Compare commits

...

342 Commits
b7148 ... b7490

Author SHA1 Message Date
Jeff Bolz
5182dd64cd test-backend-ops: improve msvc build time (#18209) 2025-12-20 13:45:45 -06:00
Aadeshveer Singh
10b4f82d44 Added comments explaining thread block size selection logic based on row count and column size, derived from historical commit context (#18212) 2025-12-20 19:28:57 +08:00
Oleksandr Kuvshynov
408616adbd server : [easy] fix per round speculative decode logging (#18211)
Currently we always log 0, as we clear slot.drafted before.

To reproduce:
Run llama-server with devstral-2 as main model and devstral-2-small as
md, and verbose logging:

```
% ./build/bin/llama-server -v  \
  -m ~/llms/Devstral-2-123B-Instruct-2512-UD-Q6_K_XL-00001-of-00003.gguf \
  -md ~/llms/Devstral-Small-2-24B-Instruct-2512-UD-Q2_K_XL.gguf \
  -c 8192 2> /tmp/llama.cpp.debug

Check the log:

slot update_slots: id  3 | task 0 | accepted 11/0 draft tokens, new
n_tokens = 741
slot update_slots: id  3 | task 0 | accepted 4/0 draft tokens, new
n_tokens = 746
slot update_slots: id  3 | task 0 | accepted 16/0 draft tokens, new
n_tokens = 763
slot update_slots: id  3 | task 0 | accepted 11/0 draft tokens, new
n_tokens = 775
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 778
slot update_slots: id  3 | task 0 | accepted 4/0 draft tokens, new
n_tokens = 783
slot update_slots: id  3 | task 0 | accepted 8/0 draft tokens, new
n_tokens = 792
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 795
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 797
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 799
slot update_slots: id  3 | task 0 | accepted 0/0 draft tokens, new
n_tokens = 800
slot update_slots: id  3 | task 0 | accepted 2/0 draft tokens, new
n_tokens = 803
slot update_slots: id  3 | task 0 | accepted 1/0 draft tokens, new
n_tokens = 805
slot update_slots: id  3 | task 0 | accepted 6/0 draft tokens, new
n_tokens = 812
slot update_slots: id  3 | task 0 | accepted 3/0 draft tokens, new
n_tokens = 816
```

After the fix, get correct per round logging:

```
slot update_slots: id  3 | task 0 | accepted 7/8 draft tokens, new
n_tokens = 654
slot update_slots: id  3 | task 0 | accepted 1/2 draft tokens, new
n_tokens = 656
slot update_slots: id  3 | task 0 | accepted 2/16 draft tokens, new
n_tokens = 659
slot update_slots: id  3 | task 0 | accepted 1/16 draft tokens, new
n_tokens = 661
slot update_slots: id  3 | task 0 | accepted 2/16 draft tokens, new
n_tokens = 664
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 681
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 698
slot update_slots: id  3 | task 0 | accepted 3/4 draft tokens, new
n_tokens = 702
slot update_slots: id  3 | task 0 | accepted 5/12 draft tokens, new
n_tokens = 708
slot update_slots: id  3 | task 0 | accepted 16/16 draft tokens, new
n_tokens = 725
slot update_slots: id  3 | task 0 | accepted 1/1 draft tokens, new
n_tokens = 727
slot update_slots: id  3 | task 0 | accepted 8/16 draft tokens, new
n_tokens = 736
```
2025-12-20 10:57:40 +01:00
Xuan-Son Nguyen
9e39a1e6a9 server: support load model on startup, support preset-only options (#18206)
* server: support autoload model, support preset-only options

* add docs

* load-on-startup

* fix

* Update common/arg.cpp

Co-authored-by: Pascal <admin@serveurperso.com>

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-12-20 09:25:27 +01:00
Sigbjørn Skjæret
74e05131e9 ci : remove non-windows zip artifacts (#18201)
* remove non-windows zip artifacts

* add cuda dll links
2025-12-19 22:29:46 +01:00
Sigbjørn Skjæret
f74747d886 ci : only save ccache on master (#18207) 2025-12-19 22:29:37 +01:00
Alfred
ce734a8a2f ggml-hexagon: Implement true Q8_0 quantization on Hexagon NPU for more accurate mixed-precision matmul operations (#17977)
* feat: implement real Q8_0

* feat: adding cmake option for configuring FP32 quantize group size

* typo: set() shall be used

---------

Co-authored-by: ngdxzy <zhenyu_xu@uri.edu>
2025-12-19 09:42:28 -08:00
Pascal
14931a826e arg: fix order to use short form before long form (#18196)
* arg: fix order to use short form before long form

* arg: update doc

* arg: update test-arg-parser

* arg: address review feedback from ngxson

simplified to check first.length() <= last.length() only
fixed: --sampler-seq, --rerank, --draft ordering
note: middle positions in 3+ arg sets are not verified

* arg: update doc
2025-12-19 18:01:56 +01:00
Julius Tischbein
f99ef53d2a llama : Changing off_t to size_t for Windows (#18204) 2025-12-19 16:42:46 +02:00
Aman Gupta
cc0a04343e server: friendlier error msg when ctx < input (#18174)
* llama-server: friendlier error msg when ctx < input

This PR adds formatted strings to the server's send_error function

* llama-server: use string_format inline

* fix test
2025-12-19 12:10:00 +01:00
Xuan-Son Nguyen
98c1c7a7bf presets: refactor, allow cascade presets from different sources, add global section (#18169)
* presets: refactor, allow cascade presets from different sources

* update docs

* fix neg arg handling

* fix empty mmproj

* also filter out server-controlled args before to_ini()

* skip loading custom_models if not specified

* fix unset_reserved_args

* fix crash on windows
2025-12-19 12:08:20 +01:00
Aleksander Grygier
acb73d8340 webui: Add editing attachments in user messages (#18147)
* feat: Enable editing attachments in user messages

* feat: Improvements for data handling & UI

* docs: Update Architecture diagrams

* chore: update webui build output

* refactor: Exports

* chore: update webui build output

* feat: Add handling paste for Chat Message Edit Form

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output
2025-12-19 11:14:07 +01:00
Daniel Bevenius
0a271d82b4 model-conversion : add verbose flag in run-org-model.py (#18194)
This commit adds a --verbose flag to the run-org-model.py script to
enable or disable detailed debug output, such as input and output
tensors for each layer. Debug utilities (summarize, debug_hook,
setup_rope_debug) have been moved to utils/common.py.

The motivation for this is that the detailed debug output can be useful
for diagnosing issues with model conversion or execution, but it can
also produce a large amount of output that may not always be needed.

The script will also be further cleaned/refactored in follow-up commits.
2025-12-19 08:43:16 +01:00
Naco Siren
52fc7fee8a android: fix missing screenshots for Android.md (#18156)
* Android basic sample app layout polish

* Add missing screenshots and polish android README doc

* Replace file blobs with URLs served by GitHub pages service.
2025-12-19 09:32:04 +02:00
Jeff Bolz
cdbada8d10 vulkan: Add perf logger mode with concurrency (#17944)
This implements a variation of the perf logger where rather than timing each
operation individually with effectively a barrier in between, we put the
timing boundaries where we already synchronize and time the groups of work
that normally overlap. This can be useful to help understand whether
individual operations need to be optimized, or if the group is already running
efficiently.

GGML_VK_PERF_LOGGER_CONCURRENT=1 enables the new mode (when
GGML_VK_PERF_LOGGER is also set).

GGML_VK_SYNC_LOGGER=1 replaces the ENABLE_SYNC_LOGGING compile time switch.
2025-12-19 06:36:46 +01:00
Xuan-Son Nguyen
8ea958d4d9 model : add ASR support for LFM2-Audio-1.5B (conformer) (#18106)
* ASR with LFM2-Audio-1.5B

* Set rope_theta

* Fix comment

* Remove rope_theta setting

* Address PR feedback

* rename functions to conformer

* remove some redundant ggml_cont

* fix missing tensor

* add prefix "a." for conv tensors

* remove redundant reshape

* clean up

* add test model

---------

Co-authored-by: Tarek Dakhran <tarek@liquid.ai>
2025-12-19 00:18:01 +01:00
Pascal
f9ec8858ed webui: display prompt processing stats (#18146)
* webui: display prompt processing stats

* feat: Improve UI of Chat Message Statistics

* chore: update webui build output

* refactor: Post-review improvements

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-18 17:55:03 +01:00
Taimur Ahmad
f716588e63 ggml-cpu: extend support for RVV floating-point kernels (#17318)
* cmake: add BF16 RVV flag for ggml-cpu

* ggml-cpu: add floating-point conversion kernels

* ggml: add floating-point kernels

Co-authored-by: Rehan Qasim <rehan.qasim@10xengineers.ai>

* ggml-cpu: fix lmul in vec_dot_bf16

* ggml-cpu: change redsum to lmul 4, fix leftover

---------

Co-authored-by: Rehan Qasim <rehan.qasim@10xengineers.ai>
2025-12-18 16:02:09 +02:00
Xuan-Son Nguyen
4d1316c440 arg: fix ASAN error on sampler_type_names empty (#18167) 2025-12-18 14:30:32 +01:00
Sigbjørn Skjæret
ec7b9329ae gguf-py : use copy-on-write mode for localtensor (#18162) 2025-12-18 13:45:38 +01:00
yulo
54189c0d39 remove i_major_dual (#18157)
Co-authored-by: zhang hui <you@example.com>
2025-12-18 12:50:56 +01:00
Aleksander Grygier
9ce64aed7d webui: Fix selecting generated output issues during active streaming (#18091)
* draft: incremental markdown rendering with stable blocks

* refactor: Logic improvements

* refactor: DRY Markdown post-processing logic

* refactor: ID generation improvements

* fix: Remove runes

* refactor: Clean up & add JSDocs

* chore: update webui static output

* fix: Add tick to prevent race conditions for rendering Markdown blocks

Suggestion from @ServeurpersoCom

Co-authored-by: Pascal <admin@serveurperso.com>

* chore: Run `npm audit fix`

* chore: update webui static output

* feat: Improve performance using global counter & id instead of UUID

* refactor: Enhance Markdown rendering with link and code features

* chore: update webui static output

* fix: Code block content extraction

* chore: update webui static output

* chore: update webui static output

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-12-18 11:13:52 +01:00
Kim S.
900316da4e webui: fix chat screen shadow width (#18010)
* webui: fix chat screen shadow width

* chore: add index.html.gz
2025-12-18 11:08:42 +01:00
Johannes Gäßler
57c1e05643 llama: offload output layer to GPU first (#18148) 2025-12-18 08:12:18 +01:00
Sigbjørn Skjæret
9cff4cc554 convert : sort and use file parts from model index if present (#18043)
* keep file part order from model index

* treat index as authoritative

* sort index parts
2025-12-18 07:54:54 +01:00
Julius Tischbein
4d4f4cacd1 llama : Async DirectIO model loading on Linux (#18012)
* Uncached model read

* Removing additional --mmap arg

* Removing trailing whitespaces

* Adding fallback when O_DIRECT is not supported

* Remove branching in llama-model-loader.cpp and reduce code duplications in llama-mmap.cpp

* Adding maybe unused keyword for Mac and Windows.

* File seek aligned

* Removing all branches for direct_io in llama-model-loader.cpp

* Always use alignment from llama_file

* use_mmap=true
2025-12-18 08:27:19 +02:00
Shouyu
0a0bba05e8 ggml-hexagon: swiglu_oai operation (#18114)
* snapshot: debug ggml-hexagon swiglu-oai

* fix: fix hvx_min_scalar_f32

* feat: working swiglu-oai

* chore: fix formating isue
2025-12-17 13:38:21 -08:00
Sigbjørn Skjæret
5166aaf868 convert : force patch_merger tensors to f16/f32 (#18124) 2025-12-17 22:15:53 +01:00
Pascal
6ce3d85796 server: (webui) add --webui-config (#18028)
* server/webui: add server-side WebUI config support

Add CLI arguments --webui-config (inline JSON) and --webui-config-file
(file path) to configure WebUI default settings from server side.

Backend changes:
- Parse JSON once in server_context::load_model() for performance
- Cache parsed config in webui_settings member (zero overhead on /props)
- Add proper error handling in router mode with try/catch
- Expose webui_settings in /props endpoint for both router and child modes

Frontend changes:
- Add 14 configurable WebUI settings via parameter sync
- Add tests for webui settings extraction
- Fix subpath support with base path in API calls

Addresses feedback from @ngxson and @ggerganov

* server: address review feedback from ngxson

* server: regenerate README with llama-gen-docs
2025-12-17 21:45:45 +01:00
Xuan-Son Nguyen
e85e9d7637 server: (router) disable SSL on child process (#18141) 2025-12-17 21:39:08 +01:00
Johannes Gäßler
8dcc3662a2 llama-fit-params: fix memory print (#18136) 2025-12-17 21:10:03 +01:00
Kim S.
d37fc93505 webui: fix chat header width when sidebar is closed (#17981)
* webui: fix chat header width when sidebar is closed

* chore: add index.html.gz
2025-12-17 20:05:45 +01:00
Shouyu
4470a0764a ggml-hexagon: gelu operation (#17921)
* feat: inital support for gelu using sigmoid approximation

* snapshot: faster gelu using polynomial approximation

* test: disable l2-block prefetch in polynomail approximation

* Revert "test: disable l2-block prefetch in polynomail approximation"

This reverts commit 72339994d4.

* Revert "snapshot: faster gelu using polynomial approximation"

This reverts commit 2a787a61d1.

* debug: temporarily disable unnecessary log message for debug purpose

* Feat: optiized unaligned sigmoid_f32

* Feat: larger l2prefetch block

* feat: apply unaligned-load optimization on mul and mul_scalar

* Revert "debug: temporarily disable unnecessary log message for debug purpose"

This reverts commit 84f2f23aa9.

* refactor: cleanup commented unused code

* chore: reformat code with clang-formatter to pass cli test

* Revert "chore: reformat code with clang-formatter to pass cli test"

This reverts commit 952877ec24.

* fix: fix loop overflow

* chore: fix formating ci error
2025-12-17 10:39:32 -08:00
Georgi Gerganov
4301e27319 common : restore grammar-based rejection sampling (#18137)
* common : restart grammar-based rejection sampling

* sampling : allow null samplers
2025-12-17 19:46:00 +02:00
Johannes Gäßler
a2c199e479 common: clarify instructions for bug reports (#18134) 2025-12-17 18:44:13 +01:00
HonestQiao
15dd67d869 model: fix GLM-ASR-Nano-2512 load error (#18130) (#18142) 2025-12-17 16:34:35 +01:00
Xuan-Son Nguyen
bde461de8c server: (router) allow child process to report status via stdout (#18110)
* server: (router) allow child process to report status via stdout

* apply suggestions
2025-12-17 14:54:11 +01:00
Piotr Wilkin (ilintar)
8faa87db02 Extend run-org-model.py, add (a) batching (b) loading prompt from file (c) multimodal capacity (#18034) 2025-12-17 14:21:51 +01:00
Johannes Gäßler
6f1f6a961a Github: ask for -v logs for params_fit [no ci] (#18128) 2025-12-17 13:46:48 +01:00
Alberto Cabrera Pérez
669696e00d ggml-cpu: ARM64: repack version of q8_0 (dotprod and i8mm) (#18096)
* wip: skeleton for q8_0 repack

* q8_0 repack GEMV implementations

* GEMM implementations

* Formatting

* Fixed format consistency of repack gemm and gemv declarations

* gemv and gemm generic location consistent with declarations

* Removed non-correct unused variables statements

* Cleanup, consistent style

* Missing generic fallbacks for x86 and powerpc
2025-12-17 13:39:13 +02:00
Tarek Dakhran
982060fadc model: fix LFM2_MOE missing tensors (#18132) 2025-12-17 12:17:11 +01:00
Sigbjørn Skjæret
6853bee680 ci : clean up webui jobs (#18116)
* clean up webui jobs

* refined step control

* forgot dependencies

* apparently always() is needed
2025-12-17 10:45:40 +01:00
Pascal
487674fbb3 common: fix --override-kv to support comma-separated values (#18056)
* common: fix --override-kv to support comma-separated values

* Update common/arg.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* common: deprecate repeated arguments, suggest comma-separated values

* common: add comma escape support for --override-kv

* common: optimize duplicate detection with insert().second

Co-authored-by: personalmountains <46615898+personalmountains@users.noreply.github.com>

* common: migrate all repeated args to comma-separated syntax

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: personalmountains <46615898+personalmountains@users.noreply.github.com>
2025-12-17 11:36:23 +02:00
yulo
acec774ef6 HIP: Refactor mma for RDNA and CDNA (#17990)
* mma.cuh for rdna4

* mma for rdna3

* mmq for rdna4

* mmq for rdna3

* align i-major and j-major

* cdna

* fix cuda error

* add missing tile of mfma

* fix j-major wrong ne on CDNA

* fix gramma and empty spaces

---------

Co-authored-by: zhang hui <you@example.com>
2025-12-17 09:34:54 +01:00
Naco Siren
5c0d18881e llama.android : Rewrite Android binding (w/o cpu_features dep) (#17413)
* UI: implement basic UI components

* util: implement performance monitor; wrap it with a viewmodel

* util: implement user preferences utility

* UI: implement core flow's screens

* UI: add a new MainActivity; update manifest

* [WIP] DI: implement simple local vm factory provider

* UI: disable triggering drawer via gesture; enable alert dialog on back navigation inside conversation and benchmark

* UI: allow drawer's gesture control only on Home and Settings screens; enable alert dialog on back navigation inside conversation and benchmark

* UI: split a nested parent settings screen into separate child settings screens

* UI: polish system prompt setup UI

* Deps: bump Kotlin plugin; introduce KSP; apply in :app subproject

* DB: setup Room database

* data: introduce repo for System Prompt; flow data from Room to VM

* bugfix: properly handle user's quitting conversation screen while tokens in generation

* UI: rename `ModeSelection` to `ModelLoading` for better clarity

* UI: update app name to be more Arm

* UI: polish conversation screen

* data: code polish

* UI: code polish

* bugfix: handle user quitting on model loading

* UI: locks user in alert dialog when model is unloading

* vm: replace token metrics stubs with actual implementation

* UI: refactor top app bars

* nit: combine temperatureMetrics and useFahrenheit

* DI: introduce Hilt plugin + processor + lib dependencies

* DI: make app Hilt injectable

* DI: make viewmodels Hilt injectable

* DI: replace manual DI with Hilt DI

* UI: optimize AppContent's composing

* bugfix: wait for model to load before navigating to benchmark screen; use NavigationActions instead of raw navController

* UI: navigation with more natural animated transitions

* DI: Optimize AppModule

* Feature: Introduce ModelRepository and ModelsManagementViewModel; update AppModule

* UI: polish UI for ModelsManagementScreen; inject ModelsManagementVieModel

* DI: abstract the protocol of SystemPromptRepository; update AppModule

* data: [WIP] prepare for ModelRepository refactor & impl

* data: introduce Model entity and DAO; update DI module

* UI: replace Models Management screen's stubbing with instrumentation

* UI: polish sort order menu

* data: import local model with file picker

* bugfix: use List instead of Collection for ModelDao's deletion

* data: add a util file for extracting file name & size and model metadata

* UI: enrich ModelManagementState; extract filename to show correct importing UI

* UI: implement multiple models deletion; update Models Management screen

* UI: handle back navigation when user is in multi-selection mode

* util: extract file size formatting into ModelUtils

* UI: add a confirmation step when user picks a file; refactor model import overlay into AlertDialog

* UI: extract a shared ModelCard component

* UI: replace model selection screen's data stubbing; add empty view

* nit: tidy SystemPromptViewModel

* Util: split FileUtils from ModelUtils; extract copy methods into FileUtils

* data: pass through getModelById from ModelDao into ModelRepository

* core: extract conversation and benchmark logics into InferenceManager; add logs and missing state updates in stub InferenceEngine

* vm: split mono MainViewModel into separate individual ViewModels

* vm: merge SystemPromptViewModel into ModelLoadingViewModel

* core: break down InferenceManager due to Interface Segregation Principle

* UI: show model card in Model Loading screen

* UI: show model card in Conversation screen

* UI: unify Model Card components

* core: swap in LLamaAndroid and mark stub engine for testing only

* data: allow canceling the ongoing model import

* UI: update UI ongoing model import's cancellation

* LLama: update engine state after handling the cancellation of sendUserPrompt

* VM: handle the cancellation of ongoing token generation

* LLama: refactor loadModel by splitting the system prompt setting into a separate method

* feature: check for available space before copying local model

* UI: centralize the AppScaffold and modularize its configs

* UI: refactor BottomBarConfig.ModelsManagement APIs

* UI: combine TopBarConfig and BottomBarConfig into each route's ScaffoldConfig

* UI: replace ugly optional as casts in AppScaffold with extension functions

* UI: fix the typo `totalGb` in `StorageMetrics`

* UI: remove code duplication in sort menu

* LLama: add ModelUnloadingState to engine State; add missing state checks in stub engine; fix instrumentation engine's error messages

* UI: refactor back handling by removing centralized BackHandlerSetup and UnloadModelConfirmationDialog from AppContent

* UI: implement BenchmarkScreen's individual back handling

* LLama: add a new Initializing state; ; add two extension properties; rename LibraryLoaded state to Initialized

* UI: Introduce an abstract ViewModel to handle additional model unloading logics

* UI: expose a single facade ModelUnloadDialogHandler; move UnloadModelState into ModelUnloadingViewModel.kt

* UI: migrate ModelLoadingScreen onto ModelLoadingViewModel; update & refine ModelLoadingScreen

* UI: migrate ConversationViewModel onto ModelLoadingViewModel; update & refine ConversationScreen

* nit: extract app name into a constant value; remove unused onBackPressed callbacks

* UI: update AppContent to pass in correct navigation callbacks

* nit: polish ModelLoadingScreen UI

* core: throw Exception instead of returning null if model fails to load

* navigation: sink model loading state management from AppContent down into ModelLoadingScreen; pass ModelLoadingMetrics to Benchmark and Conversation screens

* gguf: add GGUF metadata data holder and its corresponding extractor implementation

* DB: introduce Kotlin serialization extension's library and plugin; add Room runtime library

* GGUF: make GgufMetadata serializable in order to be compatible with Room

* nit: refactor data.local package structure

* nit: rename lastUsed field to dateLastUsed; add dateAdded field

* UI: refactor ModelCard UI to show GGUF metadata

* UI: update ModelSelectionScreen with a preselect mechanism

* UI: polish model card

* nit: allow deselect model on Model Selection screen

* nit: revert accidental committing of debug code

* UI: polish ModelLoading screen

* util: extract formatting helper functions from FileUtils into a new FormatUtils

* UI: polish model cards on Benchmark and Conversation screens to show model loading metrics

* UI: show a Snack bar to warn user that system prompt is not always supported

* UI: handle back press on Model Selection screen

* UI: finally support theme modes; remove hardcoded color schemes, default to dynamic color scheme implementation

* feature: support searching on Model Selection screen

* nit: move scaffold related UI components into a separate package

* UI: extract InfoView out into a separate file for reusability

* data: move Model related actions (query, filter, sort) into ModelInfo file

* UI: animate FAB on model preselection states

* feature: support filtering in Model Management screen

* ui: show empty models info in Model Management screen

* ui: add filter off icon to "Clear filters" menu item

* [WIP] ui: polish Benchmark screen; implement its bottom app bar

* ui: polish Benchmark screen; implement its bottom app bar's rerun and share

* nit: disable mode selection's radio buttons when loading model

* feature: implement Conversation screen's bottom app bar

* pkg: restructure BottomAppBars into separate files in a child package

* pkg: restructure TopBarApps into separate files in a child package

* pkg: restructure system metrics into a separate file

* UI: polish Conversation screen

* data: update system prompt presets

* UI: allow hide or show model card on Conversation & Benchmark screens; fix message arrangement

* data: update & enhance system prompt presets

* deps: introduce Retrofit2

* data: implement HuggingFace data model, data source with Retrofit API

* data: update Model data repository to support fetching HuggingFace models

* [WIP] UI: replace the HuggingFace stub in Model Management screen with actual API call

* UI: map language codes into country Emojis

* ui: add "clear results" action to Benchmark screen

* nit: print current pp & tg in llama-bench

* UI: disable landscape mode; prevent duplicated benchmark running

* llama: migrate C/CXX flags into CMakeList

* [WIP] llama: ABI split builds five .so artifacts.

However, all .so are performing on SVE level

* [WIP] llama: ABI split where five tiers are built sequentially.

* [WIP] llama: disable OpenMP in ABI split since most SoCs are big.LITTLE

* [WIP] llama: enable KleidiAI and disable tier 4 due to `+sve+sve2` bug caused by `ggml_add_cpu_backend_variant_impl` as explained below

```CMake
if (NOT SME_ENABLED MATCHES -1)
...
    set(PRIVATE_ARCH_FLAGS "-fno-tree-vectorize;${PRIVATE_ARCH_FLAGS}+sve+sve2")
...
```

* core: add Google's cpu_features as a submodule

* core: implement cpu_detector native lib

* core: swap out hardcoded LlamaAndroid library loading

* core: add back OpenMP due to huge perf loss on TG128

* misc: reorg the pkg structure

* misc: rename LlamaAndroid related class to InferenceEngine prefixes

* [WIP] lib: move GgufMetadata into the lib submodule

* lib: expose GgufMetadataReader as interface only

* lib: replace the naive & plain SharedPreferences with DataStore implementation

* lib: hide the internal implementations, only expose a facade and interfaces

* lib: expose Arm features

* di: add a stub TierDetection; provide both actual impl and stub in AppModule

* UI: add visualizer UI for Arm features

* misc: UI polish

* lib: refactored InferenceEngineLoader; added a `NONE` Llama Tier

* UI: support `NONE` Llama Tier in general settings

* lib: optimize engine loader; always perform a fresh detection when cache is null

* remote: add HuggingFaceModelDetails data class

* remote: refine HuggingFaceModel data class

* nit: remove `trendingScore` field from HuggingFace model entities, weird...

* remote: refactor HuggingFaceApiService; implement download feature in HuggingFaceRemoteDataSource

* remote: fix the incorrect parse of HuggingFace's inconsistent & weird JSON response

* UI: scaffold Models Management screen and view model

* UI: implement a dialog UI to show fetched HuggingFace models.

* UI: use a broadcast receiver to listen for download complete events and show local import dialog.

* data: handle network exceptions elegantly

* pkg: restructure `data`'s packages

* data: extract local file info, copy and cleanup logics into LocalFileDataSource

* nit: minor UI patch; add missing comments

* bugfix: tapping "Home" in navigation drawer should simply close it without any navigation action.

* UI: improve autoscroll during token generation

* lib: tested on JFrog Artifactory for Maven publishing

* UI: show RAM warning if model too large

* UI: polish model management screen's error dialog

* util: add more items into the mapping table of ISO 639-1 language code to ISO 3166-1 country code

* llm: properly propagate error to UI upon failing to load selected model

* UI: avoid duplicated calculation of token metrics

* lib: read & validate the magic number from the picked source file before executing the import

* UI: add "Learn More" hyperlinks to Error dialog upon model import failures

* lib: refactor the GgufMetadataReader to take  InputStream instead of absolute path as argument

* lib: fix the `SIMD` typo in Tier description

* core: verify model file path is readable

* lib: add UnsupportedArchitectureException for triaged error message

* util: split FormatUtils into multiple utils for better readability

* UI: change benchmark screen from raw markdown to table view

* bugfix: reset preselection upon running the preselected model

* misc: linter issue

* bugfix: fix the malfunctioning monitoring switch

* UI: update Arm features indicator; fix the broken hyperlinks

* UI: add quick action buttons to benchmark screen's result card

* UI: hide share fab after clearing all benchmark results

* UI: fix the model unload dialog message; elevate the model card and hide it by default on Conversation screen;

* UI: hide the stubbing actions in Conversation screen

* UI: add show/hide stats control to conversation screen's assistant message bubble; fix placeholder

* UI: add a info button to explain token metrics

* misc: remove the redundant `Companion` added due to refactoring

* UI: show corresponding system metrics detailed info upon tapping RAM / storage / temperature indicator

* UI: add info button to System Prompt switch; expand the model card by default

* UI: disable tag & language chips; add section headers to explain what they are

* misc: replace top bar indicator's spacer with padding

* UI: merge the Model Selection and Model Management into a unified Models screen

* UI: split the ModelsManagementViewModel from a unified ModelsViewModel due to huge complexity

* UI: add model loading in progress view; polish the empty model info view

* UI: polish the bottom bars and info view when no models found; show loading in progress while fetching models

* build: [BREAKING] bump the versions of libraries and plugins

* UI: fix the breaking build

* UI: add Tooltip on Import FAB for user onboarding

* UI: adds AppPreferences to track user onboarding status

* UI: tracks user's first success on importing a model

* data: add hand crafted rules to filter the models fetched from HuggingFace API

* UI: update app name & about; polish top bars' indicators & buttons

* UI: polish Hugging Face download dialog UI

* UX: implement onboarding tooltips for model import and onboarding

* misc: use sentence case for CTA button labels

* [WIP] UI: add Arm color palette from Philip.Watson3

* UI: address Rojin's UX feedbacks

* UI: address Rojin's UX feedbacks - part 2

* UI: update Arm color palette from Philip.Watson3

* data: make sure fetch preselected models in the same order of their IDs

* UI: fix UI issues in the generic settings screen and navigation drawer

* nit: address Rojin's feedbacks on model import message again

* nit: append `®` to all `Arm` labels

* UI: extract a reusable InfoAlertDialog

* core: support GGML_CPU_ALL_VARIANTS on Android!

* core: restructure Kleidi-Llama library

* core: organizing cmake arguments

* data: sort preselected models according to device's available RAM

* app: update adaptive + themed + legacy icons and app name

* UI: fix the font size auto scaling for ArmFeaturesVisualizer

* core: further improve the performance on native methods

* UI: minor color palette changes; emphasize the bottom bar FABs; fix Settings Screen menu item label

* UI: make more room for assistant message bubble's width

* UI: better usage of tertiary colors to highlight model cards but not for warnings

* UI: fix the layout issue on large font sizes

* lib: support x86-64 by dynamically set Arm related definitions

* lib: replace the factory pattern for  deprecated tiered lib loading with single instance pattern

* llama: update the library name in JNI and CMake project

* llama: update the library's package name and namespace

* llama: update the app's package name and namespace

* app: bump ksp version

* app: remove deprecated SystemUIController from accompanist by migrating to EdgeToEdge

* app: extract AppContent from MainActivity to a separate file in ui package

* lib: add File version for GGUF Magic number verification

* lib: perform engine state check inclusively instead of exclusively

* lib: change `LlamaTier` to `ArmCpuTier`

* lib: remove kleidi-llama related namings

* cleanup: remove Arm AI Chat/Playground app source code; replace with the basic sample app from https://github.com/hanyin-arm/Arm-AI-Chat-Sample

Note: the full Google Play version of AI Chat app will be open will be open sourced in another repo soon, therefore didn't go through the trouble of pruning the history using `git filter-repo` here.

* [WIP] doc: update main and Android README docs; add self to code owners

* lib: revert System.load back to System.loadLibrary

* jni: introduce a logging util to filter different logging levels on different build types

* lib: enable app optimization

* doc: replace stub Google Play app URL with the actual link add screenshots; add my GitHub ID to maintainer list

* Remove cpu_features

* Fix linters issues in editorconfig-checker job

https://github.com/ggml-org/llama.cpp/actions/runs/19548770247/job/55974800633?pr=17413

* Remove unnecessary Android CMake flag

* purge include/cpu_features directory

---------

Co-authored-by: Han Yin <han.yin@arm.com>
2025-12-17 10:14:47 +02:00
TrevorS
4b2a4778f8 arg: allow -kvu flag for llama-perplexity (#18117)
The -kvu (--kv-unified) flag is required for hellaswag and winogrande
benchmarks which use coupled sequences. Without unified KV cache,
these benchmarks fail with:

  split_equal: sequential split is not supported when there are
  coupled sequences in the input batch (you may need to use the -kvu flag)

This change adds LLAMA_EXAMPLE_PERPLEXITY to the allowed examples for
the -kvu argument, enabling its use with llama-perplexity.
2025-12-17 08:33:02 +02:00
Aadeshveer Singh
58062860af ggml : use WARP_SIZE/2 for argmax reduction offset (#18092) 2025-12-17 11:47:01 +08:00
Yuri Khrustalev
2973a65ecb gguf-py : allow converting multi-tensor models from read-only locations (#18100) 2025-12-17 02:27:03 +01:00
Johannes Gäßler
d0794e89d9 llama-fit-params: force disable mlock (#18103) 2025-12-17 00:50:12 +01:00
Johannes Gäßler
9dcac6cf9f llama-fit-params: lower ctx size for multi GPU (#18101) 2025-12-17 00:49:34 +01:00
Johannes Gäßler
0e49a7b8b4 llama-fit-params: fix underflow for dense models (#18095) 2025-12-17 00:47:37 +01:00
Johannes Gäßler
4164596c76 llama-fit-params: QoL impr. for prints/errors (#18089) 2025-12-17 00:03:19 +01:00
Xuan-Son Nguyen
ef83fb8601 model: fix LFM2 missing tensors (#18105) 2025-12-16 19:07:43 +01:00
Johannes Gäßler
ec98e20021 llama: fix early stop in params_fit if ctx is set (#18070) 2025-12-16 14:24:00 +01:00
yifant-code
59977eba7b server: fix crash when batch > ubatch with embeddings (#17912)
* server: fix crash when batch > ubatch with embeddings (#12836)

Fixes #12836 where the server crashes with GGML_ASSERT failure when
running with embeddings enabled and n_batch > n_ubatch.

Root cause: Embeddings use non-causal attention which requires all
tokens to be processed within a single ubatch. When n_batch > n_ubatch,
the server attempts to split processing, causing assertion failure.

Solution:
- Add parameter validation in main() after common_params_parse()
- When embeddings enabled and n_batch > n_ubatch:
  * Log warnings explaining the issue
  * Automatically set n_batch = n_ubatch
  * Prevent server crash

This follows the approach suggested by @ggerganov in issue #12836.

Note: This supersedes stalled PR #12940 which attempted a runtime fix
in the old examples/server/server.cpp location. This implementation
validates at startup in tools/server/server.cpp (current location).

Testing:
- Build: Compiles successfully
- Validation triggers: Warns when -b > -ub with --embedding
- Auto-correction works: Adjusts n_batch = n_ubatch
- No false positives: Valid params don't trigger warnings
- Verified on macOS M3 Pro with embedding model

* Update tools/server/server.cpp

---------

Co-authored-by: ytian218 <ytian218@bloomberg.net>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-16 14:27:36 +02:00
Daniel Bevenius
79dbae034a model-conversion : remove -fa option in model card template [no ci] (#18088)
This commit updates the causal model card template and removes the
-fa option as it is no longer required (fa is auto detected).
2025-12-16 13:25:09 +01:00
Xuan-Son Nguyen
7f2b2f3c77 arch: refactor LLM_TENSOR_NAMES (#18051)
* arch: refactor LLM_TENSOR_NAMES

* update docs

* typo

* fix LLM_ARCH_NEMOTRON_H_MOE

* show more meaningful error message on missing tensor

* fix and tested LLM_ARCH_NEMOTRON_H_MOE
2025-12-16 13:22:30 +01:00
Xuan-Son Nguyen
7b1db3d3b7 arg: clarify auto kvu/np being set on server (#17997)
* arg: clarify auto kvu/np being set on server

* improve docs

* use invalid_argument
2025-12-16 12:01:27 +01:00
Piotr Wilkin (ilintar)
a5251ca11d Optimization: Qwen3 next autoregressive pass (#17996)
* It's Qwen3 Next, the lean mean token generation machine!

* Apply patches from thread

* Remove recurrent version, only keep chunked and autoregressive

* Remove unnecessary conts and asserts

* Remove more extra conts and asserts

* Cleanup masking
2025-12-16 11:59:53 +01:00
Andrew Aladjev
fb644247de CLI: fixed adding cli and completion into docker containers, improved docs (#18003)
Co-authored-by: Andrew Aladjev <andrew.aladjev@gmail.com>
2025-12-16 11:52:23 +01:00
2114L3
5f5f9b4637 server: Update README.md incorrect argument (#18073)
n-gpu-layer is incorrect
argument is n-gpu-layers with the 's'
2025-12-16 11:50:43 +01:00
Xuan-Son Nguyen
3d86c6c2b5 model: support GLM4V vision encoder (#18042)
* convert ok

* no deepstack

* less new tensors

* cgraph ok

* add mrope for text model

* faster patch merger

* add GGML_ROPE_TYPE_MRNORM

* add support for metal

* move glm4v do dedicated graph

* convert: add norm_embd

* clip: add debugging fn

* working correctly

* fix style

* use bicubic

* fix mrope metal

* improve cpu

* convert to neox ordering on conversion

* revert backend changes

* force stop if using old weight

* support moe variant

* fix conversion

* fix convert (2)

* Update tools/mtmd/clip-graph.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* process mrope_section on TextModel base class

* resolve conflict merge

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-16 11:25:26 +01:00
Daniel Bevenius
9963b81f63 model-conversion : add note about verifying previous models (#18082)
This commit adds a note to the README in the model-conversion
examples, advising developers to verify that previous versions of models
pass logits verification before adding new models from the same family.
2025-12-16 11:17:40 +01:00
Daniel Bevenius
db81d5ec4b model-conversion : use CONVERTED_EMBEDDING_MODEL for embedding_verify_logits (#18079)
This commit updates the embedding model verification script to use the
CONVERTED_EMBEDDING_MODEL environment variable instead of using the
EMBEDDING_MODEL_PATH (the original embedding model path) as the basis
for the converted model file name.

The motivation for this that currently if the converted embedding model
file name differs from the original embedding model directory/name the
verification script will look for the wrong .bin files that were
generating when running the models.
2025-12-16 11:17:20 +01:00
Aldehir Rojas
c05aa69f32 common : add nemotron 3 parsing (#18077)
* common : expose json-schema functionality to extract type info

* common : fix peg parser negation during needs_more_input

* common : add some defensive measures in constructed peg parser

* common : add nemotron nano 3 support

* common : add nemotron nano 3 tests

* remove debug line
2025-12-16 04:05:23 -06:00
Francisco Herrera
279cef27c2 added note for old Intel hardware pre sycl (#18017)
* added note for old Intel hardware pre sycl

Older hardware used opencl

* typo

* use consistent terms
2025-12-16 17:45:09 +08:00
Georgi Gerganov
5ba95754ee security : add collaborator guidance (#18081) 2025-12-16 11:17:11 +02:00
Chris Peterson
2aa45ef9e3 llama: Include algorithm header needed for C++23 (#18078) 2025-12-16 09:37:55 +02:00
Georgi Gerganov
c560316440 graph : reuse SSM graphs (#16490)
* graph : reuse hybrid graphs

* graph : reuse recurrent graphs

* graph : fix reuse check for recurrent inputs

* memory : move the recurrent state into the memory context

* Revert "memory : move the recurrent state into the memory context"

This reverts commit 00f115fe81.

* cont : fix build
2025-12-16 09:36:21 +02:00
Sigbjørn Skjæret
d6742125c3 ci : separate webui from server (#18072)
* separate webui from server

* add public to path
2025-12-16 08:17:26 +01:00
Aleksander Grygier
3034836d36 webui: Improve copy to clipboard with text attachments (#17969)
* feat: Create copy/paste user message including "pasted text" attachments

* chore: update webui build output

* chore: update webui static output

* fix: UI issues

* chore: update webui static output

* fix: Decode HTML entities using `DOMParser`

* chore: update webui build output

* chore: update webui static output
2025-12-16 07:38:46 +01:00
Aleksander Grygier
a20979d433 webui: Add setting to always show sidebar on Desktop (#17809)
* feat: Add setting to always show Sidebar on Desktop

* chore: update webui build output

* feat: Add auto-show sidebar setting

* fix: Mobile settings dialog UI

* chore: update webui build output

* feat: UI label update

* chore: update webui build output

* chore: update webui build output

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output
2025-12-16 07:31:37 +01:00
Daniel Bevenius
2995341730 llama : add support for NVIDIA Nemotron 3 Nano (#18058)
* llama : add support for NVIDIA Nemotron Nano 3

This commit adds support for the NVIDIA Nemotron Nano 3 model, enabling
the conversion and running of this model.

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-16 07:19:26 +01:00
Darius Lukas
40d9c394f4 Webui: Disable attachment button and model selector button when prompt textbox is disabled. (#17925)
* Pass disabled state to the file attachments button and the model
selector button.

* Update index.html.gz

* Fix model info card in non-router mode.

* Update index.html.gz
2025-12-16 07:15:49 +01:00
Sigbjørn Skjæret
d6a1e18c65 convert : move rope_parameters to TextModel class (#18061)
* make sure to search text_config for rope parameters

* move rope_parameters to TextModel class
2025-12-15 22:03:16 +01:00
Shouyu
c45f89d551 ggml-hexagon: mm for mtmd (#17894)
* feat: add run_mtmd script for hexagon

* fix: fix issue in fp16xfp32 mm

* fix: remove opt_experiment for fp16xfp32 mm

* fix: ggml-hexagon: matmul fp16xfp32 support non-contigious src0

* fix: fix syntax check for run-mtmd.sh for cli
2025-12-15 10:53:56 -08:00
HelloKS
9d52f17ae3 model : add KORMo model (#18032)
* vocab: add KORMo Tokenizer

* model: add KORMoForCausalLM

* vocab: change pretokenizer to qwen2

* lint: fix unintended line removal

* model: make qwen2 bias tensor optional

* model: use qwen2 architecture for KORMo
2025-12-15 18:51:43 +01:00
ssweens
4529c660c8 kv-cache: Fix state restore fragmented cache (#17982)
* kv-cache : fix state restore with fragmented cache (#17527)

Change find_slot to allow non-contiguous allocation during state restore. Fixes 'failed to find available cells in kv cache' error when restoring state to fragmented cache.

* tests : update logic

* cleanup: tightened state_read_meta sig, added is_contiguous case

* fix: state_read_meta arg reorder loose ends

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-15 19:28:35 +02:00
Pascal
0f4f35e7be Fix unreadable user markdown colors and truncate long texts in deletion dialogs (#17555)
* webui: limit conversation name length in dialogs

* webui: fix unreadable colors on links and table cell hover in user markdown

* webui: keep table borders visible in user markdown

* webui: updating unified exports

* Update tools/server/webui/src/lib/components/app/chat/ChatAttachments/ChatAttachmentThumbnailFile.svelte

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>

* chore: update webui build output

* chore: update webui build output

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-15 16:34:53 +01:00
Jeremy Demeule
165caaf5fb metal: use shared buffers on eGPU (#17866)
* metal: use shared buffers on eGPU

With #15906, I noticed on important regression when using metal backend on eGPU.
This commit restore the previous behavior and add an option to force its activation.

* metal: use shared buffers on eGPU

* metal: use shared buffers on eGPU
2025-12-15 16:14:49 +02:00
Xuan-Son Nguyen
96a181a933 mtmd: refactor audio preprocessing (#17978)
* mtmd: refactor audio preprocessing

* refactor

Co-authored-by: Tarek <tdakhran@users.noreply.github.com>

* wip

* wip (2)

* improve constructor

* fix use_natural_log

* fix padding for short input

* clean up

* remove need_chunking

---------

Co-authored-by: Tarek <tdakhran@users.noreply.github.com>
2025-12-15 14:16:52 +01:00
Andrew Aladjev
4a4f7e6550 cli: fixed dead links to tools/main for cli and completion, fixed code owners (#17993)
Co-authored-by: Andrew Aladjev <andrew.aladjev@gmail.com>
2025-12-15 11:47:04 +01:00
Thomas Jarosch
e73d548659 webui: add "delete all conversations" button to import/export tab (#17444)
* webui: add "delete all conversations" button to import/export tab

- Add 'Delete all conversations' functionality with confirmation dialog
- Add Trash icon and destructive styling for clear visual indication
- Redirects to "?new_chat=true#/" by using conversationsStore.deleteAll()

* chore: update webui build output
2025-12-15 11:29:29 +01:00
Johannes Gäßler
b1f3a6e5db llama: automatically set parameters not set by the user in such a way that maximizes GPU utilization (#16653)
* llama: automatically fit args to free memory

llama-fit-params tool

* fix CI

* hints for bug reports, ensure no reallocation

* fix segfault with Vulkan

* add llama-fit-params to CI

* fix CI

* fix CI

* fix CI

* minor adjustments

* fix assignment of 1 dense layer

* fix logger not being reset on model load failure

* remove --n-gpu-layer hint on model load failure

* fix llama-fit-params verbosity

* fix edge case

* fix typo [no ci]
2025-12-15 09:24:59 +01:00
Neo Zhang Jianyu
4aced7a631 [SYCL] Support gpt-oss by OPs add-id, mul_mat for mxfp4, swiglu_oai (#17826)
* support gpt-oss GPU by OP add-id, mul_mat for mxfp4, swiglu_oai, fix warning

* fix fault ut case, update ops.md

* rebase, fix format issue
2025-12-15 10:35:15 +08:00
piDack
745fa0e78b model : add glm-asr support (#17901)
* [model] add glm-asr support

* fix format for ci

* fix convert format for ci

* update glm_asr convert script & use build_ffn for glm_asr clip & use build_stack for padding and review

* check root architecture for convert hf script

* fix conficlt with upstream

* fix convert script for glm asr & format clip-impl

* format

* restore hparams text

* improved conversion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-15 03:18:46 +01:00
Xuan-Son Nguyen
52392291b2 preset: handle negated arg, reverse the meaning if needed (#18041) 2025-12-14 22:08:10 +01:00
Sigbjørn Skjæret
5c8a717128 convert : refactor rope scaling handling (#18013)
* refactor rope scaling handling

* ws--

* missed a couple

* use find_hparam
2025-12-14 16:04:37 +01:00
Haowei Wu
37f5a1093b mtmd: enhance image resizing in llava_uhd (#18014) 2025-12-14 15:57:52 +01:00
Ruben Ortlam
9e6649ecf2 vulkan: fix mul_mat_vec_iq1_s formatting (#18026) 2025-12-14 14:52:46 +01:00
Xuan-Son Nguyen
0759b09c90 graph: add f_attn_temp_offset (#18025) 2025-12-14 13:05:59 +01:00
Georgi Gerganov
254098a279 common : refactor common_sampler + grammar logic changes (#17937)
* common : refactor common_sampler + grammar logic changes

* tests : increase max_tokens to get needed response

* batched : fix uninitialized samplers
2025-12-14 10:11:13 +02:00
Jeff Bolz
3238b1400c vulkan: Fix data race/hang in scalar/cm1 flash attention (#17887) 2025-12-14 09:00:00 +01:00
lovedheart
4722671641 vulkan: improve mul_mat_vec_iq1_s speed (#17874) 2025-12-14 08:47:49 +01:00
Eve
d15d177f43 vulkan: faster q6_k matmul (#17813)
* q6_k faster mul mat

* 8 values

* fix comment

* switch to two at a time

* start ci for .glsl files
2025-12-14 08:29:37 +01:00
Georgi Gerganov
77ad8542bd model-conversion : cast logits to float32 (#18009) 2025-12-14 08:58:13 +02:00
Georgi Gerganov
609a2d0268 models : fix YaRN regression + consolidate logic (#18006)
* models : fix YaRN regression + consolidate logic

* cont : fix the fix

* cont : remove header

* cont : add header
2025-12-14 08:34:56 +02:00
Georgi Gerganov
a63cbafbbc ggml : arm repack fix build 2025-12-14 08:33:51 +02:00
Georgi Gerganov
0e59224990 sync : ggml 2025-12-14 08:33:51 +02:00
Georgi Gerganov
71fdcf0616 ggml : arm repack fix build (whisper/0) 2025-12-14 08:33:51 +02:00
Congcong Cai
615655aafe cmake : set CMAKE_RUNTIME_OUTPUT_DIRECTORY for non standalone build (ggml/1394)
Some backend depends on CMAKE_RUNTIME_OUTPUT_DIRECTORY to create temporary file like metal backened.
Missing CMAKE_RUNTIME_OUTPUT_DIRECTORY will cause some cmake error like permission denied (try to copy file to root).
This PR wants to setup a default path for CMAKE_RUNTIME_OUTPUT_DIRECTORY when it does not exist.
2025-12-14 08:33:51 +02:00
Xuan-Son Nguyen
c00ff929dc scripts: add script to compare logprobs of llama.cpp against other frameworks (#17947)
* scripts: add script to compare logits of llama.cpp against other frameworks

* accept custom prompt file

* fix code style

* clarify endpoint

* fix displaying

* use abs for diff

* fix vllm case

* rm output file

* rename to compare-logprobs

* add "pattern"
2025-12-13 22:33:29 +01:00
Sergey Fedorov
4ed2bae50d server-models.cpp: add missing <filesystem> (#18000)
Fixes: https://github.com/ggml-org/llama.cpp/issues/17999
2025-12-13 22:02:43 +01:00
Jeff Bolz
5266379bca llama_context: synchronize before reallocating output buffer (#17974) 2025-12-13 09:19:51 -06:00
Xuan-Son Nguyen
4d5ae24c0a arg: fix common_params_parse not accepting negated arg (#17991) 2025-12-13 12:53:37 +01:00
Gustavo Rocha Dias
66ba51252e cmake: correct scope - link ws2_32 for MinGW/w64devkit builds in cpp-httplib (#17972)
* fix - w64devkit build

* fix - w64devkit build private scope
2025-12-13 12:46:36 +01:00
Jeff Bolz
36255a2268 vulkan: support get_rows for i32 (#17941) 2025-12-13 10:12:53 +01:00
Jeff Bolz
3229a23fa6 vulkan: support GGML_OP_DIAG (#17893) 2025-12-13 10:07:49 +01:00
Jeff Bolz
303f8615e9 vulkan: Multi-pass softmax for large number of cols (#17892)
When the number of cols is large, split each row across multiple workgroups.
There are three phases that communicate partial results through temp buffers:
(1) compute max partials
(2) take max of partials, compute sum(exp(x-max)) partials
(3) sum partials, compute scaled result
2025-12-13 10:04:29 +01:00
Georgi Gerganov
3c6391e748 speculative-simple : free batch on exit (#17985) 2025-12-13 09:48:34 +02:00
Sigbjørn Skjæret
8e4d678528 common : skip model validation when --completion-bash is requested (#17975) 2025-12-13 08:40:50 +01:00
Jeff Bolz
07a10c1090 vulkan: Allow non-pow2 n_experts in topk_moe (#17872) 2025-12-13 08:40:04 +01:00
Sigbjørn Skjæret
2bc94e7928 add llama-completion to completion-bash executables (#17976) 2025-12-13 08:35:50 +01:00
Daniel Bevenius
fd1085ffb7 model-conversion : use CONVERTED_MODEL value for converted model [no ci] (#17984)
* model-conversion : use CONVERTED_MODEL value for converted model [no ci]

This commit updates the model verification scripts to use the
CONVERTED_MODEL environment variable instead of using the MODEL_PATH
(the original model path) as the basis for the converted model file
name.

The motivation for this that currently if the converted model file name
differs from the original model directory/name the verification scripts
will look for the wrong .bin files that were generating when running the
models.
For example, the following steps were not possible:
```console
(venv) $ huggingface-cli download google/gemma-3-270m-it --local-dir ggml-org/gemma-3-270m
(venv) $ python3 convert_hf_to_gguf.py ggml-org/gemma-3-270m --outfile test-bf16.gguf --outtype bf16
(venv) $ cd examples/model-conversion/
(venv) $ export MODEL_PATH=../../ggml-org/gemma-3-270m
(venv) $ export CONVERTED_MODEL=../../test-bf16.gguf
(venv) $ make causal-verify-logits
...
Data saved to data/llamacpp-test-bf16.bin
Data saved to data/llamacpp-test-bf16.txt
Error: llama.cpp logits file not found: data/llamacpp-gemma-3-270m.bin
Please run scripts/run-converted-model.sh first to generate this file.
make: *** [Makefile:62: causal-verify-logits] Error 1
```

With the changes in this commit, the above steps will now work as
expected.
2025-12-13 08:34:26 +01:00
Xuan-Son Nguyen
380b4c984e common: support negated args (#17919)
* args: support negated args

* update docs

* fix typo

* add more neg options

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rm duplicated arg

* fix LLAMA_ARG_NO_HOST

* add test

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-12 23:58:53 +01:00
Xuan-Son Nguyen
e39a2ce66d clip: move model cgraphs into their own files (#17965)
* clip: move model cgraphs into their own files

* more explicit enums

* fix linux build

* fix naming

* missing headers

* nits: add comments for contributors
2025-12-12 21:14:48 +01:00
jiahao su
a8c7f33d79 ci : change the cann version and the container pull method (#17953)
fix error format

Update build.yml

Remove unnecessary zip files

fix

update
2025-12-12 20:43:00 +01:00
Sigbjørn Skjæret
b7f5f46e03 docker : include legacy llama-completion binary (#17964) 2025-12-12 19:39:23 +01:00
Johannes Gäßler
482211438d CUDA: fix overflow in MMA kernel without stream-k (#17939) 2025-12-12 17:43:58 +01:00
Georgi Gerganov
7bed317f53 models : fix the attn_factor for mistral3 graphs + improve consistency (#17945)
* models : fix the attn_factor for mistral3 graphs

* cont : rework attn_factor correction logic

* cont : make deepseek2 consistent

* cont : add TODO

* cont : special-case DSv2

* cont : revert Mistral 3 Large changes

* cont : fix DS2 to use the original attn_factor

* cont : minor comments
2025-12-12 17:12:40 +02:00
Sigbjørn Skjæret
dcb7d17758 cann : fix ops broken by circular padding guard (#17825) 2025-12-12 15:49:27 +01:00
ixgbe
51604435e8 ggml-cpu : fix RISC-V Q4_0 repack select and RVV feature reporting (#17951)
* ggml-cpu:fix RISC-V Q4_0 repack select and RVV feature reporting

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* using the name VLEN instead of CNT

* Update ggml/include/ggml-cpu.h

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-12 16:26:03 +02:00
Xuan-Son Nguyen
17158965ac mtmd: explicitly forbidden inclusion of private header and libcommon (#17946) 2025-12-12 15:16:06 +01:00
Aleksander Grygier
12280ae905 webui: Fix parsing non-LaTeX occurrencies of \( or \) (#17810)
* fix: Improve latex protection logic to prevent turning non-latex `\(` into `$`

* chore: update webui build output
2025-12-12 15:13:36 +01:00
Xuan-Son Nguyen
54a0fee4b7 arg: add -mm and -mmu as short form of --mmproj and --mmproj-url (#17958)
* arg: add -mm and -mmu as short form of --mmproj and --mmproj-url

* correct order

* update docs
2025-12-12 14:06:06 +01:00
Daniel Bevenius
dada4c846d model-conversion : remove max diff check in compare-logits [no ci] (#17954)
This commit removes the maximum difference check from the
compare-logits.py which would stop early if the difference between
the logits exceeded a threshold.

The motivation for removing this is that it can be useful to be able to
get the complete log for debugging/reporting purposes.
2025-12-12 13:25:16 +01:00
Adrien Gallouët
b8ee22cfde common : add minimalist multi-thread progress bar (#17602)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-12 12:44:35 +01:00
Gustavo Rocha Dias
2eaa2c65cb cmake: link ws2_32 for MinGW/w64devkit builds in cpp-httplib (#17949) 2025-12-12 12:02:28 +01:00
yulo
c33a58bced HIP: enable mmf for RDNA3 (#17879)
* enable mmf for RDNA3

* disable mmf for some shape

* move some mmvf to mmf

* more mmfv to mmf

* 3 is good in mmvf

---------

Co-authored-by: zhang hui <you@example.com>
2025-12-12 11:34:33 +01:00
Pascal
a81a569577 Add a search field on model selector / improve mobile display (#17765)
* webui: add search field to model selector and fixes mobile viewport overflow

* webui: simplify model search style and code

* refacor: Search Input component & consistent UI for Models Selector search

* feat: Use Popover component + improve interactions

* fix: Fetching props for only loaded models in ROUTER mode

* webui: prevent models selector popover from overflowing viewport

Use Floating UI's auto-positioning with 50dvh height limit and proper
collision detection instead of forcing top positioning. Fixes overflow
on desktop and mobile keyboard issues

* webui: keep search field near trigger in models selector

Place search at the 'near end' (closest to trigger) by swapping layout
with CSS flexbox order based on popover direction. Prevents input from
moving during typing as list shrinks

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
2025-12-11 18:21:21 +01:00
Piotr Wilkin (ilintar)
53ecd4fdb9 SOLVE_TRI extension to more dimensions (#17793)
* Extended TRI

* Fix whitespace

* chore: update webui build output

* Just use cuBLAS for everything...

* Merge both versions

* Remove incorrect imports causing failures for CI

* Still failing... remove all direct cublas imports and rely on common imports from "common.cuh"

* Defines for hipBlas

* Aaaand MUSA defines...

* I hate this job...

* Stupid typo...

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-11 17:20:43 +01:00
Georgi Gerganov
c6f6e4f96a ggml-alloc : fix reuse-parent logic for misaligned sizes (#17884) 2025-12-11 14:30:10 +02:00
Georgi Gerganov
d9f8f60618 batch : fix sequence id ownership (#17915)
* batch : fix sequence id ownage

* cont : reduce allocations
2025-12-11 14:29:47 +02:00
Yuichiro Utsumi
e4ae383317 docs: use port 8080 in Docker examples (#17903) 2025-12-11 17:12:07 +08:00
nullname
34ce48d97a ggml-hexagon: fix rope failure at test-backend-ops (#17565)
* fix test failure

* fix: correct scaling calculations in rope_cache_init

* fix: optimize element copying in rope_hex_f32 using memcpy

* fix: optimize loop boundaries in rope_hex_f32 for better performance

* feat: add profiling macros for performance measurement in operations
2025-12-10 14:45:43 -08:00
Sigbjørn Skjæret
45e350e3d3 ci: fix riscv64-native build (#17916) 2025-12-10 23:24:31 +01:00
Xuan-Son Nguyen
c6b2c9310c mtmd: some small clean up (#17909)
* clip: add support for fused qkv in build_vit

* use bulid_ffn whenever possible

* fix internvl

* mtmd-cli: move image to beginning

* test script: support custom args
2025-12-10 22:20:06 +01:00
Xuan-Son Nguyen
34a6d86982 cli: enable jinja by default (#17911)
* cli: enable jinja by default

* Update common/arg.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-10 22:19:42 +01:00
Pascal
f32ca51bfe server: add presets (config) when using multiple models (#17859)
* llama-server: recursive GGUF loading

Replace flat directory scan with recursive traversal using
std::filesystem::recursive_directory_iterator. Support for
nested vendor/model layouts (e.g. vendor/model/*.gguf).
Model name now reflects the relative path within --models-dir
instead of just the filename. Aggregate files by parent
directory via std::map before constructing local_model

* server : router config POC (INI-based per-model settings)

* server: address review feedback from @aldehir and @ngxson

PEG parser usage improvements:
- Simplify parser instantiation (remove arena indirection)
- Optimize grammar usage (ws instead of zero_or_more, remove optional wrapping)
- Fix last line without newline bug (+ operator instead of <<)
- Remove redundant end position check

Feature scope:
- Remove auto-reload feature (will be separate PR per @ngxson)
- Keep config.ini auto-creation and template generation
- Preserve per-model customization logic

Co-authored-by: aldehir <aldehir@users.noreply.github.com>
Co-authored-by: ngxson <ngxson@users.noreply.github.com>

* server: adopt aldehir's line-oriented PEG parser

Complete rewrite of INI parser grammar and visitor:
- Use p.chars(), p.negate(), p.any() instead of p.until()
- Support end-of-line comments (key=value # comment)
- Handle EOF without trailing newline correctly
- Strict identifier validation ([a-zA-Z_][a-zA-Z0-9_.-]*)
- Simplified visitor (no pending state, no trim needed)
- Grammar handles whitespace natively via eol rule

Business validation preserved:
- Reject section names starting with LLAMA_ARG_*
- Accept only keys starting with LLAMA_ARG_*
- Require explicit section before key-value pairs

Co-authored-by: aldehir <aldehir@users.noreply.github.com>

* server: fix CLI/env duplication in child processes

Children now receive minimal CLI args (executable, model, port, alias)
instead of inheriting all router args. Global settings pass through
LLAMA_ARG_* environment variables only, eliminating duplicate config
warnings.

Fixes: Router args like -ngl, -fa were passed both via CLI and env,
causing 'will be overwritten' warnings on every child spawn

* add common/preset.cpp

* fix compile

* cont

* allow custom-path models

* add falsey check

* server: fix router model discovery and child process spawning

- Sanitize model names: replace / and \ with _ for display
- Recursive directory scan with relative path storage
- Convert relative paths to absolute when spawning children
- Filter router control args from child processes
- Refresh args after port assignment for correct port value
- Fallback preset lookup for compatibility
- Fix missing argv[0]: store server binary path before base_args parsing

* Revert "server: fix router model discovery and child process spawning"

This reverts commit e3832b42ee.

* clarify about "no-" prefix

* correct render_args() to include binary path

* also remove arg LLAMA_ARG_MODELS_PRESET for child

* add co-author for ini parser code

Co-authored-by: aldehir <hello@alde.dev>

* also set LLAMA_ARG_HOST

* add CHILD_ADDR

* Remove dead code

---------

Co-authored-by: aldehir <aldehir@users.noreply.github.com>
Co-authored-by: ngxson <ngxson@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: aldehir <hello@alde.dev>
2025-12-10 22:18:21 +01:00
Max Krasnyansky
e1f4921980 Fix race conditions in threadpool when dealing with dynamic/frequent n_threads changes (#17748)
* tests: update barrier test to check for race condition in active threads

* cpu: combine n_graph and n_threads into a single atomic update

* tests: add multi-graph test for test_barrier
2025-12-10 12:32:23 -08:00
Georgi Gerganov
4dff236a52 ggml : remove GGML_KQ_MASK_PAD constant (#17910)
* ggml : remove GGML_KQ_MASK_PAD constant

* cont : remove comment
2025-12-10 20:53:16 +02:00
Sigbjørn Skjæret
4df6e859e9 cuda : add missing support check for xielu (#17895) 2025-12-10 16:16:20 +01:00
Xuan-Son Nguyen
6c2131773c cli: new CLI experience (#17824)
* wip

* wip

* fix logging, add display info

* handle commands

* add args

* wip

* move old cli to llama-completion

* rm deprecation notice

* move server to a shared library

* move ci to llama-completion

* add loading animation

* add --show-timings arg

* add /read command, improve LOG_ERR

* add args for speculative decoding, enable show timings by default

* add arg --image and --audio

* fix windows build

* support reasoning_content

* fix llama2c workflow

* color default is auto

* fix merge conflicts

* properly fix color problem

Co-authored-by: bandoti <bandoti@users.noreply.github.com>

* better loading spinner

* make sure to clean color on force-exit

* also clear input files on "/clear"

* simplify common_log_flush

* add warning in mtmd-cli

* implement console writter

* fix data race

* add attribute

* fix llama-completion and mtmd-cli

* add some notes about console::log

* fix compilation

---------

Co-authored-by: bandoti <bandoti@users.noreply.github.com>
2025-12-10 15:28:59 +01:00
Eric Zhang
b677721819 model : Qwen3-Next-80B-A3B has 48 layers (#17898)
* model : Qwen3-Next-80B-A3B has 48 layers

* model : Add 80B-A3B type name
2025-12-10 15:22:40 +01:00
lhez
2d2e1030e3 docs : update opencl ops (#17904) 2025-12-10 15:20:00 +01:00
Johannes Gäßler
17f7f4baad CUDA: fix unpadded strides in MMA FA kernel (#17891) 2025-12-10 12:39:56 +01:00
Xuan-Son Nguyen
9e79b0116e convert: allow using quantized Mistral weight (#17889)
* convert: allow using quantized Mistral weight

* data_torch.ndim

* update dequant fn

Co-authored-by: compilade <compilade@users.noreply.github.com>

---------

Co-authored-by: compilade <compilade@users.noreply.github.com>
2025-12-10 10:26:22 +01:00
Neo Zhang Jianyu
2e9eab80c2 fix softmax for iGPU (#17838) 2025-12-10 16:59:57 +08:00
Aldehir Rojas
2fbe3b7bb7 common : add parser for ministral/mistral large 3/devstral 2 (#17713) 2025-12-09 17:31:04 -06:00
Sigbjørn Skjæret
63391852b0 docs : update cpu and cuda ops (#17890)
* update cuda ops

* update CPU as well
2025-12-09 23:31:29 +01:00
Gabe Goodhart
086a63e3a5 metal: SSM kernel improvements (#17876)
* feat: Add a batched version of ssm_conv

This was done using Claude Code. It found a number of optimizations around
how the threads were organized, resulting in a huge performance boost!

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Optimized SSM_SCAN kernel for metal

This used Claude Code and resulted in a modest performance improvement
while maintaining correctness.

Branch: Mamba2SSD

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Add test-backend-ops perf tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: Real representitive tests for SSM_CONV

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use function constant for ssm_conv batch size

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* test: backend op tests for ssm_scan from granite4 1b-h

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* style: remove commented out templates

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: float4 version of ssm_conv_batched

Branch: SSMKernelImprovements

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add missing ggml_metal_cv_free

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-09 21:30:02 +02:00
Piotr Wilkin (ilintar)
b63509262a Add DIAG for CUDA (#17873)
* Add DIAG for CUDA

* Refactor parameters
2025-12-09 20:28:57 +01:00
Johannes Gäßler
48f47565a7 docs: clarify that CPU support should be first (#17886) 2025-12-09 20:10:36 +01:00
Gabe Goodhart
02e409a5be ggml : Provide macos-specific backtrace printing to avoid terminal death (#17869)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Has been cancelled
CI / macOS-latest-cmake-x64 (push) Has been cancelled
CI / macOS-latest-cmake-arm64-webgpu (push) Has been cancelled
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Has been cancelled
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Has been cancelled
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Has been cancelled
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-latest-llguidance (push) Has been cancelled
CI / ubuntu-latest-cmake-rpc (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan-deb (push) Has been cancelled
CI / ubuntu-24-cmake-vulkan (push) Has been cancelled
CI / ubuntu-24-cmake-webgpu (push) Has been cancelled
CI / ubuntu-24-wasm-webgpu (push) Has been cancelled
CI / ubuntu-22-cmake-hip (push) Has been cancelled
CI / ubuntu-22-cmake-musa (push) Has been cancelled
CI / ubuntu-22-cmake-sycl (push) Has been cancelled
CI / ubuntu-22-cmake-sycl-fp16 (push) Has been cancelled
CI / build-linux-cross (push) Has been cancelled
CI / build-cmake-pkg (push) Has been cancelled
CI / macOS-latest-cmake-ios (push) Has been cancelled
CI / macOS-latest-cmake-tvos (push) Has been cancelled
CI / macOS-latest-cmake-visionos (push) Has been cancelled
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Has been cancelled
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Has been cancelled
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Has been cancelled
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Has been cancelled
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Has been cancelled
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Has been cancelled
CI / ubuntu-latest-cmake-cuda (push) Has been cancelled
CI / windows-2022-cmake-cuda (12.4) (push) Has been cancelled
CI / windows-latest-cmake-sycl (push) Has been cancelled
CI / windows-latest-cmake-hip (push) Has been cancelled
CI / ios-xcode-build (push) Has been cancelled
CI / android-build (push) Has been cancelled
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Has been cancelled
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Has been cancelled
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Has been cancelled
CI / ggml-ci-x64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-low-perf (push) Has been cancelled
CI / ggml-ci-x64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf (push) Has been cancelled
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Has been cancelled
CI / ggml-ci-x64-nvidia-cuda (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Has been cancelled
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Has been cancelled
CI / ggml-ci-x64-cpu-amx (push) Has been cancelled
CI / ggml-ci-mac-metal (push) Has been cancelled
CI / ggml-ci-mac-vulkan (push) Has been cancelled
CI / ggml-ci-arm64-cpu-kleidiai (push) Has been cancelled
CI / ubuntu-cpu-cmake-riscv64-native (push) Has been cancelled
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Has been cancelled
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Has been cancelled
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Has been cancelled
CI / ubuntu-llguidance-riscv64-native (push) Has been cancelled
CI / ubuntu-cmake-rpc-riscv64-native (push) Has been cancelled
CI / ggml-ci-arm64-graviton4-kleidiai (push) Has been cancelled
Close inactive issues / close-issues (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile free_disk_space:true full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/s390x.Dockerfile free_disk_space:false full:true light:true platforms:linux/s390x runs_on:ubuntu-22.04-s390x server:true tag:s390x]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile free_disk_space:false full:true light:true platforms:linux/amd64 runs_on:ubuntu-22.04 server:true tag:vulkan]) (push) Has been cancelled
Publish Docker image / Create and push git tag (push) Has been cancelled
Update Winget Package / Update Winget Package (push) Has been cancelled
Build Actions Cache / ubuntu-24-vulkan-cache (push) Has been cancelled
Build Actions Cache / ubuntu-24-spacemit-cache (push) Has been cancelled
Build Actions Cache / windows-2022-rocm-cache (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=iOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=macOS) (push) Has been cancelled
CI / macOS-latest-swift (generic/platform=tvOS) (push) Has been cancelled
* fix: Provide macos-specific backtrace printing to avoid terminal death

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Add GGML_BACKTRACE_LLDB env var to enable using lldb for backtrace

Branch: MacOSSafeBacktrace

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-09 18:29:07 +02:00
Georgi Gerganov
6b82eb7883 metal : print node names for debugging (#17882) 2025-12-09 15:25:49 +02:00
Sigbjørn Skjæret
86a3f0fad8 ggml : allow fill node alloc inplace (#17870) 2025-12-09 12:23:47 +01:00
Rhys-T
63908b631a cmake: fix Mach-O current version number (#17877)
PR #17091 set the VERSION of various libraries to 0.0.abcd, where abcd
is the LLAMA_BUILD_NUMBER. That build number is too large to fit in the
Mach-O 'current version' field's 'micro' part, which only goes up to
255. This just sets the Mach-O current version to 0 to get it building
properly again.

Fixes #17258.
2025-12-09 13:17:41 +02:00
Sigbjørn Skjæret
42b12b5608 model : nit, DeepSeek V1 MoE is 16B and GigaChat is 20B (#12652)
* nit, DeepSeek V1 MoE is 16B

* base type on n_ff_exp instead
2025-12-09 12:15:06 +01:00
Xuan-Son Nguyen
4e842d5120 console: allow using arrow left/right, home/end keys and history mode (#17836)
* console: allow using arrow left/right to edit the line (with UTF-8 support)

* console: fix arrow keys on Windows using private-use Unicode

* console: add Home/End key support for Windows and Linux

* console: add basic Up/Down history navigation

* fix build

* console: allow using arrow left/right to edit the line (with UTF-8 support)

* console: fix arrow keys on Windows using private-use Unicode

* console: add Home/End key support for Windows and Linux

* console: add basic Up/Down history navigation

* console: remove unreachable wc == 0 check after VK switch

* console: add Ctrl+Left/Right word navigation

- Add KEY_CTRL_ARROW_LEFT and KEY_CTRL_ARROW_RIGHT codes
- Windows: detect CTRL modifier via dwControlKeyState
- Linux: parse ANSI sequences with modifier (1;5D/C)
- Implement move_word_left/right with space-skipping logic
- Refactor escape sequence parsing to accumulate params

* console: add Delete key support

- Windows: VK_DELETE detection
- Linux: ESC[3~ sequence parsing
- Forward character deletion with UTF-8 support

* console: implement bash-style history editing

- Edit any history line during UP/DOWN navigation, edits persist
- Pressing Enter appends edited version as new history entry
- Original line stay untouched in their positions

* clean up

* better history impl

* fix decode_utf8

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2025-12-09 11:53:59 +01:00
Chenguang Li
ca709e427b CANN: add support for partial RoPE and Vision mode (#17543)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* cann: add support for partial RoPE and Vision mode

Add support for two important RoPE variants: partial rotation (rope_dims < ne0)
and Vision mode rotation.

1. Support for partial RoPE (rope_dims < ne0):
   - Split tensor into head (first rope_dims dimensions) and tail portions
   - Apply rotation only to head portion using RotaryPositionEmbedding operator
   - Copy unrotated tail portion directly from source to destination
   - Handle both contiguous and non-contiguous tensor layouts

2. Support for Vision mode (GGML_ROPE_TYPE_VISION):
   - Set rope_dims = ne0 for Vision mode to rotate entire tensor
   - Vision mode pairs dimension i with dimension i+n_dims (where n_dims = ne0/2)
   - No tail handling needed since entire tensor is rotated

Implementation details:
   - Use has_tail flag to determine execution path: head/tail splitting when
     rope_dims < ne0, or full tensor rotation when rope_dims == ne0
   - Support both F32 and F16 data types with intermediate F32 conversion
   - Copy non-contiguous tensors to contiguous buffers before calling
     RotaryPositionEmbedding operator for compatibility
   - Improve cache invalidation logic to include rope_dims and indep_sects
     parameters

These enhancements enable CANN backend to handle various RoPE configurations
used in modern vision-language models and models with partial rotation.

* cann: fix review comment
2025-12-09 17:53:23 +08:00
Johannes Gäßler
0cdce38a97 CUDA: fix FP16 overflow in tile FA kernel (#17875) 2025-12-09 09:34:02 +01:00
Aldehir Rojas
e39502e74b llama : add token matching support to llama-grammar (#17816)
* llama : add token support to llama-grammar

* fix inverse token comment

* refactor trigger_patterns to replay tokens instead of the entire string

* add token documentation

* fix test-llama-grammar

* improve test cases for tokens
2025-12-09 00:32:57 -06:00
philip-essential
1d2a1ab73d model : support Rnj-1 (#17811)
* add support for rnj1

* refactor gemma3 to support rnj-1

* address review comments
2025-12-09 04:49:03 +01:00
Sigbjørn Skjæret
c8554b66e0 graph : use fill instead of scale_bias in grouped expert selection (#17867)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
* use fill instead of scale_bias in grouped expert selection

* do not explicitly use _inplace
2025-12-08 21:29:59 +01:00
Daniel Bevenius
2fa51c19b0 model-conversion : add token ids to prompt token output [no ci] (#17863)
This commit adds the token ids to the printed prompt outputs.

The motivation for this is that is can be useful to see the actual token
ids alongside the token strings for debugging.
2025-12-08 17:13:08 +01:00
Xuan-Son Nguyen
951520ddb0 server: delegate result_state creation to server_task (#17835)
* server: delegate result_state creation to server_task

* remove unued states

* add more docs
2025-12-08 17:04:38 +01:00
Neo Zhang
68522c678d ci : support bfloat16 SYCL release package (#17855)
* support bfloat16 release package

* add fallback file
2025-12-08 15:09:39 +01:00
Xuan-Son Nguyen
f896d2c34f server: improve speed of speculative decoding (#17808)
* server: improve speed of speculative decoding

* fix small draft case

* add link to the PR

* server : fix generation time measurement

* server : fix draft acceptance logs (add SRV_CNT, SLT_CNT macros)

* server : add comment

* add PR to docs

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-08 14:35:28 +01:00
Piotr Wilkin (ilintar)
e4e9c4329c Make graph_max_nodes vary by ubatch size (#17794)
* Make graph_max_nodes vary by ubatch size for models where chunking might explode the graph

* Update src/llama-context.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add missing const

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-08 14:32:41 +01:00
hksdpc255
636fc17a37 Fix Kimi-K2 tool-call parsing issues (#17376)
* Fix kimi-k2 parsing

* fix template & add more tests for kimi-k2

* Another fix for Kimi-K2 chat template.

* enable allow_toolcall_in_think for Kimi-K2

* Refine key-value separator and value end format

* Enable tool call in think for kimi-k2

* allow_toolcall_in_think is now tested with Kimi-K2

* Remove outdated TODO comment in XML tool call parser

Removed TODO comment about untested tool call feature.

* Rename function from "utf8_truncate_safe" to "utf8_truncate_safe_len"
2025-12-08 14:32:04 +01:00
Jay Zenith
51e0c2d917 cuda : add FILL op support (#17851)
* cuda : add FILL op support

* cuda : add missing FILL op files
2025-12-08 21:10:12 +08:00
Xuan-Son Nguyen
37a4f63244 server : add development documentation (#17760)
* first draft

* rewrite

* update & remove duplicated sections
2025-12-08 13:54:58 +01:00
Georgi Gerganov
2bc96931d2 server : make cache_reuse configurable per request (#17858) 2025-12-08 12:43:12 +02:00
wsbagnsv1
5814b4dce1 cuda: optimize SOLVE_TRI using registers and FMAF (#17703)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
* ggml-cuda: optimize solve_tri_f32_fast and fix stride handling

- Switch from using shared memory for the RHS/solution matrix to a register-based approach (x_low, x_high), reducing shared memory pressure and bank conflicts.
- Implement explicit `fmaf` instructions for the reduction loop.
- Update kernel arguments to pass strides in bytes rather than elements to align with standard ggml tensor arithmetic (casting to `char *` before addition).
- Remove unused `MAX_K_FAST` definition.

* Small cleanup

* Remove comments in solve_tri.cu

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use const for variables in solve_tri.cu

* Replace fmaf with more readable code

* remove last fmaf

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-08 10:41:08 +01:00
ixgbe
79d61896d3 ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support (#17784)
* ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* cmake: enable RISC-V zihintpause extension for Spacemit builds

* readme : add ZIHINTPAUSE support for RISC-V

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-12-08 10:41:34 +02:00
Xuan-Son Nguyen
4d3726278b model: add llama 4 scaling for mistral-large (deepseek arch) (#17744)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
2025-12-07 22:29:54 +01:00
lovedheart
08f9d3cc1d Vulkan: improve mul_mat_vec_iq1_m (#16907)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
Check vendor / check-vendor (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
2025-12-07 18:40:42 +01:00
Sigbjørn Skjæret
0a540f9abd ci : add windows-cuda 13.1 release (#17839) 2025-12-07 14:02:04 +01:00
Sigbjørn Skjæret
22577583a3 common : change --color to accept on/off/auto, default to auto (#17827) 2025-12-07 03:43:50 +01:00
Law Po Ying
d9e03db1e7 sycl: add missing BF16 conversion support for Intel oneAPI (#17780)
* sycl: add missing BF16 conversion support for Intel oneAPI

* Fix Line 645: Trailing whitespace
2025-12-07 09:18:18 +08:00
Jeff Bolz
db97837385 vulkan: perf_logger improvements (#17672)
* vulkan: perf_logger improvements

- Move perf_logger from device to ctx.
- Add an env var to control the frequency we dump the stats. If you set a very
large value, it just dumps when the ctx is destroyed.
- Add a fusion info string to the tracking, only log one item per fused op.
- Fix MUL_MAT_ID flops calculation.

* fix vector sizes
2025-12-06 18:46:46 +01:00
Vishal Singh
017761daf5 ggml-zendnn : add ZenDNN backend for AMD CPUs (#17690)
* ggml-zennn: add ZenDNN backend support

* ggml-zendnn : address ZenDNN backend review fixes and suggestions

* docs : apply blockquote syntax to ZenDNN docs

---------

Co-authored-by: Manoj Kumar <mkumar@zettabolt.com>
2025-12-07 00:13:33 +08:00
Xuan-Son Nguyen
c42712b056 server: support multiple generations from one prompt (OAI "n" option) (#17775)
* backend support

* server: support multiple generations from one prompt (OAI "n" option)

* fix invalid batch

* format oai

* clean up

* disable ctx shift

* add test

* update comments

* fix style

* add n_cmpl to docs [no ci]

* allowing using both n_cmpl and n
2025-12-06 15:54:38 +01:00
Phylliida Dev
09c7c50e64 ggml : add circular tiling support to pad, for Vulkan, CUDA, and CPU (used for making seamless textures) (#16985)
* Feat: Added vulkan circular tiling support

* Feat: Added cpu circular

* Feat: Added cuda kernels

* Added tests

* Added tests

* Removed non-pad operations

* Removed unneded changes

* removed backend non pad tests

* Update test-backend-ops.cpp

* Fixed comment on pad test

* removed trailing whitespace

* Removed unneded test in test-backend-ops

* Removed removed test from calls

* Update ggml/src/ggml-vulkan/vulkan-shaders/pad.comp

Co-authored-by: Ruben Ortlam <picard12@live.de>

* Fixed alignment

* Formatting

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Format pad

* Format

* Clang format

* format

* format

* don't change so much stuff

* clang format and update to bool

* fix duplicates

* don't need to fix the padding

* make circular bool

* duplicate again

* rename vulkan to wrap around

* Don't need indent

* moved to const expr

* removed unneded extra line break

* More readable method calls

* Minor wording changes

* Added final newline

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update ggml/include/ggml.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Added circular pad ext tests

* Gate non circular pad devices

* Cleaned gating of non-circular pad devices

---------

Co-authored-by: Phylliida <phylliidadev@gmail.com>
Co-authored-by: Ruben Ortlam <picard12@live.de>
Co-authored-by: Aman Gupta <amangupta052@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-06 15:07:02 +01:00
Johannes Gäßler
f334b79494 HIP: fix RDNA3 FP16/BF16 matrix multiplication (#17817) 2025-12-06 13:45:36 +01:00
Aleksander Grygier
a28e3c7567 webui: Stop generation from chat sidebar (#17806)
* feat: Add stop generation button for Conversation Item

* chore: update webui build output
2025-12-06 13:29:15 +01:00
Aleksander Grygier
e31b5c55c3 webui: Fix context available value in Multi-model Router mode (#17804)
* fix: Use context size from `/props?model=...` in ROUTER mode

* chore: update webui build output
2025-12-06 13:23:29 +01:00
Aleksander Grygier
21f24f27a9 webui: Per-conversation system message with UI displaying, edition & branching (#17275)
* feat: Per-conversation system message with optional display in UI, edition and branching (WIP)

* chore: update webui build output
2025-12-06 13:19:05 +01:00
Sky
7b43f55753 ggml : improve error handling for search path existence checks (#17653)
* Improve error handling for search path existence checks

Refactor existence checks for search paths using std::error_code to handle potential errors.

* Improve cache file existence check with error code 

Update fs::exists to use std::error_code for error handling.

* Simplify existence check for search paths

Simplify existence check for search paths

* Fix logging path in error message for posix_stat

* Update ggml/src/ggml-backend-reg.cpp

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Adapt to the coding standard

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-12-06 12:28:16 +01:00
Daniel Bevenius
444f00b0ec llama : remove quantization sanity check (#17788)
* llama : remove quantization sanity check

This commit removes the quantization sanity check for attention layers.

The motivation for this is that there are model that are hybrid models
that have recurrent layers, experts layers, and attention layers.  For
these models the current check fails as the experts layers are not
taking into account. After consideration, it was decided that this check
is not strictly necessary, and can be removed to allow for more flexible
model architectures.

* llama : remove unused pruned_attention_w and is_clip_model vars
2025-12-06 12:26:20 +01:00
Jeff Bolz
2960eb2975 vulkan: Use one row per workgroup for f32 mmv (#17711)
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
2025-12-06 11:12:26 +01:00
Xuan-Son Nguyen
dbc15a7967 convert: support Mistral 3 Large MoE (#17730)
* convert: support Mistral 3 Large MoE

* filter out vision tensors, add missing keys

* handle vocab

* add temperature_length

* fix mscale_all_dim

* clean up

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-06 10:49:33 +01:00
Jeff Bolz
c6c5e85979 vulkan: support solve_tri with larger N/K values (#17781)
Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
2025-12-06 08:56:45 +01:00
Georgi Gerganov
8e5f4987b1 contrib : stale PRs (#17803) 2025-12-06 09:34:18 +02:00
Georgi Gerganov
8ce774a102 metal : fix build(#17799)
* metal : fix build

* tests : fix context destruction
2025-12-06 09:33:59 +02:00
Masato Nakasaka
67788f6846 vulkan: Replace deprecated VK_EXT_validation_features (#17637)
* replaced deprecated VK_EXT_validation_features

* forgot to remove old code
2025-12-06 06:39:42 +01:00
Masato Nakasaka
d8c0a7b085 vulkan: Fix mismatch in TOPK_MOE unit test (#17541)
* Fix shader to support 2D workgroup mapping to a single subgroup

* Set required_subgroup_size

topk_moe shader requires static WARP_SIZE and actual subgroup size to match
2025-12-06 06:23:30 +01:00
Jeff Bolz
933414c0b6 vulkan: add more num_blocks instantiations in rms_norm (#17701) 2025-12-05 22:08:56 +01:00
Jeff Bolz
a0f3897d53 vulkan: fix top_k bug when there are ties in the input (#17659)
* vulkan: Reduce temporary memory usage for TOP_K

- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.

* vulkan: fix top_k bug when there are ties in the input

I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).

I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-05 22:03:19 +01:00
Acly
e15cd06a94 vulkan : support conv-2d with large output size (#17685) 2025-12-05 21:46:39 +01:00
Reese Levine
fd57b24c0f ggml webgpu: unary op suppport, code refactoring, ops support (#17764)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49e
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add176
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910b
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb08583337
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a5
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f88
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* Update ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-05 12:25:51 -08:00
Jeff Bolz
6ab0d64960 vulkan: enable mmvq for q2_k on NVIDIA (#17675) 2025-12-05 21:21:57 +01:00
Jeff Bolz
93bb92664e vulkan: set all memory allocations to high priority (#17624)
* vulkan: set all memory allocations to high priority

* gate by env var
2025-12-05 21:21:04 +01:00
Georgi Gerganov
8160b38a5f rpc : fix alloc size logic (#17116)
* rpc : fix alloc size logic

* rpc : bump version
2025-12-05 19:39:04 +02:00
Georgi Gerganov
c41bde6fbd metal : add residency sets keep-alive heartbeat (#17766)
* examples : add idle

* metal : attach residency sets to queue

* idle : add link

* idle : adjust intervals

* metal : add residency sets keep-alive heartbeat

* cont : adjust default keep-alive time
2025-12-05 19:38:54 +02:00
Johannes Gäßler
6016d0bd41 HIP : fix RDNA4 build (#17792) 2025-12-05 13:47:52 +01:00
Pascal
1be97831e4 fix: prevent segfault in tokenizer on highly repetitive input (#17786)
Add nosubs|optimize flags to std::regex constructors to prevent
catastrophic backtracking when processing prompts with repeated
identical characters (e.g., 'A' * 10000).

The nosubs flag disables subgroup capture, significantly reducing
memory usage and backtracking on uniform token sequences
2025-12-05 13:52:23 +02:00
Adrien Gallouët
a6cfc212ed ci : fix winget workflow (#17790) 2025-12-05 19:44:17 +08:00
shalinib-ibm
3a0d10533a Q4/Q8 Tiled Gemm Optimization. (#16999) 2025-12-05 19:41:51 +08:00
Piotr Wilkin (ilintar)
6648989673 Add pwilkin to CODEOWNERS for chat files (#17789)
* Add pwilkin to CODEOWNERS for chat files

* Reorder alphabetically
2025-12-05 12:00:57 +01:00
Johannes Gäßler
e95d0bc8fd CUDA: fix FA VKQ accumulator overflow (#17746) 2025-12-05 09:18:10 +01:00
Jiacheng (Jason) Chen
668ed76574 HIP: enable WMMA-MMQ INT kernels for RDNA 3 (#17576)
* enabled wmma instructions for most quantizations other than q2k

* fixed the last q2_k test case failure

* address comments: fix out of bound write for RDNA4, add comments after #endif

* clean up rebase: fix ne error in half2

* fix the EditorConfig CI
2025-12-05 09:17:37 +01:00
Sigbjørn Skjæret
03d9a77b85 ci : transform release binary root dir in tar to llama-bXXXX (#17773)
* transform release binary root dir in tar to llama-bXXXX

* bsdtar supports -s instead of --transform
2025-12-05 01:50:19 +01:00
Gabe Goodhart
3143a755c8 docs : update ops.md (Metal, BLAS) (#17768)
* docs: Regen Metal.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Regen BLAS.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Update ops.md

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-05 00:55:34 +01:00
Piotr Wilkin (ilintar)
96fe9badfc Add support for CUMSUM and TRI for CUDA. (#17584)
* Add support for CUMSUM and TRI for CUDA.

* Minor optimizations.

* Correct warp_prefix_inclusive_sum in float2 variant to return float2

* Optimize TRI

* Whitespace

* Fix strides.

* Implement double loop

* Whitespace

* Fix HIP compilation bugs

* Optimizations + big case performance tests

* Implement using CUB with fallback to custom kernel

* Remove error message.

* Fixes from code review

* Comment out CPU-unsupported F16/BF16 cases to fix CI

* Fine, you win :P

* Fix last cast, use NO_DEVICE_CODE and GGML_UNUSED_VARS

* Vary warp-size based on physical warp size

* Add GGML_UNUSED_VARS in tri as well

* Use constexpr and call prefix_inclusive with warp_size template param

* Update ggml/src/ggml-cuda/cumsum.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Change to tid % warp_size

* Fix strides; hardcode mask; add ggml_lane_mask_t

* Missing renames, remove unused get_warp_mask(), explicit calls to ggml_cuda_info()

* Too hasty...

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-04 22:19:51 +01:00
Gabe Goodhart
bde188d60f metal: TRI, FILL, EXPM1, SOFTPLUS (#16623)
* feat(wip): Port initial TRI impl from pervious work

The kernel does not work and is not optimized, but the
code compiles and runs, so this will be the starting point
now that the core op has been merged.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove argument for constant val override

This was added in the original draft, but later removed. With this, the
kernel now passes tests.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Move the ttype conditional to templating to avoid conditional in kernel

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Type fixes

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* feat: Add softplus for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add EXPM1 for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add FILL for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Branchless version of tri using _ggml_vec_tri_cmp as a mask

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused arguments

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use select instead of branch for softplus non-vec

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 19:12:19 +02:00
Xuan-Son Nguyen
9d0229967a server: strip content-length header on proxy (#17734) 2025-12-04 16:32:57 +01:00
Xuan-Son Nguyen
c4c10bfb86 server: move msg diffs tracking to HTTP thread (#17740)
* server: move msg diffs tracking to HTTP thread

* wip

* tool call tests ok

* minor : style

* cont : fix

* move states to server_response_reader

* add safe-guard

* fix

* fix 2

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 15:46:08 +01:00
Daniel Bevenius
817d743cc1 examples : add missing code block end marker [no ci] (#17756)
This commit adds the missing code block end marker in simple-cmake-pkg
to correct the formatting.
2025-12-04 14:17:30 +01:00
Daniel Bevenius
bd4ef13476 common : skip model validation when --help is requested (#17755)
This commit skips the model validation check when the user specifies the
--help option.

The motivation for this is that currently and error is thrown before the
--help could be processed. Now skips validation if params.usage is set,
allowing help to display without requiring --model.

Resolves: https://github.com/ggml-org/llama.cpp/issues/17754
2025-12-04 13:36:50 +01:00
Alberto Cabrera Pérez
87a2084c45 ggml-cpu : remove asserts always evaluating to false (#17728) 2025-12-04 13:16:38 +01:00
SmartestWashingMachine
3659aa28e9 convert: use existing local chat_template if mistral-format model has one. (#17749)
* conversion: use existing local chat_template.jinja file if mistral-format model has one.

* fix --mistral-format mistakenly assuming some <=v7 chat template names are file paths and reading them.

* Update convert_hf_to_gguf.py - change from exists() to is_file()

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-04 12:12:45 +01:00
Adrien Gallouët
2a73f81f8a cmake : simplify build info detection using standard variables (#17423)
The current approach has several drawbacks. Mostly, when
cross-compiling, invoking the compiler binary directly to query the
machine hardware can behave unexpectedly depending on the toolchain
wrapper (using COMPILER_TARGET, CFLAGS, etc).

As CMake is the official tool to build llama.cpp, I propose to only rely
on it to get those variables (`CMAKE_SYSTEM_NAME` and
`CMAKE_SYSTEM_PROCESSOR`).

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:42:13 +02:00
Sigbjørn Skjæret
7dba049b07 ci : disable ggml-ci-x64-amd-* (#17753) 2025-12-04 11:25:08 +01:00
Adrien Gallouët
83c1171529 common: use native MultiByteToWideChar (#17738)
`std::codecvt_utf8<wchar_t>` is deprecated and produces warnings:

    common/common.cpp:792:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
      792 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
          |

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:06:49 +02:00
Georgi Gerganov
0d1324856f metal : use params per pipeline instance (#17739) 2025-12-04 10:34:11 +02:00
Georgi Gerganov
a67ef0f47f llama : fix sanity checks during quantization (#17721) 2025-12-04 10:33:42 +02:00
Adrien Gallouët
ef75a89fdb build : move _WIN32_WINNT definition to headers (#17736)
Previously, cmake was forcing `_WIN32_WINNT=0x0A00` for MinGW builds,
This caused "macro redefined" warnings with toolchains that define the version.

This also removes the `GGML_WIN_VER` variable as it is no longer needed.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 07:04:02 +01:00
Jeff Bolz
d8b5cdc4fe build: enable parallel builds in msbuild using MTT (#17708)
* build: enable parallel builds in msbuild using MTT

* check LLAMA_STANDALONE
2025-12-03 22:42:29 -06:00
Herman Semenoff
dea9ba27cb ggml-cpu: remove duplicate conditional check 'iid' (#17650) 2025-12-04 05:03:19 +08:00
Piotr Wilkin (ilintar)
c6d1a00aa7 Add a couple of file types to the text section (#17670)
* Add a couple of file types to the text section

* Format + regenerate index

* Rebuild after rebase
2025-12-03 21:45:06 +01:00
SmartestWashingMachine
424c579455 convert : support latest mistral-common (fix conversion with --mistral-format) (#17712)
* fix convert_hf_to_gguf.py failing with --mistral-format using later mistral-common versions.

* use get_one_valid_tokenizer_file from mistral-common if available and fallback to old logic otherwise.

* use file name instead of file path for get_one_valid_tokenizer_file.

* fix --mistral-format tokenizer file failing for tokenizers in subdirectories.

* move get_one_valid_tokenizer_file import to avoid nested try-except.
2025-12-03 21:15:04 +01:00
Aleksander Grygier
e9f9483464 Use OpenAI-compatible /v1/models endpoint by default (#17689)
* refactor: Data fetching via stores

* chore: update webui build output

* refactor: Use OpenAI compat `/v1/models` endpoint by default to list models

* chore: update webui build output

* chore: update webui build output
2025-12-03 20:49:09 +01:00
Andika Wasisto
41c5e02f42 webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden (#17445)
* webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden

Zero pasteLongTextToFileLen should disable the conversion, but it was
overwritten with 2500.

* Apply suggestions from code review

* Update webui build
2025-12-03 20:45:17 +01:00
Johannes Gäßler
2e1c9cd814 CUDA: generalized (mma) FA, add Volta support (#17505)
* CUDA: generalized (mma) FA, add Volta support

* use struct for MMA FA kernel config

---------

Co-authored-by: Aman Gupta <aman>
2025-12-03 16:57:05 +01:00
Georgi Gerganov
190c4838bd chat : reserve memory in compute_diffs and improve naming (#17729) 2025-12-03 17:22:10 +02:00
Pascal
e7c2cf1356 server: add router multi-model tests (#17704) (#17722)
* llama-server: add router multi-model tests (#17704)

Add 4 test cases for model router:
- test_router_unload_model: explicit model unloading
- test_router_models_max_evicts_lru: LRU eviction with --models-max
- test_router_no_models_autoload: --no-models-autoload flag behavior
- test_router_api_key_required: API key authentication

Tests use async model loading with polling and graceful skip when
insufficient models available for eviction testing.

utils.py changes:
- Add models_max, models_dir, no_models_autoload attributes to ServerProcess
- Handle JSONDecodeError for non-JSON error responses (fallback to text)

* llama-server: update test models to new HF repos

* add offline

* llama-server: fix router LRU eviction test and add preloading

Fix eviction test: load 2 models first, verify state, then load
3rd to trigger eviction. Previous logic loaded all 3 at once,
causing first model to be evicted before verification could occur.

Add module fixture to preload models via ServerPreset.load_all()
and mark test presets as offline to use cached models

* llama-server: fix split model download on Windows

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-12-03 15:10:37 +01:00
Adrien Gallouët
1257491047 server : fix bad fmt, size() is a size_type (#17735)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:22 +02:00
Adrien Gallouët
083e18b11c cmake: explicitly link against crypt32 on non-MSVC Windows builds (#17727)
Some toolchains do not support linking via pragmas such as:

    #pragma comment(lib, "crypt32.lib")

so we need to add the library explicitly.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:02 +02:00
Georgi Gerganov
3d94e967a1 metal : fix data race in pipeline library (#17731) 2025-12-03 14:03:40 +02:00
jiahao su
7feb0a1005 ci : remove the build of openeuler-cann in release (#17724)
* Remove the build of openeuler-cann in release

* Remove the relevant release files
2025-12-03 12:24:59 +01:00
Aldehir Rojas
0a8026e768 common : introduce composable PEG parser combinators for chat parsing (#17136)
* common : implement parser combinators to simplify chat parsing

* add virtual destructor to parser_base

* fix memory leak from circular references of rules

* implement gbnf grammar building

* remove unused private variable

* create a base visitor and implement id assignment as a visitor

* fix const ref for grammar builder

* clean up types, friend classes, and class declarations

* remove builder usage from until_parser

* Use a counter class to help assign rule ids

* cache everything

* add short description for each parser

* create a type for the root parser

* implement repetition parser

* Make optional, one_or_more, and zero_or_more subclasses of repetition

* improve context constructor

* improve until parsing and add benchmarks

* remove cached() pattern, cache in parser_base with specialized parsing functions for each parser

* improve json parsing performance to better match legacy parsing

* fix const auto * it for windows

* move id assignment to classes instead of using a visitor

* create named rules in the command r7b example

* use '.' for any in GBNF

* fix parens around choices in gbnf grammar

* add convenience operators to turn strings to literals

* add free-form operators for const char * to simplify defining literals

* simplify test case parser

* implement semantic actions

* remove groups in favor of actions and a scratchpad

* add built in actions for common operations

* add actions to command r7b example

* use std::default_searcher for platforms that don't have bm

* improve parser_type handling and add cast helper

* add partial result type to better control when to run actions

* fix bug in until()

* run actions on partial results by default

* use common_chat_msg for result

* add qwen3 example wip

* trash partial idea and simplify

* move action arguments to a struct

* implement aho-corasick matcher for until_parser and to build exclusion grammars

* use std::string for input, since std::string_view is incompatible with std::regex

* Refactor tests

* improve qwen3 example

* implement sax-style parsing and refactor

* fix json string in test

* rename classes to use common_chat_ prefix

* remove is_ suffix from functions

* rename from id_counter to just counter

* Final refactored tests

* Fix executable name and editorconfig-checker

* Third time's the charm...

* add trigger parser to begin lazy grammar rule generation

* working lazy grammar

* refactor json rules now that we check for reachability

* reduce pointer usage

* print out grammars in example

* rename to chat-peg-parser* and common_chat_peg_parser*

* Revert unrelated changes

* New macros for CMakeLists to enable multi-file compilations

* starting unicode support

* add unicode support to char_parser

* use unparsed args as additional sources

* Refactor tests to new harness

* Fix CMakeLists

* fix rate calculation

* add unicode tests

* fix trailing whitespace and line endings

skip-checks: true

* Helpers + rewrite qwen3 with helpers

* Fix whitespace

* extract unicode functions to separate file

* refactor parse unicode function

* fix compiler error

* improve construction of sequence/choice parsers

* be less clever

* add make_parser helper function

* expand usage of make_parser, alias common_chat_msg_peg_parser_builder to builder in source

* lower bench iterations

* add unicode support to until_parser

* add unicode support to json_string_parser

* clean up unicode tests

* reduce unicode details to match src/unicode.cpp

* simplify even further

* remove unused functions

* fix type

* reformat char class parsing

* clean up json string parser

* clean up + fix diagnostics

* reorder includes

* compact builder functions

* replace action_parser with capture_parser, rename env to semantics

* rename env to semantics

* clean up common_chat_parse_context

* move type() to below constant

* use default constructor for common_chat_peg_parser

* make all operators functions for consistency

* fix compilation errors in test-optional.cpp

* simplify result values

* rename json_string_unquoted to json_string_content

* Move helper to separate class, add separate explicit and helper classes

* Whitespace

* Change + to append()

* Reformat

* Add extra helpers, tests and Minimax example

* Add some extra optional debugging prints + real example of how to use them

* fix bug in repetitions when min_count = 0 reports failures

* dump rule in debug

* fix token accumulation and assert parsing never fails

* indent debug by depth

* use LOG_* in tests so logs sync up with test logs

* - Add selective testing
- Refactor all messaging to use LOG_ERR
- Fix lack of argument / tool name capturing
- Temporary fix for double event capture

* refactor rule() and introduce ref()

* clean up visitor

* clean up indirection in root parser w.r.t rules

* store shared ptr directly in parser classes

* replace aho-corasick automation with a simple trie

* Reset prev for qwen3 helper example variant

* refactor to use value semantics with std::variant/std::visit

* simplify trie_matcher result

* fix linting issues

* add annotations to rules

* revert test workaround

* implement serializing the parser

* remove redundant parsers

* remove tests

* gbnf generation fixes

* remove LOG_* use in tests

* update gbnf tests to test entire grammar

* clean up gbnf generation and fix a few bugs

* fix typo in test output

* remove implicit conversion rules

* improve test output

* rename trie_matcher to trie

* simplify trie to just know if a node is the end of a word

* remove common_chat_ prefix and ensure a common_peg_ prefix to all types

* rename chat-peg-parser -> peg-parser

* promote chat-peg-parser-helper to chat-peg-parser

* checkpoint

* use a static_assert to ensure we handle every branch

* inline trivial peg parser builders

* use json strings for now

* implement basic and native chat peg parser builders/extractors

* resolve refs to their rules

* remove packrat caching (for now)

* update tests

* compare parsers with incremental input

* benchmark both complete and incremental parsing

* add raw string generation from json schema

* add support for string schemas in gbnf generation

* fix qwen example to include \n

* tidy up example

* rename extractor to mapper

* rename ast_arena to ast

* place basic tests into one

* use gbnf_format_literal from json-schema-to-grammar

* integrate parser with common/chat and server

* clean up schema and serialization

* add json-schema raw string tests

* clean up json creation and remove capture parser

* trim spaces from reasoning and content

* clean up redundant rules and comments

* rename input_is_complete to is_partial to match rest of project

* simplify json rules

* remove extraneous file

* remove comment

* implement += and |= operators

* add comments to qwen3 implementation

* reorder arguments to common_chat_peg_parse

* remove commented outdated tests

* add explicit copy constructor

* fix operators and constness

* wip: update test-chat for qwen3-coder

* bring json parser closer to json-schema-to-grammar rules

* trim trailing space for most things

* fix qwen3 coder rules w.r.t. trailing spaces

* group rules

* do not trim trailing space from string args

* tweak spacing of qwen3 grammar

* update qwen3-coder tests

* qwen3-coder small fixes

* place parser in common_chat_syntax to simplify invocation

* use std::set to collect rules to keep order predictable for tests

* initialize parser to make certain platforms happy

* revert back to std::unordered_set, sort rule names at the end instead

* uncomment rest of chat tests

* define explicit default constructor

* improve arena init and server integration

* fix chat test

* add json_member()

* add a comprehensive native example

* clean up example qwen test and add response_format example to native test

* make build_peg_parser accept std::function instead of template

* change peg parser parameters into const ref

* push tool call on tool open for constructed parser

* add parsing documentation

* clean up some comments

* add json schema support to qwen3-coder

* add id initializer in tests

* remove grammar debug line from qwen3-coder

* refactor qwen3-coder to use sequence over operators

* only call common_chat_peg_parse if appropriate format

* simplify qwen3-coder space handling

* revert qwen3-coder implementation

* revert json-schema-to-grammar changes

* remove unnecessary forward declaration

* small adjustment to until_parser

* rename C/C++ files to use dashes

* codeowners : add aldehir to peg-parser and related files

---------

Co-authored-by: Piotr Wilkin <piotr.wilkin@syndatis.com>
2025-12-03 12:45:32 +02:00
Pascal
5ceed62421 server: fix duplicate HTTP headers in multiple models mode (#17698)
* llama-server: fix duplicate HTTP headers in multiple models mode (#17693)

* llama-server: address review feedback from ngxson

- restrict scope of header after std::move
- simplify header check (remove unordered_set)
2025-12-03 10:28:43 +01:00
Reese Levine
7ca5991d2b ggml webgpu: add support for emscripten builds (#17184)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Fix .gitignore

* Add memory64 option and remove unneeded macros for setting threads to 1

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-12-03 10:25:34 +01:00
Sigbjørn Skjæret
b3e3060f4e ci : move release details to the top visible by default (#17719) 2025-12-03 09:22:46 +01:00
Herman Semenoff
37adc9c6ba ggml, llama : use defaulted constructors/destructors (#17649) 2025-12-03 07:12:18 +01:00
Marcos Del Sol Vives
16cc3c606e build: document how to compile with Vulkan using Debian/Ubuntu packages (#17688) 2025-12-03 08:25:11 +08:00
Xuan-Son Nguyen
13628d8bdb server: add --media-path for local media files (#17697)
* server: add --media-path for local media files

* remove unused fn
2025-12-02 22:49:20 +01:00
Xuan-Son Nguyen
a96283adc4 mtmd: fix --no-warmup (#17695) 2025-12-02 22:48:08 +01:00
Ali Tariq
4eba8d9451 ci : RVV1.0 builds with tests (#16682)
* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Removed apt prompt

* Added RISC-V specific tests with corrections

Corrections included:
1. Changed the test names from debian to ubuntu as it is more stable than Debian Trixie
2. Added explicit compiler in cmake command as GCC compiler below version 14 have been recorded
to throw errors with rvv1.0 and some other extensions
3. Added dependencies which are not installed by default in the RISC-V Ubuntu 24.04
4. Separate ccache directory for all jobs as all the ccache results are not the same and may cause ccache to not work

* Resolved the merge conflict and cleaned up run.sh

* Update ci/run.sh

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Removed previously added build ci for RISC-V

* Removed trailing whitespaces

* corrected build name

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* cleanup

* Enabled build tests (1)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Enabled build tests (2)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* enable openssl

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 21:46:10 +01:00
Jeff Bolz
61bde8e21f vulkan: Reduce temporary memory usage for TOP_K (#17623)
- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.
2025-12-02 19:22:04 +01:00
xiaobing318
e251e5ebbe cmake : add utf8 compilation options for msvc (#17682) 2025-12-02 19:50:57 +02:00
Chad Voegele
c4357dcc35 Server: Change Invalid Schema from Server Error (500) to User Error (400) (#17572)
* Make invalid schema a user error (400)

* Move invalid_argument exception handler to ex_wrapper

* Fix test

* Simplify test back to original pattern
2025-12-02 17:33:50 +01:00
Adrien Gallouët
e148380c7c ggml : use svcntb() for SVE vector length detection (#17474)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 18:21:11 +02:00
TianHao324
a2b0fe8d37 CANN: Disable Ger operator of OUT_PROD on 310p device (#17563) 2025-12-02 20:35:23 +08:00
Daniel Bevenius
7f3a72a8ed ggml : remove redundant n_copies check when setting input/output (#17612)
This commit removes a redundant check for sched->n_copies > 1 when
setting input and output flags on tensor copies in
ggml_backend_sched_split_graph.

The motivation for this change is to clarify the code as the outer if
statement already performs this check.
2025-12-02 12:52:45 +01:00
Eric Curtin
b9a37717b0 codeowners : remove ericcurtin (#17658)
Taking a break from llama.cpp . I wasn't around at the start of llama.cpp
but I want to thank @ggerganov and @slaren for creating a neat community
here.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-12-02 12:18:15 +01:00
Adrien Gallouët
f3a9674ae8 llama : fix signed comparison warning on FreeBSD (#17497)
This ensures correct RLIM_INFINITY handling and compatibility on all platforms (32/64-bit).

    warning: comparison of integers of different signs: 'rlim_t' (aka 'long') and 'size_t' (aka 'unsigned long') [-Wsign-compare]
      488 |         if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
          |                         ~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 12:05:38 +01:00
Xuan-Son Nguyen
2c453c6c77 convert: add error message for mistral3 quantized weight (#17686) 2025-12-02 11:48:31 +01:00
Xuan-Son Nguyen
5d6bd842ea server: remove default "gpt-3.5-turbo" model name (#17668)
* server: remove default "gpt-3.5-turbo" model name

* do not reflect back model name from request

* fix test
2025-12-02 11:38:57 +01:00
senhtry
fd3abe849e server: fixing naming conflict res_error in server-models.cpp (#17679) 2025-12-02 11:18:39 +01:00
Xuan-Son Nguyen
682e6658bb server: explicitly set exec path when create new instance (#17669)
* Revert "rm unused fn"

This reverts commit f2dbe9c087.

* server: explicitly set exec path when create new instance

* put back TODO

* only call get_server_exec_path() once

* add fallback logic
2025-12-02 10:25:11 +01:00
Adrien Gallouët
4574f2949e ci : skip winget update when not in ggml-org (#17465)
Prevent forks from generating daily failure notifications.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:15:01 +01:00
Adrien Gallouët
ab6726eeff ggml : add fallback definition for HWCAP2_SVE2 (#17683)
This align with other HWCAP2 feature flags

See #17528

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:41:26 +02:00
Aleksander Grygier
cee92af553 Add context info to server error (#17663)
* fix: Add context info to server error

* chore: update webui build output
2025-12-02 09:20:57 +01:00
Aman Gupta
ed32089927 ggml-cuda: reorder only relevant nodes (#17639) 2025-12-02 12:36:31 +08:00
Aaron Teo
7b6d745364 release: fix duplicate libs, store symbolic links (#17299) 2025-12-02 11:52:05 +08:00
Neo Zhang Jianyu
98bd9ab1e4 enhance argsort for UT (#17573)
Co-authored-by: Neo Zhang <zhang.jianyu@outlook.com>
2025-12-02 08:56:46 +08:00
Piotr Wilkin (ilintar)
746f9ee889 Override SSM_A op for Qwen3 Next to reduce splits (#17587)
* Override SSM_A op for Qwen3 Next to reduce splits

* New tensor mapping SSM_A_NOSCAN for SSM_A used outside of OP_SSM_SCAN context.

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 00:43:13 +01:00
Jeff Bolz
9810cb8247 ops.md: update vulkan support (#17661) 2025-12-01 15:26:21 -06:00
Xuan-Son Nguyen
ecf74a8417 mtmd: add mtmd_context_params::warmup option (#17652)
* mtmd: add mtmd_context_params::warmup option

* reuse the common_params::warmup
2025-12-01 21:32:25 +01:00
Gilad S.
00c361fe53 fix: llama arch implementation (#17665) 2025-12-01 21:21:13 +01:00
Xuan-Son Nguyen
ec18edfcba server: introduce API for serving / loading / unloading multiple models (#17470)
* server: add model management and proxy

* fix compile error

* does this fix windows?

* fix windows build

* use subprocess.h, better logging

* add test

* fix windows

* feat: Model/Router server architecture WIP

* more stable

* fix unsafe pointer

* also allow terminate loading model

* add is_active()

* refactor: Architecture improvements

* tmp apply upstream fix

* address most problems

* address thread safety issue

* address review comment

* add docs (first version)

* address review comment

* feat: Improved UX for model information, modality interactions etc

* chore: update webui build output

* refactor: Use only the message data `model` property for displaying model used info

* chore: update webui build output

* add --models-dir param

* feat: New Model Selection UX WIP

* chore: update webui build output

* feat: Add auto-mic setting

* feat: Attachments UX improvements

* implement LRU

* remove default model path

* better --models-dir

* add env for args

* address review comments

* fix compile

* refactor: Chat Form Submit component

* ad endpoint docs

* Merge remote-tracking branch 'webui/allozaur/server_model_management_v1_2' into xsn/server_model_maagement_v1_2

Co-authored-by: Aleksander <aleksander.grygier@gmail.com>

* feat: Add copy to clipboard to model name in model info dialog

* feat: Model unavailable UI state for model selector

* feat: Chat Form Actions UI logic improvements

* feat: Auto-select model from last assistant response

* chore: update webui build output

* expose args and exit_code in API

* add note

* support extra_args on loading model

* allow reusing args if auto_load

* typo docs

* oai-compat /models endpoint

* cleaner

* address review comments

* feat: Use `model` property for displaying the `repo/model-name` naming format

* refactor: Attachments data

* chore: update webui build output

* refactor: Enum imports

* feat: Improve Model Selector responsiveness

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* refactor: Formatters

* chore: update webui build output

* refactor: Copy To Clipboard Icon component

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* refactor: UI badges

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* chore: update webui build output

* add --models-allow-extra-args for security

* nits

* add stdin_file

* fix merge

* fix: Retrieve lost setting after resolving merge conflict

* refactor: DatabaseStore -> DatabaseService

* refactor: Database, Conversations & Chat services + stores architecture improvements (WIP)

* refactor: Remove redundant settings

* refactor: Multi-model business logic WIP

* chore: update webui build output

* feat: Switching models logic for ChatForm or when regenerating messges + modality detection logic

* chore: update webui build output

* fix: Add `untrack` inside chat processing info data logic to prevent infinite effect

* fix: Regenerate

* feat: Remove redundant settigns + rearrange

* fix: Audio attachments

* refactor: Icons

* chore: update webui build output

* feat: Model management and selection features WIP

* chore: update webui build output

* refactor: Improve server properties management

* refactor: Icons

* chore: update webui build output

* feat: Improve model loading/unloading status updates

* chore: update webui build output

* refactor: Improve API header management via utility functions

* remove support for extra args

* set hf_repo/docker_repo as model alias when posible

* refactor: Remove ConversationsService

* refactor: Chat requests abort handling

* refactor: Server store

* tmp webui build

* refactor: Model modality handling

* chore: update webui build output

* refactor: Processing state reactivity

* fix: UI

* refactor: Services/Stores syntax + logic improvements

Refactors components to access stores directly instead of using exported getter functions.

This change centralizes store access and logic, simplifying component code and improving maintainability by reducing the number of exported functions and promoting direct store interaction.

Removes exported getter functions from `chat.svelte.ts`, `conversations.svelte.ts`, `models.svelte.ts` and `settings.svelte.ts`.

* refactor: Architecture cleanup

* feat: Improve statistic badges

* feat: Condition available models based on modality + better model loading strategy & UX

* docs: Architecture documentation

* feat: Update logic for PDF as Image

* add TODO for http client

* refactor: Enhance model info and attachment handling

* chore: update webui build output

* refactor: Components naming

* chore: update webui build output

* refactor: Cleanup

* refactor: DRY `getAttachmentDisplayItems` function + fix UI

* chore: update webui build output

* fix: Modality detection improvement for text-based PDF attachments

* refactor: Cleanup

* docs: Add info comment

* refactor: Cleanup

* re

* refactor: Cleanup

* refactor: Cleanup

* feat: Attachment logic & UI improvements

* refactor: Constants

* feat: Improve UI sidebar background color

* chore: update webui build output

* refactor: Utils imports + move types to `app.d.ts`

* test: Fix Storybook mocks

* chore: update webui build output

* test: Update Chat Form UI tests

* refactor: Tooltip Provider from core layout

* refactor: Tests to separate location

* decouple server_models from server_routes

* test: Move demo test  to tests/server

* refactor: Remove redundant method

* chore: update webui build output

* also route anthropic endpoints

* fix duplicated arg

* fix invalid ptr to shutdown_handler

* server : minor

* rm unused fn

* add ?autoload=true|false query param

* refactor: Remove redundant code

* docs: Update README documentations + architecture & data flow diagrams

* fix: Disable autoload on calling server props for the model

* chore: update webui build output

* fix ubuntu build

* fix: Model status reactivity

* fix: Modality detection for MODEL mode

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-01 19:41:04 +01:00
Xuan-Son Nguyen
7733409734 common: improve verbosity level definitions (#17630)
* common: improve verbosity level definitions

* string_format

* update autogen docs
2025-12-01 14:38:13 +01:00
Xuan-Son Nguyen
cd3c118908 model: support Ministral3 (#17644)
* conversion script

* support ministral 3

* maybe this is better?

* add TODO for rope_yarn_log_mul

* better ppl (tested on 14B-Instruct)

* Add Ministral3 support to Mistral format

* improve arch handling

* add sizes

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* nits

---------

Co-authored-by: Julien Denize <julien.denize@mistral.ai>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-01 12:26:52 +01:00
Georgi Gerganov
649495c9d9 metal : add FA head size 48 (#17619) 2025-12-01 12:49:53 +02:00
Georgi Gerganov
90c72a614a ggml : extend the GGML_SCHED_NO_REALLOC debug logic of the scheduler (#17617) 2025-12-01 12:49:33 +02:00
Aman Gupta
6eea666912 llama-graph: avoid expand_forward for fusion (#17633) 2025-12-01 11:12:48 +02:00
Xuan-Son Nguyen
ff90508d68 contributing: update guidelines for AI-generated code (#17625)
* contributing: update guidelines for AI-generated code

* revise
2025-11-30 22:51:34 +01:00
Adrien Gallouët
0a4aeb927d cmake : add option to build and link LibreSSL (#17552)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 22:14:32 +01:00
Tarek Dakhran
2ba719519d model: LFM2-VL fixes (#17577)
* Adjust to pytorch

* Add antialiasing upscale

* Increase number of patches to 1024

* Handle default marker insertion for LFM2

* Switch to flag

* Reformat

* Cuda implementation of antialias kernel

* Change placement in ops.cpp

* consistent float literals

* Pad only for LFM2

* Address PR feedback

* Rollback default marker placement changes

* Fallback to CPU implementation for antialias implementation of upscale
2025-11-30 21:57:31 +01:00
Xuan-Son Nguyen
7f8ef50cce clip: fix nb calculation for qwen3-vl (#17594) 2025-11-30 15:33:55 +01:00
Xuan-Son Nguyen
3c136b21a3 cli: add migration warning (#17620) 2025-11-30 15:32:43 +01:00
Adrien Gallouët
beb1f0c503 common : throttle download progress output to reduce IO flush (#17427)
This change limits progress updates to approximately every 0.1% of the
file size to minimize stdio overhead.

Also fixes compiler warnings regarding __func__ in lambdas.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 14:22:44 +02:00
Aaron Teo
def5404f26 common: add LLAMA_LOG_FILE env var (#17609)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-11-30 12:12:32 +01:00
Gilad S.
fa0465954f ggml: fix: macOS build with -DGGML_BACKEND_DL=ON (#17581) 2025-11-30 10:00:59 +08:00
ddh0
5a6241feb0 common: update env var name (#17588) 2025-11-30 09:59:25 +08:00
Aman Gupta
c7af376c29 CUDA: add stream-based concurrency (#16991)
* CUDA: add stream-based concurrency

* HIP: fix hipStreamWaitEvent define and nodiscard warnings

* ggml-cuda: fix fusion inside stream

* ggml-cuda: fix bug w.r.t first stream launch

* ggml-cuda: format

* ggml-cuda: improve assert message

* ggml-cuda: use lambda instead of duplicating code

* ggml-cuda: add some more comments

* ggml-cuda: add more detailed comments about concurrency

* ggml-cuda: rename + remove unused var

* ggml-cuda: fix condition for stream launch

* ggml-cuda: address review comments, add destructor

* common.cuh: add is_valid for concurrent events

* common.cuh: make comment better

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* common.cuh: fix lower_bound condition + remove join_node data from write_ranges

* ggml-cuda: fix overlap condition + shadowing parameter

---------

Co-authored-by: Carl Philipp Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-30 08:17:55 +08:00
Mahekk Shaikh
00425e2ed1 cuda : add error checking for cudaMemcpyAsync in argsort (#17599)
* cuda : add error checking for cudaMemcpyAsync in argsort (#12836)

* fix indentation
2025-11-30 08:16:28 +08:00
Acly
385c3da5e6 vulkan : fix FA mask load with bounds check (coopmat2) (#17606) 2025-11-30 01:03:21 +01:00
Xuan-Son Nguyen
ab49f094d2 server: move server-context to its own cpp|h (#17595)
* git mv

* add server-context.h

* add server-context.h

* clean up headers

* cont : cleanup

* also expose server_response_reader (to be used by CLI)

* fix windows build

* decouple server_routes and server_http

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-29 22:04:44 +01:00
Haiyue Wang
8c32d9d96d server: explicitly set the function name in lambda (#17538)
As [1] explained, the real debug message will be like:
	"res    operator(): operator() : queue result stop"

Set the name explicitly, the message is easy for debugging:
	"res    operator(): recv : queue result stop"

The left "operator()" is generated by 'RES_DBG() ... __func__'

[1]: https://clang.llvm.org/extra/clang-tidy/checks/bugprone/lambda-function-name.html

Signed-off-by: Haiyue Wang <haiyuewa@163.com>
2025-11-29 18:43:29 +01:00
Igor Smirnov
0874693b44 common : fix json schema with '\' in literals (#17307)
* Fix json schema with '\' in literals

* Add "literal string with escapes" test
2025-11-29 17:06:32 +01:00
Neo Zhang
7d2add51d8 sycl : support to malloc memory on device more than 4GB, update the doc and script (#17566)
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-11-29 14:59:44 +02:00
ixgbe
f698a79c63 ggml: replace hwcap with riscv_hwprobe for RVV detection (#17567)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-29 14:56:31 +02:00
Ruben Ortlam
47a268ea50 Vulkan: MMVQ Integer Dot K-Quant and MUL_MAT_ID support (#16900)
* vulkan: split mul_mmq_funcs for mul_mat_vecq use

* add mxfp4 mmvq

* add q2_k mmvq

* add q3_k mmvq

* add q4_k and q5_k mmvq

* add q6_k mmvq

* handle 4x4 quants per mmvq thread

* enable MUL_MAT_ID mmvq support

* enable subgroup optimizations for mul_mat_vec_id shaders

* device tuning

* request prealloc_y sync after quantization

* fix indentation

* fix llvmpipe test failures

* fix mul_mat_id mmvq condition

* fix unused variable warning
2025-11-29 09:37:22 +01:00
Jeff Bolz
59d8d4e963 vulkan: improve topk perf for large k, fix overflow in unit tests (#17582) 2025-11-29 08:39:57 +01:00
Aleksei Nikiforov
d82b7a7c1d gguf-py : fix passing non-native endian tensors (editor-gui and new-metadata) (#17553)
gguf_new_metadata.py reads data from reader.
Reader doesn't byteswap tensors to native endianness.
But writer does expect tensors in native endianness to convert them
into requested endianness.

There are two ways to fix this: update reader and do conversion to native endianness and back,
or skip converting endianness in writer in this particular USE-case.

gguf_editor_gui.py doesn't allow editing or viewing tensor data.
Let's go with skipping excessive byteswapping.

If eventually capability to view or edit tensor data is added,
tensor data should be instead byteswapped when reading it.
2025-11-28 20:53:01 +01:00
DAN™
03914c7ef8 common : move all common_chat_parse_* to chat-parser.cpp. (#17481) 2025-11-28 19:29:36 +01:00
o7si
3ce7a65c2f server: fix: /metrics endpoint returning JSON-escaped Prometheus format (#17386)
* fix: /metrics endpoint returning JSON-escaped Prometheus format

* mod: remove string overload from ok() method
2025-11-28 19:14:00 +01:00
Diego Devesa
e072b2052e ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched (#17276)
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.

* llama : update worst-case graph for unified cache

* ci : disable op offload in some tests

* fix spelling

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 17:33:23 +02:00
R0CKSTAR
c6f7a423c8 [MUSA] enable fp16/fast_fp16/bf16_mma on PH1 (#17551)
* [MUSA] enable fp16/fast_fp16/bf16_mma on PH1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-tile.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-28 14:08:29 +01:00
Aman Gupta
2e7ef98f18 ggml-cuda: add stricter checking for fusion (#17568)
* ggml-cuda: make conditions for fusion more explicit

* ggml-cuda: remove size check as std::equal already does it
2025-11-28 20:34:51 +08:00
Fredrik Hultin
ddf9f94389 server : add Anthropic Messages API support (#17570)
* server : add Anthropic Messages API support

* remove -@pytest.mark.slow from tool calling/jinja tests

* server : remove unused code and slow/skip on test_anthropic_vision_base64_with_multimodal_model in test_anthropic_api.py

* server : removed redundant n field logic in anthropic_params_from_json

* server : use single error object instead of error_array in streaming response handler for /v1/chat/completions and use unordered_set instead of set in to_json_anthropic_stream()

* server : refactor Anthropic API to use OAI conversion

* make sure basic test always go first

* clean up

* clean up api key check, add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-28 12:57:04 +01:00
Piotr Wilkin (ilintar)
ff55414c42 model : Qwen3 Next (#16095)
* Qwen3 Next - cleaned up version

* Whitespaces and stuff

* Correct minor errors

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Misc. fixes.

* Clean up code, add missing hybrid qualifier

* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Whitespace

* Proper tensors for cb calls

* Use llama-graph.h vertical alignment

* BROKEN: chunking

* Set new tensors as inputs.

* Proper chunk logic

* It's the circle of life...

* More shenanigans for n_seq > 1

* Nail in the coffin?

* Fix Windows build

* Eh, one fails on Windows, the other fails on Mac... just use general capture.

* quant : cleanup

* model : cleanup

* qwen3 : cleanup

* cont : cleanup

* cont : cleanup

* ggml : revert change

* qwen3 : cleanup

* cont : cleanup

* Readd cmath

* qwen3 : fix typo

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Usual suspects

* fix my bad suggestion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 12:02:56 +01:00
Johannes Gäßler
73955f7d2a CUDA: no FP16 arithmetic for vector FA kernel (#17558) 2025-11-28 10:29:09 +01:00
Jeff Bolz
35cf8887e1 vulkan: Implement GGML_OP_TRI (#17503)
* vulkan: Implement GGML_OP_TRI

* check types match
2025-11-28 10:07:29 +01:00
Radoslav Gerganov
15d2b46b4d rpc : cache and reuse compute graphs (#15405)
Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.
2025-11-28 08:33:51 +00:00
yulo
6bca76ff5e HIP: enable mul_mat_f for RDNA4 (#17437)
* enable mmf for rdna4

* move some mmvf to mmf

* revert lds128 for wmma loading

* Revert "revert lds128 for wmma loading"

This reverts commit db9ae8b6b4.

* Revert "enable mmf for rdna4"

This reverts commit 698c9f2418.

* Revert "move some mmvf to mmf"

This reverts commit 99b92bd665.

* enable mul_mat for rdna4

---------

Co-authored-by: zhang hui <you@example.com>
2025-11-28 08:24:30 +01:00
Piotr Wilkin (ilintar)
cd0e3a7a3b SOLVE_TRI CUDA kernel for small matrices (#17457) 2025-11-28 12:15:32 +08:00
Neo Zhang Jianyu
efaaccdd69 refactor pad_reflect_1d to make the UT case pass (#17204)
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-11-28 08:50:56 +08:00
Jeff Bolz
4abef75f2c vulkan: Implement SOLVE_TRI (#17486)
* vulkan: Implement SOLVE_TRI

* load B matrix through shared memory

* use FLOAT_TYPE
2025-11-27 15:48:00 +01:00
Georgi Gerganov
c386114922 arch : add description about LLM_TENSOR_INFOS (#17550) 2025-11-27 16:34:13 +02:00
Georgi Gerganov
6783b11fb0 models : fix LFM2 tensors (#17548) 2025-11-27 16:04:29 +02:00
matt23654
909072abcf cuda : fix UMA detection on discrete GPUs. (#17537) 2025-11-27 13:35:35 +02:00
Alberto Cabrera Pérez
cd8370b408 ggml-cpu: aarm64: q4_K repack gemm and gemv implementations (dotprod only) (#17494)
* Enabled q4_K_4x8 path

* Fixed generic Q4_K 8x4 implementation

* wip: dotprod gemm

* Working arm q4_K dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Undo acc rename

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Q4_K arm dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fix: q4_qs reinterpret from uint to int

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Removed comments

* Fixed macro guards

* Fixed unused vars in generic implementation

* Fixed unused vars in 8x4 repack

* Fixed unused vars in generic implementation, unneeded comment

* Missing arch fallback for x86

* minor : style

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-27 13:25:14 +02:00
Eric Curtin
d21a76ac38 devops: Add build-essential to Ubuntu 26.04 image (#17531)
This is no longer passing the build, needs more packages.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-27 18:35:47 +08:00
Aleksei Nikiforov
4fcd87cf7c gguf-py : skip endian-conversion of MXFP4 data (#17523)
* gguf_convert_endian.py: skip MXFP4 data

* Use gguf.constants.GGML_QUANT_SIZES to determine block sizes
2025-11-27 11:35:38 +01:00
Acly
b78db3bd50 vulkan : move contiguous checks to device_supports_op (#17490)
* vulkan : remove op_supports_incontiguous and add missing constraints in device_supports_op

* im2col: remove contraints on src0 (kernel input)
2025-11-27 06:54:19 +01:00
Jeff Bolz
142df17c9c vulkan: use a fixed 1KB buffer for the add_rms_fusion opt (#17514) 2025-11-27 06:32:30 +01:00
Xuan-Son Nguyen
e509411cf1 server: enable jinja by default, update docs (#17524)
* server: enable jinja by default, update docs

* fix tests
2025-11-27 01:02:50 +01:00
lhez
7cba58bbea opencl: add sqr, sqrt, mean and ssm_conv (#17476)
* opencl: add sqr

* opencl: add sqrt

* opencl: add mean

* opencl: add ssm_conv

* opencl: add missing cl_khr_fp16

* opencl: do sqrt in f32 then convert to f16 for better precision
2025-11-26 13:29:58 -08:00
Alberto Cabrera Pérez
5449367b21 Fix chunks being too small with small matrix sizes (#17526) 2025-11-26 13:14:54 -08:00
Han Qingzhe
1d594c295c clip: (minicpmv) fix resampler kq_scale (#17516)
* debug:"solve minicpmv precision problem"

* “debug minicpmv”

* Apply suggestion from @ngxson

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-26 21:44:07 +01:00
Jeff Bolz
eec1e33a9e vulkan: allow graph_optimize for prompt processing workloads (#17475) 2025-11-26 16:46:33 +01:00
Jeff Bolz
879d673759 vulkan: Implement top-k (#17418)
* vulkan: Implement top-k

Each pass launches workgroups that each sort 2^N elements (where N is usually 7-10)
and discards all but the top K. Repeat until only K are left. And there's a fast
path when K==1 to just find the max value rather than sorting.

* fix pipeline selection

* vulkan: Add N-ary search algorithm for topk

* microoptimizations
2025-11-26 16:45:43 +01:00
xctan
6ab4e50d9c ggml-cpu : add RISC-V Zvfh impl for ggml_vec_mad_f16 (#17448)
* ggml-cpu : add RISC-V Zvfh impl for ggml_vec_mad_f16

* ggml-cpu : dedup scalar impl

* Update ggml/src/ggml-cpu/vec.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-26 15:33:05 +02:00
Adrien Gallouët
2336cc4784 cmake : use EXCLUDE_FROM_ALL to avoid patch-boringssl.cmake (#17520)
We have to separate the code path starting 3.28 because
`FetchContent_Populate` is now deprecated and will be completely removed
in a future version.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-26 15:15:21 +02:00
Adrien Gallouët
e6923caaec ggml : fix ARM feature verification (#17519)
On arm64 with `cmake` version 3.31.6, the final feature verification fails:

    -- ARM detected flags: -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs
    -- Performing Test GGML_MACHINE_SUPPORTS_dotprod
    -- Performing Test GGML_MACHINE_SUPPORTS_dotprod - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_i8mm
    -- Performing Test GGML_MACHINE_SUPPORTS_i8mm - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_sve
    -- Performing Test GGML_MACHINE_SUPPORTS_sve - Success
    -- Performing Test GGML_MACHINE_SUPPORTS_sme
    -- Performing Test GGML_MACHINE_SUPPORTS_sme - Failed
    -- Performing Test GGML_MACHINE_SUPPORTS_nosme
    -- Performing Test GGML_MACHINE_SUPPORTS_nosme - Success
    -- Checking for ARM features using flags:
    --   -U__ARM_FEATURE_SME
    --   -mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme
    -- Performing Test HAVE_DOTPROD
    -- Performing Test HAVE_DOTPROD - Failed
    -- Performing Test HAVE_SVE
    -- Performing Test HAVE_SVE - Failed
    -- Performing Test HAVE_MATMUL_INT8
    -- Performing Test HAVE_MATMUL_INT8 - Failed
    -- Performing Test HAVE_FMA
    -- Performing Test HAVE_FMA - Success
    -- Performing Test HAVE_FP16_VECTOR_ARITHMETIC
    -- Performing Test HAVE_FP16_VECTOR_ARITHMETIC - Failed
    -- Performing Test HAVE_SME
    -- Performing Test HAVE_SME - Failed
    -- Adding CPU backend variant ggml-cpu: -U__ARM_FEATURE_SME;-mcpu=neoverse-v2+crc+sve2-aes+sve2-sha3+nossbs+dotprod+i8mm+sve+nosme

We need to explicitly replace `;` with spaces from the list to make
`CMAKE_REQUIRED_FLAGS` work correctly...

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-26 15:14:41 +02:00
Jiacheng (Jason) Chen
3e18dba9fd HIP: Patch failed testcase in WMMA-MMQ kernels for RDNA 4 (#17502)
* patch failed test case MUL_MAT(type_a=q4_0,type_b=f32,m=576,n=512,k=576,bs=[1,1],nr=[1,1],per=[0,1,2,3],k_v=0,o=1) for enabling WMMA on RDNA4

* Quick clean up on mma.cuh to add ggml_cuda_memcpy_1 back in for half2 and bfloat162
2025-11-26 11:18:48 +01:00
hipudding
eeb5605de2 CANN: Add MROPE and IMROPE support (#17401)
* CANN: ROPE supports both MROPE and IMROPE.

1. Optimize the caching logic of rope_cache_init.
2. Add support for mRoPE and i-mRoPE.

Note that on Ascend 910B devices, it is necessary to disable FA
in CLIP and disable NZ-format conversion. These two issues are
still under investigation.

* Resolve review comments
2025-11-26 16:44:19 +08:00
o7si
f3a848a3b1 chore: upgrade cpp-httplib from v0.27.0 to v0.28.0 (#17513) 2025-11-26 09:21:06 +02:00
Jeff Bolz
b3b03a7baf vulkan: Implement GGML_OP_CUMSUM (#17479) 2025-11-26 07:08:10 +01:00
Georgi Gerganov
583cb83416 ggml : add ggml_top_k (#17365)
* ggml : add ggml_top_k

* cont : add ggml_argsort_top_k

* metal : add top_k support

* ggml : cleanup

* tests : add virtual err() function for test_case

* ggml : add comments
2025-11-25 15:31:43 +02:00
Aleksei Nikiforov
05872ac885 convert : fix big-endian conversion (#17431)
* Fix convert_hf_to_gguf.py script on s390x

Assume converted model data is originally little-endian.
Byteswap data on s390x after reading it to put values in correct presentation
for any transformation needed, like calculating weight tensors.

Then byteswap data to little-endian before passing it to GGUFWriter while
GGUFWriter will byteswap data back to big endian if big endian output is requested.

byteswap(inplace=True) calls don't work with lazy tensor and array wrappers.
Use byteswap with copying data to workaround this behaviour.

* Make GGUFWriter accept tensors in native endianness instead of little-endian

With this change if no byteswapping is actually needed, 2 excessive byteswaps can be omitted on s390x

* Fix byteswapping in convert_hf_to_gguf.py for remote models
2025-11-25 14:18:16 +01:00
Diego Devesa
55ab25caf5 codeowners : remove slaren (#17492) 2025-11-25 13:00:23 +01:00
TianHao324
064c90d843 CANN: supports out_prod operator for F32 and F16 (#17406)
Co-authored-by: tianhao <tianhao42@huawei.com>
2025-11-25 17:39:06 +08:00
Pascal
b1846f1c8e webui: add rehype plugin to restore HTML in Markdown table cells (#17477)
* webui: add rehype plugin to restore HTML in Markdown table cells

The remark/rehype pipeline neutralizes inline HTML as literal text
(remarkLiteralHtml) so that XML/HTML snippets in LLM responses display
as-is instead of being rendered. This causes <br> and <ul> markup in
table cells to show as plain text.

This plugin traverses the HAST post-conversion, parses whitelisted HTML
patterns (<br>, <ul><li>) from text nodes, and replaces them with actual
HAST element nodes. For lists, adjacent siblings must be combined first
as the AST fragmentation breaks pattern matching.

Strict validation rejects malformed markup, keeping it as raw text.

* chore: update webui build output
2025-11-25 08:01:02 +01:00
Jeff Bolz
d414db02d3 vulkan: Use fewer rows for scalar FA when HS is not a multiple of 16 (#17455) 2025-11-25 07:11:27 +01:00
Aaron Teo
877566d512 llama: introduce support for model-embedded sampling parameters (#17120) 2025-11-25 09:56:07 +08:00
Jeff Bolz
3d07caa99b vulkan: more FA details in vk_perf_logger (#17443) 2025-11-24 22:25:24 +01:00
Daniel Bevenius
134e6940ca llama : skip output reordering for single token batches (#17466)
This commit adds a check to skip the output reordering logic when
n_outputs == 1. With a single output token, the data is trivially
sorted and the reordering code is currently doing unnecessary work
(resetting and rebuilding output_ids to the same values).

The motivation for this change is improved code clarity and avoiding
confusion when debugging. While the performance impact is probably
negligible, this unnecessary work happens on every decode call in
llama-server when processing batches with single-token outputs.
2025-11-24 21:06:17 +01:00
659 changed files with 148057 additions and 37753 deletions

View File

@@ -4,7 +4,7 @@
# Define the CANN base image for easier version updates later
ARG CHIP_TYPE=910b
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.3.rc1.alpha001-${CHIP_TYPE}-openeuler22.03-py3.11
ARG CANN_BASE_IMAGE=quay.io/ascend/cann:8.3.rc2-${CHIP_TYPE}-openeuler24.03-py3.11
# ==============================================================================
# BUILD STAGE
@@ -107,11 +107,11 @@ ENTRYPOINT ["/app/tools.sh"]
# ENTRYPOINT ["/app/llama-server"]
### Target: light
# Lightweight image containing only llama-cli
# Lightweight image containing only llama-cli and llama-completion
# ==============================================================================
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
ENTRYPOINT [ "/app/llama-cli" ]

View File

@@ -68,7 +68,7 @@ ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -74,7 +74,7 @@ ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -73,7 +73,7 @@ ENTRYPOINT ["/app/tools.sh"]
FROM base AS light
COPY --from=build /app/lib/ /app
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -23,11 +23,12 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF -DLLAMA_BUILD_TESTS=OFF && \
cmake --build build --config Release --target llama-cli
cmake --build build --config Release --target llama-cli && \
cmake --build build --config Release --target llama-completion
# TODO: use image with NNRT
FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
COPY --from=build /app/build/bin/llama-cli /app/build/bin/llama-completion /
ENV LC_ALL=C.utf8

View File

@@ -37,6 +37,7 @@ make -j GGML_CUDA=1
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cuda-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-cuda-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-cuda-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-cuda-simple
@@ -68,6 +69,7 @@ rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cuda-cli
%{_bindir}/llama-cuda-completion
%{_bindir}/llama-cuda-server
%{_bindir}/llama-cuda-simple
/usr/lib/systemd/system/llamacuda.service

View File

@@ -39,6 +39,7 @@ make -j
%install
mkdir -p %{buildroot}%{_bindir}/
cp -p llama-cli %{buildroot}%{_bindir}/llama-cli
cp -p llama-completion %{buildroot}%{_bindir}/llama-completion
cp -p llama-server %{buildroot}%{_bindir}/llama-server
cp -p llama-simple %{buildroot}%{_bindir}/llama-simple
@@ -70,6 +71,7 @@ rm -rf %{_builddir}/*
%files
%{_bindir}/llama-cli
%{_bindir}/llama-completion
%{_bindir}/llama-server
%{_bindir}/llama-simple
/usr/lib/systemd/system/llama.service

View File

@@ -81,7 +81,7 @@ ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -94,7 +94,7 @@ ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -105,7 +105,7 @@ WORKDIR /llama.cpp/bin
# Copy llama.cpp binaries and libraries
COPY --from=collector /llama.cpp/bin/*.so /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin
COPY --from=collector /llama.cpp/bin/llama-cli /llama.cpp/bin/llama-completion /llama.cpp/bin
ENTRYPOINT [ "/llama.cpp/bin/llama-cli" ]

View File

@@ -13,6 +13,8 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
exec ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
exec ./llama-cli "$@"
elif [[ "$arg1" == '--run-legacy' || "$arg1" == '-l' ]]; then
exec ./llama-completion "$@"
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
exec ./llama-bench "$@"
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
@@ -32,8 +34,10 @@ elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
else
echo "Unknown command: $arg1"
echo "Available commands: "
echo " --run (-r): Run a model previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
echo " --run (-r): Run a model (chat) previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin"
echo " --run-legacy (-l): Run a model (legacy completion) previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin -no-cnv -p \"Building a website can be done in 10 simple steps:\" -n 512"
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
echo " ex: -m model.gguf"
echo " --perplexity (-p): Measure the perplexity of a model over a given text."

View File

@@ -50,6 +50,7 @@ WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
build-essential \
git \
python3 \
python3-pip \
@@ -67,7 +68,7 @@ ENTRYPOINT ["/app/tools.sh"]
### Light, CLI only
FROM base AS light
COPY --from=build /app/full/llama-cli /app
COPY --from=build /app/full/llama-cli /app/full/llama-completion /app
WORKDIR /app

View File

@@ -11,7 +11,7 @@ body:
(i.e. the generated text) are incorrect or llama.cpp crashes during model evaluation.
If you encountered the issue while using an external UI (e.g. ollama),
please reproduce your issue using one of the examples/binaries in this repository.
The `llama-cli` binary can be used for simple and reproducible model inference.
The `llama-completion` binary can be used for simple and reproducible model inference.
- type: textarea
id: version
attributes:
@@ -74,9 +74,12 @@ body:
Please give us a summary of the problem and tell us how to reproduce it.
If you can narrow down the bug to specific hardware, compile flags, or command line arguments,
that information would be very much appreciated by us.
If possible, please try to reproduce the issue using `llama-completion` with `-fit off`.
If you can only reproduce the issue with `-fit on`, please provide logs both with and without `--verbose`.
placeholder: >
e.g. when I run llama-cli with -ngl 99 I get garbled outputs.
When I use -ngl 0 it works correctly.
e.g. when I run llama-completion with `-fa on` I get garbled outputs for very long prompts.
With short prompts or `-fa off` it works correctly.
Here are the exact commands that I used: ...
validations:
required: true

View File

@@ -86,6 +86,7 @@ body:
description: >
If applicable, please copy and paste any relevant log output, including any generated text.
This will be automatically formatted into code, so no need for backticks.
If you are encountering problems specifically with the `llama_params_fit` module, always upload `--verbose` logs as well.
render: shell
validations:
required: false

View File

@@ -65,3 +65,34 @@ runs:
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install Cuda Toolkit 13.1
if: ${{ inputs.cuda_version == '13.1' }}
shell: pwsh
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_crt/windows-x86_64/cuda_crt-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-13.2.0.9-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libnvvm/windows-x86_64/libnvvm-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-13.1.78-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_crt-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cudart-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvcc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvrtc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libcublas-windows-x86_64-13.2.0.9-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libnvvm-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvtx-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_profiler_api-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\visual_studio_integration-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cccl-windows-x86_64-13.1.78-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V13_1=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8

View File

@@ -291,6 +291,7 @@ jobs:
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DGGML_RV_ZIHINTPAUSE=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake

View File

@@ -1,120 +0,0 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -20,7 +20,8 @@ on:
'**/*.swift',
'**/*.m',
'**/*.metal',
'**/*.comp'
'**/*.comp',
'**/*.glsl'
]
pull_request:
@@ -40,7 +41,8 @@ on:
'**/*.swift',
'**/*.m',
'**/*.metal',
'**/*.comp'
'**/*.comp',
'**/*.glsl'
]
concurrency:
@@ -68,6 +70,7 @@ jobs:
with:
key: macOS-latest-cmake-arm64
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -104,6 +107,7 @@ jobs:
with:
key: macOS-latest-cmake-x64
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -140,6 +144,7 @@ jobs:
with:
key: macOS-latest-cmake-arm64-webgpu
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dawn Dependency
id: dawn-depends
@@ -193,6 +198,7 @@ jobs:
with:
key: ubuntu-cpu-cmake-${{ matrix.build }}
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build Dependencies
id: build_depends
@@ -243,7 +249,7 @@ jobs:
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
./bin/llama-completion -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
- name: Test llama2c (s390x)
id: llama2c_test_s390x
@@ -252,7 +258,7 @@ jobs:
cd build
echo "Fetch llama2c big-endian model"
wget https://huggingface.co/ggml-org/models/resolve/main/tinyllamas/stories260K-be.gguf
./bin/llama-cli -m stories260K-be.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
./bin/llama-completion -m stories260K-be.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -274,6 +280,7 @@ jobs:
with:
key: ubuntu-latest-cmake-sanitizer-${{ matrix.sanitizer }}
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -394,6 +401,7 @@ jobs:
with:
key: ubuntu-24-cmake-vulkan-deb
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -429,6 +437,7 @@ jobs:
with:
key: ubuntu-24-cmake-vulkan
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -488,6 +497,7 @@ jobs:
with:
key: ubuntu-24-cmake-webgpu
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -547,6 +557,47 @@ jobs:
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-24-wasm-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-wasm-webgpu
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Install Emscripten
run: |
git clone https://github.com/emscripten-core/emsdk.git
cd emsdk
./emsdk install latest
./emsdk activate latest
- name: Fetch emdawnwebgpu
run: |
DAWN_TAG="v20251027.212519"
EMDAWN_PKG="emdawnwebgpu_pkg-${DAWN_TAG}.zip"
echo "Downloading ${EMDAWN_PKG}"
curl -L -o emdawn.zip \
"https://github.com/google/dawn/releases/download/${DAWN_TAG}/${EMDAWN_PKG}"
unzip emdawn.zip
- name: Build WASM WebGPU
run: |
source emsdk/emsdk_env.sh
emcmake cmake -B build-wasm \
-DGGML_WEBGPU=ON \
-DLLAMA_CURL=OFF \
-DEMDAWNWEBGPU_DIR=emdawnwebgpu_pkg
cmake --build build-wasm --target test-backend-ops -j $(nproc)
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -567,6 +618,7 @@ jobs:
with:
key: ubuntu-22-cmake-hip
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build with native CMake HIP support
id: cmake_build
@@ -599,6 +651,7 @@ jobs:
with:
key: ubuntu-22-cmake-musa
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build with native CMake MUSA support
id: cmake_build
@@ -646,6 +699,7 @@ jobs:
with:
key: ubuntu-22-cmake-sycl
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -696,6 +750,7 @@ jobs:
with:
key: ubuntu-22-cmake-sycl-fp16
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -729,6 +784,7 @@ jobs:
with:
key: macOS-latest-cmake-ios
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -760,6 +816,7 @@ jobs:
with:
key: macOS-latest-cmake-tvos
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -821,6 +878,7 @@ jobs:
with:
key: macOS-latest-swift
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Download xcframework artifact
uses: actions/download-artifact@v4
@@ -863,6 +921,7 @@ jobs:
key: windows-msys2
variant: ccache
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Setup ${{ matrix.sys }}
uses: msys2/setup-msys2@v2
@@ -931,6 +990,7 @@ jobs:
key: windows-latest-cmake-${{ matrix.build }}
variant: ccache
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Download OpenBLAS
id: get_openblas
@@ -1035,6 +1095,7 @@ jobs:
with:
key: ubuntu-latest-cmake-cuda
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build with CMake
run: |
@@ -1067,6 +1128,7 @@ jobs:
key: windows-cuda-${{ matrix.cuda }}
variant: ccache
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Install Cuda Toolkit
uses: ./.github/actions/windows-setup-cuda
@@ -1118,6 +1180,7 @@ jobs:
key: windows-latest-cmake-sycl
variant: ccache
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Install
run: |
@@ -1179,6 +1242,7 @@ jobs:
with:
key: ${{ github.job }}
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Build
id: cmake_build
@@ -1360,25 +1424,54 @@ jobs:
chip_type: ['910b', '310p']
build: ['Release']
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
- name: Free up disk space
uses: ggml-org/free-disk-space@v1.3.1
with:
tool-cache: true
- name: Set container image
id: cann-image
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake libcurl-devel
image="ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc2-910b-openeuler24.03-py3.11' || '8.3.rc2-310p-openeuler24.03-py3.11' }}"
echo "image=${image}" >> "${GITHUB_OUTPUT}"
- name: Pull container image
run: docker pull "${{ steps.cann-image.outputs.image }}"
- name: Build
env:
BUILD_TYPE: ${{ matrix.build }}
SOC_TYPE: ascend${{ matrix.chip_type }}
run: |
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
HOST_UID=$(id -u)
HOST_GID=$(id -g)
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=ascend${{ matrix.chip_type }}
cmake --build build -j $(nproc)
docker run --rm \
-v "${PWD}:/workspace" \
-w /workspace \
-e SOC_TYPE=${SOC_TYPE} \
-e BUILD_TYPE=${BUILD_TYPE} \
"${{ steps.cann-image.outputs.image }}" \
bash -lc '
set -e
yum install -y --setopt=install_weak_deps=False --setopt=tsflags=nodocs git gcc gcc-c++ make cmake libcurl-devel
yum clean all && rm -rf /var/cache/yum
git config --global --add safe.directory "/workspace"
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE} \
-DGGML_CANN=on \
-DSOC_TYPE=${SOC_TYPE}
cmake --build build -j $(nproc)
chown -R '"${HOST_UID}"':'"${HOST_GID}"' /workspace/build
'
# TODO: simplify the following workflows using a matrix
# TODO: run lighter CI on PRs and the full CI only on master (if needed)
@@ -1395,6 +1488,7 @@ jobs:
with:
key: ggml-ci-x64-cpu-low-perf
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1420,6 +1514,7 @@ jobs:
with:
key: ggml-ci-arm64-cpu-low-perf
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1445,6 +1540,7 @@ jobs:
with:
key: ggml-ci-x64-cpu-high-perf
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1470,6 +1566,7 @@ jobs:
with:
key: ggml-ci-arm64-cpu-high-perf
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1495,6 +1592,7 @@ jobs:
with:
key: ggml-ci-arm64-cpu-high-perf-sve
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1562,33 +1660,33 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-vulkan:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# vulkaninfo --summary
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-rocm:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# amd-smi static
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@@ -1630,6 +1728,7 @@ jobs:
with:
key: ggml-ci-arm64-cpu-kleidiai
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Dependencies
id: depends
@@ -1642,6 +1741,337 @@ jobs:
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ubuntu-cpu-cmake-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Check environment
run: |
uname -a
gcc --version
g++ --version
ldd --version
cmake --version
rustc --version
- name: Setup ccache
run: |
# Set unique cache directory for this job
export CCACHE_DIR="$HOME/.ccache/cpu-cmake-rv64-native"
mkdir -p "$CCACHE_DIR"
# Configure ccache for optimal performance
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
# Enable more aggressive caching
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DGGML_RPC=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L 'main|curl' --verbose --timeout 900
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-completion -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-cmake-sanitizer-riscv64-native:
runs-on: RISCV64
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug]
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
# Unique cache directory per matrix combination
export CCACHE_DIR="$HOME/.ccache/sanitizer-${{ matrix.sanitizer }}-${{ matrix.build_type }}"
mkdir -p "$CCACHE_DIR"
# Configure ccache
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=ON \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-llguidance-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/llguidance-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_LLGUIDANCE=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cmake-rpc-riscv64-native:
runs-on: RISCV64
continue-on-error: true
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/rpc-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose
ggml-ci-arm64-graviton4-kleidiai:
runs-on: ah-ubuntu_22_04-c8g_8x
@@ -1682,6 +2112,7 @@ jobs:
with:
key: ggml-ci-arm64-graviton4-kleidiai
evict-old-files: 1d
save: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
- name: Test
id: ggml-ci

View File

@@ -66,13 +66,13 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz
name: llama-bin-macos-arm64.tar.gz
macOS-x64:
runs-on: macos-15-intel
@@ -120,13 +120,13 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz
name: llama-bin-macos-x64.tar.gz
ubuntu-22-cpu:
strategy:
@@ -182,13 +182,13 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz
name: llama-bin-ubuntu-${{ matrix.build }}.tar.gz
ubuntu-22-vulkan:
runs-on: ubuntu-22.04
@@ -235,13 +235,13 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz
name: llama-bin-ubuntu-vulkan-x64.tar.gz
windows-cpu:
runs-on: windows-2025
@@ -298,7 +298,7 @@ jobs:
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
7z a -snl llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -380,7 +380,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
7z a -snl llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -393,7 +393,7 @@ jobs:
strategy:
matrix:
cuda: ['12.4']
cuda: ['12.4', '13.1']
steps:
- name: Clone
@@ -434,7 +434,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
7z a -snl llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -448,6 +448,7 @@ jobs:
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\bin\x64" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
@@ -517,6 +518,8 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-fallback-bfloat16.spv" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-native-bfloat16.spv" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
@@ -526,7 +529,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
7z a -snl llama-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
@@ -632,7 +635,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
7z a -snl llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -685,13 +688,14 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
tar -czvf llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz -C build-apple llama.xcframework
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
path: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
name: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
openEuler-cann:
strategy:
@@ -700,28 +704,54 @@ jobs:
chip_type: ['910b', '310p']
build: ['Release']
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
- name: Free up disk space
uses: ggml-org/free-disk-space@v1.3.1
with:
tool-cache: true
- name: Set container image
id: cann-image
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake libcurl-devel
git config --global --add safe.directory "$GITHUB_WORKSPACE"
image="ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc2-910b-openeuler24.03-py3.11' || '8.3.rc2-310p-openeuler24.03-py3.11' }}"
echo "image=${image}" >> "${GITHUB_OUTPUT}"
- name: Pull container image
run: docker pull "${{ steps.cann-image.outputs.image }}"
- name: Build
env:
BUILD_TYPE: ${{ matrix.build }}
SOC_TYPE: ascend${{ matrix.chip_type }}
run: |
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
HOST_UID=$(id -u)
HOST_GID=$(id -g)
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=ascend${{ matrix.chip_type }}
cmake --build build -j $(nproc)
docker run --rm \
-v "${PWD}:/workspace" \
-w /workspace \
-e SOC_TYPE=${SOC_TYPE} \
-e BUILD_TYPE=${BUILD_TYPE} \
"${{ steps.cann-image.outputs.image }}" \
bash -lc '
set -e
yum install -y --setopt=install_weak_deps=False --setopt=tsflags=nodocs git gcc gcc-c++ make cmake libcurl-devel
yum clean all && rm -rf /var/cache/yum
git config --global --add safe.directory "/workspace"
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${BUILD_TYPE} \
-DGGML_CANN=on \
-DSOC_TYPE=${SOC_TYPE}
cmake --build build -j $(nproc)
chown -R '"${HOST_UID}"':'"${HOST_GID}"' /workspace/build
'
- name: Determine tag name
id: tag
@@ -730,13 +760,13 @@ jobs:
- name: Pack artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
name: llama-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
path: llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.tar.gz
name: llama-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.tar.gz
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@@ -814,6 +844,7 @@ jobs:
echo "Moving other artifacts..."
mv -v artifact/*.zip release
mv -v artifact/*.tar.gz release
- name: Create release
id: create_release
@@ -822,6 +853,37 @@ jobs:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.tag.outputs.name }}
body: |
<details open>
${{ github.event.head_commit.message }}
</details>
**macOS/iOS:**
- [macOS Apple Silicon (arm64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz)
- [macOS Intel (x64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz)
- [iOS XCFramework](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz)
**Linux:**
- [Ubuntu x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.tar.gz)
- [Ubuntu x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz)
- [Ubuntu s390x (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-s390x.tar.gz)
**Windows:**
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
- [Windows x64 (CUDA 12)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip) - [CUDA 12.4 DLLs](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/cudart-llama-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (CUDA 13)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-13.1-x64.zip) - [CUDA 13.1 DLLs](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/cudart-llama-bin-win-cuda-13.1-x64.zip)
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)
**openEuler:**
- [openEuler x86 (310p)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-310p-openEuler-x86.tar.gz)
- [openEuler x86 (910b)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-910b-openEuler-x86.tar.gz)
- [openEuler aarch64 (310p)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-310p-openEuler-aarch64.tar.gz)
- [openEuler aarch64 (910b)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-910b-openEuler-aarch64.tar.gz)
- name: Upload release
id: upload_release
@@ -833,7 +895,7 @@ jobs:
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./release')) {
if (path.extname(file) === '.zip') {
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,

225
.github/workflows/server-webui.yml vendored Normal file
View File

@@ -0,0 +1,225 @@
# Server WebUI build and tests
name: Server WebUI
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server-webui.yml', 'tools/server/webui/**.*', 'tools/server/tests/**.*', 'tools/server/public/**']
pull_request:
types: [opened, synchronize, reopened]
paths: ['.github/workflows/server-webui.yml', 'tools/server/webui/**.*', 'tools/server/tests/**.*', 'tools/server/public/**']
env:
LLAMA_LOG_COLORS: 1
LLAMA_LOG_PREFIX: 1
LLAMA_LOG_TIMESTAMPS: 1
LLAMA_LOG_VERBOSITY: 10
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
webui-check:
name: WebUI Checks
runs-on: ubuntu-latest
continue-on-error: true
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
id: node
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install dependencies
id: setup
if: ${{ steps.node.conclusion == 'success' }}
run: npm ci
working-directory: tools/server/webui
- name: Run type checking
if: ${{ always() && steps.setup.conclusion == 'success' }}
run: npm run check
working-directory: tools/server/webui
- name: Run linting
if: ${{ always() && steps.setup.conclusion == 'success' }}
run: npm run lint
working-directory: tools/server/webui
- name: Build application
if: ${{ always() && steps.setup.conclusion == 'success' }}
run: npm run build
working-directory: tools/server/webui
- name: Install Playwright browsers
id: playwright
if: ${{ always() && steps.setup.conclusion == 'success' }}
run: npx playwright install --with-deps
working-directory: tools/server/webui
- name: Build Storybook
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run build-storybook
working-directory: tools/server/webui
- name: Run Client tests
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:client
working-directory: tools/server/webui
- name: Run Unit tests
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:unit
working-directory: tools/server/webui
- name: Run UI tests
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:ui -- --testTimeout=60000
working-directory: tools/server/webui
- name: Run E2E tests
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
- name: Setup Node.js for WebUI
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh

View File

@@ -76,270 +76,6 @@ jobs:
run: |
pip install -r tools/server/tests/requirements.txt
webui-setup:
name: WebUI Setup
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Cache node_modules
uses: actions/cache@v4
id: cache-node-modules
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Install dependencies
if: steps.cache-node-modules.outputs.cache-hit != 'true'
run: npm ci
working-directory: tools/server/webui
webui-check:
needs: webui-setup
name: WebUI Check
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Run type checking
run: npm run check
working-directory: tools/server/webui
- name: Run linting
run: npm run lint
working-directory: tools/server/webui
webui-build:
needs: webui-check
name: WebUI Build
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Build application
run: npm run build
working-directory: tools/server/webui
webui-tests:
needs: webui-build
name: Run WebUI tests
permissions:
contents: read
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
- name: Restore node_modules cache
uses: actions/cache@v4
with:
path: tools/server/webui/node_modules
key: ${{ runner.os }}-node-modules-${{ hashFiles('tools/server/webui/package-lock.json') }}
restore-keys: |
${{ runner.os }}-node-modules-
- name: Install Playwright browsers
run: npx playwright install --with-deps
working-directory: tools/server/webui
- name: Build Storybook
run: npm run build-storybook
working-directory: tools/server/webui
- name: Run Client tests
run: npm run test:client
working-directory: tools/server/webui
- name: Run Server tests
run: npm run test:server
working-directory: tools/server/webui
- name: Run UI tests
run: npm run test:ui -- --testTimeout=60000
working-directory: tools/server/webui
- name: Run E2E tests
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
needs: [webui-tests]
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
- name: Setup Node.js for WebUI
uses: actions/setup-node@v4
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh
server-windows:
runs-on: windows-2022

View File

@@ -9,6 +9,7 @@ jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
if: github.repository_owner == 'ggml-org'
steps:
- name: Install cargo binstall

3
.gitignore vendored
View File

@@ -54,6 +54,7 @@
/out/
/tmp/
/autogen-*.md
/common/build-info.cpp
# Deprecated
@@ -134,3 +135,5 @@ poetry.toml
# IDE
/*.code-workspace
/.windsurf/
# emscripten
a.out.*

View File

@@ -33,10 +33,24 @@ endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
option(LLAMA_WASM_MEM64 "llama: use 64-bit memory in WASM builds" ON)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
# Use 64-bit memory to support backend_get_memory queries
# TODO: analyze performance impact, see https://spidermonkey.dev/blog/2025/01/15/is-memory64-actually-worth-using
if (LLAMA_WASM_MEM64)
add_compile_options("-sMEMORY64=1")
add_link_options("-sMEMORY64=1")
endif()
add_link_options("-sALLOW_MEMORY_GROWTH=1")
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" OFF)
option(LLAMA_BUILD_HTML "llama: build HTML file" ON)
if (LLAMA_BUILD_HTML)
set(CMAKE_EXECUTABLE_SUFFIX ".html")
endif()
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -58,6 +72,12 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (LLAMA_STANDALONE)
# enable parallel builds for msbuild
list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
@@ -179,11 +199,6 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#

View File

@@ -2,23 +2,25 @@
# multiplie collaborators per item can be specified
/.devops/*.Dockerfile @ngxson
/.github/actions/ @slaren @CISC
/.github/actions/ @CISC
/.github/workflows/ @CISC
/.github/workflows/release.yml @slaren
/.github/workflows/winget.yml @slaren
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/arg.* @ggerganov
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/chat.* @pwilkin
/common/chat-peg-parser.* @aldehir
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/common/unicode.* @aldehir
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
@@ -30,7 +32,7 @@
/examples/export-docs/ @ggerganov
/examples/gen-docs/ @ggerganov
/examples/gguf/ @ggerganov
/examples/llama.android/ @ggerganov
/examples/llama.android/ @ggerganov @hanyin-arm @naco-siren
/examples/llama.swiftui/ @ggerganov
/examples/llama.vim @ggerganov
/examples/lookahead/ @ggerganov
@@ -40,21 +42,14 @@
/examples/passkey/ @ggerganov
/examples/retrieval/ @ggerganov
/examples/save-load-state/ @ggerganov
/examples/simple-chat/ @slaren
/examples/simple/ @slaren
/examples/speculative-simple/ @ggerganov
/examples/speculative/ @ggerganov
/ggml/cmake/ @ggerganov
/ggml/include/ @ggerganov @slaren
/ggml/src/ggml-alloc.c @slaren
/ggml/src/ggml-backend* @slaren
/ggml/src/ggml-blas/ @slaren
/ggml/src/ggml-common.h @ggerganov @slaren
/ggml/src/ggml-cpu/ @ggerganov @slaren
/ggml/include/ @ggerganov
/ggml/src/ggml-common.h @ggerganov
/ggml/src/ggml-cpu/ @ggerganov
/ggml/src/ggml-cpu/spacemit/ @alex-spacemit
/ggml/src/ggml-cuda/common.cuh @slaren
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/ggml-cuda.cu @slaren
/ggml/src/ggml-cuda/mmf.* @JohannesGaessler @am17an
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvf.* @JohannesGaessler
@@ -62,19 +57,19 @@
/ggml/src/ggml-cuda/fattn-wmma* @IMbackK
/ggml/src/ggml-hip/ @IMbackK
/ggml/src/ggml-cuda/vendors/hip.h @IMbackK
/ggml/src/ggml-impl.h @ggerganov @slaren
/ggml/src/ggml-impl.h @ggerganov
/ggml/src/ggml-metal/ @ggerganov
/ggml/src/ggml-opencl/ @lhez @max-krasnyansky
/ggml/src/ggml-hexagon/ @max-krasnyansky @lhez
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/ggml-quants.* @ggerganov
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov @slaren
/ggml/src/ggml-threading.* @ggerganov
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov @slaren
/ggml/src/ggml.cpp @ggerganov @slaren
/ggml/src/ggml.c @ggerganov
/ggml/src/ggml.cpp @ggerganov
/ggml/src/gguf.cpp @JohannesGaessler @Green-Sky
/gguf-py/ @CISC
/media/ @ggerganov
@@ -86,28 +81,23 @@
/src/llama-arch.* @CISC
/src/llama-chat.* @ngxson
/src/llama-graph.* @CISC
/src/llama-model-loader.* @slaren
/src/llama-model.* @CISC
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-backend-ops.cpp @slaren
/tests/test-thread-safety.cpp @slaren
/tests/test-chat-.* @pwilkin
/tools/batched-bench/ @ggerganov
/tools/llama-bench/ @slaren
/tools/main/ @ggerganov
/tools/cli/ @ngxson
/tools/completion/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/* @ngxson @ggerganov # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov
/vendor/ @ggerganov
/.clang-format @slaren
/.clang-tidy @slaren
/AUTHORS @ggerganov
/CMakeLists.txt @ggerganov
/CONTRIBUTING.md @ggerganov

View File

@@ -15,10 +15,12 @@ The project differentiates between 3 levels of contributors:
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- When adding support for a new model or feature, focus on **CPU support only** in the initial PR unless you have a good reason not to. Add support for other backends like CUDA in follow-up PRs
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
# Pull requests (for maintainers)

View File

@@ -61,7 +61,7 @@ range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- RVV, ZVFH, ZFH and ZICBOP support for RISC-V architectures
- RVV, ZVFH, ZFH, ZICBOP and ZIHINTPAUSE support for RISC-V architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Vulkan and SYCL backend support
@@ -190,6 +190,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
- Go (no CGo needed): [hybridgroup/yzma](https://github.com/hybridgroup/yzma)
- Android: [llama.android](/examples/llama.android)
</details>
@@ -276,6 +277,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [MUSA](docs/build.md#musa) | Moore Threads GPU |
| [CUDA](docs/build.md#cuda) | Nvidia GPU |
| [HIP](docs/build.md#hip) | AMD GPU |
| [ZenDNN](docs/build.md#zendnn) | AMD CPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
@@ -312,7 +314,7 @@ The Hugging Face platform provides a variety of online tools for converting, qua
To learn more about model quantization, [read this documentation](tools/quantize/README.md)
## [`llama-cli`](tools/main)
## [`llama-cli`](tools/cli)
#### A CLI tool for accessing and experimenting with most of `llama.cpp`'s functionality.
@@ -346,19 +348,6 @@ To learn more about model quantization, [read this documentation](tools/quantize
</details>
- <details>
<summary>Run simple text completion</summary>
To disable conversation mode explicitly, use `-no-cnv`
```bash
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv
# I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
```
</details>
- <details>
<summary>Constrain the output with a custom grammar</summary>
@@ -537,7 +526,8 @@ To learn more about model quantization, [read this documentation](tools/quantize
## Other documentation
- [main (cli)](tools/main/README.md)
- [cli](tools/cli/README.md)
- [completion](tools/completion/README.md)
- [server](tools/server/README.md)
- [GBNF grammars](grammars/README.md)
@@ -613,3 +603,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@@ -65,4 +65,9 @@ However, If you have discovered a security vulnerability in this project, please
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080

View File

@@ -45,7 +45,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=${LLAMA_FATAL_WARNINGS:-ON} -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
@@ -398,18 +398,20 @@ function gg_run_qwen3_0_6b {
./bin/llama-quantize ${model_bf16} ${model_q5_k} q5_k $(nproc)
./bin/llama-quantize ${model_bf16} ${model_q6_k} q6_k $(nproc)
(time ./bin/llama-cli -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-cli -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
(time ./bin/llama-cli -no-cnv --model ${model_q8_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-cli -no-cnv --model ${model_q2_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q3_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q4_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q5_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-cli -no-cnv --model ${model_q6_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-fit-params --model ${model_f16} 2>&1 | tee -a $OUT/${ci}-fp-f16.log)
(time ./bin/llama-completion -no-cnv --model ${model_f16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-completion -no-cnv --model ${model_bf16} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-bf16.log
(time ./bin/llama-completion -no-cnv --model ${model_q8_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-completion -no-cnv --model ${model_q4_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/llama-completion -no-cnv --model ${model_q4_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/llama-completion -no-cnv --model ${model_q5_0} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/llama-completion -no-cnv --model ${model_q5_1} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/llama-completion -no-cnv --model ${model_q2_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/llama-completion -no-cnv --model ${model_q3_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/llama-completion -no-cnv --model ${model_q4_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/llama-completion -no-cnv --model ${model_q5_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/llama-completion -no-cnv --model ${model_q6_k} -ngl 99 -c 1024 -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/llama-perplexity --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
if [ -z ${GG_BUILD_NO_BF16} ]; then
@@ -428,10 +430,10 @@ function gg_run_qwen3_0_6b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -523,8 +525,10 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-fit-params --model ${model_f16} 2>&1 | tee -a $OUT/${ci}-fp-f16.log)
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@@ -563,8 +567,10 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
(time ./bin/llama-fit-params --model ${model_f16} 2>&1 | tee -a $OUT/${ci}-fp-f16.log)
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029

View File

@@ -39,26 +39,10 @@ if(Git_FOUND)
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if (CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
if(CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()

View File

@@ -52,6 +52,8 @@ add_library(${TARGET} STATIC
chat-parser.h
chat-parser-xml-toolcall.h
chat-parser-xml-toolcall.cpp
chat-peg-parser.cpp
chat-peg-parser.h
chat.cpp
chat.h
common.cpp
@@ -69,12 +71,18 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
peg-parser.cpp
peg-parser.h
preset.cpp
preset.h
regex-partial.cpp
regex-partial.h
sampling.cpp
sampling.h
speculative.cpp
speculative.h
unicode.cpp
unicode.h
)
if (BUILD_SHARED_LIBS)

File diff suppressed because it is too large Load Diff

View File

@@ -3,8 +3,13 @@
#include "common.h"
#include <set>
#include <map>
#include <string>
#include <vector>
#include <cstring>
// pseudo-env variable to identify preset-only arguments
#define COMMON_ARG_PRESET_LOAD_ON_STARTUP "__PRESET_LOAD_ON_STARTUP"
//
// CLI argument parsing
@@ -14,15 +19,20 @@ struct common_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::set<enum llama_example> excludes = {};
std::vector<const char *> args;
std::vector<const char *> args_neg; // for negated args like --no-xxx
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
const char * env = nullptr;
std::string help;
bool is_sparam = false; // is current arg a sampling param?
bool is_preset_only = false; // is current arg preset-only (not treated as CLI arg)
void (*handler_void) (common_params & params) = nullptr;
void (*handler_string) (common_params & params, const std::string &) = nullptr;
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
void (*handler_int) (common_params & params, int) = nullptr;
void (*handler_bool) (common_params & params, bool) = nullptr;
common_arg() = default;
common_arg(
const std::initializer_list<const char *> & args,
@@ -44,6 +54,13 @@ struct common_arg {
void (*handler)(common_params & params)
) : args(args), help(help), handler_void(handler) {}
common_arg(
const std::initializer_list<const char *> & args,
const std::initializer_list<const char *> & args_neg,
const std::string & help,
void (*handler)(common_params & params, bool)
) : args(args), args_neg(args_neg), help(help), handler_bool(handler) {}
// support 2 values for arg
common_arg(
const std::initializer_list<const char *> & args,
@@ -57,13 +74,38 @@ struct common_arg {
common_arg & set_excludes(std::initializer_list<enum llama_example> excludes);
common_arg & set_env(const char * env);
common_arg & set_sparam();
common_arg & set_preset_only();
bool in_example(enum llama_example ex);
bool is_exclude(enum llama_example ex);
bool get_value_from_env(std::string & output) const;
bool has_value_from_env() const;
std::string to_string();
std::string to_string() const;
// for using as key in std::map
bool operator<(const common_arg& other) const {
if (args.empty() || other.args.empty()) {
return false;
}
return strcmp(args[0], other.args[0]) < 0;
}
bool operator==(const common_arg& other) const {
if (args.empty() || other.args.empty()) {
return false;
}
return strcmp(args[0], other.args[0]) == 0;
}
// get all args and env vars (including negated args/env)
std::vector<std::string> get_args() const;
std::vector<std::string> get_env() const;
};
namespace common_arg_utils {
bool is_truthy(const std::string & value);
bool is_falsey(const std::string & value);
bool is_autoy(const std::string & value);
}
struct common_params_context {
enum llama_example ex = LLAMA_EXAMPLE_COMMON;
common_params & params;
@@ -76,7 +118,15 @@ struct common_params_context {
// if one argument has invalid value, it will automatically display usage of the specific argument (and not the full usage message)
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
// function to be used by test-arg-parser
// parse input arguments from CLI into a map
bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map);
// populate preset-only arguments
// these arguments are not treated as command line arguments
// see: https://github.com/ggml-org/llama.cpp/issues/18163
void common_params_add_preset_options(std::vector<common_arg> & args);
// initialize argument parser context - used by test-arg-parser and preset
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);
struct common_remote_params {

View File

@@ -724,16 +724,10 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
if (reasoning_unclosed) {
if (auto pos = content.find(end_think); pos == std::string::npos && builder.pos() != builder.input().size()) {
unclosed_reasoning_content += content;
if (form.allow_toolcall_in_think) {
builder.move_to(tc->groups[0].begin);
if (!builder.try_consume_xml_tool_calls(form)) {
unclosed_reasoning_content += tool_call_start;
builder.move_to(tc->groups[0].end);
}
} else {
if (!(form.allow_toolcall_in_think && tc)) {
unclosed_reasoning_content += tool_call_start;
continue;
}
continue;
} else {
reasoning_unclosed = false;
std::string reasoning_content;
@@ -781,8 +775,12 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
}
} else {
// This <tool_call> start is in thinking block, skip this tool call
auto pos = think_start + start_think.size();
unclosed_reasoning_content = content.substr(pos) + tool_call_start;
// This <tool_call> start is in thinking block
if (form.allow_toolcall_in_think) {
unclosed_reasoning_content = content.substr(think_start + start_think.size());
} else {
unclosed_reasoning_content = content.substr(think_start + start_think.size()) + tool_call_start;
}
reasoning_unclosed = true;
content.resize(think_start);
toolcall_in_think = true;
@@ -805,14 +803,35 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
}
// remove potential partial suffix
if (content.size() > 0 && builder.pos() == builder.input().size() && unclosed_reasoning_content.empty()) {
rstrip(content);
trim_potential_partial_word(content);
rstrip(content);
if (builder.pos() == builder.input().size()) {
if (unclosed_reasoning_content.empty()) {
rstrip(content);
trim_potential_partial_word(content);
rstrip(content);
} else {
rstrip(unclosed_reasoning_content);
trim_potential_partial_word(unclosed_reasoning_content);
rstrip(unclosed_reasoning_content);
}
}
// consume unclosed_reasoning_content if allow_toolcall_in_think is set
if (form.allow_toolcall_in_think && !unclosed_reasoning_content.empty()) {
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content) {
builder.add_reasoning_content(unclosed_reasoning_content);
} else {
if (content.empty()) {
content = start_think + unclosed_reasoning_content;
} else {
content += "\n\n" + start_think;
content += unclosed_reasoning_content;
}
}
unclosed_reasoning_content.clear();
}
// Add content
if (content.size() != 0) {
if (!content.empty()) {
// If there are multiple content blocks
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content && builder.result().content.size() != 0) {
builder.add_content("\n\n");
@@ -820,7 +839,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
builder.add_content(content);
}
// This <tool_call> start is in thinking block, skip this tool call
// This <tool_call> start is in thinking block and toolcall_in_think not set, skip this tool call
if (toolcall_in_think && !form.allow_toolcall_in_think) {
continue;
}
@@ -829,7 +848,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
if (!tc) {
GGML_ASSERT(builder.pos() == builder.input().size());
GGML_ASSERT(unclosed_reasoning_content.empty());
GGML_ASSERT(!reasoning_unclosed);
if (!form.allow_toolcall_in_think) GGML_ASSERT(!reasoning_unclosed);
break;
}
@@ -854,7 +873,6 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
/**
* Parse content uses reasoning and XML-Style tool call
* TODO: Note that form.allow_toolcall_in_think is not tested yet. If anyone confirms it works, this comment can be removed.
*/
void common_chat_msg_parser::consume_reasoning_with_xml_tool_calls(const struct xml_tool_call_format & form, const std::string & start_think, const std::string & end_think) {
parse_msg_with_xml_tool_calls(*this, form, start_think, end_think);

View File

@@ -31,7 +31,7 @@ struct xml_tool_call_format {
std::optional<std::string> last_val_end = std::nullopt;
std::optional<std::string> last_tool_end = std::nullopt;
bool trim_raw_argval = false;
bool allow_toolcall_in_think = false; // TODO: UNTESTED!!!
bool allow_toolcall_in_think = false;
};
// make a GBNF that accept any strings except those containing any of the forbidden strings.

File diff suppressed because it is too large Load Diff

124
common/chat-peg-parser.cpp Normal file
View File

@@ -0,0 +1,124 @@
#include "chat-peg-parser.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
static std::string_view trim_trailing_space(std::string_view sv, int max = -1) {
int count = 0;
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
if (max != -1 && count <= max) {
break;
}
sv.remove_suffix(1);
count++;
}
return sv;
}
void common_chat_peg_mapper::from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result) {
arena.visit(result, [this](const common_peg_ast_node & node) {
map(node);
});
}
void common_chat_peg_mapper::map(const common_peg_ast_node & node) {
bool is_reasoning = node.tag == common_chat_peg_builder::REASONING;
bool is_content = node.tag == common_chat_peg_builder::CONTENT;
if (is_reasoning) {
result.reasoning_content = std::string(trim_trailing_space(node.text));
}
if (is_content) {
result.content = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_native_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_native_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_native_builder::TOOL_NAME;
bool is_tool_id = node.tag == common_chat_peg_native_builder::TOOL_ID;
bool is_tool_args = node.tag == common_chat_peg_native_builder::TOOL_ARGS;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
}
if (is_tool_id && current_tool) {
current_tool->id = std::string(trim_trailing_space(node.text));
}
if (is_tool_name && current_tool) {
current_tool->name = std::string(trim_trailing_space(node.text));
}
if (is_tool_args && current_tool) {
current_tool->arguments = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_constructed_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_constructed_builder::TOOL_NAME;
bool is_tool_close = node.tag == common_chat_peg_constructed_builder::TOOL_CLOSE;
bool is_arg_open = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_OPEN;
bool is_arg_close = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_CLOSE;
bool is_arg_name = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_NAME;
bool is_arg_string = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_STRING_VALUE;
bool is_arg_json = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_JSON_VALUE;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
arg_count = 0;
}
if (is_tool_name) {
current_tool->name = std::string(node.text);
current_tool->arguments = "{";
}
if (is_arg_open) {
needs_closing_quote = false;
}
if (is_arg_name && current_tool) {
if (arg_count > 0) {
current_tool->arguments += ",";
}
current_tool->arguments += json(trim_trailing_space(node.text)).dump() + ":";
++arg_count;
}
if (is_arg_string && current_tool) {
// Serialize to JSON, but exclude the end quote
std::string dumped = json(trim_trailing_space(node.text)).dump();
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
needs_closing_quote = true;
}
if (is_arg_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
needs_closing_quote = false;
}
}
if (is_arg_json && current_tool) {
current_tool->arguments += std::string(trim_trailing_space(node.text));
}
if (is_tool_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
needs_closing_quote = false;
}
current_tool->arguments += "}";
}
}

105
common/chat-peg-parser.h Normal file
View File

@@ -0,0 +1,105 @@
#pragma once
#include "chat.h"
#include "peg-parser.h"
class common_chat_peg_builder : public common_peg_parser_builder {
public:
static constexpr const char * REASONING_BLOCK = "reasoning-block";
static constexpr const char * REASONING = "reasoning";
static constexpr const char * CONTENT = "content";
common_peg_parser reasoning_block(const common_peg_parser & p) { return tag(REASONING_BLOCK, p); }
common_peg_parser reasoning(const common_peg_parser & p) { return tag(REASONING, p); }
common_peg_parser content(const common_peg_parser & p) { return tag(CONTENT, p); }
};
inline common_peg_arena build_chat_peg_parser(const std::function<common_peg_parser(common_chat_peg_builder & builder)> & fn) {
common_chat_peg_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_mapper {
public:
common_chat_msg & result;
common_chat_peg_mapper(common_chat_msg & msg) : result(msg) {}
virtual void from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result);
virtual void map(const common_peg_ast_node & node);
};
class common_chat_peg_native_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_ID = "tool-id";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARGS = "tool-args";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_id(const common_peg_parser & p) { return atomic(tag(TOOL_ID, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_args(const common_peg_parser & p) { return tag(TOOL_ARGS, p); }
};
class common_chat_peg_native_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
public:
common_chat_peg_native_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_native_parser(const std::function<common_peg_parser(common_chat_peg_native_builder & builder)> & fn) {
common_chat_peg_native_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_constructed_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARG = "tool-arg";
static constexpr const char * TOOL_ARG_OPEN = "tool-arg-open";
static constexpr const char * TOOL_ARG_CLOSE = "tool-arg-close";
static constexpr const char * TOOL_ARG_NAME = "tool-arg-name";
static constexpr const char * TOOL_ARG_STRING_VALUE = "tool-arg-string-value";
static constexpr const char * TOOL_ARG_JSON_VALUE = "tool-arg-json-value";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_arg(const common_peg_parser & p) { return tag(TOOL_ARG, p); }
common_peg_parser tool_arg_open(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_OPEN, p)); }
common_peg_parser tool_arg_close(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_CLOSE, p)); }
common_peg_parser tool_arg_name(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_NAME, p)); }
common_peg_parser tool_arg_string_value(const common_peg_parser & p) { return tag(TOOL_ARG_STRING_VALUE, p); }
common_peg_parser tool_arg_json_value(const common_peg_parser & p) { return tag(TOOL_ARG_JSON_VALUE, p); }
};
class common_chat_peg_constructed_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
int arg_count = 0;
bool needs_closing_quote = false;
public:
common_chat_peg_constructed_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_constructed_parser(const std::function<common_peg_parser(common_chat_peg_constructed_builder & builder)> & fn) {
common_chat_peg_constructed_builder builder;
builder.set_root(fn(builder));
return builder.build();
}

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@
#pragma once
#include "common.h"
#include "peg-parser.h"
#include <functional>
#include <chrono>
#include <string>
@@ -76,7 +77,7 @@ struct common_chat_msg_diff {
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
@@ -124,6 +125,11 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,
COMMON_CHAT_FORMAT_PEG_NATIVE,
COMMON_CHAT_FORMAT_PEG_CONSTRUCTED,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -154,6 +160,7 @@ struct common_chat_params {
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
std::string parser;
};
struct common_chat_syntax {
@@ -163,6 +170,7 @@ struct common_chat_syntax {
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
common_peg_arena parser = {};
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
@@ -206,6 +214,7 @@ const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);

View File

@@ -8,6 +8,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cinttypes>
@@ -693,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -753,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -781,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -858,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -892,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -911,7 +941,7 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list_files(const std::string & path) {
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
@@ -926,14 +956,22 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect
@@ -944,34 +982,217 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
// TODO: move to common/sampling
static void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) {
dst = v;
}
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) {
return;
}
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) {
dst = v;
}
}
};
// Sampling sequence
if (!(config & common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS)) {
char buf[512] = {0};
if (llama_model_meta_val_str(model, llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_SEQUENCE), buf, sizeof(buf)) > 0) {
const std::vector<std::string> sampler_names = string_split<std::string>(std::string(buf), ';');
if (!sampler_names.empty()) {
sparams.samplers = common_sampler_types_from_names(sampler_names, true);
}
}
}
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_K), sparams.top_k, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TOP_P), sparams.top_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIN_P), sparams.min_p, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_PROBABILITY), sparams.xtc_probability, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_XTC_THRESHOLD), sparams.xtc_threshold, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_TEMP), sparams.temp, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TEMP);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_LAST_N), sparams.penalty_last_n, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_PENALTY_REPEAT), sparams.penalty_repeat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT);
get_int32(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT), sparams.mirostat, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_TAU), sparams.mirostat_tau, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU);
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result::impl {
impl() = default;
~impl() = default;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
};
common_init_result::common_init_result(common_params & params) :
pimpl(new impl{}) {
auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
return;
}
pimpl->model.reset(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
auto cparams = common_context_params_to_llama(params);
// updates params.sampling
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
//if (params.sampling.penalty_last_n == -1) {
// LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.penalty_last_n = llama_n_ctx(lctx);
//}
//if (params.sampling.dry_penalty_last_n == -1) {
// LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
pimpl->samplers.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
}
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return;
}
pimpl->context.reset(lctx);
}
llama_model * common_init_result::model() {
return pimpl->model.get();
}
llama_context * common_init_result::context() {
return pimpl->context.get();
}
common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
llama_model * model = res->model();
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return res;
}
llama_context * lctx = res->context();
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
return res;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
@@ -983,10 +1204,7 @@ struct common_init_result common_init_from_params(common_params & params) {
const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
int err = llama_apply_adapter_cvec(
@@ -997,10 +1215,7 @@ struct common_init_result common_init_from_params(common_params & params) {
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1024,10 +1239,7 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1037,9 +1249,7 @@ struct common_init_result common_init_from_params(common_params & params) {
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
char buf[1024];
@@ -1048,43 +1258,13 @@ struct common_init_result common_init_from_params(common_params & params) {
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters);
}
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@@ -1123,12 +1303,11 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
iparams.context.reset(lctx);
return iparams;
return res;
}
common_init_result::~common_init_result() = default;
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
@@ -1137,7 +1316,9 @@ std::string get_model_endpoint() {
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
if (model_endpoint.back() != '/') {
model_endpoint += '/';
}
}
return model_endpoint;
}

View File

@@ -12,6 +12,10 @@
#include <vector>
#include <map>
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
#else
@@ -26,8 +30,6 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
@@ -80,7 +82,8 @@ int32_t cpu_get_num_math();
enum llama_example {
LLAMA_EXAMPLE_COMMON,
LLAMA_EXAMPLE_SPECULATIVE,
LLAMA_EXAMPLE_MAIN,
LLAMA_EXAMPLE_COMPLETION,
LLAMA_EXAMPLE_CLI,
LLAMA_EXAMPLE_EMBEDDING,
LLAMA_EXAMPLE_PERPLEXITY,
LLAMA_EXAMPLE_RETRIEVAL,
@@ -96,6 +99,7 @@ enum llama_example {
LLAMA_EXAMPLE_TTS,
LLAMA_EXAMPLE_DIFFUSION,
LLAMA_EXAMPLE_FINETUNE,
LLAMA_EXAMPLE_FIT_PARAMS,
LLAMA_EXAMPLE_COUNT,
};
@@ -140,6 +144,22 @@ struct common_grammar_trigger {
llama_token token = LLAMA_TOKEN_NULL;
};
enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_SAMPLERS = 1 << 0,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_K = 1 << 1,
COMMON_PARAMS_SAMPLING_CONFIG_TOP_P = 1 << 2,
COMMON_PARAMS_SAMPLING_CONFIG_MIN_P = 1 << 3,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY = 1 << 4,
COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD = 1 << 5,
COMMON_PARAMS_SAMPLING_CONFIG_TEMP = 1 << 6,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_LAST_N = 1 << 7,
COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT = 1 << 8,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT = 1 << 9,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU = 1 << 10,
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -172,8 +192,9 @@ struct common_params_sampling {
bool no_perf = false; // disable performance metrics
bool timing_per_token = false;
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
uint64_t user_sampling_config = 0; // bitfield to track user-specified samplers
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
@@ -195,6 +216,10 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool has_logit_bias() const {
return !logit_bias.empty();
}
// print the parameters into a string
std::string print() const;
};
@@ -205,6 +230,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -281,8 +307,8 @@ struct lr_opt {
struct ggml_opt_optimizer_params common_opt_lr_pars(void * userdata);
struct common_params {
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 4096; // context size
int32_t n_predict = -1; // max. number of new tokens to predict, -1 == no limit
int32_t n_ctx = 0; // context size, 0 == context the model was trained with
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
@@ -303,9 +329,12 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@@ -351,7 +380,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -385,6 +414,7 @@ struct common_params {
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
bool cont_batching = true; // insert new sequences for decoding on-the-fly
bool no_perf = false; // disable performance metrics
bool show_timings = true; // show timing information on CLI
bool ctx_shift = false; // context shift on infinite text generation
bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
bool kv_unified = false; // enable unified KV cache
@@ -441,7 +471,7 @@ struct common_params {
std::string public_path = ""; // NOLINT
std::string api_prefix = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool use_jinja = true; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
int reasoning_budget = -1;
@@ -454,15 +484,25 @@ struct common_params {
std::map<std::string, std::string> default_template_kwargs;
// webui configs
bool webui = true;
std::string webui_config_json;
// "advanced" endpoints are disabled by default for better security
bool webui = true;
bool endpoint_slots = true;
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
std::string models_preset = ""; // directory containing model presets for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
@@ -613,8 +653,9 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
@@ -623,22 +664,44 @@ struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list_files(const std::string & path);
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
struct common_sampler;
std::vector<llama_adapter_lora_ptr> lora;
// note: defines the model, context, samplers, ets. lifetimes
struct common_init_result {
common_init_result(common_params & params);
~common_init_result();
llama_model * model();
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct common_init_result common_init_from_params(common_params & params);
using common_init_result_ptr = std::unique_ptr<common_init_result>;
common_init_result_ptr common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);

View File

@@ -1,6 +1,16 @@
#include "console.h"
#include "log.h"
#include <vector>
#include <iostream>
#include <cassert>
#include <cstddef>
#include <cctype>
#include <cwctype>
#include <cstdint>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <stdarg.h>
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
@@ -30,26 +40,44 @@
#define ANSI_COLOR_BLUE "\x1b[34m"
#define ANSI_COLOR_MAGENTA "\x1b[35m"
#define ANSI_COLOR_CYAN "\x1b[36m"
#define ANSI_COLOR_GRAY "\x1b[90m"
#define ANSI_COLOR_RESET "\x1b[0m"
#define ANSI_BOLD "\x1b[1m"
namespace console {
#if defined (_WIN32)
namespace {
// Use private-use unicode values to represent special keys that are not reported
// as characters (e.g. arrows on Windows). These values should never clash with
// real input and let the rest of the code handle navigation uniformly.
static constexpr char32_t KEY_ARROW_LEFT = 0xE000;
static constexpr char32_t KEY_ARROW_RIGHT = 0xE001;
static constexpr char32_t KEY_ARROW_UP = 0xE002;
static constexpr char32_t KEY_ARROW_DOWN = 0xE003;
static constexpr char32_t KEY_HOME = 0xE004;
static constexpr char32_t KEY_END = 0xE005;
static constexpr char32_t KEY_CTRL_ARROW_LEFT = 0xE006;
static constexpr char32_t KEY_CTRL_ARROW_RIGHT = 0xE007;
static constexpr char32_t KEY_DELETE = 0xE008;
}
//
// Console state
//
#endif
static bool advanced_display = false;
static bool simple_io = true;
static display_t current_display = reset;
static bool advanced_display = false;
static bool simple_io = true;
static display_type current_display = DISPLAY_TYPE_RESET;
static FILE* out = stdout;
static FILE* out = stdout;
#if defined (_WIN32)
static void* hConsole;
static void* hConsole;
#else
static FILE* tty = nullptr;
static termios initial_state;
static FILE* tty = nullptr;
static termios initial_state;
#endif
//
@@ -120,7 +148,7 @@ namespace console {
void cleanup() {
// Reset console display
set_display(reset);
set_display(DISPLAY_TYPE_RESET);
#if !defined(_WIN32)
// Restore settings on POSIX systems
@@ -140,20 +168,26 @@ namespace console {
//
// Keep track of current display and only emit ANSI code if it changes
void set_display(display_t display) {
void set_display(display_type display) {
if (advanced_display && current_display != display) {
fflush(stdout);
common_log_flush(common_log_main());
switch(display) {
case reset:
case DISPLAY_TYPE_RESET:
fprintf(out, ANSI_COLOR_RESET);
break;
case prompt:
case DISPLAY_TYPE_INFO:
fprintf(out, ANSI_COLOR_MAGENTA);
break;
case DISPLAY_TYPE_PROMPT:
fprintf(out, ANSI_COLOR_YELLOW);
break;
case user_input:
case DISPLAY_TYPE_REASONING:
fprintf(out, ANSI_COLOR_GRAY);
break;
case DISPLAY_TYPE_USER_INPUT:
fprintf(out, ANSI_BOLD ANSI_COLOR_GREEN);
break;
case error:
case DISPLAY_TYPE_ERROR:
fprintf(out, ANSI_BOLD ANSI_COLOR_RED);
}
current_display = display;
@@ -176,7 +210,18 @@ namespace console {
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) {
wchar_t wc = record.Event.KeyEvent.uChar.UnicodeChar;
if (wc == 0) {
continue;
const DWORD ctrl_mask = LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED;
const bool ctrl_pressed = (record.Event.KeyEvent.dwControlKeyState & ctrl_mask) != 0;
switch (record.Event.KeyEvent.wVirtualKeyCode) {
case VK_LEFT: return ctrl_pressed ? KEY_CTRL_ARROW_LEFT : KEY_ARROW_LEFT;
case VK_RIGHT: return ctrl_pressed ? KEY_CTRL_ARROW_RIGHT : KEY_ARROW_RIGHT;
case VK_UP: return KEY_ARROW_UP;
case VK_DOWN: return KEY_ARROW_DOWN;
case VK_HOME: return KEY_HOME;
case VK_END: return KEY_END;
case VK_DELETE: return KEY_DELETE;
default: continue;
}
}
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
@@ -315,6 +360,52 @@ namespace console {
#endif
}
static char32_t decode_utf8(const std::string & input, size_t pos, size_t & advance) {
unsigned char c = static_cast<unsigned char>(input[pos]);
if ((c & 0x80u) == 0u) {
advance = 1;
return c;
}
if ((c & 0xE0u) == 0xC0u && pos + 1 < input.size()) {
unsigned char c1 = static_cast<unsigned char>(input[pos + 1]);
if ((c1 & 0xC0u) != 0x80u) {
advance = 1;
return 0xFFFD;
}
advance = 2;
return ((c & 0x1Fu) << 6) | (static_cast<unsigned char>(input[pos + 1]) & 0x3Fu);
}
if ((c & 0xF0u) == 0xE0u && pos + 2 < input.size()) {
unsigned char c1 = static_cast<unsigned char>(input[pos + 1]);
unsigned char c2 = static_cast<unsigned char>(input[pos + 2]);
if ((c1 & 0xC0u) != 0x80u || (c2 & 0xC0u) != 0x80u) {
advance = 1;
return 0xFFFD;
}
advance = 3;
return ((c & 0x0Fu) << 12) |
((static_cast<unsigned char>(input[pos + 1]) & 0x3Fu) << 6) |
(static_cast<unsigned char>(input[pos + 2]) & 0x3Fu);
}
if ((c & 0xF8u) == 0xF0u && pos + 3 < input.size()) {
unsigned char c1 = static_cast<unsigned char>(input[pos + 1]);
unsigned char c2 = static_cast<unsigned char>(input[pos + 2]);
unsigned char c3 = static_cast<unsigned char>(input[pos + 3]);
if ((c1 & 0xC0u) != 0x80u || (c2 & 0xC0u) != 0x80u || (c3 & 0xC0u) != 0x80u) {
advance = 1;
return 0xFFFD;
}
advance = 4;
return ((c & 0x07u) << 18) |
((static_cast<unsigned char>(input[pos + 1]) & 0x3Fu) << 12) |
((static_cast<unsigned char>(input[pos + 2]) & 0x3Fu) << 6) |
(static_cast<unsigned char>(input[pos + 3]) & 0x3Fu);
}
advance = 1;
return 0xFFFD; // replacement character for invalid input
}
static void append_utf8(char32_t ch, std::string & out) {
if (ch <= 0x7F) {
out.push_back(static_cast<unsigned char>(ch));
@@ -336,22 +427,319 @@ namespace console {
}
// Helper function to remove the last UTF-8 character from a string
static void pop_back_utf8_char(std::string & line) {
if (line.empty()) {
static size_t prev_utf8_char_pos(const std::string & line, size_t pos) {
if (pos == 0) return 0;
pos--;
while (pos > 0 && (line[pos] & 0xC0) == 0x80) {
pos--;
}
return pos;
}
static size_t next_utf8_char_pos(const std::string & line, size_t pos) {
if (pos >= line.length()) return line.length();
pos++;
while (pos < line.length() && (line[pos] & 0xC0) == 0x80) {
pos++;
}
return pos;
}
static void move_cursor(int delta);
static void move_word_left(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line);
static void move_word_right(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line);
static void move_to_line_start(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths);
static void move_to_line_end(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line);
static void delete_at_cursor(std::string & line, std::vector<int> & widths, size_t & char_pos, size_t & byte_pos) {
if (char_pos >= widths.size()) {
return;
}
size_t pos = line.length() - 1;
size_t next_pos = next_utf8_char_pos(line, byte_pos);
int w = widths[char_pos];
size_t char_len = next_pos - byte_pos;
// Find the start of the last UTF-8 character (checking up to 4 bytes back)
for (size_t i = 0; i < 3 && pos > 0; ++i, --pos) {
if ((line[pos] & 0xC0) != 0x80) {
break; // Found the start of the character
}
line.erase(byte_pos, char_len);
widths.erase(widths.begin() + char_pos);
size_t p = byte_pos;
int tail_width = 0;
for (size_t i = char_pos; i < widths.size(); ++i) {
size_t following = next_utf8_char_pos(line, p);
put_codepoint(line.c_str() + p, following - p, widths[i]);
tail_width += widths[i];
p = following;
}
line.erase(pos);
for (int i = 0; i < w; ++i) {
fputc(' ', out);
}
move_cursor(-(tail_width + w));
}
static void clear_current_line(const std::vector<int> & widths) {
int total_width = 0;
for (int w : widths) {
total_width += (w > 0 ? w : 1);
}
if (total_width > 0) {
std::string spaces(total_width, ' ');
fwrite(spaces.c_str(), 1, total_width, out);
move_cursor(-total_width);
}
}
static void set_line_contents(std::string new_line, std::string & line, std::vector<int> & widths, size_t & char_pos,
size_t & byte_pos) {
move_to_line_start(char_pos, byte_pos, widths);
clear_current_line(widths);
line = std::move(new_line);
widths.clear();
byte_pos = 0;
char_pos = 0;
size_t idx = 0;
while (idx < line.size()) {
size_t advance = 0;
char32_t cp = decode_utf8(line, idx, advance);
int expected_width = estimateWidth(cp);
int real_width = put_codepoint(line.c_str() + idx, advance, expected_width);
if (real_width < 0) real_width = 0;
widths.push_back(real_width);
idx += advance;
++char_pos;
byte_pos = idx;
}
}
static void move_to_line_start(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths) {
int back_width = 0;
for (size_t i = 0; i < char_pos; ++i) {
back_width += widths[i];
}
move_cursor(-back_width);
char_pos = 0;
byte_pos = 0;
}
static void move_to_line_end(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line) {
int forward_width = 0;
for (size_t i = char_pos; i < widths.size(); ++i) {
forward_width += widths[i];
}
move_cursor(forward_width);
char_pos = widths.size();
byte_pos = line.length();
}
static bool has_ctrl_modifier(const std::string & params) {
size_t start = 0;
while (start < params.size()) {
size_t end = params.find(';', start);
size_t len = (end == std::string::npos) ? params.size() - start : end - start;
if (len > 0) {
int value = 0;
for (size_t i = 0; i < len; ++i) {
char ch = params[start + i];
if (!std::isdigit(static_cast<unsigned char>(ch))) {
value = -1;
break;
}
value = value * 10 + (ch - '0');
}
if (value == 5) {
return true;
}
}
if (end == std::string::npos) {
break;
}
start = end + 1;
}
return false;
}
static bool is_space_codepoint(char32_t cp) {
return std::iswspace(static_cast<wint_t>(cp)) != 0;
}
static void move_word_left(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line) {
if (char_pos == 0) {
return;
}
size_t new_char_pos = char_pos;
size_t new_byte_pos = byte_pos;
int move_width = 0;
while (new_char_pos > 0) {
size_t prev_byte = prev_utf8_char_pos(line, new_byte_pos);
size_t advance = 0;
char32_t cp = decode_utf8(line, prev_byte, advance);
if (!is_space_codepoint(cp)) {
break;
}
move_width += widths[new_char_pos - 1];
new_char_pos--;
new_byte_pos = prev_byte;
}
while (new_char_pos > 0) {
size_t prev_byte = prev_utf8_char_pos(line, new_byte_pos);
size_t advance = 0;
char32_t cp = decode_utf8(line, prev_byte, advance);
if (is_space_codepoint(cp)) {
break;
}
move_width += widths[new_char_pos - 1];
new_char_pos--;
new_byte_pos = prev_byte;
}
move_cursor(-move_width);
char_pos = new_char_pos;
byte_pos = new_byte_pos;
}
static void move_word_right(size_t & char_pos, size_t & byte_pos, const std::vector<int> & widths, const std::string & line) {
if (char_pos >= widths.size()) {
return;
}
size_t new_char_pos = char_pos;
size_t new_byte_pos = byte_pos;
int move_width = 0;
while (new_char_pos < widths.size()) {
size_t advance = 0;
char32_t cp = decode_utf8(line, new_byte_pos, advance);
if (!is_space_codepoint(cp)) {
break;
}
move_width += widths[new_char_pos];
new_char_pos++;
new_byte_pos += advance;
}
while (new_char_pos < widths.size()) {
size_t advance = 0;
char32_t cp = decode_utf8(line, new_byte_pos, advance);
if (is_space_codepoint(cp)) {
break;
}
move_width += widths[new_char_pos];
new_char_pos++;
new_byte_pos += advance;
}
while (new_char_pos < widths.size()) {
size_t advance = 0;
char32_t cp = decode_utf8(line, new_byte_pos, advance);
if (!is_space_codepoint(cp)) {
break;
}
move_width += widths[new_char_pos];
new_char_pos++;
new_byte_pos += advance;
}
move_cursor(move_width);
char_pos = new_char_pos;
byte_pos = new_byte_pos;
}
static void move_cursor(int delta) {
if (delta == 0) return;
#if defined(_WIN32)
if (hConsole != NULL) {
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
GetConsoleScreenBufferInfo(hConsole, &bufferInfo);
COORD newCursorPosition = bufferInfo.dwCursorPosition;
int width = bufferInfo.dwSize.X;
int newX = newCursorPosition.X + delta;
int newY = newCursorPosition.Y;
while (newX >= width) {
newX -= width;
newY++;
}
while (newX < 0) {
newX += width;
newY--;
}
newCursorPosition.X = newX;
newCursorPosition.Y = newY;
SetConsoleCursorPosition(hConsole, newCursorPosition);
}
#else
if (delta < 0) {
for (int i = 0; i < -delta; i++) fprintf(out, "\b");
} else {
for (int i = 0; i < delta; i++) fprintf(out, "\033[C");
}
#endif
}
struct history_t {
std::vector<std::string> entries;
size_t viewing_idx = SIZE_MAX;
std::string backup_line; // current line before viewing history
void add(const std::string & line) {
if (line.empty()) {
return;
}
// avoid duplicates with the last entry
if (entries.empty() || entries.back() != line) {
entries.push_back(line);
}
// also clear viewing state
end_viewing();
}
bool prev(std::string & cur_line) {
if (entries.empty()) {
return false;
}
if (viewing_idx == SIZE_MAX) {
return false;
}
if (viewing_idx > 0) {
viewing_idx--;
}
cur_line = entries[viewing_idx];
return true;
}
bool next(std::string & cur_line) {
if (entries.empty() || viewing_idx == SIZE_MAX) {
return false;
}
viewing_idx++;
if (viewing_idx >= entries.size()) {
cur_line = backup_line;
end_viewing();
} else {
cur_line = entries[viewing_idx];
}
return true;
}
void begin_viewing(const std::string & line) {
backup_line = line;
viewing_idx = entries.size();
}
void end_viewing() {
viewing_idx = SIZE_MAX;
backup_line.clear();
}
bool is_viewing() const {
return viewing_idx != SIZE_MAX;
}
} history;
static bool readline_advanced(std::string & line, bool multiline_input) {
if (out != stdout) {
fflush(stdout);
@@ -362,8 +750,33 @@ namespace console {
bool is_special_char = false;
bool end_of_stream = false;
size_t byte_pos = 0; // current byte index
size_t char_pos = 0; // current character index (one char can be multiple bytes)
char32_t input_char;
while (true) {
assert(char_pos <= byte_pos);
assert(char_pos <= widths.size());
auto history_prev = [&]() {
if (!history.is_viewing()) {
history.begin_viewing(line);
}
std::string new_line;
if (!history.prev(new_line)) {
return;
}
set_line_contents(new_line, line, widths, char_pos, byte_pos);
};
auto history_next = [&]() {
if (history.is_viewing()) {
std::string new_line;
if (!history.next(new_line)) {
return;
}
set_line_contents(new_line, line, widths, char_pos, byte_pos);
}
};
fflush(out); // Ensure all output is displayed before waiting for input
input_char = getchar32();
@@ -371,20 +784,83 @@ namespace console {
break;
}
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D */) {
end_of_stream = true;
break;
}
if (is_special_char) {
set_display(user_input);
replace_last(line.back());
is_special_char = false;
}
if (input_char == '\033') { // Escape sequence
char32_t code = getchar32();
if (code == '[' || code == 0x1B) {
if (code == '[') {
std::string params;
while (true) {
code = getchar32();
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~' || code == (char32_t) WEOF) {
break;
}
params.push_back(static_cast<char>(code));
}
const bool ctrl_modifier = has_ctrl_modifier(params);
if (code == 'D') { // left
if (ctrl_modifier) {
move_word_left(char_pos, byte_pos, widths, line);
} else if (char_pos > 0) {
int w = widths[char_pos - 1];
move_cursor(-w);
char_pos--;
byte_pos = prev_utf8_char_pos(line, byte_pos);
}
} else if (code == 'C') { // right
if (ctrl_modifier) {
move_word_right(char_pos, byte_pos, widths, line);
} else if (char_pos < widths.size()) {
int w = widths[char_pos];
move_cursor(w);
char_pos++;
byte_pos = next_utf8_char_pos(line, byte_pos);
}
} else if (code == 'H') { // home
move_to_line_start(char_pos, byte_pos, widths);
} else if (code == 'F') { // end
move_to_line_end(char_pos, byte_pos, widths, line);
} else if (code == 'A' || code == 'B') {
// up/down
if (code == 'A') {
history_prev();
is_special_char = false;
} else if (code == 'B') {
history_next();
is_special_char = false;
}
} else if ((code == '~' || (code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z')) && !params.empty()) {
std::string digits;
for (char ch : params) {
if (ch == ';') {
break;
}
if (std::isdigit(static_cast<unsigned char>(ch))) {
digits.push_back(ch);
}
}
if (code == '~') {
if (digits == "1" || digits == "7") { // home
move_to_line_start(char_pos, byte_pos, widths);
} else if (digits == "4" || digits == "8") { // end
move_to_line_end(char_pos, byte_pos, widths, line);
} else if (digits == "3") { // delete
delete_at_cursor(line, widths, char_pos, byte_pos);
}
}
}
} else if (code == 0x1B) {
// Discard the rest of the escape sequence
while ((code = getchar32()) != (char32_t) WEOF) {
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
@@ -392,32 +868,110 @@ namespace console {
}
}
}
#if defined(_WIN32)
} else if (input_char == KEY_ARROW_LEFT) {
if (char_pos > 0) {
int w = widths[char_pos - 1];
move_cursor(-w);
char_pos--;
byte_pos = prev_utf8_char_pos(line, byte_pos);
}
} else if (input_char == KEY_ARROW_RIGHT) {
if (char_pos < widths.size()) {
int w = widths[char_pos];
move_cursor(w);
char_pos++;
byte_pos = next_utf8_char_pos(line, byte_pos);
}
} else if (input_char == KEY_CTRL_ARROW_LEFT) {
move_word_left(char_pos, byte_pos, widths, line);
} else if (input_char == KEY_CTRL_ARROW_RIGHT) {
move_word_right(char_pos, byte_pos, widths, line);
} else if (input_char == KEY_HOME) {
move_to_line_start(char_pos, byte_pos, widths);
} else if (input_char == KEY_END) {
move_to_line_end(char_pos, byte_pos, widths, line);
} else if (input_char == KEY_DELETE) {
delete_at_cursor(line, widths, char_pos, byte_pos);
} else if (input_char == KEY_ARROW_UP || input_char == KEY_ARROW_DOWN) {
if (input_char == KEY_ARROW_UP) {
history_prev();
is_special_char = false;
} else if (input_char == KEY_ARROW_DOWN) {
history_next();
is_special_char = false;
}
#endif
} else if (input_char == 0x08 || input_char == 0x7F) { // Backspace
if (!widths.empty()) {
int count;
do {
count = widths.back();
widths.pop_back();
// Move cursor back, print space, and move cursor back again
for (int i = 0; i < count; i++) {
replace_last(' ');
pop_cursor();
}
pop_back_utf8_char(line);
} while (count == 0 && !widths.empty());
if (char_pos > 0) {
int w = widths[char_pos - 1];
move_cursor(-w);
char_pos--;
size_t prev_pos = prev_utf8_char_pos(line, byte_pos);
size_t char_len = byte_pos - prev_pos;
byte_pos = prev_pos;
// remove the character
line.erase(byte_pos, char_len);
widths.erase(widths.begin() + char_pos);
// redraw tail
size_t p = byte_pos;
int tail_width = 0;
for (size_t i = char_pos; i < widths.size(); ++i) {
size_t next_p = next_utf8_char_pos(line, p);
put_codepoint(line.c_str() + p, next_p - p, widths[i]);
tail_width += widths[i];
p = next_p;
}
// clear display
for (int i = 0; i < w; ++i) {
fputc(' ', out);
}
move_cursor(-(tail_width + w));
}
} else {
int offset = line.length();
append_utf8(input_char, line);
int width = put_codepoint(line.c_str() + offset, line.length() - offset, estimateWidth(input_char));
if (width < 0) {
width = 0;
// insert character
std::string new_char_str;
append_utf8(input_char, new_char_str);
int w = estimateWidth(input_char);
if (char_pos == widths.size()) {
// insert at the end
line += new_char_str;
int real_w = put_codepoint(new_char_str.c_str(), new_char_str.length(), w);
if (real_w < 0) real_w = 0;
widths.push_back(real_w);
byte_pos += new_char_str.length();
char_pos++;
} else {
// insert in middle
line.insert(byte_pos, new_char_str);
int real_w = put_codepoint(new_char_str.c_str(), new_char_str.length(), w);
if (real_w < 0) real_w = 0;
widths.insert(widths.begin() + char_pos, real_w);
// print the tail
size_t p = byte_pos + new_char_str.length();
int tail_width = 0;
for (size_t i = char_pos + 1; i < widths.size(); ++i) {
size_t next_p = next_utf8_char_pos(line, p);
put_codepoint(line.c_str() + p, next_p - p, widths[i]);
tail_width += widths[i];
p = next_p;
}
move_cursor(-tail_width);
byte_pos += new_char_str.length();
char_pos++;
}
widths.push_back(width);
}
if (!line.empty() && (line.back() == '\\' || line.back() == '/')) {
set_display(prompt);
replace_last(line.back());
is_special_char = true;
}
@@ -451,6 +1005,15 @@ namespace console {
}
}
if (!end_of_stream && !line.empty()) {
// remove the trailing newline for history storage
if (!line.empty() && line.back() == '\n') {
line.pop_back();
}
// TODO: maybe support multiline history entries?
history.add(line);
}
fflush(out);
return has_more;
}
@@ -493,12 +1056,82 @@ namespace console {
}
bool readline(std::string & line, bool multiline_input) {
set_display(user_input);
if (simple_io) {
return readline_simple(line, multiline_input);
}
return readline_advanced(line, multiline_input);
}
namespace spinner {
static const char LOADING_CHARS[] = {'|', '/', '-', '\\'};
static std::condition_variable cv_stop;
static std::thread th;
static size_t frame = 0; // only modified by one thread
static bool running = false;
static std::mutex mtx;
static auto wait_time = std::chrono::milliseconds(100);
static void draw_next_frame() {
// don't need lock because only one thread modifies running
frame = (frame + 1) % sizeof(LOADING_CHARS);
replace_last(LOADING_CHARS[frame]);
fflush(out);
}
void start() {
std::unique_lock<std::mutex> lock(mtx);
if (simple_io || running) {
return;
}
common_log_flush(common_log_main());
fprintf(out, "%c", LOADING_CHARS[0]);
fflush(out);
frame = 1;
running = true;
th = std::thread([]() {
std::unique_lock<std::mutex> lock(mtx);
while (true) {
if (cv_stop.wait_for(lock, wait_time, []{ return !running; })) {
break;
}
draw_next_frame();
}
});
}
void stop() {
{
std::unique_lock<std::mutex> lock(mtx);
if (simple_io || !running) {
return;
}
running = false;
cv_stop.notify_all();
}
if (th.joinable()) {
th.join();
}
replace_last(' ');
pop_cursor();
fflush(out);
}
}
void log(const char * fmt, ...) {
va_list args;
va_start(args, fmt);
vfprintf(out, fmt, args);
va_end(args);
}
void error(const char * fmt, ...) {
va_list args;
va_start(args, fmt);
display_type cur = current_display;
set_display(DISPLAY_TYPE_ERROR);
vfprintf(out, fmt, args);
set_display(cur); // restore previous color
va_end(args);
}
void flush() {
fflush(out);
}
}

View File

@@ -2,18 +2,40 @@
#pragma once
#include "common.h"
#include <string>
namespace console {
enum display_t {
reset = 0,
prompt,
user_input,
error
};
enum display_type {
DISPLAY_TYPE_RESET = 0,
DISPLAY_TYPE_INFO,
DISPLAY_TYPE_PROMPT,
DISPLAY_TYPE_REASONING,
DISPLAY_TYPE_USER_INPUT,
DISPLAY_TYPE_ERROR
};
namespace console {
void init(bool use_simple_io, bool use_advanced_display);
void cleanup();
void set_display(display_t display);
void set_display(display_type display);
bool readline(std::string & line, bool multiline_input);
namespace spinner {
void start();
void stop();
}
// note: the logging API below output directly to stdout
// it can negatively impact performance if used on inference thread
// only use in in a dedicated CLI thread
// for logging in inference thread, use log.h instead
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
void log(const char * fmt, ...);
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
void error(const char * fmt, ...);
void flush();
}

View File

@@ -12,6 +12,8 @@
#include <filesystem>
#include <fstream>
#include <future>
#include <map>
#include <mutex>
#include <regex>
#include <string>
#include <thread>
@@ -24,6 +26,7 @@
#include "http.h"
#endif
#ifndef __EMSCRIPTEN__
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@@ -35,6 +38,8 @@
#else
#include <sys/syslimits.h>
#endif
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
// isatty
@@ -430,7 +435,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 0L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
@@ -469,36 +474,79 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
#elif defined(LLAMA_USE_HTTPLIB)
static bool is_output_a_tty() {
class ProgressBar {
static inline std::mutex mutex;
static inline std::map<const ProgressBar *, int> lines;
static inline int max_line = 0;
static void cleanup(const ProgressBar * line) {
lines.erase(line);
if (lines.empty()) {
max_line = 0;
}
}
static bool is_output_a_tty() {
#if defined(_WIN32)
return _isatty(_fileno(stdout));
return _isatty(_fileno(stdout));
#else
return isatty(1);
return isatty(1);
#endif
}
static void print_progress(size_t current, size_t total) {
if (!is_output_a_tty()) {
return;
}
if (!total) {
return;
public:
ProgressBar() = default;
~ProgressBar() {
std::lock_guard<std::mutex> lock(mutex);
cleanup(this);
}
size_t width = 50;
size_t pct = (100 * current) / total;
size_t pos = (width * current) / total;
void update(size_t current, size_t total) {
if (!is_output_a_tty()) {
return;
}
std::cout << "["
<< std::string(pos, '=')
<< (pos < width ? ">" : "")
<< std::string(width - pos, ' ')
<< "] " << std::setw(3) << pct << "% ("
<< current / (1024 * 1024) << " MB / "
<< total / (1024 * 1024) << " MB)\r";
std::cout.flush();
}
if (!total) {
return;
}
std::lock_guard<std::mutex> lock(mutex);
if (lines.find(this) == lines.end()) {
lines[this] = max_line++;
std::cout << "\n";
}
int lines_up = max_line - lines[this];
size_t width = 50;
size_t pct = (100 * current) / total;
size_t pos = (width * current) / total;
std::cout << "\033[s";
if (lines_up > 0) {
std::cout << "\033[" << lines_up << "A";
}
std::cout << "\033[2K\r["
<< std::string(pos, '=')
<< (pos < width ? ">" : "")
<< std::string(width - pos, ' ')
<< "] " << std::setw(3) << pct << "% ("
<< current / (1024 * 1024) << " MB / "
<< total / (1024 * 1024) << " MB) "
<< "\033[u";
std::cout.flush();
if (current == total) {
cleanup(this);
}
}
ProgressBar(const ProgressBar &) = delete;
ProgressBar & operator=(const ProgressBar &) = delete;
};
static bool common_pull_file(httplib::Client & cli,
const std::string & resolve_path,
@@ -517,16 +565,19 @@ static bool common_pull_file(httplib::Client & cli,
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
}
std::atomic<size_t> downloaded{existing_size};
const char * func = __func__; // avoid __func__ inside a lambda
size_t downloaded = existing_size;
size_t progress_step = 0;
ProgressBar bar;
auto res = cli.Get(resolve_path, headers,
[&](const httplib::Response &response) {
if (existing_size > 0 && response.status != 206) {
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", func, response.status);
return false;
}
if (existing_size == 0 && response.status != 200) {
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
LOG_WRN("%s: download received non-successful status code: %d\n", func, response.status);
return false;
}
if (total_size == 0 && response.has_header("Content-Length")) {
@@ -534,7 +585,7 @@ static bool common_pull_file(httplib::Client & cli,
size_t content_length = std::stoull(response.get_header_value("Content-Length"));
total_size = existing_size + content_length;
} catch (const std::exception &e) {
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
LOG_WRN("%s: invalid Content-Length header: %s\n", func, e.what());
}
}
return true;
@@ -542,18 +593,21 @@ static bool common_pull_file(httplib::Client & cli,
[&](const char *data, size_t len) {
ofs.write(data, len);
if (!ofs) {
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
LOG_ERR("%s: error writing to file: %s\n", func, path_tmp.c_str());
return false;
}
downloaded += len;
print_progress(downloaded, total_size);
progress_step += len;
if (progress_step >= total_size / 1000 || downloaded == total_size) {
bar.update(downloaded, total_size);
progress_step = 0;
}
return true;
},
nullptr
);
std::cout << "\n";
if (!res) {
LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1);
return false;
@@ -1047,7 +1101,7 @@ std::string common_docker_resolve_model(const std::string &) {
std::vector<common_cached_model_info> common_list_cached_models() {
std::vector<common_cached_model_info> models;
const std::string cache_dir = fs_get_cache_directory();
const std::vector<common_file_info> files = fs_list_files(cache_dir);
const std::vector<common_file_info> files = fs_list(cache_dir, false);
for (const auto & file : files) {
if (string_starts_with(file.name, "manifest=") && string_ends_with(file.name, ".json")) {
common_cached_model_info model_info;

View File

@@ -14,8 +14,10 @@ struct common_cached_model_info {
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
// return string representation like "user/model:tag"
// if tag is "latest", it will be omitted
std::string to_string() const {
return user + "/" + model + ":" + tag;
return user + "/" + model + (tag == "latest" ? "" : ":" + tag);
}
};

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -305,8 +305,9 @@ static std::string format_literal(const std::string & literal) {
std::string gbnf_format_literal(const std::string & literal) { return format_literal(literal); }
class SchemaConverter {
class common_schema_converter {
private:
friend class common_schema_info;
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
@@ -729,7 +730,7 @@ private:
}
public:
SchemaConverter(
common_schema_converter(
const std::function<json(const std::string &)> & fetch_json,
bool dotall)
: _fetch_json(fetch_json), _dotall(dotall)
@@ -974,7 +975,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
@@ -990,6 +991,134 @@ public:
}
};
// common_schema_info implementation (pimpl)
common_schema_info::common_schema_info()
: impl_(std::make_unique<common_schema_converter>(
[](const std::string &) { return json(); },
false)) {}
common_schema_info::~common_schema_info() = default;
common_schema_info::common_schema_info(common_schema_info &&) noexcept = default;
common_schema_info & common_schema_info::operator=(common_schema_info &&) noexcept = default;
void common_schema_info::resolve_refs(nlohmann::ordered_json & schema) {
impl_->resolve_refs(schema, "");
}
// Determines if a JSON schema can resolve to a string type through any path.
// Some models emit raw string values rather than JSON-encoded strings for string parameters.
// If any branch of the schema (via oneOf, anyOf, $ref, etc.) permits a string, this returns
// true, allowing callers to handle the value as a raw string for simplicity.
bool common_schema_info::resolves_to_string(const nlohmann::ordered_json & schema) {
std::unordered_set<std::string> visited_refs;
std::function<bool(const json &)> check = [&](const json & s) -> bool {
if (!s.is_object()) {
return false;
}
// Handle $ref
if (s.contains("$ref")) {
const std::string & ref = s["$ref"];
if (visited_refs.find(ref) != visited_refs.end()) {
// Circular reference, assume not a string to be safe
return false;
}
visited_refs.insert(ref);
auto it = impl_->_refs.find(ref);
if (it != impl_->_refs.end()) {
return check(it->second);
}
return false;
}
// Check type field
if (s.contains("type")) {
const json & schema_type = s["type"];
if (schema_type.is_string()) {
if (schema_type == "string") {
return true;
}
} else if (schema_type.is_array()) {
// Type can be an array like ["string", "null"]
for (const auto & t : schema_type) {
if (t == "string") {
return true;
}
}
}
}
// Check oneOf/anyOf - if any alternative can be a string
if (s.contains("oneOf")) {
for (const auto & alt : s["oneOf"]) {
if (check(alt)) {
return true;
}
}
}
if (s.contains("anyOf")) {
for (const auto & alt : s["anyOf"]) {
if (check(alt)) {
return true;
}
}
}
// Check allOf - all components must be compatible with string type
if (s.contains("allOf")) {
bool all_string = true;
for (const auto & component : s["allOf"]) {
if (!check(component)) {
all_string = false;
break;
}
}
if (all_string) {
return true;
}
}
// Check const - if the constant value is a string
if (s.contains("const")) {
if (s["const"].is_string()) {
return true;
}
}
// Check enum - if any enum value is a string
if (s.contains("enum")) {
for (const auto & val : s["enum"]) {
if (val.is_string()) {
return true;
}
}
}
// String-specific keywords imply string type
if (s.contains("pattern") || s.contains("minLength") || s.contains("maxLength")) {
return true;
}
// Check format - many formats imply string
if (s.contains("format")) {
const std::string & fmt = s["format"];
if (fmt == "date" || fmt == "time" || fmt == "date-time" ||
fmt == "uri" || fmt == "email" || fmt == "hostname" ||
fmt == "ipv4" || fmt == "ipv6" || fmt == "uuid" ||
fmt.find("uuid") == 0) {
return true;
}
}
return false;
};
return check(schema);
}
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
@@ -1006,7 +1135,7 @@ std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_schema_converter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);

View File

@@ -3,11 +3,31 @@
#include <nlohmann/json_fwd.hpp>
#include <functional>
#include <memory>
#include <string>
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
class common_schema_converter;
// Probes a JSON schema to extract information about its structure and type constraints.
class common_schema_info {
std::unique_ptr<common_schema_converter> impl_;
public:
common_schema_info();
~common_schema_info();
common_schema_info(const common_schema_info &) = delete;
common_schema_info & operator=(const common_schema_info &) = delete;
common_schema_info(common_schema_info &&) noexcept;
common_schema_info & operator=(common_schema_info &&) noexcept;
void resolve_refs(nlohmann::ordered_json & schema);
bool resolves_to_string(const nlohmann::ordered_json & schema);
};
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}
@@ -443,8 +420,27 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
void common_log_flush(struct common_log * log) {
log->pause();
log->resume();
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -67,16 +73,18 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
void common_log_set_colors (struct common_log * log, log_colors colors); // not thread-safe
void common_log_set_prefix (struct common_log * log, bool prefix); // whether to output prefix to each log
void common_log_set_timestamps(struct common_log * log, bool timestamps); // whether to output timestamps in the prefix
void common_log_flush (struct common_log * log); // flush all pending log messages
// helper macros for logging
// use these to avoid computing log arguments if the verbosity of the log is higher than the threshold
@@ -95,14 +103,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

1712
common/peg-parser.cpp Normal file

File diff suppressed because it is too large Load Diff

459
common/peg-parser.h Normal file
View File

@@ -0,0 +1,459 @@
#pragma once
#include <nlohmann/json_fwd.hpp>
#include <memory>
#include <unordered_map>
#include <string>
#include <string_view>
#include <functional>
#include <vector>
#include <variant>
struct common_grammar_builder;
class common_peg_parser_builder;
using common_peg_parser_id = size_t;
constexpr common_peg_parser_id COMMON_PEG_INVALID_PARSER_ID = static_cast<common_peg_parser_id>(-1);
using common_peg_ast_id = size_t;
constexpr common_peg_ast_id COMMON_PEG_INVALID_AST_ID = static_cast<common_peg_ast_id>(-1);
// Lightweight wrapper around common_peg_parser_id for convenience
class common_peg_parser {
common_peg_parser_id id_;
common_peg_parser_builder & builder_;
public:
common_peg_parser(const common_peg_parser & other) : id_(other.id_), builder_(other.builder_) {}
common_peg_parser(common_peg_parser_id id, common_peg_parser_builder & builder) : id_(id), builder_(builder) {}
common_peg_parser & operator=(const common_peg_parser & other);
common_peg_parser & operator+=(const common_peg_parser & other);
common_peg_parser & operator|=(const common_peg_parser & other);
operator common_peg_parser_id() const { return id_; }
common_peg_parser_id id() const { return id_; }
common_peg_parser_builder & builder() const { return builder_; }
// Creates a sequence
common_peg_parser operator+(const common_peg_parser & other) const;
// Creates a sequence separated by spaces.
common_peg_parser operator<<(const common_peg_parser & other) const;
// Creates a choice
common_peg_parser operator|(const common_peg_parser & other) const;
common_peg_parser operator+(const char * str) const;
common_peg_parser operator+(const std::string & str) const;
common_peg_parser operator<<(const char * str) const;
common_peg_parser operator<<(const std::string & str) const;
common_peg_parser operator|(const char * str) const;
common_peg_parser operator|(const std::string & str) const;
};
common_peg_parser operator+(const char * str, const common_peg_parser & p);
common_peg_parser operator+(const std::string & str, const common_peg_parser & p);
common_peg_parser operator<<(const char * str, const common_peg_parser & p);
common_peg_parser operator<<(const std::string & str, const common_peg_parser & p);
common_peg_parser operator|(const char * str, const common_peg_parser & p);
common_peg_parser operator|(const std::string & str, const common_peg_parser & p);
enum common_peg_parse_result_type {
COMMON_PEG_PARSE_RESULT_FAIL = 0,
COMMON_PEG_PARSE_RESULT_SUCCESS = 1,
COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT = 2,
};
const char * common_peg_parse_result_type_name(common_peg_parse_result_type type);
struct common_peg_ast_node {
common_peg_ast_id id;
std::string rule;
std::string tag;
size_t start;
size_t end;
std::string_view text;
std::vector<common_peg_ast_id> children;
bool is_partial = false;
};
struct common_peg_parse_result;
using common_peg_ast_visitor = std::function<void(const common_peg_ast_node & node)>;
class common_peg_ast_arena {
std::vector<common_peg_ast_node> nodes_;
public:
common_peg_ast_id add_node(
const std::string & rule,
const std::string & tag,
size_t start,
size_t end,
std::string_view text,
std::vector<common_peg_ast_id> children,
bool is_partial = false
) {
common_peg_ast_id id = nodes_.size();
nodes_.push_back({id, rule, tag, start, end, text, std::move(children), is_partial});
return id;
}
const common_peg_ast_node & get(common_peg_ast_id id) const { return nodes_.at(id); }
size_t size() const { return nodes_.size(); }
void clear() { nodes_.clear(); }
void visit(common_peg_ast_id id, const common_peg_ast_visitor & visitor) const;
void visit(const common_peg_parse_result & result, const common_peg_ast_visitor & visitor) const;
};
struct common_peg_parse_result {
common_peg_parse_result_type type = COMMON_PEG_PARSE_RESULT_FAIL;
size_t start = 0;
size_t end = 0;
std::vector<common_peg_ast_id> nodes;
common_peg_parse_result() = default;
common_peg_parse_result(common_peg_parse_result_type type, size_t start)
: type(type), start(start), end(start) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end)
: type(type), start(start), end(end) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end, std::vector<common_peg_ast_id> nodes)
: type(type), start(start), end(end), nodes(std::move(nodes)) {}
bool fail() const { return type == COMMON_PEG_PARSE_RESULT_FAIL; }
bool need_more_input() const { return type == COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT; }
bool success() const { return type == COMMON_PEG_PARSE_RESULT_SUCCESS; }
};
struct common_peg_parse_context {
std::string input;
bool is_partial;
common_peg_ast_arena ast;
int parse_depth;
common_peg_parse_context()
: is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input)
: input(input), is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input, bool is_partial)
: input(input), is_partial(is_partial), parse_depth(0) {}
};
class common_peg_arena;
// Parser variants
struct common_peg_epsilon_parser {};
struct common_peg_start_parser {};
struct common_peg_end_parser {};
struct common_peg_literal_parser {
std::string literal;
};
struct common_peg_sequence_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_choice_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_repetition_parser {
common_peg_parser_id child;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_and_parser {
common_peg_parser_id child;
};
struct common_peg_not_parser {
common_peg_parser_id child;
};
struct common_peg_any_parser {};
struct common_peg_space_parser {};
struct common_peg_chars_parser {
struct char_range {
uint32_t start;
uint32_t end;
bool contains(uint32_t codepoint) const { return codepoint >= start && codepoint <= end; }
};
std::string pattern;
std::vector<char_range> ranges;
bool negated;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_json_string_parser {};
struct common_peg_until_parser {
std::vector<std::string> delimiters;
};
struct common_peg_schema_parser {
common_peg_parser_id child;
std::string name;
std::shared_ptr<nlohmann::ordered_json> schema;
// Indicates if the GBNF should accept a raw string that matches the schema.
bool raw;
};
struct common_peg_rule_parser {
std::string name;
common_peg_parser_id child;
bool trigger;
};
struct common_peg_ref_parser {
std::string name;
};
struct common_peg_atomic_parser {
common_peg_parser_id child;
};
struct common_peg_tag_parser {
common_peg_parser_id child;
std::string tag;
};
// Variant holding all parser types
using common_peg_parser_variant = std::variant<
common_peg_epsilon_parser,
common_peg_start_parser,
common_peg_end_parser,
common_peg_literal_parser,
common_peg_sequence_parser,
common_peg_choice_parser,
common_peg_repetition_parser,
common_peg_and_parser,
common_peg_not_parser,
common_peg_any_parser,
common_peg_space_parser,
common_peg_chars_parser,
common_peg_json_string_parser,
common_peg_until_parser,
common_peg_schema_parser,
common_peg_rule_parser,
common_peg_ref_parser,
common_peg_atomic_parser,
common_peg_tag_parser
>;
class common_peg_arena {
std::vector<common_peg_parser_variant> parsers_;
std::unordered_map<std::string, common_peg_parser_id> rules_;
common_peg_parser_id root_ = COMMON_PEG_INVALID_PARSER_ID;
public:
const common_peg_parser_variant & get(common_peg_parser_id id) const { return parsers_.at(id); }
common_peg_parser_variant & get(common_peg_parser_id id) { return parsers_.at(id); }
size_t size() const { return parsers_.size(); }
bool empty() const { return parsers_.empty(); }
common_peg_parser_id get_rule(const std::string & name) const;
bool has_rule(const std::string & name) const { return rules_.find(name) != rules_.end(); }
common_peg_parser_id root() const { return root_; }
void set_root(common_peg_parser_id id) { root_ = id; }
common_peg_parse_result parse(common_peg_parse_context & ctx, size_t start = 0) const;
common_peg_parse_result parse(common_peg_parser_id id, common_peg_parse_context & ctx, size_t start) const;
void resolve_refs();
void build_grammar(const common_grammar_builder & builder, bool lazy = false) const;
std::string dump(common_peg_parser_id id) const;
nlohmann::json to_json() const;
static common_peg_arena from_json(const nlohmann::json & j);
std::string save() const;
void load(const std::string & data);
friend class common_peg_parser_builder;
private:
common_peg_parser_id add_parser(common_peg_parser_variant parser);
void add_rule(const std::string & name, common_peg_parser_id id);
common_peg_parser_id resolve_ref(common_peg_parser_id id);
};
class common_peg_parser_builder {
common_peg_arena arena_;
common_peg_parser wrap(common_peg_parser_id id) { return common_peg_parser(id, *this); }
common_peg_parser add(const common_peg_parser_variant & p) { return wrap(arena_.add_parser(p)); }
public:
common_peg_parser_builder();
// Match nothing, always succeed.
// S -> ε
common_peg_parser eps() { return add(common_peg_epsilon_parser{}); }
// Matches the start of the input.
// S -> ^
common_peg_parser start() { return add(common_peg_start_parser{}); }
// Matches the end of the input.
// S -> $
common_peg_parser end() { return add(common_peg_end_parser{}); }
// Matches an exact literal string.
// S -> "hello"
common_peg_parser literal(const std::string & literal) { return add(common_peg_literal_parser{literal}); }
// Matches a sequence of parsers in order, all must succeed.
// S -> A B C
common_peg_parser sequence() { return add(common_peg_sequence_parser{}); }
common_peg_parser sequence(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser sequence(const std::vector<common_peg_parser> & parsers);
common_peg_parser sequence(std::initializer_list<common_peg_parser> parsers);
// Matches the first parser that succeeds from a list of alternatives.
// S -> A | B | C
common_peg_parser choice() { return add(common_peg_choice_parser{}); }
common_peg_parser choice(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser choice(const std::vector<common_peg_parser> & parsers);
common_peg_parser choice(std::initializer_list<common_peg_parser> parsers);
// Matches one or more repetitions of a parser.
// S -> A+
common_peg_parser one_or_more(const common_peg_parser & p) { return repeat(p, 1, -1); }
// Matches zero or more repetitions of a parser, always succeeds.
// S -> A*
common_peg_parser zero_or_more(const common_peg_parser & p) { return repeat(p, 0, -1); }
// Matches zero or one occurrence of a parser, always succeeds.
// S -> A?
common_peg_parser optional(const common_peg_parser & p) { return repeat(p, 0, 1); }
// Positive lookahead: succeeds if child parser succeeds, consumes no input.
// S -> &A
common_peg_parser peek(const common_peg_parser & p) { return add(common_peg_and_parser{p}); }
// Negative lookahead: succeeds if child parser fails, consumes no input.
// S -> !A
common_peg_parser negate(const common_peg_parser & p) { return add(common_peg_not_parser{p}); }
// Matches any single character.
// S -> .
common_peg_parser any() { return add(common_peg_any_parser{}); }
// Matches between min and max repetitions of characters from a character class.
// S -> [a-z]{m,n}
//
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser chars(const std::string & classes, int min = 1, int max = -1);
// Creates a lightweight reference to a named rule (resolved during build()).
// Use this for forward references in recursive grammars.
// expr_ref -> expr
common_peg_parser ref(const std::string & name) { return add(common_peg_ref_parser{name}); }
// Matches zero or more whitespace characters (space, tab, newline).
// S -> [ \t\n]*
common_peg_parser space() { return add(common_peg_space_parser{}); }
// Matches all characters until a delimiter is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until(const std::string & delimiter) { return add(common_peg_until_parser{{delimiter}}); }
// Matches all characters until one of the delimiters in the list is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until_one_of(const std::vector<std::string> & delimiters) { return add(common_peg_until_parser{delimiters}); }
// Matches everything
// S -> .*
common_peg_parser rest() { return until_one_of({}); }
// Matches between min and max repetitions of a parser (inclusive).
// S -> A{m,n}
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser repeat(const common_peg_parser & p, int min, int max) { return add(common_peg_repetition_parser{p, min,max}); }
// Matches exactly n repetitions of a parser.
// S -> A{n}
common_peg_parser repeat(const common_peg_parser & p, int n) { return repeat(p, n, n); }
// Creates a complete JSON parser supporting objects, arrays, strings, numbers, booleans, and null.
// value -> object | array | string | number | true | false | null
common_peg_parser json();
common_peg_parser json_object();
common_peg_parser json_string();
common_peg_parser json_array();
common_peg_parser json_number();
common_peg_parser json_bool();
common_peg_parser json_null();
// Matches JSON string content without the surrounding quotes.
// Useful for extracting content within a JSON string.
common_peg_parser json_string_content();
// Matches a JSON object member with a key and associated parser as the
// value.
common_peg_parser json_member(const std::string & key, const common_peg_parser & p);
// Wraps a parser with JSON schema metadata for grammar generation.
// Used internally to convert JSON schemas to GBNF grammar rules.
common_peg_parser schema(const common_peg_parser & p, const std::string & name, const nlohmann::ordered_json & schema, bool raw = false);
// Creates a named rule, stores it in the grammar, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", json_obj | json_arr | ...)
common_peg_parser rule(const std::string & name, const common_peg_parser & p, bool trigger = false);
// Creates a named rule using a builder function, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", [&]() { return json_object() | json_array() | ... })
common_peg_parser rule(const std::string & name, const std::function<common_peg_parser()> & builder, bool trigger = false);
// Creates a trigger rule. When generating a lazy grammar from the parser,
// only trigger rules and descendents are emitted.
common_peg_parser trigger_rule(const std::string & name, const common_peg_parser & p) { return rule(name, p, true); }
common_peg_parser trigger_rule(const std::string & name, const std::function<common_peg_parser()> & builder) { return rule(name, builder, true); }
// Creates an atomic parser. Atomic parsers do not create an AST node if
// the child results in a partial parse, i.e. NEEDS_MORE_INPUT. This is
// intended for situations where partial output is undesirable.
common_peg_parser atomic(const common_peg_parser & p) { return add(common_peg_atomic_parser{p}); }
// Tags create nodes in the generated AST for semantic purposes.
// Unlike rules, you can tag multiple nodes with the same tag.
common_peg_parser tag(const std::string & tag, const common_peg_parser & p) { return add(common_peg_tag_parser{p.id(), tag}); }
void set_root(const common_peg_parser & p);
common_peg_arena build();
};
// Helper function for building parsers
common_peg_arena build_peg_parser(const std::function<common_peg_parser(common_peg_parser_builder & builder)> & fn);

398
common/preset.cpp Normal file
View File

@@ -0,0 +1,398 @@
#include "arg.h"
#include "preset.h"
#include "peg-parser.h"
#include "log.h"
#include "download.h"
#include <fstream>
#include <sstream>
#include <filesystem>
static std::string rm_leading_dashes(const std::string & str) {
size_t pos = 0;
while (pos < str.size() && str[pos] == '-') {
++pos;
}
return str.substr(pos);
}
std::vector<std::string> common_preset::to_args(const std::string & bin_path) const {
std::vector<std::string> args;
if (!bin_path.empty()) {
args.push_back(bin_path);
}
for (const auto & [opt, value] : options) {
if (opt.is_preset_only) {
continue; // skip preset-only options (they are not CLI args)
}
// use the last arg as the main arg (i.e. --long-form)
args.push_back(opt.args.back());
// handle value(s)
if (opt.value_hint == nullptr && opt.value_hint_2 == nullptr) {
// flag option, no value
if (common_arg_utils::is_falsey(value)) {
// use negative arg if available
if (!opt.args_neg.empty()) {
args.back() = opt.args_neg.back();
} else {
// otherwise, skip the flag
// TODO: maybe throw an error instead?
args.pop_back();
}
}
}
if (opt.value_hint != nullptr) {
// single value
args.push_back(value);
}
if (opt.value_hint != nullptr && opt.value_hint_2 != nullptr) {
throw std::runtime_error(string_format(
"common_preset::to_args(): option '%s' has two values, which is not supported yet",
opt.args.back()
));
}
}
return args;
}
std::string common_preset::to_ini() const {
std::ostringstream ss;
ss << "[" << name << "]\n";
for (const auto & [opt, value] : options) {
auto espaced_value = value;
string_replace_all(espaced_value, "\n", "\\\n");
ss << rm_leading_dashes(opt.args.back()) << " = ";
ss << espaced_value << "\n";
}
ss << "\n";
return ss.str();
}
void common_preset::set_option(const common_preset_context & ctx, const std::string & env, const std::string & value) {
// try if option exists, update it
for (auto & [opt, val] : options) {
if (opt.env && env == opt.env) {
val = value;
return;
}
}
// if option does not exist, we need to add it
if (ctx.key_to_opt.find(env) == ctx.key_to_opt.end()) {
throw std::runtime_error(string_format(
"%s: option with env '%s' not found in ctx_params",
__func__, env.c_str()
));
}
options[ctx.key_to_opt.at(env)] = value;
}
void common_preset::unset_option(const std::string & env) {
for (auto it = options.begin(); it != options.end(); ) {
const common_arg & opt = it->first;
if (opt.env && env == opt.env) {
it = options.erase(it);
return;
} else {
++it;
}
}
}
bool common_preset::get_option(const std::string & env, std::string & value) const {
for (const auto & [opt, val] : options) {
if (opt.env && env == opt.env) {
value = val;
return true;
}
}
return false;
}
void common_preset::merge(const common_preset & other) {
for (const auto & [opt, val] : other.options) {
options[opt] = val; // overwrite existing options
}
}
static std::map<std::string, std::map<std::string, std::string>> parse_ini_from_file(const std::string & path) {
std::map<std::string, std::map<std::string, std::string>> parsed;
if (!std::filesystem::exists(path)) {
throw std::runtime_error("preset file does not exist: " + path);
}
std::ifstream file(path);
if (!file.good()) {
throw std::runtime_error("failed to open server preset file: " + path);
}
std::string contents((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
static const auto parser = build_peg_parser([](auto & p) {
// newline ::= "\r\n" / "\n" / "\r"
auto newline = p.rule("newline", p.literal("\r\n") | p.literal("\n") | p.literal("\r"));
// ws ::= [ \t]*
auto ws = p.rule("ws", p.chars("[ \t]", 0, -1));
// comment ::= [;#] (!newline .)*
auto comment = p.rule("comment", p.chars("[;#]", 1, 1) + p.zero_or_more(p.negate(newline) + p.any()));
// eol ::= ws comment? (newline / EOF)
auto eol = p.rule("eol", ws + p.optional(comment) + (newline | p.end()));
// ident ::= [a-zA-Z_] [a-zA-Z0-9_.-]*
auto ident = p.rule("ident", p.chars("[a-zA-Z_]", 1, 1) + p.chars("[a-zA-Z0-9_.-]", 0, -1));
// value ::= (!eol-start .)*
auto eol_start = p.rule("eol-start", ws + (p.chars("[;#]", 1, 1) | newline | p.end()));
auto value = p.rule("value", p.zero_or_more(p.negate(eol_start) + p.any()));
// header-line ::= "[" ws ident ws "]" eol
auto header_line = p.rule("header-line", "[" + ws + p.tag("section-name", p.chars("[^]]")) + ws + "]" + eol);
// kv-line ::= ident ws "=" ws value eol
auto kv_line = p.rule("kv-line", p.tag("key", ident) + ws + "=" + ws + p.tag("value", value) + eol);
// comment-line ::= ws comment (newline / EOF)
auto comment_line = p.rule("comment-line", ws + comment + (newline | p.end()));
// blank-line ::= ws (newline / EOF)
auto blank_line = p.rule("blank-line", ws + (newline | p.end()));
// line ::= header-line / kv-line / comment-line / blank-line
auto line = p.rule("line", header_line | kv_line | comment_line | blank_line);
// ini ::= line* EOF
auto ini = p.rule("ini", p.zero_or_more(line) + p.end());
return ini;
});
common_peg_parse_context ctx(contents);
const auto result = parser.parse(ctx);
if (!result.success()) {
throw std::runtime_error("failed to parse server config file: " + path);
}
std::string current_section = COMMON_PRESET_DEFAULT_NAME;
std::string current_key;
ctx.ast.visit(result, [&](const auto & node) {
if (node.tag == "section-name") {
const std::string section = std::string(node.text);
current_section = section;
parsed[current_section] = {};
} else if (node.tag == "key") {
const std::string key = std::string(node.text);
current_key = key;
} else if (node.tag == "value" && !current_key.empty() && !current_section.empty()) {
parsed[current_section][current_key] = std::string(node.text);
current_key.clear();
}
});
return parsed;
}
static std::map<std::string, common_arg> get_map_key_opt(common_params_context & ctx_params) {
std::map<std::string, common_arg> mapping;
for (const auto & opt : ctx_params.options) {
for (const auto & env : opt.get_env()) {
mapping[env] = opt;
}
for (const auto & arg : opt.get_args()) {
mapping[rm_leading_dashes(arg)] = opt;
}
}
return mapping;
}
static bool is_bool_arg(const common_arg & arg) {
return !arg.args_neg.empty();
}
static std::string parse_bool_arg(const common_arg & arg, const std::string & key, const std::string & value) {
// if this is a negated arg, we need to reverse the value
for (const auto & neg_arg : arg.args_neg) {
if (rm_leading_dashes(neg_arg) == key) {
return common_arg_utils::is_truthy(value) ? "false" : "true";
}
}
// otherwise, not negated
return value;
}
common_preset_context::common_preset_context(llama_example ex)
: ctx_params(common_params_parser_init(default_params, ex)) {
common_params_add_preset_options(ctx_params.options);
key_to_opt = get_map_key_opt(ctx_params);
}
common_presets common_preset_context::load_from_ini(const std::string & path, common_preset & global) const {
common_presets out;
auto ini_data = parse_ini_from_file(path);
for (auto section : ini_data) {
common_preset preset;
if (section.first.empty()) {
preset.name = COMMON_PRESET_DEFAULT_NAME;
} else {
preset.name = section.first;
}
LOG_DBG("loading preset: %s\n", preset.name.c_str());
for (const auto & [key, value] : section.second) {
LOG_DBG("option: %s = %s\n", key.c_str(), value.c_str());
if (key_to_opt.find(key) != key_to_opt.end()) {
const auto & opt = key_to_opt.at(key);
if (is_bool_arg(opt)) {
preset.options[opt] = parse_bool_arg(opt, key, value);
} else {
preset.options[opt] = value;
}
LOG_DBG("accepted option: %s = %s\n", key.c_str(), preset.options[opt].c_str());
} else {
// TODO: maybe warn about unknown key?
}
}
if (preset.name == "*") {
// handle global preset
global = preset;
} else {
out[preset.name] = preset;
}
}
return out;
}
common_presets common_preset_context::load_from_cache() const {
common_presets out;
auto cached_models = common_list_cached_models();
for (const auto & model : cached_models) {
common_preset preset;
preset.name = model.to_string();
preset.set_option(*this, "LLAMA_ARG_HF_REPO", model.to_string());
out[preset.name] = preset;
}
return out;
}
struct local_model {
std::string name;
std::string path;
std::string path_mmproj;
};
common_presets common_preset_context::load_from_models_dir(const std::string & models_dir) const {
if (!std::filesystem::exists(models_dir) || !std::filesystem::is_directory(models_dir)) {
throw std::runtime_error(string_format("error: '%s' does not exist or is not a directory\n", models_dir.c_str()));
}
std::vector<local_model> models;
auto scan_subdir = [&models](const std::string & subdir_path, const std::string & name) {
auto files = fs_list(subdir_path, false);
common_file_info model_file;
common_file_info first_shard_file;
common_file_info mmproj_file;
for (const auto & file : files) {
if (string_ends_with(file.name, ".gguf")) {
if (file.name.find("mmproj") != std::string::npos) {
mmproj_file = file;
} else if (file.name.find("-00001-of-") != std::string::npos) {
first_shard_file = file;
} else {
model_file = file;
}
}
}
// single file model
local_model model{
/* name */ name,
/* path */ first_shard_file.path.empty() ? model_file.path : first_shard_file.path,
/* path_mmproj */ mmproj_file.path // can be empty
};
if (!model.path.empty()) {
models.push_back(model);
}
};
auto files = fs_list(models_dir, true);
for (const auto & file : files) {
if (file.is_dir) {
scan_subdir(file.path, file.name);
} else if (string_ends_with(file.name, ".gguf")) {
// single file model
std::string name = file.name;
string_replace_all(name, ".gguf", "");
local_model model{
/* name */ name,
/* path */ file.path,
/* path_mmproj */ ""
};
models.push_back(model);
}
}
// convert local models to presets
common_presets out;
for (const auto & model : models) {
common_preset preset;
preset.name = model.name;
preset.set_option(*this, "LLAMA_ARG_MODEL", model.path);
if (!model.path_mmproj.empty()) {
preset.set_option(*this, "LLAMA_ARG_MMPROJ", model.path_mmproj);
}
out[preset.name] = preset;
}
return out;
}
common_preset common_preset_context::load_from_args(int argc, char ** argv) const {
common_preset preset;
preset.name = COMMON_PRESET_DEFAULT_NAME;
bool ok = common_params_to_map(argc, argv, ctx_params.ex, preset.options);
if (!ok) {
throw std::runtime_error("failed to parse CLI arguments into preset");
}
return preset;
}
common_presets common_preset_context::cascade(const common_presets & base, const common_presets & added) const {
common_presets out = base; // copy
for (const auto & [name, preset_added] : added) {
if (out.find(name) != out.end()) {
// if exists, merge
common_preset & target = out[name];
target.merge(preset_added);
} else {
// otherwise, add directly
out[name] = preset_added;
}
}
return out;
}
common_presets common_preset_context::cascade(const common_preset & base, const common_presets & presets) const {
common_presets out;
for (const auto & [name, preset] : presets) {
common_preset tmp = base; // copy
tmp.name = name;
tmp.merge(preset);
out[name] = std::move(tmp);
}
return out;
}

74
common/preset.h Normal file
View File

@@ -0,0 +1,74 @@
#pragma once
#include "common.h"
#include "arg.h"
#include <string>
#include <vector>
#include <map>
//
// INI preset parser and writer
//
constexpr const char * COMMON_PRESET_DEFAULT_NAME = "default";
struct common_preset_context;
struct common_preset {
std::string name;
// options are stored as common_arg to string mapping, representing CLI arg and its value
std::map<common_arg, std::string> options;
// convert preset to CLI argument list
std::vector<std::string> to_args(const std::string & bin_path = "") const;
// convert preset to INI format string
std::string to_ini() const;
// TODO: maybe implement to_env() if needed
// modify preset options where argument is identified by its env variable
void set_option(const common_preset_context & ctx, const std::string & env, const std::string & value);
// unset option by its env variable
void unset_option(const std::string & env);
// get option value by its env variable, return false if not found
bool get_option(const std::string & env, std::string & value) const;
// merge another preset into this one, overwriting existing options
void merge(const common_preset & other);
};
// interface for multiple presets in one file
using common_presets = std::map<std::string, common_preset>;
// context for loading and editing presets
struct common_preset_context {
common_params default_params; // unused for now
common_params_context ctx_params;
std::map<std::string, common_arg> key_to_opt;
common_preset_context(llama_example ex);
// load presets from INI file
common_presets load_from_ini(const std::string & path, common_preset & global) const;
// generate presets from cached models
common_presets load_from_cache() const;
// generate presets from local models directory
// for the directory structure, see "Using multiple models" in server/README.md
common_presets load_from_models_dir(const std::string & models_dir) const;
// generate one preset from CLI arguments
common_preset load_from_args(int argc, char ** argv) const;
// cascade multiple presets if exist on both: base < added
// if preset does not exist in base, it will be added without modification
common_presets cascade(const common_presets & base, const common_presets & added) const;
// apply presets over a base preset (same idea as CSS cascading)
common_presets cascade(const common_preset & base, const common_presets & presets) const;
};

View File

@@ -116,7 +116,6 @@ struct common_sampler {
void reset() {
prev.clear();
llama_sampler_reset(grmr);
llama_sampler_reset(chain);
}
@@ -167,7 +166,11 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
llama_sampler * grmr = nullptr;
llama_sampler * chain = llama_sampler_chain_init(lparams);
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
@@ -217,30 +220,20 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
if (!params.grammar.empty()) {
if (params.grammar_lazy) {
grmr = llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size());
} else {
grmr = llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
}
}
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.has_logit_bias()) {
samplers.push_back(llama_sampler_init_logit_bias(llama_vocab_n_tokens(vocab), params.logit_bias.size(), params.logit_bias.data()));
}
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
@@ -253,58 +246,71 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
samplers.push_back(llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
samplers.push_back(llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
samplers.push_back(llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
for (auto * smpl : samplers) {
llama_sampler_chain_add(chain, smpl);
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ chain,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
return result;
}
void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
@@ -314,7 +320,7 @@ void common_sampler_free(struct common_sampler * gsmpl) {
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
const auto tm = gsmpl->tm();
if (accept_grammar) {
if (gsmpl->grmr && accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
@@ -329,12 +335,12 @@ void common_sampler_reset(struct common_sampler * gsmpl) {
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
@@ -383,33 +389,37 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
}
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) {
return gsmpl->chain;
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
gsmpl->set_logits(ctx, idx);
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
gsmpl->set_logits(ctx, idx);
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
// check if it the sampled token fits the grammar (grammar-based rejection sampling)
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
@@ -429,9 +439,11 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
id = cur_p.data[cur_p.selected].id;
return id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
@@ -515,7 +527,8 @@ std::string common_sampler_print(const struct common_sampler * gsmpl) {
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
result += std::string("-> ");
result += std::string(llama_sampler_name(smpl)) + " ";
}
return result;

View File

@@ -48,6 +48,8 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
@@ -107,3 +109,9 @@ std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std:
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);
struct common_sampler_deleter {
void operator()(common_sampler * s) { common_sampler_free(s); }
};
typedef std::unique_ptr<common_sampler, common_sampler_deleter> common_sampler_ptr;

64
common/unicode.cpp Normal file
View File

@@ -0,0 +1,64 @@
#include "unicode.h"
// implementation adopted from src/unicode.cpp
size_t utf8_sequence_length(unsigned char first_byte) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(first_byte) >> 4;
return lookup[highbits];
}
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset) {
if (offset >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
// ASCII fast path
if (!(input[offset] & 0x80)) {
return utf8_parse_result(utf8_parse_result::SUCCESS, input[offset], 1);
}
// Invalid: continuation byte as first byte
if (!(input[offset] & 0x40)) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
// 2-byte sequence
if (!(input[offset] & 0x20)) {
if (offset + 1 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x1f) << 6) | (input[offset + 1] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 2);
}
// 3-byte sequence
if (!(input[offset] & 0x10)) {
if (offset + 2 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x0f) << 12) | ((input[offset + 1] & 0x3f) << 6) | (input[offset + 2] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 3);
}
// 4-byte sequence
if (!(input[offset] & 0x08)) {
if (offset + 3 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80 || (input[offset + 3] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x07) << 18) | ((input[offset + 1] & 0x3f) << 12) | ((input[offset + 2] & 0x3f) << 6) | (input[offset + 3] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 4);
}
// Invalid first byte
return utf8_parse_result(utf8_parse_result::INVALID);
}

22
common/unicode.h Normal file
View File

@@ -0,0 +1,22 @@
#pragma once
#include <cstdint>
#include <string_view>
// UTF-8 parsing utilities for streaming-aware unicode support
struct utf8_parse_result {
uint32_t codepoint; // Decoded codepoint (only valid if status == SUCCESS)
size_t bytes_consumed; // How many bytes this codepoint uses (1-4)
enum status { SUCCESS, INCOMPLETE, INVALID } status;
utf8_parse_result(enum status s, uint32_t cp = 0, size_t bytes = 0)
: codepoint(cp), bytes_consumed(bytes), status(s) {}
};
// Determine the expected length of a UTF-8 sequence from its first byte
// Returns 0 for invalid first bytes
size_t utf8_sequence_length(unsigned char first_byte);
// Parse a single UTF-8 codepoint from input
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset);

File diff suppressed because it is too large Load Diff

View File

@@ -143,6 +143,7 @@ models = [
{"name": "bailingmoe2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-mini-base-2.0", },
{"name": "granite-docling", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ibm-granite/granite-docling-258M", },
{"name": "minimax-m2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/MiniMaxAI/MiniMax-M2", },
{"name": "kormo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/KORMo-Team/KORMo-tokenizer", },
]
# some models are known to be broken upstream, so we will skip them as exceptions

View File

@@ -1,7 +1,27 @@
# Android
## Build on Android using Termux
## Build GUI binding using Android Studio
Import the `examples/llama.android` directory into Android Studio, then perform a Gradle sync and build the project.
![Project imported into Android Studio](./android/imported-into-android-studio.jpg)
This Android binding supports hardware acceleration up to `SME2` for **Arm** and `AMX` for **x86-64** CPUs on Android and ChromeOS devices.
It automatically detects the host's hardware to load compatible kernels. As a result, it runs seamlessly on both the latest premium devices and older devices that may lack modern CPU features or have limited RAM, without requiring any manual configuration.
A minimal Android app frontend is included to showcase the bindings core functionalities:
1. **Parse GGUF metadata** via `GgufMetadataReader` from either a `ContentResolver` provided `Uri` from shared storage, or a local `File` from your app's private storage.
2. **Obtain a `InferenceEngine`** instance through the `AiChat` facade and load your selected model via its app-private file path.
3. **Send a raw user prompt** for automatic template formatting, prefill, and batch decoding. Then collect the generated tokens in a Kotlin `Flow`.
For a production-ready experience that leverages advanced features such as system prompts and benchmarks, plus friendly UI features such as model management and Arm feature visualizer, check out [Arm AI Chat](https://play.google.com/store/apps/details?id=com.arm.aichat) on Google Play.
This project is made possible through a collaborative effort by Arm's **CT-ML**, **CE-ML** and **STE** groups:
| ![Home screen](https://naco-siren.github.io/ai-chat/policy/index/1-llm-starter-pack.png) | ![System prompt](https://naco-siren.github.io/ai-chat/policy/index/5-system-prompt.png) | !["Haiku"](https://naco-siren.github.io/ai-chat/policy/index/4-metrics.png) |
|:------------------------------------------------------:|:----------------------------------------------------:|:--------------------------------------------------------:|
| Home screen | System prompt | "Haiku" |
## Build CLI on Android using Termux
[Termux](https://termux.dev/en/) is an Android terminal emulator and Linux environment app (no root required). As of writing, Termux is available experimentally in the Google Play Store; otherwise, it may be obtained directly from the project repo or on F-Droid.
@@ -32,7 +52,7 @@ To see what it might look like visually, here's an old demo of an interactive se
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
## Cross-compile using Android NDK
## Cross-compile CLI using Android NDK
It's possible to build `llama.cpp` for Android on your host system via CMake and the Android NDK. If you are interested in this path, ensure you already have an environment prepared to cross-compile programs for Android (i.e., install the Android SDK). Note that, unlike desktop environments, the Android environment ships with a limited set of native libraries, and so only those libraries are available to CMake when building with the Android NDK (see: https://developer.android.com/ndk/guides/stable_apis.)
Once you're ready and have cloned `llama.cpp`, invoke the following in the project directory:

Binary file not shown.

After

Width:  |  Height:  |  Size: 479 KiB

View File

@@ -42,6 +42,9 @@ The following releases are verified and recommended:
## News
- 2025.11
- Support malloc memory on device more than 4GB.
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
@@ -100,6 +103,8 @@ SYCL backend supports Intel GPU Family:
- Intel Built-in Arc GPU
- Intel iGPU in Core CPU (11th Generation Core CPU and newer, refer to [oneAPI supported GPU](https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html#inpage-nav-1-1)).
On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the performance is not optimal, and some GPUs may not support OpenCL nor have any GPGPU capabilities.
#### Verified devices
| Intel GPU | Status | Verified Model |
@@ -789,6 +794,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
## Known Issues
@@ -835,6 +842,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
You need to enable to support 4GB memory malloc by:
```
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
```
### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.

258
docs/backend/ZenDNN.md Normal file
View File

@@ -0,0 +1,258 @@
# llama.cpp for AMD ZenDNN
> [!WARNING]
> **Note:** ZenDNN is **not** the same as zDNN.
> - **ZenDNN** (this page): AMD's deep learning library for AMD EPYC CPUs
> - **zDNN**: IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes ([see zDNN documentation](zDNN.md))
- [Background](#background)
- [OS](#os)
- [Hardware](#hardware)
- [Supported Operations](#supported-operations)
- [DataType Supports](#datatype-supports)
- [Linux](#linux)
- [Environment Variable](#environment-variable)
- [Performance Optimization](#performance-optimization)
- [Known Issues](#known-issues)
- [TODO](#todo)
## Background
**ZenDNN** (Zen Deep Neural Network Library) is AMD's high-performance deep learning inference library optimized for AMD EPYC™ CPUs. It provides optimized implementations of key deep learning primitives and operations, delivering significant performance improvements for neural network workloads on AMD Zen-based processor architectures.
**Llama.cpp + ZenDNN**
The llama.cpp ZenDNN backend leverages AMD's optimized matrix multiplication primitives to accelerate inference on AMD CPUs. It utilizes ZenDNN's **LowOHA (Low Overhead Hardware Accelerated)** MatMul operator for efficient GEMM operations with minimal execution overhead, built-in weight caching, and direct access to backend libraries (AOCL BLIS, LibXSMM, OneDNN).
For more information about ZenDNN, visit: https://www.amd.com/en/developer/zendnn.html
## OS
| OS | Status | Verified |
|:-------:|:-------:|:----------------------------------------------:|
| Linux | Support | Ubuntu 20.04, 22.04, 24.04 |
For the latest list of supported operating systems, see the [ZenDNN Supported OS](https://github.com/amd/ZenDNN/blob/zendnnl/README.md#15-supported-os).
## Hardware
### AMD CPUs
**Recommended Processors**
ZenDNN is optimized for AMD EPYC™ processors and AMD Ryzen™ processors based on "Zen" microarchitecture and newer.
| CPU Family | Status | Notes |
|:-----------------------------:|:-------:|:----------------------------------:|
| AMD EPYC™ 9005 Series (Turin)| Support | 5th Gen - Zen 5 architecture |
| AMD EPYC™ 9004 Series (Genoa)| Support | 4th Gen - Zen 4 architecture |
| AMD EPYC™ 7003 Series (Milan)| Support | 3rd Gen - Zen 3 architecture |
| AMD Ryzen™ AI MAX (Strix Halo)| Support | High-performance mobile processors |
*Notes:*
- Best performance is achieved on AMD EPYC™ processors with high core counts (e.g., EPYC 9005 series).
- ZenDNN leverages AMD's advanced CPU features including AVX2 and AVX-512 instruction sets.
- For optimal performance, ensure your system has sufficient memory bandwidth.
## Supported Operations
The ZenDNN backend currently accelerates **matrix multiplication (MUL_MAT)** operations only. Other operations are handled by the standard CPU backend.
| Operation | Status | Notes |
|:-------------|:-------:|:----------------------------------------------:|
| MUL_MAT | ✓ | Accelerated via ZenDNN LowOHA MatMul |
*Note:* Since only MUL_MAT is accelerated, models will benefit most from ZenDNN when matrix multiplications dominate the computational workload (which is typical for transformer-based LLMs).
## DataType Supports
| DataType | Status | Notes |
|:----------------------:|:-------:|:---------------------------------------------:|
| FP32 | Support | Full precision floating point |
| BF16 | Support | BFloat16 (best performance on Zen 4/Zen 5) |
*Notes:*
- **BF16** provides best performance on Zen 4 and Zen 5 EPYC™ processors (Genoa, Turin).
## Linux
### I. Setup Environment
You have two options to set up ZenDNN:
#### Option 1: Automatic Download and Build (Recommended)
CMake will automatically download and build ZenDNN for you:
```sh
# Build llama.cpp - ZenDNN will be automatically downloaded and built
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
```
No manual ZenDNN installation required. CMake will handle everything automatically.
#### Option 2: Use Custom ZenDNN Installation
If you want to build ZenDNN yourself or use a specific version:
**Step 1: Build ZenDNN from source**
```sh
# Clone ZenDNN repository
git clone https://github.com/amd/ZenDNN.git
cd ZenDNN
git checkout zendnnl
# Build and install (requires CMake >= 3.25)
mkdir build && cd build
cmake ..
cmake --build . --target all
```
Default installation path: `ZenDNN/build/install`
**For detailed build instructions**, refer to the [ZenDNN README](https://github.com/amd/ZenDNN/blob/zendnnl/README.md).
**Step 2: Build llama.cpp with custom ZenDNN path**
```sh
# Using environment variable
export ZENDNN_ROOT=/path/to/ZenDNN/build/install
cmake -B build -DGGML_ZENDNN=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
# OR specify path directly in CMake
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/ZenDNN/build/install -DCMAKE_BUILD_TYPE=Release
cmake --build build --config Release -j $(nproc)
```
### II. Run the Server
#### 1. Download Model
Download LLaMA 3.1 8B Instruct BF16 model:
```sh
# Download from Hugging Face
huggingface-cli download meta-llama/Llama-3.1-8B-Instruct-GGUF --local-dir models/
```
#### 2. Start Server
Run llama.cpp server with ZenDNN acceleration:
```sh
# Set optimal configuration
export OMP_NUM_THREADS=64 # Adjust to your CPU core count
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS for best performance
# Start server
./build/bin/llama-server \
-m models/Llama-3.1-8B-Instruct.BF16.gguf \
--host 0.0.0.0 \
--port 8080 \
-t 64
```
Access the server at `http://localhost:8080`.
**Performance tips**:
- Set `OMP_NUM_THREADS` to match your physical core count
- Use `ZENDNNL_MATMUL_ALGO=2` for optimal performance
- For NUMA systems: `numactl --cpunodebind=0 --membind=0 ./build/bin/llama-server ...`
## Environment Variable
### Build Time
| Name | Value | Function |
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_ZENDNN | ON/OFF | Enable ZenDNN backend support |
| ZENDNN_ROOT | Path to ZenDNN installation | Set ZenDNN installation directory |
| GGML_OPENMP | ON/OFF (recommended: ON) | Enable OpenMP for multi-threading |
### Runtime
| Name | Value | Function |
|-------------------------|--------------------------|-------------------------------------------------------------------|
| OMP_NUM_THREADS | Number (e.g., 64) | Set number of OpenMP threads (recommended: physical core count) |
| ZENDNNL_MATMUL_ALGO | 0-5 | Select MatMul backend algorithm (see Performance Optimization) |
| ZENDNNL_PROFILE_LOG_LEVEL | 0-4 | Profiling log level (0=disabled, 4=verbose) |
| ZENDNNL_ENABLE_PROFILER | 0 or 1 | Enable detailed profiling (1=enabled) |
| ZENDNNL_API_LOG_LEVEL | 0-4 | API log level (0=disabled, 4=verbose) |
**Example**:
```sh
export OMP_NUM_THREADS=64
export ZENDNNL_MATMUL_ALGO=2 # Use Blocked AOCL BLIS for best performance
./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Test" -n 100
```
## Performance Optimization
### MatMul Algorithm Selection
ZenDNN's LowOHA MatMul supports multiple backend algorithms. For **best performance**, use the **Blocked AOCL BLIS** algorithm:
```sh
export ZENDNNL_MATMUL_ALGO=2 # Blocked AOCL BLIS (recommended)
```
**Available algorithms**:
| Value | Algorithm | Description |
|:-----:|:-----------------------|:----------------------------------------------|
| 0 | Dynamic Dispatch | Automatic backend selection (default) |
| 1 | AOCL BLIS | AOCL BLIS backend |
| 2 | AOCL BLIS Blocked | **Blocked AOCL BLIS (recommended)** |
| 3 | OneDNN | OneDNN backend |
| 4 | OneDNN Blocked | Blocked OneDNN |
| 5 | LibXSMM | LibXSMM backend |
### Profiling and Debugging
For detailed profiling and logging options, refer to the [ZenDNN Logging Documentation](https://github.com/amd/ZenDNN/blob/zendnnl/docs/logging.md).
## Known Issues
- **Limited operation support**: Currently only matrix multiplication (MUL_MAT) is accelerated via ZenDNN. Other operations fall back to the standard CPU backend.
- **BF16 support**: BF16 operations require AMD Zen 4 or Zen 5 architecture (EPYC 9004/9005 series). On older CPUs, operations will use FP32.
- **NUMA awareness**: For multi-socket systems, manual NUMA binding may be required for optimal performance.
## Q&A
**Q: How do I verify that ZenDNN backend is being used?**
A: Check the log output when running llama.cpp. You should see messages indicating the ZenDNN backend is initialized. You can also check the backend name in the output.
**Q: What performance improvement can I expect?**
A: Performance gains vary depending on the model size, batch size, and CPU architecture. On AMD EPYC processors, you can typically expect 1.1x-2x speedup compared to standard CPU inference for matrix multiplication operations.
**Q: Can I use ZenDNN on non-AMD processors?**
A: ZenDNN is optimized specifically for AMD processors. While it may work on other x86-64 CPUs, performance benefits are only guaranteed on AMD Zen-based architectures.
**Q: Does ZenDNN support quantized models?**
A: Currently, ZenDNN primarily supports FP32 and BF16 data types. Quantized model support is not available at this time.
**Q: Why is my inference not faster with ZenDNN?**
A: Ensure:
1. You're using an AMD EPYC or Ryzen processor (Zen 2 or newer)
2. `OMP_NUM_THREADS` is set appropriately (physical core count)
3. `ZENDNNL_MATMUL_ALGO=2` is set for best performance (Blocked AOCL BLIS)
4. You're using a sufficiently large model (small models may not benefit as much)
5. Enable profiling to verify ZenDNN MatMul is being called
### **GitHub Contribution**:
Please add the **[ZenDNN]** prefix/tag in issues/PRs titles to help the ZenDNN-team check/address them without delay.
## TODO
- Expand operation support beyond MUL_MAT (attention operations, activations, etc.)

View File

@@ -22,6 +22,7 @@
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128",
"LLAMA_CURL": "OFF"
}
},
@@ -36,6 +37,7 @@
"GGML_LLAMAFILE": "OFF",
"GGML_OPENCL": "ON",
"GGML_HEXAGON": "ON",
"GGML_HEXAGON_FP32_QUANTIZE_GROUP_SIZE": "128",
"LLAMA_CURL": "OFF"
}
},

View File

@@ -1,5 +1,10 @@
# llama.cpp for IBM zDNN Accelerator
> [!WARNING]
> **Note:** zDNN is **not** the same as ZenDNN.
> - **zDNN** (this page): IBM's Deep Neural Network acceleration library for IBM Z & LinuxONE Mainframes
> - **ZenDNN**: AMD's deep learning library for AMD EPYC CPUs ([see ZenDNN documentation](ZenDNN.md))
## Background
IBM zDNN (Z Deep Neural Network) is a hardware acceleration library designed specifically to leverage the IBM NNPA (Neural Network Processor Assist) accelerator located within IBM Telum I and II processors. It provides significant performance improvements for neural network inference operations.

View File

@@ -19,6 +19,7 @@ cmake -B build \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DGGML_RV_ZIHINTPAUSE=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed

View File

@@ -431,11 +431,22 @@ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/ren
### For Linux users:
#### Using the LunarG Vulkan SDK
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
#### Using system packages
On Debian / Ubuntu, you can install the required dependencies using:
```sh
sudo apt-get install libvulkan-dev glslc
```
#### Common steps
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
```bash
vulkaninfo
@@ -484,6 +495,38 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## ZenDNN
ZenDNN provides optimized deep learning primitives for AMD EPYC™ CPUs. It accelerates matrix multiplication operations for inference workloads.
### Compilation
- Using `CMake` on Linux (automatic build):
```bash
cmake -B build -DGGML_ZENDNN=ON
cmake --build build --config Release
```
The first build will automatically download and build ZenDNN, which may take 5-10 minutes. Subsequent builds will be much faster.
- Using `CMake` with custom ZenDNN installation:
```bash
cmake -B build -DGGML_ZENDNN=ON -DZENDNN_ROOT=/path/to/zendnn/install
cmake --build build --config Release
```
### Testing
You can test with:
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -n 50
```
For detailed information about hardware support, setup instructions, and performance optimization, refer to [llama.cpp for ZenDNN](./backend/ZenDNN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.

View File

@@ -9,7 +9,8 @@ Adding a model requires few steps:
After following these steps, you can open PR.
Also, it is important to check that the examples and main ggml backends (CUDA, METAL, CPU) are working with the new architecture, especially:
- [main](/tools/main/)
- [cli](/tools/cli/)
- [completion](/tools/completion/)
- [imatrix](/tools/imatrix/)
- [quantize](/tools/quantize/)
- [server](/tools/server/)
@@ -96,7 +97,7 @@ The model params and tensors layout must be defined in `llama.cpp` source files:
1. Define a new `llm_arch` enum value in `src/llama-arch.h`.
2. In `src/llama-arch.cpp`:
- Add the architecture name to the `LLM_ARCH_NAMES` map.
- Add the tensor mappings to the `LLM_TENSOR_NAMES` map.
- Add the list of model tensors to `llm_get_tensor_names` (you may also need to update `LLM_TENSOR_NAMES`)
3. Add any non-standard metadata loading in the `llama_model_loader` constructor in `src/llama-model-loader.cpp`.
4. If the model has a RoPE operation, add a case for the architecture in `llama_model_rope_type` function in `src/llama-model.cpp`.

288
docs/development/parsing.md Normal file
View File

@@ -0,0 +1,288 @@
# Parsing Model Output
The `common` library contains a PEG parser implementation suitable for parsing
model output.
Types with the prefix `common_peg_*` are intended for general use and may have
applications beyond parsing model output, such as parsing user-provided regex
patterns.
Types with the prefix `common_chat_peg_*` are specialized helpers for model
output.
The parser features:
- Partial parsing of streaming input
- Built-in JSON parsers
- AST generation with semantics via "tagged" nodes
## Example
Below is a contrived example demonstrating how to use the PEG parser to parse
output from a model that emits arguments as JSON.
```cpp
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
// Build a choice of all available tools
auto tool_choice = p.choice();
for (const auto & tool : tools) {
const auto & function = tool.at("function");
std::string name = function.at("name");
const auto & schema = function.at("parameters");
auto tool_name = p.json_member("name", "\"" + p.literal(name) + "\"");
auto tool_args = p.json_member("arguments", p.schema(p.json(), "tool-" + name + "-schema", schema));
tool_choice |= p.rule("tool-" + name, "{" << tool_name << "," << tool_args << "}");
}
// Define the tool call structure: <tool_call>[{tool}]</tool_call>
auto tool_call = p.trigger_rule("tool-call",
p.sequence({
p.literal("<tool_call>["),
tool_choice,
p.literal("]</tool_call>")
})
);
// Parser accepts content, optionally followed by a tool call
return p.sequence({
p.content(p.until("<tool_call>")),
p.optional(tool_call),
p.end()
});
});
```
For a more complete example, see `test_example_native()` in
[tests/test-chat-peg-parser.cpp](tests/test-chat-peg-parser.cpp).
## Parsers/Combinators
### Basic Matchers
- **`eps()`** - Matches nothing and always succeeds (epsilon/empty match)
- **`start()`** - Matches the start of input (anchor `^`)
- **`end()`** - Matches the end of input (anchor `$`)
- **`literal(string)`** - Matches an exact literal string
- **`any()`** - Matches any single character (`.`)
### Combinators
- **`sequence(...)`** - Matches parsers in order; all must succeed
- **`choice(...)`** - Matches the first parser that succeeds from alternatives (ordered choice)
- **`one_or_more(p)`** - Matches one or more repetitions (`+`)
- **`zero_or_more(p)`** - Matches zero or more repetitions (`*`)
- **`optional(p)`** - Matches zero or one occurrence (`?`)
- **`repeat(p, min, max)`** - Matches between min and max repetitions (use `-1` for unbounded)
- **`repeat(p, n)`** - Matches exactly n repetitions
### Lookahead
- **`peek(p)`** - Positive lookahead: succeeds if parser succeeds without consuming input (`&`)
- **`negate(p)`** - Negative lookahead: succeeds if parser fails without consuming input (`!`)
### Character Classes & Utilities
- **`chars(classes, min, max)`** - Matches repetitions of characters from a character class
- **`space()`** - Matches zero or more whitespace characters (space, tab, newline)
- **`until(delimiter)`** - Matches characters until delimiter is found (delimiter not consumed)
- **`until_one_of(delimiters)`** - Matches characters until any delimiter in the list is found
- **`rest()`** - Matches everything remaining (`.*`)
### JSON Parsers
- **`json()`** - Complete JSON parser (objects, arrays, strings, numbers, booleans, null)
- **`json_object()`** - JSON object parser
- **`json_array()`** - JSON array parser
- **`json_string()`** - JSON string parser
- **`json_number()`** - JSON number parser
- **`json_bool()`** - JSON boolean parser
- **`json_null()`** - JSON null parser
- **`json_string_content()`** - JSON string content without surrounding quotes
- **`json_member(key, p)`** - JSON object member with specific key and value parser
### Grammar Building
- **`ref(name)`** - Creates a lightweight reference to a named rule (for recursive grammars)
- **`rule(name, p, trigger)`** - Creates a named rule and returns a reference
- **`trigger_rule(name, p)`** - Creates a trigger rule (entry point for lazy grammar generation)
- **`schema(p, name, schema, raw)`** - Wraps parser with JSON schema metadata for grammar generation
### AST Control
- **`atomic(p)`** - Prevents AST node creation for partial parses
- **`tag(tag, p)`** - Creates AST nodes with semantic tags (multiple nodes can share tags)
## GBNF Grammar Generation
The PEG parser also acts as a convenient DSL for generating GBNF grammars, with
some exceptions.
```cpp
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(params.tools, [&](const json & fn) {
builder.resolve_refs(fn.at("parameters"));
});
parser.build_grammar(builder, data.grammar_lazy);
});
```
The notable exception is the `negate(p)` lookahead parser, which cannot be
defined as a CFG grammar and therefore does not produce a rule. Its usage
should be limited and preferably hidden behind a `schema()` parser. In many
cases, `until(delimiter)` or `until_one_of(delimiters)` is a better choice.
Another limitation is that the PEG parser requires an unambiguous grammar. In
contrast, the `llama-grammar` implementation can support ambiguous grammars,
though they are difficult to parse.
### Lazy Grammars
During lazy grammar generation, only rules reachable from a `trigger_rule(p)`
are emitted in the grammar. All trigger rules are added as alternations in the
root rule. It is still necessary to define trigger patterns, as the parser has
no interaction with the grammar sampling.
### JSON Schema
The `schema(p, name, schema, raw)` parser will use the `json-schema-to-grammar`
implementation to generate the grammar instead of the underlying parser.
The `raw` option emits a grammar suitable for a raw string instead of a JSON
string. In other words, it won't be wrapped in quotes or require escaping
quotes. It should only be used when `type == "string"`.
The downside is that it can potentially lead to ambiguous grammars. For
example, if a user provides the pattern `^.*$`, the following grammar may be
generated:
```
root ::= "<arg>" .* "</arg>"
```
This creates an ambiguous grammar that cannot be parsed by the PEG parser. To
help mitigate this, if `.*` is found in the pattern, the grammar from the
underlying parser will be emitted instead.
## Common AST Shapes for Chat Parsing
Most model output can be placed in one of the following categories:
- Content only
- Tool calling with arguments emitted as a single JSON object
- Tool calling with arguments emitted as separate entities, either XML
(Qwen3-Coder, MiniMax M2) or pseudo-function calls (LFM2)
To provide broad coverage,
[`common/chat-peg-parser.h`](common/chat-peg-parser.h) contains builders and
mappers that help create parsers and visitors/extractors for these types. They
require parsers to tag nodes to conform to an AST "shape". This normalization
makes it easy to extract information and generalize parsing.
### Simple
The `common_chat_peg_builder` builds a `simple` parser that supports
content-only models with optional reasoning.
- **`reasoning(p)`** - Tag node for extracting `reasoning_content`
- **`content(p)`** - Tag node for extracting `content`
```cpp
build_chat_peg_parser([&](common_chat_peg_parser & p) {
return p.sequence({
p.optional("<think>" + p.reasoning(p.until("</think>")) + "</think>"),
p.content(p.until("<tool_call>")),
p.end()
});
});
```
Use `common_chat_peg_mapper` to extract the content. Note that this is already
done for you in `common_chat_peg_parser` when
`chat_format == COMMON_CHAT_FORMAT_PEG_SIMPLE`.
```cpp
auto result = parser.parse(ctx);
common_chat_msg msg;
auto mapper = common_chat_peg_mapper(msg);
mapper.from_ast(ctx.ast, result);
```
### Native
The `common_chat_peg_native_builder` builds a `native` parser suitable for
models that emit tool arguments as a direct JSON object.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_id(p)`** - Tag the tool call ID (optional)
- **`tool_name(p)`** - Tag the tool name
- **`tool_args(p)`** - Tag the tool arguments
```cpp
build_chat_peg_native_parser([&](common_chat_peg_native_parser & p) {
auto get_weather_tool = p.tool(p.sequence({
p.tool_open(p.literal("{")),
p.json_member("name", "\"" + p.tool_name(p.literal("get_weather")) + "\""),
p.literal(","),
p.json_member("arguments", p.tool_args(p.json())),
p.tool_close(p.literal("}"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```
### Constructed
The `common_chat_peg_constructed_builder` builds a `constructed` parser
suitable for models that emit tool arguments as separate entities, such as XML
tags.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_name(p)`** - Tag the tool name
- **`tool_arg(p)`** - Tag a complete tool argument (name + value)
- **`tool_arg_open(p)`** - Tag start of a tool argument
- **`tool_arg_close(p)`** - Tag end of a tool argument
- **`tool_arg_name(p)`** - Tag the argument name
- **`tool_arg_string_value(p)`** - Tag string value for the argument
- **`tool_arg_json_value(p)`** - Tag JSON value for the argument
```cpp
build_chat_peg_constructed_parser([&](common_chat_peg_constructed_builder & p) {
auto location_arg = p.tool_arg(
p.tool_arg_open("<parameter name=\"" + p.tool_arg_name(p.literal("location")) + "\">"),
p.tool_arg_string_value(p.until("</parameter>")),
p.tool_arg_close(p.literal("</parameter>"))
);
auto get_weather_tool = p.tool(p.sequence({
p.tool_open("<function name=\"" + p.tool_name(p.literal("get_weather")) + "\">"),
location_arg,
p.tool_close(p.literal("</function>"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```

View File

@@ -7,9 +7,9 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the `llama-cli` and `llama-completion` executables. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the `llama-server` executable. (platforms: `linux/amd64`, `linux/arm64`, `linux/s390x`)
Additionally, there the following images, similar to the above:
@@ -44,21 +44,25 @@ docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-o
On completion, you are ready to play!
```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run-legacy -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
```
or with a light image:
```bash
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models --entrypoint /app/llama-cli ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf
docker run -v /path/to/models:/models --entrypoint /app/llama-completion ghcr.io/ggml-org/llama.cpp:light -m /models/32B/ggml-model-q8_0.gguf -no-cnv -p "Building a mobile app can be done in 15 steps:" -n 512
```
or with a server image:
```bash
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
docker run -v /path/to/models:/models -p 8080:8080 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512
```
In the above examples, `--entrypoint /app/llama-cli` is specified for clarity, but you can safely omit it since it's the default entrypoint in the container.
## Docker With CUDA
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
@@ -80,9 +84,9 @@ The defaults are:
The resulting images, are essentially the same as the non-CUDA images:
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
3. `local/llama.cpp:server-cuda`: This image only includes the server executable file.
1. `local/llama.cpp:full-cuda`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-cuda`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-cuda`: This image only includes the `llama-server` executable.
## Usage
@@ -91,7 +95,7 @@ After building locally, Usage is similar to the non-CUDA examples, but you'll ne
```bash
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:server-cuda -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```
## Docker With MUSA
@@ -114,9 +118,9 @@ The defaults are:
The resulting images, are essentially the same as the non-MUSA images:
1. `local/llama.cpp:full-musa`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-musa`: This image only includes the main executable file.
3. `local/llama.cpp:server-musa`: This image only includes the server executable file.
1. `local/llama.cpp:full-musa`: This image includes both the `llama-cli` and `llama-completion` executables and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
2. `local/llama.cpp:light-musa`: This image only includes the `llama-cli` and `llama-completion` executables.
3. `local/llama.cpp:server-musa`: This image only includes the `llama-server` executable.
## Usage
@@ -125,5 +129,5 @@ After building locally, Usage is similar to the non-MUSA examples, but you'll ne
```bash
docker run -v /path/to/models:/models local/llama.cpp:full-musa --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run -v /path/to/models:/models local/llama.cpp:light-musa -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run -v /path/to/models:/models local/llama.cpp:server-musa -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512 --n-gpu-layers 1
docker run -v /path/to/models:/models local/llama.cpp:server-musa -m /models/7B/ggml-model-q4_0.gguf --port 8080 --host 0.0.0.0 -n 512 --n-gpu-layers 1
```

View File

@@ -12,110 +12,112 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | | | | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | | ✅ | 🟡 | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ❌ | ✅ | ❌ | | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | | ❌ | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | | ✅ | ✅ | 🟡 | 🟡 | | | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | | ✅ | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| EXPM1 | ❌ | | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | | ✅ | 🟡 | | ❌ | 🟡 | 🟡 | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | | ❌ | ❌ | | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | | | | ❌ | ❌ |
| GROUP_NORM | ❌ | | | | | | | | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | | | | | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | | | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | | 🟡 | | ✅ | | ❌ |
| IM2COL_3D | ❌ | | ✅ | ✅ | | | ❌ | | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | | ❌ | ✅ | | ❌ |
| LEAKY_RELU | ❌ | | ✅ | ✅ | ✅ | ❌ | ✅ | 🟡 | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | ❌ | | 🟡 | | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | | ❌ | ✅ | ✅ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | | |
| NEG | | ✅ | ✅ | 🟡 | 🟡 | | | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | | | | | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | | | ❌ | ❌ | ❌ | | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | | | | 🟡 | | | 🟡 | | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | | | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | | | ✅ | | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | | ✅ | ✅ | | | ✅ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ROLL | ❌ | ❌ | | | ❌ | ❌ | ✅ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | | ✅ | ✅ | | | | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | | | ❌ | | | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | | ❌ |
| SET | ❌ | | ✅ | ✅ | ✅ | | 🟡 | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | | | | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | | | ❌ | ✅ | ❌ |
| SIN | ❌ | | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SOFTCAP | ❌ | | | | | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | | | | | | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | | | 🟡 | ✅ | ❌ |
| SOLVE_TRI | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ |
| SQR | ❌ | | ✅ | | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | | 🟡 | 🟡 | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | | ✅ | ✅ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | | ❌ | 🟡 | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | | | 🟡 | 🟡 | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | | | 🟡 | | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | | | | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | | ✅ | ✅ | ✅ | | ❌ |
| TRI | | | ✅ | | | | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | ✅ | 🟡 | | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | | ❌ | ❌ | ❌ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | WebGPU | ZenDNN | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | ✅ | ✅ | ❌ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | | | | ✅ | ❌ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| DIAG | ❌ | | ✅ | ✅ | | | | ❌ | ❌ | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| DIV | ❌ | ✅ | ✅ | | 🟡 | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ |
| EXP | ❌ | | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | | ❌ |
| FILL | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ | 🟡 | ❌ | ❌ | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | | | ✅ | ❌ | ❌ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| GET_ROWS_BACK | ❌ | | 🟡 | 🟡 | | | | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | | | | | ❌ | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | | | | ❌ | ❌ | ❌ | | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | | ✅ | 🟡 | ✅ | ❌ | ❌ |
| IM2COL | ❌ | | ✅ | ✅ | | ✅ | ✅ | ✅ | ❌ | | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| L2_NORM | ❌ | | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | | 🟡 | ❌ | ❌ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | | | ✅ | ✅ | ❌ | ❌ | ❌ |
| MUL | | | | | 🟡 | | | | ✅ | ❌ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | | ✅ | ✅ | 🟡 | 🟡 | | | | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | | | | 🟡 | ❌ | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| OPT_STEP_SGD | | ❌ | | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| OUT_PROD | 🟡 | | 🟡 | 🟡 | | | 🟡 | ❌ | ❌ | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| PAD_REFLECT_1D | ❌ | | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | | ✅ | ✅ | ❌ | ❌ | ❌ |
| REGLU | ❌ | ✅ | ✅ | | 🟡 | | ✅ | 🟡 | ✅ | ❌ | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ | ❌ | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | | | ✅ | ✅ | ❌ | ❌ | ❌ |
| RMS_NORM | ❌ | | ✅ | ✅ | | | ✅ | ✅ | ✅ | ❌ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | | ❌ | ❌ | ❌ | ❌ | | ❌ |
| ROLL | ❌ | | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | | ✅ | ✅ | | ✅ | ❌ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| RWKV_WKV7 | ❌ | | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | ❌ | ❌ |
| SET | ❌ | ❌ | | | ❌ | ❌ | 🟡 | | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | | ✅ | ❌ | ✅ | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU_BACK | ❌ | | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | | ❌ |
| SIN | ❌ | | | | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SOFTCAP | ❌ | ❌ | | | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | | ✅ | 🟡 | 🟡 | | | 🟡 | ❌ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | | ✅ | ✅ | | ✅ | ❌ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
| SOLVE_TRI | ❌ | | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | | ✅ | ✅ | | | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | 🟡 | | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | | | 🟡 | ✅ | ❌ | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | | | ✅ | | | | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| TRI | ❌ | | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | | | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |

File diff suppressed because it is too large Load Diff

View File

@@ -4964,6 +4964,7 @@
"CPU","CONV_TRANSPOSE_1D","ne_input=[2,1,1,1],ne_kernel=[3,1,1,1],s0=1,p0=0,d0=1","support","1","yes","CPU"
"CPU","CONV_TRANSPOSE_2D","ne_input=[3,2,3,1],ne_kernel=[2,2,1,3],stride=1","support","1","yes","CPU"
"CPU","CONV_TRANSPOSE_2D","ne_input=[10,10,9,1],ne_kernel=[3,3,1,9],stride=2","support","1","yes","CPU"
"CPU","CONV_TRANSPOSE_2D","ne_input=[129,63,35,1],ne_kernel=[3,3,48,35],stride=1","support","1","yes","CPU"
"CPU","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","1","yes","CPU"
"CPU","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","1","yes","CPU"
"CPU","ARGMAX","type=f32,ne=[32,1,1,1]","support","1","yes","CPU"
@@ -5419,17 +5420,45 @@
"CPU","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CPU"
"CPU","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CPU"
"CPU","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CPU"
"CPU","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CPU"
"CPU","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","CPU"
"CPU","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,3,5,7]","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CPU"
"CPU","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CPU"
"CPU","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CPU"
"CPU","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CPU"
"CPU","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CPU"
@@ -5655,6 +5684,7 @@
"CPU","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","CPU"
"CPU","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","CPU"
"CPU","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","CPU"
"CPU","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","CPU"
"CPU","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","CPU"
"CPU","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","CPU"
@@ -8644,9 +8674,13 @@
"CPU","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","CPU"
"CPU","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","CPU"
"CPU","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","CPU"
"CPU","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","CPU"
"CPU","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","CPU"
@@ -8666,9 +8700,13 @@
"CPU","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","CPU"
"CPU","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","CPU"
"CPU","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","CPU"
"CPU","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","CPU"
"CPU","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","CPU"
"CPU","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","CPU"
"CPU","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","CPU"
@@ -9411,18 +9449,405 @@
"CPU","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","CPU"
"CPU","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","CPU"
"CPU","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,1,1,1],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","CPU"
"CPU","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=500,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","CPU"
@@ -9435,6 +9860,10 @@
"CPU","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","CPU"
"CPU","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","CPU"
@@ -9463,15 +9892,30 @@
"CPU","GROUP_NORM","type=f32,ne=[64,64,320,1],num_groups=32,eps=0.000001","support","1","yes","CPU"
"CPU","GROUP_NORM","type=f32,ne=[9,9,1280,1],num_groups=32,eps=0.000001","support","1","yes","CPU"
"CPU","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1,circular=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[33,17,2,1],pad_0=4,pad_1=3,circular=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0,circular=0","support","1","yes","CPU"
"CPU","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","1","yes","CPU"
"CPU","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","1","yes","CPU"
"CPU","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","CPU"
"CPU","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","CPU"
"CPU","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","CPU"
"CPU","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","CPU"
"CPU","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[128,128,4,4]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","CPU"
"CPU","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","CPU"
"CPU","XIELU","type=f32,ne=[10,5,4,3]","support","1","yes","CPU"
"CPU","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","CPU"
"CPU","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","CPU"
@@ -9480,6 +9924,10 @@
"CPU","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","CPU"
"CPU","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","CPU"
"CPU","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","CPU"
"CPU","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","CPU"
"CPU","DIAG","type=f32,ne=[10,1,4,3]","support","1","yes","CPU"
"CPU","DIAG","type=f32,ne=[79,1,19,13]","support","1","yes","CPU"
"CPU","DIAG","type=f32,ne=[256,1,8,16]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","CPU"
@@ -9487,10 +9935,16 @@
"CPU","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[31,128,4,4]","support","1","yes","CPU"
"CPU","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[300,64,4,4]","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=0","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=1","support","1","yes","CPU"
"CPU","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=1","support","1","yes","CPU"
"CPU","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f32,permute=[0,1,2,3]","support","1","yes","CPU"
"CPU","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f16,permute=[0,1,2,3]","support","1","yes","CPU"
"CPU","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=bf16,permute=[0,1,2,3]","support","1","yes","CPU"
Can't render this file because it is too large.

View File

@@ -4964,6 +4964,7 @@
"CUDA0","CONV_TRANSPOSE_1D","ne_input=[2,1,1,1],ne_kernel=[3,1,1,1],s0=1,p0=0,d0=1","support","1","yes","CUDA"
"CUDA0","CONV_TRANSPOSE_2D","ne_input=[3,2,3,1],ne_kernel=[2,2,1,3],stride=1","support","1","yes","CUDA"
"CUDA0","CONV_TRANSPOSE_2D","ne_input=[10,10,9,1],ne_kernel=[3,3,1,9],stride=2","support","1","yes","CUDA"
"CUDA0","CONV_TRANSPOSE_2D","ne_input=[129,63,35,1],ne_kernel=[3,3,48,35],stride=1","support","1","yes","CUDA"
"CUDA0","COUNT_EQUAL","type=f32,ne=[4,500,1,1]","support","1","yes","CUDA"
"CUDA0","COUNT_EQUAL","type=f32,ne=[4,5000,1,1]","support","1","yes","CUDA"
"CUDA0","ARGMAX","type=f32,ne=[32,1,1,1]","support","1","yes","CUDA"
@@ -5419,17 +5420,45 @@
"CUDA0","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CUDA"
"CUDA0","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CUDA"
"CUDA0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CUDA"
"CUDA0","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","CUDA"
"CUDA0","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","CUDA"
"CUDA0","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,3,5,7]","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","CUDA"
"CUDA0","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CUDA"
"CUDA0","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CUDA"
"CUDA0","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","CUDA"
@@ -5655,6 +5684,7 @@
"CUDA0","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","CUDA"
"CUDA0","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","CUDA"
"CUDA0","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","CUDA"
"CUDA0","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","CUDA"
"CUDA0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","CUDA"
"CUDA0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","CUDA"
@@ -8644,9 +8674,13 @@
"CUDA0","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","CUDA"
"CUDA0","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","CUDA"
"CUDA0","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","CUDA"
"CUDA0","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","CUDA"
"CUDA0","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","CUDA"
@@ -8666,9 +8700,13 @@
"CUDA0","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","CUDA"
"CUDA0","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","CUDA"
"CUDA0","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","CUDA"
"CUDA0","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","CUDA"
"CUDA0","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","CUDA"
"CUDA0","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","CUDA"
"CUDA0","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","CUDA"
@@ -9411,18 +9449,405 @@
"CUDA0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","0","no","CUDA"
"CUDA0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","CUDA"
"CUDA0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","0","no","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,1,1,1],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","CUDA"
"CUDA0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=500,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","CUDA"
@@ -9435,6 +9860,10 @@
"CUDA0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","CUDA"
"CUDA0","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","CUDA"
@@ -9463,34 +9892,59 @@
"CUDA0","GROUP_NORM","type=f32,ne=[64,64,320,1],num_groups=32,eps=0.000001","support","1","yes","CUDA"
"CUDA0","GROUP_NORM","type=f32,ne=[9,9,1280,1],num_groups=32,eps=0.000001","support","1","yes","CUDA"
"CUDA0","ACC","type=f32,ne_a=[256,17,1,1],ne_b=[256,16,1,1]","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],pad_0=1,pad_1=1,circular=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[33,17,2,1],pad_0=4,pad_1=3,circular=1","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,3,1],lp0=1,rp0=1,lp1=1,rp1=1,lp2=1,rp2=1,lp3=1,rp3=1,v=0,circular=0","support","1","yes","CUDA"
"CUDA0","PAD_REFLECT_1D","type=f32,ne_a=[512,34,2,1],pad_0=10,pad_1=9","support","1","yes","CUDA"
"CUDA0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","1","yes","CUDA"
"CUDA0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","CUDA"
"CUDA0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","CUDA"
"CUDA0","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","CUDA"
"CUDA0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","CUDA"
"CUDA0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[10,5,4,3]","support","0","no","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[128,128,4,4]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","CUDA"
"CUDA0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","CUDA"
"CUDA0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","CUDA"
"CUDA0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","0","no","CUDA"
"CUDA0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","0","no","CUDA"
"CUDA0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","CUDA"
"CUDA0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","CUDA"
"CUDA0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","CUDA"
"CUDA0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","CUDA"
"CUDA0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","CUDA"
"CUDA0","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","CUDA"
"CUDA0","DIAG","type=f32,ne=[10,1,4,3]","support","1","yes","CUDA"
"CUDA0","DIAG","type=f32,ne=[79,1,19,13]","support","1","yes","CUDA"
"CUDA0","DIAG","type=f32,ne=[256,1,8,16]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[128,128,4,4],ne_rhs=[31,128,4,4]","support","0","no","CUDA"
"CUDA0","SOLVE_TRI","type=f32,ne_lhs=[64,64,4,4],ne_rhs=[300,64,4,4]","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=0","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0,circular=1","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0,circular=1","support","1","yes","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=0","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=0","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=1,circular=1","support","0","no","CUDA"
"CUDA0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=1,circular=1","support","0","no","CUDA"
"CUDA0","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f32,permute=[0,1,2,3]","support","1","yes","CUDA"
"CUDA0","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=f16,permute=[0,1,2,3]","support","1","yes","CUDA"
"CUDA0","FLASH_ATTN_EXT","hsk=40,hsv=40,nh=4,nr23=[1,1],kv=113,nb=1,mask=1,sinks=1,max_bias=0.000000,logit_softcap=0.000000,prec=f32,type_KV=bf16,permute=[0,1,2,3]","support","0","no","CUDA"
Can't render this file because it is too large.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -5005,8 +5005,8 @@
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f32,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","1","yes","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=1","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=2","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=3","support","0","no","Vulkan"
@@ -5032,14 +5032,14 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
@@ -5271,7 +5271,7 @@
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_1,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
@@ -5415,21 +5415,49 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,3],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7]","support","0","no","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
@@ -5655,6 +5683,7 @@
"Vulkan0","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","Vulkan"
@@ -8644,9 +8673,13 @@
"Vulkan0","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","0","no","Vulkan"
"Vulkan0","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","0","no","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","Vulkan"
"Vulkan0","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
@@ -8666,9 +8699,13 @@
"Vulkan0","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","Vulkan"
@@ -9411,28 +9448,405 @@
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Vulkan"
@@ -9445,6 +9859,10 @@
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
@@ -9479,23 +9897,37 @@
"Vulkan0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","Vulkan"
"Vulkan0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Vulkan"
"Vulkan0","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","Vulkan"
Can't render this file because it is too large.

18741
docs/ops/WebGPU.csv Normal file

File diff suppressed because it is too large Load Diff

18741
docs/ops/ZenDNN.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -20,6 +20,7 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(idle)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@@ -2,6 +2,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cstdio>
@@ -64,17 +65,23 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_init_from_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
std::vector<llama_sampler *> samplers;
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
for (int32_t i = 0; i < n_parallel; ++i) {
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
samplers.push_back(smpl);
}
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
@@ -173,7 +180,7 @@ int main(int argc, char ** argv) {
continue;
}
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
const llama_token new_token_id = llama_sampler_sample(samplers[i], ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
@@ -229,14 +236,17 @@ int main(int argc, char ** argv) {
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
LOG("\n");
llama_perf_sampler_print(smpl);
llama_perf_sampler_print(samplers[0]);
llama_perf_context_print(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
for (auto & sampler_config : samplers) {
llama_sampler_free(sampler_config);
}
llama_free(ctx);
llama_model_free(model);

View File

@@ -104,12 +104,16 @@ int main(int argc, char ** argv) {
params.embedding = true;
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
params.n_parallel = n_seq_max;
}
// utilize the full context
@@ -123,17 +127,14 @@ int main(int argc, char ** argv) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);

View File

@@ -202,10 +202,10 @@ int main(int argc, char ** argv) {
params.warmup = false;
// init
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);

View File

@@ -14,12 +14,13 @@ static void write_table_header(std::ofstream & file) {
static void write_table_entry(std::ofstream & file, const common_arg & opt) {
file << "| `";
// args
for (const auto & arg : opt.args) {
if (arg == opt.args.front()) {
auto all_args = opt.get_args();
for (const auto & arg : all_args) {
if (arg == all_args.front()) {
file << arg;
if (opt.args.size() > 1) file << ", ";
if (all_args.size() > 1) file << ", ";
} else {
file << arg << (arg != opt.args.back() ? ", " : "");
file << arg << (arg != all_args.back() ? ", " : "");
}
}
// value hint
@@ -47,7 +48,7 @@ static void write_table(std::ofstream & file, std::vector<common_arg *> & opts)
}
}
static void export_md(std::string fname, llama_example ex) {
static void export_md(std::string fname, llama_example ex, std::string name) {
std::ofstream file(fname, std::ofstream::out | std::ofstream::trunc);
common_params params;
@@ -71,13 +72,14 @@ static void export_md(std::string fname, llama_example ex) {
write_table(file, common_options);
file << "\n\n**Sampling params**\n\n";
write_table(file, sparam_options);
file << "\n\n**Example-specific params**\n\n";
file << "\n\n**" << name << "-specific params**\n\n";
write_table(file, specific_options);
}
int main(int, char **) {
export_md("autogen-main.md", LLAMA_EXAMPLE_MAIN);
export_md("autogen-server.md", LLAMA_EXAMPLE_SERVER);
// TODO: add CLI
export_md("autogen-completion.md", LLAMA_EXAMPLE_COMPLETION, "Tool");
export_md("autogen-server.md", LLAMA_EXAMPLE_SERVER, "Server");
return 0;
}

View File

@@ -0,0 +1,5 @@
set(TARGET llama-idle)
add_executable(${TARGET} idle.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

3
examples/idle/README.md Normal file
View File

@@ -0,0 +1,3 @@
# llama.cpp/example/idle
https://github.com/ggml-org/llama.cpp/pull/17766

110
examples/idle/idle.cpp Normal file
View File

@@ -0,0 +1,110 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
static void print_usage(int /*argc*/, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
common_init();
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// we need just a dummy token to evaluate
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512;
ctx_params.n_batch = 512;
ctx_params.no_perf = false;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
const int n_iters = 3;
// warm-up
llama_decode(ctx, batch);
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx);
for (int64_t t_pause_ms = 0; t_pause_ms <= 4000; t_pause_ms += 800) {
double t_sum_us = 0.0;
double t_sum2_us = 0.0;
for (int i = 0; i < n_iters; i++) {
// this pause is important - it simulates "idle GPU"
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));
const int64_t t_start_us = llama_time_us();
// this should take constant time
llama_decode(ctx, batch);
llama_synchronize(ctx);
const int64_t t_end_us = llama_time_us();
const double t_cur_us = t_end_us - t_start_us;
#if 1
// print individual decode times
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
#endif
t_sum_us += t_cur_us;
t_sum2_us += t_cur_us * t_cur_us;
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx); // just in case
}
const double t_avg_us = t_sum_us / n_iters;
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));
printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
fflush(stdout);
}
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@@ -231,9 +231,9 @@ DOT = '[^\\x0A\\x0D]'
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\\]')
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]', '\\': '\\\\'}
NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?')

View File

@@ -1,16 +1,18 @@
plugins {
id("com.android.application")
id("org.jetbrains.kotlin.android")
alias(libs.plugins.android.application)
alias(libs.plugins.jetbrains.kotlin.android)
}
android {
namespace = "com.example.llama"
compileSdk = 34
compileSdk = 36
defaultConfig {
applicationId = "com.example.llama"
applicationId = "com.example.llama.aichat"
minSdk = 33
targetSdk = 34
targetSdk = 36
versionCode = 1
versionName = "1.0"
@@ -21,8 +23,17 @@ android {
}
buildTypes {
debug {
isMinifyEnabled = true
isShrinkResources = true
proguardFiles(
getDefaultProguardFile("proguard-android.txt"),
"proguard-rules.pro"
)
}
release {
isMinifyEnabled = false
isMinifyEnabled = true
isShrinkResources = true
proguardFiles(
getDefaultProguardFile("proguard-android-optimize.txt"),
"proguard-rules.pro"
@@ -36,30 +47,15 @@ android {
kotlinOptions {
jvmTarget = "1.8"
}
buildFeatures {
compose = true
}
composeOptions {
kotlinCompilerExtensionVersion = "1.5.1"
}
}
dependencies {
implementation(libs.bundles.androidx)
implementation(libs.material)
implementation("androidx.core:core-ktx:1.12.0")
implementation("androidx.lifecycle:lifecycle-runtime-ktx:2.6.2")
implementation("androidx.activity:activity-compose:1.8.2")
implementation(platform("androidx.compose:compose-bom:2023.08.00"))
implementation("androidx.compose.ui:ui")
implementation("androidx.compose.ui:ui-graphics")
implementation("androidx.compose.ui:ui-tooling-preview")
implementation("androidx.compose.material3:material3")
implementation(project(":llama"))
testImplementation("junit:junit:4.13.2")
androidTestImplementation("androidx.test.ext:junit:1.1.5")
androidTestImplementation("androidx.test.espresso:espresso-core:3.5.1")
androidTestImplementation(platform("androidx.compose:compose-bom:2023.08.00"))
androidTestImplementation("androidx.compose.ui:ui-test-junit4")
debugImplementation("androidx.compose.ui:ui-tooling")
debugImplementation("androidx.compose.ui:ui-test-manifest")
implementation(project(":lib"))
testImplementation(libs.junit)
androidTestImplementation(libs.androidx.junit)
androidTestImplementation(libs.androidx.espresso.core)
}

View File

@@ -19,3 +19,11 @@
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile
-keep class com.arm.aichat.* { *; }
-keep class com.arm.aichat.gguf.* { *; }
-assumenosideeffects class android.util.Log {
public static int v(...);
public static int d(...);
}

View File

@@ -1,24 +1,21 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools">
<uses-permission android:name="android.permission.INTERNET" />
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application
android:allowBackup="true"
android:dataExtractionRules="@xml/data_extraction_rules"
android:extractNativeLibs="true"
android:fullBackupContent="@xml/backup_rules"
android:icon="@mipmap/ic_launcher"
android:icon="@mipmap/ic_launcher_round"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/Theme.LlamaAndroid"
android:theme="@style/Theme.AiChatSample"
>
<activity
android:name=".MainActivity"
android:exported="true"
android:theme="@style/Theme.LlamaAndroid">
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

View File

@@ -1,119 +0,0 @@
package com.example.llama
import android.app.DownloadManager
import android.net.Uri
import android.util.Log
import androidx.compose.material3.Button
import androidx.compose.material3.Text
import androidx.compose.runtime.Composable
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableDoubleStateOf
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.runtime.rememberCoroutineScope
import androidx.compose.runtime.setValue
import androidx.core.database.getLongOrNull
import androidx.core.net.toUri
import kotlinx.coroutines.delay
import kotlinx.coroutines.launch
import java.io.File
data class Downloadable(val name: String, val source: Uri, val destination: File) {
companion object {
@JvmStatic
private val tag: String? = this::class.qualifiedName
sealed interface State
data object Ready: State
data class Downloading(val id: Long): State
data class Downloaded(val downloadable: Downloadable): State
data class Error(val message: String): State
@JvmStatic
@Composable
fun Button(viewModel: MainViewModel, dm: DownloadManager, item: Downloadable) {
var status: State by remember {
mutableStateOf(
if (item.destination.exists()) Downloaded(item)
else Ready
)
}
var progress by remember { mutableDoubleStateOf(0.0) }
val coroutineScope = rememberCoroutineScope()
suspend fun waitForDownload(result: Downloading, item: Downloadable): State {
while (true) {
val cursor = dm.query(DownloadManager.Query().setFilterById(result.id))
if (cursor == null) {
Log.e(tag, "dm.query() returned null")
return Error("dm.query() returned null")
}
if (!cursor.moveToFirst() || cursor.count < 1) {
cursor.close()
Log.i(tag, "cursor.moveToFirst() returned false or cursor.count < 1, download canceled?")
return Ready
}
val pix = cursor.getColumnIndex(DownloadManager.COLUMN_BYTES_DOWNLOADED_SO_FAR)
val tix = cursor.getColumnIndex(DownloadManager.COLUMN_TOTAL_SIZE_BYTES)
val sofar = cursor.getLongOrNull(pix) ?: 0
val total = cursor.getLongOrNull(tix) ?: 1
cursor.close()
if (sofar == total) {
return Downloaded(item)
}
progress = (sofar * 1.0) / total
delay(1000L)
}
}
fun onClick() {
when (val s = status) {
is Downloaded -> {
viewModel.load(item.destination.path)
}
is Downloading -> {
coroutineScope.launch {
status = waitForDownload(s, item)
}
}
else -> {
item.destination.delete()
val request = DownloadManager.Request(item.source).apply {
setTitle("Downloading model")
setDescription("Downloading model: ${item.name}")
setAllowedNetworkTypes(DownloadManager.Request.NETWORK_WIFI)
setDestinationUri(item.destination.toUri())
}
viewModel.log("Saving ${item.name} to ${item.destination.path}")
Log.i(tag, "Saving ${item.name} to ${item.destination.path}")
val id = dm.enqueue(request)
status = Downloading(id)
onClick()
}
}
}
Button(onClick = { onClick() }, enabled = status !is Downloading) {
when (status) {
is Downloading -> Text(text = "Downloading ${(progress * 100).toInt()}%")
is Downloaded -> Text("Load ${item.name}")
is Ready -> Text("Download ${item.name}")
is Error -> Text("Download ${item.name}")
}
}
}
}
}

View File

@@ -1,154 +1,257 @@
package com.example.llama
import android.app.ActivityManager
import android.app.DownloadManager
import android.content.ClipData
import android.content.ClipboardManager
import android.net.Uri
import android.os.Bundle
import android.os.StrictMode
import android.os.StrictMode.VmPolicy
import android.text.format.Formatter
import androidx.activity.ComponentActivity
import androidx.activity.compose.setContent
import androidx.activity.viewModels
import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.Column
import androidx.compose.foundation.layout.Row
import androidx.compose.foundation.layout.fillMaxSize
import androidx.compose.foundation.layout.padding
import androidx.compose.foundation.lazy.LazyColumn
import androidx.compose.foundation.lazy.items
import androidx.compose.foundation.lazy.rememberLazyListState
import androidx.compose.material3.Button
import androidx.compose.material3.LocalContentColor
import androidx.compose.material3.MaterialTheme
import androidx.compose.material3.OutlinedTextField
import androidx.compose.material3.Surface
import androidx.compose.material3.Text
import androidx.compose.runtime.Composable
import androidx.compose.ui.Modifier
import androidx.compose.ui.unit.dp
import androidx.core.content.getSystemService
import com.example.llama.ui.theme.LlamaAndroidTheme
import android.util.Log
import android.widget.EditText
import android.widget.TextView
import android.widget.Toast
import androidx.activity.enableEdgeToEdge
import androidx.activity.result.contract.ActivityResultContracts
import androidx.appcompat.app.AppCompatActivity
import androidx.lifecycle.lifecycleScope
import androidx.recyclerview.widget.LinearLayoutManager
import androidx.recyclerview.widget.RecyclerView
import com.arm.aichat.AiChat
import com.arm.aichat.InferenceEngine
import com.arm.aichat.gguf.GgufMetadata
import com.arm.aichat.gguf.GgufMetadataReader
import com.google.android.material.floatingactionbutton.FloatingActionButton
import kotlinx.coroutines.Dispatchers
import kotlinx.coroutines.flow.onCompletion
import kotlinx.coroutines.launch
import kotlinx.coroutines.withContext
import java.io.File
import java.io.FileOutputStream
import java.io.InputStream
import java.util.UUID
class MainActivity(
activityManager: ActivityManager? = null,
downloadManager: DownloadManager? = null,
clipboardManager: ClipboardManager? = null,
): ComponentActivity() {
private val tag: String? = this::class.simpleName
class MainActivity : AppCompatActivity() {
private val activityManager by lazy { activityManager ?: getSystemService<ActivityManager>()!! }
private val downloadManager by lazy { downloadManager ?: getSystemService<DownloadManager>()!! }
private val clipboardManager by lazy { clipboardManager ?: getSystemService<ClipboardManager>()!! }
// Android views
private lateinit var ggufTv: TextView
private lateinit var messagesRv: RecyclerView
private lateinit var userInputEt: EditText
private lateinit var userActionFab: FloatingActionButton
private val viewModel: MainViewModel by viewModels()
// Arm AI Chat inference engine
private lateinit var engine: InferenceEngine
// Get a MemoryInfo object for the device's current memory status.
private fun availableMemory(): ActivityManager.MemoryInfo {
return ActivityManager.MemoryInfo().also { memoryInfo ->
activityManager.getMemoryInfo(memoryInfo)
}
}
// Conversation states
private var isModelReady = false
private val messages = mutableListOf<Message>()
private val lastAssistantMsg = StringBuilder()
private val messageAdapter = MessageAdapter(messages)
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
enableEdgeToEdge()
setContentView(R.layout.activity_main)
StrictMode.setVmPolicy(
VmPolicy.Builder(StrictMode.getVmPolicy())
.detectLeakedClosableObjects()
.build()
)
// Find views
ggufTv = findViewById(R.id.gguf)
messagesRv = findViewById(R.id.messages)
messagesRv.layoutManager = LinearLayoutManager(this)
messagesRv.adapter = messageAdapter
userInputEt = findViewById(R.id.user_input)
userActionFab = findViewById(R.id.fab)
val free = Formatter.formatFileSize(this, availableMemory().availMem)
val total = Formatter.formatFileSize(this, availableMemory().totalMem)
viewModel.log("Current memory: $free / $total")
viewModel.log("Downloads directory: ${getExternalFilesDir(null)}")
val extFilesDir = getExternalFilesDir(null)
val models = listOf(
Downloadable(
"Phi-2 7B (Q4_0, 1.6 GiB)",
Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/phi-2/ggml-model-q4_0.gguf?download=true"),
File(extFilesDir, "phi-2-q4_0.gguf"),
),
Downloadable(
"TinyLlama 1.1B (f16, 2.2 GiB)",
Uri.parse("https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf?download=true"),
File(extFilesDir, "tinyllama-1.1-f16.gguf"),
),
Downloadable(
"Phi 2 DPO (Q3_K_M, 1.48 GiB)",
Uri.parse("https://huggingface.co/TheBloke/phi-2-dpo-GGUF/resolve/main/phi-2-dpo.Q3_K_M.gguf?download=true"),
File(extFilesDir, "phi-2-dpo.Q3_K_M.gguf")
),
)
setContent {
LlamaAndroidTheme {
// A surface container using the 'background' color from the theme
Surface(
modifier = Modifier.fillMaxSize(),
color = MaterialTheme.colorScheme.background
) {
MainCompose(
viewModel,
clipboardManager,
downloadManager,
models,
)
}
// Arm AI Chat initialization
lifecycleScope.launch(Dispatchers.Default) {
engine = AiChat.getInferenceEngine(applicationContext)
}
// Upon CTA button tapped
userActionFab.setOnClickListener {
if (isModelReady) {
// If model is ready, validate input and send to engine
handleUserInput()
} else {
// Otherwise, prompt user to select a GGUF metadata on the device
getContent.launch(arrayOf("*/*"))
}
}
}
}
@Composable
fun MainCompose(
viewModel: MainViewModel,
clipboard: ClipboardManager,
dm: DownloadManager,
models: List<Downloadable>
) {
Column {
val scrollState = rememberLazyListState()
private val getContent = registerForActivityResult(
ActivityResultContracts.OpenDocument()
) { uri ->
Log.i(TAG, "Selected file uri:\n $uri")
uri?.let { handleSelectedModel(it) }
}
Box(modifier = Modifier.weight(1f)) {
LazyColumn(state = scrollState) {
items(viewModel.messages) {
Text(
it,
style = MaterialTheme.typography.bodyLarge.copy(color = LocalContentColor.current),
modifier = Modifier.padding(16.dp)
)
/**
* Handles the file Uri from [getContent] result
*/
private fun handleSelectedModel(uri: Uri) {
// Update UI states
userActionFab.isEnabled = false
userInputEt.hint = "Parsing GGUF..."
ggufTv.text = "Parsing metadata from selected file \n$uri"
lifecycleScope.launch(Dispatchers.IO) {
// Parse GGUF metadata
Log.i(TAG, "Parsing GGUF metadata...")
contentResolver.openInputStream(uri)?.use {
GgufMetadataReader.create().readStructuredMetadata(it)
}?.let { metadata ->
// Update UI to show GGUF metadata to user
Log.i(TAG, "GGUF parsed: \n$metadata")
withContext(Dispatchers.Main) {
ggufTv.text = metadata.toString()
}
}
}
OutlinedTextField(
value = viewModel.message,
onValueChange = { viewModel.updateMessage(it) },
label = { Text("Message") },
)
Row {
Button({ viewModel.send() }) { Text("Send") }
Button({ viewModel.bench(8, 4, 1) }) { Text("Bench") }
Button({ viewModel.clear() }) { Text("Clear") }
Button({
viewModel.messages.joinToString("\n").let {
clipboard.setPrimaryClip(ClipData.newPlainText("", it))
}
}) { Text("Copy") }
}
Column {
for (model in models) {
Downloadable.Button(viewModel, dm, model)
// Ensure the model file is available
val modelName = metadata.filename() + FILE_EXTENSION_GGUF
contentResolver.openInputStream(uri)?.use { input ->
ensureModelFile(modelName, input)
}?.let { modelFile ->
loadModel(modelName, modelFile)
withContext(Dispatchers.Main) {
isModelReady = true
userInputEt.hint = "Type and send a message!"
userInputEt.isEnabled = true
userActionFab.setImageResource(R.drawable.outline_send_24)
userActionFab.isEnabled = true
}
}
}
}
}
/**
* Prepare the model file within app's private storage
*/
private suspend fun ensureModelFile(modelName: String, input: InputStream) =
withContext(Dispatchers.IO) {
File(ensureModelsDirectory(), modelName).also { file ->
// Copy the file into local storage if not yet done
if (!file.exists()) {
Log.i(TAG, "Start copying file to $modelName")
withContext(Dispatchers.Main) {
userInputEt.hint = "Copying file..."
}
FileOutputStream(file).use { input.copyTo(it) }
Log.i(TAG, "Finished copying file to $modelName")
} else {
Log.i(TAG, "File already exists $modelName")
}
}
}
/**
* Load the model file from the app private storage
*/
private suspend fun loadModel(modelName: String, modelFile: File) =
withContext(Dispatchers.IO) {
Log.i(TAG, "Loading model $modelName")
withContext(Dispatchers.Main) {
userInputEt.hint = "Loading model..."
}
engine.loadModel(modelFile.path)
}
/**
* Validate and send the user message into [InferenceEngine]
*/
private fun handleUserInput() {
userInputEt.text.toString().also { userSsg ->
if (userSsg.isEmpty()) {
Toast.makeText(this, "Input message is empty!", Toast.LENGTH_SHORT).show()
} else {
userInputEt.text = null
userActionFab.isEnabled = false
// Update message states
messages.add(Message(UUID.randomUUID().toString(), userSsg, true))
lastAssistantMsg.clear()
messages.add(Message(UUID.randomUUID().toString(), lastAssistantMsg.toString(), false))
lifecycleScope.launch(Dispatchers.Default) {
engine.sendUserPrompt(userSsg)
.onCompletion {
withContext(Dispatchers.Main) {
userActionFab.isEnabled = true
}
}.collect { token ->
val messageCount = messages.size
check(messageCount > 0 && !messages[messageCount - 1].isUser)
messages.removeAt(messageCount - 1).copy(
content = lastAssistantMsg.append(token).toString()
).let { messages.add(it) }
withContext(Dispatchers.Main) {
messageAdapter.notifyItemChanged(messages.size - 1)
}
}
}
}
}
}
/**
* Run a benchmark with the model file
*/
private suspend fun runBenchmark(modelName: String, modelFile: File) =
withContext(Dispatchers.Default) {
Log.i(TAG, "Starts benchmarking $modelName")
withContext(Dispatchers.Main) {
userInputEt.hint = "Running benchmark..."
}
engine.bench(
pp=BENCH_PROMPT_PROCESSING_TOKENS,
tg=BENCH_TOKEN_GENERATION_TOKENS,
pl=BENCH_SEQUENCE,
nr=BENCH_REPETITION
).let { result ->
messages.add(Message(UUID.randomUUID().toString(), result, false))
withContext(Dispatchers.Main) {
messageAdapter.notifyItemChanged(messages.size - 1)
}
}
}
/**
* Create the `models` directory if not exist.
*/
private fun ensureModelsDirectory() =
File(filesDir, DIRECTORY_MODELS).also {
if (it.exists() && !it.isDirectory) { it.delete() }
if (!it.exists()) { it.mkdir() }
}
companion object {
private val TAG = MainActivity::class.java.simpleName
private const val DIRECTORY_MODELS = "models"
private const val FILE_EXTENSION_GGUF = ".gguf"
private const val BENCH_PROMPT_PROCESSING_TOKENS = 512
private const val BENCH_TOKEN_GENERATION_TOKENS = 128
private const val BENCH_SEQUENCE = 1
private const val BENCH_REPETITION = 3
}
}
fun GgufMetadata.filename() = when {
basic.name != null -> {
basic.name?.let { name ->
basic.sizeLabel?.let { size ->
"$name-$size"
} ?: name
}
}
architecture?.architecture != null -> {
architecture?.architecture?.let { arch ->
basic.uuid?.let { uuid ->
"$arch-$uuid"
} ?: "$arch-${System.currentTimeMillis()}"
}
}
else -> {
"model-${System.currentTimeMillis().toHexString()}"
}
}

View File

@@ -1,105 +0,0 @@
package com.example.llama
import android.llama.cpp.LLamaAndroid
import android.util.Log
import androidx.compose.runtime.getValue
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.setValue
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.flow.catch
import kotlinx.coroutines.launch
class MainViewModel(private val llamaAndroid: LLamaAndroid = LLamaAndroid.instance()): ViewModel() {
companion object {
@JvmStatic
private val NanosPerSecond = 1_000_000_000.0
}
private val tag: String? = this::class.simpleName
var messages by mutableStateOf(listOf("Initializing..."))
private set
var message by mutableStateOf("")
private set
override fun onCleared() {
super.onCleared()
viewModelScope.launch {
try {
llamaAndroid.unload()
} catch (exc: IllegalStateException) {
messages += exc.message!!
}
}
}
fun send() {
val text = message
message = ""
// Add to messages console.
messages += text
messages += ""
viewModelScope.launch {
llamaAndroid.send(text)
.catch {
Log.e(tag, "send() failed", it)
messages += it.message!!
}
.collect { messages = messages.dropLast(1) + (messages.last() + it) }
}
}
fun bench(pp: Int, tg: Int, pl: Int, nr: Int = 1) {
viewModelScope.launch {
try {
val start = System.nanoTime()
val warmupResult = llamaAndroid.bench(pp, tg, pl, nr)
val end = System.nanoTime()
messages += warmupResult
val warmup = (end - start).toDouble() / NanosPerSecond
messages += "Warm up time: $warmup seconds, please wait..."
if (warmup > 5.0) {
messages += "Warm up took too long, aborting benchmark"
return@launch
}
messages += llamaAndroid.bench(512, 128, 1, 3)
} catch (exc: IllegalStateException) {
Log.e(tag, "bench() failed", exc)
messages += exc.message!!
}
}
}
fun load(pathToModel: String) {
viewModelScope.launch {
try {
llamaAndroid.load(pathToModel)
messages += "Loaded $pathToModel"
} catch (exc: IllegalStateException) {
Log.e(tag, "load() failed", exc)
messages += exc.message!!
}
}
}
fun updateMessage(newMessage: String) {
message = newMessage
}
fun clear() {
messages = listOf()
}
fun log(message: String) {
messages += message
}
}

View File

@@ -0,0 +1,51 @@
package com.example.llama
import android.view.LayoutInflater
import android.view.View
import android.view.ViewGroup
import android.widget.TextView
import androidx.recyclerview.widget.RecyclerView
data class Message(
val id: String,
val content: String,
val isUser: Boolean
)
class MessageAdapter(
private val messages: List<Message>
) : RecyclerView.Adapter<RecyclerView.ViewHolder>() {
companion object {
private const val VIEW_TYPE_USER = 1
private const val VIEW_TYPE_ASSISTANT = 2
}
override fun getItemViewType(position: Int): Int {
return if (messages[position].isUser) VIEW_TYPE_USER else VIEW_TYPE_ASSISTANT
}
override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): RecyclerView.ViewHolder {
val layoutInflater = LayoutInflater.from(parent.context)
return if (viewType == VIEW_TYPE_USER) {
val view = layoutInflater.inflate(R.layout.item_message_user, parent, false)
UserMessageViewHolder(view)
} else {
val view = layoutInflater.inflate(R.layout.item_message_assistant, parent, false)
AssistantMessageViewHolder(view)
}
}
override fun onBindViewHolder(holder: RecyclerView.ViewHolder, position: Int) {
val message = messages[position]
if (holder is UserMessageViewHolder || holder is AssistantMessageViewHolder) {
val textView = holder.itemView.findViewById<TextView>(R.id.msg_content)
textView.text = message.content
}
}
override fun getItemCount(): Int = messages.size
class UserMessageViewHolder(view: View) : RecyclerView.ViewHolder(view)
class AssistantMessageViewHolder(view: View) : RecyclerView.ViewHolder(view)
}

View File

@@ -1,11 +0,0 @@
package com.example.llama.ui.theme
import androidx.compose.ui.graphics.Color
val Purple80 = Color(0xFFD0BCFF)
val PurpleGrey80 = Color(0xFFCCC2DC)
val Pink80 = Color(0xFFEFB8C8)
val Purple40 = Color(0xFF6650a4)
val PurpleGrey40 = Color(0xFF625b71)
val Pink40 = Color(0xFF7D5260)

View File

@@ -1,70 +0,0 @@
package com.example.llama.ui.theme
import android.app.Activity
import android.os.Build
import androidx.compose.foundation.isSystemInDarkTheme
import androidx.compose.material3.MaterialTheme
import androidx.compose.material3.darkColorScheme
import androidx.compose.material3.dynamicDarkColorScheme
import androidx.compose.material3.dynamicLightColorScheme
import androidx.compose.material3.lightColorScheme
import androidx.compose.runtime.Composable
import androidx.compose.runtime.SideEffect
import androidx.compose.ui.graphics.toArgb
import androidx.compose.ui.platform.LocalContext
import androidx.compose.ui.platform.LocalView
import androidx.core.view.WindowCompat
private val DarkColorScheme = darkColorScheme(
primary = Purple80,
secondary = PurpleGrey80,
tertiary = Pink80
)
private val LightColorScheme = lightColorScheme(
primary = Purple40,
secondary = PurpleGrey40,
tertiary = Pink40
/* Other default colors to override
background = Color(0xFFFFFBFE),
surface = Color(0xFFFFFBFE),
onPrimary = Color.White,
onSecondary = Color.White,
onTertiary = Color.White,
onBackground = Color(0xFF1C1B1F),
onSurface = Color(0xFF1C1B1F),
*/
)
@Composable
fun LlamaAndroidTheme(
darkTheme: Boolean = isSystemInDarkTheme(),
// Dynamic color is available on Android 12+
dynamicColor: Boolean = true,
content: @Composable () -> Unit
) {
val colorScheme = when {
dynamicColor && Build.VERSION.SDK_INT >= Build.VERSION_CODES.S -> {
val context = LocalContext.current
if (darkTheme) dynamicDarkColorScheme(context) else dynamicLightColorScheme(context)
}
darkTheme -> DarkColorScheme
else -> LightColorScheme
}
val view = LocalView.current
if (!view.isInEditMode) {
SideEffect {
val window = (view.context as Activity).window
window.statusBarColor = colorScheme.primary.toArgb()
WindowCompat.getInsetsController(window, view).isAppearanceLightStatusBars = darkTheme
}
}
MaterialTheme(
colorScheme = colorScheme,
typography = Typography,
content = content
)
}

View File

@@ -1,34 +0,0 @@
package com.example.llama.ui.theme
import androidx.compose.material3.Typography
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.text.font.FontFamily
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
// Set of Material typography styles to start with
val Typography = Typography(
bodyLarge = TextStyle(
fontFamily = FontFamily.Default,
fontWeight = FontWeight.Normal,
fontSize = 16.sp,
lineHeight = 24.sp,
letterSpacing = 0.5.sp
)
/* Other default text styles to override
titleLarge = TextStyle(
fontFamily = FontFamily.Default,
fontWeight = FontWeight.Normal,
fontSize = 22.sp,
lineHeight = 28.sp,
letterSpacing = 0.sp
),
labelSmall = TextStyle(
fontFamily = FontFamily.Default,
fontWeight = FontWeight.Medium,
fontSize = 11.sp,
lineHeight = 16.sp,
letterSpacing = 0.5.sp
)
*/
)

Some files were not shown because too many files have changed in this diff Show More