG_FLASH_ATTN"));
|
||||
add_opt(common_arg(
|
||||
@@ -1215,7 +1241,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.warmup = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
|
||||
add_opt(common_arg(
|
||||
{"--spm-infill"},
|
||||
string_format(
|
||||
@@ -1232,6 +1258,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
const auto sampler_names = string_split<std::string>(value, ';');
|
||||
params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1261,6 +1288,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.temp = std::stof(value);
|
||||
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1268,6 +1296,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
|
||||
[](common_params & params, int value) {
|
||||
params.sampling.top_k = value;
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1275,6 +1304,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1282,6 +1312,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.min_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1296,6 +1327,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_probability = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1303,6 +1335,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_threshold = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1321,6 +1354,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
params.sampling.penalty_last_n = value;
|
||||
params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1328,6 +1362,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.penalty_repeat = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1425,6 +1460,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
|
||||
[](common_params & params, int value) {
|
||||
params.sampling.mirostat = value;
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1432,6 +1468,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_eta = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -1439,6 +1476,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_tau = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
@@ -2072,11 +2110,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
add_opt(common_arg(
|
||||
{"-m", "--model"}, "FNAME",
|
||||
ex == LLAMA_EXAMPLE_EXPORT_LORA
|
||||
? std::string("model path from which to load base model")
|
||||
: string_format(
|
||||
"model path (default: `models/$filename` with filename from `--hf-file` "
|
||||
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
|
||||
),
|
||||
? "model path from which to load base model"
|
||||
: "model path to load",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.model.path = value;
|
||||
}
|
||||
@@ -2468,19 +2503,64 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
"path to save slot kv cache (default: disabled)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.slot_save_path = value;
|
||||
if (!fs_is_directory(params.slot_save_path)) {
|
||||
throw std::invalid_argument("not a directory: " + value);
|
||||
}
|
||||
// if doesn't end with DIRECTORY_SEPARATOR, add it
|
||||
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
|
||||
params.slot_save_path += DIRECTORY_SEPARATOR;
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--media-path"}, "PATH",
|
||||
"directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.media_path = value;
|
||||
if (!fs_is_directory(params.media_path)) {
|
||||
throw std::invalid_argument("not a directory: " + value);
|
||||
}
|
||||
// if doesn't end with DIRECTORY_SEPARATOR, add it
|
||||
if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
|
||||
params.media_path += DIRECTORY_SEPARATOR;
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--models-dir"}, "PATH",
|
||||
"directory containing models for the router server (default: disabled)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.models_dir = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
|
||||
add_opt(common_arg(
|
||||
{"--models-max"}, "N",
|
||||
string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
|
||||
[](common_params & params, int value) {
|
||||
params.models_max = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
|
||||
add_opt(common_arg(
|
||||
{"--no-models-autoload"},
|
||||
"disables automatic loading of models (default: enabled)",
|
||||
[](common_params & params) {
|
||||
params.models_autoload = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_MODELS_AUTOLOAD"));
|
||||
add_opt(common_arg(
|
||||
{"--jinja"},
|
||||
"use jinja template for chat (default: disabled)",
|
||||
string_format("use jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.use_jinja = true;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--no-jinja"},
|
||||
string_format("disable jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
|
||||
[](common_params & params) {
|
||||
params.use_jinja = false;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_NO_JINJA"));
|
||||
add_opt(common_arg(
|
||||
{"--reasoning-format"}, "FORMAT",
|
||||
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
|
||||
@@ -2614,7 +2694,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params &, const std::string & value) {
|
||||
common_log_set_file(common_log_main(), value.c_str());
|
||||
}
|
||||
));
|
||||
).set_env("LLAMA_LOG_FILE"));
|
||||
add_opt(common_arg(
|
||||
{"--log-colors"}, "[on|off|auto]",
|
||||
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
|
||||
@@ -2628,7 +2708,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
|
||||
string_format("error: unknown value for --log-colors: '%s'\n", value.c_str()));
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_LOG_COLORS"));
|
||||
@@ -2649,7 +2729,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_env("LLAMA_OFFLINE"));
|
||||
add_opt(common_arg(
|
||||
{"-lv", "--verbosity", "--log-verbosity"}, "N",
|
||||
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
|
||||
string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
|
||||
" - 0: generic output\n"
|
||||
" - 1: error\n"
|
||||
" - 2: warning\n"
|
||||
" - 3: info\n"
|
||||
" - 4: debug\n"
|
||||
"(default: %d)\n", params.verbosity),
|
||||
[](common_params & params, int value) {
|
||||
params.verbosity = value;
|
||||
common_log_set_verbosity_thold(value);
|
||||
|
||||
@@ -724,16 +724,10 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
if (reasoning_unclosed) {
|
||||
if (auto pos = content.find(end_think); pos == std::string::npos && builder.pos() != builder.input().size()) {
|
||||
unclosed_reasoning_content += content;
|
||||
if (form.allow_toolcall_in_think) {
|
||||
builder.move_to(tc->groups[0].begin);
|
||||
if (!builder.try_consume_xml_tool_calls(form)) {
|
||||
unclosed_reasoning_content += tool_call_start;
|
||||
builder.move_to(tc->groups[0].end);
|
||||
}
|
||||
} else {
|
||||
if (!(form.allow_toolcall_in_think && tc)) {
|
||||
unclosed_reasoning_content += tool_call_start;
|
||||
continue;
|
||||
}
|
||||
continue;
|
||||
} else {
|
||||
reasoning_unclosed = false;
|
||||
std::string reasoning_content;
|
||||
@@ -781,8 +775,12 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
}
|
||||
} else {
|
||||
// This <tool_call> start is in thinking block, skip this tool call
|
||||
auto pos = think_start + start_think.size();
|
||||
unclosed_reasoning_content = content.substr(pos) + tool_call_start;
|
||||
// This <tool_call> start is in thinking block
|
||||
if (form.allow_toolcall_in_think) {
|
||||
unclosed_reasoning_content = content.substr(think_start + start_think.size());
|
||||
} else {
|
||||
unclosed_reasoning_content = content.substr(think_start + start_think.size()) + tool_call_start;
|
||||
}
|
||||
reasoning_unclosed = true;
|
||||
content.resize(think_start);
|
||||
toolcall_in_think = true;
|
||||
@@ -805,14 +803,35 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
}
|
||||
|
||||
// remove potential partial suffix
|
||||
if (content.size() > 0 && builder.pos() == builder.input().size() && unclosed_reasoning_content.empty()) {
|
||||
rstrip(content);
|
||||
trim_potential_partial_word(content);
|
||||
rstrip(content);
|
||||
if (builder.pos() == builder.input().size()) {
|
||||
if (unclosed_reasoning_content.empty()) {
|
||||
rstrip(content);
|
||||
trim_potential_partial_word(content);
|
||||
rstrip(content);
|
||||
} else {
|
||||
rstrip(unclosed_reasoning_content);
|
||||
trim_potential_partial_word(unclosed_reasoning_content);
|
||||
rstrip(unclosed_reasoning_content);
|
||||
}
|
||||
}
|
||||
|
||||
// consume unclosed_reasoning_content if allow_toolcall_in_think is set
|
||||
if (form.allow_toolcall_in_think && !unclosed_reasoning_content.empty()) {
|
||||
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content) {
|
||||
builder.add_reasoning_content(unclosed_reasoning_content);
|
||||
} else {
|
||||
if (content.empty()) {
|
||||
content = start_think + unclosed_reasoning_content;
|
||||
} else {
|
||||
content += "\n\n" + start_think;
|
||||
content += unclosed_reasoning_content;
|
||||
}
|
||||
}
|
||||
unclosed_reasoning_content.clear();
|
||||
}
|
||||
|
||||
// Add content
|
||||
if (content.size() != 0) {
|
||||
if (!content.empty()) {
|
||||
// If there are multiple content blocks
|
||||
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content && builder.result().content.size() != 0) {
|
||||
builder.add_content("\n\n");
|
||||
@@ -820,7 +839,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
builder.add_content(content);
|
||||
}
|
||||
|
||||
// This <tool_call> start is in thinking block, skip this tool call
|
||||
// This <tool_call> start is in thinking block and toolcall_in_think not set, skip this tool call
|
||||
if (toolcall_in_think && !form.allow_toolcall_in_think) {
|
||||
continue;
|
||||
}
|
||||
@@ -829,7 +848,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
if (!tc) {
|
||||
GGML_ASSERT(builder.pos() == builder.input().size());
|
||||
GGML_ASSERT(unclosed_reasoning_content.empty());
|
||||
GGML_ASSERT(!reasoning_unclosed);
|
||||
if (!form.allow_toolcall_in_think) GGML_ASSERT(!reasoning_unclosed);
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -854,7 +873,6 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
|
||||
|
||||
/**
|
||||
* Parse content uses reasoning and XML-Style tool call
|
||||
* TODO: Note that form.allow_toolcall_in_think is not tested yet. If anyone confirms it works, this comment can be removed.
|
||||
*/
|
||||
void common_chat_msg_parser::consume_reasoning_with_xml_tool_calls(const struct xml_tool_call_format & form, const std::string & start_think, const std::string & end_think) {
|
||||
parse_msg_with_xml_tool_calls(*this, form, start_think, end_think);
|
||||
|
||||
@@ -31,7 +31,7 @@ struct xml_tool_call_format {
|
||||
std::optional<std::string> last_val_end = std::nullopt;
|
||||
std::optional<std::string> last_tool_end = std::nullopt;
|
||||
bool trim_raw_argval = false;
|
||||
bool allow_toolcall_in_think = false; // TODO: UNTESTED!!!
|
||||
bool allow_toolcall_in_think = false;
|
||||
};
|
||||
|
||||
// make a GBNF that accept any strings except those containing any of the forbidden strings.
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
114
common/chat-peg-parser.cpp
Normal file
114
common/chat-peg-parser.cpp
Normal file
@@ -0,0 +1,114 @@
|
||||
#include "chat-peg-parser.h"
|
||||
|
||||
#include <nlohmann/json.hpp>
|
||||
|
||||
using json = nlohmann::json;
|
||||
|
||||
static std::string_view trim_trailing_space(std::string_view sv) {
|
||||
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
|
||||
sv.remove_suffix(1);
|
||||
}
|
||||
return sv;
|
||||
}
|
||||
|
||||
void common_chat_peg_mapper::from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result) {
|
||||
arena.visit(result, [this](const common_peg_ast_node & node) {
|
||||
map(node);
|
||||
});
|
||||
}
|
||||
|
||||
void common_chat_peg_mapper::map(const common_peg_ast_node & node) {
|
||||
bool is_reasoning = node.tag == common_chat_peg_builder::REASONING;
|
||||
bool is_content = node.tag == common_chat_peg_builder::CONTENT;
|
||||
|
||||
if (is_reasoning) {
|
||||
result.reasoning_content = std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
|
||||
if (is_content) {
|
||||
result.content = std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
}
|
||||
|
||||
void common_chat_peg_native_mapper::map(const common_peg_ast_node & node) {
|
||||
common_chat_peg_mapper::map(node);
|
||||
|
||||
bool is_tool_open = node.tag == common_chat_peg_native_builder::TOOL_OPEN;
|
||||
bool is_tool_name = node.tag == common_chat_peg_native_builder::TOOL_NAME;
|
||||
bool is_tool_id = node.tag == common_chat_peg_native_builder::TOOL_ID;
|
||||
bool is_tool_args = node.tag == common_chat_peg_native_builder::TOOL_ARGS;
|
||||
|
||||
if (is_tool_open) {
|
||||
result.tool_calls.emplace_back();
|
||||
current_tool = &result.tool_calls.back();
|
||||
}
|
||||
|
||||
if (is_tool_id && current_tool) {
|
||||
current_tool->id = std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
|
||||
if (is_tool_name && current_tool) {
|
||||
current_tool->name = std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
|
||||
if (is_tool_args && current_tool) {
|
||||
current_tool->arguments = std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
}
|
||||
|
||||
void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
|
||||
common_chat_peg_mapper::map(node);
|
||||
|
||||
bool is_tool_open = node.tag == common_chat_peg_constructed_builder::TOOL_OPEN;
|
||||
bool is_tool_name = node.tag == common_chat_peg_constructed_builder::TOOL_NAME;
|
||||
bool is_tool_close = node.tag == common_chat_peg_constructed_builder::TOOL_CLOSE;
|
||||
bool is_arg_open = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_OPEN;
|
||||
bool is_arg_close = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_CLOSE;
|
||||
bool is_arg_name = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_NAME;
|
||||
bool is_arg_string = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_STRING_VALUE;
|
||||
bool is_arg_json = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_JSON_VALUE;
|
||||
|
||||
if (is_tool_open) {
|
||||
result.tool_calls.emplace_back();
|
||||
current_tool = &result.tool_calls.back();
|
||||
arg_count = 0;
|
||||
}
|
||||
|
||||
if (is_tool_name) {
|
||||
current_tool->name = std::string(node.text);
|
||||
current_tool->arguments = "{";
|
||||
}
|
||||
|
||||
if (is_arg_open) {
|
||||
needs_closing_quote = false;
|
||||
}
|
||||
|
||||
if (is_arg_name && current_tool) {
|
||||
if (arg_count > 0) {
|
||||
current_tool->arguments += ",";
|
||||
}
|
||||
current_tool->arguments += json(trim_trailing_space(node.text)).dump() + ":";
|
||||
++arg_count;
|
||||
}
|
||||
|
||||
if (is_arg_string && current_tool) {
|
||||
// Serialize to JSON, but exclude the end quote
|
||||
std::string dumped = json(node.text).dump();
|
||||
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
|
||||
needs_closing_quote = true;
|
||||
}
|
||||
|
||||
if (is_arg_close && current_tool) {
|
||||
if (needs_closing_quote) {
|
||||
current_tool->arguments += "\"";
|
||||
}
|
||||
}
|
||||
|
||||
if (is_arg_json && current_tool) {
|
||||
current_tool->arguments += std::string(trim_trailing_space(node.text));
|
||||
}
|
||||
|
||||
if (is_tool_close && current_tool) {
|
||||
current_tool->arguments += "}";
|
||||
}
|
||||
}
|
||||
105
common/chat-peg-parser.h
Normal file
105
common/chat-peg-parser.h
Normal file
@@ -0,0 +1,105 @@
|
||||
#pragma once
|
||||
|
||||
#include "chat.h"
|
||||
#include "peg-parser.h"
|
||||
|
||||
class common_chat_peg_builder : public common_peg_parser_builder {
|
||||
public:
|
||||
static constexpr const char * REASONING_BLOCK = "reasoning-block";
|
||||
static constexpr const char * REASONING = "reasoning";
|
||||
static constexpr const char * CONTENT = "content";
|
||||
|
||||
common_peg_parser reasoning_block(const common_peg_parser & p) { return tag(REASONING_BLOCK, p); }
|
||||
common_peg_parser reasoning(const common_peg_parser & p) { return tag(REASONING, p); }
|
||||
common_peg_parser content(const common_peg_parser & p) { return tag(CONTENT, p); }
|
||||
};
|
||||
|
||||
inline common_peg_arena build_chat_peg_parser(const std::function<common_peg_parser(common_chat_peg_builder & builder)> & fn) {
|
||||
common_chat_peg_builder builder;
|
||||
builder.set_root(fn(builder));
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
class common_chat_peg_mapper {
|
||||
public:
|
||||
common_chat_msg & result;
|
||||
|
||||
common_chat_peg_mapper(common_chat_msg & msg) : result(msg) {}
|
||||
|
||||
virtual void from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result);
|
||||
virtual void map(const common_peg_ast_node & node);
|
||||
};
|
||||
|
||||
class common_chat_peg_native_builder : public common_chat_peg_builder {
|
||||
public:
|
||||
static constexpr const char * TOOL = "tool";
|
||||
static constexpr const char * TOOL_OPEN = "tool-open";
|
||||
static constexpr const char * TOOL_CLOSE = "tool-close";
|
||||
static constexpr const char * TOOL_ID = "tool-id";
|
||||
static constexpr const char * TOOL_NAME = "tool-name";
|
||||
static constexpr const char * TOOL_ARGS = "tool-args";
|
||||
|
||||
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
|
||||
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
|
||||
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
|
||||
common_peg_parser tool_id(const common_peg_parser & p) { return atomic(tag(TOOL_ID, p)); }
|
||||
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
|
||||
common_peg_parser tool_args(const common_peg_parser & p) { return tag(TOOL_ARGS, p); }
|
||||
};
|
||||
|
||||
class common_chat_peg_native_mapper : public common_chat_peg_mapper {
|
||||
common_chat_tool_call * current_tool;
|
||||
|
||||
public:
|
||||
common_chat_peg_native_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
|
||||
|
||||
void map(const common_peg_ast_node & node) override;
|
||||
};
|
||||
|
||||
inline common_peg_arena build_chat_peg_native_parser(const std::function<common_peg_parser(common_chat_peg_native_builder & builder)> & fn) {
|
||||
common_chat_peg_native_builder builder;
|
||||
builder.set_root(fn(builder));
|
||||
return builder.build();
|
||||
}
|
||||
|
||||
class common_chat_peg_constructed_builder : public common_chat_peg_builder {
|
||||
public:
|
||||
static constexpr const char * TOOL = "tool";
|
||||
static constexpr const char * TOOL_OPEN = "tool-open";
|
||||
static constexpr const char * TOOL_CLOSE = "tool-close";
|
||||
static constexpr const char * TOOL_NAME = "tool-name";
|
||||
static constexpr const char * TOOL_ARG = "tool-arg";
|
||||
static constexpr const char * TOOL_ARG_OPEN = "tool-arg-open";
|
||||
static constexpr const char * TOOL_ARG_CLOSE = "tool-arg-close";
|
||||
static constexpr const char * TOOL_ARG_NAME = "tool-arg-name";
|
||||
static constexpr const char * TOOL_ARG_STRING_VALUE = "tool-arg-string-value";
|
||||
static constexpr const char * TOOL_ARG_JSON_VALUE = "tool-arg-json-value";
|
||||
|
||||
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
|
||||
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
|
||||
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
|
||||
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
|
||||
common_peg_parser tool_arg(const common_peg_parser & p) { return tag(TOOL_ARG, p); }
|
||||
common_peg_parser tool_arg_open(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_OPEN, p)); }
|
||||
common_peg_parser tool_arg_close(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_CLOSE, p)); }
|
||||
common_peg_parser tool_arg_name(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_NAME, p)); }
|
||||
common_peg_parser tool_arg_string_value(const common_peg_parser & p) { return tag(TOOL_ARG_STRING_VALUE, p); }
|
||||
common_peg_parser tool_arg_json_value(const common_peg_parser & p) { return tag(TOOL_ARG_JSON_VALUE, p); }
|
||||
};
|
||||
|
||||
class common_chat_peg_constructed_mapper : public common_chat_peg_mapper {
|
||||
common_chat_tool_call * current_tool;
|
||||
int arg_count = 0;
|
||||
bool needs_closing_quote = false;
|
||||
|
||||
public:
|
||||
common_chat_peg_constructed_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
|
||||
|
||||
void map(const common_peg_ast_node & node) override;
|
||||
};
|
||||
|
||||
inline common_peg_arena build_chat_peg_constructed_parser(const std::function<common_peg_parser(common_chat_peg_constructed_builder & builder)> & fn) {
|
||||
common_chat_peg_constructed_builder builder;
|
||||
builder.set_root(fn(builder));
|
||||
return builder.build();
|
||||
}
|
||||
1027
common/chat.cpp
1027
common/chat.cpp
File diff suppressed because it is too large
Load Diff
@@ -3,6 +3,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "common.h"
|
||||
#include "peg-parser.h"
|
||||
#include <functional>
|
||||
#include <chrono>
|
||||
#include <string>
|
||||
@@ -76,7 +77,7 @@ struct common_chat_msg_diff {
|
||||
size_t tool_call_index = std::string::npos;
|
||||
common_chat_tool_call tool_call_delta;
|
||||
|
||||
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
|
||||
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new);
|
||||
|
||||
bool operator==(const common_chat_msg_diff & other) const {
|
||||
return content_delta == other.content_delta
|
||||
@@ -124,6 +125,11 @@ enum common_chat_format {
|
||||
COMMON_CHAT_FORMAT_APRIEL_1_5,
|
||||
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
|
||||
|
||||
// These are intended to be parsed by the PEG parser
|
||||
COMMON_CHAT_FORMAT_PEG_SIMPLE,
|
||||
COMMON_CHAT_FORMAT_PEG_NATIVE,
|
||||
COMMON_CHAT_FORMAT_PEG_CONSTRUCTED,
|
||||
|
||||
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
|
||||
};
|
||||
|
||||
@@ -154,6 +160,7 @@ struct common_chat_params {
|
||||
std::vector<common_grammar_trigger> grammar_triggers;
|
||||
std::vector<std::string> preserved_tokens;
|
||||
std::vector<std::string> additional_stops;
|
||||
std::string parser;
|
||||
};
|
||||
|
||||
struct common_chat_syntax {
|
||||
@@ -163,6 +170,7 @@ struct common_chat_syntax {
|
||||
bool reasoning_in_content = false;
|
||||
bool thinking_forced_open = false;
|
||||
bool parse_tool_calls = true;
|
||||
common_peg_arena parser = {};
|
||||
};
|
||||
|
||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||
@@ -206,6 +214,7 @@ const char* common_chat_format_name(common_chat_format format);
|
||||
const char* common_reasoning_format_name(common_reasoning_format format);
|
||||
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
|
||||
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
|
||||
|
||||
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
@@ -26,7 +27,6 @@
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
#include <vector>
|
||||
|
||||
@@ -60,6 +60,14 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
common_time_meas::common_time_meas(int64_t & t_acc, bool disable) : t_start_us(disable ? -1 : ggml_time_us()), t_acc(t_acc) {}
|
||||
|
||||
common_time_meas::~common_time_meas() {
|
||||
if (t_start_us >= 0) {
|
||||
t_acc += ggml_time_us() - t_start_us;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -686,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
|
||||
|
||||
// Validate if a filename is safe to use
|
||||
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
|
||||
bool fs_validate_filename(const std::string & filename) {
|
||||
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
|
||||
if (!filename.length()) {
|
||||
// Empty filename invalid
|
||||
return false;
|
||||
@@ -746,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|
||||
|| c == 0xFFFD // Replacement Character (UTF-8)
|
||||
|| c == 0xFEFF // Byte Order Mark (BOM)
|
||||
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|
||||
|| c == ':' || c == '*' // Illegal characters
|
||||
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
|
||||
return false;
|
||||
}
|
||||
if (!allow_subdirs && (c == '/' || c == '\\')) {
|
||||
// Subdirectories not allowed, reject path separators
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
|
||||
@@ -774,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
|
||||
#include <iostream>
|
||||
|
||||
|
||||
#ifdef _WIN32
|
||||
static std::wstring utf8_to_wstring(const std::string & str) {
|
||||
if (str.empty()) {
|
||||
return std::wstring();
|
||||
}
|
||||
|
||||
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
|
||||
|
||||
if (size <= 0) {
|
||||
return std::wstring();
|
||||
}
|
||||
|
||||
std::wstring wstr(size, 0);
|
||||
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
|
||||
|
||||
return wstr;
|
||||
}
|
||||
#endif
|
||||
|
||||
// returns true if successful, false otherwise
|
||||
bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#ifdef _WIN32
|
||||
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
|
||||
std::wstring wpath = converter.from_bytes(path);
|
||||
std::wstring wpath = utf8_to_wstring(path);
|
||||
|
||||
// if the path already exists, check whether it's a directory
|
||||
const DWORD attributes = GetFileAttributesW(wpath.c_str());
|
||||
@@ -851,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
bool fs_is_directory(const std::string & path) {
|
||||
std::filesystem::path dir(path);
|
||||
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
|
||||
}
|
||||
|
||||
std::string fs_get_cache_directory() {
|
||||
std::string cache_directory = "";
|
||||
auto ensure_trailing_slash = [](std::string p) {
|
||||
@@ -885,6 +920,8 @@ std::string fs_get_cache_directory() {
|
||||
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
|
||||
#elif defined(_WIN32)
|
||||
cache_directory = std::getenv("LOCALAPPDATA");
|
||||
#elif defined(__EMSCRIPTEN__)
|
||||
GGML_ABORT("not implemented on this platform");
|
||||
#else
|
||||
# error Unknown architecture
|
||||
#endif
|
||||
@@ -904,7 +941,7 @@ std::string fs_get_cache_file(const std::string & filename) {
|
||||
return cache_directory + filename;
|
||||
}
|
||||
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
|
||||
std::vector<common_file_info> files;
|
||||
if (path.empty()) return files;
|
||||
|
||||
@@ -919,14 +956,22 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
const auto & p = entry.path();
|
||||
if (std::filesystem::is_regular_file(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.is_dir = false;
|
||||
try {
|
||||
info.size = static_cast<size_t>(std::filesystem::file_size(p));
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
info.size = 0;
|
||||
}
|
||||
files.push_back(std::move(info));
|
||||
} else if (include_directories && std::filesystem::is_directory(p)) {
|
||||
common_file_info info;
|
||||
info.path = p.string();
|
||||
info.name = p.filename().string();
|
||||
info.size = 0; // Directories have no size
|
||||
info.is_dir = true;
|
||||
files.push_back(std::move(info));
|
||||
}
|
||||
} catch (const std::filesystem::filesystem_error &) {
|
||||
// skip entries we cannot inspect
|
||||
@@ -937,11 +982,89 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
|
||||
return files;
|
||||
}
|
||||
|
||||
//
|
||||
// TTY utils
|
||||
//
|
||||
|
||||
bool tty_can_use_colors() {
|
||||
// Check NO_COLOR environment variable (https://no-color.org/)
|
||||
if (const char * no_color = std::getenv("NO_COLOR")) {
|
||||
if (no_color[0] != '\0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check TERM environment variable
|
||||
if (const char * term = std::getenv("TERM")) {
|
||||
if (std::strcmp(term, "dumb") == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if stdout and stderr are connected to a terminal
|
||||
// We check both because log messages can go to either
|
||||
bool stdout_is_tty = isatty(fileno(stdout));
|
||||
bool stderr_is_tty = isatty(fileno(stderr));
|
||||
|
||||
return stdout_is_tty || stderr_is_tty;
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
static inline void common_init_sampler_from_model(
|
||||
const llama_model * model,
|
||||
common_params_sampling & sparams) {
|
||||
|
||||
const uint64_t config = sparams.user_sampling_config;
|
||||
|
||||
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[64] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
int32_t v = strtol(buf, &end, 10);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
|
||||
if (config & user_config) return;
|
||||
|
||||
char buf[128] = {0};
|
||||
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
|
||||
char * end = nullptr;
|
||||
float v = strtof(buf, &end);
|
||||
if (end && end != buf) dst = v;
|
||||
}
|
||||
};
|
||||
|
||||
// Sampling sequence
|
||||
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
|
||||
char buf[512] = {0};
|
||||
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
|
||||
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
|
||||
if (!sampler_names.empty()) {
|
||||
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
|
||||
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
|
||||
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
|
||||
}
|
||||
|
||||
struct common_init_result common_init_from_params(common_params & params) {
|
||||
common_init_result iparams;
|
||||
auto mparams = common_model_params_to_llama(params);
|
||||
@@ -953,6 +1076,8 @@ struct common_init_result common_init_from_params(common_params & params) {
|
||||
return iparams;
|
||||
}
|
||||
|
||||
common_init_sampler_from_model(model, params.sampling);
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
auto cparams = common_context_params_to_llama(params);
|
||||
|
||||
@@ -2,17 +2,19 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml-opt.h"
|
||||
#include "llama-cpp.h"
|
||||
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <sstream>
|
||||
#include <cmath>
|
||||
|
||||
#include "ggml-opt.h"
|
||||
#include "llama-cpp.h"
|
||||
#if defined(_WIN32) && !defined(_WIN32_WINNT)
|
||||
#define _WIN32_WINNT 0x0A00
|
||||
#endif
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
@@ -28,7 +30,14 @@
|
||||
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
||||
} while(0)
|
||||
|
||||
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
|
||||
struct common_time_meas {
|
||||
common_time_meas(int64_t & t_acc, bool disable = false);
|
||||
~common_time_meas();
|
||||
|
||||
const int64_t t_start_us;
|
||||
|
||||
int64_t & t_acc;
|
||||
};
|
||||
|
||||
struct common_adapter_lora_info {
|
||||
std::string path;
|
||||
@@ -133,6 +142,22 @@ struct common_grammar_trigger {
|
||||
llama_token token = LLAMA_TOKEN_NULL;
|
||||
};
|
||||
|
||||
enum common_params_sampling_config : uint64_t {
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
|
||||
};
|
||||
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
|
||||
@@ -165,6 +190,8 @@ struct common_params_sampling {
|
||||
bool no_perf = false; // disable performance metrics
|
||||
bool timing_per_token = false;
|
||||
|
||||
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
|
||||
|
||||
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
|
||||
|
||||
|
||||
@@ -198,6 +225,7 @@ struct common_params_model {
|
||||
std::string hf_repo = ""; // HF repo // NOLINT
|
||||
std::string hf_file = ""; // HF file // NOLINT
|
||||
std::string docker_repo = ""; // Docker repo // NOLINT
|
||||
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
@@ -344,7 +372,7 @@ struct common_params {
|
||||
|
||||
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
|
||||
|
||||
int32_t verbosity = 0;
|
||||
int32_t verbosity = 3; // LOG_LEVEL_INFO
|
||||
int32_t control_vector_layer_start = -1; // layer range for control vector
|
||||
int32_t control_vector_layer_end = -1; // layer range for control vector
|
||||
bool offline = false;
|
||||
@@ -453,9 +481,15 @@ struct common_params {
|
||||
bool endpoint_props = false; // only control POST requests, not GET
|
||||
bool endpoint_metrics = false;
|
||||
|
||||
// router server configs
|
||||
std::string models_dir = ""; // directory containing models for the router server
|
||||
int models_max = 4; // maximum number of models to load simultaneously
|
||||
bool models_autoload = true; // automatically load models when requested via the router server
|
||||
|
||||
bool log_json = false;
|
||||
|
||||
std::string slot_save_path;
|
||||
std::string media_path; // path to directory for loading media files
|
||||
|
||||
float slot_prompt_similarity = 0.1f;
|
||||
|
||||
@@ -606,8 +640,9 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
|
||||
// Filesystem utils
|
||||
//
|
||||
|
||||
bool fs_validate_filename(const std::string & filename);
|
||||
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
|
||||
bool fs_create_directory_with_parents(const std::string & path);
|
||||
bool fs_is_directory(const std::string & path);
|
||||
|
||||
std::string fs_get_cache_directory();
|
||||
std::string fs_get_cache_file(const std::string & filename);
|
||||
@@ -616,8 +651,16 @@ struct common_file_info {
|
||||
std::string path;
|
||||
std::string name;
|
||||
size_t size = 0; // in bytes
|
||||
bool is_dir = false;
|
||||
};
|
||||
std::vector<common_file_info> fs_list_files(const std::string & path);
|
||||
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
|
||||
|
||||
//
|
||||
// TTY utils
|
||||
//
|
||||
|
||||
// Auto-detect if colors can be enabled based on terminal and environment
|
||||
bool tty_can_use_colors();
|
||||
|
||||
//
|
||||
// Model utils
|
||||
|
||||
@@ -24,6 +24,7 @@
|
||||
#include "http.h"
|
||||
#endif
|
||||
|
||||
#ifndef __EMSCRIPTEN__
|
||||
#ifdef __linux__
|
||||
#include <linux/limits.h>
|
||||
#elif defined(_WIN32)
|
||||
@@ -35,6 +36,8 @@
|
||||
#else
|
||||
#include <sys/syslimits.h>
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
|
||||
|
||||
// isatty
|
||||
@@ -430,7 +433,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
|
||||
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
|
||||
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
|
||||
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 0L);
|
||||
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
|
||||
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
|
||||
auto data_vec = static_cast<std::vector<char> *>(data);
|
||||
@@ -517,16 +520,18 @@ static bool common_pull_file(httplib::Client & cli,
|
||||
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
|
||||
}
|
||||
|
||||
std::atomic<size_t> downloaded{existing_size};
|
||||
const char * func = __func__; // avoid __func__ inside a lambda
|
||||
size_t downloaded = existing_size;
|
||||
size_t progress_step = 0;
|
||||
|
||||
auto res = cli.Get(resolve_path, headers,
|
||||
[&](const httplib::Response &response) {
|
||||
if (existing_size > 0 && response.status != 206) {
|
||||
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
|
||||
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", func, response.status);
|
||||
return false;
|
||||
}
|
||||
if (existing_size == 0 && response.status != 200) {
|
||||
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
|
||||
LOG_WRN("%s: download received non-successful status code: %d\n", func, response.status);
|
||||
return false;
|
||||
}
|
||||
if (total_size == 0 && response.has_header("Content-Length")) {
|
||||
@@ -534,7 +539,7 @@ static bool common_pull_file(httplib::Client & cli,
|
||||
size_t content_length = std::stoull(response.get_header_value("Content-Length"));
|
||||
total_size = existing_size + content_length;
|
||||
} catch (const std::exception &e) {
|
||||
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
|
||||
LOG_WRN("%s: invalid Content-Length header: %s\n", func, e.what());
|
||||
}
|
||||
}
|
||||
return true;
|
||||
@@ -542,11 +547,16 @@ static bool common_pull_file(httplib::Client & cli,
|
||||
[&](const char *data, size_t len) {
|
||||
ofs.write(data, len);
|
||||
if (!ofs) {
|
||||
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
|
||||
LOG_ERR("%s: error writing to file: %s\n", func, path_tmp.c_str());
|
||||
return false;
|
||||
}
|
||||
downloaded += len;
|
||||
print_progress(downloaded, total_size);
|
||||
progress_step += len;
|
||||
|
||||
if (progress_step >= total_size / 1000 || downloaded == total_size) {
|
||||
print_progress(downloaded, total_size);
|
||||
progress_step = 0;
|
||||
}
|
||||
return true;
|
||||
},
|
||||
nullptr
|
||||
@@ -1047,7 +1057,7 @@ std::string common_docker_resolve_model(const std::string &) {
|
||||
std::vector<common_cached_model_info> common_list_cached_models() {
|
||||
std::vector<common_cached_model_info> models;
|
||||
const std::string cache_dir = fs_get_cache_directory();
|
||||
const std::vector<common_file_info> files = fs_list_files(cache_dir);
|
||||
const std::vector<common_file_info> files = fs_list(cache_dir, false);
|
||||
for (const auto & file : files) {
|
||||
if (string_starts_with(file.name, "manifest=") && string_ends_with(file.name, ".json")) {
|
||||
common_cached_model_info model_info;
|
||||
|
||||
@@ -14,8 +14,10 @@ struct common_cached_model_info {
|
||||
std::string model;
|
||||
std::string tag;
|
||||
size_t size = 0; // GGUF size in bytes
|
||||
// return string representation like "user/model:tag"
|
||||
// if tag is "latest", it will be omitted
|
||||
std::string to_string() const {
|
||||
return user + "/" + model + ":" + tag;
|
||||
return user + "/" + model + (tag == "latest" ? "" : ":" + tag);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
|
||||
}
|
||||
|
||||
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
|
||||
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
|
||||
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
|
||||
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
|
||||
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
|
||||
};
|
||||
|
||||
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
|
||||
@@ -974,7 +974,7 @@ public:
|
||||
|
||||
void check_errors() {
|
||||
if (!_errors.empty()) {
|
||||
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
|
||||
}
|
||||
if (!_warnings.empty()) {
|
||||
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <chrono>
|
||||
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
|
||||
common_log_verbosity_thold = verbosity;
|
||||
}
|
||||
|
||||
// Auto-detect if colors should be enabled based on terminal and environment
|
||||
static bool common_log_should_use_colors_auto() {
|
||||
// Check NO_COLOR environment variable (https://no-color.org/)
|
||||
if (const char * no_color = std::getenv("NO_COLOR")) {
|
||||
if (no_color[0] != '\0') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check TERM environment variable
|
||||
if (const char * term = std::getenv("TERM")) {
|
||||
if (std::strcmp(term, "dumb") == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// Check if stdout and stderr are connected to a terminal
|
||||
// We check both because log messages can go to either
|
||||
bool stdout_is_tty = isatty(fileno(stdout));
|
||||
bool stderr_is_tty = isatty(fileno(stderr));
|
||||
|
||||
return stdout_is_tty || stderr_is_tty;
|
||||
}
|
||||
|
||||
static int64_t t_us() {
|
||||
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
|
||||
}
|
||||
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
|
||||
static std::once_flag init_flag;
|
||||
std::call_once(init_flag, [&]() {
|
||||
// Set default to auto-detect colors
|
||||
log.set_colors(common_log_should_use_colors_auto());
|
||||
log.set_colors(tty_can_use_colors());
|
||||
});
|
||||
|
||||
return &log;
|
||||
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
|
||||
|
||||
void common_log_set_colors(struct common_log * log, log_colors colors) {
|
||||
if (colors == LOG_COLORS_AUTO) {
|
||||
log->set_colors(common_log_should_use_colors_auto());
|
||||
log->set_colors(tty_can_use_colors());
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -443,8 +420,22 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps) {
|
||||
log->set_timestamps(timestamps);
|
||||
}
|
||||
|
||||
static int common_get_verbosity(enum ggml_log_level level) {
|
||||
switch (level) {
|
||||
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
|
||||
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
|
||||
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
|
||||
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
|
||||
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
|
||||
case GGML_LOG_LEVEL_NONE:
|
||||
default:
|
||||
return LOG_LEVEL_OUTPUT;
|
||||
}
|
||||
}
|
||||
|
||||
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
|
||||
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
|
||||
auto verbosity = common_get_verbosity(level);
|
||||
if (verbosity <= common_log_verbosity_thold) {
|
||||
common_log_add(common_log_main(), level, "%s", text);
|
||||
}
|
||||
}
|
||||
|
||||
31
common/log.h
31
common/log.h
@@ -21,8 +21,14 @@
|
||||
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
|
||||
#define LOG_DEFAULT_DEBUG 1
|
||||
#define LOG_DEFAULT_LLAMA 0
|
||||
#define LOG_LEVEL_DEBUG 4
|
||||
#define LOG_LEVEL_INFO 3
|
||||
#define LOG_LEVEL_WARN 2
|
||||
#define LOG_LEVEL_ERROR 1
|
||||
#define LOG_LEVEL_OUTPUT 0 // output data from tools
|
||||
|
||||
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
|
||||
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
|
||||
|
||||
enum log_colors {
|
||||
LOG_COLORS_AUTO = -1,
|
||||
@@ -67,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
|
||||
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
|
||||
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
|
||||
//
|
||||
// I - info (stdout, V = 0)
|
||||
// W - warning (stderr, V = 0)
|
||||
// E - error (stderr, V = 0)
|
||||
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
|
||||
// I - info (stdout, V = LOG_DEFAULT_INFO)
|
||||
// W - warning (stderr, V = LOG_DEFAULT_WARN)
|
||||
// E - error (stderr, V = LOG_DEFAULT_ERROR)
|
||||
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
|
||||
//
|
||||
|
||||
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
|
||||
@@ -95,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
|
||||
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
|
||||
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
|
||||
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
|
||||
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
|
||||
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
|
||||
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
|
||||
|
||||
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
|
||||
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)
|
||||
|
||||
1712
common/peg-parser.cpp
Normal file
1712
common/peg-parser.cpp
Normal file
File diff suppressed because it is too large
Load Diff
459
common/peg-parser.h
Normal file
459
common/peg-parser.h
Normal file
@@ -0,0 +1,459 @@
|
||||
#pragma once
|
||||
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <functional>
|
||||
#include <vector>
|
||||
#include <variant>
|
||||
|
||||
struct common_grammar_builder;
|
||||
|
||||
class common_peg_parser_builder;
|
||||
|
||||
using common_peg_parser_id = size_t;
|
||||
constexpr common_peg_parser_id COMMON_PEG_INVALID_PARSER_ID = static_cast<common_peg_parser_id>(-1);
|
||||
|
||||
using common_peg_ast_id = size_t;
|
||||
constexpr common_peg_ast_id COMMON_PEG_INVALID_AST_ID = static_cast<common_peg_ast_id>(-1);
|
||||
|
||||
// Lightweight wrapper around common_peg_parser_id for convenience
|
||||
class common_peg_parser {
|
||||
common_peg_parser_id id_;
|
||||
common_peg_parser_builder & builder_;
|
||||
|
||||
public:
|
||||
common_peg_parser(const common_peg_parser & other) : id_(other.id_), builder_(other.builder_) {}
|
||||
common_peg_parser(common_peg_parser_id id, common_peg_parser_builder & builder) : id_(id), builder_(builder) {}
|
||||
|
||||
common_peg_parser & operator=(const common_peg_parser & other);
|
||||
common_peg_parser & operator+=(const common_peg_parser & other);
|
||||
common_peg_parser & operator|=(const common_peg_parser & other);
|
||||
|
||||
operator common_peg_parser_id() const { return id_; }
|
||||
common_peg_parser_id id() const { return id_; }
|
||||
|
||||
common_peg_parser_builder & builder() const { return builder_; }
|
||||
|
||||
// Creates a sequence
|
||||
common_peg_parser operator+(const common_peg_parser & other) const;
|
||||
|
||||
// Creates a sequence separated by spaces.
|
||||
common_peg_parser operator<<(const common_peg_parser & other) const;
|
||||
|
||||
// Creates a choice
|
||||
common_peg_parser operator|(const common_peg_parser & other) const;
|
||||
|
||||
common_peg_parser operator+(const char * str) const;
|
||||
common_peg_parser operator+(const std::string & str) const;
|
||||
common_peg_parser operator<<(const char * str) const;
|
||||
common_peg_parser operator<<(const std::string & str) const;
|
||||
common_peg_parser operator|(const char * str) const;
|
||||
common_peg_parser operator|(const std::string & str) const;
|
||||
};
|
||||
|
||||
common_peg_parser operator+(const char * str, const common_peg_parser & p);
|
||||
common_peg_parser operator+(const std::string & str, const common_peg_parser & p);
|
||||
common_peg_parser operator<<(const char * str, const common_peg_parser & p);
|
||||
common_peg_parser operator<<(const std::string & str, const common_peg_parser & p);
|
||||
common_peg_parser operator|(const char * str, const common_peg_parser & p);
|
||||
common_peg_parser operator|(const std::string & str, const common_peg_parser & p);
|
||||
|
||||
enum common_peg_parse_result_type {
|
||||
COMMON_PEG_PARSE_RESULT_FAIL = 0,
|
||||
COMMON_PEG_PARSE_RESULT_SUCCESS = 1,
|
||||
COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT = 2,
|
||||
};
|
||||
|
||||
const char * common_peg_parse_result_type_name(common_peg_parse_result_type type);
|
||||
|
||||
struct common_peg_ast_node {
|
||||
common_peg_ast_id id;
|
||||
std::string rule;
|
||||
std::string tag;
|
||||
size_t start;
|
||||
size_t end;
|
||||
std::string_view text;
|
||||
std::vector<common_peg_ast_id> children;
|
||||
|
||||
bool is_partial = false;
|
||||
};
|
||||
|
||||
struct common_peg_parse_result;
|
||||
|
||||
using common_peg_ast_visitor = std::function<void(const common_peg_ast_node & node)>;
|
||||
|
||||
class common_peg_ast_arena {
|
||||
std::vector<common_peg_ast_node> nodes_;
|
||||
public:
|
||||
common_peg_ast_id add_node(
|
||||
const std::string & rule,
|
||||
const std::string & tag,
|
||||
size_t start,
|
||||
size_t end,
|
||||
std::string_view text,
|
||||
std::vector<common_peg_ast_id> children,
|
||||
bool is_partial = false
|
||||
) {
|
||||
common_peg_ast_id id = nodes_.size();
|
||||
nodes_.push_back({id, rule, tag, start, end, text, std::move(children), is_partial});
|
||||
return id;
|
||||
}
|
||||
|
||||
const common_peg_ast_node & get(common_peg_ast_id id) const { return nodes_.at(id); }
|
||||
|
||||
size_t size() const { return nodes_.size(); }
|
||||
|
||||
void clear() { nodes_.clear(); }
|
||||
|
||||
void visit(common_peg_ast_id id, const common_peg_ast_visitor & visitor) const;
|
||||
void visit(const common_peg_parse_result & result, const common_peg_ast_visitor & visitor) const;
|
||||
};
|
||||
|
||||
struct common_peg_parse_result {
|
||||
common_peg_parse_result_type type = COMMON_PEG_PARSE_RESULT_FAIL;
|
||||
size_t start = 0;
|
||||
size_t end = 0;
|
||||
|
||||
std::vector<common_peg_ast_id> nodes;
|
||||
|
||||
common_peg_parse_result() = default;
|
||||
|
||||
common_peg_parse_result(common_peg_parse_result_type type, size_t start)
|
||||
: type(type), start(start), end(start) {}
|
||||
|
||||
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end)
|
||||
: type(type), start(start), end(end) {}
|
||||
|
||||
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end, std::vector<common_peg_ast_id> nodes)
|
||||
: type(type), start(start), end(end), nodes(std::move(nodes)) {}
|
||||
|
||||
bool fail() const { return type == COMMON_PEG_PARSE_RESULT_FAIL; }
|
||||
bool need_more_input() const { return type == COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT; }
|
||||
bool success() const { return type == COMMON_PEG_PARSE_RESULT_SUCCESS; }
|
||||
};
|
||||
|
||||
struct common_peg_parse_context {
|
||||
std::string input;
|
||||
bool is_partial;
|
||||
common_peg_ast_arena ast;
|
||||
|
||||
int parse_depth;
|
||||
|
||||
common_peg_parse_context()
|
||||
: is_partial(false), parse_depth(0) {}
|
||||
|
||||
common_peg_parse_context(const std::string & input)
|
||||
: input(input), is_partial(false), parse_depth(0) {}
|
||||
|
||||
common_peg_parse_context(const std::string & input, bool is_partial)
|
||||
: input(input), is_partial(is_partial), parse_depth(0) {}
|
||||
};
|
||||
|
||||
class common_peg_arena;
|
||||
|
||||
// Parser variants
|
||||
struct common_peg_epsilon_parser {};
|
||||
|
||||
struct common_peg_start_parser {};
|
||||
|
||||
struct common_peg_end_parser {};
|
||||
|
||||
struct common_peg_literal_parser {
|
||||
std::string literal;
|
||||
};
|
||||
|
||||
struct common_peg_sequence_parser {
|
||||
std::vector<common_peg_parser_id> children;
|
||||
};
|
||||
|
||||
struct common_peg_choice_parser {
|
||||
std::vector<common_peg_parser_id> children;
|
||||
};
|
||||
|
||||
struct common_peg_repetition_parser {
|
||||
common_peg_parser_id child;
|
||||
int min_count;
|
||||
int max_count; // -1 for unbounded
|
||||
};
|
||||
|
||||
struct common_peg_and_parser {
|
||||
common_peg_parser_id child;
|
||||
};
|
||||
|
||||
struct common_peg_not_parser {
|
||||
common_peg_parser_id child;
|
||||
};
|
||||
|
||||
struct common_peg_any_parser {};
|
||||
|
||||
struct common_peg_space_parser {};
|
||||
|
||||
struct common_peg_chars_parser {
|
||||
struct char_range {
|
||||
uint32_t start;
|
||||
uint32_t end;
|
||||
bool contains(uint32_t codepoint) const { return codepoint >= start && codepoint <= end; }
|
||||
};
|
||||
|
||||
std::string pattern;
|
||||
std::vector<char_range> ranges;
|
||||
bool negated;
|
||||
int min_count;
|
||||
int max_count; // -1 for unbounded
|
||||
};
|
||||
|
||||
struct common_peg_json_string_parser {};
|
||||
|
||||
struct common_peg_until_parser {
|
||||
std::vector<std::string> delimiters;
|
||||
};
|
||||
|
||||
struct common_peg_schema_parser {
|
||||
common_peg_parser_id child;
|
||||
std::string name;
|
||||
std::shared_ptr<nlohmann::ordered_json> schema;
|
||||
|
||||
// Indicates if the GBNF should accept a raw string that matches the schema.
|
||||
bool raw;
|
||||
};
|
||||
|
||||
struct common_peg_rule_parser {
|
||||
std::string name;
|
||||
common_peg_parser_id child;
|
||||
bool trigger;
|
||||
};
|
||||
|
||||
struct common_peg_ref_parser {
|
||||
std::string name;
|
||||
};
|
||||
|
||||
struct common_peg_atomic_parser {
|
||||
common_peg_parser_id child;
|
||||
};
|
||||
|
||||
struct common_peg_tag_parser {
|
||||
common_peg_parser_id child;
|
||||
std::string tag;
|
||||
};
|
||||
|
||||
// Variant holding all parser types
|
||||
using common_peg_parser_variant = std::variant<
|
||||
common_peg_epsilon_parser,
|
||||
common_peg_start_parser,
|
||||
common_peg_end_parser,
|
||||
common_peg_literal_parser,
|
||||
common_peg_sequence_parser,
|
||||
common_peg_choice_parser,
|
||||
common_peg_repetition_parser,
|
||||
common_peg_and_parser,
|
||||
common_peg_not_parser,
|
||||
common_peg_any_parser,
|
||||
common_peg_space_parser,
|
||||
common_peg_chars_parser,
|
||||
common_peg_json_string_parser,
|
||||
common_peg_until_parser,
|
||||
common_peg_schema_parser,
|
||||
common_peg_rule_parser,
|
||||
common_peg_ref_parser,
|
||||
common_peg_atomic_parser,
|
||||
common_peg_tag_parser
|
||||
>;
|
||||
|
||||
class common_peg_arena {
|
||||
std::vector<common_peg_parser_variant> parsers_;
|
||||
std::unordered_map<std::string, common_peg_parser_id> rules_;
|
||||
common_peg_parser_id root_ = COMMON_PEG_INVALID_PARSER_ID;
|
||||
|
||||
public:
|
||||
const common_peg_parser_variant & get(common_peg_parser_id id) const { return parsers_.at(id); }
|
||||
common_peg_parser_variant & get(common_peg_parser_id id) { return parsers_.at(id); }
|
||||
|
||||
size_t size() const { return parsers_.size(); }
|
||||
bool empty() const { return parsers_.empty(); }
|
||||
|
||||
common_peg_parser_id get_rule(const std::string & name) const;
|
||||
bool has_rule(const std::string & name) const { return rules_.find(name) != rules_.end(); }
|
||||
|
||||
common_peg_parser_id root() const { return root_; }
|
||||
void set_root(common_peg_parser_id id) { root_ = id; }
|
||||
|
||||
common_peg_parse_result parse(common_peg_parse_context & ctx, size_t start = 0) const;
|
||||
common_peg_parse_result parse(common_peg_parser_id id, common_peg_parse_context & ctx, size_t start) const;
|
||||
|
||||
void resolve_refs();
|
||||
|
||||
void build_grammar(const common_grammar_builder & builder, bool lazy = false) const;
|
||||
|
||||
std::string dump(common_peg_parser_id id) const;
|
||||
|
||||
nlohmann::json to_json() const;
|
||||
static common_peg_arena from_json(const nlohmann::json & j);
|
||||
|
||||
std::string save() const;
|
||||
void load(const std::string & data);
|
||||
|
||||
friend class common_peg_parser_builder;
|
||||
|
||||
private:
|
||||
common_peg_parser_id add_parser(common_peg_parser_variant parser);
|
||||
void add_rule(const std::string & name, common_peg_parser_id id);
|
||||
|
||||
common_peg_parser_id resolve_ref(common_peg_parser_id id);
|
||||
};
|
||||
|
||||
class common_peg_parser_builder {
|
||||
common_peg_arena arena_;
|
||||
|
||||
common_peg_parser wrap(common_peg_parser_id id) { return common_peg_parser(id, *this); }
|
||||
common_peg_parser add(const common_peg_parser_variant & p) { return wrap(arena_.add_parser(p)); }
|
||||
|
||||
public:
|
||||
common_peg_parser_builder();
|
||||
|
||||
// Match nothing, always succeed.
|
||||
// S -> ε
|
||||
common_peg_parser eps() { return add(common_peg_epsilon_parser{}); }
|
||||
|
||||
// Matches the start of the input.
|
||||
// S -> ^
|
||||
common_peg_parser start() { return add(common_peg_start_parser{}); }
|
||||
|
||||
// Matches the end of the input.
|
||||
// S -> $
|
||||
common_peg_parser end() { return add(common_peg_end_parser{}); }
|
||||
|
||||
// Matches an exact literal string.
|
||||
// S -> "hello"
|
||||
common_peg_parser literal(const std::string & literal) { return add(common_peg_literal_parser{literal}); }
|
||||
|
||||
// Matches a sequence of parsers in order, all must succeed.
|
||||
// S -> A B C
|
||||
common_peg_parser sequence() { return add(common_peg_sequence_parser{}); }
|
||||
common_peg_parser sequence(const std::vector<common_peg_parser_id> & parsers);
|
||||
common_peg_parser sequence(const std::vector<common_peg_parser> & parsers);
|
||||
common_peg_parser sequence(std::initializer_list<common_peg_parser> parsers);
|
||||
|
||||
// Matches the first parser that succeeds from a list of alternatives.
|
||||
// S -> A | B | C
|
||||
common_peg_parser choice() { return add(common_peg_choice_parser{}); }
|
||||
common_peg_parser choice(const std::vector<common_peg_parser_id> & parsers);
|
||||
common_peg_parser choice(const std::vector<common_peg_parser> & parsers);
|
||||
common_peg_parser choice(std::initializer_list<common_peg_parser> parsers);
|
||||
|
||||
// Matches one or more repetitions of a parser.
|
||||
// S -> A+
|
||||
common_peg_parser one_or_more(const common_peg_parser & p) { return repeat(p, 1, -1); }
|
||||
|
||||
// Matches zero or more repetitions of a parser, always succeeds.
|
||||
// S -> A*
|
||||
common_peg_parser zero_or_more(const common_peg_parser & p) { return repeat(p, 0, -1); }
|
||||
|
||||
// Matches zero or one occurrence of a parser, always succeeds.
|
||||
// S -> A?
|
||||
common_peg_parser optional(const common_peg_parser & p) { return repeat(p, 0, 1); }
|
||||
|
||||
// Positive lookahead: succeeds if child parser succeeds, consumes no input.
|
||||
// S -> &A
|
||||
common_peg_parser peek(const common_peg_parser & p) { return add(common_peg_and_parser{p}); }
|
||||
|
||||
// Negative lookahead: succeeds if child parser fails, consumes no input.
|
||||
// S -> !A
|
||||
common_peg_parser negate(const common_peg_parser & p) { return add(common_peg_not_parser{p}); }
|
||||
|
||||
// Matches any single character.
|
||||
// S -> .
|
||||
common_peg_parser any() { return add(common_peg_any_parser{}); }
|
||||
|
||||
// Matches between min and max repetitions of characters from a character class.
|
||||
// S -> [a-z]{m,n}
|
||||
//
|
||||
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
|
||||
common_peg_parser chars(const std::string & classes, int min = 1, int max = -1);
|
||||
|
||||
// Creates a lightweight reference to a named rule (resolved during build()).
|
||||
// Use this for forward references in recursive grammars.
|
||||
// expr_ref -> expr
|
||||
common_peg_parser ref(const std::string & name) { return add(common_peg_ref_parser{name}); }
|
||||
|
||||
// Matches zero or more whitespace characters (space, tab, newline).
|
||||
// S -> [ \t\n]*
|
||||
common_peg_parser space() { return add(common_peg_space_parser{}); }
|
||||
|
||||
// Matches all characters until a delimiter is found (delimiter not consumed).
|
||||
// S -> (!delim .)*
|
||||
common_peg_parser until(const std::string & delimiter) { return add(common_peg_until_parser{{delimiter}}); }
|
||||
|
||||
// Matches all characters until one of the delimiters in the list is found (delimiter not consumed).
|
||||
// S -> (!delim .)*
|
||||
common_peg_parser until_one_of(const std::vector<std::string> & delimiters) { return add(common_peg_until_parser{delimiters}); }
|
||||
|
||||
// Matches everything
|
||||
// S -> .*
|
||||
common_peg_parser rest() { return until_one_of({}); }
|
||||
|
||||
// Matches between min and max repetitions of a parser (inclusive).
|
||||
// S -> A{m,n}
|
||||
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
|
||||
common_peg_parser repeat(const common_peg_parser & p, int min, int max) { return add(common_peg_repetition_parser{p, min,max}); }
|
||||
|
||||
// Matches exactly n repetitions of a parser.
|
||||
// S -> A{n}
|
||||
common_peg_parser repeat(const common_peg_parser & p, int n) { return repeat(p, n, n); }
|
||||
|
||||
// Creates a complete JSON parser supporting objects, arrays, strings, numbers, booleans, and null.
|
||||
// value -> object | array | string | number | true | false | null
|
||||
common_peg_parser json();
|
||||
common_peg_parser json_object();
|
||||
common_peg_parser json_string();
|
||||
common_peg_parser json_array();
|
||||
common_peg_parser json_number();
|
||||
common_peg_parser json_bool();
|
||||
common_peg_parser json_null();
|
||||
|
||||
// Matches JSON string content without the surrounding quotes.
|
||||
// Useful for extracting content within a JSON string.
|
||||
common_peg_parser json_string_content();
|
||||
|
||||
// Matches a JSON object member with a key and associated parser as the
|
||||
// value.
|
||||
common_peg_parser json_member(const std::string & key, const common_peg_parser & p);
|
||||
|
||||
// Wraps a parser with JSON schema metadata for grammar generation.
|
||||
// Used internally to convert JSON schemas to GBNF grammar rules.
|
||||
common_peg_parser schema(const common_peg_parser & p, const std::string & name, const nlohmann::ordered_json & schema, bool raw = false);
|
||||
|
||||
// Creates a named rule, stores it in the grammar, and returns a ref.
|
||||
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
|
||||
// auto json = p.rule("json", json_obj | json_arr | ...)
|
||||
common_peg_parser rule(const std::string & name, const common_peg_parser & p, bool trigger = false);
|
||||
|
||||
// Creates a named rule using a builder function, and returns a ref.
|
||||
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
|
||||
// auto json = p.rule("json", [&]() { return json_object() | json_array() | ... })
|
||||
common_peg_parser rule(const std::string & name, const std::function<common_peg_parser()> & builder, bool trigger = false);
|
||||
|
||||
// Creates a trigger rule. When generating a lazy grammar from the parser,
|
||||
// only trigger rules and descendents are emitted.
|
||||
common_peg_parser trigger_rule(const std::string & name, const common_peg_parser & p) { return rule(name, p, true); }
|
||||
common_peg_parser trigger_rule(const std::string & name, const std::function<common_peg_parser()> & builder) { return rule(name, builder, true); }
|
||||
|
||||
// Creates an atomic parser. Atomic parsers do not create an AST node if
|
||||
// the child results in a partial parse, i.e. NEEDS_MORE_INPUT. This is
|
||||
// intended for situations where partial output is undesirable.
|
||||
common_peg_parser atomic(const common_peg_parser & p) { return add(common_peg_atomic_parser{p}); }
|
||||
|
||||
// Tags create nodes in the generated AST for semantic purposes.
|
||||
// Unlike rules, you can tag multiple nodes with the same tag.
|
||||
common_peg_parser tag(const std::string & tag, const common_peg_parser & p) { return add(common_peg_tag_parser{p.id(), tag}); }
|
||||
|
||||
void set_root(const common_peg_parser & p);
|
||||
|
||||
common_peg_arena build();
|
||||
};
|
||||
|
||||
// Helper function for building parsers
|
||||
common_peg_arena build_peg_parser(const std::function<common_peg_parser(common_peg_parser_builder & builder)> & fn);
|
||||
@@ -3,9 +3,10 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include <unordered_map>
|
||||
|
||||
// the ring buffer works similarly to std::deque, but with a fixed capacity
|
||||
// TODO: deduplicate with llama-impl.h
|
||||
@@ -112,6 +113,13 @@ struct common_sampler {
|
||||
|
||||
llama_token_data_array cur_p;
|
||||
|
||||
void reset() {
|
||||
prev.clear();
|
||||
|
||||
llama_sampler_reset(grmr);
|
||||
llama_sampler_reset(chain);
|
||||
}
|
||||
|
||||
void set_logits(struct llama_context * ctx, int idx) {
|
||||
const auto * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
@@ -128,6 +136,12 @@ struct common_sampler {
|
||||
|
||||
cur_p = { cur.data(), cur.size(), -1, false };
|
||||
}
|
||||
|
||||
common_time_meas tm() {
|
||||
return common_time_meas(t_total_us, params.no_perf);
|
||||
}
|
||||
|
||||
mutable int64_t t_total_us = 0;
|
||||
};
|
||||
|
||||
std::string common_params_sampling::print() const {
|
||||
@@ -298,6 +312,8 @@ void common_sampler_free(struct common_sampler * gsmpl) {
|
||||
}
|
||||
|
||||
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
if (accept_grammar) {
|
||||
llama_sampler_accept(gsmpl->grmr, token);
|
||||
}
|
||||
@@ -308,9 +324,7 @@ void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, boo
|
||||
}
|
||||
|
||||
void common_sampler_reset(struct common_sampler * gsmpl) {
|
||||
llama_sampler_reset(gsmpl->grmr);
|
||||
|
||||
llama_sampler_reset(gsmpl->chain);
|
||||
gsmpl->reset();
|
||||
}
|
||||
|
||||
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
@@ -327,16 +341,54 @@ struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
|
||||
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl) {
|
||||
// TODO: measure grammar performance
|
||||
|
||||
const double t_sampling_ms = gsmpl ? 1e-3*gsmpl->t_total_us : 0;
|
||||
|
||||
llama_perf_sampler_data data_smpl;
|
||||
llama_perf_context_data data_ctx;
|
||||
|
||||
memset(&data_smpl, 0, sizeof(data_smpl));
|
||||
memset(&data_ctx, 0, sizeof(data_ctx));
|
||||
|
||||
if (gsmpl) {
|
||||
llama_perf_sampler_print(gsmpl->chain);
|
||||
auto & data = data_smpl;
|
||||
|
||||
data = llama_perf_sampler(gsmpl->chain);
|
||||
|
||||
// note: the sampling time includes the samplers time + extra time spent in common/sampling
|
||||
LOG_INF("%s: sampling time = %10.2f ms\n", __func__, t_sampling_ms);
|
||||
LOG_INF("%s: samplers time = %10.2f ms / %5d tokens\n", __func__, data.t_sample_ms, data.n_sample);
|
||||
}
|
||||
|
||||
if (ctx) {
|
||||
llama_perf_context_print(ctx);
|
||||
auto & data = data_ctx;
|
||||
|
||||
data = llama_perf_context(ctx);
|
||||
|
||||
const double t_end_ms = 1e-3 * ggml_time_us();
|
||||
|
||||
const double t_total_ms = t_end_ms - data.t_start_ms;
|
||||
const double t_unacc_ms = t_total_ms - (t_sampling_ms + data.t_p_eval_ms + data.t_eval_ms);
|
||||
const double t_unacc_pc = 100.0 * t_unacc_ms / t_total_ms;
|
||||
|
||||
LOG_INF("%s: load time = %10.2f ms\n", __func__, data.t_load_ms);
|
||||
LOG_INF("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, data.t_p_eval_ms, data.n_p_eval, data.t_p_eval_ms / data.n_p_eval, 1e3 / data.t_p_eval_ms * data.n_p_eval);
|
||||
LOG_INF("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, data.t_eval_ms, data.n_eval, data.t_eval_ms / data.n_eval, 1e3 / data.t_eval_ms * data.n_eval);
|
||||
LOG_INF("%s: total time = %10.2f ms / %5d tokens\n", __func__, (t_end_ms - data.t_start_ms), (data.n_p_eval + data.n_eval));
|
||||
LOG_INF("%s: unaccounted time = %10.2f ms / %5.1f %% (total - sampling - prompt eval - eval) / (total)\n", __func__, t_unacc_ms, t_unacc_pc);
|
||||
LOG_INF("%s: graphs reused = %10d\n", __func__, data.n_reused);
|
||||
|
||||
llama_memory_breakdown_print(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
|
||||
llama_synchronize(ctx);
|
||||
|
||||
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
gsmpl->set_logits(ctx, idx);
|
||||
|
||||
auto & grmr = gsmpl->grmr;
|
||||
@@ -428,6 +480,8 @@ uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
|
||||
// helpers
|
||||
|
||||
llama_token_data_array * common_sampler_get_candidates(struct common_sampler * gsmpl, bool do_sort) {
|
||||
const auto tm = gsmpl->tm();
|
||||
|
||||
auto * res = &gsmpl->cur_p;
|
||||
|
||||
if (do_sort && !res->sorted) {
|
||||
|
||||
64
common/unicode.cpp
Normal file
64
common/unicode.cpp
Normal file
@@ -0,0 +1,64 @@
|
||||
#include "unicode.h"
|
||||
|
||||
// implementation adopted from src/unicode.cpp
|
||||
|
||||
size_t utf8_sequence_length(unsigned char first_byte) {
|
||||
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t highbits = static_cast<uint8_t>(first_byte) >> 4;
|
||||
return lookup[highbits];
|
||||
}
|
||||
|
||||
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset) {
|
||||
if (offset >= input.size()) {
|
||||
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
|
||||
}
|
||||
|
||||
// ASCII fast path
|
||||
if (!(input[offset] & 0x80)) {
|
||||
return utf8_parse_result(utf8_parse_result::SUCCESS, input[offset], 1);
|
||||
}
|
||||
|
||||
// Invalid: continuation byte as first byte
|
||||
if (!(input[offset] & 0x40)) {
|
||||
return utf8_parse_result(utf8_parse_result::INVALID);
|
||||
}
|
||||
|
||||
// 2-byte sequence
|
||||
if (!(input[offset] & 0x20)) {
|
||||
if (offset + 1 >= input.size()) {
|
||||
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
|
||||
}
|
||||
if ((input[offset + 1] & 0xc0) != 0x80) {
|
||||
return utf8_parse_result(utf8_parse_result::INVALID);
|
||||
}
|
||||
auto result = ((input[offset] & 0x1f) << 6) | (input[offset + 1] & 0x3f);
|
||||
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 2);
|
||||
}
|
||||
|
||||
// 3-byte sequence
|
||||
if (!(input[offset] & 0x10)) {
|
||||
if (offset + 2 >= input.size()) {
|
||||
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
|
||||
}
|
||||
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80) {
|
||||
return utf8_parse_result(utf8_parse_result::INVALID);
|
||||
}
|
||||
auto result = ((input[offset] & 0x0f) << 12) | ((input[offset + 1] & 0x3f) << 6) | (input[offset + 2] & 0x3f);
|
||||
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 3);
|
||||
}
|
||||
|
||||
// 4-byte sequence
|
||||
if (!(input[offset] & 0x08)) {
|
||||
if (offset + 3 >= input.size()) {
|
||||
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
|
||||
}
|
||||
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80 || (input[offset + 3] & 0xc0) != 0x80) {
|
||||
return utf8_parse_result(utf8_parse_result::INVALID);
|
||||
}
|
||||
auto result = ((input[offset] & 0x07) << 18) | ((input[offset + 1] & 0x3f) << 12) | ((input[offset + 2] & 0x3f) << 6) | (input[offset + 3] & 0x3f);
|
||||
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 4);
|
||||
}
|
||||
|
||||
// Invalid first byte
|
||||
return utf8_parse_result(utf8_parse_result::INVALID);
|
||||
}
|
||||
22
common/unicode.h
Normal file
22
common/unicode.h
Normal file
@@ -0,0 +1,22 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <string_view>
|
||||
|
||||
// UTF-8 parsing utilities for streaming-aware unicode support
|
||||
|
||||
struct utf8_parse_result {
|
||||
uint32_t codepoint; // Decoded codepoint (only valid if status == SUCCESS)
|
||||
size_t bytes_consumed; // How many bytes this codepoint uses (1-4)
|
||||
enum status { SUCCESS, INCOMPLETE, INVALID } status;
|
||||
|
||||
utf8_parse_result(enum status s, uint32_t cp = 0, size_t bytes = 0)
|
||||
: codepoint(cp), bytes_consumed(bytes), status(s) {}
|
||||
};
|
||||
|
||||
// Determine the expected length of a UTF-8 sequence from its first byte
|
||||
// Returns 0 for invalid first bytes
|
||||
size_t utf8_sequence_length(unsigned char first_byte);
|
||||
|
||||
// Parse a single UTF-8 codepoint from input
|
||||
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset);
|
||||
@@ -565,7 +565,7 @@ class ModelBase:
|
||||
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
|
||||
)
|
||||
)
|
||||
or not new_name.endswith(".weight")
|
||||
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
|
||||
):
|
||||
data_qtype = gguf.GGMLQuantizationType.F32
|
||||
|
||||
@@ -1524,6 +1524,79 @@ class TextModel(ModelBase):
|
||||
special_vocab._set_special_token("bos", 151643)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_mistral(self):
|
||||
if not _mistral_common_installed:
|
||||
raise ImportError(_mistral_import_error_msg)
|
||||
|
||||
vocab = MistralVocab(self.dir_model)
|
||||
logger.info(
|
||||
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size, (
|
||||
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
|
||||
)
|
||||
|
||||
if vocab.tokenizer_type == MistralTokenizerType.tekken:
|
||||
self.gguf_writer.add_tokenizer_pre("tekken")
|
||||
self.gguf_writer.add_token_merges(
|
||||
vocab.extract_vocab_merges_from_model()
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_bos_token_id(vocab.bos_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.eos_id)
|
||||
self.gguf_writer.add_unk_token_id(vocab.unk_id)
|
||||
self.gguf_writer.add_pad_token_id(vocab.pad_id)
|
||||
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_vocab_size(vocab.vocab_size)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(False)
|
||||
|
||||
local_template_file_path = self.dir_model / "chat_template.jinja"
|
||||
|
||||
if self.is_mistral_format and local_template_file_path.is_file():
|
||||
# Ministral-3 and other new Mistral models come with chat templates.
|
||||
# ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
|
||||
logger.info("Using an existing Mistral local chat template.")
|
||||
|
||||
with open(local_template_file_path, "r", encoding="utf-8") as f:
|
||||
template = f.read()
|
||||
elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
|
||||
template_dir = Path(__file__).parent / "models/templates/"
|
||||
|
||||
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
|
||||
if self.is_mistral_format:
|
||||
logger.info(
|
||||
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
|
||||
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
|
||||
)
|
||||
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
|
||||
else:
|
||||
logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
|
||||
template = None
|
||||
|
||||
if template is not None:
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
|
||||
|
||||
class MmprojModel(ModelBase):
|
||||
model_type = ModelType.MMPROJ
|
||||
@@ -1581,10 +1654,27 @@ class MmprojModel(ModelBase):
|
||||
|
||||
# load preprocessor config
|
||||
self.preprocessor_config = {}
|
||||
if not self.is_mistral_format:
|
||||
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
|
||||
|
||||
# prefer preprocessor_config.json if possible
|
||||
preprocessor_config_path = self.dir_model / "preprocessor_config.json"
|
||||
if preprocessor_config_path.is_file():
|
||||
with open(preprocessor_config_path, "r", encoding="utf-8") as f:
|
||||
self.preprocessor_config = json.load(f)
|
||||
|
||||
# prefer processor_config.json if possible
|
||||
processor_config_path = self.dir_model / "processor_config.json"
|
||||
if processor_config_path.is_file():
|
||||
with open(processor_config_path, "r", encoding="utf-8") as f:
|
||||
cfg = json.load(f)
|
||||
# move image_processor to root level for compat
|
||||
if "image_processor" in cfg:
|
||||
cfg = {
|
||||
**cfg,
|
||||
**cfg["image_processor"],
|
||||
}
|
||||
# merge configs
|
||||
self.preprocessor_config = {**self.preprocessor_config, **cfg}
|
||||
|
||||
def get_vision_config(self) -> dict[str, Any] | None:
|
||||
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
|
||||
return self.global_config.get(config_name)
|
||||
@@ -1673,11 +1763,9 @@ class GPTNeoXModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.GPTNEOX
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(
|
||||
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
|
||||
@@ -1735,7 +1823,7 @@ class BloomModel(TextModel):
|
||||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||||
self.gguf_writer.add_embedding_length(n_embed)
|
||||
self.gguf_writer.add_feed_forward_length(4 * n_embed)
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
@@ -1798,10 +1886,9 @@ class MPTModel(TextModel):
|
||||
self.gguf_writer.add_unk_token_id(0)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layers"]
|
||||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
|
||||
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||||
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
|
||||
@@ -1834,7 +1921,6 @@ class OrionModel(TextModel):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
|
||||
@@ -1852,7 +1938,7 @@ class OrionModel(TextModel):
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||
@@ -1869,7 +1955,6 @@ class BaichuanModel(TextModel):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
|
||||
@@ -1886,7 +1971,7 @@ class BaichuanModel(TextModel):
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
@@ -1993,7 +2078,6 @@ class XverseModel(TextModel):
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_count = self.hparams["num_attention_heads"]
|
||||
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
|
||||
|
||||
@@ -2010,7 +2094,7 @@ class XverseModel(TextModel):
|
||||
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
self.gguf_writer.add_context_length(ctx_length)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count(head_count)
|
||||
@@ -2053,10 +2137,6 @@ class FalconModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.FALCON
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams.get("num_hidden_layers")
|
||||
if block_count is None:
|
||||
block_count = self.hparams["n_layer"] # old name
|
||||
|
||||
n_head = self.hparams.get("num_attention_heads")
|
||||
if n_head is None:
|
||||
n_head = self.hparams["n_head"] # old name
|
||||
@@ -2069,7 +2149,7 @@ class FalconModel(TextModel):
|
||||
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
@@ -2107,12 +2187,10 @@ class StarCoderModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.STARCODER
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(1)
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
@@ -2142,14 +2220,12 @@ class RefactModel(TextModel):
|
||||
multiple_of = 256
|
||||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||||
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
# refact uses Alibi. So this is from config.json which might be used by training.
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
|
||||
self.gguf_writer.add_feed_forward_length(ff_dim)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(1)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||||
@@ -2196,11 +2272,10 @@ class StableLMModel(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
|
||||
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
|
||||
@@ -2292,67 +2367,6 @@ class LlamaModel(TextModel):
|
||||
if self.hf_arch == "VLlama3ForCausalLM":
|
||||
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
|
||||
|
||||
def _set_vocab_mistral(self):
|
||||
if not _mistral_common_installed:
|
||||
raise ImportError(_mistral_import_error_msg)
|
||||
|
||||
vocab = MistralVocab(self.dir_model)
|
||||
logger.info(
|
||||
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
|
||||
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
|
||||
for text, score, toktype in vocab.all_tokens():
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
assert len(tokens) == vocab.vocab_size, (
|
||||
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
|
||||
)
|
||||
|
||||
if vocab.tokenizer_type == MistralTokenizerType.tekken:
|
||||
self.gguf_writer.add_tokenizer_pre("tekken")
|
||||
self.gguf_writer.add_token_merges(
|
||||
vocab.extract_vocab_merges_from_model()
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
|
||||
)
|
||||
|
||||
self.gguf_writer.add_bos_token_id(vocab.bos_id)
|
||||
self.gguf_writer.add_eos_token_id(vocab.eos_id)
|
||||
self.gguf_writer.add_unk_token_id(vocab.unk_id)
|
||||
self.gguf_writer.add_pad_token_id(vocab.pad_id)
|
||||
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_vocab_size(vocab.vocab_size)
|
||||
|
||||
self.gguf_writer.add_add_bos_token(True)
|
||||
self.gguf_writer.add_add_eos_token(False)
|
||||
|
||||
template_dir = Path(__file__).parent / "models/templates/"
|
||||
|
||||
if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
|
||||
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
|
||||
if self.is_mistral_format:
|
||||
logger.info(
|
||||
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
|
||||
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
|
||||
)
|
||||
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
|
||||
self.gguf_writer.add_chat_template(template)
|
||||
else:
|
||||
logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
|
||||
|
||||
def set_vocab(self):
|
||||
if self.is_mistral_format:
|
||||
return self._set_vocab_mistral()
|
||||
@@ -2812,9 +2826,38 @@ class Llama4VisionModel(MmprojModel):
|
||||
|
||||
@ModelBase.register("Mistral3ForConditionalGeneration")
|
||||
class Mistral3Model(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
model_arch = gguf.MODEL_ARCH.MISTRAL3
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# for compatibility, we use LLAMA arch for older models
|
||||
# TODO: remove this once everyone has migrated to newer version of llama.cpp
|
||||
if self.hparams.get("model_type") != "ministral3":
|
||||
self.model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
|
||||
self.gguf_writer.add_architecture()
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
rope_params = self.hparams.get("rope_parameters")
|
||||
if self.hparams.get("model_type") == "ministral3":
|
||||
assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
|
||||
assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
|
||||
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
# TODO: probably not worth supporting quantized weight, as official BF16 is also available
|
||||
if name.endswith("weight_scale_inv"):
|
||||
raise ValueError("This is a quantized weight, please use BF16 weight instead")
|
||||
|
||||
name = name.replace("language_model.", "")
|
||||
if "multi_modal_projector" in name or "vision_tower" in name:
|
||||
return []
|
||||
@@ -3151,7 +3194,7 @@ class DbrxModel(TextModel):
|
||||
def set_gguf_parameters(self):
|
||||
ffn_config = self.hparams["ffn_config"]
|
||||
attn_config = self.hparams["attn_config"]
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
|
||||
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||
@@ -3353,7 +3396,7 @@ class QwenModel(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
|
||||
@@ -4198,6 +4241,51 @@ class Qwen3MoeModel(Qwen2MoeModel):
|
||||
super().set_vocab()
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3NextForCausalLM")
|
||||
class Qwen3NextModel(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3NEXT
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
|
||||
self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
|
||||
self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
|
||||
self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
|
||||
self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
|
||||
if (rope_dim := self.hparams.get("head_dim")) is None:
|
||||
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
if name.startswith("mtp"):
|
||||
return [] # ignore MTP layers for now
|
||||
if name.endswith(".A_log"):
|
||||
data_torch = -torch.exp(data_torch)
|
||||
elif name.endswith(".dt_bias"):
|
||||
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
|
||||
elif "conv1d" in name:
|
||||
data_torch = data_torch.squeeze()
|
||||
elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
|
||||
data_torch = data_torch + 1
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("RND1")
|
||||
class RND1Model(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.RND1
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
|
||||
# RND1 specific parameters
|
||||
# RND1 uses bidirectional attention
|
||||
self.gguf_writer.add_causal_attention(False)
|
||||
|
||||
if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
|
||||
self.gguf_writer.add_mask_token_id(mask_token_id)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
|
||||
class Qwen3VLVisionModel(MmprojModel):
|
||||
def __init__(self, *args, **kwargs):
|
||||
@@ -4384,7 +4472,7 @@ class GPT2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.GPT2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
@@ -4416,8 +4504,6 @@ class Phi2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PHI2
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
rot_pct = self.find_hparam(["partial_rotary_factor"])
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
@@ -4426,7 +4512,7 @@ class Phi2Model(TextModel):
|
||||
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(4 * n_embd)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head)
|
||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
|
||||
@@ -4544,8 +4630,6 @@ class Phi3MiniModel(TextModel):
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||
|
||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
|
||||
@@ -4559,7 +4643,7 @@ class Phi3MiniModel(TextModel):
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||
self.gguf_writer.add_embedding_length(n_embd)
|
||||
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||||
@@ -4679,12 +4763,11 @@ class PlamoModel(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_context_length(4096) # not in config.json
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
@@ -4807,7 +4890,6 @@ class Plamo2Model(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||
|
||||
# Which layers are Mamba layers
|
||||
@@ -4819,10 +4901,10 @@ class Plamo2Model(TextModel):
|
||||
num_attention_heads = []
|
||||
|
||||
if mamba_enabled:
|
||||
for i in range(block_count):
|
||||
if block_count <= (mamba_step // 2):
|
||||
for i in range(self.block_count):
|
||||
if self.block_count <= (mamba_step // 2):
|
||||
# use attention in last layer
|
||||
is_mamba = (i != block_count - 1)
|
||||
is_mamba = (i != self.block_count - 1)
|
||||
else:
|
||||
is_mamba = (i % mamba_step) != (mamba_step // 2)
|
||||
if is_mamba:
|
||||
@@ -4840,7 +4922,7 @@ class Plamo2Model(TextModel):
|
||||
self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
|
||||
self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
|
||||
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
|
||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
|
||||
|
||||
@@ -4897,12 +4979,10 @@ class CodeShellModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.CODESHELL
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["n_layer"]
|
||||
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["n_head"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
|
||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
|
||||
@@ -5044,7 +5124,7 @@ class InternLM2Model(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
@@ -5665,11 +5745,10 @@ class GemmaModel(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||||
@@ -5705,11 +5784,10 @@ class Gemma2Model(TextModel):
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
|
||||
@@ -5747,18 +5825,19 @@ class Gemma3Model(TextModel):
|
||||
norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
self.gguf_writer.add_add_space_prefix(False)
|
||||
if (self.dir_model / "tokenizer.model").is_file():
|
||||
self._set_vocab_sentencepiece()
|
||||
self.gguf_writer.add_add_space_prefix(False)
|
||||
else:
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
hparams = self.hparams
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
# some default values are not specified in the hparams
|
||||
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
|
||||
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
|
||||
@@ -5768,13 +5847,24 @@ class Gemma3Model(TextModel):
|
||||
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
|
||||
# attn_logit_softcapping is removed in Gemma3
|
||||
assert hparams.get("attn_logit_softcapping") is None
|
||||
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||
if (final_logit_softcap := hparams.get("final_logit_softcapping")):
|
||||
self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
|
||||
if hparams.get("sliding_window_pattern") != 1:
|
||||
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
|
||||
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
|
||||
if hparams.get("rope_scaling") is not None:
|
||||
assert hparams["rope_scaling"]["rope_type"] == "linear"
|
||||
# important: this rope_scaling is only applied for global layers, and not used by 1B model
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
|
||||
rope_scaling = hparams["rope_scaling"]
|
||||
if rope_scaling["rope_type"] == "linear":
|
||||
# important: this rope_scaling is only applied for global layers, and not used by 1B model
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
elif rope_scaling["rope_type"] == "yarn":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
|
||||
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
@@ -5788,8 +5878,10 @@ class Gemma3Model(TextModel):
|
||||
|
||||
# remove OOV (out-of-vocabulary) rows in token_embd
|
||||
if "embed_tokens.weight" in name:
|
||||
vocab = self._create_vocab_sentencepiece()
|
||||
tokens = vocab[0]
|
||||
if (self.dir_model / "tokenizer.model").is_file():
|
||||
tokens = self._create_vocab_sentencepiece()[0]
|
||||
else:
|
||||
tokens = self.get_vocab_base()[0]
|
||||
data_torch = data_torch[:len(tokens)]
|
||||
|
||||
# ref code in Gemma3RMSNorm
|
||||
@@ -6034,7 +6126,6 @@ class Rwkv6Model(TextModel):
|
||||
self._set_vocab_rwkv_world()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
head_size = self.hparams["head_size"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
layer_norm_eps = self.hparams["layer_norm_epsilon"]
|
||||
@@ -6046,7 +6137,7 @@ class Rwkv6Model(TextModel):
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
@@ -6110,7 +6201,6 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
num_attention_heads = self.hparams["num_attention_heads"]
|
||||
num_key_value_heads = self.hparams["num_key_value_heads"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
@@ -6123,7 +6213,7 @@ class RWKV6Qwen2Model(Rwkv6Model):
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
|
||||
self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
|
||||
@@ -6164,7 +6254,6 @@ class Rwkv7Model(TextModel):
|
||||
return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
try:
|
||||
head_size = self.hparams["head_size"]
|
||||
layer_norm_eps = self.hparams["layer_norm_epsilon"]
|
||||
@@ -6189,7 +6278,7 @@ class Rwkv7Model(TextModel):
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
|
||||
@@ -6283,7 +6372,6 @@ class ARwkv7Model(Rwkv7Model):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
hidden_size = self.hparams["hidden_size"]
|
||||
head_size = self.hparams["head_size"]
|
||||
rms_norm_eps = self.hparams["rms_norm_eps"]
|
||||
@@ -6300,7 +6388,7 @@ class ARwkv7Model(Rwkv7Model):
|
||||
# RWKV isn't context limited
|
||||
self.gguf_writer.add_context_length(1048576)
|
||||
self.gguf_writer.add_embedding_length(hidden_size)
|
||||
self.gguf_writer.add_block_count(block_count)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
|
||||
self.gguf_writer.add_wkv_head_size(head_size)
|
||||
self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
|
||||
@@ -7524,7 +7612,7 @@ class T5Model(TextModel):
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
|
||||
self.gguf_writer.add_decoder_block_count(dec_n_layer)
|
||||
self.gguf_writer.add_head_count(self.hparams["num_heads"])
|
||||
@@ -7663,7 +7751,7 @@ class T5EncoderModel(TextModel):
|
||||
self.gguf_writer.add_context_length(n_ctx)
|
||||
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_layers"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(self.hparams["num_heads"])
|
||||
self.gguf_writer.add_key_length(self.hparams["d_kv"])
|
||||
self.gguf_writer.add_value_length(self.hparams["d_kv"])
|
||||
@@ -7726,7 +7814,7 @@ class JaisModel(TextModel):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_block_count(self.hparams["n_layer"])
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_context_length(self.hparams["n_positions"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
|
||||
@@ -8068,7 +8156,7 @@ class ChatGLMModel(TextModel):
|
||||
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
|
||||
self.gguf_writer.add_embedding_length(n_embed)
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
|
||||
self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_head_count(n_head)
|
||||
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
|
||||
@@ -8150,7 +8238,6 @@ class ExaoneModel(TextModel):
|
||||
num_kv_heads = hparams.get("num_key_value_heads", num_heads)
|
||||
layer_norm_eps = hparams["layer_norm_epsilon"]
|
||||
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
|
||||
num_layers = hparams["num_layers"]
|
||||
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
|
||||
# attention_dropout_rate = hparams["attention_dropout"]
|
||||
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
|
||||
@@ -8161,7 +8248,7 @@ class ExaoneModel(TextModel):
|
||||
self.gguf_writer.add_context_length(max_position_embeddings)
|
||||
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
|
||||
self.gguf_writer.add_feed_forward_length(intermediate_size)
|
||||
self.gguf_writer.add_block_count(num_layers)
|
||||
self.gguf_writer.add_block_count(self.block_count)
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
|
||||
if (rope_theta := self.hparams.get("rope_theta")) is not None:
|
||||
@@ -9795,12 +9882,22 @@ class ApertusModel(LlamaModel):
|
||||
|
||||
|
||||
class MistralModel(LlamaModel):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
model_arch = gguf.MODEL_ARCH.MISTRAL3
|
||||
model_name = "Mistral"
|
||||
hf_arch = ""
|
||||
is_mistral_format = True
|
||||
undo_permute = False
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# for compatibility, we use LLAMA arch for older models
|
||||
# TODO: remove this once everyone migrates to newer version of llama.cpp
|
||||
if "llama_4_scaling" not in self.hparams:
|
||||
self.model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
|
||||
self.gguf_writer.add_architecture()
|
||||
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
|
||||
|
||||
@staticmethod
|
||||
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
|
||||
assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
|
||||
@@ -9840,6 +9937,112 @@ class MistralModel(LlamaModel):
|
||||
|
||||
return template
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
|
||||
|
||||
@staticmethod
|
||||
def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
|
||||
if "yarn" in hparams:
|
||||
yarn_params = hparams["yarn"]
|
||||
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
|
||||
gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
|
||||
gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
|
||||
gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
|
||||
gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
|
||||
gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
|
||||
|
||||
if "llama_4_scaling" in hparams:
|
||||
gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
|
||||
|
||||
|
||||
class MistralMoeModel(DeepseekV2Model):
|
||||
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
|
||||
model_name = "Mistral"
|
||||
hf_arch = ""
|
||||
is_mistral_format = True
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
logger.info("Using MistralMoeModel")
|
||||
# remap hparams from Mistral MoE format to DeepseekV2 format
|
||||
# we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
|
||||
# ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
|
||||
config = self.hparams
|
||||
# Mistral key -> HF key
|
||||
config_mapping = {
|
||||
"dim": "hidden_size",
|
||||
"norm_eps": "rms_norm_eps",
|
||||
"n_kv_heads": "num_key_value_heads",
|
||||
"n_layers": "num_hidden_layers",
|
||||
"n_heads": "num_attention_heads",
|
||||
"hidden_dim": "intermediate_size",
|
||||
}
|
||||
# HF key -> (Mistral key, default value)
|
||||
top_level_mapping_with_default = {
|
||||
"model_type": ("model_type", "transformer"),
|
||||
"hidden_act": ("activation", "silu"),
|
||||
"tie_word_embeddings": ("tied_embeddings", False),
|
||||
"max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
|
||||
"max_position_embeddings": ("max_position_embeddings", 128_000),
|
||||
}
|
||||
# mapping top-level keys
|
||||
for key, new_key in config_mapping.items():
|
||||
if key in config:
|
||||
config[new_key] = config[key]
|
||||
for new_key, (key, default_value) in top_level_mapping_with_default.items():
|
||||
config[new_key] = config.get(key, default_value)
|
||||
# mapping MoE-specific keys
|
||||
moe_config_map = {
|
||||
"route_every_n": "moe_layer_freq",
|
||||
"first_k_dense_replace": "first_k_dense_replace",
|
||||
"num_experts_per_tok": "num_experts_per_tok",
|
||||
"num_experts": "n_routed_experts",
|
||||
"expert_hidden_dim": "moe_intermediate_size",
|
||||
"routed_scale": "routed_scaling_factor",
|
||||
"num_shared_experts": "n_shared_experts",
|
||||
"num_expert_groups": "n_group",
|
||||
"num_expert_groups_per_tok": "topk_group",
|
||||
}
|
||||
moe = config["moe"]
|
||||
for key, new_key in moe_config_map.items():
|
||||
if key in moe:
|
||||
config[new_key] = moe[key]
|
||||
# provide missing values
|
||||
config["topk_method"] = None
|
||||
config["norm_topk_prob"] = True
|
||||
config["scoring_func"] = "softmax"
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_mistral()
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
|
||||
yarn_params = self.hparams["yarn"]
|
||||
self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
|
||||
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
|
||||
return []
|
||||
|
||||
# rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
|
||||
if name.endswith(".qscale_act"):
|
||||
name = name.replace(".qscale_act", ".input_scale")
|
||||
if name.endswith(".qscale_weight"):
|
||||
name = name.replace(".qscale_weight", ".weight_scale")
|
||||
if ".wkv_b." in name:
|
||||
name = name.replace(".wkv_b.", ".kv_b_proj.")
|
||||
if ".experts." in name:
|
||||
name = name.replace(".experts.", ".mlp.experts.")
|
||||
name = name.replace(".w1.", ".gate_proj.")
|
||||
name = name.replace(".w2.", ".down_proj.")
|
||||
name = name.replace(".w3.", ".up_proj.")
|
||||
name = "model." + name
|
||||
|
||||
return super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
class PixtralModel(LlavaVisionModel):
|
||||
model_name = "Pixtral"
|
||||
@@ -10077,6 +10280,25 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
torch.uint8: np.uint8,
|
||||
}
|
||||
|
||||
# only used when byteswapping data. Only correct size is needed
|
||||
_dtype_byteswap_map: dict[torch.dtype, type] = {
|
||||
torch.float64: np.float64,
|
||||
torch.float32: np.float32,
|
||||
torch.bfloat16: np.float16,
|
||||
torch.float16: np.float16,
|
||||
torch.int64: np.int64,
|
||||
torch.uint64: np.uint64,
|
||||
torch.int32: np.int32,
|
||||
torch.uint32: np.uint32,
|
||||
torch.int16: np.int16,
|
||||
torch.uint16: np.uint16,
|
||||
torch.int8: np.int8,
|
||||
torch.uint8: np.uint8,
|
||||
torch.bool: np.uint8,
|
||||
torch.float8_e4m3fn: np.uint8,
|
||||
torch.float8_e5m2: np.uint8,
|
||||
}
|
||||
|
||||
# used for safetensors slices
|
||||
# ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
|
||||
# TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
|
||||
@@ -10120,8 +10342,14 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
@classmethod
|
||||
def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
|
||||
def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
|
||||
def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
|
||||
if sys.byteorder == 'big':
|
||||
# switch data back to big endian
|
||||
tensor = tensor.view(dtype).byteswap(inplace=False)
|
||||
return tensor
|
||||
dtype = cls._dtype_str_map[tensor.dtype]
|
||||
return torch.from_numpy(tensor.mmap_bytes()).view(dtype).reshape(tensor.shape)
|
||||
numpy_dtype = cls._dtype_byteswap_map[dtype]
|
||||
return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
|
||||
dtype = cls._dtype_str_map[t.dtype]
|
||||
shape = t.shape
|
||||
lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
|
||||
@@ -10129,10 +10357,16 @@ class LazyTorchTensor(gguf.LazyBase):
|
||||
|
||||
@classmethod
|
||||
def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
|
||||
def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
|
||||
if sys.byteorder == 'big':
|
||||
# switch data back to big endian
|
||||
tensor = tensor.view(dtype).byteswap(inplace=False)
|
||||
return tensor
|
||||
dtype = cls._dtype_str_map[remote_tensor.dtype]
|
||||
numpy_dtype = cls._dtype_byteswap_map[dtype]
|
||||
shape = remote_tensor.shape
|
||||
meta = cls.meta_with_dtype_and_shape(dtype, shape)
|
||||
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
|
||||
lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
|
||||
return cast(torch.Tensor, lazy)
|
||||
|
||||
@classmethod
|
||||
@@ -10363,6 +10597,8 @@ def main() -> None:
|
||||
elif args.mmproj:
|
||||
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
|
||||
model_class = PixtralModel
|
||||
elif "moe" in hparams:
|
||||
model_class = MistralMoeModel
|
||||
else:
|
||||
model_class = MistralModel
|
||||
|
||||
|
||||
@@ -242,7 +242,7 @@ def parse_args() -> argparse.Namespace:
|
||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f32",
|
||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||
)
|
||||
parser.add_argument(
|
||||
@@ -277,10 +277,15 @@ def parse_args() -> argparse.Namespace:
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def load_hparams_from_hf(hf_model_id: str) -> dict[str, Any]:
|
||||
def load_hparams_from_hf(hf_model_id: str) -> tuple[dict[str, Any], Path | None]:
|
||||
from huggingface_hub import try_to_load_from_cache
|
||||
|
||||
# normally, adapter does not come with base model config, we need to load it from AutoConfig
|
||||
config = AutoConfig.from_pretrained(hf_model_id)
|
||||
return config.to_dict()
|
||||
cache_dir = try_to_load_from_cache(hf_model_id, "config.json")
|
||||
cache_dir = Path(cache_dir).parent if isinstance(cache_dir, str) else None
|
||||
|
||||
return config.to_dict(), cache_dir
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
@@ -325,13 +330,13 @@ if __name__ == '__main__':
|
||||
# load base model
|
||||
if base_model_id is not None:
|
||||
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
|
||||
hparams = load_hparams_from_hf(base_model_id)
|
||||
hparams, dir_base_model = load_hparams_from_hf(base_model_id)
|
||||
elif dir_base_model is None:
|
||||
if "base_model_name_or_path" in lparams:
|
||||
model_id = lparams["base_model_name_or_path"]
|
||||
logger.info(f"Loading base model from Hugging Face: {model_id}")
|
||||
try:
|
||||
hparams = load_hparams_from_hf(model_id)
|
||||
hparams, dir_base_model = load_hparams_from_hf(model_id)
|
||||
except OSError as e:
|
||||
logger.error(f"Failed to load base model config: {e}")
|
||||
logger.error("Please try downloading the base model and add its path to --base")
|
||||
@@ -480,6 +485,7 @@ if __name__ == '__main__':
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
hparams=hparams,
|
||||
remote_hf_model_id=base_model_id,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
|
||||
@@ -42,6 +42,9 @@ The following releases are verified and recommended:
|
||||
|
||||
## News
|
||||
|
||||
- 2025.11
|
||||
- Support malloc memory on device more than 4GB.
|
||||
|
||||
- 2025.2
|
||||
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|
||||
|GPU|Base tokens/s|Increased tokens/s|Percent|
|
||||
@@ -789,6 +792,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
|
||||
|
||||
|
||||
|
||||
## Known Issues
|
||||
@@ -835,6 +840,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
|
||||
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
|
||||
|
||||
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
|
||||
|
||||
You need to enable to support 4GB memory malloc by:
|
||||
```
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
```
|
||||
|
||||
### **GitHub contribution**:
|
||||
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.
|
||||
|
||||
|
||||
258
docs/backend/ZenDNN.md
Normal file
258
docs/backend/ZenDNN.md
Normal file
@@ -0,0 +1,258 @@
|
||||
# llama.cpp for AMD ZenDNN
|
||||
|
||||
> [!WARNING]
|
||||
> **Note:** ZenDNN is **not** the same as zDNN.
|
||||
> - **ZenDNN** (this page): AMD's deep learning library for AMD EPYC CPUs
|
||||
> - **zDNN**: IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes ([see zDNN documentation](zDNN.md))
|
||||
|
||||
- [Background](#background)
|
||||
- [OS](#os)
|
||||
- [Hardware](#hardware)
|
||||
- [Supported Operations](#supported-operations)
|
||||
- [DataType Supports](#datatype-supports)
|
||||
- [Linux](#linux)
|
||||
- [Environment Variable](#environment-variable)
|
||||
- [Performance Optimization](#performance-optimization)
|
||||
- [Known Issues](#known-issues)
|
||||
- [TODO](#todo)
|
||||
|
||||
## Background
|
||||
|
||||
**ZenDNN** (Zen Deep Neural Network Library) is AMD's high-performance deep learning inference library optimized for AMD EPYC™ CPUs. It provides optimized implementations of key deep learning primitives and operations, delivering significant performance improvements for neural network workloads on AMD Zen-based processor architectures.
|
||||
|
||||
**Llama.cpp + ZenDNN**
|
||||
|
||||
The llama.cpp ZenDNN backend leverages AMD's optimized matrix multiplication primitives to accelerate inference on AMD CPUs. It utilizes ZenDNN's **LowOHA (Low Overhead Hardware Accelerated)** MatMul operator for efficient GEMM operations with minimal execution overhead, built-in weight caching, and direct access to backend libraries (AOCL BLIS, LibXSMM, OneDNN).
|
||||
|
||||
For more information about ZenDNN, visit: https://www.amd.com/en/developer/zendnn.html
|
||||
|
||||
## OS
|
||||
|
||||
| OS | Status | Verified |
|
||||
|:-------:|:-------:|:----------------------------------------------:|
|
||||
| Linux | Support | Ubuntu 20.04, 22.04, 24.04 |
|
||||
|
||||
For the latest list of supported operating systems, see the [ZenDNN Supported OS](https://github.com/amd/ZenDNN/blob/zendnnl/README.md#15-supported-os).
|
||||
|
||||
## Hardware
|
||||
|
||||
### AMD CPUs
|
||||
|
||||
**Recommended Processors**
|
||||
|
||||
ZenDNN is optimized for AMD EPYC™ processors and AMD Ryzen™ processors based on "Zen" microarchitecture and newer.
|
||||
|
||||
| CPU Family | Status | Notes |
|
||||
|:-----------------------------:|:-------:|:----------------------------------:|
|
||||
| AMD EPYC™ 9005 Series (Turin)| Support | 5th Gen - Zen 5 architecture |
|
||||
| AMD EPYC™ 9004 Series (Genoa)| Support | 4th Gen - Zen 4 architecture |
|
||||
| AMD EPYC™ 7003 Series (Milan)| Support | 3rd Gen - Zen 3 architecture |
|
||||
| AMD Ryzen™ AI MAX (Strix Halo)| Support | High-performance mobile processors |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- Best performance is achieved on AMD EPYC™ processors with high core counts (e.g., EPYC 9005 series).
|
||||
- ZenDNN leverages AMD's advanced CPU features including AVX2 and AVX-512 instruction sets.
|
||||
- For optimal performance, ensure your system has sufficient memory bandwidth.
|
||||
|
||||
## Supported Operations
|
||||
|
||||
The ZenDNN backend currently accelerates **matrix multiplication (MUL_MAT)** operations only. Other operations are handled by the standard CPU backend.
|
||||
|
||||
| Operation | Status | Notes |
|
||||
|:-------------|:-------:|:----------------------------------------------:|
|
||||
| MUL_MAT | ✓ | Accelerated via ZenDNN LowOHA MatMul |
|
||||
|
||||
*Note:* Since only MUL_MAT is accelerated, models will benefit most from ZenDNN when matrix multiplications dominate the computational workload (which is typical for transformer-based LLMs).
|
||||
|
||||
## DataType Supports
|
||||
|
||||
| DataType | Status | Notes |
|
||||
|:----------------------:|:-------:|:---------------------------------------------:|
|
||||
| FP32 | Support | Full precision floating point |
|
||||
| BF16 | Support | BFloat16 (best performance on Zen 4/Zen 5) |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- **BF16** provides best performance on Zen 4 and Zen 5 EPYC™ processors (Genoa, Turin).
|
||||
|
||||
## Linux
|
||||
|
||||
### I. Setup Environment
|
||||
|
||||
You have two options to set up ZenDNN:
|
||||
|
||||
#### Option 1: Automatic Download and Build (Recommended)
|
||||
|
||||
CMake will automatically download and build ZenDNN for you:
|
||||
|
||||
```sh
|
||||
# Build llama.cpp - ZenDNN will be automatically downloaded and built
|
||||
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
No manual ZenDNN installation required. CMake will handle everything automatically.
|
||||
|
||||
#### Option 2: Use Custom ZenDNN Installation
|
||||
|
||||
If you want to build ZenDNN yourself or use a specific version:
|
||||
|
||||
**Step 1: Build ZenDNN from source**
|
||||
|
||||
```sh
|
||||
# Clone ZenDNN repository
|
||||
git clone https://github.com/amd/ZenDNN.git
|
||||
cd ZenDNN
|
||||
git checkout zendnnl
|
||||
|
||||
# Build and install (requires CMake >= 3.25)
|
||||
mkdir build && cd build
|
||||
cmake ..
|
||||
cmake --build . --target all
|
||||
```
|
||||
|
||||
Default installation path: `ZenDNN/build/install`
|
||||
|
||||
**For detailed build instructions**, refer to the [ZenDNN README](https://github.com/amd/ZenDNN/blob/zendnnl/README.md).
|
||||
|
||||
**Step 2: Build llama.cpp with custom ZenDNN path**
|
||||
|
||||
```sh
|
||||
# Using environment variable
|
||||
export ZENDNN_ROOT=/path/to/ZenDNN/build/install
|
||||
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
|
||||
# OR specify path directly in CMake
|
||||
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/ZenDNN/build/install -DCMAKE_BUILD_TYPE=Release
|
||||
cmake --build build --config Release -j $(nproc)
|
||||
```
|
||||
|
||||
### II. Run the Server
|
||||
|
||||
#### 1. Download Model
|
||||
|
||||
Download LLaMA 3.1 8B Instruct BF16 model:
|
||||
|
||||
```sh
|
||||
# Download from Hugging Face
|
||||
huggingface-cli download meta-llama/Llama-3.1-8B-Instruct-GGUF --local-dir models/
|
||||
```
|
||||
|
||||
#### 2. Start Server
|
||||
|
||||
Run llama.cpp server with ZenDNN acceleration:
|
||||
|
||||
```sh
|
||||
# Set optimal configuration
|
||||
export OMP_NUM_THREADS=64 # Adjust to your CPU core count
|
||||
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS for best performance
|
||||
|
||||
# Start server
|
||||
./build/bin/llama-server \
|
||||
-m models/Llama-3.1-8B-Instruct.BF16.gguf \
|
||||
--host 0.0.0.0 \
|
||||
--port 8080 \
|
||||
-t 64
|
||||
```
|
||||
|
||||
Access the server at `http://localhost:8080`.
|
||||
|
||||
**Performance tips**:
|
||||
- Set `OMP_NUM_THREADS` to match your physical core count
|
||||
- Use `ZENDNNL_MATMUL_ALGO=2` for optimal performance
|
||||
- For NUMA systems: `numactl --cpunodebind=0 --membind=0 ./build/bin/llama-server ...`
|
||||
|
||||
## Environment Variable
|
||||
|
||||
### Build Time
|
||||
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_ZENDNN | ON/OFF | Enable ZenDNN backend support |
|
||||
| ZENDNN_ROOT | Path to ZenDNN installation | Set ZenDNN installation directory |
|
||||
| GGML_OPENMP | ON/OFF (recommended: ON) | Enable OpenMP for multi-threading |
|
||||
|
||||
### Runtime
|
||||
|
||||
| Name | Value | Function |
|
||||
|-------------------------|--------------------------|-------------------------------------------------------------------|
|
||||
| OMP_NUM_THREADS | Number (e.g., 64) | Set number of OpenMP threads (recommended: physical core count) |
|
||||
| ZENDNNL_MATMUL_ALGO | 0-5 | Select MatMul backend algorithm (see Performance Optimization) |
|
||||
| ZENDNNL_PROFILE_LOG_LEVEL | 0-4 | Profiling log level (0=disabled, 4=verbose) |
|
||||
| ZENDNNL_ENABLE_PROFILER | 0 or 1 | Enable detailed profiling (1=enabled) |
|
||||
| ZENDNNL_API_LOG_LEVEL | 0-4 | API log level (0=disabled, 4=verbose) |
|
||||
|
||||
**Example**:
|
||||
|
||||
```sh
|
||||
export OMP_NUM_THREADS=64
|
||||
export ZENDNNL_MATMUL_ALGO=2 # Use Blocked AOCL BLIS for best performance
|
||||
./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Test" -n 100
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### MatMul Algorithm Selection
|
||||
|
||||
ZenDNN's LowOHA MatMul supports multiple backend algorithms. For **best performance**, use the **Blocked AOCL BLIS** algorithm:
|
||||
|
||||
```sh
|
||||
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS (recommended)
|
||||
```
|
||||
|
||||
**Available algorithms**:
|
||||
|
||||
| Value | Algorithm | Description |
|
||||
|:-----:|:-----------------------|:----------------------------------------------|
|
||||
| 0 | Dynamic Dispatch | Automatic backend selection (default) |
|
||||
| 1 | AOCL BLIS | AOCL BLIS backend |
|
||||
| 2 | AOCL BLIS Blocked | **Blocked AOCL BLIS (recommended)** |
|
||||
| 3 | OneDNN | OneDNN backend |
|
||||
| 4 | OneDNN Blocked | Blocked OneDNN |
|
||||
| 5 | LibXSMM | LibXSMM backend |
|
||||
|
||||
### Profiling and Debugging
|
||||
|
||||
For detailed profiling and logging options, refer to the [ZenDNN Logging Documentation](https://github.com/amd/ZenDNN/blob/zendnnl/docs/logging.md).
|
||||
|
||||
## Known Issues
|
||||
|
||||
- **Limited operation support**: Currently only matrix multiplication (MUL_MAT) is accelerated via ZenDNN. Other operations fall back to the standard CPU backend.
|
||||
- **BF16 support**: BF16 operations require AMD Zen 4 or Zen 5 architecture (EPYC 9004/9005 series). On older CPUs, operations will use FP32.
|
||||
- **NUMA awareness**: For multi-socket systems, manual NUMA binding may be required for optimal performance.
|
||||
|
||||
## Q&A
|
||||
|
||||
**Q: How do I verify that ZenDNN backend is being used?**
|
||||
|
||||
A: Check the log output when running llama.cpp. You should see messages indicating the ZenDNN backend is initialized. You can also check the backend name in the output.
|
||||
|
||||
**Q: What performance improvement can I expect?**
|
||||
|
||||
A: Performance gains vary depending on the model size, batch size, and CPU architecture. On AMD EPYC processors, you can typically expect 1.1x-2x speedup compared to standard CPU inference for matrix multiplication operations.
|
||||
|
||||
**Q: Can I use ZenDNN on non-AMD processors?**
|
||||
|
||||
A: ZenDNN is optimized specifically for AMD processors. While it may work on other x86-64 CPUs, performance benefits are only guaranteed on AMD Zen-based architectures.
|
||||
|
||||
**Q: Does ZenDNN support quantized models?**
|
||||
|
||||
A: Currently, ZenDNN primarily supports FP32 and BF16 data types. Quantized model support is not available at this time.
|
||||
|
||||
**Q: Why is my inference not faster with ZenDNN?**
|
||||
|
||||
A: Ensure:
|
||||
1. You're using an AMD EPYC or Ryzen processor (Zen 2 or newer)
|
||||
2. `OMP_NUM_THREADS` is set appropriately (physical core count)
|
||||
3. `ZENDNNL_MATMUL_ALGO=2` is set for best performance (Blocked AOCL BLIS)
|
||||
4. You're using a sufficiently large model (small models may not benefit as much)
|
||||
5. Enable profiling to verify ZenDNN MatMul is being called
|
||||
|
||||
### **GitHub Contribution**:
|
||||
Please add the **[ZenDNN]** prefix/tag in issues/PRs titles to help the ZenDNN-team check/address them without delay.
|
||||
|
||||
## TODO
|
||||
|
||||
- Expand operation support beyond MUL_MAT (attention operations, activations, etc.)
|
||||
@@ -1,5 +1,10 @@
|
||||
# llama.cpp for IBM zDNN Accelerator
|
||||
|
||||
> [!WARNING]
|
||||
> **Note:** zDNN is **not** the same as ZenDNN.
|
||||
> - **zDNN** (this page): IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes
|
||||
> - **ZenDNN**: AMD's deep learning library for AMD EPYC CPUs ([see ZenDNN documentation](ZenDNN.md))
|
||||
|
||||
## Background
|
||||
|
||||
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.
|
||||
|
||||
@@ -19,6 +19,7 @@ cmake -B build \
|
||||
-DGGML_RVV=ON \
|
||||
-DGGML_RV_ZFH=ON \
|
||||
-DGGML_RV_ZICBOP=ON \
|
||||
-DGGML_RV_ZIHINTPAUSE=ON \
|
||||
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
|
||||
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
|
||||
-DCMAKE_INSTALL_PREFIX=build/installed
|
||||
|
||||
@@ -431,11 +431,22 @@ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/ren
|
||||
|
||||
### For Linux users:
|
||||
|
||||
#### Using the LunarG Vulkan SDK
|
||||
|
||||
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
|
||||
|
||||
#### Using system packages
|
||||
|
||||
On Debian / Ubuntu, you can install the required dependencies using:
|
||||
```sh
|
||||
sudo apt-get install libvulkan-dev glslc
|
||||
```
|
||||
|
||||
#### Common steps
|
||||
|
||||
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
|
||||
```bash
|
||||
vulkaninfo
|
||||
@@ -484,6 +495,38 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
|
||||
|
||||
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
|
||||
|
||||
## ZenDNN
|
||||
|
||||
ZenDNN provides optimized deep learning primitives for AMD EPYC™ CPUs. It accelerates matrix multiplication operations for inference workloads.
|
||||
|
||||
### Compilation
|
||||
|
||||
- Using `CMake` on Linux (automatic build):
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_ZENDNN=ON
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
The first build will automatically download and build ZenDNN, which may take 5-10 minutes. Subsequent builds will be much faster.
|
||||
|
||||
- Using `CMake` with custom ZenDNN installation:
|
||||
|
||||
```bash
|
||||
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/zendnn/install
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
||||
You can test with:
|
||||
|
||||
```bash
|
||||
./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -n 50
|
||||
```
|
||||
|
||||
For detailed information about hardware support, setup instructions, and performance optimization, refer to [llama.cpp for ZenDNN](./backend/ZenDNN.md).
|
||||
|
||||
## Arm® KleidiAI™
|
||||
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
|
||||
|
||||
|
||||
288
docs/development/parsing.md
Normal file
288
docs/development/parsing.md
Normal file
@@ -0,0 +1,288 @@
|
||||
# Parsing Model Output
|
||||
|
||||
The `common` library contains a PEG parser implementation suitable for parsing
|
||||
model output.
|
||||
|
||||
Types with the prefix `common_peg_*` are intended for general use and may have
|
||||
applications beyond parsing model output, such as parsing user-provided regex
|
||||
patterns.
|
||||
|
||||
Types with the prefix `common_chat_peg_*` are specialized helpers for model
|
||||
output.
|
||||
|
||||
The parser features:
|
||||
|
||||
- Partial parsing of streaming input
|
||||
- Built-in JSON parsers
|
||||
- AST generation with semantics via "tagged" nodes
|
||||
|
||||
## Example
|
||||
|
||||
Below is a contrived example demonstrating how to use the PEG parser to parse
|
||||
output from a model that emits arguments as JSON.
|
||||
|
||||
```cpp
|
||||
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
|
||||
// Build a choice of all available tools
|
||||
auto tool_choice = p.choice();
|
||||
for (const auto & tool : tools) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
const auto & schema = function.at("parameters");
|
||||
|
||||
auto tool_name = p.json_member("name", "\"" + p.literal(name) + "\"");
|
||||
auto tool_args = p.json_member("arguments", p.schema(p.json(), "tool-" + name + "-schema", schema));
|
||||
|
||||
tool_choice |= p.rule("tool-" + name, "{" << tool_name << "," << tool_args << "}");
|
||||
}
|
||||
|
||||
// Define the tool call structure: <tool_call>[{tool}]</tool_call>
|
||||
auto tool_call = p.trigger_rule("tool-call",
|
||||
p.sequence({
|
||||
p.literal("<tool_call>["),
|
||||
tool_choice,
|
||||
p.literal("]</tool_call>")
|
||||
})
|
||||
);
|
||||
|
||||
// Parser accepts content, optionally followed by a tool call
|
||||
return p.sequence({
|
||||
p.content(p.until("<tool_call>")),
|
||||
p.optional(tool_call),
|
||||
p.end()
|
||||
});
|
||||
});
|
||||
```
|
||||
|
||||
For a more complete example, see `test_example_native()` in
|
||||
[tests/test-chat-peg-parser.cpp](tests/test-chat-peg-parser.cpp).
|
||||
|
||||
## Parsers/Combinators
|
||||
|
||||
### Basic Matchers
|
||||
|
||||
- **`eps()`** - Matches nothing and always succeeds (epsilon/empty match)
|
||||
- **`start()`** - Matches the start of input (anchor `^`)
|
||||
- **`end()`** - Matches the end of input (anchor `$`)
|
||||
- **`literal(string)`** - Matches an exact literal string
|
||||
- **`any()`** - Matches any single character (`.`)
|
||||
|
||||
### Combinators
|
||||
|
||||
- **`sequence(...)`** - Matches parsers in order; all must succeed
|
||||
- **`choice(...)`** - Matches the first parser that succeeds from alternatives (ordered choice)
|
||||
- **`one_or_more(p)`** - Matches one or more repetitions (`+`)
|
||||
- **`zero_or_more(p)`** - Matches zero or more repetitions (`*`)
|
||||
- **`optional(p)`** - Matches zero or one occurrence (`?`)
|
||||
- **`repeat(p, min, max)`** - Matches between min and max repetitions (use `-1` for unbounded)
|
||||
- **`repeat(p, n)`** - Matches exactly n repetitions
|
||||
|
||||
### Lookahead
|
||||
|
||||
- **`peek(p)`** - Positive lookahead: succeeds if parser succeeds without consuming input (`&`)
|
||||
- **`negate(p)`** - Negative lookahead: succeeds if parser fails without consuming input (`!`)
|
||||
|
||||
### Character Classes & Utilities
|
||||
|
||||
- **`chars(classes, min, max)`** - Matches repetitions of characters from a character class
|
||||
- **`space()`** - Matches zero or more whitespace characters (space, tab, newline)
|
||||
- **`until(delimiter)`** - Matches characters until delimiter is found (delimiter not consumed)
|
||||
- **`until_one_of(delimiters)`** - Matches characters until any delimiter in the list is found
|
||||
- **`rest()`** - Matches everything remaining (`.*`)
|
||||
|
||||
### JSON Parsers
|
||||
|
||||
- **`json()`** - Complete JSON parser (objects, arrays, strings, numbers, booleans, null)
|
||||
- **`json_object()`** - JSON object parser
|
||||
- **`json_array()`** - JSON array parser
|
||||
- **`json_string()`** - JSON string parser
|
||||
- **`json_number()`** - JSON number parser
|
||||
- **`json_bool()`** - JSON boolean parser
|
||||
- **`json_null()`** - JSON null parser
|
||||
- **`json_string_content()`** - JSON string content without surrounding quotes
|
||||
- **`json_member(key, p)`** - JSON object member with specific key and value parser
|
||||
|
||||
### Grammar Building
|
||||
|
||||
- **`ref(name)`** - Creates a lightweight reference to a named rule (for recursive grammars)
|
||||
- **`rule(name, p, trigger)`** - Creates a named rule and returns a reference
|
||||
- **`trigger_rule(name, p)`** - Creates a trigger rule (entry point for lazy grammar generation)
|
||||
- **`schema(p, name, schema, raw)`** - Wraps parser with JSON schema metadata for grammar generation
|
||||
|
||||
### AST Control
|
||||
|
||||
- **`atomic(p)`** - Prevents AST node creation for partial parses
|
||||
- **`tag(tag, p)`** - Creates AST nodes with semantic tags (multiple nodes can share tags)
|
||||
|
||||
## GBNF Grammar Generation
|
||||
|
||||
The PEG parser also acts as a convenient DSL for generating GBNF grammars, with
|
||||
some exceptions.
|
||||
|
||||
```cpp
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
foreach_function(params.tools, [&](const json & fn) {
|
||||
builder.resolve_refs(fn.at("parameters"));
|
||||
});
|
||||
parser.build_grammar(builder, data.grammar_lazy);
|
||||
});
|
||||
```
|
||||
|
||||
The notable exception is the `negate(p)` lookahead parser, which cannot be
|
||||
defined as a CFG grammar and therefore does not produce a rule. Its usage
|
||||
should be limited and preferably hidden behind a `schema()` parser. In many
|
||||
cases, `until(delimiter)` or `until_one_of(delimiters)` is a better choice.
|
||||
|
||||
Another limitation is that the PEG parser requires an unambiguous grammar. In
|
||||
contrast, the `llama-grammar` implementation can support ambiguous grammars,
|
||||
though they are difficult to parse.
|
||||
|
||||
### Lazy Grammars
|
||||
|
||||
During lazy grammar generation, only rules reachable from a `trigger_rule(p)`
|
||||
are emitted in the grammar. All trigger rules are added as alternations in the
|
||||
root rule. It is still necessary to define trigger patterns, as the parser has
|
||||
no interaction with the grammar sampling.
|
||||
|
||||
### JSON Schema
|
||||
|
||||
The `schema(p, name, schema, raw)` parser will use the `json-schema-to-grammar`
|
||||
implementation to generate the grammar instead of the underlying parser.
|
||||
|
||||
The `raw` option emits a grammar suitable for a raw string instead of a JSON
|
||||
string. In other words, it won't be wrapped in quotes or require escaping
|
||||
quotes. It should only be used when `type == "string"`.
|
||||
|
||||
The downside is that it can potentially lead to ambiguous grammars. For
|
||||
example, if a user provides the pattern `^.*$`, the following grammar may be
|
||||
generated:
|
||||
|
||||
```
|
||||
root ::= "<arg>" .* "</arg>"
|
||||
```
|
||||
|
||||
This creates an ambiguous grammar that cannot be parsed by the PEG parser. To
|
||||
help mitigate this, if `.*` is found in the pattern, the grammar from the
|
||||
underlying parser will be emitted instead.
|
||||
|
||||
## Common AST Shapes for Chat Parsing
|
||||
|
||||
Most model output can be placed in one of the following categories:
|
||||
|
||||
- Content only
|
||||
- Tool calling with arguments emitted as a single JSON object
|
||||
- Tool calling with arguments emitted as separate entities, either XML
|
||||
(Qwen3-Coder, MiniMax M2) or pseudo-function calls (LFM2)
|
||||
|
||||
To provide broad coverage,
|
||||
[`common/chat-peg-parser.h`](common/chat-peg-parser.h) contains builders and
|
||||
mappers that help create parsers and visitors/extractors for these types. They
|
||||
require parsers to tag nodes to conform to an AST "shape". This normalization
|
||||
makes it easy to extract information and generalize parsing.
|
||||
|
||||
### Simple
|
||||
|
||||
The `common_chat_peg_builder` builds a `simple` parser that supports
|
||||
content-only models with optional reasoning.
|
||||
|
||||
- **`reasoning(p)`** - Tag node for extracting `reasoning_content`
|
||||
- **`content(p)`** - Tag node for extracting `content`
|
||||
|
||||
```cpp
|
||||
build_chat_peg_parser([&](common_chat_peg_parser & p) {
|
||||
return p.sequence({
|
||||
p.optional("<think>" + p.reasoning(p.until("</think>")) + "</think>"),
|
||||
p.content(p.until("<tool_call>")),
|
||||
p.end()
|
||||
});
|
||||
});
|
||||
```
|
||||
|
||||
Use `common_chat_peg_mapper` to extract the content. Note that this is already
|
||||
done for you in `common_chat_peg_parser` when
|
||||
`chat_format == COMMON_CHAT_FORMAT_PEG_SIMPLE`.
|
||||
|
||||
```cpp
|
||||
auto result = parser.parse(ctx);
|
||||
|
||||
common_chat_msg msg;
|
||||
auto mapper = common_chat_peg_mapper(msg);
|
||||
mapper.from_ast(ctx.ast, result);
|
||||
```
|
||||
|
||||
### Native
|
||||
|
||||
The `common_chat_peg_native_builder` builds a `native` parser suitable for
|
||||
models that emit tool arguments as a direct JSON object.
|
||||
|
||||
- **`reasoning(p)`** - Tag node for `reasoning_content`
|
||||
- **`content(p)`** - Tag node for `content`
|
||||
- **`tool(p)`** - Tag entirety of a single tool call
|
||||
- **`tool_open(p)`** - Tag start of a tool call
|
||||
- **`tool_close(p)`** - Tag end of a tool call
|
||||
- **`tool_id(p)`** - Tag the tool call ID (optional)
|
||||
- **`tool_name(p)`** - Tag the tool name
|
||||
- **`tool_args(p)`** - Tag the tool arguments
|
||||
|
||||
```cpp
|
||||
build_chat_peg_native_parser([&](common_chat_peg_native_parser & p) {
|
||||
auto get_weather_tool = p.tool(p.sequence({
|
||||
p.tool_open(p.literal("{")),
|
||||
p.json_member("name", "\"" + p.tool_name(p.literal("get_weather")) + "\""),
|
||||
p.literal(","),
|
||||
p.json_member("arguments", p.tool_args(p.json())),
|
||||
p.tool_close(p.literal("}"))
|
||||
}));
|
||||
|
||||
return p.sequence({
|
||||
p.content(p.until("<tool_call>")),
|
||||
p.literal("<tool_call>"),
|
||||
get_weather_tool,
|
||||
p.literal("</tool_call>"),
|
||||
p.end()
|
||||
});
|
||||
});
|
||||
```
|
||||
|
||||
### Constructed
|
||||
|
||||
The `common_chat_peg_constructed_builder` builds a `constructed` parser
|
||||
suitable for models that emit tool arguments as separate entities, such as XML
|
||||
tags.
|
||||
|
||||
- **`reasoning(p)`** - Tag node for `reasoning_content`
|
||||
- **`content(p)`** - Tag node for `content`
|
||||
- **`tool(p)`** - Tag entirety of a single tool call
|
||||
- **`tool_open(p)`** - Tag start of a tool call
|
||||
- **`tool_close(p)`** - Tag end of a tool call
|
||||
- **`tool_name(p)`** - Tag the tool name
|
||||
- **`tool_arg(p)`** - Tag a complete tool argument (name + value)
|
||||
- **`tool_arg_open(p)`** - Tag start of a tool argument
|
||||
- **`tool_arg_close(p)`** - Tag end of a tool argument
|
||||
- **`tool_arg_name(p)`** - Tag the argument name
|
||||
- **`tool_arg_string_value(p)`** - Tag string value for the argument
|
||||
- **`tool_arg_json_value(p)`** - Tag JSON value for the argument
|
||||
|
||||
```cpp
|
||||
build_chat_peg_constructed_parser([&](common_chat_peg_constructed_builder & p) {
|
||||
auto location_arg = p.tool_arg(
|
||||
p.tool_arg_open("<parameter name=\"" + p.tool_arg_name(p.literal("location")) + "\">"),
|
||||
p.tool_arg_string_value(p.until("</parameter>")),
|
||||
p.tool_arg_close(p.literal("</parameter>"))
|
||||
);
|
||||
|
||||
auto get_weather_tool = p.tool(p.sequence({
|
||||
p.tool_open("<function name=\"" + p.tool_name(p.literal("get_weather")) + "\">"),
|
||||
location_arg,
|
||||
p.tool_close(p.literal("</function>"))
|
||||
}));
|
||||
|
||||
return p.sequence({
|
||||
p.content(p.until("<tool_call>")),
|
||||
p.literal("<tool_call>"),
|
||||
get_weather_tool,
|
||||
p.literal("</tool_call>"),
|
||||
p.end()
|
||||
});
|
||||
});
|
||||
```
|
||||
215
docs/ops.md
215
docs/ops.md
@@ -12,110 +12,111 @@ Legend:
|
||||
- 🟡 Partially supported by this backend
|
||||
- ❌ Not supported by this backend
|
||||
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|
||||
|-----------|------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | ✅ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| FILL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
|
||||
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | 🟡 | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SET | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | 🟡 | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | WebGPU | ZenDNN | zDNN |
|
||||
|-----------|------|------|------|------|------|------|------|------|------|------|------|
|
||||
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ADD_ID | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
|
||||
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | ❌ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| FILL | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| IM2COL | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
|
||||
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
|
||||
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SET | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ | ❌ |
|
||||
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
|
||||
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
|
||||
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SUM | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
||||
19297
docs/ops/BLAS.csv
19297
docs/ops/BLAS.csv
File diff suppressed because it is too large
Load Diff
22617
docs/ops/Metal.csv
22617
docs/ops/Metal.csv
File diff suppressed because it is too large
Load Diff
@@ -5,8 +5,8 @@
|
||||
"Vulkan0","SGN","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","NEG","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","NEG","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","STEP","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","STEP","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","STEP","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","STEP","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TANH","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TANH","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ELU","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
@@ -29,18 +29,18 @@
|
||||
"Vulkan0","EXP","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","EXPM1","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","EXPM1","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ABS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ABS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","Vulkan"
|
||||
"Vulkan0","SGN","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","Vulkan"
|
||||
@@ -89,8 +89,8 @@
|
||||
"Vulkan0","SGN","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","NEG","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","NEG","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","STEP","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","STEP","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","STEP","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","STEP","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TANH","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TANH","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ELU","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
@@ -113,18 +113,18 @@
|
||||
"Vulkan0","EXP","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","EXPM1","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","EXPM1","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ABS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ABS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","Vulkan"
|
||||
"Vulkan0","SGN","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","Vulkan"
|
||||
@@ -5005,8 +5005,8 @@
|
||||
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","DUP","type=f32,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=1","support","0","no","Vulkan"
|
||||
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=2","support","0","no","Vulkan"
|
||||
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=3","support","0","no","Vulkan"
|
||||
@@ -5032,14 +5032,14 @@
|
||||
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
|
||||
@@ -5271,7 +5271,7 @@
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=q4_1,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
|
||||
@@ -5415,21 +5415,49 @@
|
||||
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,3],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
|
||||
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7]","support","0","no","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
@@ -5654,7 +5682,8 @@
|
||||
"Vulkan0","SUB","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ADD1","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","Vulkan"
|
||||
@@ -8632,10 +8661,10 @@
|
||||
"Vulkan0","COS","type=f16,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","CLAMP","type=f16,ne=[10,5,4,3],min=-0.500000,max=0.500000","support","0","no","Vulkan"
|
||||
"Vulkan0","LEAKY_RELU","type=f16,ne_a=[10,5,4,3],negative_slope=0.100000","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SQR","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","SQRT","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","LOG","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
@@ -8643,10 +8672,14 @@
|
||||
"Vulkan0","COS","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","0","no","Vulkan"
|
||||
"Vulkan0","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
|
||||
@@ -8654,10 +8687,10 @@
|
||||
"Vulkan0","COS","type=f32,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CLAMP","type=f32,ne=[10,5,4,3],min=-0.500000,max=0.500000","support","1","yes","Vulkan"
|
||||
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne=[10,2,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne=[10,2,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SQR","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SQRT","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","LOG","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
@@ -8665,10 +8698,14 @@
|
||||
"Vulkan0","COS","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","Vulkan"
|
||||
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne=[7,1,5,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","Vulkan"
|
||||
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","Vulkan"
|
||||
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","Vulkan"
|
||||
@@ -9411,28 +9448,405 @@
|
||||
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","0","no","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","0","no","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Vulkan"
|
||||
@@ -9445,6 +9859,10 @@
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","0","no","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","0","no","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
|
||||
"Vulkan0","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
|
||||
@@ -9478,24 +9896,38 @@
|
||||
"Vulkan0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","0","no","Vulkan"
|
||||
"Vulkan0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","Vulkan"
|
||||
"Vulkan0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","0","no","Vulkan"
|
||||
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","Vulkan"
|
||||
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","Vulkan"
|
||||
"Vulkan0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","Vulkan"
|
||||
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","0","no","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","0","no","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","Vulkan"
|
||||
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Vulkan"
|
||||
"Vulkan0","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","Vulkan"
|
||||
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Vulkan"
|
||||
"Vulkan0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Vulkan"
|
||||
"Vulkan0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","Vulkan"
|
||||
|
||||
|
Can't render this file because it is too large.
|
18741
docs/ops/WebGPU.csv
Normal file
18741
docs/ops/WebGPU.csv
Normal file
File diff suppressed because it is too large
Load Diff
18741
docs/ops/ZenDNN.csv
Normal file
18741
docs/ops/ZenDNN.csv
Normal file
File diff suppressed because it is too large
Load Diff
@@ -20,6 +20,7 @@ else()
|
||||
|
||||
add_subdirectory(gguf-hash)
|
||||
add_subdirectory(gguf)
|
||||
add_subdirectory(idle)
|
||||
add_subdirectory(lookahead)
|
||||
add_subdirectory(lookup)
|
||||
add_subdirectory(parallel)
|
||||
|
||||
@@ -3,7 +3,7 @@
|
||||
The example demonstrates batched generation from a given prompt
|
||||
|
||||
```bash
|
||||
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
|
||||
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4 --kv-unified
|
||||
|
||||
...
|
||||
|
||||
|
||||
@@ -6,8 +6,54 @@ More Info:
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14644
|
||||
- https://github.com/ggml-org/llama.cpp/pull/14771
|
||||
|
||||
## Parameters
|
||||
The diffusion CLI supports various parameters to control the generation process:
|
||||
|
||||
Example of using Dream architechture: `llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual`
|
||||
### Core Diffusion Parameters
|
||||
- `--diffusion-steps`: Number of diffusion steps (default: 256)
|
||||
- `--diffusion-algorithm`: Algorithm for token selection
|
||||
- `0`: ORIGIN - Token will be generated in a purely random order from https://arxiv.org/abs/2107.03006.
|
||||
- `1`: ENTROPY_BASED - Entropy-based selection
|
||||
- `2`: MARGIN_BASED - Margin-based selection
|
||||
- `3`: RANDOM - Random selection
|
||||
- `4`: CONFIDENCE_BASED - Confidence-based selection (default)
|
||||
- More documentation here https://github.com/DreamLM/Dream
|
||||
- `--diffusion-visual`: Enable live visualization during generation
|
||||
|
||||
Example of using LLaDA architechture: `llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual`
|
||||
### Scheduling Parameters
|
||||
Choose one of the following scheduling methods:
|
||||
|
||||
**Timestep-based scheduling:**
|
||||
- `--diffusion-eps`: Epsilon value for timestep scheduling (e.g., 0.001)
|
||||
|
||||
**Block-based scheduling:**
|
||||
- `--diffusion-block-length`: Block size for block-based scheduling (e.g., 32)
|
||||
|
||||
### Sampling Parameters
|
||||
- `--temp`: Temperature for sampling (0.0 = greedy/deterministic, higher = more random)
|
||||
- `--top-k`: Top-k filtering for sampling
|
||||
- `--top-p`: Top-p (nucleus) filtering for sampling
|
||||
- `--seed`: Random seed for reproducibility
|
||||
|
||||
### Model Parameters
|
||||
- `-m`: Path to the GGUF model file
|
||||
- `-p`: Input prompt text
|
||||
- `-ub`: Maximum sequence length (ubatch size)
|
||||
- `-c`: Context size
|
||||
- `-b`: Batch size
|
||||
|
||||
### Examples
|
||||
#### Dream architechture:
|
||||
```
|
||||
llama-diffusion-cli -m dream7b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-eps 0.001 --diffusion-algorithm 3 --diffusion-steps 256 --diffusion-visual
|
||||
```
|
||||
|
||||
#### LLaDA architechture:
|
||||
```
|
||||
llama-diffusion-cli -m llada-8b.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-block-length 32 --diffusion-steps 256 --diffusion-visual
|
||||
```
|
||||
|
||||
#### RND1 architecture:
|
||||
```
|
||||
llama-diffusion-cli -m RND1-Base-0910.gguf -p "write code to train MNIST in pytorch" -ub 512 --diffusion-algorithm 1 --diffusion-steps 256 --diffusion-visual --temp 0.5 --diffusion-eps 0.001
|
||||
```
|
||||
|
||||
@@ -104,12 +104,16 @@ int main(int argc, char ** argv) {
|
||||
|
||||
params.embedding = true;
|
||||
|
||||
// get max number of sequences per batch
|
||||
const int n_seq_max = llama_max_parallel_sequences();
|
||||
|
||||
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
|
||||
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
|
||||
// in order to support any number of prompts
|
||||
if (params.n_parallel == 1) {
|
||||
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
|
||||
params.kv_unified = true;
|
||||
params.n_parallel = n_seq_max;
|
||||
}
|
||||
|
||||
// utilize the full context
|
||||
@@ -123,9 +127,6 @@ int main(int argc, char ** argv) {
|
||||
params.n_ubatch = params.n_batch;
|
||||
}
|
||||
|
||||
// get max number of sequences per batch
|
||||
const int n_seq_max = llama_max_parallel_sequences();
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
|
||||
@@ -4,10 +4,10 @@
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
/**
|
||||
* This the arbitrary data which will be passed to each callback.
|
||||
@@ -37,23 +37,23 @@ static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
||||
return u.f;
|
||||
}
|
||||
|
||||
static float ggml_get_float_value(uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
||||
static float ggml_get_float_value(const uint8_t * data, ggml_type type, const size_t * nb, size_t i0, size_t i1, size_t i2, size_t i3) {
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
float v;
|
||||
if (type == GGML_TYPE_F16) {
|
||||
v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
|
||||
v = ggml_fp16_to_fp32(*(const ggml_fp16_t *) &data[i]);
|
||||
} else if (type == GGML_TYPE_F32) {
|
||||
v = *(float *) &data[i];
|
||||
v = *(const float *) &data[i];
|
||||
} else if (type == GGML_TYPE_I64) {
|
||||
v = (float) *(int64_t *) &data[i];
|
||||
v = (float) *(const int64_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I32) {
|
||||
v = (float) *(int32_t *) &data[i];
|
||||
v = (float) *(const int32_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I16) {
|
||||
v = (float) *(int16_t *) &data[i];
|
||||
v = (float) *(const int16_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_I8) {
|
||||
v = (float) *(int8_t *) &data[i];
|
||||
v = (float) *(const int8_t *) &data[i];
|
||||
} else if (type == GGML_TYPE_BF16) {
|
||||
v = ggml_compute_bf16_to_fp32(*(ggml_bf16_t *) &data[i]);
|
||||
v = ggml_compute_bf16_to_fp32(*(const ggml_bf16_t *) &data[i]);
|
||||
} else {
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
|
||||
5
examples/idle/CMakeLists.txt
Normal file
5
examples/idle/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET llama-idle)
|
||||
add_executable(${TARGET} idle.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
3
examples/idle/README.md
Normal file
3
examples/idle/README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# llama.cpp/example/idle
|
||||
|
||||
https://github.com/ggml-org/llama.cpp/pull/17766
|
||||
110
examples/idle/idle.cpp
Normal file
110
examples/idle/idle.cpp
Normal file
@@ -0,0 +1,110 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int /*argc*/, char ** argv) {
|
||||
printf("\nexample usage:\n");
|
||||
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
common_params params;
|
||||
|
||||
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
common_init();
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = common_model_params_to_llama(params);
|
||||
|
||||
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
LOG_ERR("%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model);
|
||||
|
||||
// we need just a dummy token to evaluate
|
||||
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
ctx_params.n_ctx = 512;
|
||||
ctx_params.n_batch = 512;
|
||||
ctx_params.no_perf = false;
|
||||
|
||||
llama_context * ctx = llama_init_from_model(model, ctx_params);
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
|
||||
|
||||
const int n_iters = 3;
|
||||
|
||||
// warm-up
|
||||
llama_decode(ctx, batch);
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_synchronize(ctx);
|
||||
|
||||
for (int64_t t_pause_ms = 0; t_pause_ms <= 4000; t_pause_ms += 800) {
|
||||
double t_sum_us = 0.0;
|
||||
double t_sum2_us = 0.0;
|
||||
|
||||
for (int i = 0; i < n_iters; i++) {
|
||||
// this pause is important - it simulates "idle GPU"
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));
|
||||
|
||||
const int64_t t_start_us = llama_time_us();
|
||||
|
||||
// this should take constant time
|
||||
llama_decode(ctx, batch);
|
||||
llama_synchronize(ctx);
|
||||
|
||||
const int64_t t_end_us = llama_time_us();
|
||||
|
||||
const double t_cur_us = t_end_us - t_start_us;
|
||||
|
||||
#if 1
|
||||
// print individual decode times
|
||||
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
|
||||
#endif
|
||||
|
||||
t_sum_us += t_cur_us;
|
||||
t_sum2_us += t_cur_us * t_cur_us;
|
||||
|
||||
llama_memory_clear(llama_get_memory(ctx), true);
|
||||
llama_synchronize(ctx); // just in case
|
||||
}
|
||||
|
||||
const double t_avg_us = t_sum_us / n_iters;
|
||||
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));
|
||||
|
||||
printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
llama_free(ctx);
|
||||
llama_model_free(model);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -231,9 +231,9 @@ DOT = '[^\\x0A\\x0D]'
|
||||
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
|
||||
|
||||
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
|
||||
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
|
||||
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\\]')
|
||||
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
|
||||
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]', '\\': '\\\\'}
|
||||
|
||||
NON_LITERAL_SET = set('|.()[]{}*+?')
|
||||
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?')
|
||||
|
||||
@@ -144,7 +144,7 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
std::string s(buf, n);
|
||||
printf("%s", s.c_str());
|
||||
printf("%s (%d)", s.c_str(), id);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
|
||||
@@ -4,6 +4,11 @@ set -e
|
||||
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
MODEL_TESTING_PROMPT="${2:-"$MODEL_TESTING_PROMPT"}"
|
||||
|
||||
if [ -z "$MODEL_TESTING_PROMPT"]; then
|
||||
MODEL_TESTING_PROMPT="Hello, my name is"
|
||||
fi
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
@@ -14,7 +19,8 @@ if [ -z "$CONVERTED_MODEL" ]; then
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
echo $MODEL_TESTING_PROMPT
|
||||
|
||||
cmake --build ../../build --target llama-logits -j8
|
||||
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"
|
||||
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"
|
||||
|
||||
@@ -184,8 +184,12 @@ model_name = os.path.basename(model_path)
|
||||
# of using AutoModelForCausalLM.
|
||||
print(f"Model class: {model.__class__.__name__}")
|
||||
|
||||
prompt = "Hello, my name is"
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
||||
device = next(model.parameters()).device
|
||||
if os.getenv("MODEL_TESTING_PROMPT"):
|
||||
prompt = os.getenv("MODEL_TESTING_PROMPT")
|
||||
else:
|
||||
prompt = "Hello, my name is"
|
||||
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
||||
|
||||
print(f"Input tokens: {input_ids}")
|
||||
print(f"Input text: {repr(prompt)}")
|
||||
|
||||
@@ -241,6 +241,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
// this one is managed by common_init_result
|
||||
//llama_free(ctx);
|
||||
|
||||
llama_free(ctx2);
|
||||
llama_free(ctx3);
|
||||
|
||||
if (result0 != result2) {
|
||||
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
|
||||
return 1;
|
||||
|
||||
@@ -18,6 +18,7 @@ cd llama.cpp
|
||||
cmake -S . -B build
|
||||
cmake --build build
|
||||
cmake --install build --prefix inst
|
||||
```
|
||||
|
||||
### Build simple-cmake-pkg
|
||||
|
||||
|
||||
@@ -15,6 +15,9 @@ MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=99
|
||||
CONTEXT=4096
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
# If you want more control, DPC++ Allows selecting a specific device through the
|
||||
# following environment variable
|
||||
#export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
@@ -18,11 +18,14 @@ MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
|
||||
CONTEXT=4096
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "Using $GGML_SYCL_DEVICE as the main GPU"
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
fi
|
||||
|
||||
@@ -5,5 +5,7 @@
|
||||
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 99 -s 0
|
||||
|
||||
@@ -5,5 +5,7 @@
|
||||
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -e -ngl 99
|
||||
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -s 0 -e -ngl 99
|
||||
|
||||
@@ -25,16 +25,17 @@ if(GIT_EXE)
|
||||
)
|
||||
endif()
|
||||
|
||||
# Build the version string with optional dirty flag
|
||||
set(GGML_VERSION "${GGML_VERSION_BASE}")
|
||||
if(GGML_GIT_DIRTY AND NOT GGML_GIT_DIRTY EQUAL 0)
|
||||
set(GGML_VERSION "${GGML_VERSION}-dirty")
|
||||
endif()
|
||||
|
||||
if(NOT GGML_BUILD_COMMIT)
|
||||
set(GGML_BUILD_COMMIT "unknown")
|
||||
endif()
|
||||
|
||||
# Build the commit string with optional dirty flag
|
||||
if(DEFINED GGML_GIT_DIRTY AND GGML_GIT_DIRTY EQUAL 1)
|
||||
set(GGML_BUILD_COMMIT "${GGML_BUILD_COMMIT}-dirty")
|
||||
endif()
|
||||
|
||||
include(CheckIncludeFileCXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
@@ -167,6 +168,7 @@ option(GGML_RVV "ggml: enable rvv" ON)
|
||||
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
|
||||
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
|
||||
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
|
||||
option(GGML_RV_ZIHINTPAUSE "ggml: enable riscv zihintpause " ON)
|
||||
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
|
||||
option(GGML_VXE "ggml: enable vxe" ${GGML_NATIVE})
|
||||
|
||||
@@ -174,14 +176,10 @@ option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requi
|
||||
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
|
||||
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
|
||||
|
||||
|
||||
if (MINGW)
|
||||
set(GGML_WIN_VER "0xA00" CACHE STRING "ggml: Windows version")
|
||||
endif()
|
||||
|
||||
# ggml core
|
||||
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
|
||||
option(GGML_CPU "ggml: enable CPU backend" ON)
|
||||
option(GGML_SCHED_NO_REALLOC "ggml: disallow reallocations in ggml-alloc (for debugging)" OFF)
|
||||
|
||||
# 3rd party libs / backends
|
||||
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
|
||||
@@ -224,7 +222,7 @@ option(GGML_WEBGPU "ggml: use WebGPU"
|
||||
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
|
||||
option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)" OFF)
|
||||
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
|
||||
|
||||
option(GGML_WEBGPU_JSPI "ggml: use JSPI for WebGPU" ON)
|
||||
option(GGML_ZDNN "ggml: use zDNN" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
@@ -256,6 +254,9 @@ option(GGML_HEXAGON "ggml: enable Hexagon backend"
|
||||
# toolchain for vulkan-shaders-gen
|
||||
set (GGML_VULKAN_SHADERS_GEN_TOOLCHAIN "" CACHE FILEPATH "ggml: toolchain file for vulkan-shaders-gen")
|
||||
|
||||
option(GGML_ZENDNN "ggml: use ZenDNN" OFF)
|
||||
option(ZENDNN_ROOT "ggml: path to ZenDNN installation" "")
|
||||
|
||||
# extra artifacts
|
||||
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
|
||||
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})
|
||||
@@ -317,6 +318,7 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h
|
||||
include/ggml-webgpu.h
|
||||
include/ggml-zendnn.h
|
||||
include/gguf.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
@@ -406,62 +408,67 @@ if (MSVC)
|
||||
/wd4996 # Disable POSIX deprecation warnings
|
||||
/wd4702 # Unreachable code warnings
|
||||
)
|
||||
function(disable_msvc_warnings target_name)
|
||||
set(MSVC_COMPILE_OPTIONS
|
||||
"$<$<COMPILE_LANGUAGE:C>:/utf-8>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:/utf-8>"
|
||||
)
|
||||
function(configure_msvc_target target_name)
|
||||
if(TARGET ${target_name})
|
||||
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
|
||||
target_compile_options(${target_name} PRIVATE ${MSVC_COMPILE_OPTIONS})
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
disable_msvc_warnings(ggml-base)
|
||||
disable_msvc_warnings(ggml)
|
||||
disable_msvc_warnings(ggml-cpu)
|
||||
disable_msvc_warnings(ggml-cpu-x64)
|
||||
disable_msvc_warnings(ggml-cpu-sse42)
|
||||
disable_msvc_warnings(ggml-cpu-sandybridge)
|
||||
disable_msvc_warnings(ggml-cpu-haswell)
|
||||
disable_msvc_warnings(ggml-cpu-skylakex)
|
||||
disable_msvc_warnings(ggml-cpu-icelake)
|
||||
disable_msvc_warnings(ggml-cpu-alderlake)
|
||||
configure_msvc_target(ggml-base)
|
||||
configure_msvc_target(ggml)
|
||||
configure_msvc_target(ggml-cpu)
|
||||
configure_msvc_target(ggml-cpu-x64)
|
||||
configure_msvc_target(ggml-cpu-sse42)
|
||||
configure_msvc_target(ggml-cpu-sandybridge)
|
||||
configure_msvc_target(ggml-cpu-haswell)
|
||||
configure_msvc_target(ggml-cpu-skylakex)
|
||||
configure_msvc_target(ggml-cpu-icelake)
|
||||
configure_msvc_target(ggml-cpu-alderlake)
|
||||
|
||||
if (GGML_BUILD_EXAMPLES)
|
||||
disable_msvc_warnings(common-ggml)
|
||||
disable_msvc_warnings(common)
|
||||
configure_msvc_target(common-ggml)
|
||||
configure_msvc_target(common)
|
||||
|
||||
disable_msvc_warnings(mnist-common)
|
||||
disable_msvc_warnings(mnist-eval)
|
||||
disable_msvc_warnings(mnist-train)
|
||||
configure_msvc_target(mnist-common)
|
||||
configure_msvc_target(mnist-eval)
|
||||
configure_msvc_target(mnist-train)
|
||||
|
||||
disable_msvc_warnings(gpt-2-ctx)
|
||||
disable_msvc_warnings(gpt-2-alloc)
|
||||
disable_msvc_warnings(gpt-2-backend)
|
||||
disable_msvc_warnings(gpt-2-sched)
|
||||
disable_msvc_warnings(gpt-2-quantize)
|
||||
disable_msvc_warnings(gpt-2-batched)
|
||||
configure_msvc_target(gpt-2-ctx)
|
||||
configure_msvc_target(gpt-2-alloc)
|
||||
configure_msvc_target(gpt-2-backend)
|
||||
configure_msvc_target(gpt-2-sched)
|
||||
configure_msvc_target(gpt-2-quantize)
|
||||
configure_msvc_target(gpt-2-batched)
|
||||
|
||||
disable_msvc_warnings(gpt-j)
|
||||
disable_msvc_warnings(gpt-j-quantize)
|
||||
configure_msvc_target(gpt-j)
|
||||
configure_msvc_target(gpt-j-quantize)
|
||||
|
||||
disable_msvc_warnings(magika)
|
||||
disable_msvc_warnings(yolov3-tiny)
|
||||
disable_msvc_warnings(sam)
|
||||
configure_msvc_target(magika)
|
||||
configure_msvc_target(yolov3-tiny)
|
||||
configure_msvc_target(sam)
|
||||
|
||||
disable_msvc_warnings(simple-ctx)
|
||||
disable_msvc_warnings(simple-backend)
|
||||
configure_msvc_target(simple-ctx)
|
||||
configure_msvc_target(simple-backend)
|
||||
endif()
|
||||
|
||||
if (GGML_BUILD_TESTS)
|
||||
disable_msvc_warnings(test-mul-mat)
|
||||
disable_msvc_warnings(test-arange)
|
||||
disable_msvc_warnings(test-backend-ops)
|
||||
disable_msvc_warnings(test-cont)
|
||||
disable_msvc_warnings(test-conv-transpose)
|
||||
disable_msvc_warnings(test-conv-transpose-1d)
|
||||
disable_msvc_warnings(test-conv1d)
|
||||
disable_msvc_warnings(test-conv2d)
|
||||
disable_msvc_warnings(test-conv2d-dw)
|
||||
disable_msvc_warnings(test-customop)
|
||||
disable_msvc_warnings(test-dup)
|
||||
disable_msvc_warnings(test-opt)
|
||||
disable_msvc_warnings(test-pool)
|
||||
configure_msvc_target(test-mul-mat)
|
||||
configure_msvc_target(test-arange)
|
||||
configure_msvc_target(test-backend-ops)
|
||||
configure_msvc_target(test-cont)
|
||||
configure_msvc_target(test-conv-transpose)
|
||||
configure_msvc_target(test-conv-transpose-1d)
|
||||
configure_msvc_target(test-conv1d)
|
||||
configure_msvc_target(test-conv2d)
|
||||
configure_msvc_target(test-conv2d-dw)
|
||||
configure_msvc_target(test-customop)
|
||||
configure_msvc_target(test-dup)
|
||||
configure_msvc_target(test-opt)
|
||||
configure_msvc_target(test-pool)
|
||||
endif ()
|
||||
endif()
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
@@ -8,7 +7,7 @@ extern "C" {
|
||||
#endif
|
||||
|
||||
#define RPC_PROTO_MAJOR_VERSION 3
|
||||
#define RPC_PROTO_MINOR_VERSION 0
|
||||
#define RPC_PROTO_MINOR_VERSION 6
|
||||
#define RPC_PROTO_PATCH_VERSION 0
|
||||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
|
||||
22
ggml/include/ggml-zendnn.h
Normal file
22
ggml/include/ggml-zendnn.h
Normal file
@@ -0,0 +1,22 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_BACKEND_API ggml_backend_t ggml_backend_zendnn_init(void);
|
||||
|
||||
GGML_BACKEND_API bool ggml_backend_is_zendnn(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for zendnn operations
|
||||
GGML_BACKEND_API void ggml_backend_zendnn_set_n_threads(ggml_backend_t backend_zendnn, int n_threads);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_zendnn_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -204,6 +204,10 @@
|
||||
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32) && !defined(_WIN32_WINNT)
|
||||
# define _WIN32_WINNT 0x0A00
|
||||
#endif
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
@@ -530,6 +534,7 @@ extern "C" {
|
||||
GGML_OP_ARANGE,
|
||||
GGML_OP_TIMESTEP_EMBEDDING,
|
||||
GGML_OP_ARGSORT,
|
||||
GGML_OP_TOP_K,
|
||||
GGML_OP_LEAKY_RELU,
|
||||
GGML_OP_TRI,
|
||||
GGML_OP_FILL,
|
||||
@@ -2147,7 +2152,8 @@ extern "C" {
|
||||
};
|
||||
|
||||
enum ggml_scale_flag {
|
||||
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
|
||||
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8),
|
||||
GGML_SCALE_FLAG_ANTIALIAS = (1 << 9),
|
||||
};
|
||||
|
||||
// interpolate
|
||||
@@ -2190,6 +2196,15 @@ extern "C" {
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
// pad each dimension with values on the other side of the torus (looping around)
|
||||
GGML_API struct ggml_tensor * ggml_pad_circular(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int p0,
|
||||
int p1,
|
||||
int p2,
|
||||
int p3);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_pad_ext(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@@ -2203,6 +2218,19 @@ extern "C" {
|
||||
int rp3
|
||||
);
|
||||
|
||||
// pad each dimension with values on the other side of the torus (looping around)
|
||||
GGML_API struct ggml_tensor * ggml_pad_ext_circular(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int lp0,
|
||||
int rp0,
|
||||
int lp1,
|
||||
int rp1,
|
||||
int lp2,
|
||||
int rp2,
|
||||
int lp3,
|
||||
int rp3);
|
||||
|
||||
// pad each dimension with reflection: [a, b, c, d] -> [b, a, b, c, d, c]
|
||||
GGML_API struct ggml_tensor * ggml_pad_reflect_1d(
|
||||
struct ggml_context * ctx,
|
||||
@@ -2258,19 +2286,26 @@ extern "C" {
|
||||
struct ggml_tensor * a,
|
||||
enum ggml_sort_order order);
|
||||
|
||||
// similar to ggml_top_k but implemented as `argsort` + `view`
|
||||
GGML_API struct ggml_tensor * ggml_argsort_top_k(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
// top k elements per row
|
||||
// note: the resulting top k indices are in no particular order
|
||||
GGML_API struct ggml_tensor * ggml_top_k(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_arange(
|
||||
struct ggml_context * ctx,
|
||||
float start,
|
||||
float stop,
|
||||
float step);
|
||||
|
||||
// top k elements per row
|
||||
GGML_API struct ggml_tensor * ggml_top_k(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
int k);
|
||||
|
||||
#define GGML_KQ_MASK_PAD 64
|
||||
#define GGML_KQ_MASK_PAD 1
|
||||
|
||||
// q: [n_embd_k, n_batch, n_head, ne3 ]
|
||||
// k: [n_embd_k, n_kv, n_head_kv, ne3 ]
|
||||
|
||||
@@ -127,10 +127,6 @@ if (NOT MSVC)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (MINGW)
|
||||
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
|
||||
endif()
|
||||
|
||||
#
|
||||
# POSIX conformance
|
||||
#
|
||||
@@ -221,6 +217,10 @@ if (GGML_BACKEND_DL)
|
||||
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
|
||||
endif()
|
||||
|
||||
if (GGML_SCHED_NO_REALLOC)
|
||||
target_compile_definitions(ggml-base PUBLIC GGML_SCHED_NO_REALLOC)
|
||||
endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
@@ -270,10 +270,13 @@ function(ggml_add_backend_library backend)
|
||||
endif()
|
||||
|
||||
# Set versioning properties for all backend libraries
|
||||
set_target_properties(${backend} PROPERTIES
|
||||
VERSION ${GGML_VERSION}
|
||||
SOVERSION ${GGML_VERSION_MAJOR}
|
||||
)
|
||||
# Building a MODULE library with a version is not supported on macOS (https://gitlab.kitware.com/cmake/cmake/-/issues/20782)
|
||||
if (NOT (APPLE AND GGML_BACKEND_DL))
|
||||
set_target_properties(${backend} PROPERTIES
|
||||
VERSION ${GGML_VERSION}
|
||||
SOVERSION ${GGML_VERSION_MAJOR}
|
||||
)
|
||||
endif()
|
||||
|
||||
if(NOT GGML_AVAILABLE_BACKENDS)
|
||||
set(GGML_AVAILABLE_BACKENDS "${backend}"
|
||||
@@ -328,6 +331,14 @@ function(ggml_add_cpu_backend_variant tag_name)
|
||||
set(GGML_INTERNAL_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
foreach (feat RVV)
|
||||
set(GGML_INTERNAL_${feat} OFF)
|
||||
endforeach()
|
||||
|
||||
foreach (feat ${ARGN})
|
||||
set(GGML_INTERNAL_${feat} ON)
|
||||
endforeach()
|
||||
@@ -402,6 +413,13 @@ if (GGML_CPU_ALL_VARIANTS)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported s390x target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "riscv64")
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
ggml_add_cpu_backend_variant(riscv64_0)
|
||||
ggml_add_cpu_backend_variant(riscv64_v RVV)
|
||||
else()
|
||||
message(FATAL_ERROR "Unsupported RISC-V target OS: ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
else()
|
||||
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS not yet supported with ${GGML_SYSTEM_ARCH} on ${CMAKE_SYSTEM_NAME}")
|
||||
endif()
|
||||
@@ -422,6 +440,7 @@ ggml_add_backend(WebGPU)
|
||||
ggml_add_backend(zDNN)
|
||||
ggml_add_backend(OpenCL)
|
||||
ggml_add_backend(Hexagon)
|
||||
ggml_add_backend(ZenDNN)
|
||||
|
||||
foreach (target ggml-base ggml)
|
||||
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)
|
||||
|
||||
@@ -921,10 +921,15 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
|
||||
}
|
||||
if (realloc) {
|
||||
#ifndef NDEBUG
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
|
||||
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
{
|
||||
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
|
||||
if (cur_size > 0) {
|
||||
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n",
|
||||
__func__, ggml_backend_buft_name(galloc->bufts[i]),
|
||||
cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
ggml_vbuffer_free(galloc->buffers[i]);
|
||||
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
|
||||
if (galloc->buffers[i] == NULL) {
|
||||
|
||||
@@ -73,6 +73,10 @@
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_ZENDNN
|
||||
#include "ggml-zendnn.h"
|
||||
#endif
|
||||
|
||||
// disable C++17 deprecation warning for std::codecvt_utf8
|
||||
#if defined(__clang__)
|
||||
# pragma clang diagnostic push
|
||||
@@ -203,6 +207,9 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_ZENDNN
|
||||
register_backend(ggml_backend_zendnn_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_HEXAGON
|
||||
register_backend(ggml_backend_hexagon_reg());
|
||||
#endif
|
||||
@@ -534,8 +541,12 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
fs::path best_path;
|
||||
|
||||
for (const auto & search_path : search_paths) {
|
||||
if (!fs::exists(search_path)) {
|
||||
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
|
||||
if (std::error_code ec; !fs::exists(search_path, ec)) {
|
||||
if (ec) {
|
||||
GGML_LOG_DEBUG("%s: posix_stat(%s) failure, error-message: %s\n", __func__, path_str(search_path).c_str(), ec.message().c_str());
|
||||
} else {
|
||||
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
|
||||
}
|
||||
continue;
|
||||
}
|
||||
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
|
||||
@@ -575,8 +586,12 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
|
||||
for (const auto & search_path : search_paths) {
|
||||
fs::path filename = backend_filename_prefix().native() + name_path.native() + backend_filename_extension().native();
|
||||
fs::path path = search_path / filename;
|
||||
if (fs::exists(path)) {
|
||||
if (std::error_code ec; fs::exists(path, ec)) {
|
||||
return get_reg().load_backend(path, silent);
|
||||
} else {
|
||||
if (ec) {
|
||||
GGML_LOG_DEBUG("%s: posix_stat(%s) failure, error-message: %s\n", __func__, path_str(path).c_str(), ec.message().c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
return nullptr;
|
||||
@@ -597,6 +612,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
#endif
|
||||
|
||||
ggml_backend_load_best("blas", silent, dir_path);
|
||||
ggml_backend_load_best("zendnn", silent, dir_path);
|
||||
ggml_backend_load_best("cann", silent, dir_path);
|
||||
ggml_backend_load_best("cuda", silent, dir_path);
|
||||
ggml_backend_load_best("hip", silent, dir_path);
|
||||
|
||||
@@ -723,6 +723,12 @@ struct ggml_backend_sched {
|
||||
bool op_offload;
|
||||
|
||||
int debug;
|
||||
|
||||
// used for debugging graph reallocations [GGML_SCHED_DEBUG_REALLOC]
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/17617
|
||||
int debug_realloc;
|
||||
int debug_graph_size;
|
||||
int debug_prev_graph_size;
|
||||
};
|
||||
|
||||
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
|
||||
@@ -1234,10 +1240,8 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
|
||||
}
|
||||
if (sched->n_copies > 1) {
|
||||
ggml_set_input(tensor_copy);
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
}
|
||||
ggml_set_input(tensor_copy);
|
||||
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
|
||||
tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
|
||||
SET_CAUSE(tensor_copy, "4.cpy");
|
||||
}
|
||||
@@ -1289,6 +1293,11 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
|
||||
}
|
||||
|
||||
int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
|
||||
|
||||
// remember the actual graph_size for performing reallocation checks later [GGML_SCHED_DEBUG_REALLOC]
|
||||
sched->debug_prev_graph_size = sched->debug_graph_size;
|
||||
sched->debug_graph_size = graph_size;
|
||||
|
||||
if (sched->graph.size < graph_size) {
|
||||
sched->graph.size = graph_size;
|
||||
sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
|
||||
@@ -1395,14 +1404,27 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
|
||||
// allocate graph
|
||||
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
|
||||
if (sched->debug_realloc > 0) {
|
||||
// we are interested only in situations where the graph was reallocated even though its size remained the same [GGML_SCHED_DEBUG_REALLOC]
|
||||
// example: https://github.com/ggml-org/llama.cpp/pull/17143
|
||||
const bool unexpected = !backend_ids_changed && sched->debug_prev_graph_size == sched->debug_graph_size;
|
||||
|
||||
if (unexpected || sched->debug_realloc > 1) {
|
||||
GGML_ABORT("%s: unexpected graph reallocation (graph size = %d, nodes = %d, leafs = %d), debug_realloc = %d\n", __func__,
|
||||
sched->debug_graph_size, sched->graph.n_nodes, sched->graph.n_leafs, sched->debug_realloc);
|
||||
}
|
||||
}
|
||||
|
||||
// the re-allocation may cause the split inputs to be moved to a different address
|
||||
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_backend_synchronize(sched->backends[i]);
|
||||
}
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
|
||||
#endif
|
||||
|
||||
ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
|
||||
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
|
||||
GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
|
||||
@@ -1614,6 +1636,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
|
||||
const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
|
||||
sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
|
||||
|
||||
sched->debug_realloc = 0;
|
||||
#ifdef GGML_SCHED_NO_REALLOC
|
||||
sched->debug_realloc = 1;
|
||||
#endif
|
||||
const char * GGML_SCHED_DEBUG_REALLOC = getenv("GGML_SCHED_DEBUG_REALLOC");
|
||||
sched->debug_realloc = GGML_SCHED_DEBUG_REALLOC ? atoi(GGML_SCHED_DEBUG_REALLOC) : sched->debug_realloc;
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
|
||||
|
||||
@@ -1630,6 +1660,9 @@ ggml_backend_sched_t ggml_backend_sched_new(
|
||||
sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
|
||||
sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
|
||||
|
||||
sched->debug_graph_size = 0;
|
||||
sched->debug_prev_graph_size = 0;
|
||||
|
||||
sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
|
||||
sched->context_buffer = (char *) malloc(sched->context_buffer_size);
|
||||
|
||||
|
||||
@@ -42,6 +42,7 @@
|
||||
#include <aclnnop/aclnn_exp.h>
|
||||
#include <aclnnop/aclnn_fill_scalar.h>
|
||||
#include <aclnnop/aclnn_fused_infer_attention_score_v2.h>
|
||||
#include <aclnnop/aclnn_ger.h>
|
||||
#include <aclnnop/aclnn_group_norm.h>
|
||||
#include <aclnnop/aclnn_grouped_matmul_v3.h>
|
||||
#include <aclnnop/aclnn_gt_scalar.h>
|
||||
@@ -2206,78 +2207,120 @@ static void aclnn_index_fill_tensor(ggml_backend_cann_context & ctx,
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Initializes and caches sine/cosine positional encoding values
|
||||
* (used in RoPE, Rotary Position Embedding) for attention layers.
|
||||
* @brief Initializes and caches all intermediate tensors required for RoPE
|
||||
* (Rotary Position Embedding), including support for Yarn, mRoPE,
|
||||
* i-mRoPE, Neox repeat strategy, independent sectors, frequency factors,
|
||||
* and multi-section rotary groups.
|
||||
*
|
||||
* This function computes and caches the sin/cos values of
|
||||
* θ = position * theta_scale for RoPE encoding. The cache is shared
|
||||
* across attention layers, and only the first attention layer will
|
||||
* trigger initialization. The cache includes repeated sin/cos values
|
||||
* with different repeat methods depending on the @param is_neox flag.
|
||||
* This function computes and caches the per-dimension θ coefficients used for
|
||||
* Q/K rotary embedding. The cache is shared across layers, and recomputed only
|
||||
* when any dependent parameter changes.
|
||||
*
|
||||
* Steps performed by this function:
|
||||
* 1. Identify whether the target tensor belongs to Q/K in attention
|
||||
* and restrict computation to the first layer only.
|
||||
* 2. Initialize the theta scale array (arange → power → freq scaling).
|
||||
* 3. Allocate sin/cos caches if the max prompt length increases.
|
||||
* 4. Compute θ = position * theta_scale.
|
||||
* 5. Compute sin(θ), cos(θ) and optionally scale by attn_factor.
|
||||
* 6. Expand sin/cos values by repeat or repeat_interleave depending
|
||||
* on whether @param is_neox is enabled.
|
||||
* The function now supports:
|
||||
* - Yarn RoPE extrapolation (via @param corr_dims and @param ext_factor)
|
||||
* - Per-dimension independent sector exponent rules (indep_sects + sections[])
|
||||
* - Multi-section RoPE (mRoPE) index mapping (mrope_used + is_imrope)
|
||||
* - Frequency factor division (src2)
|
||||
* - Neox / normal repeat expansion modes
|
||||
*
|
||||
* @param ctx The CANN backend context, holding memory pool,
|
||||
* stream, and persistent buffers for rope init/cache.
|
||||
* @param dst The destination ggml_tensor whose computation
|
||||
* depends on the RoPE values (usually Qcur/Kcur).
|
||||
* @param theta_scale Scalar exponent base for computing theta scale values.
|
||||
* @param freq_scale Frequency scaling factor, applied to theta scale.
|
||||
* @param attn_factor Attention scaling factor, applied to sin/cos.
|
||||
* @param is_neox Whether to use Neox-style repeat strategy
|
||||
* (dim expansion vs repeat_interleave).
|
||||
* @param ctx CANN backend context, containing memory pool,
|
||||
* cached buffers, and runtime stream.
|
||||
* @param dst Destination ggml_tensor whose computation
|
||||
* depends on RoPE (typically Qcur or Kcur).
|
||||
* @param corr_dims [low, high] Yarn correction range.
|
||||
* @param ext_factor Yarn extrapolation strength. 0 = disabled.
|
||||
* @param theta_scale Base multiplier for per-dimension θ exponent.
|
||||
* @param freq_scale Global frequency scaling factor.
|
||||
* @param attn_factor Optional scaling applied to sin/cos (if needed).
|
||||
* @param is_neox Whether to use Neox-style dimension interleave.
|
||||
* @param sections 4-way sector sizes for independent-section RoPE
|
||||
* and multi-section mRoPE (t/h/w/e).
|
||||
* @param mrope_used Whether to enable multi-section rotary embedding.
|
||||
* @param is_imrope Whether to apply interleaved mRoPE rules.
|
||||
* @param indep_sects Whether each dimension runs independent exponent
|
||||
* resets based on @p sections.
|
||||
*/
|
||||
static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
float * corr_dims,
|
||||
float ext_factor,
|
||||
float theta_scale,
|
||||
float freq_scale,
|
||||
float attn_factor,
|
||||
bool is_neox) {
|
||||
static void aclnn_rope_cache_init(ggml_backend_cann_context & ctx,
|
||||
ggml_tensor * dst,
|
||||
float * corr_dims,
|
||||
float ext_factor,
|
||||
float theta_scale,
|
||||
float freq_scale,
|
||||
float attn_factor,
|
||||
bool is_neox,
|
||||
int sections[4],
|
||||
bool mrope_used,
|
||||
bool is_imrope,
|
||||
bool indep_sects) {
|
||||
ggml_tensor * src0 = dst->src[0]; // input
|
||||
ggml_tensor * src1 = dst->src[1]; // position
|
||||
ggml_tensor * src2 = dst->src[2]; // freq_factors
|
||||
|
||||
if (src2 == nullptr && ctx.rope_cache.cached && ctx.rope_cache.ext_factor == ext_factor &&
|
||||
ctx.rope_cache.theta_scale == theta_scale && ctx.rope_cache.freq_scale == freq_scale &&
|
||||
ctx.rope_cache.attn_factor == attn_factor && ctx.rope_cache.is_neox == is_neox) {
|
||||
int64_t theta_scale_length = src0->ne[0] / 2;
|
||||
int64_t position_length = dst->ne[2];
|
||||
|
||||
// TODO: check theta_scale_length and position_length.
|
||||
if (src2 == nullptr && ctx.rope_cache.cached &&
|
||||
ctx.rope_cache.equal(theta_scale_length, position_length, ext_factor, theta_scale, freq_scale, attn_factor,
|
||||
is_neox, indep_sects, mrope_used, is_imrope, sections)) {
|
||||
// use cache.
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t theta_scale_length = src0->ne[0] / 2;
|
||||
int64_t theta_scale_ne[] = { theta_scale_length, 1, 1, 1 };
|
||||
size_t theta_scale_nb[] = { sizeof(float), sizeof(float), sizeof(float), theta_scale_length * sizeof(float) };
|
||||
// Step0: calculate tensor shape.
|
||||
int64_t theta_scale_ne[] = { theta_scale_length, 1, 1, 1 };
|
||||
size_t theta_scale_nb[] = { sizeof(float), theta_scale_length * sizeof(float), theta_scale_length * sizeof(float),
|
||||
theta_scale_length * sizeof(float) };
|
||||
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
||||
int64_t position_length = src1->ne[0];
|
||||
int64_t position_ne[] = { 1, 1, position_length, 1 };
|
||||
size_t position_nb[] = { sizeof(int32_t), sizeof(int32_t), sizeof(int32_t), sizeof(int32_t) * position_length };
|
||||
int64_t position_ne[] = { 1, 1, position_length, 1 };
|
||||
size_t position_nb[] = { sizeof(int32_t), sizeof(int32_t), sizeof(int32_t), sizeof(int32_t) * position_length };
|
||||
|
||||
int64_t theta_ne[] = { theta_scale_length, 1, position_length, 1 };
|
||||
size_t theta_nb[GGML_MAX_DIMS];
|
||||
theta_nb[0] = sizeof(float);
|
||||
int64_t cache_ne[] = { theta_scale_length, 1, position_length, 1 };
|
||||
size_t cache_nb[GGML_MAX_DIMS];
|
||||
cache_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
theta_nb[i] = theta_nb[i - 1] * theta_ne[i - 1];
|
||||
cache_nb[i] = cache_nb[i - 1] * cache_ne[i - 1];
|
||||
}
|
||||
|
||||
// theta_scale arange, [0,1,...,ne00/2 - 1]
|
||||
// Step1: Compute the coefficient of theta. During the cache_init process, aside from
|
||||
// (1) multiplying by the position,
|
||||
// (2) dividing by freq_factors,
|
||||
// (3) computing the sine and cosine,
|
||||
// the other parameters used in the computation generally do not change in most scenarios.
|
||||
// Therefore, we can first compute this part of the result and then cache it.
|
||||
|
||||
// Step1.1: prepare theta_scale exponent. if this exponent updated, should update theta_scale_tensor.
|
||||
acl_tensor_ptr acl_theta_scale_tensor;
|
||||
// cache theta scale
|
||||
if (ctx.rope_cache.theta_scale_length != theta_scale_length ||
|
||||
// theta_scale and freq_scale should not change during the current token inference process,
|
||||
// so we can directly use == here instead of comparing the absolute difference.
|
||||
ctx.rope_cache.theta_scale != theta_scale || ctx.rope_cache.freq_scale != freq_scale) {
|
||||
ctx.rope_cache.theta_scale_length = theta_scale_length;
|
||||
bool theta_scale_updated = false;
|
||||
if (ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.theta_scale != theta_scale ||
|
||||
ctx.rope_cache.indep_sects != indep_sects) {
|
||||
theta_scale_updated = true;
|
||||
if (ctx.rope_cache.theta_scale_exp_host != nullptr) {
|
||||
free(ctx.rope_cache.theta_scale_exp_host);
|
||||
}
|
||||
ctx.rope_cache.theta_scale_exp_host = (float *) malloc(theta_scale_length * sizeof(float));
|
||||
GGML_ASSERT(ctx.rope_cache.theta_scale_exp_host != nullptr);
|
||||
if (!indep_sects) {
|
||||
ctx.rope_cache.theta_scale_exp_host[0] = 1;
|
||||
for (int i = 1; i < theta_scale_length; i++) {
|
||||
ctx.rope_cache.theta_scale_exp_host[i] = ctx.rope_cache.theta_scale_exp_host[i - 1] * theta_scale;
|
||||
}
|
||||
} else {
|
||||
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
|
||||
int sec_w = sections[1] + sections[0];
|
||||
int sec_e = sections[2] + sec_w;
|
||||
|
||||
ctx.rope_cache.theta_scale_exp_host[0] = 1;
|
||||
for (int i = 1; i < theta_scale_length; i++) {
|
||||
int sector = i % sect_dims;
|
||||
if (sector == 0 || sector == sections[0] || sector == sec_w || sector == sec_e) {
|
||||
ctx.rope_cache.theta_scale_exp_host[i] = 1;
|
||||
continue;
|
||||
}
|
||||
ctx.rope_cache.theta_scale_exp_host[i] = ctx.rope_cache.theta_scale_exp_host[i - 1] * theta_scale;
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx.rope_cache.theta_scale_cache != nullptr) {
|
||||
ACL_CHECK(aclrtFree(ctx.rope_cache.theta_scale_cache));
|
||||
@@ -2285,74 +2328,138 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
|
||||
ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.theta_scale_cache, theta_scale_length * sizeof(float),
|
||||
ctx.rope_cache.theta_scale_exp_host, theta_scale_length * sizeof(float),
|
||||
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
|
||||
|
||||
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, 1);
|
||||
}
|
||||
|
||||
float start = 0;
|
||||
float step = 1;
|
||||
float stop = theta_scale_length;
|
||||
float n_elements = theta_scale_length;
|
||||
aclnn_arange(ctx, acl_theta_scale_tensor.get(), start, stop, step, n_elements);
|
||||
// Step1.2: prepare rope_yarn_ramp, if this part updated, should update theta_scale_tensor.
|
||||
bool yarn_ramp_tensor_updated = false;
|
||||
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
|
||||
acl_tensor_ptr acl_yarn_ramp_tensor;
|
||||
if (ext_factor != 0 &&
|
||||
// TODO: check more parameter.
|
||||
(ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.freq_scale != freq_scale)) {
|
||||
yarn_ramp_tensor_updated = true;
|
||||
|
||||
ggml_cann_pool_alloc yarn_ramp_allocator(ctx.pool());
|
||||
acl_tensor_ptr acl_yarn_ramp_tensor;
|
||||
if (ext_factor != 0) {
|
||||
// -rope_yarn_ramp
|
||||
// const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
|
||||
// return MIN(1, MAX(0, y)) - 1;
|
||||
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void * yarn_ramp_buffer = yarn_ramp_allocator.get();
|
||||
acl_yarn_ramp_tensor =
|
||||
ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, 1);
|
||||
float zero_value = 0, one_value = 1;
|
||||
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
|
||||
acl_scalar_ptr low = ggml_cann_create_scalar(&corr_dims[0], aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr zero = ggml_cann_create_scalar(&zero_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr one = ggml_cann_create_scalar(&one_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr denom_safe = ggml_cann_create_scalar(&denom_safe_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr ext_factor_sc = ggml_cann_create_scalar(&ext_factor, aclDataType::ACL_FLOAT);
|
||||
// -rope_yarn_ramp
|
||||
// const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
|
||||
// return MIN(1, MAX(0, y)) - 1;
|
||||
yarn_ramp_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void * yarn_ramp_buffer = yarn_ramp_allocator.get();
|
||||
acl_yarn_ramp_tensor =
|
||||
ggml_cann_create_tensor(yarn_ramp_buffer, ACL_FLOAT, sizeof(float), theta_scale_ne, theta_scale_nb, 1);
|
||||
float zero_value = 0, one_value = 1;
|
||||
float denom_safe_value = MAX(0.001f, corr_dims[1] - corr_dims[0]);
|
||||
acl_scalar_ptr low = ggml_cann_create_scalar(&corr_dims[0], aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr zero = ggml_cann_create_scalar(&zero_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr one = ggml_cann_create_scalar(&one_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr denom_safe = ggml_cann_create_scalar(&denom_safe_value, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr ext_factor_sc = ggml_cann_create_scalar(&ext_factor, aclDataType::ACL_FLOAT);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Subs, acl_theta_scale_tensor.get(), low.get(), one.get(),
|
||||
acl_yarn_ramp_tensor.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor.get(), denom_safe.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor.get(), zero.get(), zero.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor.get(), one.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor.get(), one.get(), one.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor.get(), ext_factor_sc.get());
|
||||
aclnn_arange(ctx, acl_yarn_ramp_tensor.get(), 0, theta_scale_length, 1, theta_scale_length);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor.get(), low.get(), one.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceDivs, acl_yarn_ramp_tensor.get(), denom_safe.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceThreshold, acl_yarn_ramp_tensor.get(), zero.get(), zero.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceClampMax, acl_yarn_ramp_tensor.get(), one.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceSubs, acl_yarn_ramp_tensor.get(), one.get(), one.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor.get(), ext_factor_sc.get());
|
||||
|
||||
// theta_interp = freq_scale * theta_extrap;
|
||||
// theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix;
|
||||
// theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix);
|
||||
//
|
||||
// we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse
|
||||
// cache freq_scale + (freq_scale - 1) * ramp_mix
|
||||
float freq_scale_1 = freq_scale - 1;
|
||||
acl_scalar_ptr freq_scale_sc = ggml_cann_create_scalar(&freq_scale, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr freq_scale_1_sc = ggml_cann_create_scalar(&freq_scale_1, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor.get(), freq_scale_1_sc.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor.get(), freq_scale_sc.get(), one.get());
|
||||
}
|
||||
// theta_interp = freq_scale * theta_extrap;
|
||||
// theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
// theta = freq_scale * theta_extrap - freq_scale * theta_extrap * ramp_mix + theta_extrap * ramp_mix;
|
||||
// theta = theta_extrap * (freq_scale - freq_scale * ramp_mix + ramp_mix);
|
||||
//
|
||||
// we cache (freq_scale - freq_scale * ramp_mix + ramp_mix), Considering that the rope_yarn_ramp here is the inverse
|
||||
// cache freq_scale + (freq_scale - 1) * ramp_mix
|
||||
float freq_scale_1 = freq_scale - 1;
|
||||
acl_scalar_ptr freq_scale_sc = ggml_cann_create_scalar(&freq_scale, aclDataType::ACL_FLOAT);
|
||||
acl_scalar_ptr freq_scale_1_sc = ggml_cann_create_scalar(&freq_scale_1, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMuls, acl_yarn_ramp_tensor.get(), freq_scale_1_sc.get());
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdds, acl_yarn_ramp_tensor.get(), freq_scale_sc.get(), one.get());
|
||||
}
|
||||
|
||||
// power
|
||||
acl_scalar_ptr acl_theta_scale = ggml_cann_create_scalar(&theta_scale, aclDataType::ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, PowScalarTensor, acl_theta_scale.get(), acl_theta_scale_tensor.get(),
|
||||
acl_theta_scale_tensor.get());
|
||||
|
||||
if (ext_factor != 0) {
|
||||
// Step 1.3: update theta_scale_tensor according to ext_factor or freq_scale.
|
||||
if (ext_factor != 0) {
|
||||
if (theta_scale_updated || yarn_ramp_tensor_updated) {
|
||||
theta_scale_updated = true;
|
||||
aclnn_mul(ctx, acl_theta_scale_tensor.get(), acl_yarn_ramp_tensor.get());
|
||||
} else if (freq_scale != 1) {
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor.get(), freq_scale, nullptr, true);
|
||||
}
|
||||
} else {
|
||||
// use cache
|
||||
if (freq_scale != 1 && (ctx.rope_cache.freq_scale != freq_scale || theta_scale_updated)) {
|
||||
theta_scale_updated = true;
|
||||
aclnn_muls(ctx, acl_theta_scale_tensor.get(), freq_scale, nullptr, true);
|
||||
}
|
||||
}
|
||||
|
||||
// Nothing changed, use cache.
|
||||
if (!theta_scale_updated) {
|
||||
acl_theta_scale_tensor = ggml_cann_create_tensor(ctx.rope_cache.theta_scale_cache, ACL_FLOAT, sizeof(float),
|
||||
theta_scale_ne, theta_scale_nb, GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
// Step 1.4: prepare select index if mrope
|
||||
acl_tensor_ptr position_select_index_tensor;
|
||||
if (mrope_used) {
|
||||
if (ctx.rope_cache.sections[0] != sections[0] || ctx.rope_cache.sections[1] != sections[1] ||
|
||||
ctx.rope_cache.sections[2] != sections[2] || ctx.rope_cache.sections[3] != sections[3] ||
|
||||
ctx.rope_cache.theta_scale_length != theta_scale_length || ctx.rope_cache.is_imrope != is_imrope) {
|
||||
if (ctx.rope_cache.position_select_index_host != nullptr) {
|
||||
free(ctx.rope_cache.position_select_index_host);
|
||||
}
|
||||
ctx.rope_cache.position_select_index_host = (int *) malloc(theta_scale_length * sizeof(int));
|
||||
GGML_ASSERT(ctx.rope_cache.position_select_index_host != nullptr);
|
||||
int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
|
||||
int sec_w = sections[1] + sections[0];
|
||||
int sec_e = sections[2] + sec_w;
|
||||
// t,h,w,e
|
||||
for (int i = 0; i < theta_scale_length; i++) {
|
||||
int sector = i % sect_dims;
|
||||
|
||||
if (is_imrope) { // qwen3vl apply interleaved mrope
|
||||
if (sector % 3 == 1 && sector < 3 * sections[1]) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 1;
|
||||
} else if (sector % 3 == 2 && sector < 3 * sections[2]) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 2;
|
||||
} else if (sector % 3 == 0 && sector < 3 * sections[0]) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 0;
|
||||
} else {
|
||||
ctx.rope_cache.position_select_index_host[i] = 3;
|
||||
}
|
||||
} else {
|
||||
if (sector >= sections[0] && sector < sec_w) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 1;
|
||||
} else if (sector >= sec_w && sector < sec_e) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 2;
|
||||
} else if (sector >= sec_e) {
|
||||
ctx.rope_cache.position_select_index_host[i] = 3;
|
||||
} else {
|
||||
ctx.rope_cache.position_select_index_host[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx.rope_cache.position_select_index != nullptr) {
|
||||
ACL_CHECK(aclrtFree(ctx.rope_cache.position_select_index));
|
||||
}
|
||||
ACL_CHECK(aclrtMalloc(&ctx.rope_cache.position_select_index, theta_scale_length * sizeof(int),
|
||||
ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
|
||||
ACL_CHECK(aclrtMemcpyAsync(ctx.rope_cache.position_select_index, theta_scale_length * sizeof(int),
|
||||
ctx.rope_cache.position_select_index_host, theta_scale_length * sizeof(int),
|
||||
ACL_MEMCPY_HOST_TO_DEVICE, ctx.stream()));
|
||||
}
|
||||
|
||||
position_select_index_tensor = ggml_cann_create_tensor(ctx.rope_cache.position_select_index, ACL_INT32,
|
||||
sizeof(int), theta_scale_ne, theta_scale_nb, 1);
|
||||
}
|
||||
|
||||
// Step2: divide by freq_factors
|
||||
ggml_cann_pool_alloc freq_fac_res_allocator(ctx.pool());
|
||||
// freq_factors
|
||||
if (src2) {
|
||||
freq_fac_res_allocator.alloc(theta_scale_length * sizeof(float));
|
||||
void * freq_fac_res_ptr = freq_fac_res_allocator.get();
|
||||
@@ -2365,6 +2472,85 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
std::swap(acl_theta_scale_tensor, acl_freq_fac_res_tensor);
|
||||
}
|
||||
|
||||
// Step3: prepare position_tensor
|
||||
acl_tensor_ptr acl_position_tensor;
|
||||
ggml_cann_pool_alloc mrope_position_acllocator(ctx.pool());
|
||||
if (mrope_used) {
|
||||
// Step3.1: select current position;
|
||||
// position :
|
||||
// pos1: [[0, 1 ,2 ,3 ],
|
||||
// pos2: [4, 5 ,6 ,7 ],
|
||||
// pos3: [8, 9 ,10,11],
|
||||
// pos4: [12,13,14,15] ]
|
||||
//
|
||||
// select index = [0, 1, 2, 2, 1, 0]
|
||||
//
|
||||
// selected_tensor:
|
||||
// [[0, 1 ,2 ,3 ],
|
||||
// [4, 5 ,6 ,7 ],
|
||||
// [8, 9 ,10,11],
|
||||
// [8, 9 ,10,11],
|
||||
// [4, 5 ,6 ,7 ],
|
||||
// [0, 1 ,2 ,3 ]]
|
||||
//
|
||||
// transpose, from [seq_len:dims] to [dims:seq_len]
|
||||
// [0, 4, 8 ,8 ,4, 0],
|
||||
// [1, 5, 9, 9, 5, 1],
|
||||
// [2, 6, 10,10,6 ,2],
|
||||
// [3, 7, 11,11,7 3 ]]
|
||||
//
|
||||
// multipy by theta_scale_tensor
|
||||
// [theta_scale^0, theta_scale^1, ..., theta_scale ^ n]
|
||||
|
||||
int64_t mrope_position_ne[] = { position_length, 4 };
|
||||
size_t mrope_position_nb[] = { sizeof(int), position_length * sizeof(int) };
|
||||
acl_tensor_ptr mrope_position =
|
||||
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type),
|
||||
mrope_position_ne, mrope_position_nb, 2);
|
||||
|
||||
// selected position tensor's shape is a transpose of cache tensor.
|
||||
int64_t selected_position_ne[] = { position_length, theta_scale_length };
|
||||
size_t selected_position_nb[] = { sizeof(float), position_length * sizeof(float) };
|
||||
mrope_position_acllocator.alloc(theta_scale_length * position_length * sizeof(float));
|
||||
void * mrope_position_buffer = mrope_position_acllocator.get();
|
||||
acl_position_tensor =
|
||||
ggml_cann_create_tensor(mrope_position_buffer, ggml_cann_type_mapping(src1->type),
|
||||
ggml_type_size(src1->type), selected_position_ne, selected_position_nb, 2);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, mrope_position.get(), 0, position_select_index_tensor.get(),
|
||||
acl_position_tensor.get());
|
||||
|
||||
// transpose
|
||||
int64_t transposed_ne[] = { position_length, 1, theta_scale_length, 1 };
|
||||
size_t transposed_nb[GGML_MAX_DIMS];
|
||||
transposed_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
transposed_nb[i] = transposed_nb[i - 1] * transposed_ne[i - 1];
|
||||
}
|
||||
|
||||
std::swap(transposed_ne[0], transposed_ne[2]);
|
||||
std::swap(transposed_nb[0], transposed_nb[2]);
|
||||
|
||||
acl_position_tensor =
|
||||
ggml_cann_create_tensor(mrope_position_buffer, ggml_cann_type_mapping(src1->type),
|
||||
ggml_type_size(src1->type), transposed_ne, transposed_nb, GGML_MAX_DIMS);
|
||||
|
||||
} else {
|
||||
// auto bcast.
|
||||
acl_position_tensor =
|
||||
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type),
|
||||
position_ne, position_nb, GGML_MAX_DIMS);
|
||||
}
|
||||
|
||||
// Step4: multiply by the position
|
||||
int64_t theta_length = theta_scale_length * position_length;
|
||||
ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float));
|
||||
void * theta_buffer = theta_allocator.get();
|
||||
|
||||
acl_tensor_ptr acl_theta_tensor =
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_position_tensor.get(), acl_theta_scale_tensor.get(), acl_theta_tensor.get());
|
||||
|
||||
// Step5: calculate sin cos.
|
||||
// init sin_repeat && cos_repeat, only to accelerate first layer on each device
|
||||
if (position_length > ctx.rope_cache.position_length) {
|
||||
ctx.rope_cache.position_length = position_length;
|
||||
@@ -2381,44 +2567,30 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
aclrtMalloc(&ctx.rope_cache.cos_cache, repeat_theta_length * sizeof(float), ACL_MEM_MALLOC_HUGE_FIRST));
|
||||
}
|
||||
|
||||
// position
|
||||
acl_tensor_ptr acl_position_tensor =
|
||||
ggml_cann_create_tensor(src1->data, ggml_cann_type_mapping(src1->type), ggml_type_size(src1->type), position_ne,
|
||||
position_nb, GGML_MAX_DIMS);
|
||||
|
||||
// power * position
|
||||
int64_t theta_length = theta_scale_length * position_length;
|
||||
ggml_cann_pool_alloc theta_allocator(ctx.pool(), theta_length * sizeof(float));
|
||||
void * theta_buffer = theta_allocator.get();
|
||||
|
||||
acl_tensor_ptr acl_theta_tensor =
|
||||
ggml_cann_create_tensor(theta_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS);
|
||||
aclnn_mul(ctx, acl_position_tensor.get(), acl_theta_scale_tensor.get(), acl_theta_tensor.get());
|
||||
|
||||
// sin/cos
|
||||
ggml_cann_pool_alloc sin_allocator(ctx.pool(), theta_length * sizeof(float));
|
||||
void * sin_buffer = sin_allocator.get();
|
||||
acl_tensor_ptr acl_sin_tensor =
|
||||
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
ggml_cann_create_tensor(sin_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_sin(ctx, acl_theta_tensor.get(), acl_sin_tensor.get());
|
||||
|
||||
ggml_cann_pool_alloc cos_allocator(ctx.pool(), theta_length * sizeof(float));
|
||||
void * cos_buffer = cos_allocator.get();
|
||||
acl_tensor_ptr acl_cos_tensor =
|
||||
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float), theta_ne, theta_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
ggml_cann_create_tensor(cos_buffer, ACL_FLOAT, sizeof(float), cache_ne, cache_nb, GGML_MAX_DIMS, ACL_FORMAT_ND);
|
||||
aclnn_cos(ctx, acl_theta_tensor.get(), acl_cos_tensor.get());
|
||||
|
||||
if (ext_factor != 0) {
|
||||
attn_factor *= 1.0f + 0.1f * logf(1.0f / freq_scale);
|
||||
}
|
||||
|
||||
// attn_factor
|
||||
// Step 5: multiply by attn_factor
|
||||
if (attn_factor != 1) {
|
||||
aclnn_muls(ctx, acl_sin_tensor.get(), attn_factor, nullptr, true);
|
||||
aclnn_muls(ctx, acl_cos_tensor.get(), attn_factor, nullptr, true);
|
||||
}
|
||||
|
||||
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, src0->ne[2], 1 };
|
||||
int64_t sin_reshape_ne[4] = { src0->ne[0], 1, dst->ne[2], 1 };
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
sin_reshape_nb[0] = sizeof(float);
|
||||
for (int i = 1; i < GGML_MAX_DIMS; i++) {
|
||||
@@ -2429,8 +2601,9 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
acl_tensor_ptr acl_cos_repeat_tensor = ggml_cann_create_tensor(ctx.rope_cache.cos_cache, ACL_FLOAT, sizeof(float),
|
||||
sin_reshape_ne, sin_reshape_nb, GGML_MAX_DIMS);
|
||||
|
||||
// repeat
|
||||
// Step 6: repeat
|
||||
if (is_neox) {
|
||||
// [sinθ1, sinθ1, sinθ2, sinθ2, ..., sinθn, sinθn]
|
||||
int64_t repeatsArray[] = { 1, 1, 1, 2 };
|
||||
aclnn_repeat(ctx, acl_sin_tensor.get(), acl_sin_repeat_tensor.get(), repeatsArray);
|
||||
aclnn_repeat(ctx, acl_cos_tensor.get(), acl_cos_repeat_tensor.get(), repeatsArray);
|
||||
@@ -2438,17 +2611,15 @@ static void aclnn_cache_init(ggml_backend_cann_context & ctx,
|
||||
int64_t num_repeats = 2;
|
||||
int64_t dim = 3;
|
||||
int64_t output_size = theta_scale_length * num_repeats;
|
||||
// [sinθ1, sinθ2, ..., sinθn, sinθ1, sinθ2, ..., sinθn]
|
||||
aclnn_repeat_interleave(ctx, acl_sin_tensor.get(), acl_sin_repeat_tensor.get(), dim, num_repeats, output_size);
|
||||
aclnn_repeat_interleave(ctx, acl_cos_tensor.get(), acl_cos_repeat_tensor.get(), dim, num_repeats, output_size);
|
||||
}
|
||||
|
||||
// Other layers use cache except first layer.
|
||||
ctx.rope_cache.cached = true;
|
||||
ctx.rope_cache.ext_factor = ext_factor;
|
||||
ctx.rope_cache.theta_scale = theta_scale;
|
||||
ctx.rope_cache.freq_scale = freq_scale;
|
||||
ctx.rope_cache.attn_factor = attn_factor;
|
||||
ctx.rope_cache.is_neox = is_neox;
|
||||
// Update cached value.
|
||||
ctx.rope_cache.cached = true;
|
||||
ctx.rope_cache.set(theta_scale_length, position_length, ext_factor, theta_scale, freq_scale, attn_factor, is_neox,
|
||||
indep_sects, mrope_used, is_imrope, sections);
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
@@ -2474,6 +2645,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
// param
|
||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
||||
int sections[4];
|
||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||
const int mode = ((int32_t *) dst->op_params)[2];
|
||||
@@ -2482,12 +2654,13 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||
memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
|
||||
|
||||
// TODO: n_dims <= ne0
|
||||
GGML_ASSERT(n_dims == ne0);
|
||||
@@ -2498,10 +2671,25 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
float corr_dims[2];
|
||||
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
||||
|
||||
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
||||
const bool is_imrope = mode == GGML_ROPE_TYPE_IMROPE; // qwen3vl apply interleaved mrope
|
||||
const bool mrope_used = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, note: also true for vision (24 & 8 == true) and for imrope
|
||||
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
|
||||
|
||||
if (mrope_used) {
|
||||
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
|
||||
}
|
||||
|
||||
if (is_vision) {
|
||||
GGML_ASSERT(n_dims == ne0/2);
|
||||
}
|
||||
|
||||
if (is_imrope || mrope_used) {
|
||||
is_neox = true;
|
||||
}
|
||||
|
||||
// init ctx.rope_cos/rope_sin cache
|
||||
aclnn_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox);
|
||||
aclnn_rope_cache_init(ctx, dst, corr_dims, ext_factor, theta_scale, freq_scale, attn_factor, is_neox, sections, mrope_used, is_imrope, is_vision);
|
||||
|
||||
int64_t sin_reshape_ne[4] = { ne00, 1, ne02, 1 };
|
||||
size_t sin_reshape_nb[GGML_MAX_DIMS];
|
||||
@@ -2657,8 +2845,7 @@ void ggml_cann_rope(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
return;
|
||||
#endif
|
||||
|
||||
// ggml_mode = 0 --> aclnn_model = 1
|
||||
int64_t acl_mode = mode == 0 ? 1 : mode;
|
||||
int64_t acl_mode = is_neox ? 0 : 1;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
@@ -3236,3 +3423,64 @@ void ggml_cann_flash_attn_ext(ggml_backend_cann_context & ctx, ggml_tensor * dst
|
||||
GGML_ABORT("Function is not implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_cann_out_prod_fp(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src0 = dst->src[0]; // weight
|
||||
ggml_tensor * src1 = dst->src[1]; // input
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
acl_tensor_ptr acl_dst = ggml_cann_create_tensor(dst);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceZero, acl_dst.get());
|
||||
|
||||
const int64_t dps2 = ne2 / ne02;
|
||||
const int64_t dps3 = ne3 / ne03;
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
||||
const int64_t i02 = i2 / dps2;
|
||||
const int64_t i03 = i3 / dps3;
|
||||
|
||||
const int64_t i12 = i2;
|
||||
const int64_t i13 = i3;
|
||||
acl_tensor_ptr accumulator =
|
||||
ggml_cann_create_tensor((char *) dst->data + i2 * nb2 + i3 * nb3, ggml_cann_type_mapping(dst->type),
|
||||
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
|
||||
|
||||
// The outer product needs to be accumulated in this dimension.
|
||||
for (int64_t i1 = 0; i1 < ne11; i1++) {
|
||||
acl_tensor_ptr acl_input = ggml_cann_create_tensor(
|
||||
(char *) src1->data + i1 * nb11 + i12 * nb12 + i13 * nb13, ggml_cann_type_mapping(src0->type),
|
||||
ggml_type_size(src0->type), src1->ne, src1->nb, 1);
|
||||
|
||||
acl_tensor_ptr acl_weight = ggml_cann_create_tensor(
|
||||
(char *) src0->data + i1 * nb01 + i02 * nb02 + i03 * nb03, ggml_cann_type_mapping(src0->type),
|
||||
ggml_type_size(src0->type), src0->ne, src0->nb, 1);
|
||||
|
||||
ggml_cann_pool_alloc output_allocator(ctx.pool());
|
||||
void * output_buffer = output_allocator.alloc(ggml_nbytes(dst));
|
||||
acl_tensor_ptr acl_out = ggml_cann_create_tensor(output_buffer, ggml_cann_type_mapping(dst->type),
|
||||
ggml_type_size(dst->type), dst->ne, dst->nb, 2);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, Ger, acl_input.get(), acl_weight.get(), acl_out.get());
|
||||
float alpha_value = 1.0f;
|
||||
aclScalar * alpha = aclCreateScalar(&alpha_value, ACL_FLOAT);
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceAdd, accumulator.get(), acl_out.get(), alpha);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_F16:
|
||||
ggml_cann_out_prod_fp(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("Unsupport type for GGML_OP_OUT_PROD");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1125,3 +1125,23 @@ void ggml_cann_op_unary_gated(std::function<void(ggml_backend_cann_context &, ac
|
||||
} while (0)
|
||||
|
||||
#endif // CANN_ACLNN_OPS
|
||||
|
||||
/**
|
||||
* @brief Performs outer product operation on two ggml tensors using the CANN backend.
|
||||
*
|
||||
* @details This function computes the outer product of two input tensors (src0 and src1)
|
||||
* and stores the result in the destination tensor. The outer product operation is defined as:
|
||||
* dst[i,j,k,l] = sum_m (src0[i,m,k,l] * src1[j,m,k,l])
|
||||
*
|
||||
* The function supports multiple data types including F32, F16. For floating-point
|
||||
* types, it uses batch matrix multiplication for efficient computation.
|
||||
*
|
||||
* The implementation handles 4D tensor broadcasting and batch processing automatically.
|
||||
*
|
||||
* @param ctx The CANN backend context for operation execution and memory management.
|
||||
* @param dst The destination ggml_tensor where the outer product result will be stored.
|
||||
* The input tensors are assumed to be `dst->src[0]` and `dst->src[1]`.
|
||||
*
|
||||
* @see GGML_CANN_CALL_ACLNN_OP for CANN operator invocation
|
||||
*/
|
||||
void ggml_cann_out_prod(ggml_backend_cann_context & ctx, ggml_tensor * dst);
|
||||
|
||||
@@ -300,30 +300,92 @@ struct ggml_cann_graph_lru_cache {
|
||||
|
||||
struct ggml_cann_rope_cache {
|
||||
~ggml_cann_rope_cache() {
|
||||
if (theta_scale_cache != nullptr) {
|
||||
if (theta_scale_cache) {
|
||||
ACL_CHECK(aclrtFree(theta_scale_cache));
|
||||
}
|
||||
if (sin_cache != nullptr) {
|
||||
if (sin_cache) {
|
||||
ACL_CHECK(aclrtFree(sin_cache));
|
||||
}
|
||||
if (cos_cache != nullptr) {
|
||||
if (cos_cache) {
|
||||
ACL_CHECK(aclrtFree(cos_cache));
|
||||
}
|
||||
if (position_select_index) {
|
||||
ACL_CHECK(aclrtFree(position_select_index));
|
||||
}
|
||||
if (theta_scale_exp_host) {
|
||||
free(theta_scale_exp_host);
|
||||
}
|
||||
if(position_select_index_host) {
|
||||
free(position_select_index_host);
|
||||
}
|
||||
}
|
||||
|
||||
void * theta_scale_cache = nullptr;
|
||||
int64_t theta_scale_length = 0;
|
||||
bool equal(int64_t theta_scale_length,
|
||||
int64_t position_length,
|
||||
float ext_factor,
|
||||
float theta_scale,
|
||||
float freq_scale,
|
||||
float attn_factor,
|
||||
bool is_neox,
|
||||
bool indep_sects,
|
||||
bool mrope_used,
|
||||
bool is_imrope,
|
||||
int sections[4]) {
|
||||
return this->theta_scale_length == theta_scale_length && this->position_length == position_length &&
|
||||
this->ext_factor == ext_factor && this->theta_scale == theta_scale && this->freq_scale == freq_scale &&
|
||||
this->attn_factor == attn_factor && this->is_neox == is_neox && this->indep_sects == indep_sects &&
|
||||
this->mrope_used == mrope_used && this->is_imrope == is_imrope && this->sections[0] == sections[0] &&
|
||||
this->sections[1] == sections[1] && this->sections[2] == sections[2] && this->sections[3] == sections[3];
|
||||
}
|
||||
|
||||
void set(int64_t theta_scale_length,
|
||||
int64_t position_length,
|
||||
float ext_factor,
|
||||
float theta_scale,
|
||||
float freq_scale,
|
||||
float attn_factor,
|
||||
bool is_neox,
|
||||
bool indep_sects,
|
||||
bool mrope_used,
|
||||
bool is_imrope,
|
||||
int sections[4]) {
|
||||
this->theta_scale_length = theta_scale_length;
|
||||
this->position_length = position_length;
|
||||
this->ext_factor = ext_factor;
|
||||
this->theta_scale = theta_scale;
|
||||
this->freq_scale = freq_scale;
|
||||
this->attn_factor = attn_factor;
|
||||
this->is_neox = is_neox;
|
||||
this->indep_sects = indep_sects;
|
||||
this->mrope_used = mrope_used;
|
||||
this->is_imrope = is_imrope;
|
||||
this->sections[0] = sections[0];
|
||||
this->sections[1] = sections[1];
|
||||
this->sections[2] = sections[2];
|
||||
this->sections[3] = sections[3];
|
||||
}
|
||||
|
||||
// memory cache, prepare before inferencing.
|
||||
void * theta_scale_cache = nullptr;
|
||||
float * theta_scale_exp_host = nullptr;
|
||||
int * position_select_index_host = nullptr;
|
||||
void * position_select_index = nullptr;
|
||||
// sin/cos cache, used only to accelerate first layer on each device
|
||||
void * sin_cache = nullptr;
|
||||
void * cos_cache = nullptr;
|
||||
int64_t position_length = 0;
|
||||
void * sin_cache = nullptr;
|
||||
void * cos_cache = nullptr;
|
||||
// Properties to check before reusing the sincos cache
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
int64_t theta_scale_length = 0;
|
||||
int64_t position_length = 0;
|
||||
bool cached = false;
|
||||
float ext_factor = 0.0f;
|
||||
float theta_scale = 0.0f;
|
||||
float freq_scale = 0.0f;
|
||||
float attn_factor = 0.0f;
|
||||
bool is_neox = false;
|
||||
bool indep_sects = false;
|
||||
bool mrope_used = false;
|
||||
int sections[4] = { 0, 0, 0, 0 };
|
||||
bool is_imrope = false;
|
||||
};
|
||||
|
||||
struct ggml_cann_tensor_cache {
|
||||
|
||||
@@ -1886,6 +1886,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context & ctx, struct gg
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
ggml_cann_flash_attn_ext(ctx, dst);
|
||||
break;
|
||||
case GGML_OP_OUT_PROD:
|
||||
ggml_cann_out_prod(ctx, dst);
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
@@ -2246,8 +2249,7 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
|
||||
bool & use_cann_graph,
|
||||
bool & cann_graph_update_required) {
|
||||
#ifdef USE_ACL_GRAPH
|
||||
ggml_cann_graph * matched_graph = cann_ctx->graph_lru_cache.cache_list.front();
|
||||
if (use_cann_graph && cann_graph_update_required) {
|
||||
if (use_cann_graph && cann_graph_update_required) { // Begin CANN graph capture
|
||||
ACL_CHECK(aclmdlRICaptureBegin(cann_ctx->stream(), ACL_MODEL_RI_CAPTURE_MODE_GLOBAL));
|
||||
}
|
||||
#endif // USE_ACL_GRAPH
|
||||
@@ -2271,12 +2273,14 @@ static void evaluate_and_capture_cann_graph(ggml_backend_cann_context * cann_ctx
|
||||
}
|
||||
|
||||
#ifdef USE_ACL_GRAPH
|
||||
if (use_cann_graph && cann_graph_update_required) { // End CANN graph capture
|
||||
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
|
||||
}
|
||||
|
||||
if (use_cann_graph) {
|
||||
// Execute graph
|
||||
ggml_cann_graph * matched_graph = cann_ctx->graph_lru_cache.cache_list.front();
|
||||
|
||||
if (cann_graph_update_required) { // End CANN graph capture
|
||||
ACL_CHECK(aclmdlRICaptureEnd(cann_ctx->stream(), &matched_graph->graph));
|
||||
}
|
||||
|
||||
// Execute CANN graph
|
||||
ACL_CHECK(aclmdlRIExecuteAsync(matched_graph->graph, cann_ctx->stream()));
|
||||
}
|
||||
#endif // USE_ACL_GRAPH
|
||||
@@ -2302,9 +2306,9 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
|
||||
// calculate rope cache for fist layer in current device.
|
||||
cann_ctx->rope_cache.cached = false;
|
||||
|
||||
bool cann_graph_update_required = false;
|
||||
#ifdef USE_ACL_GRAPH
|
||||
bool use_cann_graph = true;
|
||||
bool cann_graph_update_required = false;
|
||||
|
||||
static bool prefill_use_graph = parse_bool(get_env("GGML_CANN_PREFILL_USE_GRAPH").value_or(""));
|
||||
if (!prefill_use_graph) {
|
||||
@@ -2335,7 +2339,6 @@ static enum ggml_status ggml_backend_cann_graph_compute(ggml_backend_t backend,
|
||||
}
|
||||
#else
|
||||
bool use_cann_graph = false;
|
||||
bool cann_graph_update_required = false;
|
||||
#endif // USE_ACL_GRAPH
|
||||
evaluate_and_capture_cann_graph(cann_ctx, cgraph, use_cann_graph, cann_graph_update_required);
|
||||
|
||||
@@ -2477,13 +2480,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
return false;
|
||||
}
|
||||
|
||||
const int mode = ((const int32_t *) op->op_params)[2];
|
||||
if (mode & GGML_ROPE_TYPE_MROPE) {
|
||||
return false;
|
||||
}
|
||||
if (mode & GGML_ROPE_TYPE_VISION) {
|
||||
return false;
|
||||
}
|
||||
if (op->src[0]->ne[0] > 896) {
|
||||
return false;
|
||||
}
|
||||
@@ -2504,6 +2500,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
if (op->op_params[0] != GGML_SCALE_MODE_NEAREST) {
|
||||
return false;
|
||||
}
|
||||
if (op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS) {
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
case GGML_OP_POOL_2D:
|
||||
@@ -2552,6 +2551,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_PAD:
|
||||
// TODO: add circular padding support for cann, see https://github.com/ggml-org/llama.cpp/pull/16985
|
||||
return ggml_get_op_params_i32(op, 8) == 0;
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
@@ -2563,6 +2564,20 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_COUNT_EQUAL:
|
||||
return true;
|
||||
case GGML_OP_OUT_PROD:
|
||||
{
|
||||
#ifdef ASCEND_310P
|
||||
// Ger is not supported on 310p device
|
||||
return false;
|
||||
#endif
|
||||
switch (op->src[0]->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_F32:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
// TODO: ((weightL - 1) * dilationW - padLeft)=1336 should not be larger than 255.
|
||||
return (op->src[0]->ne[0] - 1) <= 255;
|
||||
|
||||
@@ -224,7 +224,8 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
|
||||
include(CheckCXXSourceCompiles)
|
||||
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS}")
|
||||
string(REPLACE ";" " " ARCH_FLAGS_STR "${ARCH_FLAGS}")
|
||||
set(CMAKE_REQUIRED_FLAGS "${ARCH_FLAGS_STR}")
|
||||
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
|
||||
set(ARM_FEATURE "HAVE_${feature}")
|
||||
check_cxx_source_compiles(
|
||||
@@ -452,22 +453,38 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
|
||||
ggml-cpu/spacemit/ime_kernels.h
|
||||
)
|
||||
endif()
|
||||
set(MARCH_STR "rv64gc")
|
||||
if (GGML_RV_ZFH)
|
||||
string(APPEND MARCH_STR "_zfh")
|
||||
endif()
|
||||
if (GGML_XTHEADVECTOR)
|
||||
string(APPEND MARCH_STR "_xtheadvector")
|
||||
elseif (GGML_RVV)
|
||||
string(APPEND MARCH_STR "_v")
|
||||
if (GGML_RV_ZVFH)
|
||||
string(APPEND MARCH_STR "_zvfh")
|
||||
if(NOT GGML_CPU_ALL_VARIANTS)
|
||||
set(MARCH_STR "rv64gc")
|
||||
if (GGML_RV_ZFH)
|
||||
string(APPEND MARCH_STR "_zfh")
|
||||
endif()
|
||||
if (GGML_XTHEADVECTOR)
|
||||
string(APPEND MARCH_STR "_xtheadvector")
|
||||
elseif (GGML_RVV)
|
||||
string(APPEND MARCH_STR "_v")
|
||||
if (GGML_RV_ZVFH)
|
||||
string(APPEND MARCH_STR "_zvfh")
|
||||
endif()
|
||||
endif()
|
||||
if (GGML_RV_ZICBOP)
|
||||
string(APPEND MARCH_STR "_zicbop")
|
||||
endif()
|
||||
if (GGML_RV_ZIHINTPAUSE)
|
||||
string(APPEND MARCH_STR "_zihintpause")
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
else()
|
||||
# Begin with the lowest baseline
|
||||
set(ARCH_DEFINITIONS "")
|
||||
|
||||
if (GGML_INTERNAL_RVV)
|
||||
message(STATUS "RVV enabled")
|
||||
list(APPEND ARCH_DEFINITIONS GGML_USE_RVV)
|
||||
list(APPEND ARCH_FLAGS -march=rv64gc_v -mabi=lp64d)
|
||||
endif()
|
||||
|
||||
ggml_add_cpu_backend_features(${GGML_CPU_NAME} riscv ${ARCH_DEFINITIONS})
|
||||
endif()
|
||||
if (GGML_RV_ZICBOP)
|
||||
string(APPEND MARCH_STR "_zicbop")
|
||||
endif()
|
||||
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
|
||||
elseif (GGML_SYSTEM_ARCH STREQUAL "s390x")
|
||||
message(STATUS "s390x detected")
|
||||
list(APPEND GGML_CPU_SOURCES
|
||||
|
||||
@@ -33,10 +33,12 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
@@ -44,27 +46,30 @@
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
#elif defined(__POWERPC__) || defined(__powerpc__)
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
|
||||
@@ -76,10 +81,12 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
@@ -87,6 +94,7 @@
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
@@ -101,10 +109,12 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
@@ -112,6 +122,7 @@
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
@@ -134,15 +145,18 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
@@ -163,10 +177,12 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
@@ -174,6 +190,7 @@
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
@@ -196,10 +213,12 @@
|
||||
// repack.cpp
|
||||
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
|
||||
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
|
||||
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
|
||||
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
|
||||
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
|
||||
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
|
||||
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
|
||||
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
|
||||
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
|
||||
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
|
||||
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
|
||||
@@ -207,6 +226,7 @@
|
||||
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
|
||||
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
|
||||
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
|
||||
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
|
||||
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
|
||||
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
|
||||
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
|
||||
|
||||
@@ -8,6 +8,10 @@
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_SVE2)
|
||||
#define HWCAP2_SVE2 (1 << 1)
|
||||
#endif
|
||||
|
||||
#if !defined(HWCAP2_I8MM)
|
||||
#define HWCAP2_I8MM (1 << 13)
|
||||
#endif
|
||||
|
||||
@@ -24,6 +24,29 @@
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
|
||||
static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
|
||||
int16x8_t * out_mins,
|
||||
int8_t * out_scales) {
|
||||
constexpr uint32_t kmask1 = 0x3f3f3f3f;
|
||||
constexpr uint32_t kmask2 = 0x0f0f0f0f;
|
||||
constexpr uint32_t kmask3 = 0x03030303;
|
||||
constexpr uint8_t scales_size = 12;
|
||||
|
||||
uint32_t sm[3];
|
||||
memcpy(sm, scales_in, scales_size);
|
||||
|
||||
const uint32_t mins_0_3 = sm[1] & kmask1;
|
||||
const uint32_t mins_4_7 = ((sm[2] >> 4) & kmask2) | (((sm[1] >> 6) & kmask3) << 4);
|
||||
const uint32x2_t mins_u32 = { mins_0_3, mins_4_7 };
|
||||
|
||||
*out_mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins_u32)));
|
||||
|
||||
uint32_t scales_u32[2];
|
||||
scales_u32[0] = sm[0] & kmask1;
|
||||
scales_u32[1] = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
|
||||
memcpy(out_scales, scales_u32, 8);
|
||||
}
|
||||
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK8_0 == 32);
|
||||
assert(k % QK8_0 == 0);
|
||||
@@ -474,6 +497,293 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
constexpr int col_groups = ncols_interleaved / 4; // 0123 and 4567
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 1x8 tile = 2 x 4
|
||||
float32x4_t acc_f32[col_groups];
|
||||
|
||||
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < col_groups; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
|
||||
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
|
||||
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
|
||||
float32x4_t sb_scale_0123 = vmulq_f32(q4_d_0, q8_d);
|
||||
float32x4_t sb_scale_4567 = vmulq_f32(q4_d_1, q8_d);
|
||||
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
|
||||
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
|
||||
float32x4_t sb_min_0123 = vmulq_f32(q4_dmin_0, q8_d);
|
||||
float32x4_t sb_min_4567 = vmulq_f32(q4_dmin_1, q8_d);
|
||||
|
||||
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
|
||||
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
|
||||
int32x4_t acc_lo[col_groups];
|
||||
int32x4_t acc_hi[col_groups];
|
||||
|
||||
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
|
||||
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
|
||||
int16_t bsums_arr[8];
|
||||
vst1q_s16(bsums_arr, bsums);
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
for (int i = 0; i < col_groups; i++) {
|
||||
acc_lo[i] = vdupq_n_s32(0);
|
||||
acc_hi[i] = vdupq_n_s32(0);
|
||||
}
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int16x8_t q4sb_mins[2];
|
||||
int16x8_t q4sb_scales[2];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
int8_t aux_q4sb[8];
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
|
||||
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
|
||||
}
|
||||
|
||||
int8x16_t q8_qs[64 / 16];
|
||||
for (int i = 0; i < 64 / 16; i++) {
|
||||
q8_qs[i] = vld1q_s8(q8_ptr[b].qs + sb * 64 + i * 16);
|
||||
}
|
||||
|
||||
for (int c = 0; c < col_groups; c++) {
|
||||
uint8x16_t q4_cols[8];
|
||||
for (int i = 0; i < 8; i++) {
|
||||
q4_cols[i] = vld1q_u8(q4_ptr[b].qs + sb * QK_K + i * 32 + 16 * c);
|
||||
}
|
||||
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[0], m4b)), q8_qs[0], 0);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[1], m4b)), q8_qs[0], 1);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[2], m4b)), q8_qs[0], 2);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[3], m4b)), q8_qs[0], 3);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[4], m4b)), q8_qs[1], 0);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[5], m4b)), q8_qs[1], 1);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[6], m4b)), q8_qs[1], 2);
|
||||
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[7], m4b)), q8_qs[1], 3);
|
||||
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[0], 4)), q8_qs[2], 0);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[1], 4)), q8_qs[2], 1);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[2], 4)), q8_qs[2], 2);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[3], 4)), q8_qs[2], 3);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[4], 4)), q8_qs[3], 0);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[5], 4)), q8_qs[3], 1);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[6], 4)), q8_qs[3], 2);
|
||||
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[7], 4)), q8_qs[3], 3);
|
||||
}
|
||||
|
||||
// Scales
|
||||
// row c0123 blk0 and blk1
|
||||
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
|
||||
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
|
||||
const float32x4_t sumf_0123 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[0]),
|
||||
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[0])));
|
||||
acc_f32[0] = vfmaq_f32(acc_f32[0], sb_scale_0123, sumf_0123);
|
||||
// row c4567 blk0 and blk1
|
||||
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
|
||||
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
|
||||
const float32x4_t sumf_4567 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[1]),
|
||||
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[1])));
|
||||
acc_f32[1] = vfmaq_f32(acc_f32[1], sb_scale_4567, sumf_4567);
|
||||
|
||||
// Bias Correction
|
||||
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
|
||||
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
|
||||
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
} // for sb
|
||||
|
||||
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0123);
|
||||
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_4567);
|
||||
} // for b
|
||||
|
||||
int base = x * ncols_interleaved;
|
||||
vst1q_f32(s + base, acc_f32[0]);
|
||||
vst1q_f32(s + base + 4, acc_f32[1]);
|
||||
} // for x
|
||||
return;
|
||||
#endif // #if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
ggml_gemv_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n,
|
||||
float * GGML_RESTRICT s,
|
||||
size_t bs,
|
||||
const void * GGML_RESTRICT vx,
|
||||
const void * GGML_RESTRICT vy,
|
||||
int nr,
|
||||
int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
constexpr int col_pairs = ncols_interleaved / 2;
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 1x8 tile = 2 x 4
|
||||
float32x4_t acc_f32[ncols_interleaved / 4];
|
||||
|
||||
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < ncols_interleaved / 4; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
|
||||
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
|
||||
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
|
||||
float32x4_t sb_scale_0 = vmulq_f32(q4_d_0, q8_d);
|
||||
float32x4_t sb_scale_1 = vmulq_f32(q4_d_1, q8_d);
|
||||
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
|
||||
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
|
||||
float32x4_t sb_min_0 = vmulq_f32(q4_dmin_0, q8_d);
|
||||
float32x4_t sb_min_1 = vmulq_f32(q4_dmin_1, q8_d);
|
||||
|
||||
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
|
||||
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
|
||||
// 2 sb each iteration
|
||||
int32x4_t acc_lo[col_pairs];
|
||||
int32x4_t acc_hi[col_pairs];
|
||||
|
||||
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
|
||||
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
|
||||
int16_t bsums_arr[8];
|
||||
vst1q_s16(bsums_arr, bsums);
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
for (int i = 0; i < col_pairs; i++) {
|
||||
acc_lo[i] = vdupq_n_s32(0);
|
||||
acc_hi[i] = vdupq_n_s32(0);
|
||||
}
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
|
||||
int16x8_t q4sb_scales[2];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
int8_t aux_q4sb[8];
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
|
||||
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
|
||||
}
|
||||
|
||||
const uint8_t * q4_base = q4_ptr[b].qs + sb * QK_K;
|
||||
|
||||
// Load the 64 quants from q8K duplicated to use vecdots with the interelaved columns
|
||||
// but still need the qs to use the low and hi bits from q4
|
||||
const int8_t * q8_base = q8_ptr[b].qs + sb * 64;
|
||||
int8x16_t q8_qs[8];
|
||||
for (int i = 0; i < 8; i++) {
|
||||
q8_qs[i] = (int8x16_t) vld1q_dup_s64((const int64_t *) (q8_base + i * 8));
|
||||
}
|
||||
|
||||
// Q4s columns iterated in pairs (01, 23, 45, 67)
|
||||
for (int cp = 0; cp < col_pairs; cp++) {
|
||||
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_base + 16 * cp);
|
||||
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_base + 16 * cp + 64);
|
||||
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_base + 16 * cp + 128);
|
||||
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_base + 16 * cp + 192);
|
||||
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)), q8_qs[0]); // 0 .. 7
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)), q8_qs[1]); // 8 ..15
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)), q8_qs[2]); // 16..23
|
||||
acc_lo[cp] =
|
||||
ggml_vdotq_s32(acc_lo[cp], vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)), q8_qs[3]); // 24..31
|
||||
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)), q8_qs[4]); // 32..39
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)), q8_qs[5]); // 40..47
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)), q8_qs[6]); // 48..55
|
||||
acc_hi[cp] =
|
||||
ggml_vdotq_s32(acc_hi[cp], vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)), q8_qs[7]); // 56..63
|
||||
}
|
||||
|
||||
// Iterates over a pair of column pairs (4 columns) to use a single 128 register
|
||||
// p = 0 -> 0123 p2 -> 4567
|
||||
for (int i = 0, p = 0; p < col_pairs; i++, p += 2) {
|
||||
int16x4_t group_scales_lo = p == 0 ? vget_low_s16(q4sb_scales[0]) : vget_high_s16(q4sb_scales[0]);
|
||||
int16x4_t group_scales_hi = p == 0 ? vget_low_s16(q4sb_scales[1]) : vget_high_s16(q4sb_scales[1]);
|
||||
float32x4_t sb_scale = p == 0 ? sb_scale_0 : sb_scale_1;
|
||||
|
||||
// 0123 or 4567
|
||||
float32x4_t sumf_0 =
|
||||
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_lo), vpaddq_s32(acc_lo[p], acc_lo[p + 1])));
|
||||
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_0);
|
||||
|
||||
float32x4_t sumf_1 =
|
||||
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_hi), vpaddq_s32(acc_hi[p], acc_hi[p + 1])));
|
||||
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_1);
|
||||
}
|
||||
|
||||
// Multiply Acc bsum + mins
|
||||
// Each pair of subblocks share the same bsums
|
||||
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
|
||||
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
|
||||
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
|
||||
|
||||
// cols 0-3 bias
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
|
||||
// cols 4-7 bias
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
} // for sb
|
||||
|
||||
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0);
|
||||
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_1);
|
||||
} // for b
|
||||
|
||||
int base = x * ncols_interleaved;
|
||||
vst1q_f32(s + base, acc_f32[0]);
|
||||
vst1q_f32(s + base + 4, acc_f32[1]);
|
||||
} // for x
|
||||
return;
|
||||
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK8_0;
|
||||
const int nb = n / qk;
|
||||
@@ -1889,3 +2199,412 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
#endif // #if ! ((defined(_MSC_VER)) && ! defined(__clang__)) && defined(__aarch64__) && defined(__ARM_NEON)
|
||||
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 4;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nr % 4 == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
constexpr int q8_k_blocklen = 4;
|
||||
constexpr int acc_size = 2 * 4; // 2 row pairs × 4 col pairs
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 8 accumulators: 2 row pairs × 4 col pairs
|
||||
float32x4_t acc_f32[acc_size];
|
||||
|
||||
for (int y = 0; y < nr / q8_k_blocklen; y++) {
|
||||
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < acc_size; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
// d4 0 1 2 3, 4 5 6 7
|
||||
float32x4_t q4_d_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d));
|
||||
float32x4_t q4_d_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4));
|
||||
// d8 0 1 2 3
|
||||
float32x4_t q8_d_0123 = vld1q_f32(q8_ptr[b].d);
|
||||
// mins
|
||||
float32x4_t q4_dmin_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin));
|
||||
float32x4_t q4_dmin_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4));
|
||||
|
||||
// Precomputation of scales and mins
|
||||
float32x4_t sbd_scale_0123[q8_k_blocklen];
|
||||
float32x4_t sbd_scale_4567[q8_k_blocklen];
|
||||
float32x4_t sbd_min_0123[q8_k_blocklen];
|
||||
float32x4_t sbd_min_4567[q8_k_blocklen];
|
||||
|
||||
sbd_scale_0123[0] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 0);
|
||||
sbd_scale_4567[0] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 0);
|
||||
sbd_min_0123[0] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 0);
|
||||
sbd_min_4567[0] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 0);
|
||||
|
||||
sbd_scale_0123[1] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 1);
|
||||
sbd_scale_4567[1] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 1);
|
||||
sbd_min_0123[1] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 1);
|
||||
sbd_min_4567[1] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 1);
|
||||
|
||||
sbd_scale_0123[2] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 2);
|
||||
sbd_scale_4567[2] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 2);
|
||||
sbd_min_0123[2] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 2);
|
||||
sbd_min_4567[2] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 2);
|
||||
|
||||
sbd_scale_0123[3] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 3);
|
||||
sbd_scale_4567[3] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 3);
|
||||
sbd_min_0123[3] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 3);
|
||||
sbd_min_4567[3] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 3);
|
||||
|
||||
// Precomputation of bsums, each vpaddq calcs all the bsums for each row
|
||||
const int16x8_t bsums[q8_k_blocklen] = {
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
|
||||
};
|
||||
int16_t bsums_arr[QK_K / 64][8];
|
||||
for (int q8_row = 0; q8_row < 4; q8_row++) {
|
||||
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
|
||||
}
|
||||
|
||||
// interleaved bias_acc: [0]->r0 0123, [1]->r1 0123, .., [4]->r0 4567, [5]->r1 4567 ..
|
||||
int32x4_t bias_acc[acc_size];
|
||||
for (int i = 0; i < acc_size; i++) {
|
||||
bias_acc[i] = vdupq_n_s32(0);
|
||||
}
|
||||
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
// Int accumulators for qs vecdot (4 row x 2 col quartets)
|
||||
int32x4_t acc_lo[acc_size];
|
||||
int32x4_t acc_hi[acc_size];
|
||||
for (int i = 0; i < acc_size; i++) {
|
||||
acc_lo[i] = vdupq_n_s32(0);
|
||||
acc_hi[i] = vdupq_n_s32(0);
|
||||
}
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int16x8_t q4sb_scales[2];
|
||||
int16x8_t q4sb_mins[2];
|
||||
for (int i = 0; i < 2; i++) {
|
||||
int8_t aux_q4sb[8];
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
|
||||
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
|
||||
}
|
||||
|
||||
constexpr int reads_per_sb = 8; // 8 * 16 bytes each => 32 qs * 4 rows
|
||||
for (int k = 0; k < reads_per_sb; k++) {
|
||||
const int8x16_t q8_blk0 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k);
|
||||
const int8x16_t q8_blk1 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k + 128);
|
||||
|
||||
// 0..3 & 32..35
|
||||
const uint8x16_t q4_0123 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k);
|
||||
const uint8x16_t q4_4567 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k + 16);
|
||||
|
||||
const int8x16_t q4_0123_lo = vreinterpretq_s8_u8(vandq_u8(q4_0123, m4b));
|
||||
const int8x16_t q4_0123_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_0123, 4));
|
||||
|
||||
acc_lo[0] = vdotq_laneq_s32(acc_lo[0], q4_0123_lo, q8_blk0, 0); // 0..3 r0 c0123
|
||||
acc_lo[1] = vdotq_laneq_s32(acc_lo[1], q4_0123_lo, q8_blk0, 1); // 0..3 r1 c0123
|
||||
acc_lo[2] = vdotq_laneq_s32(acc_lo[2], q4_0123_lo, q8_blk0, 2); // 0..3 r2 c0123
|
||||
acc_lo[3] = vdotq_laneq_s32(acc_lo[3], q4_0123_lo, q8_blk0, 3); // 0..3 r3 c0123
|
||||
|
||||
acc_hi[0] = vdotq_laneq_s32(acc_hi[0], q4_0123_hi, q8_blk1, 0); // 32..35 r0 c0123
|
||||
acc_hi[1] = vdotq_laneq_s32(acc_hi[1], q4_0123_hi, q8_blk1, 1); // 32..35 r1 c0123
|
||||
acc_hi[2] = vdotq_laneq_s32(acc_hi[2], q4_0123_hi, q8_blk1, 2); // 32..35 r2 c0123
|
||||
acc_hi[3] = vdotq_laneq_s32(acc_hi[3], q4_0123_hi, q8_blk1, 3); // 32..35 r3 c0123
|
||||
|
||||
const int8x16_t q4_4567_lo = vreinterpretq_s8_u8(vandq_u8(q4_4567, m4b));
|
||||
const int8x16_t q4_4567_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_4567, 4));
|
||||
|
||||
acc_lo[4] = vdotq_laneq_s32(acc_lo[4], q4_4567_lo, q8_blk0, 0); // 0..3 r0 c4567
|
||||
acc_lo[5] = vdotq_laneq_s32(acc_lo[5], q4_4567_lo, q8_blk0, 1); // 0..3 r1 c4567
|
||||
acc_lo[6] = vdotq_laneq_s32(acc_lo[6], q4_4567_lo, q8_blk0, 2); // 0..3 r2 c4567
|
||||
acc_lo[7] = vdotq_laneq_s32(acc_lo[7], q4_4567_lo, q8_blk0, 3); // 0..3 r3 c4567
|
||||
|
||||
acc_hi[4] = vdotq_laneq_s32(acc_hi[4], q4_4567_hi, q8_blk1, 0); // 32..35 r0 c4567
|
||||
acc_hi[5] = vdotq_laneq_s32(acc_hi[5], q4_4567_hi, q8_blk1, 1); // 32..35 r1 c4567
|
||||
acc_hi[6] = vdotq_laneq_s32(acc_hi[6], q4_4567_hi, q8_blk1, 2); // 32..35 r2 c4567
|
||||
acc_hi[7] = vdotq_laneq_s32(acc_hi[7], q4_4567_hi, q8_blk1, 3); // 32..35 r3 c4567
|
||||
}
|
||||
|
||||
// Scale and bias application
|
||||
// acc is stored interleaved to match output layout
|
||||
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
|
||||
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
|
||||
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
|
||||
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
|
||||
for (int row = 0; row < q8_k_blocklen; row++) {
|
||||
// Bias correction
|
||||
// row c0123 blk0 and blk1
|
||||
const float32x4_t sumf_0123 =
|
||||
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[row]),
|
||||
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[row])));
|
||||
acc_f32[2 * row] = vfmaq_f32(acc_f32[2 * row], sbd_scale_0123[row], sumf_0123);
|
||||
|
||||
// row c4567 blk0 and blk1
|
||||
const float32x4_t sumf_4567 =
|
||||
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[row + 4]),
|
||||
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[row + 4])));
|
||||
acc_f32[2 * row + 1] = vfmaq_f32(acc_f32[2 * row + 1], sbd_scale_4567[row], sumf_4567);
|
||||
|
||||
// Bias
|
||||
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][row * 2]);
|
||||
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][row * 2 + 1]);
|
||||
|
||||
// row c0123 blk0 and blk1
|
||||
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
|
||||
// row c4567 blk0 and blk1
|
||||
bias_acc[2 * row + 1] =
|
||||
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * row + 1] =
|
||||
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
}
|
||||
} // for sb
|
||||
|
||||
for (int row = 0; row < q8_k_blocklen; row++) {
|
||||
acc_f32[2 * row] = vmlsq_f32(acc_f32[2 * row], vcvtq_f32_s32(bias_acc[2 * row]), sbd_min_0123[row]);
|
||||
acc_f32[2 * row + 1] =
|
||||
vmlsq_f32(acc_f32[2 * row + 1], vcvtq_f32_s32(bias_acc[2 * row + 1]), sbd_min_4567[row]);
|
||||
}
|
||||
} // for b
|
||||
|
||||
for (int i = 0; i < q8_k_blocklen; i++) {
|
||||
int row = y * q8_k_blocklen + i;
|
||||
for (int j = 0; j < 2; j++) {
|
||||
int col = x * ncols_interleaved + j * 4;
|
||||
int offset = row * bs + col;
|
||||
vst1q_f32(s + offset, acc_f32[2 * i + j]);
|
||||
}
|
||||
}
|
||||
} // for x
|
||||
} // for y
|
||||
return;
|
||||
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
|
||||
ggml_gemm_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n,
|
||||
float * GGML_RESTRICT s,
|
||||
size_t bs,
|
||||
const void * GGML_RESTRICT vx,
|
||||
const void * GGML_RESTRICT vy,
|
||||
int nr,
|
||||
int nc) {
|
||||
constexpr int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
|
||||
constexpr int ncols_interleaved = 8;
|
||||
constexpr int blocklen = 8;
|
||||
|
||||
assert(n % qk == 0);
|
||||
assert(nr % 4 == 0);
|
||||
assert(nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
constexpr int q8_k_blocklen = 4;
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0f);
|
||||
|
||||
// 8 accumulators: 2 row pairs × 4 col pairs
|
||||
float32x4_t acc_f32[blocklen];
|
||||
|
||||
for (int y = 0; y < nr / q8_k_blocklen; y++) {
|
||||
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int i = 0; i < blocklen; i++) {
|
||||
acc_f32[i] = vdupq_n_f32(0);
|
||||
}
|
||||
|
||||
for (int b = 0; b < nb; b++) {
|
||||
// bsums pairs belongs to the same q8_k subblock
|
||||
const int16x8_t bsums[4]{
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
|
||||
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
|
||||
};
|
||||
int16_t bsums_arr[4][8];
|
||||
for (int q8_row = 0; q8_row < 4; q8_row++) {
|
||||
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
|
||||
}
|
||||
|
||||
int32x4_t sb_acc[4]; // Aux accumulators to store subblock (partial) results
|
||||
int32x4_t acc[8]; // rows 01 stored in [0][1][2][3] rows 23 stored in [4][5][6][7]
|
||||
int32x4_t bias_acc[8]; // interleaved bias_acc: [0]->r0 0123, [1]->r0 4567, [2]->r1 0123 ...
|
||||
for (int i = 0; i < 8; i++) {
|
||||
acc[i] = vdupq_n_s32(0);
|
||||
bias_acc[i] = vdupq_n_s32(0);
|
||||
}
|
||||
|
||||
for (int sb = 0; sb < QK_K / 64; sb++) {
|
||||
// Need scales for the low and high nibbles
|
||||
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
|
||||
int8_t q4sb_scales[2][8];
|
||||
int16x8_t q4sb_mins[2]; // int16 as its needed for bias_acc later
|
||||
for (int i = 0; i < 2; i++) {
|
||||
const int offset = sb * 24 + i * 12;
|
||||
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], q4sb_scales[i]);
|
||||
}
|
||||
|
||||
// q8_ptr[b].qs has interleaved Q8 rows (01, 23)
|
||||
const int8_t * q8_base = q8_ptr[b].qs + sb * 256;
|
||||
|
||||
int8x16_t q8_qs_01[8];
|
||||
int8x16_t q8_qs_23[8];
|
||||
|
||||
// Load 32-byte per row pair, 1 subblock each time
|
||||
for (int i = 0; i < 8; i++) {
|
||||
const int offset = i * 32; // 16 for row 01, 16 for row 23
|
||||
q8_qs_01[i] = vld1q_s8(q8_base + offset);
|
||||
q8_qs_23[i] = vld1q_s8(q8_base + offset + 16);
|
||||
}
|
||||
|
||||
const int8x16_t q8s[2][8] = {
|
||||
{ q8_qs_01[0], q8_qs_01[1], q8_qs_01[2], q8_qs_01[3],
|
||||
q8_qs_01[4], q8_qs_01[5], q8_qs_01[6], q8_qs_01[7] },
|
||||
{ q8_qs_23[0], q8_qs_23[1], q8_qs_23[2], q8_qs_23[3],
|
||||
q8_qs_23[4], q8_qs_23[5], q8_qs_23[6], q8_qs_23[7] },
|
||||
};
|
||||
|
||||
// Q4s columns iterated in pairs (01, 23, 45, 67)
|
||||
for (int cp = 0; cp < ncols_interleaved / 2; cp++) {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
sb_acc[i] = vdupq_n_s32(0);
|
||||
}
|
||||
|
||||
uint8x16_t q4_qs_cp_0 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 0); // 0 .. 7 & 32..39
|
||||
uint8x16_t q4_qs_cp_1 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 64); // 8 ..15 & 40..47
|
||||
uint8x16_t q4_qs_cp_2 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 128); // 16..23 & 48..55
|
||||
uint8x16_t q4_qs_cp_3 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 16 * cp + 192); // 24..31 & 56..63
|
||||
const int8x16_t q4_nibbles[2][4] = {
|
||||
{
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_0, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_1, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_2, m4b)),
|
||||
vreinterpretq_s8_u8(vandq_u8(q4_qs_cp_3, m4b)),
|
||||
},
|
||||
{
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_0, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_1, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_2, 4)),
|
||||
vreinterpretq_s8_u8(vshrq_n_u8(q4_qs_cp_3, 4)),
|
||||
}
|
||||
};
|
||||
|
||||
// Calculates the Qs muladd of every row pair (rp) rows 01 and 23 of q8
|
||||
// for each of the internal 32 qs subblock (blk)
|
||||
for (int rp = 0; rp < 2; rp++) {
|
||||
for (int blk = 0; blk < 2; blk++) {
|
||||
const int8x16_t * q8 = &q8s[rp][4 * blk];
|
||||
const int8x16_t * q4 = q4_nibbles[blk];
|
||||
int32x4_t acc = sb_acc[2 * rp + blk];
|
||||
// mul add for each qs in the same subblock
|
||||
for (int qs_offset = 0; qs_offset < 4; qs_offset++) {
|
||||
acc = vmmlaq_s32(acc, q4[qs_offset], q8[qs_offset]);
|
||||
}
|
||||
sb_acc[2 * rp + blk] = acc;
|
||||
}
|
||||
}
|
||||
|
||||
// Scales[i] corresponds to column i
|
||||
const int scale_offset = cp * 2;
|
||||
for (int blk = 0; blk < 2; blk++) {
|
||||
const int32x4_t block_scale = {
|
||||
(int32_t) q4sb_scales[blk][scale_offset],
|
||||
(int32_t) q4sb_scales[blk][scale_offset],
|
||||
(int32_t) q4sb_scales[blk][scale_offset + 1],
|
||||
(int32_t) q4sb_scales[blk][scale_offset + 1],
|
||||
};
|
||||
acc[cp] = vmlaq_s32(acc[cp], sb_acc[blk], block_scale);
|
||||
acc[cp + 4] = vmlaq_s32(acc[cp + 4], sb_acc[blk + 2], block_scale);
|
||||
}
|
||||
}
|
||||
|
||||
// Multiply Acc bsum + mins
|
||||
for (int q8_row = 0; q8_row < 4; q8_row++) {
|
||||
// Each pair of subblocks share the same bsums
|
||||
// Load scalar bsum → broadcast to a vector (vdupq_n_s16(s)).
|
||||
int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][q8_row * 2]);
|
||||
int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][q8_row * 2 + 1]);
|
||||
|
||||
bias_acc[2 * q8_row] =
|
||||
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * q8_row] =
|
||||
vmlal_s16(bias_acc[2 * q8_row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
|
||||
bias_acc[2 * q8_row + 1] =
|
||||
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
|
||||
bias_acc[2 * q8_row + 1] =
|
||||
vmlal_s16(bias_acc[2 * q8_row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
|
||||
}
|
||||
} // for sb
|
||||
|
||||
// Reorder of i8mm output with bias and output layout
|
||||
for (int i = 0; i < 8; i++) {
|
||||
int32x2x2_t aux = vzip_s32(vget_low_s32(acc[i]), vget_high_s32(acc[i]));
|
||||
acc[i] = vcombine_s32(aux.val[0], aux.val[1]);
|
||||
}
|
||||
int32x4_t reorder_acc[8] = {
|
||||
vcombine_s32(vget_low_s32(acc[0]), vget_low_s32(acc[1])),
|
||||
vcombine_s32(vget_low_s32(acc[2]), vget_low_s32(acc[3])),
|
||||
vcombine_s32(vget_high_s32(acc[0]), vget_high_s32(acc[1])),
|
||||
vcombine_s32(vget_high_s32(acc[2]), vget_high_s32(acc[3])),
|
||||
vcombine_s32(vget_low_s32(acc[4]), vget_low_s32(acc[5])),
|
||||
vcombine_s32(vget_low_s32(acc[6]), vget_low_s32(acc[7])),
|
||||
vcombine_s32(vget_high_s32(acc[4]), vget_high_s32(acc[5])),
|
||||
vcombine_s32(vget_high_s32(acc[6]), vget_high_s32(acc[7])),
|
||||
};
|
||||
|
||||
for (int i = 0; i < q8_k_blocklen; i++) {
|
||||
for (int j = 0; j < 2; j++) {
|
||||
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d[i]);
|
||||
float32x4_t q4_dmin = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].dmin + j * 4)));
|
||||
const float32x4_t dmins = vmulq_f32(q4_dmin, q8_d);
|
||||
|
||||
float32x4_t q4_d = vcvt_f32_f16(vld1_f16((const __fp16 *) (q4_ptr[b].d + j * 4)));
|
||||
const float32x4_t scale = vmulq_f32(q4_d, q8_d);
|
||||
|
||||
acc_f32[2 * i + j] = vmlsq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(bias_acc[2 * i + j]), dmins);
|
||||
acc_f32[2 * i + j] =
|
||||
vmlaq_f32(acc_f32[2 * i + j], vcvtq_f32_s32(reorder_acc[2 * i + j]), scale);
|
||||
}
|
||||
}
|
||||
} // for b
|
||||
|
||||
// With the previous reorder, the tile is already in the correct memory layout.
|
||||
for (int i = 0; i < q8_k_blocklen; i++) {
|
||||
int row = y * q8_k_blocklen + i;
|
||||
for (int j = 0; j < 2; j++) {
|
||||
int col = x * ncols_interleaved + j * 4;
|
||||
int offset = row * bs + col;
|
||||
vst1q_f32(s + offset, acc_f32[2 * i + j]);
|
||||
}
|
||||
}
|
||||
} // for x
|
||||
} // for y
|
||||
return;
|
||||
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
ggml_gemm_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
38
ggml/src/ggml-cpu/arch/riscv/cpu-feats.cpp
Normal file
38
ggml/src/ggml-cpu/arch/riscv/cpu-feats.cpp
Normal file
@@ -0,0 +1,38 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#if defined(__riscv) && __riscv_xlen == 64
|
||||
#include <asm/hwprobe.h>
|
||||
#include <asm/unistd.h>
|
||||
#include <unistd.h>
|
||||
|
||||
struct riscv64_features {
|
||||
bool has_rvv = false;
|
||||
|
||||
riscv64_features() {
|
||||
struct riscv_hwprobe probe;
|
||||
probe.key = RISCV_HWPROBE_KEY_IMA_EXT_0;
|
||||
probe.value = 0;
|
||||
|
||||
int ret = syscall(__NR_riscv_hwprobe, &probe, 1, 0, NULL, 0);
|
||||
|
||||
if (0 == ret) {
|
||||
has_rvv = !!(probe.value & RISCV_HWPROBE_IMA_V);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static int ggml_backend_cpu_riscv64_score() {
|
||||
int score = 1;
|
||||
riscv64_features rf;
|
||||
|
||||
#ifdef GGML_USE_RVV
|
||||
if (!rf.has_rvv) { return 0; }
|
||||
score += 1 << 1;
|
||||
#endif
|
||||
|
||||
return score;
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_SCORE_IMPL(ggml_backend_cpu_riscv64_score)
|
||||
|
||||
#endif // __riscv && __riscv_xlen == 64
|
||||
@@ -490,6 +490,15 @@ static inline void ggml_thread_cpu_relax(void) {
|
||||
static inline void ggml_thread_cpu_relax(void) {
|
||||
_mm_pause();
|
||||
}
|
||||
#elif defined(__riscv)
|
||||
static inline void ggml_thread_cpu_relax(void) {
|
||||
#ifdef __riscv_zihintpause
|
||||
__asm__ __volatile__ ("pause");
|
||||
#else
|
||||
/* Encoding of the pause instruction */
|
||||
__asm__ __volatile__ (".4byte 0x100000F");
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
static inline void ggml_thread_cpu_relax(void) {;}
|
||||
#endif
|
||||
@@ -683,22 +692,14 @@ bool ggml_is_numa(void) {
|
||||
}
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
|
||||
#if defined(__linux__) && defined(__aarch64__)
|
||||
#include <sys/auxv.h>
|
||||
#endif
|
||||
|
||||
static void ggml_init_arm_arch_features(void) {
|
||||
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
|
||||
#if defined(__linux__)
|
||||
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
|
||||
#else
|
||||
// TODO: add support of SVE for non-linux systems
|
||||
#error "TODO: SVE is not supported on this platform. To use SVE, sve_cnt needs to be initialized here."
|
||||
#endif
|
||||
#endif
|
||||
#include <arm_sve.h>
|
||||
static void ggml_init_arm_arch_features(void) {
|
||||
ggml_arm_arch_features.sve_cnt = svcntb();
|
||||
}
|
||||
|
||||
#else
|
||||
static void ggml_init_arm_arch_features(void) {}
|
||||
#endif
|
||||
#endif // __ARM_ARCH
|
||||
|
||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
|
||||
@@ -1927,6 +1928,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_argsort(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_TOP_K:
|
||||
{
|
||||
ggml_compute_forward_top_k(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
{
|
||||
ggml_compute_forward_leaky_relu(params, tensor);
|
||||
@@ -2311,6 +2316,7 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_ARANGE:
|
||||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_TOP_K:
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
case GGML_OP_SSM_CONV:
|
||||
@@ -2701,6 +2707,11 @@ struct ggml_cplan ggml_graph_plan(
|
||||
n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
|
||||
}
|
||||
|
||||
#if defined(__EMSCRIPTEN__) && !defined(__EMSCRIPTEN_PTHREADS__)
|
||||
// Emscripten without pthreads support can only use a single thread
|
||||
n_threads = 1;
|
||||
#endif
|
||||
|
||||
size_t work_size = 0;
|
||||
|
||||
struct ggml_cplan cplan;
|
||||
@@ -2834,6 +2845,10 @@ struct ggml_cplan ggml_graph_plan(
|
||||
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
|
||||
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
|
||||
} break;
|
||||
case GGML_OP_TOP_K:
|
||||
{
|
||||
cur += sizeof(int32_t)*node->src[0]->ne[0]*n_tasks;
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
{
|
||||
const int64_t ne10 = node->src[1]->ne[0]; // DK
|
||||
|
||||
@@ -39,7 +39,7 @@
|
||||
|
||||
#include "kernels.h"
|
||||
|
||||
#define NELEMS(x) sizeof(x) / sizeof(*x)
|
||||
#define NELEMS(x) (sizeof(x) / sizeof(*x))
|
||||
|
||||
template<size_t(*Fn)(size_t,size_t,size_t)>
|
||||
static inline size_t kernel_offs_fn3(size_t a, size_t b, size_t c) {
|
||||
@@ -635,6 +635,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
|
||||
},
|
||||
#endif
|
||||
#endif
|
||||
{ /* Sentinel */ }
|
||||
};
|
||||
|
||||
static ggml_kleidiai_kernels gemm_gemv_kernels_q8[] = {
|
||||
@@ -803,6 +804,7 @@ static ggml_kleidiai_kernels gemm_gemv_kernels_q8[] = {
|
||||
/* .op_type = */ GGML_TYPE_F32,
|
||||
},
|
||||
#endif
|
||||
{ /* Sentinel */ }
|
||||
};
|
||||
|
||||
ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, const ggml_tensor * tensor) {
|
||||
@@ -810,7 +812,7 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
|
||||
|
||||
if (tensor->op == GGML_OP_MUL_MAT && tensor->src[0] != nullptr && tensor->src[1] != nullptr) {
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu &&
|
||||
gemm_gemv_kernels[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels[i].rhs_type == tensor->src[0]->type &&
|
||||
@@ -820,7 +822,7 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
|
||||
}
|
||||
}
|
||||
if (!kernel) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8); ++i) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8) - 1; ++i) {
|
||||
if ((cpu_features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu &&
|
||||
gemm_gemv_kernels_q8[i].lhs_type == tensor->src[1]->type &&
|
||||
gemm_gemv_kernels_q8[i].rhs_type == tensor->src[0]->type &&
|
||||
@@ -830,6 +832,10 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels(cpu_feature cpu_features, c
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(gemm_gemv_kernels);
|
||||
GGML_UNUSED(gemm_gemv_kernels_q8);
|
||||
GGML_UNUSED(cpu_features);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -840,12 +846,14 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q4_0(cpu_feature features)
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels); ++i) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels) - 1; ++i) {
|
||||
if ((features & gemm_gemv_kernels[i].required_cpu) == gemm_gemv_kernels[i].required_cpu) {
|
||||
kernels = &gemm_gemv_kernels[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(features);
|
||||
#endif
|
||||
|
||||
return kernels;
|
||||
@@ -855,12 +863,14 @@ ggml_kleidiai_kernels * ggml_kleidiai_select_kernels_q8_0(cpu_feature features)
|
||||
ggml_kleidiai_kernels * kernels = nullptr;
|
||||
|
||||
#if defined(__ARM_FEATURE_SME) || defined(__ARM_FEATURE_DOTPROD) || defined(__ARM_FEATURE_MATMUL_INT8)
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8); ++i) {
|
||||
for (size_t i = 0; i < NELEMS(gemm_gemv_kernels_q8) - 1; ++i) {
|
||||
if ((features & gemm_gemv_kernels_q8[i].required_cpu) == gemm_gemv_kernels_q8[i].required_cpu) {
|
||||
kernels = &gemm_gemv_kernels_q8[i];
|
||||
break;
|
||||
}
|
||||
}
|
||||
#else
|
||||
GGML_UNUSED(features);
|
||||
#endif
|
||||
|
||||
return kernels;
|
||||
|
||||
333
ggml/src/ggml-cpu/llamafile/sgemm-ppc.h
Normal file
333
ggml/src/ggml-cpu/llamafile/sgemm-ppc.h
Normal file
@@ -0,0 +1,333 @@
|
||||
#pragma once
|
||||
|
||||
typedef vector unsigned char vec_t;
|
||||
typedef __vector_quad acc_t;
|
||||
|
||||
template <typename TA>
|
||||
class tinyBLAS_Q0_PPC {
|
||||
public:
|
||||
tinyBLAS_Q0_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const block_q8_0 *B, int64_t ldb,
|
||||
float *C, int64_t ldc,
|
||||
int ith, int nth);
|
||||
|
||||
void matmul(int64_t m, int64_t n);
|
||||
void matmul_tiled_q0(int64_t m, int64_t n, int64_t mc, int64_t nc, int64_t kc) {
|
||||
vec_t A_pack[mc*kc*2];
|
||||
vec_t B_pack[nc*kc*2];
|
||||
int comparray[mc*kc];
|
||||
constexpr bool is_Ablock_q4 = std::is_same_v<TA, block_q4_0>;
|
||||
int64_t ytiles = m / mc;
|
||||
int64_t xtiles = n / nc;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
int64_t duty = (tiles + nth - 1) / nth;
|
||||
int64_t start = duty * ith;
|
||||
int64_t end = start + duty;
|
||||
if (end > tiles) {
|
||||
end = tiles;
|
||||
}
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = (job / xtiles) * mc;
|
||||
int64_t jj = (job % xtiles) * nc;
|
||||
for (int64_t kk = 0; kk < k; kk += kc) {
|
||||
if constexpr(is_Ablock_q4) {
|
||||
packNormalInt4_large(A + ii*lda + kk, lda, mc, 4, (int8_t*)A_pack, comparray);
|
||||
} else {
|
||||
packNormal_large<int8_t, vector signed char>(A + ii*lda + kk, lda, mc, 8, (int8_t*)A_pack, false, comparray);
|
||||
}
|
||||
packNormal_large<uint8_t, vector unsigned char>(B + jj*ldb + kk, ldb, nc, 8, (uint8_t*)B_pack, true);
|
||||
KERNEL_Q0(ii, jj, mc, nc, kc, kk, A_pack, B_pack, comparray);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void add_save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I);
|
||||
*c_ptr += *((float*)&fin_res[idx+I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename ArrayType>
|
||||
inline void compute(acc_t* ACC, int c_idx, int s_idx, ArrayType& comparray, vector float* vs, vector float* fin_res) {
|
||||
vector signed int vec_C[4];
|
||||
vector float CA[4] = {0};
|
||||
vector float res[4] = {0};
|
||||
__builtin_mma_disassemble_acc(vec_C, ACC);
|
||||
for (int i = 0; i < 4; i++) {
|
||||
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
|
||||
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
|
||||
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
|
||||
}
|
||||
}
|
||||
|
||||
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
|
||||
const vector signed char lowMask = vec_splats((signed char)0xF);
|
||||
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
|
||||
const vector signed char v8 = vec_splats((signed char)0x8);
|
||||
vector signed int vsum = {0};
|
||||
vector signed int vsum2 = {0};
|
||||
c[0] = vec_and(c[1], lowMask);
|
||||
c[1] = vec_sr(c[1], v4);
|
||||
c[0] = vec_sub(c[0], v8);
|
||||
c[1] = vec_sub(c[1], v8);
|
||||
vsum = vec_sum4s(c[0], vsum);
|
||||
vsum2 = vec_sum4s(c[1], vsum2);
|
||||
vsum = vec_add(vsum, vsum2);
|
||||
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
|
||||
}
|
||||
|
||||
template <typename V1, typename V2>
|
||||
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
|
||||
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
|
||||
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
|
||||
V2 t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
vector unsigned char xor_vector;
|
||||
uint8_t flip_vec = 0x80;
|
||||
xor_vector = vec_splats(flip_vec);
|
||||
t1 = vec_perm(s1, s2, swiz1);
|
||||
t2 = vec_perm(s1, s2, swiz2);
|
||||
t3 = vec_perm(s3, s4, swiz1);
|
||||
t4 = vec_perm(s3, s4, swiz2);
|
||||
t5 = vec_perm(t1, t3, swiz3);
|
||||
t6 = vec_perm(t1, t3, swiz4);
|
||||
t7 = vec_perm(t2, t4, swiz3);
|
||||
t8 = vec_perm(t2, t4, swiz4);
|
||||
if (flip == true) {
|
||||
t5 = vec_xor(t5, xor_vector);
|
||||
t6 = vec_xor(t6, xor_vector);
|
||||
t7 = vec_xor(t7, xor_vector);
|
||||
t8 = vec_xor(t8, xor_vector);
|
||||
}
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset+16);
|
||||
vec_xst(t7, 0, vecOffset+32);
|
||||
vec_xst(t8, 0, vecOffset+48);
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii,jj);
|
||||
} else {
|
||||
assert(false && "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
template<int size>
|
||||
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray);
|
||||
template<typename VA, typename VB>
|
||||
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip);
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n);
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj);
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj);
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj);
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN);
|
||||
template <int RM, int RN>
|
||||
void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n);
|
||||
|
||||
void compute_scale(int64_t ii, int64_t jj, int blk, vector float* vs){
|
||||
for (int I = 0; I<8; I++) {
|
||||
float a_scale = unhalf((A+((ii+I)*lda)+blk)->d);
|
||||
for (int J = 0; J<4; J++) {
|
||||
*((float*)&vs[I]+J) = (a_scale * unhalf((B+((jj+J)*ldb)+blk)->d));
|
||||
*((float*)&vs[I+8]+J) = (a_scale * unhalf((B+((jj+J+4)*ldb)+blk)->d));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
inline void process_q8_elements(const int8_t *qs, int *ca) {
|
||||
vector signed char c1 = vec_xl(0, qs);
|
||||
vector signed char c2 = vec_xl(16, qs);
|
||||
vector signed int vsum1 = {0};
|
||||
vector signed int vsum2 = {0};
|
||||
vsum1 = vec_sum4s(c1, vsum1);
|
||||
vsum2 = vec_sum4s(c2, vsum2);
|
||||
vector signed int vsum = vec_add(vsum1, vsum2);
|
||||
*ca = vsum[0] + vsum[1] + vsum[2] + vsum[3];
|
||||
}
|
||||
|
||||
template<typename VA, typename VB>
|
||||
void packNormal_large(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip, int* comparray=nullptr) {
|
||||
int64_t i, j;
|
||||
block_q8_0 *aoffset = NULL;
|
||||
VA *vecOffset = NULL;
|
||||
block_q8_0* aoffsets[8];
|
||||
__vector_pair arr[8];
|
||||
VB c[8][2] = {0};
|
||||
VB c1[8] = {0}; VB c2[8] = {0};
|
||||
aoffset = const_cast<block_q8_0*>(a);
|
||||
vecOffset = vec;
|
||||
j = (rows >> 3);
|
||||
int index = 0;
|
||||
if (j > 0) {
|
||||
do {
|
||||
for (int it = 0; it < 8; it++)
|
||||
aoffsets[it] = aoffset + it*lda;
|
||||
aoffset += 8 * lda;
|
||||
for (int blk = 0; blk < kc; blk++) {
|
||||
for (int it = 0; it < 8; it++) {
|
||||
arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)(aoffsets[it]+blk)->qs);
|
||||
__builtin_vsx_disassemble_pair(c[it], &arr[it]);
|
||||
c1[it] = c[it][0];
|
||||
c2[it] = c[it][1];
|
||||
if (comparray){
|
||||
process_q8_elements((aoffsets[it]+ blk)->qs, &comparray[index + 8*blk + it]);
|
||||
}
|
||||
}
|
||||
vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip);
|
||||
vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip);
|
||||
vector_permute_store<VA, VB>(c1[4], c1[5], c1[6], c1[7], vecOffset+128, flip);
|
||||
vector_permute_store<VA, VB>(c2[4], c2[5], c2[6], c2[7], vecOffset+192, flip);
|
||||
vecOffset += 256;
|
||||
}
|
||||
j--;
|
||||
index += 8*kc;
|
||||
} while(j > 0);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void packNormalInt4_large(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, int*comparray) {
|
||||
int64_t i, j;
|
||||
TA *aoffset = NULL;
|
||||
int8_t *vecOffset = NULL;
|
||||
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
|
||||
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
|
||||
vector signed char c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0};
|
||||
vector signed char c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0};
|
||||
aoffset = const_cast<TA*>(a);
|
||||
vecOffset = vec;
|
||||
int index = 0;
|
||||
j = (rows >> 3);
|
||||
if (j > 0) {
|
||||
do {
|
||||
aoffset1 = aoffset;
|
||||
aoffset2 = aoffset1 + lda;
|
||||
aoffset3 = aoffset2 + lda;
|
||||
aoffset4 = aoffset3 + lda;
|
||||
aoffset5 = aoffset4 + lda;
|
||||
aoffset6 = aoffset5 + lda;
|
||||
aoffset7 = aoffset6 + lda;
|
||||
aoffset8 = aoffset7 + lda;
|
||||
aoffset += 8 * lda;
|
||||
for (int blk = 0; blk < kc; blk++) {
|
||||
c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset1+blk)->qs));
|
||||
c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset2+blk)->qs));
|
||||
c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset3+blk)->qs));
|
||||
c4[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset4+blk)->qs));
|
||||
c5[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset5+blk)->qs));
|
||||
c6[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset6+blk)->qs));
|
||||
c7[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset7+blk)->qs));
|
||||
c8[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset8+blk)->qs));
|
||||
|
||||
process_q4_elements(c1, &comparray[index + 8*blk+0]);
|
||||
process_q4_elements(c2, &comparray[index + 8*blk+1]);
|
||||
process_q4_elements(c3, &comparray[index + 8*blk+2]);
|
||||
process_q4_elements(c4, &comparray[index + 8*blk+3]);
|
||||
process_q4_elements(c5, &comparray[index + 8*blk+4]);
|
||||
process_q4_elements(c6, &comparray[index + 8*blk+5]);
|
||||
process_q4_elements(c7, &comparray[index + 8*blk+6]);
|
||||
process_q4_elements(c8, &comparray[index + 8*blk+7]);
|
||||
vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false);
|
||||
vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false);
|
||||
vector_permute_store<int8_t, vector signed char>(c5[0], c6[0], c7[0], c8[0], vecOffset+128, false);
|
||||
vector_permute_store<int8_t, vector signed char>(c5[1], c6[1], c7[1], c8[1], vecOffset+192, false);
|
||||
vecOffset += 256;
|
||||
}
|
||||
j--;
|
||||
index += 8*kc;
|
||||
} while (j > 0);
|
||||
}
|
||||
}
|
||||
|
||||
void KERNEL_Q0(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, int64_t l, vec_t *vec_A, vec_t *vec_B, int *comparray) {
|
||||
acc_t acc[8];
|
||||
for (int i = 0; i < mc ; i += 8) {
|
||||
for (int j = 0; j < nc; j += 8) {
|
||||
vector float fin_res[16] = {0};
|
||||
vector float vs[16] = {0};
|
||||
for (int64_t kk = 0; kk < kc; kk+=2) {
|
||||
for (int x = 0; x < 8; x++) {
|
||||
__builtin_mma_xxsetaccz(&acc[x]);
|
||||
}
|
||||
int A_block_idx = (i/8)*(16*kc) + kk*16;
|
||||
int B_block_idx = (j/8)*(16*kc)+ kk*16;
|
||||
vec_t *A_block = &vec_A[A_block_idx];
|
||||
vec_t *B_block = &vec_B[B_block_idx];
|
||||
for (int x = 0; x < 8; x++) {
|
||||
__builtin_mma_xvi8ger4pp(&acc[0], A_block[x], B_block[x]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[1], A_block[x + 8], B_block[x]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[2], A_block[x], B_block[x+8]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[3], A_block[x+8], B_block[x+8]);
|
||||
}
|
||||
compute_scale(ii+i, jj+j, l+kk, vs);
|
||||
int c_index = (i/8)*(8*kc)+ kk*8;
|
||||
int* c_block = &comparray[c_index];
|
||||
compute(&acc[0], 0, 0, c_block, vs, fin_res);
|
||||
compute(&acc[1], 4, 4, c_block, vs, fin_res);
|
||||
compute(&acc[2], 0, 8, c_block, vs, fin_res);
|
||||
compute(&acc[3], 4, 12, c_block, vs, fin_res);
|
||||
|
||||
A_block_idx = (i/8)*(16*kc) + (kk+1)*16;
|
||||
B_block_idx = (j/8)*(16*kc)+ (kk+1)*16;
|
||||
A_block = &vec_A[A_block_idx];
|
||||
B_block = &vec_B[B_block_idx];
|
||||
for (int x = 0; x < 8; x++) {
|
||||
__builtin_mma_xvi8ger4pp(&acc[4], A_block[x], B_block[x]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[5], A_block[x + 8], B_block[x]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[6], A_block[x], B_block[x+8]);
|
||||
__builtin_mma_xvi8ger4pp(&acc[7], A_block[x+8], B_block[x+8]);
|
||||
}
|
||||
compute_scale(ii+i, jj+j, l+kk+1, vs);
|
||||
c_index = (i/8)*(8*kc)+ (kk+1)*8;
|
||||
c_block = &comparray[c_index];
|
||||
compute(&acc[4], 0, 0, c_block, vs, fin_res);
|
||||
compute(&acc[5], 4, 4, c_block, vs, fin_res);
|
||||
compute(&acc[6], 0, 8, c_block, vs, fin_res);
|
||||
compute(&acc[7], 4, 12, c_block, vs, fin_res);
|
||||
|
||||
}
|
||||
if (l == 0) {
|
||||
save_res(ii+i, jj+j, 0, fin_res);
|
||||
save_res(ii+i+4, jj+j, 4, fin_res);
|
||||
save_res(ii+i, jj+j+4, 8, fin_res);
|
||||
save_res(ii+i+4, jj+j+4, 12, fin_res);
|
||||
} else {
|
||||
add_save_res(ii+i, jj+j, 0, fin_res);
|
||||
add_save_res(ii+i+4, jj+j, 4, fin_res);
|
||||
add_save_res(ii+i, jj+j+4, 8, fin_res);
|
||||
add_save_res(ii+i+4, jj+j+4, 12, fin_res);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const TA *const A;
|
||||
const block_q8_0 *const B;
|
||||
float *C;
|
||||
const int64_t k;
|
||||
int64_t kc;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
};
|
||||
@@ -117,8 +117,7 @@ inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); }
|
||||
#endif
|
||||
|
||||
#if defined(__MMA__)
|
||||
typedef vector unsigned char vec_t;
|
||||
typedef __vector_quad acc_t;
|
||||
#include "sgemm-ppc.h"
|
||||
#endif
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// VECTORIZED FUSED MULTIPLY ADD
|
||||
@@ -1573,95 +1572,35 @@ class tinyBLAS_BF16_PPC {
|
||||
const int nth;
|
||||
};
|
||||
|
||||
template <typename TA>
|
||||
class tinyBLAS_Q0_PPC {
|
||||
public:
|
||||
tinyBLAS_Q0_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const block_q8_0 *B, int64_t ldb,
|
||||
float *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
template <typename TA>
|
||||
tinyBLAS_Q0_PPC<TA>::tinyBLAS_Q0_PPC(int64_t k,
|
||||
const TA *A, int64_t lda,
|
||||
const block_q8_0 *B, int64_t ldb,
|
||||
float *C, int64_t ldc,
|
||||
int ith, int nth)
|
||||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||||
kc = 64;
|
||||
}
|
||||
|
||||
void matmul(int64_t m, int64_t n) {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
|
||||
private:
|
||||
|
||||
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
|
||||
for (int I = 0; I < RM; I++) {
|
||||
for (int J = 0; J < RN; J++) {
|
||||
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<int size>
|
||||
inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array<int, size>& comparray, vector float* vs, vector float* fin_res) {
|
||||
vector signed int vec_C[4];
|
||||
vector float CA[4] = {0};
|
||||
vector float res[4] = {0};
|
||||
__builtin_mma_disassemble_acc(vec_C, ACC);
|
||||
for (int i = 0; i < 4; i++) {
|
||||
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
|
||||
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
|
||||
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
|
||||
}
|
||||
}
|
||||
/* This function processes quantized data from block_q4_0 elements.
|
||||
* First the we try to extract the two int4 values stored in single int8_t into two signed int8.
|
||||
* And then we subtract each of the resultant element with 8, to convert signed int8 to unsigned int8.
|
||||
* Also compute the rowsum which is required to compensate the above conversion. */
|
||||
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
|
||||
const vector signed char lowMask = vec_splats((signed char)0xF);
|
||||
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
|
||||
const vector signed char v8 = vec_splats((signed char)0x8);
|
||||
vector signed int vsum = {0};
|
||||
vector signed int vsum2 = {0};
|
||||
c[0] = vec_and(c[1], lowMask);
|
||||
c[1] = vec_sr(c[1], v4);
|
||||
c[0] = vec_sub(c[0], v8);
|
||||
c[1] = vec_sub(c[1], v8);
|
||||
vsum = vec_sum4s(c[0], vsum);
|
||||
vsum2 = vec_sum4s(c[1], vsum2);
|
||||
vsum = vec_add(vsum, vsum2);
|
||||
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
|
||||
}
|
||||
|
||||
template <typename V1, typename V2>
|
||||
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
|
||||
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
|
||||
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
|
||||
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
|
||||
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
|
||||
V2 t1, t2, t3, t4, t5, t6, t7, t8;
|
||||
vector unsigned char xor_vector;
|
||||
uint8_t flip_vec = 0x80;
|
||||
xor_vector = vec_splats(flip_vec);
|
||||
t1 = vec_perm(s1, s2, swiz1);
|
||||
t2 = vec_perm(s1, s2, swiz2);
|
||||
t3 = vec_perm(s3, s4, swiz1);
|
||||
t4 = vec_perm(s3, s4, swiz2);
|
||||
t5 = vec_perm(t1, t3, swiz3);
|
||||
t6 = vec_perm(t1, t3, swiz4);
|
||||
t7 = vec_perm(t2, t4, swiz3);
|
||||
t8 = vec_perm(t2, t4, swiz4);
|
||||
if (flip == true) {
|
||||
t5 = vec_xor(t5, xor_vector);
|
||||
t6 = vec_xor(t6, xor_vector);
|
||||
t7 = vec_xor(t7, xor_vector);
|
||||
t8 = vec_xor(t8, xor_vector);
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::matmul(int64_t m, int64_t n) {
|
||||
int mc = 64; int nc = 64;
|
||||
if (n % 8 == 0 && n < nc) {
|
||||
nc = n;
|
||||
mc = 32 ;
|
||||
kc = 32;
|
||||
}
|
||||
const bool is_aligned = ((m & (mc - 1)) == 0) & ((n & (nc - 1)) == 0) & ((k & (kc - 1)) == 0);
|
||||
if (is_aligned) {
|
||||
this->matmul_tiled_q0(m, n, mc, nc, kc);
|
||||
} else {
|
||||
mnpack(0, m, 0, n);
|
||||
}
|
||||
vec_xst(t5, 0, vecOffset);
|
||||
vec_xst(t6, 0, vecOffset+16);
|
||||
vec_xst(t7, 0, vecOffset+32);
|
||||
vec_xst(t8, 0, vecOffset+48);
|
||||
}
|
||||
|
||||
template<int size>
|
||||
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
|
||||
template<typename TA>
|
||||
template<int size>
|
||||
void tinyBLAS_Q0_PPC<TA>::packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
|
||||
int64_t i, j;
|
||||
TA *aoffset = NULL;
|
||||
int8_t *vecOffset = NULL;
|
||||
@@ -1781,8 +1720,10 @@ class tinyBLAS_Q0_PPC {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TA>
|
||||
template<typename VA, typename VB>
|
||||
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
|
||||
void tinyBLAS_Q0_PPC<TA>::packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
|
||||
int64_t i, j;
|
||||
block_q8_0 *aoffset = NULL;
|
||||
VA *vecOffset = NULL;
|
||||
@@ -1822,7 +1763,6 @@ class tinyBLAS_Q0_PPC {
|
||||
j--;
|
||||
} while(j > 0);
|
||||
}
|
||||
|
||||
if (rows & 4) {
|
||||
aoffsets[0] = aoffset;
|
||||
for (int it = 1; it < 4; it++ )
|
||||
@@ -1878,7 +1818,8 @@ class tinyBLAS_Q0_PPC {
|
||||
}
|
||||
}
|
||||
|
||||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int m_rem = MIN(m - m0, 16);
|
||||
int n_rem = MIN(n - n0, 16);
|
||||
|
||||
@@ -1915,7 +1856,8 @@ class tinyBLAS_Q0_PPC {
|
||||
}
|
||||
|
||||
|
||||
void KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::KERNEL_4x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[8], vec_B[16] = {0};
|
||||
acc_t acc_0, acc_1;
|
||||
std::array<int, 4> comparray {};
|
||||
@@ -1953,14 +1895,15 @@ class tinyBLAS_Q0_PPC {
|
||||
aoffset += lda;
|
||||
}
|
||||
}
|
||||
compute<4>(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute<4>(&acc_1, 0, 4, comparray, vs, fin_res);
|
||||
compute(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute(&acc_1, 0, 4, comparray, vs, fin_res);
|
||||
}
|
||||
save_res(ii, jj, 0, fin_res);
|
||||
save_res(ii, jj+4, 4, fin_res);
|
||||
}
|
||||
|
||||
void KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x4(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[16], vec_B[8] = {0};
|
||||
acc_t acc_0, acc_1;
|
||||
std::array<int, 8> comparray {};
|
||||
@@ -1997,16 +1940,18 @@ class tinyBLAS_Q0_PPC {
|
||||
aoffset += lda;
|
||||
}
|
||||
}
|
||||
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
|
||||
compute(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute(&acc_1, 4, 4, comparray, vs, fin_res);
|
||||
}
|
||||
save_res(ii, jj, 0, fin_res);
|
||||
save_res(ii+4, jj, 4, fin_res);
|
||||
}
|
||||
|
||||
void KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x8(int64_t ii, int64_t jj) {
|
||||
vec_t vec_A[16], vec_B[16] = {0};
|
||||
acc_t acc_0, acc_1, acc_2, acc_3;
|
||||
acc_t acc_4, acc_5, acc_6, acc_7;
|
||||
std::array<int, 8> comparray {};
|
||||
vector float fin_res[16] = {0};
|
||||
vector float vs[16] = {0};
|
||||
@@ -2046,10 +1991,10 @@ class tinyBLAS_Q0_PPC {
|
||||
aoffset += lda;
|
||||
}
|
||||
}
|
||||
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
|
||||
compute<8>(&acc_2, 0, 8, comparray, vs, fin_res);
|
||||
compute<8>(&acc_3, 4, 12, comparray, vs, fin_res);
|
||||
compute(&acc_0, 0, 0, comparray, vs, fin_res);
|
||||
compute(&acc_1, 4, 4, comparray, vs, fin_res);
|
||||
compute(&acc_2, 0, 8, comparray, vs, fin_res);
|
||||
compute(&acc_3, 4, 12, comparray, vs, fin_res);
|
||||
}
|
||||
save_res(ii, jj, 0, fin_res);
|
||||
save_res(ii+4, jj, 4, fin_res);
|
||||
@@ -2057,7 +2002,8 @@ class tinyBLAS_Q0_PPC {
|
||||
save_res(ii+4, jj+4, 12, fin_res);
|
||||
}
|
||||
|
||||
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
|
||||
template<typename TA>
|
||||
void tinyBLAS_Q0_PPC<TA>::gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
@@ -2125,21 +2071,9 @@ class tinyBLAS_Q0_PPC {
|
||||
}
|
||||
}
|
||||
|
||||
template<int RM, int RN>
|
||||
inline void kernel(int64_t ii, int64_t jj) {
|
||||
if constexpr(RM == 4 && RN == 8) {
|
||||
KERNEL_4x8(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 4) {
|
||||
KERNEL_8x4(ii,jj);
|
||||
} else if constexpr(RM == 8 && RN == 8) {
|
||||
KERNEL_8x8(ii,jj);
|
||||
} else {
|
||||
assert(false && "RN/RM values not supported");
|
||||
}
|
||||
}
|
||||
|
||||
template<typename TA>
|
||||
template <int RM, int RN>
|
||||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
NOINLINE void tinyBLAS_Q0_PPC<TA>::gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||||
int64_t ytiles = (m - m0) / RM;
|
||||
int64_t xtiles = (n - n0) / RN;
|
||||
int64_t tiles = xtiles * ytiles;
|
||||
@@ -2151,20 +2085,12 @@ class tinyBLAS_Q0_PPC {
|
||||
for (int64_t job = start; job < end; ++job) {
|
||||
int64_t ii = m0 + job / xtiles * RM;
|
||||
int64_t jj = n0 + job % xtiles * RN;
|
||||
kernel<RM, RN>(ii, jj);
|
||||
this->kernel<RM, RN>(ii, jj);
|
||||
}
|
||||
}
|
||||
|
||||
const TA *const A;
|
||||
const block_q8_0 *const B;
|
||||
float *C;
|
||||
const int64_t k;
|
||||
const int64_t lda;
|
||||
const int64_t ldb;
|
||||
const int64_t ldc;
|
||||
const int ith;
|
||||
const int nth;
|
||||
};
|
||||
template class tinyBLAS_Q0_PPC<block_q4_0>;
|
||||
template class tinyBLAS_Q0_PPC<block_q8_0>;
|
||||
|
||||
class tinyBLAS_PPC {
|
||||
public:
|
||||
|
||||
@@ -6,6 +6,12 @@
|
||||
#include <vecintrin.h>
|
||||
#endif
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define NOINLINE __declspec(noinline)
|
||||
#else
|
||||
#define NOINLINE __attribute__((__noinline__))
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
@@ -6383,7 +6383,7 @@ static void ggml_compute_forward_im2col_3d_f16(
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
const int64_t iid = iod*s2 + ikd*d2 - p2;
|
||||
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
|
||||
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
|
||||
@@ -6554,8 +6554,13 @@ static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params
|
||||
ggml_compute_forward_mul_mat(params, &dst);
|
||||
}
|
||||
|
||||
static inline int64_t ggml_wrap_around(int64_t coord, int64_t size) {
|
||||
return (coord + size) % size; // adding size avoids negative number weirdness
|
||||
}
|
||||
|
||||
// ggml_compute_forward_conv_2d
|
||||
|
||||
|
||||
static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
|
||||
const ggml_tensor * kernel, // [KW, KH, IC, OC]
|
||||
const ggml_tensor * src, // [W, H, C, N]
|
||||
@@ -7420,6 +7425,65 @@ static void ggml_compute_forward_upscale_f32(
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == GGML_SCALE_MODE_BILINEAR && (mode_flags & GGML_SCALE_FLAG_ANTIALIAS)) {
|
||||
// Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True)
|
||||
// https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp
|
||||
auto triangle_filter = [](float x) -> float {
|
||||
return std::max(1.0f - fabsf(x), 0.0f);
|
||||
};
|
||||
|
||||
// support and invscale, minimum 1 pixel for bilinear
|
||||
const float support1 = std::max(1.0f, 1.0f / sf1);
|
||||
const float invscale1 = 1.0f / support1;
|
||||
const float support0 = std::max(1.0f, 1.0f / sf0);
|
||||
const float invscale0 = 1.0f / support0;
|
||||
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
const int64_t i03 = i3 / sf3;
|
||||
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
|
||||
const int64_t i02 = i2 / sf2;
|
||||
for (int64_t i1 = 0; i1 < ne1; i1++) {
|
||||
const float y = ((float) i1 + pixel_offset) / sf1;
|
||||
for (int64_t i0 = 0; i0 < ne0; i0++) {
|
||||
const float x = ((float) i0 + pixel_offset) / sf0;
|
||||
|
||||
// the range of source pixels that contribute
|
||||
const int64_t x_min = std::max<int64_t>(x - support0 + pixel_offset, 0);
|
||||
const int64_t x_max = std::min<int64_t>(x + support0 + pixel_offset, ne00);
|
||||
const int64_t y_min = std::max<int64_t>(y - support1 + pixel_offset, 0);
|
||||
const int64_t y_max = std::min<int64_t>(y + support1 + pixel_offset, ne01);
|
||||
|
||||
// bilinear filter with antialiasing
|
||||
float val = 0.0f;
|
||||
float total_weight = 0.0f;
|
||||
|
||||
for (int64_t sy = y_min; sy < y_max; sy++) {
|
||||
const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1);
|
||||
|
||||
for (int64_t sx = x_min; sx < x_max; sx++) {
|
||||
const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0);
|
||||
const float weight = weight_x * weight_y;
|
||||
|
||||
if (weight <= 0.0f) {
|
||||
continue;
|
||||
}
|
||||
|
||||
const float pixel = *(const float *)((const char *)src0->data + sx*nb00 + sy*nb01 + i02*nb02 + i03*nb03);
|
||||
val += pixel * weight;
|
||||
total_weight += weight;
|
||||
}
|
||||
}
|
||||
|
||||
if (total_weight > 0.0f) {
|
||||
val /= total_weight;
|
||||
}
|
||||
|
||||
float * dst_ptr = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
|
||||
*dst_ptr = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
|
||||
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
||||
const int64_t i03 = i3 / sf3;
|
||||
@@ -7532,6 +7596,7 @@ void ggml_compute_forward_upscale(
|
||||
|
||||
// ggml_compute_forward_pad
|
||||
|
||||
template<bool circular_t>
|
||||
static void ggml_compute_forward_pad_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -7556,23 +7621,40 @@ static void ggml_compute_forward_pad_f32(
|
||||
const int32_t lp3 = ggml_get_op_params_i32(dst, 6);
|
||||
const int32_t rp3 = ggml_get_op_params_i32(dst, 7);
|
||||
|
||||
|
||||
// TODO: optimize
|
||||
|
||||
for (int64_t i2 = 0; i2 < ne2; ++i2) {
|
||||
for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
|
||||
for (int64_t i0 = 0; i0 < ne0; ++i0) {
|
||||
for (int64_t i3 = 0; i3 < ne3; ++i3) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) \
|
||||
&& (i1 >= lp1 && i1 < ne1 - rp1) \
|
||||
&& (i2 >= lp2 && i2 < ne2 - rp2) \
|
||||
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
|
||||
// circular means wrap around on a torus, so x and y loop around
|
||||
if constexpr (circular_t) {
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
const int64_t src_i0 = ggml_wrap_around(i0 - lp0, ne00);
|
||||
const int64_t src_i1 = ggml_wrap_around(i1 - lp1, ne01);
|
||||
const int64_t src_i2 = ggml_wrap_around(i2 - lp2, ne02);
|
||||
const int64_t src_i3 = ggml_wrap_around(i3 - lp3, ne03);
|
||||
|
||||
const int64_t src_idx =
|
||||
src_i3*nb03 +
|
||||
src_i2*nb02 +
|
||||
src_i1*nb01 +
|
||||
src_i0*nb00;
|
||||
|
||||
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
} else {
|
||||
dst_ptr[dst_idx] = 0;
|
||||
const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
|
||||
if ((i0 >= lp0 && i0 < ne0 - rp0) \
|
||||
&& (i1 >= lp1 && i1 < ne1 - rp1) \
|
||||
&& (i2 >= lp2 && i2 < ne2 - rp2) \
|
||||
&& (i3 >= lp3 && i3 < ne3 - rp3)) {
|
||||
const int64_t src_idx = (i3 - lp3)*nb03 + (i2 - lp2)*nb02 + (i1 - lp1)*nb01 + (i0 - lp0)*nb00;
|
||||
const float * src_ptr = (const float *)((char *) src0->data + src_idx);
|
||||
dst_ptr[dst_idx] = *src_ptr;
|
||||
} else {
|
||||
dst_ptr[dst_idx] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -7580,16 +7662,20 @@ static void ggml_compute_forward_pad_f32(
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_compute_forward_pad(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
const bool circular = (bool) ggml_get_op_params_i32(dst, 8);
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_pad_f32(params, dst);
|
||||
if (circular) {
|
||||
ggml_compute_forward_pad_f32<true>(params, dst);
|
||||
} else {
|
||||
ggml_compute_forward_pad_f32<false>(params, dst);
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
@@ -7794,7 +7880,7 @@ void ggml_compute_forward_timestep_embedding(
|
||||
// ggml_compute_forward_argsort
|
||||
|
||||
template<enum ggml_sort_order order>
|
||||
struct argsort_cmp {
|
||||
struct cmp_argsort {
|
||||
const float * data;
|
||||
bool operator()(int32_t a, int32_t b) const {
|
||||
if constexpr (order == GGML_SORT_ORDER_ASC) {
|
||||
@@ -7833,11 +7919,11 @@ static void ggml_compute_forward_argsort_f32(
|
||||
|
||||
switch (order) {
|
||||
case GGML_SORT_ORDER_ASC:
|
||||
std::sort(dst_data, dst_data + ne0, argsort_cmp<GGML_SORT_ORDER_ASC>{src_data});
|
||||
std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_ASC>{src_data});
|
||||
break;
|
||||
|
||||
case GGML_SORT_ORDER_DESC:
|
||||
std::sort(dst_data, dst_data + ne0, argsort_cmp<GGML_SORT_ORDER_DESC>{src_data});
|
||||
std::sort(dst_data, dst_data + ne0, cmp_argsort<GGML_SORT_ORDER_DESC>{src_data});
|
||||
break;
|
||||
|
||||
default:
|
||||
@@ -7864,6 +7950,72 @@ void ggml_compute_forward_argsort(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_top_k
|
||||
|
||||
struct cmp_top_k {
|
||||
const float * data;
|
||||
bool operator()(int32_t a, int32_t b) const {
|
||||
return data[a] > data[b];
|
||||
}
|
||||
};
|
||||
|
||||
static void ggml_compute_forward_top_k_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(nb0 == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t nr = ggml_nrows(src0);
|
||||
|
||||
const int top_k = ne0;
|
||||
|
||||
int32_t * tmp = (int32_t *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
|
||||
|
||||
for (int64_t i = ith; i < nr; i += nth) {
|
||||
const float * src_data = (float *)((char *) src0->data + i*nb01);
|
||||
|
||||
for (int64_t j = 0; j < ne00; j++) {
|
||||
tmp[j] = j;
|
||||
}
|
||||
|
||||
std::partial_sort(tmp, tmp + top_k, tmp + ne00, cmp_top_k{src_data});
|
||||
|
||||
int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
|
||||
|
||||
std::copy(tmp, tmp + top_k, dst_data);
|
||||
|
||||
// emphasize that the order is not important
|
||||
if (top_k > 1) {
|
||||
std::swap(dst_data[0], dst_data[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_top_k(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_top_k_f32(params, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_flash_attn_ext
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
@@ -9696,13 +9848,13 @@ static void ggml_compute_forward_solve_tri_f32(const struct ggml_compute_params
|
||||
for (int64_t i00 = 0; i00 < n; ++i00) {
|
||||
float sum = 0.0f;
|
||||
for (int64_t t = 0; t < i00; ++t) {
|
||||
sum += A_batch[i00 * n + t] * X_batch[i01 * n + t];
|
||||
sum += A_batch[i00 * n + t] * X_batch[t * k + i01];
|
||||
}
|
||||
|
||||
const float diag = A_batch[i00 * n + i00];
|
||||
GGML_ASSERT(diag != 0.0f && "Zero diagonal in triangular matrix");
|
||||
assert(diag != 0.0f && "Zero diagonal in triangular matrix");
|
||||
|
||||
X_batch[i01 * n + i00] = (B_batch[i00 * k + i01] - sum) / diag;
|
||||
X_batch[i00 * k + i01] = (B_batch[i00 * k + i01] - sum) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -81,6 +81,7 @@ void ggml_compute_forward_roll(const struct ggml_compute_params * params, struct
|
||||
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_top_k(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_tri(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_fill(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
@@ -124,6 +124,58 @@ void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GG
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK_K == 256);
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
|
||||
|
||||
// scalar
|
||||
const int blck_size_interleave = 4;
|
||||
float srcv[4][QK_K];
|
||||
float iscale[4];
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int row_iter = 0; row_iter < 4; row_iter++) {
|
||||
float amax = 0.0f; // absolute max
|
||||
float max = 0;
|
||||
|
||||
for (int j = 0; j < QK_K; j++) {
|
||||
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
|
||||
// Update the maximum value of the corresponding super block
|
||||
if(amax < fabsf(srcv[row_iter][j])) {
|
||||
amax = fabsf(srcv[row_iter][j]);
|
||||
max = srcv[row_iter][j];
|
||||
}
|
||||
}
|
||||
|
||||
iscale[row_iter] = amax ? -127.f/max : 0;
|
||||
|
||||
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
|
||||
}
|
||||
|
||||
for (int j = 0; j < QK_K / 4; j++) {
|
||||
y[i].bsums[j] = 0;
|
||||
}
|
||||
|
||||
// Quants values are interleaved in sequence of four bytes from corresponding super blocks
|
||||
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
|
||||
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
|
||||
for (int j = 0; j < QK_K * 4; j++) {
|
||||
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
|
||||
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
|
||||
src_offset += (j % blck_size_interleave);
|
||||
int index = (((j & 15) >> 2) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
|
||||
|
||||
float x0 = srcv[src_id][src_offset] * iscale[src_id];
|
||||
y[i].qs[j] = nearest_int(x0);
|
||||
y[i].bsums[index] += y[i].qs[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
|
||||
assert(QK_K == 256);
|
||||
assert(k % QK_K == 0);
|
||||
@@ -192,6 +244,12 @@ template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTR
|
||||
ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
|
||||
}
|
||||
|
||||
template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
|
||||
assert(nrow == 4);
|
||||
UNUSED(nrow);
|
||||
ggml_quantize_mat_q8_K_4x4(x, vy, n_per_row);
|
||||
}
|
||||
|
||||
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
|
||||
assert(nrow == 4);
|
||||
UNUSED(nrow);
|
||||
@@ -333,6 +391,77 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 4;
|
||||
static const uint32_t kmask1 = 0x3f3f3f3f;
|
||||
static const uint32_t kmask2 = 0x0f0f0f0f;
|
||||
static const uint32_t kmask3 = 0x03030303;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(bs);
|
||||
UNUSED(nr);
|
||||
|
||||
float sumf[8];
|
||||
float sum_minf[8];
|
||||
uint32_t utmp[32];
|
||||
int sumi1;
|
||||
int sumi2;
|
||||
int sumi;
|
||||
|
||||
const block_q8_K * a_ptr = (const block_q8_K *) vy;
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[j] = 0.0;
|
||||
sum_minf[j] = 0.0;
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
|
||||
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
|
||||
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
|
||||
utmp[sb * 4 + 2] = uaux_0;
|
||||
utmp[sb * 4 + 0] &= kmask1;
|
||||
}
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
|
||||
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i + 32]);
|
||||
sumi1 = sumi1 * scales_0[j];
|
||||
sumi2 = sumi2 * scales_1[j];
|
||||
sumi += sumi1 + sumi2;
|
||||
}
|
||||
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
@@ -727,6 +856,89 @@ void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
const int ncols_interleaved = 8;
|
||||
const int blocklen = 4;
|
||||
static const uint32_t kmask1 = 0x3f3f3f3f;
|
||||
static const uint32_t kmask2 = 0x0f0f0f0f;
|
||||
static const uint32_t kmask3 = 0x03030303;
|
||||
|
||||
assert (n % qk == 0);
|
||||
assert (nr % 4 == 0);
|
||||
assert (nc % ncols_interleaved == 0);
|
||||
|
||||
UNUSED(nb);
|
||||
UNUSED(ncols_interleaved);
|
||||
UNUSED(blocklen);
|
||||
|
||||
float sumf[4][8];
|
||||
float sum_minf[4][8];
|
||||
uint32_t utmp[32];
|
||||
int sumi1;
|
||||
int sumi2;
|
||||
int sumi;
|
||||
|
||||
for (int y = 0; y < nr / 4; y++) {
|
||||
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
|
||||
for (int x = 0; x < nc / ncols_interleaved; x++) {
|
||||
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumf[m][j] = 0.0;
|
||||
sum_minf[m][j] = 0.0;
|
||||
}
|
||||
}
|
||||
for (int l = 0; l < nb; l++) {
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
|
||||
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
|
||||
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
|
||||
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
|
||||
utmp[sb * 4 + 2] = uaux_0;
|
||||
utmp[sb * 4 + 0] &= kmask1;
|
||||
}
|
||||
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
|
||||
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
|
||||
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
sumi1 = 0;
|
||||
sumi2 = 0;
|
||||
sumi = 0;
|
||||
for (int i = 0; i < blocklen; ++i) {
|
||||
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
|
||||
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
|
||||
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i]);
|
||||
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i + 128]);
|
||||
sumi1 = sumi1 * scales_0[j];
|
||||
sumi2 = sumi2 * scales_1[j];
|
||||
sumi += sumi1 + sumi2;
|
||||
}
|
||||
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int sb = 0; sb < 8; sb++) {
|
||||
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
|
||||
for(int m = 0; m < 4; m++) {
|
||||
const int16_t * bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
|
||||
for(int j = 0; j < ncols_interleaved; j++) {
|
||||
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int m = 0; m < 4; m++) {
|
||||
for (int j = 0; j < ncols_interleaved; j++) {
|
||||
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
|
||||
const int qk = QK_K;
|
||||
const int nb = n / qk;
|
||||
@@ -1228,9 +1440,10 @@ static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block
|
||||
|
||||
GGML_UNUSED(data_size);
|
||||
}
|
||||
|
||||
static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
|
||||
GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
|
||||
GGML_ASSERT(interleave_block == 8);
|
||||
GGML_ASSERT(interleave_block == 8 || interleave_block == 4);
|
||||
constexpr int nrows_interleaved = 8;
|
||||
|
||||
block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
|
||||
@@ -1468,6 +1681,10 @@ template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * da
|
||||
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
|
||||
}
|
||||
|
||||
template <> int repack<block_q4_K, 4, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
|
||||
return repack_q4_K_to_q4_K_8_bl(t, 4, data, data_size);
|
||||
}
|
||||
|
||||
template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
|
||||
return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
|
||||
}
|
||||
@@ -1501,6 +1718,10 @@ template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t
|
||||
ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemv<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemv_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
@@ -1529,6 +1750,10 @@ template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t
|
||||
ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemm<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemm_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
|
||||
template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
|
||||
ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
|
||||
}
|
||||
@@ -1731,12 +1956,13 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
|
||||
nchunk0 = (nr0 + min_chunk_size - 1) / min_chunk_size;
|
||||
}
|
||||
|
||||
if (nth == 1 || nchunk0 < nth || disable_chunking) {
|
||||
int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||||
// Only increase nchunk0 to nth if it won't make chunks too small
|
||||
if (nth == 1 || ((nchunk0 < nth || disable_chunking) && (nr0 + nth - 1) / nth >= min_chunk_size)) {
|
||||
nchunk0 = nth;
|
||||
dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||||
}
|
||||
|
||||
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
|
||||
|
||||
// Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size
|
||||
// This prevents creating too many tiny chunks that could overlap after alignment
|
||||
const int64_t max_nchunk = (nr0 + min_chunk_size - 1) / min_chunk_size;
|
||||
@@ -1930,6 +2156,9 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
|
||||
|
||||
// instance for Q4_K
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_K, 4, 8, GGML_TYPE_Q8_K> q4_K_8x4_q8_K;
|
||||
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
|
||||
|
||||
// instance for Q2
|
||||
@@ -1961,6 +2190,16 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
|
||||
return &q4_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_matmul_int8()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
return &q4_K_8x8_q8_K;
|
||||
}
|
||||
}
|
||||
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
return &q4_K_8x4_q8_K;
|
||||
}
|
||||
}
|
||||
} else if (cur->type == GGML_TYPE_Q2_K) {
|
||||
if (ggml_cpu_has_avx512()) {
|
||||
if (cur->ne[1] % 8 == 0) {
|
||||
|
||||
@@ -80,10 +80,12 @@ extern "C" {
|
||||
|
||||
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
@@ -91,6 +93,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
@@ -99,10 +102,12 @@ void ggml_gemm_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
// Native implementations
|
||||
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
|
||||
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
@@ -110,6 +115,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
|
||||
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
|
||||
|
||||
@@ -160,18 +160,18 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F32xt svfloat32_t
|
||||
#define GGML_F32xt_ZERO svdup_n_f32(0.0f)
|
||||
#define GGML_F32xt_SET1(x) svdup_n_f32(x)
|
||||
#define GGML_F32xt_LOAD_IMPL(pg, a, ...) svld1_f32(pg, a)
|
||||
#define GGML_F32xt_LOAD(...) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_STORE_IMPL(pg,a,b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(...) GGML_F32xt_STORE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_LOAD_IMPL(pg, a) svld1_f32(pg, a)
|
||||
#define GGML_F32xt_LOAD(a) GGML_F32xt_LOAD_IMPL(DEFAULT_PG, a)
|
||||
#define GGML_F32xt_STORE_IMPL(pg, a, b) svst1_f32(pg, a, b)
|
||||
#define GGML_F32xt_STORE(a, b) GGML_F32xt_STORE_IMPL(DEFAULT_PG, a, b)
|
||||
#define GGML_F32xt_FMA_IMPL(pg, a, b, c) svmad_f32_m(pg, b, c, a)
|
||||
#define GGML_F32xt_FMA(...) GGML_F32xt_FMA_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_FMA(a, b, c) GGML_F32xt_FMA_IMPL(DEFAULT_PG, a, b, c)
|
||||
#define GGML_F32xt_ADD_IMPL(pg, a, b) svadd_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_ADD(...) GGML_F32xt_ADD_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_ADD(a, b) GGML_F32xt_ADD_IMPL(DEFAULT_PG, a, b)
|
||||
#define GGML_F32xt_MUL_IMPL(pg, a, b) svmul_f32_m(pg, a, b)
|
||||
#define GGML_F32xt_MUL(...) GGML_F32xt_MUL_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_MUL(a, b) GGML_F32xt_MUL_IMPL(DEFAULT_PG, a, b)
|
||||
#define GGML_F32xt_REDUCE_ONE_IMPL(pg, a) svaddv(pg, a)
|
||||
#define GGML_F32xt_REDUCE_ONE(...) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE_ONE(a) GGML_F32xt_REDUCE_ONE_IMPL(DEFAULT_PG, a)
|
||||
#define GGML_F32xt_REDUCE_IMPL(pg, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
|
||||
{ \
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum2); \
|
||||
@@ -183,7 +183,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
sum1 = svadd_f32_m(DEFAULT_PG, sum1, sum5); \
|
||||
(res) = (ggml_float) GGML_F32xt_REDUCE_ONE(sum1); \
|
||||
}
|
||||
#define GGML_F32xt_REDUCE(...) GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, __VA_ARGS__)
|
||||
#define GGML_F32xt_REDUCE(res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8) \
|
||||
GGML_F32xt_REDUCE_IMPL(DEFAULT_PG, res, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8)
|
||||
|
||||
#define GGML_F32_VEC GGML_F32xt
|
||||
#define GGML_F32_VEC_ZERO GGML_F32xt_ZERO
|
||||
@@ -206,11 +207,11 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F32Cxt_STORE(dst_ptr, src_vec) svst1_f16(DEFAULT_PG16, (__fp16 *)(dst_ptr), (src_vec))
|
||||
|
||||
#define GGML_F32Cxt_FMA_IMPL(pg, a, b, c) svmad_f16_x(pg, b, c, a)
|
||||
#define GGML_F32Cxt_FMA(...) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_FMA(a, b, c) GGML_F32Cxt_FMA_IMPL(DEFAULT_PG16, a, b, c)
|
||||
#define GGML_F32Cxt_ADD_IMPL(pg, a, b) svadd_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_ADD(...) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_ADD(a, b) GGML_F32Cxt_ADD_IMPL(DEFAULT_PG16, a, b)
|
||||
#define GGML_F32Cxt_MUL_IMPL(pg, a, b) svmul_f16_x(pg, a, b)
|
||||
#define GGML_F32Cxt_MUL(...) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F32Cxt_MUL(a, b) GGML_F32Cxt_MUL_IMPL(DEFAULT_PG16, a, b)
|
||||
#define GGML_F32Cxt_REDUCE GGML_F16xt_REDUCE_MIXED
|
||||
|
||||
#define GGML_F16x_VEC GGML_F32Cxt
|
||||
@@ -224,7 +225,7 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
#define GGML_F16x_VEC_REDUCE GGML_F32Cxt_REDUCE
|
||||
|
||||
#define GGML_F16xt_REDUCE_ONE_IMPL(pg, a) svaddv_f16(pg, a)
|
||||
#define GGML_F16xt_REDUCE_ONE(...) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F16xt_REDUCE_ONE(a) GGML_F16xt_REDUCE_ONE_IMPL(DEFAULT_PG16, a)
|
||||
|
||||
#define GGML_F16xt_REDUCE_MIXED_IMPL(pg16, res, sum1, sum2, sum3, sum4) \
|
||||
{ \
|
||||
@@ -234,7 +235,8 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
__fp16 sum_f16 = svaddv_f16(pg16, sum1); \
|
||||
(res) = (ggml_float) sum_f16; \
|
||||
}
|
||||
#define GGML_F16xt_REDUCE_MIXED(...) GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, __VA_ARGS__)
|
||||
#define GGML_F16xt_REDUCE_MIXED(res, sum1, sum2, sum3, sum4) \
|
||||
GGML_F16xt_REDUCE_MIXED_IMPL(DEFAULT_PG16, res, sum1, sum2, sum3, sum4)
|
||||
|
||||
// F16 NEON
|
||||
|
||||
|
||||
@@ -397,119 +397,118 @@ inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const
|
||||
}
|
||||
|
||||
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr;
|
||||
#if defined(GGML_SIMD) && defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 8 * ggml_f16_epr;
|
||||
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
|
||||
const int np= (n & ~(ggml_f16_step - 1));
|
||||
int np = (n & ~(ggml_f16_step - 1));
|
||||
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
|
||||
svfloat16_t ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8;
|
||||
svfloat16_t ay1, ay2, ay3, ay4, ay5, ay6, ay7, ay8;
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ax1 = GGML_F16x_VEC_LOAD(x + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0 * ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_FMA(ay1, ax1, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
|
||||
GGML_F16x_VEC_STORE(y + i + 0 * ggml_f16_epr, ay1, 0);
|
||||
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
|
||||
ax2 = GGML_F16x_VEC_LOAD(x + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1 * ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_FMA(ay2, ax2, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
|
||||
GGML_F16x_VEC_STORE(y + i + 1 * ggml_f16_epr, ay2, 1);
|
||||
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
|
||||
ax3 = GGML_F16x_VEC_LOAD(x + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_LOAD(y + i + 2 * ggml_f16_epr, 2);
|
||||
ay3 = GGML_F16x_VEC_FMA(ay3, ax3, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
|
||||
GGML_F16x_VEC_STORE(y + i + 2 * ggml_f16_epr, ay3, 2);
|
||||
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
|
||||
ax4 = GGML_F16x_VEC_LOAD(x + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_LOAD(y + i + 3 * ggml_f16_epr, 3);
|
||||
ay4 = GGML_F16x_VEC_FMA(ay4, ax4, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
|
||||
GGML_F16x_VEC_STORE(y + i + 3 * ggml_f16_epr, ay4, 3);
|
||||
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
|
||||
ax5 = GGML_F16x_VEC_LOAD(x + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_LOAD(y + i + 4 * ggml_f16_epr, 4);
|
||||
ay5 = GGML_F16x_VEC_FMA(ay5, ax5, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
|
||||
GGML_F16x_VEC_STORE(y + i + 4 * ggml_f16_epr, ay5, 4);
|
||||
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
|
||||
ax6 = GGML_F16x_VEC_LOAD(x + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_LOAD(y + i + 5 * ggml_f16_epr, 5);
|
||||
ay6 = GGML_F16x_VEC_FMA(ay6, ax6, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
|
||||
GGML_F16x_VEC_STORE(y + i + 5 * ggml_f16_epr, ay6, 5);
|
||||
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
|
||||
ax7 = GGML_F16x_VEC_LOAD(x + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_LOAD(y + i + 6 * ggml_f16_epr, 6);
|
||||
ay7 = GGML_F16x_VEC_FMA(ay7, ax7, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
|
||||
GGML_F16x_VEC_STORE(y + i + 6 * ggml_f16_epr, ay7, 6);
|
||||
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
|
||||
ax8 = GGML_F16x_VEC_LOAD(x + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_LOAD(y + i + 7 * ggml_f16_epr, 7);
|
||||
ay8 = GGML_F16x_VEC_FMA(ay8, ax8, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
|
||||
GGML_F16x_VEC_STORE(y + i + 7 * ggml_f16_epr, ay8, 7);
|
||||
}
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + k, ry, 0);
|
||||
}
|
||||
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
hy = svmad_f16_x(pg, hx, vx, hy);
|
||||
svst1_f16(pg, (__fp16 *)(y + np2), hy);
|
||||
}
|
||||
np = n;
|
||||
#elif defined(__riscv_zvfh) // implies __riscv_v_intrinsic
|
||||
const int np = n;
|
||||
_Float16 hv = (_Float16)v;
|
||||
for (int i = 0, avl; i < n; i += avl) {
|
||||
avl = __riscv_vsetvl_e16m8(n - i);
|
||||
vfloat16m8_t ax = __riscv_vle16_v_f16m8((const _Float16 *)&x[i], avl);
|
||||
vfloat16m8_t ay = __riscv_vle16_v_f16m8((_Float16 *)&y[i], avl);
|
||||
vfloat16m8_t ny = __riscv_vfmadd_vf_f16m8(ax, hv, ay, avl);
|
||||
__riscv_vse16_v_f16m8((_Float16 *)&y[i], ny, avl);
|
||||
}
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
const int np2 = (n & ~(ggml_f16_epr - 1));
|
||||
for (int k = np; k < np2; k += ggml_f16_epr) {
|
||||
svfloat16_t rx = GGML_F16x_VEC_LOAD(x + k, 0);
|
||||
svfloat16_t ry = GGML_F16x_VEC_LOAD(y + k, 0);
|
||||
ry = GGML_F16x_VEC_FMA(ry, rx, vx);
|
||||
|
||||
GGML_F16x_VEC_STORE(y + k, ry, 0);
|
||||
}
|
||||
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b16(np2, n);
|
||||
svfloat16_t hx = svld1_f16(pg, (const __fp16 *)(x + np2));
|
||||
svfloat16_t hy = svld1_f16(pg, (const __fp16 *)(y + np2));
|
||||
hy = svmad_f16_x(pg, hx, vx, hy);
|
||||
svst1_f16(pg, (__fp16 *)(y + np2), hy);
|
||||
}
|
||||
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ax[GGML_F16_ARR];
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
const int np = 0;
|
||||
#endif
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i]) + GGML_CPU_FP16_TO_FP32(x[i])*v);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
// xs and vs are byte strides of x and v
|
||||
@@ -698,60 +697,61 @@ inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
|
||||
}
|
||||
|
||||
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
|
||||
#if defined(GGML_SIMD)
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 2 * ggml_f16_epr;
|
||||
#if defined(GGML_SIMD) && defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = svcntb() * 8;
|
||||
const int ggml_f16_epr = sve_register_length / 16;
|
||||
const int ggml_f16_step = 2 * ggml_f16_epr;
|
||||
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t ay1, ay2;
|
||||
GGML_F16x_VEC vx = GGML_F16x_VEC_SET1(v);
|
||||
const int np = (n & ~(ggml_f16_step - 1));
|
||||
svfloat16_t ay1, ay2;
|
||||
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
|
||||
for (int i = 0; i < np; i += ggml_f16_step) {
|
||||
ay1 = GGML_F16x_VEC_LOAD(y + i + 0*ggml_f16_epr, 0);
|
||||
ay1 = GGML_F16x_VEC_MUL(ay1, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 0*ggml_f16_epr, ay1, 0);
|
||||
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
|
||||
ay2 = GGML_F16x_VEC_LOAD(y + i + 1*ggml_f16_epr, 1);
|
||||
ay2 = GGML_F16x_VEC_MUL(ay2, vx);
|
||||
GGML_F16x_VEC_STORE(y + i + 1*ggml_f16_epr, ay2, 1);
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b16(np, n);
|
||||
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
|
||||
svfloat16_t out = svmul_f16_m(pg, hy, vx);
|
||||
svst1_f16(pg, (__fp16 *)(y + np), out);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic) && defined(__riscv_zvfh)
|
||||
for (int i = 0, vl; i < n; i += vl) {
|
||||
vl = __riscv_vsetvl_e16m2(n - i);
|
||||
vfloat16m2_t vy = __riscv_vle16_v_f16m2((_Float16 *)&y[i], vl);
|
||||
vfloat32m4_t vy32 = __riscv_vfwcvt_f_f_v_f32m4(vy, vl);
|
||||
vy32 = __riscv_vfmul_vf_f32m4(vy32, v, vl);
|
||||
vy = __riscv_vfncvt_f_f_w_f16m2(vy32, vl);
|
||||
__riscv_vse16_v_f16m2((_Float16 *)&y[i], vy, vl);
|
||||
}
|
||||
#elif defined(GGML_SIMD)
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
// leftovers
|
||||
// maximum number of leftover elements will be less that ggmlF_16x_epr. Apply predicated svmad on available elements only
|
||||
if (np < n) {
|
||||
svbool_t pg = svwhilelt_b16(np, n);
|
||||
svfloat16_t hy = svld1_f16(pg, (__fp16 *)(y + np));
|
||||
svfloat16_t out = svmul_f16_m(pg, hy, vx);
|
||||
svst1_f16(pg, (__fp16 *)(y + np), out);
|
||||
}
|
||||
#elif defined(__riscv_v_intrinsic)
|
||||
// todo: RVV impl
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
const int np = (n & ~(GGML_F16_STEP - 1));
|
||||
}
|
||||
|
||||
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
|
||||
|
||||
GGML_F16_VEC ay[GGML_F16_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F16_STEP) {
|
||||
for (int j = 0; j < GGML_F16_ARR; j++) {
|
||||
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
|
||||
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
|
||||
|
||||
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
|
||||
}
|
||||
}
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#endif
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
y[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(y[i])*v);
|
||||
}
|
||||
#else
|
||||
// scalar
|
||||
for (int i = 0; i < n; ++i) {
|
||||
|
||||
@@ -44,7 +44,7 @@ static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
|
||||
const dim3 offset_grid((nrows + block_size - 1) / block_size);
|
||||
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
|
||||
|
||||
cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
|
||||
CUDA_CHECK(cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream));
|
||||
|
||||
size_t temp_storage_bytes = 0;
|
||||
|
||||
|
||||
@@ -21,10 +21,12 @@
|
||||
#include "ggml-common.h"
|
||||
|
||||
#include <array>
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cfloat>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
#if defined(GGML_USE_HIP)
|
||||
@@ -84,12 +86,12 @@
|
||||
|
||||
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
|
||||
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
|
||||
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
|
||||
#define GGML_CUDA_CC_PH1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // MTT S5000
|
||||
|
||||
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
|
||||
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
|
||||
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
|
||||
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_PH1)
|
||||
#define GGML_CUDA_CC_IS_PH1(cc) (cc >= GGML_CUDA_CC_PH1)
|
||||
|
||||
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
|
||||
# define GGML_CUDA_USE_CUB
|
||||
@@ -212,9 +214,9 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define GGML_USE_VMM
|
||||
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
|
||||
|
||||
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#if defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#define FP16_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
#endif // defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
|
||||
|
||||
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
|
||||
#define FAST_FP16_AVAILABLE
|
||||
@@ -224,6 +226,10 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#define AMD_MFMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
|
||||
#if defined(GGML_USE_HIP) && (defined(RDNA4) || defined(RDNA3))
|
||||
#define AMD_WMMA_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && defined(RDNA4)
|
||||
|
||||
// The Volta instructions are in principle available on Turing or newer but they are effectively unusable:
|
||||
#if !defined(GGML_USE_HIP) && __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
|
||||
#define VOLTA_MMA_AVAILABLE
|
||||
@@ -246,12 +252,14 @@ static const char * cu_get_error_str(CUresult err) {
|
||||
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
|
||||
|
||||
static bool fp16_available(const int cc) {
|
||||
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
|
||||
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL ||
|
||||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
|
||||
}
|
||||
|
||||
static bool fast_fp16_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_AMD(cc) ||
|
||||
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610);
|
||||
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610) ||
|
||||
(GGML_CUDA_CC_IS_MTHREADS(cc) && fp16_available(cc));
|
||||
}
|
||||
|
||||
// To be used for feature selection of external libraries, e.g. cuBLAS.
|
||||
@@ -268,7 +276,9 @@ static bool fp16_mma_hardware_available(const int cc) {
|
||||
}
|
||||
|
||||
static bool bf16_mma_hardware_available(const int cc) {
|
||||
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) || GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
|
||||
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) ||
|
||||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3 ||
|
||||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
|
||||
}
|
||||
|
||||
static bool fp32_mma_hardware_available(const int cc) {
|
||||
@@ -283,6 +293,10 @@ static bool amd_mfma_available(const int cc) {
|
||||
#endif //!defined(GGML_HIP_NO_MMQ_MFMA)
|
||||
}
|
||||
|
||||
static bool amd_wmma_available(const int cc) {
|
||||
return (GGML_CUDA_CC_IS_RDNA4(cc) || GGML_CUDA_CC_IS_RDNA3(cc));
|
||||
}
|
||||
|
||||
static bool volta_mma_available(const int cc) {
|
||||
return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) == GGML_CUDA_CC_VOLTA;
|
||||
}
|
||||
@@ -449,6 +463,53 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
|
||||
return x;
|
||||
}
|
||||
|
||||
template<typename T, int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ T warp_prefix_inclusive_sum(T x) {
|
||||
const int lane_id = threadIdx.x % width;
|
||||
#pragma unroll
|
||||
for (int offset = 1; offset < width; offset <<= 1) {
|
||||
const T t = __shfl_up_sync(0xffffffff, x, offset, width);
|
||||
if (lane_id >= offset) {
|
||||
x += t;
|
||||
}
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ float2 warp_prefix_inclusive_sum(float2 a) {
|
||||
const int lane_id = threadIdx.x % width;
|
||||
#pragma unroll
|
||||
for (int offset = 1; offset < width; offset <<= 1) {
|
||||
const float t_x = __shfl_up_sync(0xffffffff, a.x, offset, width);
|
||||
const float t_y = __shfl_up_sync(0xffffffff, a.y, offset, width);
|
||||
if (lane_id >= offset) {
|
||||
a.x += t_x;
|
||||
a.y += t_y;
|
||||
}
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
template<int width = WARP_SIZE>
|
||||
static __device__ __forceinline__ half2 warp_prefix_inclusive_sum(half2 a) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
const int lane_id = threadIdx.x % width;
|
||||
#pragma unroll
|
||||
for (int offset = 1; offset < width; offset <<= 1) {
|
||||
const half2 t = __shfl_up_sync(0xffffffff, a, offset, width);
|
||||
if (lane_id >= offset) {
|
||||
a = __hadd2(a, t);
|
||||
}
|
||||
}
|
||||
return a;
|
||||
|
||||
#else
|
||||
NO_DEVICE_CODE;
|
||||
return a;
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
|
||||
@@ -550,8 +611,12 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v
|
||||
acc += v.y*u.y;
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
|
||||
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
|
||||
#define V_DOT2_F32_F16_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
|
||||
#ifdef V_DOT2_F32_F16_AVAILABLE
|
||||
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
|
||||
#else
|
||||
#ifdef FAST_FP16_AVAILABLE
|
||||
@@ -563,7 +628,7 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v,
|
||||
acc += tmpv.x * tmpu.x;
|
||||
acc += tmpv.y * tmpu.y;
|
||||
#endif // FAST_FP16_AVAILABLE
|
||||
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
|
||||
#endif // V_DOT2_F32_F16_AVAILABLE
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
|
||||
@@ -964,6 +1029,157 @@ struct ggml_cuda_graph {
|
||||
#endif
|
||||
};
|
||||
|
||||
struct ggml_cuda_concurrent_event {
|
||||
std::vector<cudaEvent_t> join_events;
|
||||
cudaEvent_t fork_event = nullptr;
|
||||
|
||||
int n_streams = 0;
|
||||
std::unordered_map<const ggml_tensor *, int> stream_mapping;
|
||||
|
||||
// Original order of nodes in this concurrent region (before interleaving)
|
||||
// Used to restore grouping for fusion within streams
|
||||
std::vector<const ggml_tensor *> original_order;
|
||||
|
||||
const ggml_tensor * join_node;
|
||||
|
||||
ggml_cuda_concurrent_event() = default;
|
||||
|
||||
ggml_cuda_concurrent_event(const ggml_cuda_concurrent_event &) = delete;
|
||||
ggml_cuda_concurrent_event & operator=(const ggml_cuda_concurrent_event &) = delete;
|
||||
|
||||
explicit ggml_cuda_concurrent_event(int n_streams) : n_streams(n_streams) {
|
||||
join_events.resize(n_streams);
|
||||
|
||||
for (size_t i = 0; i < join_events.size(); ++i) {
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&join_events[i], cudaEventDisableTiming));
|
||||
}
|
||||
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&fork_event, cudaEventDisableTiming));
|
||||
}
|
||||
|
||||
ggml_cuda_concurrent_event(ggml_cuda_concurrent_event && other) noexcept
|
||||
: join_events(std::move(other.join_events))
|
||||
, fork_event(other.fork_event)
|
||||
, n_streams(other.n_streams)
|
||||
, stream_mapping(std::move(other.stream_mapping))
|
||||
, original_order(std::move(other.original_order))
|
||||
, join_node(other.join_node) {
|
||||
other.fork_event = nullptr;
|
||||
}
|
||||
|
||||
// 1. check if any branches write to overlapping memory ranges (except the join node)
|
||||
// 2. check whether all srcs are either within the branch or outside the nodes covered by ggml_cuda_concurrent_event
|
||||
// we assume all nodes have the same buffer
|
||||
bool is_valid() const {
|
||||
std::vector<std::vector<std::pair<int64_t, int64_t>>> write_ranges;
|
||||
write_ranges.resize(n_streams);
|
||||
|
||||
// get join_node's memory range to exclude from overlap checking.
|
||||
// multiple nodes can use join_node's buffer; we synchronize on the join node.
|
||||
const ggml_tensor * join_t = join_node->view_src ? join_node->view_src : join_node;
|
||||
const int64_t join_start = (int64_t) join_t->data;
|
||||
const int64_t join_end = join_start + ggml_nbytes(join_t);
|
||||
|
||||
for (const auto & [tensor, stream] : stream_mapping) {
|
||||
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
|
||||
const int64_t t_start = (int64_t) t->data;
|
||||
const int64_t t_end = t_start + ggml_nbytes(t);
|
||||
|
||||
// skip tensors that overlap with join_node's buffer.
|
||||
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// concurrent streams begin from 1
|
||||
write_ranges[stream - 1].emplace_back(t_start, t_end);
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_streams; ++i) {
|
||||
// sorts first by start then by end of write range
|
||||
std::sort(write_ranges[i].begin(), write_ranges[i].end());
|
||||
}
|
||||
|
||||
bool writes_overlap = false;
|
||||
bool dependent_srcs = false;
|
||||
for (const auto & [tensor, stream] : stream_mapping) {
|
||||
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
|
||||
const int64_t t_start = (int64_t) t->data;
|
||||
const int64_t t_end = t_start + ggml_nbytes(t);
|
||||
|
||||
// skip tensors that overlap with join_node's buffer
|
||||
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// check if this buffer's write data overlaps with another stream's
|
||||
std::pair<int64_t, int64_t> data_range = std::make_pair(t_start, t_end);
|
||||
for (int i = 0; i < n_streams; ++i) {
|
||||
if (i == stream - 1) {
|
||||
continue;
|
||||
}
|
||||
auto it = std::lower_bound(write_ranges[i].begin(), write_ranges[i].end(), data_range);
|
||||
|
||||
if (it != write_ranges[i].end()) {
|
||||
const std::pair<int64_t, int64_t> & other = *it;
|
||||
|
||||
// std::lower_bound returns the first element where other >= data_range (lexicographically).
|
||||
// This guarantees other.first >= data_range.first.
|
||||
// Therefore, overlap occurs iff other.first < data_range.second
|
||||
// (i.e., the other range starts before this range ends).
|
||||
if (other.first < data_range.second) {
|
||||
GGML_LOG_DEBUG("Writes overlap for %s", tensor->name);
|
||||
writes_overlap = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//check if all srcs are either in branch or don't have a branch
|
||||
for (int i = 0; i < GGML_MAX_SRC; ++i) {
|
||||
if (!tensor->src[i]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
auto it = stream_mapping.find(tensor->src[i]);
|
||||
|
||||
if (it == stream_mapping.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (it->second != stream) {
|
||||
dependent_srcs = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (dependent_srcs || writes_overlap) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return !writes_overlap && !dependent_srcs;
|
||||
}
|
||||
|
||||
~ggml_cuda_concurrent_event() {
|
||||
if (fork_event != nullptr) {
|
||||
CUDA_CHECK(cudaEventDestroy(fork_event));
|
||||
}
|
||||
for (cudaEvent_t e : join_events) {
|
||||
if (e != nullptr) {
|
||||
CUDA_CHECK(cudaEventDestroy(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_cuda_stream_context {
|
||||
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> concurrent_events;
|
||||
|
||||
void reset() {
|
||||
concurrent_events.clear();
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_backend_cuda_context {
|
||||
int device;
|
||||
std::string name;
|
||||
@@ -974,11 +1190,15 @@ struct ggml_backend_cuda_context {
|
||||
|
||||
std::unique_ptr<ggml_cuda_graph> cuda_graph;
|
||||
|
||||
int curr_stream_no = 0;
|
||||
|
||||
explicit ggml_backend_cuda_context(int device) :
|
||||
device(device),
|
||||
name(GGML_CUDA_NAME + std::to_string(device)) {
|
||||
}
|
||||
|
||||
ggml_cuda_stream_context concurrent_stream_context;
|
||||
|
||||
~ggml_backend_cuda_context();
|
||||
|
||||
cudaStream_t stream(int device, int stream) {
|
||||
@@ -989,9 +1209,9 @@ struct ggml_backend_cuda_context {
|
||||
return streams[device][stream];
|
||||
}
|
||||
|
||||
cudaStream_t stream() {
|
||||
return stream(device, 0);
|
||||
}
|
||||
cudaStream_t stream() { return stream(device, curr_stream_no); }
|
||||
|
||||
ggml_cuda_stream_context & stream_context() { return concurrent_stream_context; }
|
||||
|
||||
cublasHandle_t cublas_handle(int device) {
|
||||
if (cublas_handles[device] == nullptr) {
|
||||
@@ -1007,15 +1227,15 @@ struct ggml_backend_cuda_context {
|
||||
}
|
||||
|
||||
// pool
|
||||
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
|
||||
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
|
||||
|
||||
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
|
||||
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, int stream_no);
|
||||
|
||||
ggml_cuda_pool & pool(int device) {
|
||||
if (pools[device] == nullptr) {
|
||||
pools[device] = new_pool_for_device(device);
|
||||
if (pools[device][curr_stream_no] == nullptr) {
|
||||
pools[device][curr_stream_no] = new_pool_for_device(device, curr_stream_no);
|
||||
}
|
||||
return *pools[device];
|
||||
return *pools[device][curr_stream_no];
|
||||
}
|
||||
|
||||
ggml_cuda_pool & pool() {
|
||||
|
||||
@@ -39,6 +39,15 @@ template<typename dst_t, typename src_t>
|
||||
return __float2bfloat16(float(x));
|
||||
} else if constexpr(std::is_same_v<src_t, nv_bfloat16>) {
|
||||
return __bfloat162float(x);
|
||||
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, half2>) {
|
||||
return __float22half2_rn(x);
|
||||
} else if constexpr(std::is_same_v<src_t, float2> && std::is_same_v<dst_t, nv_bfloat162>) {
|
||||
// bypass compile error on cuda 12.0.1
|
||||
#ifdef GGML_USE_HIP
|
||||
return __float22bfloat162_rn(x);
|
||||
#else
|
||||
return {x.x, x.y};
|
||||
#endif // GGML_USE_HIP
|
||||
} else if constexpr(std::is_same_v<dst_t, int32_t>) {
|
||||
return int32_t(x);
|
||||
} else {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user