Compare commits

..

136 Commits
b7166 ... b7302

Author SHA1 Message Date
Sky
7b43f55753 ggml : improve error handling for search path existence checks (#17653)
* Improve error handling for search path existence checks

Refactor existence checks for search paths using std::error_code to handle potential errors.

* Improve cache file existence check with error code 

Update fs::exists to use std::error_code for error handling.

* Simplify existence check for search paths

Simplify existence check for search paths

* Fix logging path in error message for posix_stat

* Update ggml/src/ggml-backend-reg.cpp

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

* Adapt to the coding standard

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2025-12-06 12:28:16 +01:00
Daniel Bevenius
444f00b0ec llama : remove quantization sanity check (#17788)
* llama : remove quantization sanity check

This commit removes the quantization sanity check for attention layers.

The motivation for this is that there are model that are hybrid models
that have recurrent layers, experts layers, and attention layers.  For
these models the current check fails as the experts layers are not
taking into account. After consideration, it was decided that this check
is not strictly necessary, and can be removed to allow for more flexible
model architectures.

* llama : remove unused pruned_attention_w and is_clip_model vars
2025-12-06 12:26:20 +01:00
Jeff Bolz
2960eb2975 vulkan: Use one row per workgroup for f32 mmv (#17711)
The MoE models have a mul_mat_vec with very small m (32, 64, 128) right before
the topk_moe selection. Running multiple rows per wg doesn't utilize the SMs
well. I think even for larger m, f32 is so bandwidth-limited that running
multiple rows doesn't help.
2025-12-06 11:12:26 +01:00
Xuan-Son Nguyen
dbc15a7967 convert: support Mistral 3 Large MoE (#17730)
* convert: support Mistral 3 Large MoE

* filter out vision tensors, add missing keys

* handle vocab

* add temperature_length

* fix mscale_all_dim

* clean up

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* fix

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-06 10:49:33 +01:00
Jeff Bolz
c6c5e85979 vulkan: support solve_tri with larger N/K values (#17781)
Split N into chunks to fit into shared memory.
If K > 128, use a larger workgroup with enough invocations.
Add perf tests matching qwen3next.
2025-12-06 08:56:45 +01:00
Georgi Gerganov
8e5f4987b1 contrib : stale PRs (#17803) 2025-12-06 09:34:18 +02:00
Georgi Gerganov
8ce774a102 metal : fix build(#17799)
* metal : fix build

* tests : fix context destruction
2025-12-06 09:33:59 +02:00
Masato Nakasaka
67788f6846 vulkan: Replace deprecated VK_EXT_validation_features (#17637)
* replaced deprecated VK_EXT_validation_features

* forgot to remove old code
2025-12-06 06:39:42 +01:00
Masato Nakasaka
d8c0a7b085 vulkan: Fix mismatch in TOPK_MOE unit test (#17541)
* Fix shader to support 2D workgroup mapping to a single subgroup

* Set required_subgroup_size

topk_moe shader requires static WARP_SIZE and actual subgroup size to match
2025-12-06 06:23:30 +01:00
Jeff Bolz
933414c0b6 vulkan: add more num_blocks instantiations in rms_norm (#17701) 2025-12-05 22:08:56 +01:00
Jeff Bolz
a0f3897d53 vulkan: fix top_k bug when there are ties in the input (#17659)
* vulkan: Reduce temporary memory usage for TOP_K

- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.

* vulkan: fix top_k bug when there are ties in the input

I noticed by inspection a bug in the vulkan top_k shader where if the least
value in the top_k appears multiple times we could end up writing those extra
copies out rather than some larger values (if the larger values are on higher
numbered threads).

I rewrote the test verification to handle this case, where the final index set
is not necessarily the same.

* Update tests/test-backend-ops.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-05 22:03:19 +01:00
Acly
e15cd06a94 vulkan : support conv-2d with large output size (#17685) 2025-12-05 21:46:39 +01:00
Reese Levine
fd57b24c0f ggml webgpu: unary op suppport, code refactoring, ops support (#17764)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49e
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add176
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910b
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb08583337
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a5
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f88
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* Update ggml/src/ggml-webgpu/wgsl-shaders/embed_wgsl.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-05 12:25:51 -08:00
Jeff Bolz
6ab0d64960 vulkan: enable mmvq for q2_k on NVIDIA (#17675) 2025-12-05 21:21:57 +01:00
Jeff Bolz
93bb92664e vulkan: set all memory allocations to high priority (#17624)
* vulkan: set all memory allocations to high priority

* gate by env var
2025-12-05 21:21:04 +01:00
Georgi Gerganov
8160b38a5f rpc : fix alloc size logic (#17116)
* rpc : fix alloc size logic

* rpc : bump version
2025-12-05 19:39:04 +02:00
Georgi Gerganov
c41bde6fbd metal : add residency sets keep-alive heartbeat (#17766)
* examples : add idle

* metal : attach residency sets to queue

* idle : add link

* idle : adjust intervals

* metal : add residency sets keep-alive heartbeat

* cont : adjust default keep-alive time
2025-12-05 19:38:54 +02:00
Johannes Gäßler
6016d0bd41 HIP : fix RDNA4 build (#17792) 2025-12-05 13:47:52 +01:00
Pascal
1be97831e4 fix: prevent segfault in tokenizer on highly repetitive input (#17786)
Add nosubs|optimize flags to std::regex constructors to prevent
catastrophic backtracking when processing prompts with repeated
identical characters (e.g., 'A' * 10000).

The nosubs flag disables subgroup capture, significantly reducing
memory usage and backtracking on uniform token sequences
2025-12-05 13:52:23 +02:00
Adrien Gallouët
a6cfc212ed ci : fix winget workflow (#17790) 2025-12-05 19:44:17 +08:00
shalinib-ibm
3a0d10533a Q4/Q8 Tiled Gemm Optimization. (#16999) 2025-12-05 19:41:51 +08:00
Piotr Wilkin (ilintar)
6648989673 Add pwilkin to CODEOWNERS for chat files (#17789)
* Add pwilkin to CODEOWNERS for chat files

* Reorder alphabetically
2025-12-05 12:00:57 +01:00
Johannes Gäßler
e95d0bc8fd CUDA: fix FA VKQ accumulator overflow (#17746) 2025-12-05 09:18:10 +01:00
Jiacheng (Jason) Chen
668ed76574 HIP: enable WMMA-MMQ INT kernels for RDNA 3 (#17576)
* enabled wmma instructions for most quantizations other than q2k

* fixed the last q2_k test case failure

* address comments: fix out of bound write for RDNA4, add comments after #endif

* clean up rebase: fix ne error in half2

* fix the EditorConfig CI
2025-12-05 09:17:37 +01:00
Sigbjørn Skjæret
03d9a77b85 ci : transform release binary root dir in tar to llama-bXXXX (#17773)
* transform release binary root dir in tar to llama-bXXXX

* bsdtar supports -s instead of --transform
2025-12-05 01:50:19 +01:00
Gabe Goodhart
3143a755c8 docs : update ops.md (Metal, BLAS) (#17768)
* docs: Regen Metal.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Regen BLAS.csv

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* docs: Update ops.md

Branch: UpdateOpsMd

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
2025-12-05 00:55:34 +01:00
Piotr Wilkin (ilintar)
96fe9badfc Add support for CUMSUM and TRI for CUDA. (#17584)
* Add support for CUMSUM and TRI for CUDA.

* Minor optimizations.

* Correct warp_prefix_inclusive_sum in float2 variant to return float2

* Optimize TRI

* Whitespace

* Fix strides.

* Implement double loop

* Whitespace

* Fix HIP compilation bugs

* Optimizations + big case performance tests

* Implement using CUB with fallback to custom kernel

* Remove error message.

* Fixes from code review

* Comment out CPU-unsupported F16/BF16 cases to fix CI

* Fine, you win :P

* Fix last cast, use NO_DEVICE_CODE and GGML_UNUSED_VARS

* Vary warp-size based on physical warp size

* Add GGML_UNUSED_VARS in tri as well

* Use constexpr and call prefix_inclusive with warp_size template param

* Update ggml/src/ggml-cuda/cumsum.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Apply suggestions from code review

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Change to tid % warp_size

* Fix strides; hardcode mask; add ggml_lane_mask_t

* Missing renames, remove unused get_warp_mask(), explicit calls to ggml_cuda_info()

* Too hasty...

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-04 22:19:51 +01:00
Gabe Goodhart
bde188d60f metal: TRI, FILL, EXPM1, SOFTPLUS (#16623)
* feat(wip): Port initial TRI impl from pervious work

The kernel does not work and is not optimized, but the
code compiles and runs, so this will be the starting point
now that the core op has been merged.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove argument for constant val override

This was added in the original draft, but later removed. With this, the
kernel now passes tests.

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Move the ttype conditional to templating to avoid conditional in kernel

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Type fixes

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* feat: Add softplus for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add EXPM1 for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add FILL for metal

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Branchless version of tri using _ggml_vec_tri_cmp as a mask

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Remove unused arguments

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use select instead of branch for softplus non-vec

Branch: ggml-cumsum-tri

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 19:12:19 +02:00
Xuan-Son Nguyen
9d0229967a server: strip content-length header on proxy (#17734) 2025-12-04 16:32:57 +01:00
Xuan-Son Nguyen
c4c10bfb86 server: move msg diffs tracking to HTTP thread (#17740)
* server: move msg diffs tracking to HTTP thread

* wip

* tool call tests ok

* minor : style

* cont : fix

* move states to server_response_reader

* add safe-guard

* fix

* fix 2

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-04 15:46:08 +01:00
Daniel Bevenius
817d743cc1 examples : add missing code block end marker [no ci] (#17756)
This commit adds the missing code block end marker in simple-cmake-pkg
to correct the formatting.
2025-12-04 14:17:30 +01:00
Daniel Bevenius
bd4ef13476 common : skip model validation when --help is requested (#17755)
This commit skips the model validation check when the user specifies the
--help option.

The motivation for this is that currently and error is thrown before the
--help could be processed. Now skips validation if params.usage is set,
allowing help to display without requiring --model.

Resolves: https://github.com/ggml-org/llama.cpp/issues/17754
2025-12-04 13:36:50 +01:00
Alberto Cabrera Pérez
87a2084c45 ggml-cpu : remove asserts always evaluating to false (#17728) 2025-12-04 13:16:38 +01:00
SmartestWashingMachine
3659aa28e9 convert: use existing local chat_template if mistral-format model has one. (#17749)
* conversion: use existing local chat_template.jinja file if mistral-format model has one.

* fix --mistral-format mistakenly assuming some <=v7 chat template names are file paths and reading them.

* Update convert_hf_to_gguf.py - change from exists() to is_file()

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-04 12:12:45 +01:00
Adrien Gallouët
2a73f81f8a cmake : simplify build info detection using standard variables (#17423)
The current approach has several drawbacks. Mostly, when
cross-compiling, invoking the compiler binary directly to query the
machine hardware can behave unexpectedly depending on the toolchain
wrapper (using COMPILER_TARGET, CFLAGS, etc).

As CMake is the official tool to build llama.cpp, I propose to only rely
on it to get those variables (`CMAKE_SYSTEM_NAME` and
`CMAKE_SYSTEM_PROCESSOR`).

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:42:13 +02:00
Sigbjørn Skjæret
7dba049b07 ci : disable ggml-ci-x64-amd-* (#17753) 2025-12-04 11:25:08 +01:00
Adrien Gallouët
83c1171529 common: use native MultiByteToWideChar (#17738)
`std::codecvt_utf8<wchar_t>` is deprecated and produces warnings:

    common/common.cpp:792:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
      792 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
          |

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 12:06:49 +02:00
Georgi Gerganov
0d1324856f metal : use params per pipeline instance (#17739) 2025-12-04 10:34:11 +02:00
Georgi Gerganov
a67ef0f47f llama : fix sanity checks during quantization (#17721) 2025-12-04 10:33:42 +02:00
Adrien Gallouët
ef75a89fdb build : move _WIN32_WINNT definition to headers (#17736)
Previously, cmake was forcing `_WIN32_WINNT=0x0A00` for MinGW builds,
This caused "macro redefined" warnings with toolchains that define the version.

This also removes the `GGML_WIN_VER` variable as it is no longer needed.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-04 07:04:02 +01:00
Jeff Bolz
d8b5cdc4fe build: enable parallel builds in msbuild using MTT (#17708)
* build: enable parallel builds in msbuild using MTT

* check LLAMA_STANDALONE
2025-12-03 22:42:29 -06:00
Herman Semenoff
dea9ba27cb ggml-cpu: remove duplicate conditional check 'iid' (#17650) 2025-12-04 05:03:19 +08:00
Piotr Wilkin (ilintar)
c6d1a00aa7 Add a couple of file types to the text section (#17670)
* Add a couple of file types to the text section

* Format + regenerate index

* Rebuild after rebase
2025-12-03 21:45:06 +01:00
SmartestWashingMachine
424c579455 convert : support latest mistral-common (fix conversion with --mistral-format) (#17712)
* fix convert_hf_to_gguf.py failing with --mistral-format using later mistral-common versions.

* use get_one_valid_tokenizer_file from mistral-common if available and fallback to old logic otherwise.

* use file name instead of file path for get_one_valid_tokenizer_file.

* fix --mistral-format tokenizer file failing for tokenizers in subdirectories.

* move get_one_valid_tokenizer_file import to avoid nested try-except.
2025-12-03 21:15:04 +01:00
Aleksander Grygier
e9f9483464 Use OpenAI-compatible /v1/models endpoint by default (#17689)
* refactor: Data fetching via stores

* chore: update webui build output

* refactor: Use OpenAI compat `/v1/models` endpoint by default to list models

* chore: update webui build output

* chore: update webui build output
2025-12-03 20:49:09 +01:00
Andika Wasisto
41c5e02f42 webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden (#17445)
* webui: Fix zero pasteLongTextToFileLen to disable conversion being overridden

Zero pasteLongTextToFileLen should disable the conversion, but it was
overwritten with 2500.

* Apply suggestions from code review

* Update webui build
2025-12-03 20:45:17 +01:00
Johannes Gäßler
2e1c9cd814 CUDA: generalized (mma) FA, add Volta support (#17505)
* CUDA: generalized (mma) FA, add Volta support

* use struct for MMA FA kernel config

---------

Co-authored-by: Aman Gupta <aman>
2025-12-03 16:57:05 +01:00
Georgi Gerganov
190c4838bd chat : reserve memory in compute_diffs and improve naming (#17729) 2025-12-03 17:22:10 +02:00
Pascal
e7c2cf1356 server: add router multi-model tests (#17704) (#17722)
* llama-server: add router multi-model tests (#17704)

Add 4 test cases for model router:
- test_router_unload_model: explicit model unloading
- test_router_models_max_evicts_lru: LRU eviction with --models-max
- test_router_no_models_autoload: --no-models-autoload flag behavior
- test_router_api_key_required: API key authentication

Tests use async model loading with polling and graceful skip when
insufficient models available for eviction testing.

utils.py changes:
- Add models_max, models_dir, no_models_autoload attributes to ServerProcess
- Handle JSONDecodeError for non-JSON error responses (fallback to text)

* llama-server: update test models to new HF repos

* add offline

* llama-server: fix router LRU eviction test and add preloading

Fix eviction test: load 2 models first, verify state, then load
3rd to trigger eviction. Previous logic loaded all 3 at once,
causing first model to be evicted before verification could occur.

Add module fixture to preload models via ServerPreset.load_all()
and mark test presets as offline to use cached models

* llama-server: fix split model download on Windows

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-12-03 15:10:37 +01:00
Adrien Gallouët
1257491047 server : fix bad fmt, size() is a size_type (#17735)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:22 +02:00
Adrien Gallouët
083e18b11c cmake: explicitly link against crypt32 on non-MSVC Windows builds (#17727)
Some toolchains do not support linking via pragmas such as:

    #pragma comment(lib, "crypt32.lib")

so we need to add the library explicitly.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-03 15:47:02 +02:00
Georgi Gerganov
3d94e967a1 metal : fix data race in pipeline library (#17731) 2025-12-03 14:03:40 +02:00
jiahao su
7feb0a1005 ci : remove the build of openeuler-cann in release (#17724)
* Remove the build of openeuler-cann in release

* Remove the relevant release files
2025-12-03 12:24:59 +01:00
Aldehir Rojas
0a8026e768 common : introduce composable PEG parser combinators for chat parsing (#17136)
* common : implement parser combinators to simplify chat parsing

* add virtual destructor to parser_base

* fix memory leak from circular references of rules

* implement gbnf grammar building

* remove unused private variable

* create a base visitor and implement id assignment as a visitor

* fix const ref for grammar builder

* clean up types, friend classes, and class declarations

* remove builder usage from until_parser

* Use a counter class to help assign rule ids

* cache everything

* add short description for each parser

* create a type for the root parser

* implement repetition parser

* Make optional, one_or_more, and zero_or_more subclasses of repetition

* improve context constructor

* improve until parsing and add benchmarks

* remove cached() pattern, cache in parser_base with specialized parsing functions for each parser

* improve json parsing performance to better match legacy parsing

* fix const auto * it for windows

* move id assignment to classes instead of using a visitor

* create named rules in the command r7b example

* use '.' for any in GBNF

* fix parens around choices in gbnf grammar

* add convenience operators to turn strings to literals

* add free-form operators for const char * to simplify defining literals

* simplify test case parser

* implement semantic actions

* remove groups in favor of actions and a scratchpad

* add built in actions for common operations

* add actions to command r7b example

* use std::default_searcher for platforms that don't have bm

* improve parser_type handling and add cast helper

* add partial result type to better control when to run actions

* fix bug in until()

* run actions on partial results by default

* use common_chat_msg for result

* add qwen3 example wip

* trash partial idea and simplify

* move action arguments to a struct

* implement aho-corasick matcher for until_parser and to build exclusion grammars

* use std::string for input, since std::string_view is incompatible with std::regex

* Refactor tests

* improve qwen3 example

* implement sax-style parsing and refactor

* fix json string in test

* rename classes to use common_chat_ prefix

* remove is_ suffix from functions

* rename from id_counter to just counter

* Final refactored tests

* Fix executable name and editorconfig-checker

* Third time's the charm...

* add trigger parser to begin lazy grammar rule generation

* working lazy grammar

* refactor json rules now that we check for reachability

* reduce pointer usage

* print out grammars in example

* rename to chat-peg-parser* and common_chat_peg_parser*

* Revert unrelated changes

* New macros for CMakeLists to enable multi-file compilations

* starting unicode support

* add unicode support to char_parser

* use unparsed args as additional sources

* Refactor tests to new harness

* Fix CMakeLists

* fix rate calculation

* add unicode tests

* fix trailing whitespace and line endings

skip-checks: true

* Helpers + rewrite qwen3 with helpers

* Fix whitespace

* extract unicode functions to separate file

* refactor parse unicode function

* fix compiler error

* improve construction of sequence/choice parsers

* be less clever

* add make_parser helper function

* expand usage of make_parser, alias common_chat_msg_peg_parser_builder to builder in source

* lower bench iterations

* add unicode support to until_parser

* add unicode support to json_string_parser

* clean up unicode tests

* reduce unicode details to match src/unicode.cpp

* simplify even further

* remove unused functions

* fix type

* reformat char class parsing

* clean up json string parser

* clean up + fix diagnostics

* reorder includes

* compact builder functions

* replace action_parser with capture_parser, rename env to semantics

* rename env to semantics

* clean up common_chat_parse_context

* move type() to below constant

* use default constructor for common_chat_peg_parser

* make all operators functions for consistency

* fix compilation errors in test-optional.cpp

* simplify result values

* rename json_string_unquoted to json_string_content

* Move helper to separate class, add separate explicit and helper classes

* Whitespace

* Change + to append()

* Reformat

* Add extra helpers, tests and Minimax example

* Add some extra optional debugging prints + real example of how to use them

* fix bug in repetitions when min_count = 0 reports failures

* dump rule in debug

* fix token accumulation and assert parsing never fails

* indent debug by depth

* use LOG_* in tests so logs sync up with test logs

* - Add selective testing
- Refactor all messaging to use LOG_ERR
- Fix lack of argument / tool name capturing
- Temporary fix for double event capture

* refactor rule() and introduce ref()

* clean up visitor

* clean up indirection in root parser w.r.t rules

* store shared ptr directly in parser classes

* replace aho-corasick automation with a simple trie

* Reset prev for qwen3 helper example variant

* refactor to use value semantics with std::variant/std::visit

* simplify trie_matcher result

* fix linting issues

* add annotations to rules

* revert test workaround

* implement serializing the parser

* remove redundant parsers

* remove tests

* gbnf generation fixes

* remove LOG_* use in tests

* update gbnf tests to test entire grammar

* clean up gbnf generation and fix a few bugs

* fix typo in test output

* remove implicit conversion rules

* improve test output

* rename trie_matcher to trie

* simplify trie to just know if a node is the end of a word

* remove common_chat_ prefix and ensure a common_peg_ prefix to all types

* rename chat-peg-parser -> peg-parser

* promote chat-peg-parser-helper to chat-peg-parser

* checkpoint

* use a static_assert to ensure we handle every branch

* inline trivial peg parser builders

* use json strings for now

* implement basic and native chat peg parser builders/extractors

* resolve refs to their rules

* remove packrat caching (for now)

* update tests

* compare parsers with incremental input

* benchmark both complete and incremental parsing

* add raw string generation from json schema

* add support for string schemas in gbnf generation

* fix qwen example to include \n

* tidy up example

* rename extractor to mapper

* rename ast_arena to ast

* place basic tests into one

* use gbnf_format_literal from json-schema-to-grammar

* integrate parser with common/chat and server

* clean up schema and serialization

* add json-schema raw string tests

* clean up json creation and remove capture parser

* trim spaces from reasoning and content

* clean up redundant rules and comments

* rename input_is_complete to is_partial to match rest of project

* simplify json rules

* remove extraneous file

* remove comment

* implement += and |= operators

* add comments to qwen3 implementation

* reorder arguments to common_chat_peg_parse

* remove commented outdated tests

* add explicit copy constructor

* fix operators and constness

* wip: update test-chat for qwen3-coder

* bring json parser closer to json-schema-to-grammar rules

* trim trailing space for most things

* fix qwen3 coder rules w.r.t. trailing spaces

* group rules

* do not trim trailing space from string args

* tweak spacing of qwen3 grammar

* update qwen3-coder tests

* qwen3-coder small fixes

* place parser in common_chat_syntax to simplify invocation

* use std::set to collect rules to keep order predictable for tests

* initialize parser to make certain platforms happy

* revert back to std::unordered_set, sort rule names at the end instead

* uncomment rest of chat tests

* define explicit default constructor

* improve arena init and server integration

* fix chat test

* add json_member()

* add a comprehensive native example

* clean up example qwen test and add response_format example to native test

* make build_peg_parser accept std::function instead of template

* change peg parser parameters into const ref

* push tool call on tool open for constructed parser

* add parsing documentation

* clean up some comments

* add json schema support to qwen3-coder

* add id initializer in tests

* remove grammar debug line from qwen3-coder

* refactor qwen3-coder to use sequence over operators

* only call common_chat_peg_parse if appropriate format

* simplify qwen3-coder space handling

* revert qwen3-coder implementation

* revert json-schema-to-grammar changes

* remove unnecessary forward declaration

* small adjustment to until_parser

* rename C/C++ files to use dashes

* codeowners : add aldehir to peg-parser and related files

---------

Co-authored-by: Piotr Wilkin <piotr.wilkin@syndatis.com>
2025-12-03 12:45:32 +02:00
Pascal
5ceed62421 server: fix duplicate HTTP headers in multiple models mode (#17698)
* llama-server: fix duplicate HTTP headers in multiple models mode (#17693)

* llama-server: address review feedback from ngxson

- restrict scope of header after std::move
- simplify header check (remove unordered_set)
2025-12-03 10:28:43 +01:00
Reese Levine
7ca5991d2b ggml webgpu: add support for emscripten builds (#17184)
* Faster tensors (#8)

Add fast matrix and matrix/vector multiplication.

* Use map for shader replacements instead of pair of strings

* Wasm (#9)

* webgpu : fix build on emscripten

* more debugging stuff

* test-backend-ops: force single thread on wasm

* fix single-thread case for init_tensor_uniform

* use jspi

* add pthread

* test: remember to set n_thread for cpu backend

* Add buffer label and enable dawn-specific toggles to turn off some checks

* Intermediate state

* Fast working f16/f32 vec4

* Working float fast mul mat

* Clean up naming of mul_mat to match logical model, start work on q mul_mat

* Setup for subgroup matrix mat mul

* Basic working subgroup matrix

* Working subgroup matrix tiling

* Handle weirder sg matrix sizes (but still % sg matrix size)

* Working start to gemv

* working f16 accumulation with shared memory staging

* Print out available subgroup matrix configurations

* Vectorize dst stores for sg matrix shader

* Gemv working scalar

* Minor set_rows optimization (#4)

* updated optimization, fixed errors

* non vectorized version now dispatches one thread per element

* Simplify

* Change logic for set_rows pipelines

---------

Co-authored-by: Neha Abbas <nehaabbas@macbookpro.lan>
Co-authored-by: Neha Abbas <nehaabbas@ReeseLevines-MacBook-Pro.local>
Co-authored-by: Reese Levine <reeselevine1@gmail.com>

* Comment on dawn toggles

* Working subgroup matrix code for (semi)generic sizes

* Remove some comments

* Cleanup code

* Update dawn version and move to portable subgroup size

* Try to fix new dawn release

* Update subgroup size comment

* Only check for subgroup matrix configs if they are supported

* Add toggles for subgroup matrix/f16 support on nvidia+vulkan

* Make row/col naming consistent

* Refactor shared memory loading

* Move sg matrix stores to correct file

* Working q4_0

* Formatting

* Work with emscripten builds

* Fix test-backend-ops emscripten for f16/quantized types

* Use emscripten memory64 to support get_memory

* Add build flags and try ci

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* Remove extra whitespace

* Move wasm single-thread logic out of test-backend-ops for cpu backend

* Disable multiple threads for emscripten single-thread builds in ggml_graph_plan

* Fix .gitignore

* Add memory64 option and remove unneeded macros for setting threads to 1

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-12-03 10:25:34 +01:00
Sigbjørn Skjæret
b3e3060f4e ci : move release details to the top visible by default (#17719) 2025-12-03 09:22:46 +01:00
Herman Semenoff
37adc9c6ba ggml, llama : use defaulted constructors/destructors (#17649) 2025-12-03 07:12:18 +01:00
Marcos Del Sol Vives
16cc3c606e build: document how to compile with Vulkan using Debian/Ubuntu packages (#17688) 2025-12-03 08:25:11 +08:00
Xuan-Son Nguyen
13628d8bdb server: add --media-path for local media files (#17697)
* server: add --media-path for local media files

* remove unused fn
2025-12-02 22:49:20 +01:00
Xuan-Son Nguyen
a96283adc4 mtmd: fix --no-warmup (#17695) 2025-12-02 22:48:08 +01:00
Ali Tariq
4eba8d9451 ci : RVV1.0 builds with tests (#16682)
* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Added RISC-V supported tests

* Added default value for LLAMA_FATAL_WARNINGS and option to specify by user

* Removed apt prompt

* Added RISC-V specific tests with corrections

Corrections included:
1. Changed the test names from debian to ubuntu as it is more stable than Debian Trixie
2. Added explicit compiler in cmake command as GCC compiler below version 14 have been recorded
to throw errors with rvv1.0 and some other extensions
3. Added dependencies which are not installed by default in the RISC-V Ubuntu 24.04
4. Separate ccache directory for all jobs as all the ccache results are not the same and may cause ccache to not work

* Resolved the merge conflict and cleaned up run.sh

* Update ci/run.sh

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Removed previously added build ci for RISC-V

* Removed trailing whitespaces

* corrected build name

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* cleanup

* Enabled build tests (1)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Enabled build tests (2)

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* enable openssl

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 21:46:10 +01:00
Jeff Bolz
61bde8e21f vulkan: Reduce temporary memory usage for TOP_K (#17623)
- Compute row size for the temp buffer based on the output of the first pass.
- Update shader addressing math to use the output row size
- Pass the output row size as "ncols_output", what used to be "ncols_output" is now "k"

For the common case of K=40 and src0=(200000,1,1,1), this reduces the temporary buffer
from about 3.2MB to 500KB.
2025-12-02 19:22:04 +01:00
xiaobing318
e251e5ebbe cmake : add utf8 compilation options for msvc (#17682) 2025-12-02 19:50:57 +02:00
Chad Voegele
c4357dcc35 Server: Change Invalid Schema from Server Error (500) to User Error (400) (#17572)
* Make invalid schema a user error (400)

* Move invalid_argument exception handler to ex_wrapper

* Fix test

* Simplify test back to original pattern
2025-12-02 17:33:50 +01:00
Adrien Gallouët
e148380c7c ggml : use svcntb() for SVE vector length detection (#17474)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 18:21:11 +02:00
TianHao324
a2b0fe8d37 CANN: Disable Ger operator of OUT_PROD on 310p device (#17563) 2025-12-02 20:35:23 +08:00
Daniel Bevenius
7f3a72a8ed ggml : remove redundant n_copies check when setting input/output (#17612)
This commit removes a redundant check for sched->n_copies > 1 when
setting input and output flags on tensor copies in
ggml_backend_sched_split_graph.

The motivation for this change is to clarify the code as the outer if
statement already performs this check.
2025-12-02 12:52:45 +01:00
Eric Curtin
b9a37717b0 codeowners : remove ericcurtin (#17658)
Taking a break from llama.cpp . I wasn't around at the start of llama.cpp
but I want to thank @ggerganov and @slaren for creating a neat community
here.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-12-02 12:18:15 +01:00
Adrien Gallouët
f3a9674ae8 llama : fix signed comparison warning on FreeBSD (#17497)
This ensures correct RLIM_INFINITY handling and compatibility on all platforms (32/64-bit).

    warning: comparison of integers of different signs: 'rlim_t' (aka 'long') and 'size_t' (aka 'unsigned long') [-Wsign-compare]
      488 |         if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
          |                         ~~~~~~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~~~~~~~

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 12:05:38 +01:00
Xuan-Son Nguyen
2c453c6c77 convert: add error message for mistral3 quantized weight (#17686) 2025-12-02 11:48:31 +01:00
Xuan-Son Nguyen
5d6bd842ea server: remove default "gpt-3.5-turbo" model name (#17668)
* server: remove default "gpt-3.5-turbo" model name

* do not reflect back model name from request

* fix test
2025-12-02 11:38:57 +01:00
senhtry
fd3abe849e server: fixing naming conflict res_error in server-models.cpp (#17679) 2025-12-02 11:18:39 +01:00
Xuan-Son Nguyen
682e6658bb server: explicitly set exec path when create new instance (#17669)
* Revert "rm unused fn"

This reverts commit f2dbe9c087.

* server: explicitly set exec path when create new instance

* put back TODO

* only call get_server_exec_path() once

* add fallback logic
2025-12-02 10:25:11 +01:00
Adrien Gallouët
4574f2949e ci : skip winget update when not in ggml-org (#17465)
Prevent forks from generating daily failure notifications.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:15:01 +01:00
Adrien Gallouët
ab6726eeff ggml : add fallback definition for HWCAP2_SVE2 (#17683)
This align with other HWCAP2 feature flags

See #17528

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-12-02 10:41:26 +02:00
Aleksander Grygier
cee92af553 Add context info to server error (#17663)
* fix: Add context info to server error

* chore: update webui build output
2025-12-02 09:20:57 +01:00
Aman Gupta
ed32089927 ggml-cuda: reorder only relevant nodes (#17639) 2025-12-02 12:36:31 +08:00
Aaron Teo
7b6d745364 release: fix duplicate libs, store symbolic links (#17299) 2025-12-02 11:52:05 +08:00
Neo Zhang Jianyu
98bd9ab1e4 enhance argsort for UT (#17573)
Co-authored-by: Neo Zhang <zhang.jianyu@outlook.com>
2025-12-02 08:56:46 +08:00
Piotr Wilkin (ilintar)
746f9ee889 Override SSM_A op for Qwen3 Next to reduce splits (#17587)
* Override SSM_A op for Qwen3 Next to reduce splits

* New tensor mapping SSM_A_NOSCAN for SSM_A used outside of OP_SSM_SCAN context.

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-02 00:43:13 +01:00
Jeff Bolz
9810cb8247 ops.md: update vulkan support (#17661) 2025-12-01 15:26:21 -06:00
Xuan-Son Nguyen
ecf74a8417 mtmd: add mtmd_context_params::warmup option (#17652)
* mtmd: add mtmd_context_params::warmup option

* reuse the common_params::warmup
2025-12-01 21:32:25 +01:00
Gilad S.
00c361fe53 fix: llama arch implementation (#17665) 2025-12-01 21:21:13 +01:00
Xuan-Son Nguyen
ec18edfcba server: introduce API for serving / loading / unloading multiple models (#17470)
* server: add model management and proxy

* fix compile error

* does this fix windows?

* fix windows build

* use subprocess.h, better logging

* add test

* fix windows

* feat: Model/Router server architecture WIP

* more stable

* fix unsafe pointer

* also allow terminate loading model

* add is_active()

* refactor: Architecture improvements

* tmp apply upstream fix

* address most problems

* address thread safety issue

* address review comment

* add docs (first version)

* address review comment

* feat: Improved UX for model information, modality interactions etc

* chore: update webui build output

* refactor: Use only the message data `model` property for displaying model used info

* chore: update webui build output

* add --models-dir param

* feat: New Model Selection UX WIP

* chore: update webui build output

* feat: Add auto-mic setting

* feat: Attachments UX improvements

* implement LRU

* remove default model path

* better --models-dir

* add env for args

* address review comments

* fix compile

* refactor: Chat Form Submit component

* ad endpoint docs

* Merge remote-tracking branch 'webui/allozaur/server_model_management_v1_2' into xsn/server_model_maagement_v1_2

Co-authored-by: Aleksander <aleksander.grygier@gmail.com>

* feat: Add copy to clipboard to model name in model info dialog

* feat: Model unavailable UI state for model selector

* feat: Chat Form Actions UI logic improvements

* feat: Auto-select model from last assistant response

* chore: update webui build output

* expose args and exit_code in API

* add note

* support extra_args on loading model

* allow reusing args if auto_load

* typo docs

* oai-compat /models endpoint

* cleaner

* address review comments

* feat: Use `model` property for displaying the `repo/model-name` naming format

* refactor: Attachments data

* chore: update webui build output

* refactor: Enum imports

* feat: Improve Model Selector responsiveness

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* refactor: Formatters

* chore: update webui build output

* refactor: Copy To Clipboard Icon component

* chore: update webui build output

* refactor: Cleanup

* chore: update webui build output

* refactor: UI badges

* chore: update webui build output

* refactor: Cleanup

* refactor: Cleanup

* chore: update webui build output

* add --models-allow-extra-args for security

* nits

* add stdin_file

* fix merge

* fix: Retrieve lost setting after resolving merge conflict

* refactor: DatabaseStore -> DatabaseService

* refactor: Database, Conversations & Chat services + stores architecture improvements (WIP)

* refactor: Remove redundant settings

* refactor: Multi-model business logic WIP

* chore: update webui build output

* feat: Switching models logic for ChatForm or when regenerating messges + modality detection logic

* chore: update webui build output

* fix: Add `untrack` inside chat processing info data logic to prevent infinite effect

* fix: Regenerate

* feat: Remove redundant settigns + rearrange

* fix: Audio attachments

* refactor: Icons

* chore: update webui build output

* feat: Model management and selection features WIP

* chore: update webui build output

* refactor: Improve server properties management

* refactor: Icons

* chore: update webui build output

* feat: Improve model loading/unloading status updates

* chore: update webui build output

* refactor: Improve API header management via utility functions

* remove support for extra args

* set hf_repo/docker_repo as model alias when posible

* refactor: Remove ConversationsService

* refactor: Chat requests abort handling

* refactor: Server store

* tmp webui build

* refactor: Model modality handling

* chore: update webui build output

* refactor: Processing state reactivity

* fix: UI

* refactor: Services/Stores syntax + logic improvements

Refactors components to access stores directly instead of using exported getter functions.

This change centralizes store access and logic, simplifying component code and improving maintainability by reducing the number of exported functions and promoting direct store interaction.

Removes exported getter functions from `chat.svelte.ts`, `conversations.svelte.ts`, `models.svelte.ts` and `settings.svelte.ts`.

* refactor: Architecture cleanup

* feat: Improve statistic badges

* feat: Condition available models based on modality + better model loading strategy & UX

* docs: Architecture documentation

* feat: Update logic for PDF as Image

* add TODO for http client

* refactor: Enhance model info and attachment handling

* chore: update webui build output

* refactor: Components naming

* chore: update webui build output

* refactor: Cleanup

* refactor: DRY `getAttachmentDisplayItems` function + fix UI

* chore: update webui build output

* fix: Modality detection improvement for text-based PDF attachments

* refactor: Cleanup

* docs: Add info comment

* refactor: Cleanup

* re

* refactor: Cleanup

* refactor: Cleanup

* feat: Attachment logic & UI improvements

* refactor: Constants

* feat: Improve UI sidebar background color

* chore: update webui build output

* refactor: Utils imports + move types to `app.d.ts`

* test: Fix Storybook mocks

* chore: update webui build output

* test: Update Chat Form UI tests

* refactor: Tooltip Provider from core layout

* refactor: Tests to separate location

* decouple server_models from server_routes

* test: Move demo test  to tests/server

* refactor: Remove redundant method

* chore: update webui build output

* also route anthropic endpoints

* fix duplicated arg

* fix invalid ptr to shutdown_handler

* server : minor

* rm unused fn

* add ?autoload=true|false query param

* refactor: Remove redundant code

* docs: Update README documentations + architecture & data flow diagrams

* fix: Disable autoload on calling server props for the model

* chore: update webui build output

* fix ubuntu build

* fix: Model status reactivity

* fix: Modality detection for MODEL mode

* chore: update webui build output

---------

Co-authored-by: Aleksander Grygier <aleksander.grygier@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-01 19:41:04 +01:00
Xuan-Son Nguyen
7733409734 common: improve verbosity level definitions (#17630)
* common: improve verbosity level definitions

* string_format

* update autogen docs
2025-12-01 14:38:13 +01:00
Xuan-Son Nguyen
cd3c118908 model: support Ministral3 (#17644)
* conversion script

* support ministral 3

* maybe this is better?

* add TODO for rope_yarn_log_mul

* better ppl (tested on 14B-Instruct)

* Add Ministral3 support to Mistral format

* improve arch handling

* add sizes

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* nits

---------

Co-authored-by: Julien Denize <julien.denize@mistral.ai>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-01 12:26:52 +01:00
Georgi Gerganov
649495c9d9 metal : add FA head size 48 (#17619) 2025-12-01 12:49:53 +02:00
Georgi Gerganov
90c72a614a ggml : extend the GGML_SCHED_NO_REALLOC debug logic of the scheduler (#17617) 2025-12-01 12:49:33 +02:00
Aman Gupta
6eea666912 llama-graph: avoid expand_forward for fusion (#17633) 2025-12-01 11:12:48 +02:00
Xuan-Son Nguyen
ff90508d68 contributing: update guidelines for AI-generated code (#17625)
* contributing: update guidelines for AI-generated code

* revise
2025-11-30 22:51:34 +01:00
Adrien Gallouët
0a4aeb927d cmake : add option to build and link LibreSSL (#17552)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 22:14:32 +01:00
Tarek Dakhran
2ba719519d model: LFM2-VL fixes (#17577)
* Adjust to pytorch

* Add antialiasing upscale

* Increase number of patches to 1024

* Handle default marker insertion for LFM2

* Switch to flag

* Reformat

* Cuda implementation of antialias kernel

* Change placement in ops.cpp

* consistent float literals

* Pad only for LFM2

* Address PR feedback

* Rollback default marker placement changes

* Fallback to CPU implementation for antialias implementation of upscale
2025-11-30 21:57:31 +01:00
Xuan-Son Nguyen
7f8ef50cce clip: fix nb calculation for qwen3-vl (#17594) 2025-11-30 15:33:55 +01:00
Xuan-Son Nguyen
3c136b21a3 cli: add migration warning (#17620) 2025-11-30 15:32:43 +01:00
Adrien Gallouët
beb1f0c503 common : throttle download progress output to reduce IO flush (#17427)
This change limits progress updates to approximately every 0.1% of the
file size to minimize stdio overhead.

Also fixes compiler warnings regarding __func__ in lambdas.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2025-11-30 14:22:44 +02:00
Aaron Teo
def5404f26 common: add LLAMA_LOG_FILE env var (#17609)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-11-30 12:12:32 +01:00
Gilad S.
fa0465954f ggml: fix: macOS build with -DGGML_BACKEND_DL=ON (#17581) 2025-11-30 10:00:59 +08:00
ddh0
5a6241feb0 common: update env var name (#17588) 2025-11-30 09:59:25 +08:00
Aman Gupta
c7af376c29 CUDA: add stream-based concurrency (#16991)
* CUDA: add stream-based concurrency

* HIP: fix hipStreamWaitEvent define and nodiscard warnings

* ggml-cuda: fix fusion inside stream

* ggml-cuda: fix bug w.r.t first stream launch

* ggml-cuda: format

* ggml-cuda: improve assert message

* ggml-cuda: use lambda instead of duplicating code

* ggml-cuda: add some more comments

* ggml-cuda: add more detailed comments about concurrency

* ggml-cuda: rename + remove unused var

* ggml-cuda: fix condition for stream launch

* ggml-cuda: address review comments, add destructor

* common.cuh: add is_valid for concurrent events

* common.cuh: make comment better

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* update comment

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* common.cuh: fix lower_bound condition + remove join_node data from write_ranges

* ggml-cuda: fix overlap condition + shadowing parameter

---------

Co-authored-by: Carl Philipp Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-30 08:17:55 +08:00
Mahekk Shaikh
00425e2ed1 cuda : add error checking for cudaMemcpyAsync in argsort (#17599)
* cuda : add error checking for cudaMemcpyAsync in argsort (#12836)

* fix indentation
2025-11-30 08:16:28 +08:00
Acly
385c3da5e6 vulkan : fix FA mask load with bounds check (coopmat2) (#17606) 2025-11-30 01:03:21 +01:00
Xuan-Son Nguyen
ab49f094d2 server: move server-context to its own cpp|h (#17595)
* git mv

* add server-context.h

* add server-context.h

* clean up headers

* cont : cleanup

* also expose server_response_reader (to be used by CLI)

* fix windows build

* decouple server_routes and server_http

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-29 22:04:44 +01:00
Haiyue Wang
8c32d9d96d server: explicitly set the function name in lambda (#17538)
As [1] explained, the real debug message will be like:
	"res    operator(): operator() : queue result stop"

Set the name explicitly, the message is easy for debugging:
	"res    operator(): recv : queue result stop"

The left "operator()" is generated by 'RES_DBG() ... __func__'

[1]: https://clang.llvm.org/extra/clang-tidy/checks/bugprone/lambda-function-name.html

Signed-off-by: Haiyue Wang <haiyuewa@163.com>
2025-11-29 18:43:29 +01:00
Igor Smirnov
0874693b44 common : fix json schema with '\' in literals (#17307)
* Fix json schema with '\' in literals

* Add "literal string with escapes" test
2025-11-29 17:06:32 +01:00
Neo Zhang
7d2add51d8 sycl : support to malloc memory on device more than 4GB, update the doc and script (#17566)
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2025-11-29 14:59:44 +02:00
ixgbe
f698a79c63 ggml: replace hwcap with riscv_hwprobe for RVV detection (#17567)
Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-11-29 14:56:31 +02:00
Ruben Ortlam
47a268ea50 Vulkan: MMVQ Integer Dot K-Quant and MUL_MAT_ID support (#16900)
* vulkan: split mul_mmq_funcs for mul_mat_vecq use

* add mxfp4 mmvq

* add q2_k mmvq

* add q3_k mmvq

* add q4_k and q5_k mmvq

* add q6_k mmvq

* handle 4x4 quants per mmvq thread

* enable MUL_MAT_ID mmvq support

* enable subgroup optimizations for mul_mat_vec_id shaders

* device tuning

* request prealloc_y sync after quantization

* fix indentation

* fix llvmpipe test failures

* fix mul_mat_id mmvq condition

* fix unused variable warning
2025-11-29 09:37:22 +01:00
Jeff Bolz
59d8d4e963 vulkan: improve topk perf for large k, fix overflow in unit tests (#17582) 2025-11-29 08:39:57 +01:00
Aleksei Nikiforov
d82b7a7c1d gguf-py : fix passing non-native endian tensors (editor-gui and new-metadata) (#17553)
gguf_new_metadata.py reads data from reader.
Reader doesn't byteswap tensors to native endianness.
But writer does expect tensors in native endianness to convert them
into requested endianness.

There are two ways to fix this: update reader and do conversion to native endianness and back,
or skip converting endianness in writer in this particular USE-case.

gguf_editor_gui.py doesn't allow editing or viewing tensor data.
Let's go with skipping excessive byteswapping.

If eventually capability to view or edit tensor data is added,
tensor data should be instead byteswapped when reading it.
2025-11-28 20:53:01 +01:00
DAN™
03914c7ef8 common : move all common_chat_parse_* to chat-parser.cpp. (#17481) 2025-11-28 19:29:36 +01:00
o7si
3ce7a65c2f server: fix: /metrics endpoint returning JSON-escaped Prometheus format (#17386)
* fix: /metrics endpoint returning JSON-escaped Prometheus format

* mod: remove string overload from ok() method
2025-11-28 19:14:00 +01:00
Diego Devesa
e072b2052e ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched (#17276)
* ggml : add GGML_SCHED_NO_REALLOC option to disable reallocations in ggml_backend_sched
Enabled in ggml-ci for testing.

* llama : update worst-case graph for unified cache

* ci : disable op offload in some tests

* fix spelling

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 17:33:23 +02:00
R0CKSTAR
c6f7a423c8 [MUSA] enable fp16/fast_fp16/bf16_mma on PH1 (#17551)
* [MUSA] enable fp16/fast_fp16/bf16_mma on PH1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-vec.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/fattn-tile.cuh

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-11-28 14:08:29 +01:00
Aman Gupta
2e7ef98f18 ggml-cuda: add stricter checking for fusion (#17568)
* ggml-cuda: make conditions for fusion more explicit

* ggml-cuda: remove size check as std::equal already does it
2025-11-28 20:34:51 +08:00
Fredrik Hultin
ddf9f94389 server : add Anthropic Messages API support (#17570)
* server : add Anthropic Messages API support

* remove -@pytest.mark.slow from tool calling/jinja tests

* server : remove unused code and slow/skip on test_anthropic_vision_base64_with_multimodal_model in test_anthropic_api.py

* server : removed redundant n field logic in anthropic_params_from_json

* server : use single error object instead of error_array in streaming response handler for /v1/chat/completions and use unordered_set instead of set in to_json_anthropic_stream()

* server : refactor Anthropic API to use OAI conversion

* make sure basic test always go first

* clean up

* clean up api key check, add test

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-11-28 12:57:04 +01:00
Piotr Wilkin (ilintar)
ff55414c42 model : Qwen3 Next (#16095)
* Qwen3 Next - cleaned up version

* Whitespaces and stuff

* Correct minor errors

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Misc. fixes.

* Clean up code, add missing hybrid qualifier

* Did someone transpose the SOLVE_TRI result matrix? Perhaps...

* Whitespace

* Proper tensors for cb calls

* Use llama-graph.h vertical alignment

* BROKEN: chunking

* Set new tensors as inputs.

* Proper chunk logic

* It's the circle of life...

* More shenanigans for n_seq > 1

* Nail in the coffin?

* Fix Windows build

* Eh, one fails on Windows, the other fails on Mac... just use general capture.

* quant : cleanup

* model : cleanup

* qwen3 : cleanup

* cont : cleanup

* cont : cleanup

* ggml : revert change

* qwen3 : cleanup

* cont : cleanup

* Readd cmath

* qwen3 : fix typo

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Usual suspects

* fix my bad suggestion

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-28 12:02:56 +01:00
Johannes Gäßler
73955f7d2a CUDA: no FP16 arithmetic for vector FA kernel (#17558) 2025-11-28 10:29:09 +01:00
Jeff Bolz
35cf8887e1 vulkan: Implement GGML_OP_TRI (#17503)
* vulkan: Implement GGML_OP_TRI

* check types match
2025-11-28 10:07:29 +01:00
Radoslav Gerganov
15d2b46b4d rpc : cache and reuse compute graphs (#15405)
Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.
2025-11-28 08:33:51 +00:00
yulo
6bca76ff5e HIP: enable mul_mat_f for RDNA4 (#17437)
* enable mmf for rdna4

* move some mmvf to mmf

* revert lds128 for wmma loading

* Revert "revert lds128 for wmma loading"

This reverts commit db9ae8b6b4.

* Revert "enable mmf for rdna4"

This reverts commit 698c9f2418.

* Revert "move some mmvf to mmf"

This reverts commit 99b92bd665.

* enable mul_mat for rdna4

---------

Co-authored-by: zhang hui <you@example.com>
2025-11-28 08:24:30 +01:00
Piotr Wilkin (ilintar)
cd0e3a7a3b SOLVE_TRI CUDA kernel for small matrices (#17457) 2025-11-28 12:15:32 +08:00
Neo Zhang Jianyu
efaaccdd69 refactor pad_reflect_1d to make the UT case pass (#17204)
Co-authored-by: Zhang Jianyu <zhang.jianyu@outlook.com>
2025-11-28 08:50:56 +08:00
Jeff Bolz
4abef75f2c vulkan: Implement SOLVE_TRI (#17486)
* vulkan: Implement SOLVE_TRI

* load B matrix through shared memory

* use FLOAT_TYPE
2025-11-27 15:48:00 +01:00
Georgi Gerganov
c386114922 arch : add description about LLM_TENSOR_INFOS (#17550) 2025-11-27 16:34:13 +02:00
Georgi Gerganov
6783b11fb0 models : fix LFM2 tensors (#17548) 2025-11-27 16:04:29 +02:00
matt23654
909072abcf cuda : fix UMA detection on discrete GPUs. (#17537) 2025-11-27 13:35:35 +02:00
Alberto Cabrera Pérez
cd8370b408 ggml-cpu: aarm64: q4_K repack gemm and gemv implementations (dotprod only) (#17494)
* Enabled q4_K_4x8 path

* Fixed generic Q4_K 8x4 implementation

* wip: dotprod gemm

* Working arm q4_K dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Undo acc rename

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Q4_K arm dotprod gemm

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Fix: q4_qs reinterpret from uint to int

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>

* Removed comments

* Fixed macro guards

* Fixed unused vars in generic implementation

* Fixed unused vars in 8x4 repack

* Fixed unused vars in generic implementation, unneeded comment

* Missing arch fallback for x86

* minor : style

---------

Signed-off-by: Alberto Cabrera <alberto.cabrera@liquid.ai>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-11-27 13:25:14 +02:00
Eric Curtin
d21a76ac38 devops: Add build-essential to Ubuntu 26.04 image (#17531)
This is no longer passing the build, needs more packages.

Signed-off-by: Eric Curtin <eric.curtin@docker.com>
2025-11-27 18:35:47 +08:00
Aleksei Nikiforov
4fcd87cf7c gguf-py : skip endian-conversion of MXFP4 data (#17523)
* gguf_convert_endian.py: skip MXFP4 data

* Use gguf.constants.GGML_QUANT_SIZES to determine block sizes
2025-11-27 11:35:38 +01:00
Acly
b78db3bd50 vulkan : move contiguous checks to device_supports_op (#17490)
* vulkan : remove op_supports_incontiguous and add missing constraints in device_supports_op

* im2col: remove contraints on src0 (kernel input)
2025-11-27 06:54:19 +01:00
Jeff Bolz
142df17c9c vulkan: use a fixed 1KB buffer for the add_rms_fusion opt (#17514) 2025-11-27 06:32:30 +01:00
Xuan-Son Nguyen
e509411cf1 server: enable jinja by default, update docs (#17524)
* server: enable jinja by default, update docs

* fix tests
2025-11-27 01:02:50 +01:00
lhez
7cba58bbea opencl: add sqr, sqrt, mean and ssm_conv (#17476)
* opencl: add sqr

* opencl: add sqrt

* opencl: add mean

* opencl: add ssm_conv

* opencl: add missing cl_khr_fp16

* opencl: do sqrt in f32 then convert to f16 for better precision
2025-11-26 13:29:58 -08:00
Alberto Cabrera Pérez
5449367b21 Fix chunks being too small with small matrix sizes (#17526) 2025-11-26 13:14:54 -08:00
Han Qingzhe
1d594c295c clip: (minicpmv) fix resampler kq_scale (#17516)
* debug:"solve minicpmv precision problem"

* “debug minicpmv”

* Apply suggestion from @ngxson

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-11-26 21:44:07 +01:00
379 changed files with 85787 additions and 23146 deletions

View File

@@ -50,6 +50,7 @@ WORKDIR /app
RUN apt-get update \
&& apt-get install -y \
build-essential \
git \
python3 \
python3-pip \

View File

@@ -1,120 +0,0 @@
name: Build on RISCV Linux Machine by Cloud-V
on:
pull_request:
workflow_dispatch:
workflow_call:
jobs:
debian-13-riscv64-native: # Bianbu 2.2
runs-on: [self-hosted, RISCV64]
steps:
- name: Install prerequisites
run: |
sudo apt-get update || true
sudo apt-get install -y libatomic1
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo apt-get update || true
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
ccache \
cmake
- name: Setup ccache
run: |
mkdir -p $HOME/.ccache
ccache -M 5G -d $HOME/.ccache
export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
echo "$GITHUB_WORKSPACE"
echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
- name: Build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
# debian-13-riscv64-spacemit-ime-native: # Bianbu 2.2
# runs-on: [self-hosted, RISCV64]
# steps:
# - name: Install prerequisites
# run: |
# sudo apt-get update || true
# sudo apt-get install -y libatomic1
# - uses: actions/checkout@v4
# - name: Setup Riscv
# run: |
# sudo apt-get update || true
# sudo apt-get install -y --no-install-recommends \
# build-essential \
# gcc-14-riscv64-linux-gnu \
# g++-14-riscv64-linux-gnu \
# ccache \
# cmake
# sudo apt-get upgrade binutils -y
# - name: Setup ccache
# run: |
# mkdir -p $HOME/.ccache
# ccache -M 5G -d $HOME/.ccache
# export CCACHE_LOGFILE=/home/runneruser/ccache_debug/ccache.log
# export CCACHE_DEBUGDIR="/home/runneruser/ccache_debug"
# echo "$GITHUB_WORKSPACE"
# echo "CCACHE_LOGFILE=$CCACHE_LOGFILE" >> $GITHUB_ENV
# echo "CCACHE_DEBUGDIR=$CCACHE_DEBUGDIR" >> $GITHUB_ENV
# echo "CCACHE_BASEDIR=$GITHUB_WORKSPACE" >> $GITHUB_ENV
# echo "CCACHE_DIR=$HOME/.ccache" >> $GITHUB_ENV
# - name: Build
# run: |
# cmake -B build \
# -DLLAMA_CURL=OFF \
# -DCMAKE_BUILD_TYPE=Release \
# -DGGML_OPENMP=OFF \
# -DLLAMA_BUILD_EXAMPLES=ON \
# -DLLAMA_BUILD_TOOLS=ON \
# -DLLAMA_BUILD_TESTS=OFF \
# -DCMAKE_SYSTEM_NAME=Linux \
# -DCMAKE_SYSTEM_PROCESSOR=riscv64 \
# -DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
# -DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
# -DCMAKE_C_COMPILER_LAUNCHER=ccache \
# -DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
# -DCMAKE_POSITION_INDEPENDENT_CODE=ON \
# -DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
# -DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
# -DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
# -DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH \
# -DGGML_RVV=ON \
# -DGGML_RV_ZFH=ON \
# -DGGML_RV_ZICBOP=ON \
# -DGGML_CPU_RISCV64_SPACEMIT=ON \
# -DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1
# cmake --build build --config Release -j $(nproc)

View File

@@ -547,6 +547,46 @@ jobs:
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 3600
ubuntu-24-wasm-webgpu:
runs-on: ubuntu-24.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: ccache
uses: ggml-org/ccache-action@v1.2.16
with:
key: ubuntu-latest-wasm-webgpu
evict-old-files: 1d
- name: Install Emscripten
run: |
git clone https://github.com/emscripten-core/emsdk.git
cd emsdk
./emsdk install latest
./emsdk activate latest
- name: Fetch emdawnwebgpu
run: |
DAWN_TAG="v20251027.212519"
EMDAWN_PKG="emdawnwebgpu_pkg-${DAWN_TAG}.zip"
echo "Downloading ${EMDAWN_PKG}"
curl -L -o emdawn.zip \
"https://github.com/google/dawn/releases/download/${DAWN_TAG}/${EMDAWN_PKG}"
unzip emdawn.zip
- name: Build WASM WebGPU
run: |
source emsdk/emsdk_env.sh
emcmake cmake -B build-wasm \
-DGGML_WEBGPU=ON \
-DLLAMA_CURL=OFF \
-DEMDAWNWEBGPU_DIR=emdawnwebgpu_pkg
cmake --build build-wasm --target test-backend-ops -j $(nproc)
ubuntu-22-cmake-hip:
runs-on: ubuntu-22.04
container: rocm/dev-ubuntu-22.04:6.1.2
@@ -1562,33 +1602,33 @@ jobs:
run: |
bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-vulkan:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-vulkan:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
vulkaninfo --summary
GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# vulkaninfo --summary
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-x64-amd-rocm:
runs-on: [self-hosted, Linux, X64, AMD]
# ggml-ci-x64-amd-rocm:
# runs-on: [self-hosted, Linux, X64, AMD]
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
# steps:
# - name: Clone
# id: checkout
# uses: actions/checkout@v4
- name: Test
id: ggml-ci
run: |
amd-smi static
GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
# - name: Test
# id: ggml-ci
# run: |
# amd-smi static
# GG_BUILD_ROCM=1 GG_BUILD_AMDGPU_TARGETS="gfx1101" bash ./ci/run.sh ~/results/llama.cpp /mnt/llama.cpp
ggml-ci-mac-metal:
runs-on: [self-hosted, macOS, ARM64]
@@ -1642,6 +1682,337 @@ jobs:
run: |
GG_BUILD_KLEIDIAI=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ubuntu-cpu-cmake-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Check environment
run: |
uname -a
gcc --version
g++ --version
ldd --version
cmake --version
rustc --version
- name: Setup ccache
run: |
# Set unique cache directory for this job
export CCACHE_DIR="$HOME/.ccache/cpu-cmake-rv64-native"
mkdir -p "$CCACHE_DIR"
# Configure ccache for optimal performance
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
# Enable more aggressive caching
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DGGML_RPC=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L 'main|curl' --verbose --timeout 900
- name: Test llama2c conversion
id: llama2c_test
run: |
cd build
echo "Fetch tokenizer"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/tok512.bin
echo "Fetch llama2c model"
wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories260K/stories260K.bin
./bin/llama-convert-llama2c-to-ggml --copy-vocab-from-model ./tok512.bin --llama2c-model stories260K.bin --llama2c-output-model stories260K.gguf
./bin/llama-cli -m stories260K.gguf -p "One day, Lily met a Shoggoth" -n 500 -c 256
ubuntu-cmake-sanitizer-riscv64-native:
runs-on: RISCV64
continue-on-error: true
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug]
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
# Unique cache directory per matrix combination
export CCACHE_DIR="$HOME/.ccache/sanitizer-${{ matrix.sanitizer }}-${{ matrix.build_type }}"
mkdir -p "$CCACHE_DIR"
# Configure ccache
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
# Export for subsequent steps
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=ON \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-llguidance-riscv64-native:
runs-on: RISCV64
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/llguidance-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DLLAMA_LLGUIDANCE=ON \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose --timeout 900
ubuntu-cmake-rpc-riscv64-native:
runs-on: RISCV64
continue-on-error: true
steps:
- name: Install dependencies
run: |
sudo apt-get update
# Install necessary packages
sudo apt-get install -y libatomic1 libtsan2 gcc-14 g++-14 rustup cmake build-essential libssl-dev wget ccache
# Set gcc-14 and g++-14 as the default compilers
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-14 100
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-14 100
sudo ln -sf /usr/bin/gcc-14 /usr/bin/gcc
sudo ln -sf /usr/bin/g++-14 /usr/bin/g++
# Install Rust stable version
rustup install stable
rustup default stable
- name: GCC version check
run: |
gcc --version
g++ --version
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Setup ccache
run: |
export CCACHE_DIR="$HOME/.ccache/rpc-riscv64"
mkdir -p "$CCACHE_DIR"
ccache --set-config=max_size=5G
ccache --set-config=compression=true
ccache --set-config=compression_level=6
ccache --set-config=cache_dir="$CCACHE_DIR"
ccache --set-config=sloppiness=file_macro,time_macros,include_file_mtime,include_file_ctime
ccache --set-config=hash_dir=false
echo "CCACHE_DIR=$CCACHE_DIR" >> $GITHUB_ENV
echo "PATH=/usr/lib/ccache:$PATH" >> $GITHUB_ENV
- name: Build
id: cmake_build
run: |
cmake -B build \
-DLLAMA_CURL=OFF \
-DLLAMA_OPENSSL=ON \
-DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TOOLS=ON \
-DLLAMA_BUILD_TESTS=ON \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DGGML_RPC=ON
cmake --build build --config Release -j $(nproc)
- name: Test
id: cmake_test
run: |
cd build
ctest -L main --verbose
ggml-ci-arm64-graviton4-kleidiai:
runs-on: ah-ubuntu_22_04-c8g_8x

View File

@@ -66,14 +66,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip
name: llama-bin-macos-arm64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz
name: llama-bin-macos-arm64.tar.gz
macOS-x64:
runs-on: macos-15-intel
@@ -120,14 +127,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz -s ",./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip
name: llama-bin-macos-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz
name: llama-bin-macos-x64.tar.gz
ubuntu-22-cpu:
strategy:
matrix:
@@ -182,14 +196,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.zip
name: llama-bin-ubuntu-${{ matrix.build }}.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-${{ matrix.build }}.tar.gz
name: llama-bin-ubuntu-${{ matrix.build }}.tar.gz
ubuntu-22-vulkan:
runs-on: ubuntu-22.04
@@ -235,14 +256,21 @@ jobs:
id: pack_artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
zip -y -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip ./build/bin/*
tar -czvf llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz --transform "s,./,llama-${{ steps.tag.outputs.name }}/," -C ./build/bin .
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.zip
name: llama-bin-ubuntu-vulkan-x64.zip
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz
name: llama-bin-ubuntu-vulkan-x64.tar.gz
windows-cpu:
runs-on: windows-2025
@@ -298,7 +326,7 @@ jobs:
run: |
Copy-Item $env:CURL_PATH\bin\libcurl-${{ matrix.arch }}.dll .\build\bin\Release\
Copy-Item "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Redist\MSVC\14.44.35112\debug_nonredist\${{ matrix.arch }}\Microsoft.VC143.OpenMP.LLVM\libomp140.${{ matrix.arch == 'x64' && 'x86_64' || 'aarch64' }}.dll" .\build\bin\Release\
7z a llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
7z a -snl llama-bin-win-cpu-${{ matrix.arch }}.zip .\build\bin\Release\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -380,7 +408,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
7z a -snl llama-bin-win-${{ matrix.backend }}-${{ matrix.arch }}.zip .\build\bin\Release\${{ matrix.target }}.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -434,7 +462,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
7z a -snl llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip .\build\bin\Release\ggml-cuda.dll
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -526,7 +554,7 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/umf/latest/bin/umf.dll" ./build/bin
echo "cp oneAPI running time dll files to ./build/bin done"
7z a llama-bin-win-sycl-x64.zip ./build/bin/*
7z a -snl llama-bin-win-sycl-x64.zip ./build/bin/*
- name: Upload the release package
uses: actions/upload-artifact@v4
@@ -632,7 +660,7 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
7z a llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
7z a -snl llama-bin-win-hip-${{ matrix.name }}-x64.zip .\build\bin\*
- name: Upload artifacts
uses: actions/upload-artifact@v4
@@ -685,58 +713,20 @@ jobs:
- name: Pack artifacts
id: pack_artifacts
run: |
zip --symlinks -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
zip -y -r llama-${{ steps.tag.outputs.name }}-xcframework.zip build-apple/llama.xcframework
tar -czvf llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz -C build-apple llama.xcframework
- name: Upload artifacts
- name: Upload artifacts (zip)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-xcframework.zip
name: llama-${{ steps.tag.outputs.name }}-xcframework
name: llama-${{ steps.tag.outputs.name }}-xcframework.zip
openEuler-cann:
strategy:
matrix:
arch: [x86, aarch64]
chip_type: ['910b', '310p']
build: ['Release']
runs-on: ${{ matrix.arch == 'aarch64' && 'ubuntu-24.04-arm' || 'ubuntu-24.04' }}
container: ascendai/cann:${{ matrix.chip_type == '910b' && '8.3.rc1.alpha001-910b-openeuler22.03-py3.11' || '8.2.rc1-310p-openeuler22.03-py3.11' }}
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake libcurl-devel
git config --global --add safe.directory "$GITHUB_WORKSPACE"
- name: Build
run: |
export LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/$(uname -m)-linux/devlib/:${LD_LIBRARY_PATH}
cmake -S . -B build \
-DCMAKE_BUILD_TYPE=${{ matrix.build }} \
-DGGML_CANN=on \
-DSOC_TYPE=ascend${{ matrix.chip_type }}
cmake --build build -j $(nproc)
- name: Determine tag name
id: tag
uses: ./.github/actions/get-tag-name
- name: Pack artifacts
run: |
cp LICENSE ./build/bin/
zip -r llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip ./build/bin/*
- name: Upload artifacts
- name: Upload artifacts (tar)
uses: actions/upload-artifact@v4
with:
path: llama-${{ steps.tag.outputs.name }}-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
name: llama-bin-${{ matrix.chip_type }}-openEuler-${{ matrix.arch }}.zip
path: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
name: llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz
release:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
@@ -759,7 +749,6 @@ jobs:
- macOS-arm64
- macOS-x64
- ios-xcode-build
- openEuler-cann
steps:
- name: Clone
@@ -814,6 +803,7 @@ jobs:
echo "Moving other artifacts..."
mv -v artifact/*.zip release
mv -v artifact/*.tar.gz release
- name: Create release
id: create_release
@@ -822,6 +812,33 @@ jobs:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tag_name: ${{ steps.tag.outputs.name }}
body: |
> [!WARNING]
> **Release Format Update**: Linux releases will soon use .tar.gz archives instead of .zip. Please make the necessary changes to your deployment scripts.
<details open>
${{ github.event.head_commit.message }}
</details>
**macOS/iOS:**
- [macOS Apple Silicon (arm64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.tar.gz)
- [macOS Intel (x64)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-macos-x64.tar.gz)
- [iOS XCFramework](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-xcframework.tar.gz)
**Linux:**
- [Ubuntu x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.tar.gz)
- [Ubuntu x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-vulkan-x64.tar.gz)
- [Ubuntu s390x (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-ubuntu-s390x.tar.gz)
**Windows:**
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
- [Windows x64 (CUDA)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)
- name: Upload release
id: upload_release
@@ -833,7 +850,7 @@ jobs:
const fs = require('fs');
const release_id = '${{ steps.create_release.outputs.id }}';
for (let file of await fs.readdirSync('./release')) {
if (path.extname(file) === '.zip') {
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
console.log('uploadReleaseAsset', file);
await github.repos.uploadReleaseAsset({
owner: context.repo.owner,

View File

@@ -9,6 +9,7 @@ jobs:
update:
name: Update Winget Package
runs-on: ubuntu-latest
if: github.repository_owner == 'ggml-org'
steps:
- name: Install cargo binstall

2
.gitignore vendored
View File

@@ -134,3 +134,5 @@ poetry.toml
# IDE
/*.code-workspace
/.windsurf/
# emscripten
a.out.*

View File

@@ -33,10 +33,24 @@ endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
option(LLAMA_WASM_MEM64 "llama: use 64-bit memory in WASM builds" ON)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" ON)
# Use 64-bit memory to support backend_get_memory queries
# TODO: analyze performance impact, see https://spidermonkey.dev/blog/2025/01/15/is-memory64-actually-worth-using
if (LLAMA_WASM_MEM64)
add_compile_options("-sMEMORY64=1")
add_link_options("-sMEMORY64=1")
endif()
add_link_options("-sALLOW_MEMORY_GROWTH=1")
option(LLAMA_WASM_SINGLE_FILE "llama: embed WASM inside the generated llama.js" OFF)
option(LLAMA_BUILD_HTML "llama: build HTML file" ON)
if (LLAMA_BUILD_HTML)
set(CMAKE_EXECUTABLE_SUFFIX ".html")
endif()
else()
if (MINGW)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -58,6 +72,12 @@ if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
if (LLAMA_STANDALONE)
# enable parallel builds for msbuild
list(APPEND CMAKE_VS_GLOBALS UseMultiToolTask=true)
list(APPEND CMAKE_VS_GLOBALS EnforceProcessCountAcrossBuilds=true)
endif()
if (CMAKE_SYSTEM_NAME STREQUAL "iOS")
set(LLAMA_TOOLS_INSTALL_DEFAULT OFF)
else()
@@ -179,11 +199,6 @@ if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# build the library
#

View File

@@ -7,16 +7,20 @@
/ci/ @ggerganov
/cmake/ @ggerganov
/common/CMakeLists.txt @ggerganov
/common/arg.* @ggerganov @ericcurtin
/common/arg.* @ggerganov
/common/base64.hpp.* @ggerganov
/common/build-info.* @ggerganov
/common/chat.* @pwilkin
/common/chat-peg-parser.* @aldehir
/common/common.* @ggerganov
/common/console.* @ggerganov
/common/http.* @angt
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
/common/unicode.* @aldehir
/convert_*.py @CISC
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
@@ -81,14 +85,14 @@
/src/llama-vocab.* @CISC
/src/models/ @CISC
/tests/ @ggerganov
/tests/test-chat-.* @pwilkin
/tools/batched-bench/ @ggerganov
/tools/main/ @ggerganov
/tools/mtmd/ @ngxson
/tools/perplexity/ @ggerganov
/tools/quantize/ @ggerganov
/tools/rpc/ @rgerganov
/tools/run/ @ericcurtin
/tools/server/* @ngxson @ggerganov @ericcurtin # no subdir
/tools/server/* @ngxson @ggerganov # no subdir
/tools/server/webui/ @allozaur
/tools/tokenize/ @ggerganov
/tools/tts/ @ggerganov

View File

@@ -16,9 +16,10 @@ The project differentiates between 3 levels of contributors:
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
- If your PR becomes stale, rebase it on top of latest `master` to get maintainers attention
- Maintainers will rely on your insights and approval when making a final decision to approve and merge a PR
- Consider adding yourself to [CODEOWNERS](CODEOWNERS) to indicate your availability for reviewing related PRs
- Using AI to generate PRs is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before publishing the PR. Note that trivial tab autocompletions do not require disclosure.
# Pull requests (for maintainers)

View File

@@ -613,3 +613,4 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@@ -65,4 +65,6 @@ However, If you have discovered a security vulnerability in this project, please
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
Please note that using AI to identify vulnerabilities and generate reports is permitted. However, you must (1) explicitly disclose how AI was used and (2) conduct a thorough manual review before submitting the report.
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

View File

@@ -45,7 +45,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=${LLAMA_FATAL_WARNINGS:-ON} -DLLAMA_CURL=ON -DGGML_SCHED_NO_REALLOC=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
@@ -428,10 +428,10 @@ function gg_run_qwen3_0_6b {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -ngl 99 -c 1024 -b 512 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa off --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 1024 -fa on --no-op-offload) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa off ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 1024 -fa on ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -523,8 +523,8 @@ function gg_run_embd_bge_small {
./bin/llama-quantize ${model_f16} ${model_q8_0} q8_0
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/llama-embedding --model ${model_f16} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/llama-embedding --model ${model_q8_0} -p "I believe the meaning of life is" -ngl 99 -c 0 --no-op-offload) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
set +e
}
@@ -564,7 +564,7 @@ function gg_run_rerank_tiny {
model_f16="${path_models}/ggml-model-f16.gguf"
# for this model, the SEP token is "</s>"
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
(time ./bin/llama-embedding --model ${model_f16} -p "what is panda?\thi\nwhat is panda?\tit's a bear\nwhat is panda?\tThe giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." -ngl 99 -c 0 --pooling rank --embd-normalize -1 --no-op-offload --verbose-prompt) 2>&1 | tee -a $OUT/${ci}-rk-f16.log
# sample output
# rerank score 0: 0.029

View File

@@ -39,26 +39,10 @@ if(Git_FOUND)
endif()
endif()
if(MSVC)
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if (CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()
else()
execute_process(
COMMAND ${CMAKE_C_COMPILER} --version
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
string(REGEX REPLACE " *\n.*" "" OUT "${OUT}")
set(BUILD_COMPILER ${OUT})
set(BUILD_COMPILER "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
execute_process(
COMMAND ${CMAKE_C_COMPILER} -dumpmachine
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)
set(BUILD_TARGET ${OUT})
if(CMAKE_VS_PLATFORM_NAME)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
set(BUILD_TARGET "${CMAKE_SYSTEM_NAME} ${CMAKE_SYSTEM_PROCESSOR}")
endif()

View File

@@ -52,6 +52,8 @@ add_library(${TARGET} STATIC
chat-parser.h
chat-parser-xml-toolcall.h
chat-parser-xml-toolcall.cpp
chat-peg-parser.cpp
chat-peg-parser.h
chat.cpp
chat.h
common.cpp
@@ -69,12 +71,16 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
peg-parser.cpp
peg-parser.h
regex-partial.cpp
regex-partial.h
sampling.cpp
sampling.h
speculative.cpp
speculative.h
unicode.cpp
unicode.h
)
if (BUILD_SHARED_LIBS)

View File

@@ -30,6 +30,7 @@
#include <thread> // for hardware_concurrency
#include <vector>
#ifndef __EMSCRIPTEN__
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@@ -41,6 +42,8 @@
#else
#include <sys/syslimits.h>
#endif
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
using json = nlohmann::ordered_json;
@@ -212,13 +215,13 @@ struct handle_model_result {
static handle_model_result common_params_handle_model(
struct common_params_model & model,
const std::string & bearer_token,
const std::string & model_path_default,
bool offline) {
handle_model_result result;
// handle pre-fill default model path and url based on hf_repo and hf_file
{
if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
model.path = common_docker_resolve_model(model.docker_repo);
model.name = model.docker_repo; // set name for consistency
} else if (!model.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (model.hf_file.empty()) {
@@ -227,7 +230,8 @@ static handle_model_result common_params_handle_model(
if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
exit(1); // built without CURL, error message already printed
}
model.hf_repo = auto_detected.repo;
model.name = model.hf_repo; // repo name with tag
model.hf_repo = auto_detected.repo; // repo name without tag
model.hf_file = auto_detected.ggufFile;
if (!auto_detected.mmprojFile.empty()) {
result.found_mmproj = true;
@@ -257,8 +261,6 @@ static handle_model_result common_params_handle_model(
model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.path.empty()) {
model.path = model_path_default;
}
}
@@ -405,7 +407,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// handle model and download
{
auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
auto res = common_params_handle_model(params.model, params.hf_token, params.offline);
if (params.no_mmproj) {
params.mmproj = {};
} else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
@@ -415,12 +417,18 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// only download mmproj if the current example is using it
for (auto & ex : mmproj_examples) {
if (ctx_arg.ex == ex) {
common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
common_params_handle_model(params.mmproj, params.hf_token, params.offline);
break;
}
}
common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
}
// model is required (except for server)
// TODO @ngxson : maybe show a list of available models in CLI in this case
if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage) {
throw std::invalid_argument("error: --model is required\n");
}
if (params.escape) {
@@ -694,6 +702,12 @@ static bool is_autoy(const std::string & value) {
}
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
// default values specific to example
// note: we place it here instead of inside server.cpp to allow llama-gen-docs to pick it up
if (ex == LLAMA_EXAMPLE_SERVER) {
params.use_jinja = true;
}
// load dynamic backends
ggml_backend_load_all();
@@ -974,7 +988,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.kv_unified = true;
}
).set_env("LLAMA_ARG_KV_SPLIT"));
).set_env("LLAMA_ARG_KV_UNIFIED"));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
@@ -1215,7 +1229,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.warmup = false;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
{"--spm-infill"},
string_format(
@@ -2084,11 +2098,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"-m", "--model"}, "FNAME",
ex == LLAMA_EXAMPLE_EXPORT_LORA
? std::string("model path from which to load base model")
: string_format(
"model path (default: `models/$filename` with filename from `--hf-file` "
"or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
),
? "model path from which to load base model"
: "model path to load",
[](common_params & params, const std::string & value) {
params.model.path = value;
}
@@ -2480,19 +2491,64 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
"path to save slot kv cache (default: disabled)",
[](common_params & params, const std::string & value) {
params.slot_save_path = value;
if (!fs_is_directory(params.slot_save_path)) {
throw std::invalid_argument("not a directory: " + value);
}
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
params.slot_save_path += DIRECTORY_SEPARATOR;
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--media-path"}, "PATH",
"directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled)",
[](common_params & params, const std::string & value) {
params.media_path = value;
if (!fs_is_directory(params.media_path)) {
throw std::invalid_argument("not a directory: " + value);
}
// if doesn't end with DIRECTORY_SEPARATOR, add it
if (!params.media_path.empty() && params.media_path[params.media_path.size() - 1] != DIRECTORY_SEPARATOR) {
params.media_path += DIRECTORY_SEPARATOR;
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--models-dir"}, "PATH",
"directory containing models for the router server (default: disabled)",
[](common_params & params, const std::string & value) {
params.models_dir = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_DIR"));
add_opt(common_arg(
{"--models-max"}, "N",
string_format("for router server, maximum number of models to load simultaneously (default: %d, 0 = unlimited)", params.models_max),
[](common_params & params, int value) {
params.models_max = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
add_opt(common_arg(
{"--no-models-autoload"},
"disables automatic loading of models (default: enabled)",
[](common_params & params) {
params.models_autoload = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_MODELS_AUTOLOAD"));
add_opt(common_arg(
{"--jinja"},
"use jinja template for chat (default: disabled)",
string_format("use jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params) {
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--no-jinja"},
string_format("disable jinja template for chat (default: %s)\n", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params) {
params.use_jinja = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_NO_JINJA"));
add_opt(common_arg(
{"--reasoning-format"}, "FORMAT",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
@@ -2626,7 +2682,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params &, const std::string & value) {
common_log_set_file(common_log_main(), value.c_str());
}
));
).set_env("LLAMA_LOG_FILE"));
add_opt(common_arg(
{"--log-colors"}, "[on|off|auto]",
"Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
@@ -2661,7 +2717,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_OFFLINE"));
add_opt(common_arg(
{"-lv", "--verbosity", "--log-verbosity"}, "N",
"Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
string_format("Set the verbosity threshold. Messages with a higher verbosity will be ignored. Values:\n"
" - 0: generic output\n"
" - 1: error\n"
" - 2: warning\n"
" - 3: info\n"
" - 4: debug\n"
"(default: %d)\n", params.verbosity),
[](common_params & params, int value) {
params.verbosity = value;
common_log_set_verbosity_thold(value);

File diff suppressed because it is too large Load Diff

114
common/chat-peg-parser.cpp Normal file
View File

@@ -0,0 +1,114 @@
#include "chat-peg-parser.h"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
static std::string_view trim_trailing_space(std::string_view sv) {
while (!sv.empty() && std::isspace(static_cast<unsigned char>(sv.back()))) {
sv.remove_suffix(1);
}
return sv;
}
void common_chat_peg_mapper::from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result) {
arena.visit(result, [this](const common_peg_ast_node & node) {
map(node);
});
}
void common_chat_peg_mapper::map(const common_peg_ast_node & node) {
bool is_reasoning = node.tag == common_chat_peg_builder::REASONING;
bool is_content = node.tag == common_chat_peg_builder::CONTENT;
if (is_reasoning) {
result.reasoning_content = std::string(trim_trailing_space(node.text));
}
if (is_content) {
result.content = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_native_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_native_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_native_builder::TOOL_NAME;
bool is_tool_id = node.tag == common_chat_peg_native_builder::TOOL_ID;
bool is_tool_args = node.tag == common_chat_peg_native_builder::TOOL_ARGS;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
}
if (is_tool_id && current_tool) {
current_tool->id = std::string(trim_trailing_space(node.text));
}
if (is_tool_name && current_tool) {
current_tool->name = std::string(trim_trailing_space(node.text));
}
if (is_tool_args && current_tool) {
current_tool->arguments = std::string(trim_trailing_space(node.text));
}
}
void common_chat_peg_constructed_mapper::map(const common_peg_ast_node & node) {
common_chat_peg_mapper::map(node);
bool is_tool_open = node.tag == common_chat_peg_constructed_builder::TOOL_OPEN;
bool is_tool_name = node.tag == common_chat_peg_constructed_builder::TOOL_NAME;
bool is_tool_close = node.tag == common_chat_peg_constructed_builder::TOOL_CLOSE;
bool is_arg_open = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_OPEN;
bool is_arg_close = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_CLOSE;
bool is_arg_name = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_NAME;
bool is_arg_string = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_STRING_VALUE;
bool is_arg_json = node.tag == common_chat_peg_constructed_builder::TOOL_ARG_JSON_VALUE;
if (is_tool_open) {
result.tool_calls.emplace_back();
current_tool = &result.tool_calls.back();
arg_count = 0;
}
if (is_tool_name) {
current_tool->name = std::string(node.text);
current_tool->arguments = "{";
}
if (is_arg_open) {
needs_closing_quote = false;
}
if (is_arg_name && current_tool) {
if (arg_count > 0) {
current_tool->arguments += ",";
}
current_tool->arguments += json(trim_trailing_space(node.text)).dump() + ":";
++arg_count;
}
if (is_arg_string && current_tool) {
// Serialize to JSON, but exclude the end quote
std::string dumped = json(node.text).dump();
current_tool->arguments += dumped.substr(0, dumped.size() - 1);
needs_closing_quote = true;
}
if (is_arg_close && current_tool) {
if (needs_closing_quote) {
current_tool->arguments += "\"";
}
}
if (is_arg_json && current_tool) {
current_tool->arguments += std::string(trim_trailing_space(node.text));
}
if (is_tool_close && current_tool) {
current_tool->arguments += "}";
}
}

105
common/chat-peg-parser.h Normal file
View File

@@ -0,0 +1,105 @@
#pragma once
#include "chat.h"
#include "peg-parser.h"
class common_chat_peg_builder : public common_peg_parser_builder {
public:
static constexpr const char * REASONING_BLOCK = "reasoning-block";
static constexpr const char * REASONING = "reasoning";
static constexpr const char * CONTENT = "content";
common_peg_parser reasoning_block(const common_peg_parser & p) { return tag(REASONING_BLOCK, p); }
common_peg_parser reasoning(const common_peg_parser & p) { return tag(REASONING, p); }
common_peg_parser content(const common_peg_parser & p) { return tag(CONTENT, p); }
};
inline common_peg_arena build_chat_peg_parser(const std::function<common_peg_parser(common_chat_peg_builder & builder)> & fn) {
common_chat_peg_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_mapper {
public:
common_chat_msg & result;
common_chat_peg_mapper(common_chat_msg & msg) : result(msg) {}
virtual void from_ast(const common_peg_ast_arena & arena, const common_peg_parse_result & result);
virtual void map(const common_peg_ast_node & node);
};
class common_chat_peg_native_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_ID = "tool-id";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARGS = "tool-args";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_id(const common_peg_parser & p) { return atomic(tag(TOOL_ID, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_args(const common_peg_parser & p) { return tag(TOOL_ARGS, p); }
};
class common_chat_peg_native_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
public:
common_chat_peg_native_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_native_parser(const std::function<common_peg_parser(common_chat_peg_native_builder & builder)> & fn) {
common_chat_peg_native_builder builder;
builder.set_root(fn(builder));
return builder.build();
}
class common_chat_peg_constructed_builder : public common_chat_peg_builder {
public:
static constexpr const char * TOOL = "tool";
static constexpr const char * TOOL_OPEN = "tool-open";
static constexpr const char * TOOL_CLOSE = "tool-close";
static constexpr const char * TOOL_NAME = "tool-name";
static constexpr const char * TOOL_ARG = "tool-arg";
static constexpr const char * TOOL_ARG_OPEN = "tool-arg-open";
static constexpr const char * TOOL_ARG_CLOSE = "tool-arg-close";
static constexpr const char * TOOL_ARG_NAME = "tool-arg-name";
static constexpr const char * TOOL_ARG_STRING_VALUE = "tool-arg-string-value";
static constexpr const char * TOOL_ARG_JSON_VALUE = "tool-arg-json-value";
common_peg_parser tool(const common_peg_parser & p) { return tag(TOOL, p); }
common_peg_parser tool_open(const common_peg_parser & p) { return atomic(tag(TOOL_OPEN, p)); }
common_peg_parser tool_close(const common_peg_parser & p) { return atomic(tag(TOOL_CLOSE, p)); }
common_peg_parser tool_name(const common_peg_parser & p) { return atomic(tag(TOOL_NAME, p)); }
common_peg_parser tool_arg(const common_peg_parser & p) { return tag(TOOL_ARG, p); }
common_peg_parser tool_arg_open(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_OPEN, p)); }
common_peg_parser tool_arg_close(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_CLOSE, p)); }
common_peg_parser tool_arg_name(const common_peg_parser & p) { return atomic(tag(TOOL_ARG_NAME, p)); }
common_peg_parser tool_arg_string_value(const common_peg_parser & p) { return tag(TOOL_ARG_STRING_VALUE, p); }
common_peg_parser tool_arg_json_value(const common_peg_parser & p) { return tag(TOOL_ARG_JSON_VALUE, p); }
};
class common_chat_peg_constructed_mapper : public common_chat_peg_mapper {
common_chat_tool_call * current_tool;
int arg_count = 0;
bool needs_closing_quote = false;
public:
common_chat_peg_constructed_mapper(common_chat_msg & msg) : common_chat_peg_mapper(msg) {}
void map(const common_peg_ast_node & node) override;
};
inline common_peg_arena build_chat_peg_constructed_parser(const std::function<common_peg_parser(common_chat_peg_constructed_builder & builder)> & fn) {
common_chat_peg_constructed_builder builder;
builder.set_root(fn(builder));
return builder.build();
}

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@
#pragma once
#include "common.h"
#include "peg-parser.h"
#include <functional>
#include <chrono>
#include <string>
@@ -76,7 +77,7 @@ struct common_chat_msg_diff {
size_t tool_call_index = std::string::npos;
common_chat_tool_call tool_call_delta;
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & previous_msg, const common_chat_msg & new_msg);
static std::vector<common_chat_msg_diff> compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new);
bool operator==(const common_chat_msg_diff & other) const {
return content_delta == other.content_delta
@@ -124,6 +125,11 @@ enum common_chat_format {
COMMON_CHAT_FORMAT_APRIEL_1_5,
COMMON_CHAT_FORMAT_XIAOMI_MIMO,
// These are intended to be parsed by the PEG parser
COMMON_CHAT_FORMAT_PEG_SIMPLE,
COMMON_CHAT_FORMAT_PEG_NATIVE,
COMMON_CHAT_FORMAT_PEG_CONSTRUCTED,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
@@ -154,6 +160,7 @@ struct common_chat_params {
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
std::string parser;
};
struct common_chat_syntax {
@@ -163,6 +170,7 @@ struct common_chat_syntax {
bool reasoning_in_content = false;
bool thinking_forced_open = false;
bool parse_tool_calls = true;
common_peg_arena parser = {};
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
@@ -206,6 +214,7 @@ const char* common_chat_format_name(common_chat_format format);
const char* common_reasoning_format_name(common_reasoning_format format);
common_reasoning_format common_reasoning_format_from_name(const std::string & format);
common_chat_msg common_chat_parse(const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std::string & input, bool is_partial, const common_chat_syntax & syntax);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);

View File

@@ -694,7 +694,7 @@ bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_over
// Validate if a filename is safe to use
// To validate a full path, split the path by the OS-specific path separator, and validate each part with this function
bool fs_validate_filename(const std::string & filename) {
bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
if (!filename.length()) {
// Empty filename invalid
return false;
@@ -754,10 +754,14 @@ bool fs_validate_filename(const std::string & filename) {
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == '/' || c == '\\' || c == ':' || c == '*' // Illegal characters
|| c == ':' || c == '*' // Illegal characters
|| c == '?' || c == '"' || c == '<' || c == '>' || c == '|') {
return false;
}
if (!allow_subdirs && (c == '/' || c == '\\')) {
// Subdirectories not allowed, reject path separators
return false;
}
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -782,11 +786,29 @@ bool fs_validate_filename(const std::string & filename) {
#include <iostream>
#ifdef _WIN32
static std::wstring utf8_to_wstring(const std::string & str) {
if (str.empty()) {
return std::wstring();
}
int size = MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), NULL, 0);
if (size <= 0) {
return std::wstring();
}
std::wstring wstr(size, 0);
MultiByteToWideChar(CP_UTF8, 0, str.c_str(), (int)str.size(), &wstr[0], size);
return wstr;
}
#endif
// returns true if successful, false otherwise
bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
std::wstring wpath = utf8_to_wstring(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
@@ -859,6 +881,11 @@ bool fs_create_directory_with_parents(const std::string & path) {
#endif // _WIN32
}
bool fs_is_directory(const std::string & path) {
std::filesystem::path dir(path);
return std::filesystem::exists(dir) && std::filesystem::is_directory(dir);
}
std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
@@ -893,6 +920,8 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#elif defined(__EMSCRIPTEN__)
GGML_ABORT("not implemented on this platform");
#else
# error Unknown architecture
#endif
@@ -912,7 +941,7 @@ std::string fs_get_cache_file(const std::string & filename) {
return cache_directory + filename;
}
std::vector<common_file_info> fs_list_files(const std::string & path) {
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories) {
std::vector<common_file_info> files;
if (path.empty()) return files;
@@ -927,14 +956,22 @@ std::vector<common_file_info> fs_list_files(const std::string & path) {
const auto & p = entry.path();
if (std::filesystem::is_regular_file(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.path = p.string();
info.name = p.filename().string();
info.is_dir = false;
try {
info.size = static_cast<size_t>(std::filesystem::file_size(p));
} catch (const std::filesystem::filesystem_error &) {
info.size = 0;
}
files.push_back(std::move(info));
} else if (include_directories && std::filesystem::is_directory(p)) {
common_file_info info;
info.path = p.string();
info.name = p.filename().string();
info.size = 0; // Directories have no size
info.is_dir = true;
files.push_back(std::move(info));
}
} catch (const std::filesystem::filesystem_error &) {
// skip entries we cannot inspect

View File

@@ -12,6 +12,10 @@
#include <vector>
#include <map>
#if defined(_WIN32) && !defined(_WIN32_WINNT)
#define _WIN32_WINNT 0x0A00
#endif
#ifdef _WIN32
#define DIRECTORY_SEPARATOR '\\'
#else
@@ -26,8 +30,6 @@
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
#define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
struct common_time_meas {
common_time_meas(int64_t & t_acc, bool disable = false);
~common_time_meas();
@@ -223,6 +225,7 @@ struct common_params_model {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string docker_repo = ""; // Docker repo // NOLINT
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
@@ -369,7 +372,7 @@ struct common_params {
std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
int32_t verbosity = 0;
int32_t verbosity = 3; // LOG_LEVEL_INFO
int32_t control_vector_layer_start = -1; // layer range for control vector
int32_t control_vector_layer_end = -1; // layer range for control vector
bool offline = false;
@@ -478,9 +481,15 @@ struct common_params {
bool endpoint_props = false; // only control POST requests, not GET
bool endpoint_metrics = false;
// router server configs
std::string models_dir = ""; // directory containing models for the router server
int models_max = 4; // maximum number of models to load simultaneously
bool models_autoload = true; // automatically load models when requested via the router server
bool log_json = false;
std::string slot_save_path;
std::string media_path; // path to directory for loading media files
float slot_prompt_similarity = 0.1f;
@@ -631,8 +640,9 @@ std::string string_from(const struct llama_context * ctx, const struct llama_bat
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_validate_filename(const std::string & filename, bool allow_subdirs = false);
bool fs_create_directory_with_parents(const std::string & path);
bool fs_is_directory(const std::string & path);
std::string fs_get_cache_directory();
std::string fs_get_cache_file(const std::string & filename);
@@ -641,8 +651,9 @@ struct common_file_info {
std::string path;
std::string name;
size_t size = 0; // in bytes
bool is_dir = false;
};
std::vector<common_file_info> fs_list_files(const std::string & path);
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// Model utils

View File

@@ -24,6 +24,7 @@
#include "http.h"
#endif
#ifndef __EMSCRIPTEN__
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
@@ -35,6 +36,8 @@
#else
#include <sys/syslimits.h>
#endif
#endif
#define LLAMA_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
// isatty
@@ -430,7 +433,7 @@ std::pair<long, std::vector<char>> common_remote_get_content(const std::string &
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 1L);
curl_easy_setopt(curl.get(), CURLOPT_VERBOSE, 0L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
auto data_vec = static_cast<std::vector<char> *>(data);
@@ -517,16 +520,18 @@ static bool common_pull_file(httplib::Client & cli,
headers.emplace("Range", "bytes=" + std::to_string(existing_size) + "-");
}
std::atomic<size_t> downloaded{existing_size};
const char * func = __func__; // avoid __func__ inside a lambda
size_t downloaded = existing_size;
size_t progress_step = 0;
auto res = cli.Get(resolve_path, headers,
[&](const httplib::Response &response) {
if (existing_size > 0 && response.status != 206) {
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", __func__, response.status);
LOG_WRN("%s: server did not respond with 206 Partial Content for a resume request. Status: %d\n", func, response.status);
return false;
}
if (existing_size == 0 && response.status != 200) {
LOG_WRN("%s: download received non-successful status code: %d\n", __func__, response.status);
LOG_WRN("%s: download received non-successful status code: %d\n", func, response.status);
return false;
}
if (total_size == 0 && response.has_header("Content-Length")) {
@@ -534,7 +539,7 @@ static bool common_pull_file(httplib::Client & cli,
size_t content_length = std::stoull(response.get_header_value("Content-Length"));
total_size = existing_size + content_length;
} catch (const std::exception &e) {
LOG_WRN("%s: invalid Content-Length header: %s\n", __func__, e.what());
LOG_WRN("%s: invalid Content-Length header: %s\n", func, e.what());
}
}
return true;
@@ -542,11 +547,16 @@ static bool common_pull_file(httplib::Client & cli,
[&](const char *data, size_t len) {
ofs.write(data, len);
if (!ofs) {
LOG_ERR("%s: error writing to file: %s\n", __func__, path_tmp.c_str());
LOG_ERR("%s: error writing to file: %s\n", func, path_tmp.c_str());
return false;
}
downloaded += len;
print_progress(downloaded, total_size);
progress_step += len;
if (progress_step >= total_size / 1000 || downloaded == total_size) {
print_progress(downloaded, total_size);
progress_step = 0;
}
return true;
},
nullptr
@@ -1047,7 +1057,7 @@ std::string common_docker_resolve_model(const std::string &) {
std::vector<common_cached_model_info> common_list_cached_models() {
std::vector<common_cached_model_info> models;
const std::string cache_dir = fs_get_cache_directory();
const std::vector<common_file_info> files = fs_list_files(cache_dir);
const std::vector<common_file_info> files = fs_list(cache_dir, false);
for (const auto & file : files) {
if (string_starts_with(file.name, "manifest=") && string_ends_with(file.name, ".json")) {
common_cached_model_info model_info;

View File

@@ -14,8 +14,10 @@ struct common_cached_model_info {
std::string model;
std::string tag;
size_t size = 0; // GGUF size in bytes
// return string representation like "user/model:tag"
// if tag is "latest", it will be omitted
std::string to_string() const {
return user + "/" + model + ":" + tag;
return user + "/" + model + (tag == "latest" ? "" : ":" + tag);
}
};

View File

@@ -268,10 +268,10 @@ static bool is_reserved_name(const std::string & name) {
}
std::regex INVALID_RULE_CHARS_RE("[^a-zA-Z0-9-]+");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"]");
std::regex GRAMMAR_LITERAL_ESCAPE_RE("[\r\n\"\\\\]");
std::regex GRAMMAR_RANGE_LITERAL_ESCAPE_RE("[\r\n\"\\]\\-\\\\]");
std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}
{'\r', "\\r"}, {'\n', "\\n"}, {'"', "\\\""}, {'-', "\\-"}, {']', "\\]"}, {'\\', "\\\\"}
};
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
@@ -974,7 +974,7 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
throw std::invalid_argument("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());

View File

@@ -443,8 +443,22 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps) {
log->set_timestamps(timestamps);
}
static int common_get_verbosity(enum ggml_log_level level) {
switch (level) {
case GGML_LOG_LEVEL_DEBUG: return LOG_LEVEL_DEBUG;
case GGML_LOG_LEVEL_INFO: return LOG_LEVEL_INFO;
case GGML_LOG_LEVEL_WARN: return LOG_LEVEL_WARN;
case GGML_LOG_LEVEL_ERROR: return LOG_LEVEL_ERROR;
case GGML_LOG_LEVEL_CONT: return LOG_LEVEL_INFO; // same as INFO
case GGML_LOG_LEVEL_NONE:
default:
return LOG_LEVEL_OUTPUT;
}
}
void common_log_default_callback(enum ggml_log_level level, const char * text, void * /*user_data*/) {
if (LOG_DEFAULT_LLAMA <= common_log_verbosity_thold) {
auto verbosity = common_get_verbosity(level);
if (verbosity <= common_log_verbosity_thold) {
common_log_add(common_log_main(), level, "%s", text);
}
}

View File

@@ -21,8 +21,14 @@
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#define LOG_DEFAULT_DEBUG 1
#define LOG_DEFAULT_LLAMA 0
#define LOG_LEVEL_DEBUG 4
#define LOG_LEVEL_INFO 3
#define LOG_LEVEL_WARN 2
#define LOG_LEVEL_ERROR 1
#define LOG_LEVEL_OUTPUT 0 // output data from tools
#define LOG_DEFAULT_DEBUG LOG_LEVEL_DEBUG
#define LOG_DEFAULT_LLAMA LOG_LEVEL_INFO
enum log_colors {
LOG_COLORS_AUTO = -1,
@@ -67,10 +73,11 @@ void common_log_add(struct common_log * log, enum ggml_log_level level, const ch
// 0.00.090.578 I llm_load_tensors: offloading 32 repeating layers to GPU
// 0.00.090.579 I llm_load_tensors: offloading non-repeating layers to GPU
//
// I - info (stdout, V = 0)
// W - warning (stderr, V = 0)
// E - error (stderr, V = 0)
// D - debug (stderr, V = LOG_DEFAULT_DEBUG)
// I - info (stdout, V = LOG_DEFAULT_INFO)
// W - warning (stderr, V = LOG_DEFAULT_WARN)
// E - error (stderr, V = LOG_DEFAULT_ERROR)
// O - output (stdout, V = LOG_DEFAULT_OUTPUT)
//
void common_log_set_file (struct common_log * log, const char * file); // not thread-safe
@@ -95,14 +102,14 @@ void common_log_set_timestamps(struct common_log * log, bool timestamps); // w
} \
} while (0)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, 0, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG(...) LOG_TMPL(GGML_LOG_LEVEL_NONE, LOG_LEVEL_OUTPUT, __VA_ARGS__)
#define LOGV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_NONE, verbosity, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, 0, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, 0, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_DEFAULT_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, 0, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, LOG_LEVEL_INFO, __VA_ARGS__) // same as INFO
#define LOG_INFV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_INFO, verbosity, __VA_ARGS__)
#define LOG_WRNV(verbosity, ...) LOG_TMPL(GGML_LOG_LEVEL_WARN, verbosity, __VA_ARGS__)

1712
common/peg-parser.cpp Normal file

File diff suppressed because it is too large Load Diff

459
common/peg-parser.h Normal file
View File

@@ -0,0 +1,459 @@
#pragma once
#include <nlohmann/json_fwd.hpp>
#include <memory>
#include <unordered_map>
#include <string>
#include <string_view>
#include <functional>
#include <vector>
#include <variant>
struct common_grammar_builder;
class common_peg_parser_builder;
using common_peg_parser_id = size_t;
constexpr common_peg_parser_id COMMON_PEG_INVALID_PARSER_ID = static_cast<common_peg_parser_id>(-1);
using common_peg_ast_id = size_t;
constexpr common_peg_ast_id COMMON_PEG_INVALID_AST_ID = static_cast<common_peg_ast_id>(-1);
// Lightweight wrapper around common_peg_parser_id for convenience
class common_peg_parser {
common_peg_parser_id id_;
common_peg_parser_builder & builder_;
public:
common_peg_parser(const common_peg_parser & other) : id_(other.id_), builder_(other.builder_) {}
common_peg_parser(common_peg_parser_id id, common_peg_parser_builder & builder) : id_(id), builder_(builder) {}
common_peg_parser & operator=(const common_peg_parser & other);
common_peg_parser & operator+=(const common_peg_parser & other);
common_peg_parser & operator|=(const common_peg_parser & other);
operator common_peg_parser_id() const { return id_; }
common_peg_parser_id id() const { return id_; }
common_peg_parser_builder & builder() const { return builder_; }
// Creates a sequence
common_peg_parser operator+(const common_peg_parser & other) const;
// Creates a sequence separated by spaces.
common_peg_parser operator<<(const common_peg_parser & other) const;
// Creates a choice
common_peg_parser operator|(const common_peg_parser & other) const;
common_peg_parser operator+(const char * str) const;
common_peg_parser operator+(const std::string & str) const;
common_peg_parser operator<<(const char * str) const;
common_peg_parser operator<<(const std::string & str) const;
common_peg_parser operator|(const char * str) const;
common_peg_parser operator|(const std::string & str) const;
};
common_peg_parser operator+(const char * str, const common_peg_parser & p);
common_peg_parser operator+(const std::string & str, const common_peg_parser & p);
common_peg_parser operator<<(const char * str, const common_peg_parser & p);
common_peg_parser operator<<(const std::string & str, const common_peg_parser & p);
common_peg_parser operator|(const char * str, const common_peg_parser & p);
common_peg_parser operator|(const std::string & str, const common_peg_parser & p);
enum common_peg_parse_result_type {
COMMON_PEG_PARSE_RESULT_FAIL = 0,
COMMON_PEG_PARSE_RESULT_SUCCESS = 1,
COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT = 2,
};
const char * common_peg_parse_result_type_name(common_peg_parse_result_type type);
struct common_peg_ast_node {
common_peg_ast_id id;
std::string rule;
std::string tag;
size_t start;
size_t end;
std::string_view text;
std::vector<common_peg_ast_id> children;
bool is_partial = false;
};
struct common_peg_parse_result;
using common_peg_ast_visitor = std::function<void(const common_peg_ast_node & node)>;
class common_peg_ast_arena {
std::vector<common_peg_ast_node> nodes_;
public:
common_peg_ast_id add_node(
const std::string & rule,
const std::string & tag,
size_t start,
size_t end,
std::string_view text,
std::vector<common_peg_ast_id> children,
bool is_partial = false
) {
common_peg_ast_id id = nodes_.size();
nodes_.push_back({id, rule, tag, start, end, text, std::move(children), is_partial});
return id;
}
const common_peg_ast_node & get(common_peg_ast_id id) const { return nodes_.at(id); }
size_t size() const { return nodes_.size(); }
void clear() { nodes_.clear(); }
void visit(common_peg_ast_id id, const common_peg_ast_visitor & visitor) const;
void visit(const common_peg_parse_result & result, const common_peg_ast_visitor & visitor) const;
};
struct common_peg_parse_result {
common_peg_parse_result_type type = COMMON_PEG_PARSE_RESULT_FAIL;
size_t start = 0;
size_t end = 0;
std::vector<common_peg_ast_id> nodes;
common_peg_parse_result() = default;
common_peg_parse_result(common_peg_parse_result_type type, size_t start)
: type(type), start(start), end(start) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end)
: type(type), start(start), end(end) {}
common_peg_parse_result(common_peg_parse_result_type type, size_t start, size_t end, std::vector<common_peg_ast_id> nodes)
: type(type), start(start), end(end), nodes(std::move(nodes)) {}
bool fail() const { return type == COMMON_PEG_PARSE_RESULT_FAIL; }
bool need_more_input() const { return type == COMMON_PEG_PARSE_RESULT_NEED_MORE_INPUT; }
bool success() const { return type == COMMON_PEG_PARSE_RESULT_SUCCESS; }
};
struct common_peg_parse_context {
std::string input;
bool is_partial;
common_peg_ast_arena ast;
int parse_depth;
common_peg_parse_context()
: is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input)
: input(input), is_partial(false), parse_depth(0) {}
common_peg_parse_context(const std::string & input, bool is_partial)
: input(input), is_partial(is_partial), parse_depth(0) {}
};
class common_peg_arena;
// Parser variants
struct common_peg_epsilon_parser {};
struct common_peg_start_parser {};
struct common_peg_end_parser {};
struct common_peg_literal_parser {
std::string literal;
};
struct common_peg_sequence_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_choice_parser {
std::vector<common_peg_parser_id> children;
};
struct common_peg_repetition_parser {
common_peg_parser_id child;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_and_parser {
common_peg_parser_id child;
};
struct common_peg_not_parser {
common_peg_parser_id child;
};
struct common_peg_any_parser {};
struct common_peg_space_parser {};
struct common_peg_chars_parser {
struct char_range {
uint32_t start;
uint32_t end;
bool contains(uint32_t codepoint) const { return codepoint >= start && codepoint <= end; }
};
std::string pattern;
std::vector<char_range> ranges;
bool negated;
int min_count;
int max_count; // -1 for unbounded
};
struct common_peg_json_string_parser {};
struct common_peg_until_parser {
std::vector<std::string> delimiters;
};
struct common_peg_schema_parser {
common_peg_parser_id child;
std::string name;
std::shared_ptr<nlohmann::ordered_json> schema;
// Indicates if the GBNF should accept a raw string that matches the schema.
bool raw;
};
struct common_peg_rule_parser {
std::string name;
common_peg_parser_id child;
bool trigger;
};
struct common_peg_ref_parser {
std::string name;
};
struct common_peg_atomic_parser {
common_peg_parser_id child;
};
struct common_peg_tag_parser {
common_peg_parser_id child;
std::string tag;
};
// Variant holding all parser types
using common_peg_parser_variant = std::variant<
common_peg_epsilon_parser,
common_peg_start_parser,
common_peg_end_parser,
common_peg_literal_parser,
common_peg_sequence_parser,
common_peg_choice_parser,
common_peg_repetition_parser,
common_peg_and_parser,
common_peg_not_parser,
common_peg_any_parser,
common_peg_space_parser,
common_peg_chars_parser,
common_peg_json_string_parser,
common_peg_until_parser,
common_peg_schema_parser,
common_peg_rule_parser,
common_peg_ref_parser,
common_peg_atomic_parser,
common_peg_tag_parser
>;
class common_peg_arena {
std::vector<common_peg_parser_variant> parsers_;
std::unordered_map<std::string, common_peg_parser_id> rules_;
common_peg_parser_id root_ = COMMON_PEG_INVALID_PARSER_ID;
public:
const common_peg_parser_variant & get(common_peg_parser_id id) const { return parsers_.at(id); }
common_peg_parser_variant & get(common_peg_parser_id id) { return parsers_.at(id); }
size_t size() const { return parsers_.size(); }
bool empty() const { return parsers_.empty(); }
common_peg_parser_id get_rule(const std::string & name) const;
bool has_rule(const std::string & name) const { return rules_.find(name) != rules_.end(); }
common_peg_parser_id root() const { return root_; }
void set_root(common_peg_parser_id id) { root_ = id; }
common_peg_parse_result parse(common_peg_parse_context & ctx, size_t start = 0) const;
common_peg_parse_result parse(common_peg_parser_id id, common_peg_parse_context & ctx, size_t start) const;
void resolve_refs();
void build_grammar(const common_grammar_builder & builder, bool lazy = false) const;
std::string dump(common_peg_parser_id id) const;
nlohmann::json to_json() const;
static common_peg_arena from_json(const nlohmann::json & j);
std::string save() const;
void load(const std::string & data);
friend class common_peg_parser_builder;
private:
common_peg_parser_id add_parser(common_peg_parser_variant parser);
void add_rule(const std::string & name, common_peg_parser_id id);
common_peg_parser_id resolve_ref(common_peg_parser_id id);
};
class common_peg_parser_builder {
common_peg_arena arena_;
common_peg_parser wrap(common_peg_parser_id id) { return common_peg_parser(id, *this); }
common_peg_parser add(const common_peg_parser_variant & p) { return wrap(arena_.add_parser(p)); }
public:
common_peg_parser_builder();
// Match nothing, always succeed.
// S -> ε
common_peg_parser eps() { return add(common_peg_epsilon_parser{}); }
// Matches the start of the input.
// S -> ^
common_peg_parser start() { return add(common_peg_start_parser{}); }
// Matches the end of the input.
// S -> $
common_peg_parser end() { return add(common_peg_end_parser{}); }
// Matches an exact literal string.
// S -> "hello"
common_peg_parser literal(const std::string & literal) { return add(common_peg_literal_parser{literal}); }
// Matches a sequence of parsers in order, all must succeed.
// S -> A B C
common_peg_parser sequence() { return add(common_peg_sequence_parser{}); }
common_peg_parser sequence(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser sequence(const std::vector<common_peg_parser> & parsers);
common_peg_parser sequence(std::initializer_list<common_peg_parser> parsers);
// Matches the first parser that succeeds from a list of alternatives.
// S -> A | B | C
common_peg_parser choice() { return add(common_peg_choice_parser{}); }
common_peg_parser choice(const std::vector<common_peg_parser_id> & parsers);
common_peg_parser choice(const std::vector<common_peg_parser> & parsers);
common_peg_parser choice(std::initializer_list<common_peg_parser> parsers);
// Matches one or more repetitions of a parser.
// S -> A+
common_peg_parser one_or_more(const common_peg_parser & p) { return repeat(p, 1, -1); }
// Matches zero or more repetitions of a parser, always succeeds.
// S -> A*
common_peg_parser zero_or_more(const common_peg_parser & p) { return repeat(p, 0, -1); }
// Matches zero or one occurrence of a parser, always succeeds.
// S -> A?
common_peg_parser optional(const common_peg_parser & p) { return repeat(p, 0, 1); }
// Positive lookahead: succeeds if child parser succeeds, consumes no input.
// S -> &A
common_peg_parser peek(const common_peg_parser & p) { return add(common_peg_and_parser{p}); }
// Negative lookahead: succeeds if child parser fails, consumes no input.
// S -> !A
common_peg_parser negate(const common_peg_parser & p) { return add(common_peg_not_parser{p}); }
// Matches any single character.
// S -> .
common_peg_parser any() { return add(common_peg_any_parser{}); }
// Matches between min and max repetitions of characters from a character class.
// S -> [a-z]{m,n}
//
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser chars(const std::string & classes, int min = 1, int max = -1);
// Creates a lightweight reference to a named rule (resolved during build()).
// Use this for forward references in recursive grammars.
// expr_ref -> expr
common_peg_parser ref(const std::string & name) { return add(common_peg_ref_parser{name}); }
// Matches zero or more whitespace characters (space, tab, newline).
// S -> [ \t\n]*
common_peg_parser space() { return add(common_peg_space_parser{}); }
// Matches all characters until a delimiter is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until(const std::string & delimiter) { return add(common_peg_until_parser{{delimiter}}); }
// Matches all characters until one of the delimiters in the list is found (delimiter not consumed).
// S -> (!delim .)*
common_peg_parser until_one_of(const std::vector<std::string> & delimiters) { return add(common_peg_until_parser{delimiters}); }
// Matches everything
// S -> .*
common_peg_parser rest() { return until_one_of({}); }
// Matches between min and max repetitions of a parser (inclusive).
// S -> A{m,n}
// Use -1 for max to represent unbounded repetition (equivalent to {m,})
common_peg_parser repeat(const common_peg_parser & p, int min, int max) { return add(common_peg_repetition_parser{p, min,max}); }
// Matches exactly n repetitions of a parser.
// S -> A{n}
common_peg_parser repeat(const common_peg_parser & p, int n) { return repeat(p, n, n); }
// Creates a complete JSON parser supporting objects, arrays, strings, numbers, booleans, and null.
// value -> object | array | string | number | true | false | null
common_peg_parser json();
common_peg_parser json_object();
common_peg_parser json_string();
common_peg_parser json_array();
common_peg_parser json_number();
common_peg_parser json_bool();
common_peg_parser json_null();
// Matches JSON string content without the surrounding quotes.
// Useful for extracting content within a JSON string.
common_peg_parser json_string_content();
// Matches a JSON object member with a key and associated parser as the
// value.
common_peg_parser json_member(const std::string & key, const common_peg_parser & p);
// Wraps a parser with JSON schema metadata for grammar generation.
// Used internally to convert JSON schemas to GBNF grammar rules.
common_peg_parser schema(const common_peg_parser & p, const std::string & name, const nlohmann::ordered_json & schema, bool raw = false);
// Creates a named rule, stores it in the grammar, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", json_obj | json_arr | ...)
common_peg_parser rule(const std::string & name, const common_peg_parser & p, bool trigger = false);
// Creates a named rule using a builder function, and returns a ref.
// If trigger=true, marks this rule as an entry point for lazy grammar generation.
// auto json = p.rule("json", [&]() { return json_object() | json_array() | ... })
common_peg_parser rule(const std::string & name, const std::function<common_peg_parser()> & builder, bool trigger = false);
// Creates a trigger rule. When generating a lazy grammar from the parser,
// only trigger rules and descendents are emitted.
common_peg_parser trigger_rule(const std::string & name, const common_peg_parser & p) { return rule(name, p, true); }
common_peg_parser trigger_rule(const std::string & name, const std::function<common_peg_parser()> & builder) { return rule(name, builder, true); }
// Creates an atomic parser. Atomic parsers do not create an AST node if
// the child results in a partial parse, i.e. NEEDS_MORE_INPUT. This is
// intended for situations where partial output is undesirable.
common_peg_parser atomic(const common_peg_parser & p) { return add(common_peg_atomic_parser{p}); }
// Tags create nodes in the generated AST for semantic purposes.
// Unlike rules, you can tag multiple nodes with the same tag.
common_peg_parser tag(const std::string & tag, const common_peg_parser & p) { return add(common_peg_tag_parser{p.id(), tag}); }
void set_root(const common_peg_parser & p);
common_peg_arena build();
};
// Helper function for building parsers
common_peg_arena build_peg_parser(const std::function<common_peg_parser(common_peg_parser_builder & builder)> & fn);

64
common/unicode.cpp Normal file
View File

@@ -0,0 +1,64 @@
#include "unicode.h"
// implementation adopted from src/unicode.cpp
size_t utf8_sequence_length(unsigned char first_byte) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(first_byte) >> 4;
return lookup[highbits];
}
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset) {
if (offset >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
// ASCII fast path
if (!(input[offset] & 0x80)) {
return utf8_parse_result(utf8_parse_result::SUCCESS, input[offset], 1);
}
// Invalid: continuation byte as first byte
if (!(input[offset] & 0x40)) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
// 2-byte sequence
if (!(input[offset] & 0x20)) {
if (offset + 1 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x1f) << 6) | (input[offset + 1] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 2);
}
// 3-byte sequence
if (!(input[offset] & 0x10)) {
if (offset + 2 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x0f) << 12) | ((input[offset + 1] & 0x3f) << 6) | (input[offset + 2] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 3);
}
// 4-byte sequence
if (!(input[offset] & 0x08)) {
if (offset + 3 >= input.size()) {
return utf8_parse_result(utf8_parse_result::INCOMPLETE);
}
if ((input[offset + 1] & 0xc0) != 0x80 || (input[offset + 2] & 0xc0) != 0x80 || (input[offset + 3] & 0xc0) != 0x80) {
return utf8_parse_result(utf8_parse_result::INVALID);
}
auto result = ((input[offset] & 0x07) << 18) | ((input[offset + 1] & 0x3f) << 12) | ((input[offset + 2] & 0x3f) << 6) | (input[offset + 3] & 0x3f);
return utf8_parse_result(utf8_parse_result::SUCCESS, result, 4);
}
// Invalid first byte
return utf8_parse_result(utf8_parse_result::INVALID);
}

22
common/unicode.h Normal file
View File

@@ -0,0 +1,22 @@
#pragma once
#include <cstdint>
#include <string_view>
// UTF-8 parsing utilities for streaming-aware unicode support
struct utf8_parse_result {
uint32_t codepoint; // Decoded codepoint (only valid if status == SUCCESS)
size_t bytes_consumed; // How many bytes this codepoint uses (1-4)
enum status { SUCCESS, INCOMPLETE, INVALID } status;
utf8_parse_result(enum status s, uint32_t cp = 0, size_t bytes = 0)
: codepoint(cp), bytes_consumed(bytes), status(s) {}
};
// Determine the expected length of a UTF-8 sequence from its first byte
// Returns 0 for invalid first bytes
size_t utf8_sequence_length(unsigned char first_byte);
// Parse a single UTF-8 codepoint from input
utf8_parse_result parse_utf8_codepoint(std::string_view input, size_t offset);

View File

@@ -1524,6 +1524,79 @@ class TextModel(ModelBase):
special_vocab._set_special_token("bos", 151643)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
local_template_file_path = self.dir_model / "chat_template.jinja"
if self.is_mistral_format and local_template_file_path.is_file():
# Ministral-3 and other new Mistral models come with chat templates.
# ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
logger.info("Using an existing Mistral local chat template.")
with open(local_template_file_path, "r", encoding="utf-8") as f:
template = f.read()
elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
template_dir = Path(__file__).parent / "models/templates/"
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
else:
logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
template = None
if template is not None:
self.gguf_writer.add_chat_template(template)
class MmprojModel(ModelBase):
model_type = ModelType.MMPROJ
@@ -1581,10 +1654,27 @@ class MmprojModel(ModelBase):
# load preprocessor config
self.preprocessor_config = {}
if not self.is_mistral_format:
with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
# prefer preprocessor_config.json if possible
preprocessor_config_path = self.dir_model / "preprocessor_config.json"
if preprocessor_config_path.is_file():
with open(preprocessor_config_path, "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
# prefer processor_config.json if possible
processor_config_path = self.dir_model / "processor_config.json"
if processor_config_path.is_file():
with open(processor_config_path, "r", encoding="utf-8") as f:
cfg = json.load(f)
# move image_processor to root level for compat
if "image_processor" in cfg:
cfg = {
**cfg,
**cfg["image_processor"],
}
# merge configs
self.preprocessor_config = {**self.preprocessor_config, **cfg}
def get_vision_config(self) -> dict[str, Any] | None:
config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
return self.global_config.get(config_name)
@@ -2277,67 +2367,6 @@ class LlamaModel(TextModel):
if self.hf_arch == "VLlama3ForCausalLM":
self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
def _set_vocab_mistral(self):
if not _mistral_common_installed:
raise ImportError(_mistral_import_error_msg)
vocab = MistralVocab(self.dir_model)
logger.info(
f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
)
self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size, (
f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
)
if vocab.tokenizer_type == MistralTokenizerType.tekken:
self.gguf_writer.add_tokenizer_pre("tekken")
self.gguf_writer.add_token_merges(
vocab.extract_vocab_merges_from_model()
)
logger.info(
f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
)
self.gguf_writer.add_bos_token_id(vocab.bos_id)
self.gguf_writer.add_eos_token_id(vocab.eos_id)
self.gguf_writer.add_unk_token_id(vocab.unk_id)
self.gguf_writer.add_pad_token_id(vocab.pad_id)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_vocab_size(vocab.vocab_size)
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(False)
template_dir = Path(__file__).parent / "models/templates/"
if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
# Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
if self.is_mistral_format:
logger.info(
"Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
"Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
)
template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
self.gguf_writer.add_chat_template(template)
else:
logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
def set_vocab(self):
if self.is_mistral_format:
return self._set_vocab_mistral()
@@ -2797,9 +2826,38 @@ class Llama4VisionModel(MmprojModel):
@ModelBase.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone has migrated to newer version of llama.cpp
if self.hparams.get("model_type") != "ministral3":
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_params = self.hparams.get("rope_parameters")
if self.hparams.get("model_type") == "ministral3":
assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# TODO: probably not worth supporting quantized weight, as official BF16 is also available
if name.endswith("weight_scale_inv"):
raise ValueError("This is a quantized weight, please use BF16 weight instead")
name = name.replace("language_model.", "")
if "multi_modal_projector" in name or "vision_tower" in name:
return []
@@ -4183,6 +4241,36 @@ class Qwen3MoeModel(Qwen2MoeModel):
super().set_vocab()
@ModelBase.register("Qwen3NextForCausalLM")
class Qwen3NextModel(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.QWEN3NEXT
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("mtp"):
return [] # ignore MTP layers for now
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
elif name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
elif "conv1d" in name:
data_torch = data_torch.squeeze()
elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
data_torch = data_torch + 1
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("RND1")
class RND1Model(Qwen2MoeModel):
model_arch = gguf.MODEL_ARCH.RND1
@@ -9779,12 +9867,22 @@ class ApertusModel(LlamaModel):
class MistralModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA
model_arch = gguf.MODEL_ARCH.MISTRAL3
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
undo_permute = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# for compatibility, we use LLAMA arch for older models
# TODO: remove this once everyone migrates to newer version of llama.cpp
if "llama_4_scaling" not in self.hparams:
self.model_arch = gguf.MODEL_ARCH.LLAMA
self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
self.gguf_writer.add_architecture()
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
@staticmethod
def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
@@ -9824,6 +9922,112 @@ class MistralModel(LlamaModel):
return template
def set_gguf_parameters(self):
super().set_gguf_parameters()
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
@staticmethod
def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
if "yarn" in hparams:
yarn_params = hparams["yarn"]
gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
if "llama_4_scaling" in hparams:
gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
class MistralMoeModel(DeepseekV2Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
model_name = "Mistral"
hf_arch = ""
is_mistral_format = True
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
logger.info("Using MistralMoeModel")
# remap hparams from Mistral MoE format to DeepseekV2 format
# we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
# ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
config = self.hparams
# Mistral key -> HF key
config_mapping = {
"dim": "hidden_size",
"norm_eps": "rms_norm_eps",
"n_kv_heads": "num_key_value_heads",
"n_layers": "num_hidden_layers",
"n_heads": "num_attention_heads",
"hidden_dim": "intermediate_size",
}
# HF key -> (Mistral key, default value)
top_level_mapping_with_default = {
"model_type": ("model_type", "transformer"),
"hidden_act": ("activation", "silu"),
"tie_word_embeddings": ("tied_embeddings", False),
"max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
"max_position_embeddings": ("max_position_embeddings", 128_000),
}
# mapping top-level keys
for key, new_key in config_mapping.items():
if key in config:
config[new_key] = config[key]
for new_key, (key, default_value) in top_level_mapping_with_default.items():
config[new_key] = config.get(key, default_value)
# mapping MoE-specific keys
moe_config_map = {
"route_every_n": "moe_layer_freq",
"first_k_dense_replace": "first_k_dense_replace",
"num_experts_per_tok": "num_experts_per_tok",
"num_experts": "n_routed_experts",
"expert_hidden_dim": "moe_intermediate_size",
"routed_scale": "routed_scaling_factor",
"num_shared_experts": "n_shared_experts",
"num_expert_groups": "n_group",
"num_expert_groups_per_tok": "topk_group",
}
moe = config["moe"]
for key, new_key in moe_config_map.items():
if key in moe:
config[new_key] = moe[key]
# provide missing values
config["topk_method"] = None
config["norm_topk_prob"] = True
config["scoring_func"] = "softmax"
def set_vocab(self):
self._set_vocab_mistral()
def set_gguf_parameters(self):
super().set_gguf_parameters()
MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
yarn_params = self.hparams["yarn"]
self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
return []
# rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
if name.endswith(".qscale_act"):
name = name.replace(".qscale_act", ".input_scale")
if name.endswith(".qscale_weight"):
name = name.replace(".qscale_weight", ".weight_scale")
if ".wkv_b." in name:
name = name.replace(".wkv_b.", ".kv_b_proj.")
if ".experts." in name:
name = name.replace(".experts.", ".mlp.experts.")
name = name.replace(".w1.", ".gate_proj.")
name = name.replace(".w2.", ".down_proj.")
name = name.replace(".w3.", ".up_proj.")
name = "model." + name
return super().modify_tensors(data_torch, name, bid)
class PixtralModel(LlavaVisionModel):
model_name = "Pixtral"
@@ -10378,6 +10582,8 @@ def main() -> None:
elif args.mmproj:
assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
model_class = PixtralModel
elif "moe" in hparams:
model_class = MistralMoeModel
else:
model_class = MistralModel

View File

@@ -42,6 +42,9 @@ The following releases are verified and recommended:
## News
- 2025.11
- Support malloc memory on device more than 4GB.
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
@@ -789,6 +792,8 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
## Known Issues
@@ -835,6 +840,14 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| The default context is too big. It leads to excessive memory usage.|Set `-c 8192` or a smaller value.|
| The model is too big and requires more memory than what is available.|Choose a smaller model or change to a smaller quantization, like Q5 -> Q4;<br>Alternatively, use more than one device to load model.|
- `ggml_backend_sycl_buffer_type_alloc_buffer: can't allocate 5000000000 Bytes of memory on device`
You need to enable to support 4GB memory malloc by:
```
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
```
### **GitHub contribution**:
Please add the `SYCL :` prefix/tag in issues/PRs titles to help the SYCL contributors to check/address them without delay.

View File

@@ -431,11 +431,22 @@ docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/ren
### For Linux users:
#### Using the LunarG Vulkan SDK
First, follow the official LunarG instructions for the installation and setup of the Vulkan SDK in the [Getting Started with the Linux Tarball Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/linux/getting_started.html) guide.
> [!IMPORTANT]
> After completing the first step, ensure that you have used the `source` command on the `setup_env.sh` file inside of the Vulkan SDK in your current terminal session. Otherwise, the build won't work. Additionally, if you close out of your terminal, you must perform this step again if you intend to perform a build. However, there are ways to make this persistent. Refer to the Vulkan SDK guide linked in the first step for more information about any of this.
#### Using system packages
On Debian / Ubuntu, you can install the required dependencies using:
```sh
sudo apt-get install libvulkan-dev glslc
```
#### Common steps
Second, after verifying that you have followed all of the SDK installation/setup steps, use this command to make sure before proceeding:
```bash
vulkaninfo

288
docs/development/parsing.md Normal file
View File

@@ -0,0 +1,288 @@
# Parsing Model Output
The `common` library contains a PEG parser implementation suitable for parsing
model output.
Types with the prefix `common_peg_*` are intended for general use and may have
applications beyond parsing model output, such as parsing user-provided regex
patterns.
Types with the prefix `common_chat_peg_*` are specialized helpers for model
output.
The parser features:
- Partial parsing of streaming input
- Built-in JSON parsers
- AST generation with semantics via "tagged" nodes
## Example
Below is a contrived example demonstrating how to use the PEG parser to parse
output from a model that emits arguments as JSON.
```cpp
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
// Build a choice of all available tools
auto tool_choice = p.choice();
for (const auto & tool : tools) {
const auto & function = tool.at("function");
std::string name = function.at("name");
const auto & schema = function.at("parameters");
auto tool_name = p.json_member("name", "\"" + p.literal(name) + "\"");
auto tool_args = p.json_member("arguments", p.schema(p.json(), "tool-" + name + "-schema", schema));
tool_choice |= p.rule("tool-" + name, "{" << tool_name << "," << tool_args << "}");
}
// Define the tool call structure: <tool_call>[{tool}]</tool_call>
auto tool_call = p.trigger_rule("tool-call",
p.sequence({
p.literal("<tool_call>["),
tool_choice,
p.literal("]</tool_call>")
})
);
// Parser accepts content, optionally followed by a tool call
return p.sequence({
p.content(p.until("<tool_call>")),
p.optional(tool_call),
p.end()
});
});
```
For a more complete example, see `test_example_native()` in
[tests/test-chat-peg-parser.cpp](tests/test-chat-peg-parser.cpp).
## Parsers/Combinators
### Basic Matchers
- **`eps()`** - Matches nothing and always succeeds (epsilon/empty match)
- **`start()`** - Matches the start of input (anchor `^`)
- **`end()`** - Matches the end of input (anchor `$`)
- **`literal(string)`** - Matches an exact literal string
- **`any()`** - Matches any single character (`.`)
### Combinators
- **`sequence(...)`** - Matches parsers in order; all must succeed
- **`choice(...)`** - Matches the first parser that succeeds from alternatives (ordered choice)
- **`one_or_more(p)`** - Matches one or more repetitions (`+`)
- **`zero_or_more(p)`** - Matches zero or more repetitions (`*`)
- **`optional(p)`** - Matches zero or one occurrence (`?`)
- **`repeat(p, min, max)`** - Matches between min and max repetitions (use `-1` for unbounded)
- **`repeat(p, n)`** - Matches exactly n repetitions
### Lookahead
- **`peek(p)`** - Positive lookahead: succeeds if parser succeeds without consuming input (`&`)
- **`negate(p)`** - Negative lookahead: succeeds if parser fails without consuming input (`!`)
### Character Classes & Utilities
- **`chars(classes, min, max)`** - Matches repetitions of characters from a character class
- **`space()`** - Matches zero or more whitespace characters (space, tab, newline)
- **`until(delimiter)`** - Matches characters until delimiter is found (delimiter not consumed)
- **`until_one_of(delimiters)`** - Matches characters until any delimiter in the list is found
- **`rest()`** - Matches everything remaining (`.*`)
### JSON Parsers
- **`json()`** - Complete JSON parser (objects, arrays, strings, numbers, booleans, null)
- **`json_object()`** - JSON object parser
- **`json_array()`** - JSON array parser
- **`json_string()`** - JSON string parser
- **`json_number()`** - JSON number parser
- **`json_bool()`** - JSON boolean parser
- **`json_null()`** - JSON null parser
- **`json_string_content()`** - JSON string content without surrounding quotes
- **`json_member(key, p)`** - JSON object member with specific key and value parser
### Grammar Building
- **`ref(name)`** - Creates a lightweight reference to a named rule (for recursive grammars)
- **`rule(name, p, trigger)`** - Creates a named rule and returns a reference
- **`trigger_rule(name, p)`** - Creates a trigger rule (entry point for lazy grammar generation)
- **`schema(p, name, schema, raw)`** - Wraps parser with JSON schema metadata for grammar generation
### AST Control
- **`atomic(p)`** - Prevents AST node creation for partial parses
- **`tag(tag, p)`** - Creates AST nodes with semantic tags (multiple nodes can share tags)
## GBNF Grammar Generation
The PEG parser also acts as a convenient DSL for generating GBNF grammars, with
some exceptions.
```cpp
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(params.tools, [&](const json & fn) {
builder.resolve_refs(fn.at("parameters"));
});
parser.build_grammar(builder, data.grammar_lazy);
});
```
The notable exception is the `negate(p)` lookahead parser, which cannot be
defined as a CFG grammar and therefore does not produce a rule. Its usage
should be limited and preferably hidden behind a `schema()` parser. In many
cases, `until(delimiter)` or `until_one_of(delimiters)` is a better choice.
Another limitation is that the PEG parser requires an unambiguous grammar. In
contrast, the `llama-grammar` implementation can support ambiguous grammars,
though they are difficult to parse.
### Lazy Grammars
During lazy grammar generation, only rules reachable from a `trigger_rule(p)`
are emitted in the grammar. All trigger rules are added as alternations in the
root rule. It is still necessary to define trigger patterns, as the parser has
no interaction with the grammar sampling.
### JSON Schema
The `schema(p, name, schema, raw)` parser will use the `json-schema-to-grammar`
implementation to generate the grammar instead of the underlying parser.
The `raw` option emits a grammar suitable for a raw string instead of a JSON
string. In other words, it won't be wrapped in quotes or require escaping
quotes. It should only be used when `type == "string"`.
The downside is that it can potentially lead to ambiguous grammars. For
example, if a user provides the pattern `^.*$`, the following grammar may be
generated:
```
root ::= "<arg>" .* "</arg>"
```
This creates an ambiguous grammar that cannot be parsed by the PEG parser. To
help mitigate this, if `.*` is found in the pattern, the grammar from the
underlying parser will be emitted instead.
## Common AST Shapes for Chat Parsing
Most model output can be placed in one of the following categories:
- Content only
- Tool calling with arguments emitted as a single JSON object
- Tool calling with arguments emitted as separate entities, either XML
(Qwen3-Coder, MiniMax M2) or pseudo-function calls (LFM2)
To provide broad coverage,
[`common/chat-peg-parser.h`](common/chat-peg-parser.h) contains builders and
mappers that help create parsers and visitors/extractors for these types. They
require parsers to tag nodes to conform to an AST "shape". This normalization
makes it easy to extract information and generalize parsing.
### Simple
The `common_chat_peg_builder` builds a `simple` parser that supports
content-only models with optional reasoning.
- **`reasoning(p)`** - Tag node for extracting `reasoning_content`
- **`content(p)`** - Tag node for extracting `content`
```cpp
build_chat_peg_parser([&](common_chat_peg_parser & p) {
return p.sequence({
p.optional("<think>" + p.reasoning(p.until("</think>")) + "</think>"),
p.content(p.until("<tool_call>")),
p.end()
});
});
```
Use `common_chat_peg_mapper` to extract the content. Note that this is already
done for you in `common_chat_peg_parser` when
`chat_format == COMMON_CHAT_FORMAT_PEG_SIMPLE`.
```cpp
auto result = parser.parse(ctx);
common_chat_msg msg;
auto mapper = common_chat_peg_mapper(msg);
mapper.from_ast(ctx.ast, result);
```
### Native
The `common_chat_peg_native_builder` builds a `native` parser suitable for
models that emit tool arguments as a direct JSON object.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_id(p)`** - Tag the tool call ID (optional)
- **`tool_name(p)`** - Tag the tool name
- **`tool_args(p)`** - Tag the tool arguments
```cpp
build_chat_peg_native_parser([&](common_chat_peg_native_parser & p) {
auto get_weather_tool = p.tool(p.sequence({
p.tool_open(p.literal("{")),
p.json_member("name", "\"" + p.tool_name(p.literal("get_weather")) + "\""),
p.literal(","),
p.json_member("arguments", p.tool_args(p.json())),
p.tool_close(p.literal("}"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```
### Constructed
The `common_chat_peg_constructed_builder` builds a `constructed` parser
suitable for models that emit tool arguments as separate entities, such as XML
tags.
- **`reasoning(p)`** - Tag node for `reasoning_content`
- **`content(p)`** - Tag node for `content`
- **`tool(p)`** - Tag entirety of a single tool call
- **`tool_open(p)`** - Tag start of a tool call
- **`tool_close(p)`** - Tag end of a tool call
- **`tool_name(p)`** - Tag the tool name
- **`tool_arg(p)`** - Tag a complete tool argument (name + value)
- **`tool_arg_open(p)`** - Tag start of a tool argument
- **`tool_arg_close(p)`** - Tag end of a tool argument
- **`tool_arg_name(p)`** - Tag the argument name
- **`tool_arg_string_value(p)`** - Tag string value for the argument
- **`tool_arg_json_value(p)`** - Tag JSON value for the argument
```cpp
build_chat_peg_constructed_parser([&](common_chat_peg_constructed_builder & p) {
auto location_arg = p.tool_arg(
p.tool_arg_open("<parameter name=\"" + p.tool_arg_name(p.literal("location")) + "\">"),
p.tool_arg_string_value(p.until("</parameter>")),
p.tool_arg_close(p.literal("</parameter>"))
);
auto get_weather_tool = p.tool(p.sequence({
p.tool_open("<function name=\"" + p.tool_name(p.literal("get_weather")) + "\">"),
location_arg,
p.tool_close(p.literal("</function>"))
}));
return p.sequence({
p.content(p.until("<tool_call>")),
p.literal("<tool_call>"),
get_weather_tool,
p.literal("</tool_call>"),
p.end()
});
});
```

View File

@@ -12,110 +12,111 @@ Legend:
- 🟡 Partially supported by this backend
- ❌ Not supported by this backend
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | | ✅ | ❌ | ✅ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | | ❌ | ❌ | ✅ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | | ❌ | ✅ | 🟡 | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | | ❌ | 🟡 | ✅ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | | ✅ | 🟡 | ✅ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | | ✅ | ❌ | ❌ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | | ❌ | 🟡 | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | | ❌ | ❌ | 🟡 | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | | ❌ | 🟡 | 🟡 | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | 🟡 | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | | 🟡 | | 🟡 | | ❌ |
| XIELU | | | ✅ | | | ❌ | ❌ | ❌ | ❌ |
| Operation | BLAS | CANN | CPU | CUDA | Metal | OpenCL | SYCL | Vulkan | WebGPU | zDNN |
|-----------|------|------|------|------|------|------|------|------|------|------|
| ABS | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| ACC | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ADD | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| ADD1 | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ADD_ID | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ |
| CONV_2D | ❌ | ❌ | ✅ | ✅ | | ✅ | ❌ | ✅ | ❌ | ❌ |
| CONV_2D_DW | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| CONV_3D | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CONV_TRANSPOSE_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| CONV_TRANSPOSE_2D | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| COS | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| COUNT_EQUAL | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| CPY | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| CROSS_ENTROPY_LOSS | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CROSS_ENTROPY_LOSS_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| CUMSUM | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | | ❌ | ❌ |
| DIAG_MASK_INF | ❌ | ✅ | ✅ | ✅ | | 🟡 | ✅ | ✅ | ❌ | ❌ |
| DIV | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| DUP | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| ELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ |
| EXP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| EXPM1 | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ |
| FILL | ❌ | ❌ | ✅ | ❌ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| FLASH_ATTN_EXT | ❌ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| FLOOR | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| GATED_LINEAR_ATTN | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| GEGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GEGLU_ERF | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GEGLU_QUICK | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| GELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GELU_ERF | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GELU_QUICK | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| GET_ROWS | ❌ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| GET_ROWS_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| GROUP_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| GROUP_NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| HARDSIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| HARDSWISH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| IM2COL | ❌ | ✅ | ✅ | ✅ | | ✅ | ✅ | ✅ | ❌ | ❌ |
| IM2COL_3D | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| L2_NORM | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| LEAKY_RELU | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ |
| LOG | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | ✅ | ❌ | ❌ |
| MEAN | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| MUL | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| MUL_MAT | 🟡 | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 |
| MUL_MAT_ID | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| NEG | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| NORM | ❌ | ✅ | ✅ | ✅ | | ✅ | ✅ | 🟡 | ❌ | ❌ |
| NORM_MUL_ADD | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| OPT_STEP_ADAMW | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| OPT_STEP_SGD | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | ✅ | ❌ | ❌ |
| OUT_PROD | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
| PAD | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| PAD_REFLECT_1D | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ❌ |
| POOL_2D | ❌ | 🟡 | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| REGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| RELU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| REPEAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | 🟡 | ❌ | ❌ |
| REPEAT_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RMS_NORM | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| RMS_NORM_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RMS_NORM_MUL_ADD | ❌ | ✅ | ❌ | ❌ | | ✅ | ❌ | ❌ | ❌ | ❌ |
| ROLL | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ |
| ROPE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| ROPE_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| ROUND | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| RWKV_WKV6 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| RWKV_WKV7 | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| SCALE | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SET | ❌ | ❌ | ✅ | ✅ | | ❌ | 🟡 | ❌ | ❌ | ❌ |
| SET_ROWS | ❌ | ❌ | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | 🟡 | ❌ |
| SGN | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | ❌ | ✅ | ❌ |
| SIGMOID | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SOFTCAP | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| SQR | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SQRT | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SSM_CONV | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ |
| SSM_SCAN | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| STEP | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ |
| SUB | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ✅ | ❌ |
| SUM | ❌ | ✅ | ✅ | 🟡 | 🟡 | ❌ | 🟡 | 🟡 | ❌ | ❌ |
| SUM_ROWS | ❌ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SWIGLU | ❌ | ✅ | ✅ | ✅ | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | | ❌ | ❌ | 🟡 | ✅ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | 🟡 | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | | | ❌ |
| TRUNC | ❌ | | ✅ | 🟡 | | | 🟡 | 🟡 | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | | ✅ | 🟡 | ✅ | 🟡 | 🟡 | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ |

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -5005,8 +5005,8 @@
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f32,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=f16,ne=[10,10,5,1],permute=[1,0,2,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","0","no","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[0,2,1,3]","support","1","yes","Vulkan"
"Vulkan0","DUP","type=i16,ne=[10,8,3,1],permute=[1,2,0,3]","support","1","yes","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=1","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=2","support","0","no","Vulkan"
"Vulkan0","SET","type_src=f32,type_dst=f32,ne=[6,5,4,3],dim=3","support","0","no","Vulkan"
@@ -5032,14 +5032,14 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[1,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[2,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[3,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=q4_0,type_dst=q4_0,ne=[32,2,3,4],permute_src=[0,3,1,2],permute_dst=[0,2,1,3],_src_transpose=0","support","0","no","Vulkan"
@@ -5271,7 +5271,7 @@
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=f16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_0,ne=[256,2,3,4],permute_src=[0,2,1,3],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=q4_1,ne=[256,4,4,4],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=0","support","0","no","Vulkan"
@@ -5415,21 +5415,49 @@
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,3,3],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,3,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f16,type_dst=f16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","0","no","Vulkan"
"Vulkan0","CPY","type_src=bf16,type_dst=bf16,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,4,1,1],permute_src=[0,0,0,0],permute_dst=[0,0,0,0],_src_transpose=1","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=i32,type_dst=i32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CPY","type_src=f32,type_dst=f32,ne=[256,1,4,1],permute_src=[1,2,0,3],permute_dst=[0,0,0,0],_src_transpose=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5]","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7]","support","0","no","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=1","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=i32,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=f16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,1,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,1,3,5],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[2,3,5,7],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,4,4,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[1,8,17,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","CONT","type=bf16,ne=[10,10,10,1],use_view_slice=0","support","1","yes","Vulkan"
"Vulkan0","ADD","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","SUB","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","MUL","type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
@@ -5655,6 +5683,7 @@
"Vulkan0","MUL","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","DIV","type=f32,ne=[64,262144,1,1],nr=[1,1,1,1],nf=1","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","ADD1","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=0.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=0","support","1","yes","Vulkan"
"Vulkan0","SCALE","type=f32,ne=[10,10,10,10],scale=2.000000,bias=1.000000,inplace=1","support","1","yes","Vulkan"
@@ -8644,9 +8673,13 @@
"Vulkan0","CLAMP","type=f16,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","0","no","Vulkan"
"Vulkan0","LEAKY_RELU","type=f16,ne_a=[7,1,5,3],negative_slope=0.100000","support","0","no","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f16,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","SQR","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","SQRT","type=f32,ne=[10,3,3,2]","support","1","yes","Vulkan"
"Vulkan0","LOG","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
@@ -8666,9 +8699,13 @@
"Vulkan0","CLAMP","type=f32,ne=[7,1,5,3],min=-0.500000,max=0.500000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[7,1,5,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","FLOOR","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","CEIL","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","ROUND","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[7,1,5,3]","support","1","yes","Vulkan"
"Vulkan0","TRUNC","type=f32,ne=[1024,1024,1,1]","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,1,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,1],n_past=5","support","1","yes","Vulkan"
"Vulkan0","DIAG_MASK_INF","type=f32,ne=[10,10,3,2],n_past=5","support","1","yes","Vulkan"
@@ -9411,28 +9448,405 @@
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=2,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=f32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","CONCAT","type=i32,ne_a=[11,12,13,14],ne_b_d=7,dim=3,v=3","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[3,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[7,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[15,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[31,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[63,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[64,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[127,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[128,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[255,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[256,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[511,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[512,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4095,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[4096,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8191,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[8192,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16383,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32767,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[32768,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65535,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[65536,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131071,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[131072,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262143,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[262144,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524287,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[524288,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048575,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1048576,1,1,1],order=0","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[60,10,10,10],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1023,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1024,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[16384,1,1,1],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","0","no","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[1025,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2047,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","Vulkan"
"Vulkan0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[12,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[13,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[15,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[19,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[27,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[43,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[64,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[75,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[128,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[139,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[256,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[267,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[512,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[523,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=100","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=500","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999","support","0","no","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=1","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=2","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=3","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=7","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[60,10,10,10],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1023,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1024,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[1025,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[16384,1,1,1],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2047,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2048,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","TOP_K","type=f32,ne=[2049,2,1,3],k=15","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest,flags=none","support","1","yes","Vulkan"
@@ -9445,6 +9859,10 @@
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=bicubic,transpose=1","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bicubic,flags=none","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=0","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=513,transpose=1","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[5,7,11,13],ne_tgt=[2,5,7,11],mode=bilinear,flags=none","support","0","no","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[1,4,3,2],ne_tgt=[2,8,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
"Vulkan0","UPSCALE","type=f32,ne=[4,1,3,2],ne_tgt=[1,1,3,2],mode=bilinear,flags=align_corners","support","1","yes","Vulkan"
@@ -9479,23 +9897,37 @@
"Vulkan0","PAD_REFLECT_1D","type=f32,ne_a=[3000,384,4,1],pad_0=10,pad_1=9","support","0","no","Vulkan"
"Vulkan0","ROLL","shift0=3,shift1=-2,shift3=1,shift4=-1","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=10.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","ARANGE","type=f32,start=0.000000,stop=1048576.000000,step=1.000000","support","1","yes","Vulkan"
"Vulkan0","TIMESTEP_EMBEDDING","type=f32,ne_a=[2,1,1,1],dim=320,max_period=10000","support","1","yes","Vulkan"
"Vulkan0","LEAKY_RELU","type=f32,ne_a=[10,5,4,3],negative_slope=0.100000","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[10,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[127,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[128,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[255,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[256,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[511,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[512,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1023,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[1024,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2047,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[2048,5,4,3]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[242004,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","CUMSUM","type=f32,ne=[375960,1,1,1]","support","1","yes","Vulkan"
"Vulkan0","XIELU","type=f32,ne=[10,5,4,3]","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","0","no","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=3","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=2","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=1","support","1","yes","Vulkan"
"Vulkan0","TRI","type=f32,ne=[10,10,4,3],tri_type=0","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[10,10,4,3],c=0.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[303,207,11,3],c=2.000000","support","1","yes","Vulkan"
"Vulkan0","FILL","type=f32,ne=[800,600,4,4],c=-152.000000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","0","no","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","0","no","Vulkan"
"Vulkan0","FILL","type=f32,ne=[2048,512,2,2],c=3.500000","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[10,10,4,3],ne_rhs=[3,10,4,3]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[11,11,1,1],ne_rhs=[5,11,1,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[17,17,2,4],ne_rhs=[9,17,2,4]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[30,30,7,1],ne_rhs=[8,30,7,1]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[42,42,5,2],ne_rhs=[10,42,5,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[64,64,2,2],ne_rhs=[10,64,2,2]","support","1","yes","Vulkan"
"Vulkan0","SOLVE_TRI","type=f32,ne_lhs=[100,100,4,4],ne_rhs=[41,100,4,4]","support","0","no","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[512,512,1,1],lp0=0,rp0=1,lp1=0,rp1=1,lp2=0,rp2=0,lp3=0,rp3=0,v=0","support","1","yes","Vulkan"
"Vulkan0","PAD","type=f32,ne_a=[11,22,33,44],lp0=1,rp0=2,lp1=3,rp1=4,lp2=5,rp2=6,lp3=7,rp3=8,v=0","support","1","yes","Vulkan"
Can't render this file because it is too large.

18741
docs/ops/WebGPU.csv Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -20,6 +20,7 @@ else()
add_subdirectory(gguf-hash)
add_subdirectory(gguf)
add_subdirectory(idle)
add_subdirectory(lookahead)
add_subdirectory(lookup)
add_subdirectory(parallel)

View File

@@ -104,12 +104,16 @@ int main(int argc, char ** argv) {
params.embedding = true;
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
// if the number of prompts that would be encoded is known in advance, it's more efficient to specify the
// --parallel argument accordingly. for convenience, if not specified, we fallback to unified KV cache
// in order to support any number of prompts
if (params.n_parallel == 1) {
LOG_INF("%s: n_parallel == 1 -> unified KV cache is enabled\n", __func__);
params.kv_unified = true;
params.n_parallel = n_seq_max;
}
// utilize the full context
@@ -123,9 +127,6 @@ int main(int argc, char ** argv) {
params.n_ubatch = params.n_batch;
}
// get max number of sequences per batch
const int n_seq_max = llama_max_parallel_sequences();
llama_backend_init();
llama_numa_init(params.numa);

View File

@@ -0,0 +1,5 @@
set(TARGET llama-idle)
add_executable(${TARGET} idle.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama common ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

3
examples/idle/README.md Normal file
View File

@@ -0,0 +1,3 @@
# llama.cpp/example/idle
https://github.com/ggml-org/llama.cpp/pull/17766

110
examples/idle/idle.cpp Normal file
View File

@@ -0,0 +1,110 @@
#include "arg.h"
#include "common.h"
#include "log.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <string>
#include <thread>
#include <vector>
static void print_usage(int /*argc*/, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m model.gguf [-ngl n_gpu_layers]\n", argv[0]);
printf("\n");
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMMON, print_usage)) {
return 1;
}
common_init();
// init LLM
llama_backend_init();
llama_numa_init(params.numa);
// initialize the model
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
// we need just a dummy token to evaluate
std::vector<llama_token> prompt_tokens(1, llama_vocab_bos(vocab));
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = 512;
ctx_params.n_batch = 512;
ctx_params.no_perf = false;
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
return 1;
}
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
const int n_iters = 3;
// warm-up
llama_decode(ctx, batch);
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx);
for (int64_t t_pause_ms = 0; t_pause_ms <= 4000; t_pause_ms += 800) {
double t_sum_us = 0.0;
double t_sum2_us = 0.0;
for (int i = 0; i < n_iters; i++) {
// this pause is important - it simulates "idle GPU"
std::this_thread::sleep_for(std::chrono::milliseconds(t_pause_ms));
const int64_t t_start_us = llama_time_us();
// this should take constant time
llama_decode(ctx, batch);
llama_synchronize(ctx);
const int64_t t_end_us = llama_time_us();
const double t_cur_us = t_end_us - t_start_us;
#if 1
// print individual decode times
printf(" - decode time: %8.2f ms\n", t_cur_us / 1000);
#endif
t_sum_us += t_cur_us;
t_sum2_us += t_cur_us * t_cur_us;
llama_memory_clear(llama_get_memory(ctx), true);
llama_synchronize(ctx); // just in case
}
const double t_avg_us = t_sum_us / n_iters;
const double t_dev_us = sqrt((t_sum2_us / (n_iters - 1)) - (t_avg_us * t_avg_us * n_iters) / (n_iters - 1));
printf("iters: %4d, pause: %5d ms, avg decode time: %8.2f +/- %4.2f ms\n", n_iters, (int) t_pause_ms, t_avg_us / 1000, t_dev_us / 1000);
fflush(stdout);
}
llama_free(ctx);
llama_model_free(model);
return 0;
}

View File

@@ -231,9 +231,9 @@ DOT = '[^\\x0A\\x0D]'
RESERVED_NAMES = set(["root", "dot", *PRIMITIVE_RULES.keys(), *STRING_FORMAT_RULES.keys()])
INVALID_RULE_CHARS_RE = re.compile(r'[^a-zA-Z0-9-]+')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"]')
GRAMMAR_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\\]')
GRAMMAR_RANGE_LITERAL_ESCAPE_RE = re.compile(r'[\r\n"\]\-\\]')
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]'}
GRAMMAR_LITERAL_ESCAPES = {'\r': '\\r', '\n': '\\n', '"': '\\"', '-': '\\-', ']': '\\]', '\\': '\\\\'}
NON_LITERAL_SET = set('|.()[]{}*+?')
ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = set('^$.[]()|{}*+?')

View File

@@ -4,6 +4,11 @@ set -e
# First try command line argument, then environment variable, then file
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
MODEL_TESTING_PROMPT="${2:-"$MODEL_TESTING_PROMPT"}"
if [ -z "$MODEL_TESTING_PROMPT"]; then
MODEL_TESTING_PROMPT="Hello, my name is"
fi
# Final check if we have a model path
if [ -z "$CONVERTED_MODEL" ]; then
@@ -14,7 +19,8 @@ if [ -z "$CONVERTED_MODEL" ]; then
fi
echo $CONVERTED_MODEL
echo $MODEL_TESTING_PROMPT
cmake --build ../../build --target llama-logits -j8
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "Hello, my name is"
../../build/bin/llama-logits -m "$CONVERTED_MODEL" "$MODEL_TESTING_PROMPT"

View File

@@ -184,8 +184,12 @@ model_name = os.path.basename(model_path)
# of using AutoModelForCausalLM.
print(f"Model class: {model.__class__.__name__}")
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
device = next(model.parameters()).device
if os.getenv("MODEL_TESTING_PROMPT"):
prompt = os.getenv("MODEL_TESTING_PROMPT")
else:
prompt = "Hello, my name is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
print(f"Input tokens: {input_ids}")
print(f"Input text: {repr(prompt)}")

View File

@@ -241,6 +241,12 @@ int main(int argc, char ** argv) {
llama_batch_free(batch);
// this one is managed by common_init_result
//llama_free(ctx);
llama_free(ctx2);
llama_free(ctx3);
if (result0 != result2) {
fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
return 1;

View File

@@ -18,6 +18,7 @@ cd llama.cpp
cmake -S . -B build
cmake --build build
cmake --install build --prefix inst
```
### Build simple-cmake-pkg

View File

@@ -15,6 +15,9 @@ MODEL_FILE=models/llama-2-7b.Q4_0.gguf
NGL=99
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "use $GGML_SYCL_DEVICE as main GPU"

View File

@@ -6,7 +6,7 @@
# If you want more control, DPC++ Allows selecting a specific device through the
# following environment variable
#export ONEAPI_DEVICE_SELECTOR="level_zero:0"
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
source /opt/intel/oneapi/setvars.sh
#export GGML_SYCL_DEBUG=1
@@ -18,11 +18,14 @@ MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "Using $GGML_SYCL_DEVICE as the main GPU"
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -c ${CONTEXT}
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m ${MODEL_FILE} -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
fi

View File

@@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p %INPUT2% -n 400 -e -ngl 99 -s 0

View File

@@ -5,5 +5,7 @@
set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
@call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64 --force
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -e -ngl 99
.\build\bin\llama-cli.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -p %INPUT2% -n 400 -s 0 -e -ngl 99

View File

@@ -175,14 +175,10 @@ option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requi
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (MINGW)
set(GGML_WIN_VER "0xA00" CACHE STRING "ggml: Windows version")
endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
option(GGML_SCHED_NO_REALLOC "ggml: disallow reallocations in ggml-alloc (for debugging)" OFF)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
@@ -225,7 +221,7 @@ option(GGML_WEBGPU "ggml: use WebGPU"
option(GGML_WEBGPU_DEBUG "ggml: enable WebGPU debug output" OFF)
option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)" OFF)
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
option(GGML_WEBGPU_JSPI "ggml: use JSPI for WebGPU" ON)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
@@ -407,62 +403,67 @@ if (MSVC)
/wd4996 # Disable POSIX deprecation warnings
/wd4702 # Unreachable code warnings
)
function(disable_msvc_warnings target_name)
set(MSVC_COMPILE_OPTIONS
"$<$<COMPILE_LANGUAGE:C>:/utf-8>"
"$<$<COMPILE_LANGUAGE:CXX>:/utf-8>"
)
function(configure_msvc_target target_name)
if(TARGET ${target_name})
target_compile_options(${target_name} PRIVATE ${MSVC_WARNING_FLAGS})
target_compile_options(${target_name} PRIVATE ${MSVC_COMPILE_OPTIONS})
endif()
endfunction()
disable_msvc_warnings(ggml-base)
disable_msvc_warnings(ggml)
disable_msvc_warnings(ggml-cpu)
disable_msvc_warnings(ggml-cpu-x64)
disable_msvc_warnings(ggml-cpu-sse42)
disable_msvc_warnings(ggml-cpu-sandybridge)
disable_msvc_warnings(ggml-cpu-haswell)
disable_msvc_warnings(ggml-cpu-skylakex)
disable_msvc_warnings(ggml-cpu-icelake)
disable_msvc_warnings(ggml-cpu-alderlake)
configure_msvc_target(ggml-base)
configure_msvc_target(ggml)
configure_msvc_target(ggml-cpu)
configure_msvc_target(ggml-cpu-x64)
configure_msvc_target(ggml-cpu-sse42)
configure_msvc_target(ggml-cpu-sandybridge)
configure_msvc_target(ggml-cpu-haswell)
configure_msvc_target(ggml-cpu-skylakex)
configure_msvc_target(ggml-cpu-icelake)
configure_msvc_target(ggml-cpu-alderlake)
if (GGML_BUILD_EXAMPLES)
disable_msvc_warnings(common-ggml)
disable_msvc_warnings(common)
configure_msvc_target(common-ggml)
configure_msvc_target(common)
disable_msvc_warnings(mnist-common)
disable_msvc_warnings(mnist-eval)
disable_msvc_warnings(mnist-train)
configure_msvc_target(mnist-common)
configure_msvc_target(mnist-eval)
configure_msvc_target(mnist-train)
disable_msvc_warnings(gpt-2-ctx)
disable_msvc_warnings(gpt-2-alloc)
disable_msvc_warnings(gpt-2-backend)
disable_msvc_warnings(gpt-2-sched)
disable_msvc_warnings(gpt-2-quantize)
disable_msvc_warnings(gpt-2-batched)
configure_msvc_target(gpt-2-ctx)
configure_msvc_target(gpt-2-alloc)
configure_msvc_target(gpt-2-backend)
configure_msvc_target(gpt-2-sched)
configure_msvc_target(gpt-2-quantize)
configure_msvc_target(gpt-2-batched)
disable_msvc_warnings(gpt-j)
disable_msvc_warnings(gpt-j-quantize)
configure_msvc_target(gpt-j)
configure_msvc_target(gpt-j-quantize)
disable_msvc_warnings(magika)
disable_msvc_warnings(yolov3-tiny)
disable_msvc_warnings(sam)
configure_msvc_target(magika)
configure_msvc_target(yolov3-tiny)
configure_msvc_target(sam)
disable_msvc_warnings(simple-ctx)
disable_msvc_warnings(simple-backend)
configure_msvc_target(simple-ctx)
configure_msvc_target(simple-backend)
endif()
if (GGML_BUILD_TESTS)
disable_msvc_warnings(test-mul-mat)
disable_msvc_warnings(test-arange)
disable_msvc_warnings(test-backend-ops)
disable_msvc_warnings(test-cont)
disable_msvc_warnings(test-conv-transpose)
disable_msvc_warnings(test-conv-transpose-1d)
disable_msvc_warnings(test-conv1d)
disable_msvc_warnings(test-conv2d)
disable_msvc_warnings(test-conv2d-dw)
disable_msvc_warnings(test-customop)
disable_msvc_warnings(test-dup)
disable_msvc_warnings(test-opt)
disable_msvc_warnings(test-pool)
configure_msvc_target(test-mul-mat)
configure_msvc_target(test-arange)
configure_msvc_target(test-backend-ops)
configure_msvc_target(test-cont)
configure_msvc_target(test-conv-transpose)
configure_msvc_target(test-conv-transpose-1d)
configure_msvc_target(test-conv1d)
configure_msvc_target(test-conv2d)
configure_msvc_target(test-conv2d-dw)
configure_msvc_target(test-customop)
configure_msvc_target(test-dup)
configure_msvc_target(test-opt)
configure_msvc_target(test-pool)
endif ()
endif()

View File

@@ -1,6 +1,5 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
@@ -8,7 +7,7 @@ extern "C" {
#endif
#define RPC_PROTO_MAJOR_VERSION 3
#define RPC_PROTO_MINOR_VERSION 0
#define RPC_PROTO_MINOR_VERSION 6
#define RPC_PROTO_PATCH_VERSION 0
#define GGML_RPC_MAX_SERVERS 16

View File

@@ -204,6 +204,10 @@
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#if defined(_WIN32) && !defined(_WIN32_WINNT)
# define _WIN32_WINNT 0x0A00
#endif
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
@@ -2148,7 +2152,8 @@ extern "C" {
};
enum ggml_scale_flag {
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8)
GGML_SCALE_FLAG_ALIGN_CORNERS = (1 << 8),
GGML_SCALE_FLAG_ANTIALIAS = (1 << 9),
};
// interpolate
@@ -2278,7 +2283,7 @@ extern "C" {
float stop,
float step);
#define GGML_KQ_MASK_PAD 64
#define GGML_KQ_MASK_PAD 1
// q: [n_embd_k, n_batch, n_head, ne3 ]
// k: [n_embd_k, n_kv, n_head_kv, ne3 ]

View File

@@ -127,10 +127,6 @@ if (NOT MSVC)
endif()
endif()
if (MINGW)
add_compile_definitions(_WIN32_WINNT=${GGML_WIN_VER})
endif()
#
# POSIX conformance
#
@@ -221,6 +217,10 @@ if (GGML_BACKEND_DL)
target_compile_definitions(ggml-base PUBLIC GGML_BACKEND_DL)
endif()
if (GGML_SCHED_NO_REALLOC)
target_compile_definitions(ggml-base PUBLIC GGML_SCHED_NO_REALLOC)
endif()
add_library(ggml
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
@@ -270,10 +270,13 @@ function(ggml_add_backend_library backend)
endif()
# Set versioning properties for all backend libraries
set_target_properties(${backend} PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
# Building a MODULE library with a version is not supported on macOS (https://gitlab.kitware.com/cmake/cmake/-/issues/20782)
if (NOT (APPLE AND GGML_BACKEND_DL))
set_target_properties(${backend} PROPERTIES
VERSION ${GGML_VERSION}
SOVERSION ${GGML_VERSION_MAJOR}
)
endif()
if(NOT GGML_AVAILABLE_BACKENDS)
set(GGML_AVAILABLE_BACKENDS "${backend}"

View File

@@ -921,10 +921,15 @@ bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, c
}
if (realloc) {
#ifndef NDEBUG
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
{
size_t cur_size = galloc->buffers[i] ? ggml_vbuffer_size(galloc->buffers[i]) : 0;
if (cur_size > 0) {
GGML_LOG_DEBUG("%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n",
__func__, ggml_backend_buft_name(galloc->bufts[i]),
cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
}
}
#endif
ggml_vbuffer_free(galloc->buffers[i]);
galloc->buffers[i] = ggml_vbuffer_alloc(galloc->bufts[i], galloc->buf_tallocs[i], GGML_BACKEND_BUFFER_USAGE_COMPUTE);
if (galloc->buffers[i] == NULL) {

View File

@@ -534,8 +534,12 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
fs::path best_path;
for (const auto & search_path : search_paths) {
if (!fs::exists(search_path)) {
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
if (std::error_code ec; !fs::exists(search_path, ec)) {
if (ec) {
GGML_LOG_DEBUG("%s: posix_stat(%s) failure, error-message: %s\n", __func__, path_str(search_path).c_str(), ec.message().c_str());
} else {
GGML_LOG_DEBUG("%s: search path %s does not exist\n", __func__, path_str(search_path).c_str());
}
continue;
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
@@ -575,8 +579,12 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
for (const auto & search_path : search_paths) {
fs::path filename = backend_filename_prefix().native() + name_path.native() + backend_filename_extension().native();
fs::path path = search_path / filename;
if (fs::exists(path)) {
if (std::error_code ec; fs::exists(path, ec)) {
return get_reg().load_backend(path, silent);
} else {
if (ec) {
GGML_LOG_DEBUG("%s: posix_stat(%s) failure, error-message: %s\n", __func__, path_str(path).c_str(), ec.message().c_str());
}
}
}
return nullptr;

View File

@@ -723,6 +723,12 @@ struct ggml_backend_sched {
bool op_offload;
int debug;
// used for debugging graph reallocations [GGML_SCHED_DEBUG_REALLOC]
// ref: https://github.com/ggml-org/llama.cpp/pull/17617
int debug_realloc;
int debug_graph_size;
int debug_prev_graph_size;
};
#define hash_id(tensor) ggml_hash_find_or_insert(&sched->hash_set, tensor)
@@ -1234,10 +1240,8 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
}
if (sched->n_copies > 1) {
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
}
ggml_set_input(tensor_copy);
ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
tensor_id_copy(src_id, src_backend_id, c) = tensor_copy;
SET_CAUSE(tensor_copy, "4.cpy");
}
@@ -1289,6 +1293,11 @@ void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgra
}
int graph_size = std::max(graph->n_nodes, graph->n_leafs) + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sched->n_copies;
// remember the actual graph_size for performing reallocation checks later [GGML_SCHED_DEBUG_REALLOC]
sched->debug_prev_graph_size = sched->debug_graph_size;
sched->debug_graph_size = graph_size;
if (sched->graph.size < graph_size) {
sched->graph.size = graph_size;
sched->graph.nodes = (ggml_tensor **) realloc(sched->graph.nodes, graph_size * sizeof(struct ggml_tensor *));
@@ -1395,14 +1404,27 @@ static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
// allocate graph
if (backend_ids_changed || !ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
if (sched->debug_realloc > 0) {
// we are interested only in situations where the graph was reallocated even though its size remained the same [GGML_SCHED_DEBUG_REALLOC]
// example: https://github.com/ggml-org/llama.cpp/pull/17143
const bool unexpected = !backend_ids_changed && sched->debug_prev_graph_size == sched->debug_graph_size;
if (unexpected || sched->debug_realloc > 1) {
GGML_ABORT("%s: unexpected graph reallocation (graph size = %d, nodes = %d, leafs = %d), debug_realloc = %d\n", __func__,
sched->debug_graph_size, sched->graph.n_nodes, sched->graph.n_leafs, sched->debug_realloc);
}
}
// the re-allocation may cause the split inputs to be moved to a different address
// synchronize without ggml_backend_sched_synchronize to avoid changing cur_copy
for (int i = 0; i < sched->n_backends; i++) {
ggml_backend_synchronize(sched->backends[i]);
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: failed to allocate graph, reserving (backend_ids_changed = %d)\n", __func__, backend_ids_changed);
#endif
ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
if (!ggml_gallocr_alloc_graph(sched->galloc, &sched->graph)) {
GGML_LOG_ERROR("%s: failed to allocate graph\n", __func__);
@@ -1614,6 +1636,14 @@ ggml_backend_sched_t ggml_backend_sched_new(
const char * GGML_SCHED_DEBUG = getenv("GGML_SCHED_DEBUG");
sched->debug = GGML_SCHED_DEBUG ? atoi(GGML_SCHED_DEBUG) : 0;
sched->debug_realloc = 0;
#ifdef GGML_SCHED_NO_REALLOC
sched->debug_realloc = 1;
#endif
const char * GGML_SCHED_DEBUG_REALLOC = getenv("GGML_SCHED_DEBUG_REALLOC");
sched->debug_realloc = GGML_SCHED_DEBUG_REALLOC ? atoi(GGML_SCHED_DEBUG_REALLOC) : sched->debug_realloc;
sched->n_backends = n_backends;
sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
@@ -1630,6 +1660,9 @@ ggml_backend_sched_t ggml_backend_sched_new(
sched->prev_node_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_node_backend_ids[0]));
sched->prev_leaf_backend_ids = (int *) calloc(nodes_size, sizeof(sched->prev_leaf_backend_ids[0]));
sched->debug_graph_size = 0;
sched->debug_prev_graph_size = 0;
sched->context_buffer_size = ggml_sched_max_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + ggml_graph_overhead_custom(graph_size, false);
sched->context_buffer = (char *) malloc(sched->context_buffer_size);

View File

@@ -2500,6 +2500,9 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
if (op->op_params[0] != GGML_SCALE_MODE_NEAREST) {
return false;
}
if (op->op_params[0] & GGML_SCALE_FLAG_ANTIALIAS) {
return false;
}
return true;
}
case GGML_OP_POOL_2D:
@@ -2561,6 +2564,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
return true;
case GGML_OP_OUT_PROD:
{
#ifdef ASCEND_310P
// Ger is not supported on 310p device
return false;
#endif
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:

View File

@@ -33,10 +33,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@@ -44,12 +46,14 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#define ggml_gemm_iq4_nl_8x8_q8_0_generic ggml_gemm_iq4_nl_8x8_q8_0
#elif defined(__aarch64__) || defined(__arm__) || defined(_M_ARM) || defined(_M_ARM64)
// repack.cpp
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
@@ -58,11 +62,14 @@
#elif defined(__x86_64__) || defined(__i386__) || defined(_M_IX86) || defined(_M_X64)
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
#elif defined(__POWERPC__) || defined(__powerpc__)
// ref: https://github.com/ggml-org/llama.cpp/pull/14146#issuecomment-2972561679
@@ -74,10 +81,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@@ -85,6 +94,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@@ -99,10 +109,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@@ -110,6 +122,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@@ -132,15 +145,18 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
#define ggml_gemv_iq4_nl_8x8_q8_0_generic ggml_gemv_iq4_nl_8x8_q8_0
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@@ -161,10 +177,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@@ -172,6 +190,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0
@@ -194,10 +213,12 @@
// repack.cpp
#define ggml_quantize_mat_q8_0_4x4_generic ggml_quantize_mat_q8_0_4x4
#define ggml_quantize_mat_q8_0_4x8_generic ggml_quantize_mat_q8_0_4x8
#define ggml_quantize_mat_q8_K_4x4_generic ggml_quantize_mat_q8_K_4x4
#define ggml_quantize_mat_q8_K_4x8_generic ggml_quantize_mat_q8_K_4x8
#define ggml_gemv_q4_0_4x4_q8_0_generic ggml_gemv_q4_0_4x4_q8_0
#define ggml_gemv_q4_0_4x8_q8_0_generic ggml_gemv_q4_0_4x8_q8_0
#define ggml_gemv_q4_0_8x8_q8_0_generic ggml_gemv_q4_0_8x8_q8_0
#define ggml_gemv_q4_K_8x4_q8_K_generic ggml_gemv_q4_K_8x4_q8_K
#define ggml_gemv_q4_K_8x8_q8_K_generic ggml_gemv_q4_K_8x8_q8_K
#define ggml_gemv_q2_K_8x8_q8_K_generic ggml_gemv_q2_K_8x8_q8_K
#define ggml_gemv_iq4_nl_4x4_q8_0_generic ggml_gemv_iq4_nl_4x4_q8_0
@@ -205,6 +226,7 @@
#define ggml_gemm_q4_0_4x4_q8_0_generic ggml_gemm_q4_0_4x4_q8_0
#define ggml_gemm_q4_0_4x8_q8_0_generic ggml_gemm_q4_0_4x8_q8_0
#define ggml_gemm_q4_0_8x8_q8_0_generic ggml_gemm_q4_0_8x8_q8_0
#define ggml_gemm_q4_K_8x4_q8_K_generic ggml_gemm_q4_K_8x4_q8_K
#define ggml_gemm_q4_K_8x8_q8_K_generic ggml_gemm_q4_K_8x8_q8_K
#define ggml_gemm_q2_K_8x8_q8_K_generic ggml_gemm_q2_K_8x8_q8_K
#define ggml_gemm_iq4_nl_4x4_q8_0_generic ggml_gemm_iq4_nl_4x4_q8_0

View File

@@ -8,6 +8,10 @@
#include <sys/sysctl.h>
#endif
#if !defined(HWCAP2_SVE2)
#define HWCAP2_SVE2 (1 << 1)
#endif
#if !defined(HWCAP2_I8MM)
#define HWCAP2_I8MM (1 << 13)
#endif

View File

@@ -497,6 +497,139 @@ void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
ggml_gemv_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int col_groups = ncols_interleaved / 4; // 0123 and 4567
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 1x8 tile = 2 x 4
float32x4_t acc_f32[col_groups];
const block_q8_K * GGML_RESTRICT q8_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < col_groups; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
float32x4_t q4_d_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d)); // d0 d1 d2 d3
float32x4_t q4_d_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4)); // d4 d5 d6 d7
float32x4_t q8_d = vdupq_n_f32(q8_ptr[b].d);
float32x4_t sb_scale_0123 = vmulq_f32(q4_d_0, q8_d);
float32x4_t sb_scale_4567 = vmulq_f32(q4_d_1, q8_d);
float32x4_t q4_dmin_0 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin)); // dmin 0..3
float32x4_t q4_dmin_1 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4)); // dmin 4..7
float32x4_t sb_min_0123 = vmulq_f32(q4_dmin_0, q8_d);
float32x4_t sb_min_4567 = vmulq_f32(q4_dmin_1, q8_d);
// interleaved bias_acc: [0]->r0 0123, [1]->r0 4567
int32x4_t bias_acc[2] = { vdupq_n_s32(0), vdupq_n_s32(0) };
int32x4_t acc_lo[col_groups];
int32x4_t acc_hi[col_groups];
// Each bsum is 16 elements, pairwise add leaves us with the 8 bsums of the entire block
const int16x8_t bsums = vpaddq_s16(vld1q_s16(q8_ptr[b].bsums), vld1q_s16(q8_ptr[b].bsums + 8));
int16_t bsums_arr[8];
vst1q_s16(bsums_arr, bsums);
for (int sb = 0; sb < QK_K / 64; sb++) {
for (int i = 0; i < col_groups; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_mins[2];
int16x8_t q4sb_scales[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
int8x16_t q8_qs[64 / 16];
for (int i = 0; i < 64 / 16; i++) {
q8_qs[i] = vld1q_s8(q8_ptr[b].qs + sb * 64 + i * 16);
}
for (int c = 0; c < col_groups; c++) {
uint8x16_t q4_cols[8];
for (int i = 0; i < 8; i++) {
q4_cols[i] = vld1q_u8(q4_ptr[b].qs + sb * QK_K + i * 32 + 16 * c);
}
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[0], m4b)), q8_qs[0], 0);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[1], m4b)), q8_qs[0], 1);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[2], m4b)), q8_qs[0], 2);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[3], m4b)), q8_qs[0], 3);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[4], m4b)), q8_qs[1], 0);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[5], m4b)), q8_qs[1], 1);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[6], m4b)), q8_qs[1], 2);
acc_lo[c] = vdotq_laneq_s32(acc_lo[c], vreinterpretq_s8_u8(vandq_u8(q4_cols[7], m4b)), q8_qs[1], 3);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[0], 4)), q8_qs[2], 0);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[1], 4)), q8_qs[2], 1);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[2], 4)), q8_qs[2], 2);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[3], 4)), q8_qs[2], 3);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[4], 4)), q8_qs[3], 0);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[5], 4)), q8_qs[3], 1);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[6], 4)), q8_qs[3], 2);
acc_hi[c] = vdotq_laneq_s32(acc_hi[c], vreinterpretq_s8_u8(vshrq_n_u8(q4_cols[7], 4)), q8_qs[3], 3);
}
// Scales
// row c0123 blk0 and blk1
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
const float32x4_t sumf_0123 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[0]),
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[0])));
acc_f32[0] = vfmaq_f32(acc_f32[0], sb_scale_0123, sumf_0123);
// row c4567 blk0 and blk1
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
const float32x4_t sumf_4567 = vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[1]),
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[1])));
acc_f32[1] = vfmaq_f32(acc_f32[1], sb_scale_4567, sumf_4567);
// Bias Correction
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[2 * sb + 0]);
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[2 * sb + 1]);
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[0] = vmlal_s16(bias_acc[0], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[1] = vmlal_s16(bias_acc[1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
} // for sb
acc_f32[0] = vmlsq_f32(acc_f32[0], vcvtq_f32_s32(bias_acc[0]), sb_min_0123);
acc_f32[1] = vmlsq_f32(acc_f32[1], vcvtq_f32_s32(bias_acc[1]), sb_min_4567);
} // for b
int base = x * ncols_interleaved;
vst1q_f32(s + base, acc_f32[0]);
vst1q_f32(s + base + 4, acc_f32[1]);
} // for x
return;
#endif // #if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemv_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemv_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,
@@ -511,14 +644,13 @@ void ggml_gemv_q4_K_8x8_q8_K(int n,
constexpr int blocklen = 8;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON)
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int col_pairs = ncols_interleaved / 2;
const uint8x16_t m4b = vdupq_n_u8(0x0f);
@@ -615,7 +747,6 @@ void ggml_gemv_q4_K_8x8_q8_K(int n,
float32x4_t sb_scale = p == 0 ? sb_scale_0 : sb_scale_1;
// 0123 or 4567
// TODO: Single superblock mul at the end of the superblock
float32x4_t sumf_0 =
vcvtq_f32_s32(vmulq_s32(vmovl_s16(group_scales_lo), vpaddq_s32(acc_lo[p], acc_lo[p + 1])));
acc_f32[i] = vfmaq_f32(acc_f32[i], sb_scale, sumf_0);
@@ -649,7 +780,7 @@ void ggml_gemv_q4_K_8x8_q8_K(int n,
vst1q_f32(s + base + 4, acc_f32[1]);
} // for x
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON)
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemv_q4_K_8x8_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
@@ -2069,6 +2200,206 @@ void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
ggml_gemm_iq4_nl_4x4_q8_0_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
constexpr int qk = QK_K;
const int nb = n / qk;
constexpr int ncols_interleaved = 8;
constexpr int blocklen = 4;
assert(n % qk == 0);
assert(nr % 4 == 0);
assert(nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
constexpr int q8_k_blocklen = 4;
constexpr int acc_size = 2 * 4; // 2 row pairs × 4 col pairs
const uint8x16_t m4b = vdupq_n_u8(0x0f);
// 8 accumulators: 2 row pairs × 4 col pairs
float32x4_t acc_f32[acc_size];
for (int y = 0; y < nr / q8_k_blocklen; y++) {
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int i = 0; i < acc_size; i++) {
acc_f32[i] = vdupq_n_f32(0);
}
for (int b = 0; b < nb; b++) {
// d4 0 1 2 3, 4 5 6 7
float32x4_t q4_d_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d));
float32x4_t q4_d_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].d + 4));
// d8 0 1 2 3
float32x4_t q8_d_0123 = vld1q_f32(q8_ptr[b].d);
// mins
float32x4_t q4_dmin_0123 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin));
float32x4_t q4_dmin_4567 = vcvt_f32_f16(vld1_f16((const __fp16 *) q4_ptr[b].dmin + 4));
// Precomputation of scales and mins
float32x4_t sbd_scale_0123[q8_k_blocklen];
float32x4_t sbd_scale_4567[q8_k_blocklen];
float32x4_t sbd_min_0123[q8_k_blocklen];
float32x4_t sbd_min_4567[q8_k_blocklen];
sbd_scale_0123[0] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 0);
sbd_scale_4567[0] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 0);
sbd_min_0123[0] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 0);
sbd_min_4567[0] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 0);
sbd_scale_0123[1] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 1);
sbd_scale_4567[1] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 1);
sbd_min_0123[1] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 1);
sbd_min_4567[1] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 1);
sbd_scale_0123[2] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 2);
sbd_scale_4567[2] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 2);
sbd_min_0123[2] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 2);
sbd_min_4567[2] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 2);
sbd_scale_0123[3] = vmulq_laneq_f32(q4_d_0123, q8_d_0123, 3);
sbd_scale_4567[3] = vmulq_laneq_f32(q4_d_4567, q8_d_0123, 3);
sbd_min_0123[3] = vmulq_laneq_f32(q4_dmin_0123, q8_d_0123, 3);
sbd_min_4567[3] = vmulq_laneq_f32(q4_dmin_4567, q8_d_0123, 3);
// Precomputation of bsums, each vpaddq calcs all the bsums for each row
const int16x8_t bsums[q8_k_blocklen] = {
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
};
int16_t bsums_arr[QK_K / 64][8];
for (int q8_row = 0; q8_row < 4; q8_row++) {
vst1q_s16(bsums_arr[q8_row], bsums[q8_row]);
}
// interleaved bias_acc: [0]->r0 0123, [1]->r1 0123, .., [4]->r0 4567, [5]->r1 4567 ..
int32x4_t bias_acc[acc_size];
for (int i = 0; i < acc_size; i++) {
bias_acc[i] = vdupq_n_s32(0);
}
for (int sb = 0; sb < QK_K / 64; sb++) {
// Int accumulators for qs vecdot (4 row x 2 col quartets)
int32x4_t acc_lo[acc_size];
int32x4_t acc_hi[acc_size];
for (int i = 0; i < acc_size; i++) {
acc_lo[i] = vdupq_n_s32(0);
acc_hi[i] = vdupq_n_s32(0);
}
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
int16x8_t q4sb_scales[2];
int16x8_t q4sb_mins[2];
for (int i = 0; i < 2; i++) {
int8_t aux_q4sb[8];
const int offset = sb * 24 + i * 12;
decode_q4_Kx8_scales_mins(&q4_ptr[b].scales[offset], &q4sb_mins[i], aux_q4sb);
q4sb_scales[i] = vmovl_s8(vld1_s8(aux_q4sb));
}
constexpr int reads_per_sb = 8; // 8 * 16 bytes each => 32 qs * 4 rows
for (int k = 0; k < reads_per_sb; k++) {
const int8x16_t q8_blk0 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k);
const int8x16_t q8_blk1 = vld1q_s8(q8_ptr[b].qs + sb * 256 + 16 * k + 128);
// 0..3 & 32..35
const uint8x16_t q4_0123 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k);
const uint8x16_t q4_4567 = vld1q_u8(q4_ptr[b].qs + sb * QK_K + 32 * k + 16);
const int8x16_t q4_0123_lo = vreinterpretq_s8_u8(vandq_u8(q4_0123, m4b));
const int8x16_t q4_0123_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_0123, 4));
acc_lo[0] = vdotq_laneq_s32(acc_lo[0], q4_0123_lo, q8_blk0, 0); // 0..3 r0 c0123
acc_lo[1] = vdotq_laneq_s32(acc_lo[1], q4_0123_lo, q8_blk0, 1); // 0..3 r1 c0123
acc_lo[2] = vdotq_laneq_s32(acc_lo[2], q4_0123_lo, q8_blk0, 2); // 0..3 r2 c0123
acc_lo[3] = vdotq_laneq_s32(acc_lo[3], q4_0123_lo, q8_blk0, 3); // 0..3 r3 c0123
acc_hi[0] = vdotq_laneq_s32(acc_hi[0], q4_0123_hi, q8_blk1, 0); // 32..35 r0 c0123
acc_hi[1] = vdotq_laneq_s32(acc_hi[1], q4_0123_hi, q8_blk1, 1); // 32..35 r1 c0123
acc_hi[2] = vdotq_laneq_s32(acc_hi[2], q4_0123_hi, q8_blk1, 2); // 32..35 r2 c0123
acc_hi[3] = vdotq_laneq_s32(acc_hi[3], q4_0123_hi, q8_blk1, 3); // 32..35 r3 c0123
const int8x16_t q4_4567_lo = vreinterpretq_s8_u8(vandq_u8(q4_4567, m4b));
const int8x16_t q4_4567_hi = vreinterpretq_s8_u8(vshrq_n_u8(q4_4567, 4));
acc_lo[4] = vdotq_laneq_s32(acc_lo[4], q4_4567_lo, q8_blk0, 0); // 0..3 r0 c4567
acc_lo[5] = vdotq_laneq_s32(acc_lo[5], q4_4567_lo, q8_blk0, 1); // 0..3 r1 c4567
acc_lo[6] = vdotq_laneq_s32(acc_lo[6], q4_4567_lo, q8_blk0, 2); // 0..3 r2 c4567
acc_lo[7] = vdotq_laneq_s32(acc_lo[7], q4_4567_lo, q8_blk0, 3); // 0..3 r3 c4567
acc_hi[4] = vdotq_laneq_s32(acc_hi[4], q4_4567_hi, q8_blk1, 0); // 32..35 r0 c4567
acc_hi[5] = vdotq_laneq_s32(acc_hi[5], q4_4567_hi, q8_blk1, 1); // 32..35 r1 c4567
acc_hi[6] = vdotq_laneq_s32(acc_hi[6], q4_4567_hi, q8_blk1, 2); // 32..35 r2 c4567
acc_hi[7] = vdotq_laneq_s32(acc_hi[7], q4_4567_hi, q8_blk1, 3); // 32..35 r3 c4567
}
// Scale and bias application
// acc is stored interleaved to match output layout
const int16x4_t sc_0123_lo = vget_low_s16(q4sb_scales[0]);
const int16x4_t sc_4567_lo = vget_high_s16(q4sb_scales[0]);
const int16x4_t sc_0123_hi = vget_low_s16(q4sb_scales[1]);
const int16x4_t sc_4567_hi = vget_high_s16(q4sb_scales[1]);
for (int row = 0; row < q8_k_blocklen; row++) {
// Bias correction
// row c0123 blk0 and blk1
const float32x4_t sumf_0123 =
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_0123_lo), acc_lo[row]),
vmulq_s32(vmovl_s16(sc_0123_hi), acc_hi[row])));
acc_f32[2 * row] = vfmaq_f32(acc_f32[2 * row], sbd_scale_0123[row], sumf_0123);
// row c4567 blk0 and blk1
const float32x4_t sumf_4567 =
vcvtq_f32_s32(vaddq_s32(vmulq_s32(vmovl_s16(sc_4567_lo), acc_lo[row + 4]),
vmulq_s32(vmovl_s16(sc_4567_hi), acc_hi[row + 4])));
acc_f32[2 * row + 1] = vfmaq_f32(acc_f32[2 * row + 1], sbd_scale_4567[row], sumf_4567);
// Bias
const int16x4_t bsums_vec_lo = vdup_n_s16(bsums_arr[sb][row * 2]);
const int16x4_t bsums_vec_hi = vdup_n_s16(bsums_arr[sb][row * 2 + 1]);
// row c0123 blk0 and blk1
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_lo, vget_low_s16(q4sb_mins[0]));
bias_acc[2 * row] = vmlal_s16(bias_acc[2 * row], bsums_vec_hi, vget_low_s16(q4sb_mins[1]));
// row c4567 blk0 and blk1
bias_acc[2 * row + 1] =
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_lo, vget_high_s16(q4sb_mins[0]));
bias_acc[2 * row + 1] =
vmlal_s16(bias_acc[2 * row + 1], bsums_vec_hi, vget_high_s16(q4sb_mins[1]));
}
} // for sb
for (int row = 0; row < q8_k_blocklen; row++) {
acc_f32[2 * row] = vmlsq_f32(acc_f32[2 * row], vcvtq_f32_s32(bias_acc[2 * row]), sbd_min_0123[row]);
acc_f32[2 * row + 1] =
vmlsq_f32(acc_f32[2 * row + 1], vcvtq_f32_s32(bias_acc[2 * row + 1]), sbd_min_4567[row]);
}
} // for b
for (int i = 0; i < q8_k_blocklen; i++) {
int row = y * q8_k_blocklen + i;
for (int j = 0; j < 2; j++) {
int col = x * ncols_interleaved + j * 4;
int offset = row * bs + col;
vst1q_f32(s + offset, acc_f32[2 * i + j]);
}
}
} // for x
} // for y
return;
#endif // defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_DOTPROD)
ggml_gemm_q4_K_8x4_q8_K_generic(n, s, bs, vx, vy, nr, nc);
}
void ggml_gemm_q4_K_8x8_q8_K(int n,
float * GGML_RESTRICT s,
size_t bs,

View File

@@ -1,20 +1,23 @@
#include "ggml-backend-impl.h"
#if defined(__riscv) && __riscv_xlen == 64
#include <sys/auxv.h>
//https://github.com/torvalds/linux/blob/master/arch/riscv/include/uapi/asm/hwcap.h#L24
#ifndef COMPAT_HWCAP_ISA_V
#define COMPAT_HWCAP_ISA_V (1 << ('V' - 'A'))
#endif
#include <asm/hwprobe.h>
#include <asm/unistd.h>
#include <unistd.h>
struct riscv64_features {
bool has_rvv = false;
riscv64_features() {
uint32_t hwcap = getauxval(AT_HWCAP);
struct riscv_hwprobe probe;
probe.key = RISCV_HWPROBE_KEY_IMA_EXT_0;
probe.value = 0;
has_rvv = !!(hwcap & COMPAT_HWCAP_ISA_V);
int ret = syscall(__NR_riscv_hwprobe, &probe, 1, 0, NULL, 0);
if (0 == ret) {
has_rvv = !!(probe.value & RISCV_HWPROBE_IMA_V);
}
}
};

View File

@@ -683,22 +683,14 @@ bool ggml_is_numa(void) {
}
#if defined(__ARM_ARCH)
#if defined(__linux__) && defined(__aarch64__)
#include <sys/auxv.h>
#endif
static void ggml_init_arm_arch_features(void) {
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE)
#if defined(__linux__)
ggml_arm_arch_features.sve_cnt = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
#else
// TODO: add support of SVE for non-linux systems
#error "TODO: SVE is not supported on this platform. To use SVE, sve_cnt needs to be initialized here."
#endif
#endif
#include <arm_sve.h>
static void ggml_init_arm_arch_features(void) {
ggml_arm_arch_features.sve_cnt = svcntb();
}
#else
static void ggml_init_arm_arch_features(void) {}
#endif
#endif // __ARM_ARCH
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
@@ -2706,6 +2698,11 @@ struct ggml_cplan ggml_graph_plan(
n_threads = threadpool ? threadpool->n_threads_max : GGML_DEFAULT_N_THREADS;
}
#if defined(__EMSCRIPTEN__) && !defined(__EMSCRIPTEN_PTHREADS__)
// Emscripten without pthreads support can only use a single thread
n_threads = 1;
#endif
size_t work_size = 0;
struct ggml_cplan cplan;

View File

@@ -0,0 +1,333 @@
#pragma once
typedef vector unsigned char vec_t;
typedef __vector_quad acc_t;
template <typename TA>
class tinyBLAS_Q0_PPC {
public:
tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth);
void matmul(int64_t m, int64_t n);
void matmul_tiled_q0(int64_t m, int64_t n, int64_t mc, int64_t nc, int64_t kc) {
vec_t A_pack[mc*kc*2];
vec_t B_pack[nc*kc*2];
int comparray[mc*kc];
constexpr bool is_Ablock_q4 = std::is_same_v<TA, block_q4_0>;
int64_t ytiles = m / mc;
int64_t xtiles = n / nc;
int64_t tiles = xtiles * ytiles;
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
if (end > tiles) {
end = tiles;
}
for (int64_t job = start; job < end; ++job) {
int64_t ii = (job / xtiles) * mc;
int64_t jj = (job % xtiles) * nc;
for (int64_t kk = 0; kk < k; kk += kc) {
if constexpr(is_Ablock_q4) {
packNormalInt4_large(A + ii*lda + kk, lda, mc, 4, (int8_t*)A_pack, comparray);
} else {
packNormal_large<int8_t, vector signed char>(A + ii*lda + kk, lda, mc, 8, (int8_t*)A_pack, false, comparray);
}
packNormal_large<uint8_t, vector unsigned char>(B + jj*ldb + kk, ldb, nc, 8, (uint8_t*)B_pack, true);
KERNEL_Q0(ii, jj, mc, nc, kc, kk, A_pack, B_pack, comparray);
}
}
}
private:
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
}
}
}
inline void add_save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
float * c_ptr = (float *)(C+ii+((jj+J)*ldc)+I);
*c_ptr += *((float*)&fin_res[idx+I]+J);
}
}
}
template<typename ArrayType>
inline void compute(acc_t* ACC, int c_idx, int s_idx, ArrayType& comparray, vector float* vs, vector float* fin_res) {
vector signed int vec_C[4];
vector float CA[4] = {0};
vector float res[4] = {0};
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int i = 0; i < 4; i++) {
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
}
}
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
const vector signed char v8 = vec_splats((signed char)0x8);
vector signed int vsum = {0};
vector signed int vsum2 = {0};
c[0] = vec_and(c[1], lowMask);
c[1] = vec_sr(c[1], v4);
c[0] = vec_sub(c[0], v8);
c[1] = vec_sub(c[1], v8);
vsum = vec_sum4s(c[0], vsum);
vsum2 = vec_sum4s(c[1], vsum2);
vsum = vec_add(vsum, vsum2);
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template <typename V1, typename V2>
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
V2 t1, t2, t3, t4, t5, t6, t7, t8;
vector unsigned char xor_vector;
uint8_t flip_vec = 0x80;
xor_vector = vec_splats(flip_vec);
t1 = vec_perm(s1, s2, swiz1);
t2 = vec_perm(s1, s2, swiz2);
t3 = vec_perm(s3, s4, swiz1);
t4 = vec_perm(s3, s4, swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else {
assert(false && "RN/RM values not supported");
}
}
template<int size>
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray);
template<typename VA, typename VB>
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip);
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n);
void KERNEL_4x8(int64_t ii, int64_t jj);
void KERNEL_8x4(int64_t ii, int64_t jj);
void KERNEL_8x8(int64_t ii, int64_t jj);
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN);
template <int RM, int RN>
void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n);
void compute_scale(int64_t ii, int64_t jj, int blk, vector float* vs){
for (int I = 0; I<8; I++) {
float a_scale = unhalf((A+((ii+I)*lda)+blk)->d);
for (int J = 0; J<4; J++) {
*((float*)&vs[I]+J) = (a_scale * unhalf((B+((jj+J)*ldb)+blk)->d));
*((float*)&vs[I+8]+J) = (a_scale * unhalf((B+((jj+J+4)*ldb)+blk)->d));
}
}
}
inline void process_q8_elements(const int8_t *qs, int *ca) {
vector signed char c1 = vec_xl(0, qs);
vector signed char c2 = vec_xl(16, qs);
vector signed int vsum1 = {0};
vector signed int vsum2 = {0};
vsum1 = vec_sum4s(c1, vsum1);
vsum2 = vec_sum4s(c2, vsum2);
vector signed int vsum = vec_add(vsum1, vsum2);
*ca = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template<typename VA, typename VB>
void packNormal_large(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip, int* comparray=nullptr) {
int64_t i, j;
block_q8_0 *aoffset = NULL;
VA *vecOffset = NULL;
block_q8_0* aoffsets[8];
__vector_pair arr[8];
VB c[8][2] = {0};
VB c1[8] = {0}; VB c2[8] = {0};
aoffset = const_cast<block_q8_0*>(a);
vecOffset = vec;
j = (rows >> 3);
int index = 0;
if (j > 0) {
do {
for (int it = 0; it < 8; it++)
aoffsets[it] = aoffset + it*lda;
aoffset += 8 * lda;
for (int blk = 0; blk < kc; blk++) {
for (int it = 0; it < 8; it++) {
arr[it] = __builtin_vsx_lxvp(0, (__vector_pair*)(aoffsets[it]+blk)->qs);
__builtin_vsx_disassemble_pair(c[it], &arr[it]);
c1[it] = c[it][0];
c2[it] = c[it][1];
if (comparray){
process_q8_elements((aoffsets[it]+ blk)->qs, &comparray[index + 8*blk + it]);
}
}
vector_permute_store<VA, VB>(c1[0], c1[1], c1[2], c1[3], vecOffset, flip);
vector_permute_store<VA, VB>(c2[0], c2[1], c2[2], c2[3], vecOffset+64, flip);
vector_permute_store<VA, VB>(c1[4], c1[5], c1[6], c1[7], vecOffset+128, flip);
vector_permute_store<VA, VB>(c2[4], c2[5], c2[6], c2[7], vecOffset+192, flip);
vecOffset += 256;
}
j--;
index += 8*kc;
} while(j > 0);
}
}
void packNormalInt4_large(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, int*comparray) {
int64_t i, j;
TA *aoffset = NULL;
int8_t *vecOffset = NULL;
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
vector signed char c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0};
vector signed char c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0};
aoffset = const_cast<TA*>(a);
vecOffset = vec;
int index = 0;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
for (int blk = 0; blk < kc; blk++) {
c1[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset1+blk)->qs));
c2[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset2+blk)->qs));
c3[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset3+blk)->qs));
c4[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset4+blk)->qs));
c5[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset5+blk)->qs));
c6[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset6+blk)->qs));
c7[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset7+blk)->qs));
c8[1] = reinterpret_cast<vector signed char>(vec_xl(0, (aoffset8+blk)->qs));
process_q4_elements(c1, &comparray[index + 8*blk+0]);
process_q4_elements(c2, &comparray[index + 8*blk+1]);
process_q4_elements(c3, &comparray[index + 8*blk+2]);
process_q4_elements(c4, &comparray[index + 8*blk+3]);
process_q4_elements(c5, &comparray[index + 8*blk+4]);
process_q4_elements(c6, &comparray[index + 8*blk+5]);
process_q4_elements(c7, &comparray[index + 8*blk+6]);
process_q4_elements(c8, &comparray[index + 8*blk+7]);
vector_permute_store<int8_t, vector signed char>(c1[0], c2[0], c3[0], c4[0], vecOffset, false);
vector_permute_store<int8_t, vector signed char>(c1[1], c2[1], c3[1], c4[1], vecOffset+64, false);
vector_permute_store<int8_t, vector signed char>(c5[0], c6[0], c7[0], c8[0], vecOffset+128, false);
vector_permute_store<int8_t, vector signed char>(c5[1], c6[1], c7[1], c8[1], vecOffset+192, false);
vecOffset += 256;
}
j--;
index += 8*kc;
} while (j > 0);
}
}
void KERNEL_Q0(int64_t ii, int64_t jj, int64_t mc, int64_t nc, int64_t kc, int64_t l, vec_t *vec_A, vec_t *vec_B, int *comparray) {
acc_t acc[8];
for (int i = 0; i < mc ; i += 8) {
for (int j = 0; j < nc; j += 8) {
vector float fin_res[16] = {0};
vector float vs[16] = {0};
for (int64_t kk = 0; kk < kc; kk+=2) {
for (int x = 0; x < 8; x++) {
__builtin_mma_xxsetaccz(&acc[x]);
}
int A_block_idx = (i/8)*(16*kc) + kk*16;
int B_block_idx = (j/8)*(16*kc)+ kk*16;
vec_t *A_block = &vec_A[A_block_idx];
vec_t *B_block = &vec_B[B_block_idx];
for (int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc[0], A_block[x], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[1], A_block[x + 8], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[2], A_block[x], B_block[x+8]);
__builtin_mma_xvi8ger4pp(&acc[3], A_block[x+8], B_block[x+8]);
}
compute_scale(ii+i, jj+j, l+kk, vs);
int c_index = (i/8)*(8*kc)+ kk*8;
int* c_block = &comparray[c_index];
compute(&acc[0], 0, 0, c_block, vs, fin_res);
compute(&acc[1], 4, 4, c_block, vs, fin_res);
compute(&acc[2], 0, 8, c_block, vs, fin_res);
compute(&acc[3], 4, 12, c_block, vs, fin_res);
A_block_idx = (i/8)*(16*kc) + (kk+1)*16;
B_block_idx = (j/8)*(16*kc)+ (kk+1)*16;
A_block = &vec_A[A_block_idx];
B_block = &vec_B[B_block_idx];
for (int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc[4], A_block[x], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[5], A_block[x + 8], B_block[x]);
__builtin_mma_xvi8ger4pp(&acc[6], A_block[x], B_block[x+8]);
__builtin_mma_xvi8ger4pp(&acc[7], A_block[x+8], B_block[x+8]);
}
compute_scale(ii+i, jj+j, l+kk+1, vs);
c_index = (i/8)*(8*kc)+ (kk+1)*8;
c_block = &comparray[c_index];
compute(&acc[4], 0, 0, c_block, vs, fin_res);
compute(&acc[5], 4, 4, c_block, vs, fin_res);
compute(&acc[6], 0, 8, c_block, vs, fin_res);
compute(&acc[7], 4, 12, c_block, vs, fin_res);
}
if (l == 0) {
save_res(ii+i, jj+j, 0, fin_res);
save_res(ii+i+4, jj+j, 4, fin_res);
save_res(ii+i, jj+j+4, 8, fin_res);
save_res(ii+i+4, jj+j+4, 12, fin_res);
} else {
add_save_res(ii+i, jj+j, 0, fin_res);
add_save_res(ii+i+4, jj+j, 4, fin_res);
add_save_res(ii+i, jj+j+4, 8, fin_res);
add_save_res(ii+i+4, jj+j+4, 12, fin_res);
}
}
}
}
const TA *const A;
const block_q8_0 *const B;
float *C;
const int64_t k;
int64_t kc;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};

View File

@@ -117,8 +117,7 @@ inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vec_mul(x, y); }
#endif
#if defined(__MMA__)
typedef vector unsigned char vec_t;
typedef __vector_quad acc_t;
#include "sgemm-ppc.h"
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// VECTORIZED FUSED MULTIPLY ADD
@@ -1573,95 +1572,35 @@ class tinyBLAS_BF16_PPC {
const int nth;
};
template <typename TA>
class tinyBLAS_Q0_PPC {
public:
tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth)
template <typename TA>
tinyBLAS_Q0_PPC<TA>::tinyBLAS_Q0_PPC(int64_t k,
const TA *A, int64_t lda,
const block_q8_0 *B, int64_t ldb,
float *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
kc = 64;
}
void matmul(int64_t m, int64_t n) {
mnpack(0, m, 0, n);
}
private:
inline void save_res(int ii, int jj, int idx, vector float* fin_res, int RM=4, int RN=4) {
for (int I = 0; I < RM; I++) {
for (int J = 0; J < RN; J++) {
*((float*)(C+ii+((jj+J)*ldc)+I)) = *((float*)&fin_res[idx+I]+J);
}
}
}
template<int size>
inline void compute(acc_t* ACC, int c_idx, int s_idx, std::array<int, size>& comparray, vector float* vs, vector float* fin_res) {
vector signed int vec_C[4];
vector float CA[4] = {0};
vector float res[4] = {0};
__builtin_mma_disassemble_acc(vec_C, ACC);
for (int i = 0; i < 4; i++) {
CA[i] = vec_splats((float)(((double)comparray[c_idx+i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
fin_res[s_idx+i] = vec_madd(res[i], vs[s_idx+i], fin_res[s_idx+i]);
}
}
/* This function processes quantized data from block_q4_0 elements.
* First the we try to extract the two int4 values stored in single int8_t into two signed int8.
* And then we subtract each of the resultant element with 8, to convert signed int8 to unsigned int8.
* Also compute the rowsum which is required to compensate the above conversion. */
inline void process_q4_elements(vector signed char (&c)[2], int* ca) {
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
const vector signed char v8 = vec_splats((signed char)0x8);
vector signed int vsum = {0};
vector signed int vsum2 = {0};
c[0] = vec_and(c[1], lowMask);
c[1] = vec_sr(c[1], v4);
c[0] = vec_sub(c[0], v8);
c[1] = vec_sub(c[1], v8);
vsum = vec_sum4s(c[0], vsum);
vsum2 = vec_sum4s(c[1], vsum2);
vsum = vec_add(vsum, vsum2);
*(ca) = vsum[0] + vsum[1] + vsum[2] + vsum[3];
}
template <typename V1, typename V2>
inline void vector_permute_store(V2 &s1, V2 &s2, V2 &s3, V2 &s4, V1 *vecOffset, bool flip) {
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
V2 t1, t2, t3, t4, t5, t6, t7, t8;
vector unsigned char xor_vector;
uint8_t flip_vec = 0x80;
xor_vector = vec_splats(flip_vec);
t1 = vec_perm(s1, s2, swiz1);
t2 = vec_perm(s1, s2, swiz2);
t3 = vec_perm(s3, s4, swiz1);
t4 = vec_perm(s3, s4, swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::matmul(int64_t m, int64_t n) {
int mc = 64; int nc = 64;
if (n % 8 == 0 && n < nc) {
nc = n;
mc = 32 ;
kc = 32;
}
const bool is_aligned = ((m & (mc - 1)) == 0) & ((n & (nc - 1)) == 0) & ((k & (kc - 1)) == 0);
if (is_aligned) {
this->matmul_tiled_q0(m, n, mc, nc, kc);
} else {
mnpack(0, m, 0, n);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
}
template<int size>
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
template<typename TA>
template<int size>
void tinyBLAS_Q0_PPC<TA>::packNormalInt4(const TA* a, int64_t lda, int rows, int cols, int8_t* vec, std::array<int, size>& comparray) {
int64_t i, j;
TA *aoffset = NULL;
int8_t *vecOffset = NULL;
@@ -1781,8 +1720,10 @@ class tinyBLAS_Q0_PPC {
}
}
}
template<typename TA>
template<typename VA, typename VB>
void packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
void tinyBLAS_Q0_PPC<TA>::packNormal(const block_q8_0* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
int64_t i, j;
block_q8_0 *aoffset = NULL;
VA *vecOffset = NULL;
@@ -1822,7 +1763,6 @@ class tinyBLAS_Q0_PPC {
j--;
} while(j > 0);
}
if (rows & 4) {
aoffsets[0] = aoffset;
for (int it = 1; it < 4; it++ )
@@ -1878,7 +1818,8 @@ class tinyBLAS_Q0_PPC {
}
}
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int m_rem = MIN(m - m0, 16);
int n_rem = MIN(n - n0, 16);
@@ -1915,7 +1856,8 @@ class tinyBLAS_Q0_PPC {
}
void KERNEL_4x8(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[16] = {0};
acc_t acc_0, acc_1;
std::array<int, 4> comparray {};
@@ -1953,14 +1895,15 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<4>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<4>(&acc_1, 0, 4, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 0, 4, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii, jj+4, 4, fin_res);
}
void KERNEL_8x4(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[8] = {0};
acc_t acc_0, acc_1;
std::array<int, 8> comparray {};
@@ -1997,16 +1940,18 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 4, 4, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii+4, jj, 4, fin_res);
}
void KERNEL_8x8(int64_t ii, int64_t jj) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[16] = {0};
acc_t acc_0, acc_1, acc_2, acc_3;
acc_t acc_4, acc_5, acc_6, acc_7;
std::array<int, 8> comparray {};
vector float fin_res[16] = {0};
vector float vs[16] = {0};
@@ -2046,10 +1991,10 @@ class tinyBLAS_Q0_PPC {
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
compute<8>(&acc_2, 0, 8, comparray, vs, fin_res);
compute<8>(&acc_3, 4, 12, comparray, vs, fin_res);
compute(&acc_0, 0, 0, comparray, vs, fin_res);
compute(&acc_1, 4, 4, comparray, vs, fin_res);
compute(&acc_2, 0, 8, comparray, vs, fin_res);
compute(&acc_3, 4, 12, comparray, vs, fin_res);
}
save_res(ii, jj, 0, fin_res);
save_res(ii+4, jj, 4, fin_res);
@@ -2057,7 +2002,8 @@ class tinyBLAS_Q0_PPC {
save_res(ii+4, jj+4, 12, fin_res);
}
void gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
template<typename TA>
void tinyBLAS_Q0_PPC<TA>::gemm_small(int64_t m0, int64_t m, int64_t n0, int64_t n, int RM, int RN) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
@@ -2125,21 +2071,9 @@ class tinyBLAS_Q0_PPC {
}
}
template<int RM, int RN>
inline void kernel(int64_t ii, int64_t jj) {
if constexpr(RM == 4 && RN == 8) {
KERNEL_4x8(ii,jj);
} else if constexpr(RM == 8 && RN == 4) {
KERNEL_8x4(ii,jj);
} else if constexpr(RM == 8 && RN == 8) {
KERNEL_8x8(ii,jj);
} else {
assert(false && "RN/RM values not supported");
}
}
template<typename TA>
template <int RM, int RN>
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
NOINLINE void tinyBLAS_Q0_PPC<TA>::gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
int64_t ytiles = (m - m0) / RM;
int64_t xtiles = (n - n0) / RN;
int64_t tiles = xtiles * ytiles;
@@ -2151,20 +2085,12 @@ class tinyBLAS_Q0_PPC {
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
kernel<RM, RN>(ii, jj);
this->kernel<RM, RN>(ii, jj);
}
}
const TA *const A;
const block_q8_0 *const B;
float *C;
const int64_t k;
const int64_t lda;
const int64_t ldb;
const int64_t ldc;
const int ith;
const int nth;
};
template class tinyBLAS_Q0_PPC<block_q4_0>;
template class tinyBLAS_Q0_PPC<block_q8_0>;
class tinyBLAS_PPC {
public:

View File

@@ -6,6 +6,12 @@
#include <vecintrin.h>
#endif
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
#else
#define NOINLINE __attribute__((__noinline__))
#endif
#ifdef __cplusplus
extern "C" {
#endif

View File

@@ -6383,7 +6383,7 @@ static void ggml_compute_forward_im2col_3d_f16(
const int64_t iih = ioh*s1 + ikh*d1 - p1;
const int64_t iid = iod*s2 + ikd*d2 - p2;
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW || iid < 0 || iid >= ID) {
if (iid < 0 || iid >= ID || iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst_data[iic*KD_KH_KW + ikd * KH_KW + ikh*KW + ikw] = 0;
} else {
const float * const s = (const float *) ((const char *)src_data + iid*nb12 + iih*nb11 + iiw*nb10); // [ID, IH, IW]
@@ -7420,6 +7420,65 @@ static void ggml_compute_forward_upscale_f32(
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR && (mode_flags & GGML_SCALE_FLAG_ANTIALIAS)) {
// Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True)
// https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp
auto triangle_filter = [](float x) -> float {
return std::max(1.0f - fabsf(x), 0.0f);
};
// support and invscale, minimum 1 pixel for bilinear
const float support1 = std::max(1.0f, 1.0f / sf1);
const float invscale1 = 1.0f / support1;
const float support0 = std::max(1.0f, 1.0f / sf0);
const float invscale0 = 1.0f / support0;
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
const int64_t i02 = i2 / sf2;
for (int64_t i1 = 0; i1 < ne1; i1++) {
const float y = ((float) i1 + pixel_offset) / sf1;
for (int64_t i0 = 0; i0 < ne0; i0++) {
const float x = ((float) i0 + pixel_offset) / sf0;
// the range of source pixels that contribute
const int64_t x_min = std::max<int64_t>(x - support0 + pixel_offset, 0);
const int64_t x_max = std::min<int64_t>(x + support0 + pixel_offset, ne00);
const int64_t y_min = std::max<int64_t>(y - support1 + pixel_offset, 0);
const int64_t y_max = std::min<int64_t>(y + support1 + pixel_offset, ne01);
// bilinear filter with antialiasing
float val = 0.0f;
float total_weight = 0.0f;
for (int64_t sy = y_min; sy < y_max; sy++) {
const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1);
for (int64_t sx = x_min; sx < x_max; sx++) {
const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0);
const float weight = weight_x * weight_y;
if (weight <= 0.0f) {
continue;
}
const float pixel = *(const float *)((const char *)src0->data + sx*nb00 + sy*nb01 + i02*nb02 + i03*nb03);
val += pixel * weight;
total_weight += weight;
}
}
if (total_weight > 0.0f) {
val /= total_weight;
}
float * dst_ptr = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
*dst_ptr = val;
}
}
}
}
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
for (int64_t i3 = 0; i3 < ne3; i3++) {
const int64_t i03 = i3 / sf3;
@@ -9766,7 +9825,8 @@ static void ggml_compute_forward_solve_tri_f32(const struct ggml_compute_params
}
const float diag = A_batch[i00 * n + i00];
GGML_ASSERT(diag != 0.0f && "Zero diagonal in triangular matrix");
assert(diag != 0.0f && "Zero diagonal in triangular matrix");
X_batch[i00 * k + i01] = (B_batch[i00 * k + i01] - sum) / diag;
}
}

View File

@@ -124,6 +124,58 @@ void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GG
}
}
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
const int nb = k / QK_K;
block_q8_Kx4 * GGML_RESTRICT y = (block_q8_Kx4 *) vy;
// scalar
const int blck_size_interleave = 4;
float srcv[4][QK_K];
float iscale[4];
for (int i = 0; i < nb; i++) {
for (int row_iter = 0; row_iter < 4; row_iter++) {
float amax = 0.0f; // absolute max
float max = 0;
for (int j = 0; j < QK_K; j++) {
srcv[row_iter][j] = x[row_iter * k + i * QK_K + j];
// Update the maximum value of the corresponding super block
if(amax < fabsf(srcv[row_iter][j])) {
amax = fabsf(srcv[row_iter][j]);
max = srcv[row_iter][j];
}
}
iscale[row_iter] = amax ? -127.f/max : 0;
y[i].d[row_iter] = amax ? 1/iscale[row_iter] : 0;
}
for (int j = 0; j < QK_K / 4; j++) {
y[i].bsums[j] = 0;
}
// Quants values are interleaved in sequence of four bytes from corresponding super blocks
// Bsums values are interleaved in sequence of four bsums from each super block taken for interleaving
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
for (int j = 0; j < QK_K * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
int index = (((j & 15) >> 2) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
float x0 = srcv[src_id][src_offset] * iscale[src_id];
y[i].qs[j] = nearest_int(x0);
y[i].bsums[index] += y[i].qs[j];
}
}
}
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
@@ -192,6 +244,12 @@ template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTR
ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_K_4x4(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
@@ -333,6 +391,77 @@ void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
}
}
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 4;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(bs);
UNUSED(nr);
float sumf[8];
float sum_minf[8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
const block_q8_K * a_ptr = (const block_q8_K *) vy;
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int j = 0; j < ncols_interleaved; j++) {
sumf[j] = 0.0;
sum_minf[j] = 0.0;
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 64 + (k % 8) * blocklen + i + 32]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d;
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
for (int j = 0; j < ncols_interleaved; j++) {
sum_minf[j] += mins[j] * (a_ptr[l].bsums[sb * 2] + a_ptr[l].bsums[sb * 2 + 1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d;
}
}
}
for (int j = 0; j < ncols_interleaved; j++) {
s[x * ncols_interleaved + j] = sumf[j] - sum_minf[j];
}
}
}
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
@@ -727,6 +856,89 @@ void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs,
}
}
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
const int ncols_interleaved = 8;
const int blocklen = 4;
static const uint32_t kmask1 = 0x3f3f3f3f;
static const uint32_t kmask2 = 0x0f0f0f0f;
static const uint32_t kmask3 = 0x03030303;
assert (n % qk == 0);
assert (nr % 4 == 0);
assert (nc % ncols_interleaved == 0);
UNUSED(nb);
UNUSED(ncols_interleaved);
UNUSED(blocklen);
float sumf[4][8];
float sum_minf[4][8];
uint32_t utmp[32];
int sumi1;
int sumi2;
int sumi;
for (int y = 0; y < nr / 4; y++) {
const block_q8_Kx4 * a_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * b_ptr = (const block_q4_Kx8 *) vx + (x * nb);
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumf[m][j] = 0.0;
sum_minf[m][j] = 0.0;
}
}
for (int l = 0; l < nb; l++) {
for (int sb = 0; sb < 8; sb++) {
memcpy(utmp + sb * 4, b_ptr[l].scales + sb * 12, 12);
utmp[sb * 4 + 3] = ((utmp[sb * 4 + 2] >> 4) & kmask2) | (((utmp[sb * 4 + 1] >> 6) & kmask3) << 4);
const uint32_t uaux_0 = utmp[sb * 4 + 1] & kmask1;
utmp[sb * 4 + 1] = (utmp[sb * 4 + 2] & kmask2) | (((utmp[sb * 4 + 0] >> 6) & kmask3) << 4);
utmp[sb * 4 + 2] = uaux_0;
utmp[sb * 4 + 0] &= kmask1;
}
for (int k = 0; k < (qk / (2 * blocklen)); k++) {
uint8_t * scales_0 = (uint8_t *) utmp + (k / 8) * 32;
uint8_t * scales_1 = (uint8_t *) utmp + (k / 8) * 32 + 16;
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
sumi1 = 0;
sumi2 = 0;
sumi = 0;
for (int i = 0; i < blocklen; ++i) {
const int v0 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] & 0xF);
const int v1 = (int8_t) (b_ptr[l].qs[k * ncols_interleaved * blocklen + j * blocklen + i] >> 4);
sumi1 = (v0 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i]);
sumi2 = (v1 * a_ptr[l].qs[(k / 8) * 256 + (k % 8) * 4 * blocklen + m * blocklen + i + 128]);
sumi1 = sumi1 * scales_0[j];
sumi2 = sumi2 * scales_1[j];
sumi += sumi1 + sumi2;
}
sumf[m][j] += sumi * GGML_CPU_FP16_TO_FP32(b_ptr[l].d[j]) * a_ptr[l].d[m];
}
}
}
for (int sb = 0; sb < 8; sb++) {
uint8_t * mins = (uint8_t *) utmp + 8 + sb * 16;
for(int m = 0; m < 4; m++) {
const int16_t * bsums = a_ptr[l].bsums + (sb * 8) + (m * 4) - ((sb % 2) * 6);
for(int j = 0; j < ncols_interleaved; j++) {
sum_minf[m][j] += mins[j] * (bsums[0] + bsums[1]) * GGML_CPU_FP16_TO_FP32(b_ptr[l].dmin[j]) * a_ptr[l].d[m];
}
}
}
}
for (int m = 0; m < 4; m++) {
for (int j = 0; j < ncols_interleaved; j++) {
s[(y * 4 + m) * bs + x * ncols_interleaved + j] = sumf[m][j] - sum_minf[m][j];
}
}
}
}
}
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
const int qk = QK_K;
const int nb = n / qk;
@@ -1228,9 +1440,10 @@ static int repack_q4_0_to_q4_0_4_bl(struct ggml_tensor * t, int interleave_block
GGML_UNUSED(data_size);
}
static int repack_q4_K_to_q4_K_8_bl(struct ggml_tensor * t, int interleave_block, const void * GGML_RESTRICT data, size_t data_size) {
GGML_ASSERT(t->type == GGML_TYPE_Q4_K);
GGML_ASSERT(interleave_block == 8);
GGML_ASSERT(interleave_block == 8 || interleave_block == 4);
constexpr int nrows_interleaved = 8;
block_q4_Kx8 * dst = (block_q4_Kx8*)t->data;
@@ -1468,6 +1681,10 @@ template <> int repack<block_q4_K, 8, 8>(struct ggml_tensor * t, const void * da
return repack_q4_K_to_q4_K_8_bl(t, 8, data, data_size);
}
template <> int repack<block_q4_K, 4, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q4_K_to_q4_K_8_bl(t, 4, data, data_size);
}
template <> int repack<block_q2_K, 8, 8>(struct ggml_tensor * t, const void * data, size_t data_size) {
return repack_q2_K_to_q2_K_8_bl(t, 8, data, data_size);
}
@@ -1501,6 +1718,10 @@ template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t
ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
@@ -1529,6 +1750,10 @@ template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t
ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_K, 4, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_K_8x4_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
@@ -1731,12 +1956,13 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
nchunk0 = (nr0 + min_chunk_size - 1) / min_chunk_size;
}
if (nth == 1 || nchunk0 < nth || disable_chunking) {
int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
// Only increase nchunk0 to nth if it won't make chunks too small
if (nth == 1 || ((nchunk0 < nth || disable_chunking) && (nr0 + nth - 1) / nth >= min_chunk_size)) {
nchunk0 = nth;
dr0 = (nr0 + nchunk0 - 1) / nchunk0;
}
const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
// Ensure nchunk doesn't exceed the number of rows divided by minimum chunk size
// This prevents creating too many tiny chunks that could overlap after alignment
const int64_t max_nchunk = (nr0 + min_chunk_size - 1) / min_chunk_size;
@@ -1930,6 +2156,9 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
static const ggml::cpu::repack::tensor_traits<block_q4_0, 4, 4, GGML_TYPE_Q8_0> q4_0_4x4_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 4, GGML_TYPE_Q8_0> q4_0_4x8_q8_0;
static const ggml::cpu::repack::tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
// instance for Q4_K
static const ggml::cpu::repack::tensor_traits<block_q4_K, 4, 8, GGML_TYPE_Q8_K> q4_K_8x4_q8_K;
static const ggml::cpu::repack::tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for Q2
@@ -1966,6 +2195,11 @@ static const ggml::cpu::tensor_traits * ggml_repack_get_optimal_repack_type(cons
return &q4_K_8x8_q8_K;
}
}
if (ggml_cpu_has_neon() && ggml_cpu_has_dotprod()) {
if (cur->ne[1] % 8 == 0) {
return &q4_K_8x4_q8_K;
}
}
} else if (cur->type == GGML_TYPE_Q2_K) {
if (ggml_cpu_has_avx512()) {
if (cur->ne[1] % 8 == 0) {

View File

@@ -80,10 +80,12 @@ extern "C" {
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@@ -91,6 +93,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x4_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@@ -99,10 +102,12 @@ void ggml_gemm_iq4_nl_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const
// Native implementations
void ggml_quantize_mat_q8_0_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_0_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x4_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_quantize_mat_q8_K_4x8_generic(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k);
void ggml_gemv_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
@@ -110,6 +115,7 @@ void ggml_gemv_iq4_nl_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs
void ggml_gemm_q4_0_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x4_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q2_K_8x8_q8_K_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_iq4_nl_4x4_q8_0_generic(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);

View File

@@ -44,7 +44,7 @@ static void argsort_f32_i32_cuda_cub(ggml_cuda_pool & pool,
const dim3 offset_grid((nrows + block_size - 1) / block_size);
init_offsets<<<offset_grid, block_size, 0, stream>>>(d_offsets, ncols, nrows);
cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream);
CUDA_CHECK(cudaMemcpyAsync(temp_keys, x, ncols * nrows * sizeof(float), cudaMemcpyDeviceToDevice, stream));
size_t temp_storage_bytes = 0;

View File

@@ -21,10 +21,12 @@
#include "ggml-common.h"
#include <array>
#include <algorithm>
#include <cassert>
#include <cfloat>
#include <cstdio>
#include <string>
#include <unordered_map>
#include <vector>
#if defined(GGML_USE_HIP)
@@ -84,12 +86,12 @@
#define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
#define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
#define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
#define GGML_CUDA_CC_PH1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // MTT S5000
#define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
#define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_PH1)
#define GGML_CUDA_CC_IS_PH1(cc) (cc >= GGML_CUDA_CC_PH1)
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA) && CUDART_VERSION >= 11070
# define GGML_CUDA_USE_CUB
@@ -212,9 +214,9 @@ static const char * cu_get_error_str(CUresult err) {
#define GGML_USE_VMM
#endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
#if defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#define FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#endif // defined(GGML_USE_HIP) || defined(GGML_USE_MUSA) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
#if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
#define FAST_FP16_AVAILABLE
@@ -224,7 +226,7 @@ static const char * cu_get_error_str(CUresult err) {
#define AMD_MFMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(CDNA) && !defined(GGML_HIP_NO_MMQ_MFMA)
#if defined(GGML_USE_HIP) && defined(RDNA4)
#if defined(GGML_USE_HIP) && (defined(RDNA4) || defined(RDNA3))
#define AMD_WMMA_AVAILABLE
#endif // defined(GGML_USE_HIP) && defined(RDNA4)
@@ -250,12 +252,14 @@ static const char * cu_get_error_str(CUresult err) {
#endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && __MUSA_ARCH__ < 220)
static bool fp16_available(const int cc) {
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
}
static bool fast_fp16_available(const int cc) {
return GGML_CUDA_CC_IS_AMD(cc) ||
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610);
(GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && ggml_cuda_highest_compiled_arch(cc) != 610) ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && fp16_available(cc));
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
@@ -272,7 +276,9 @@ static bool fp16_mma_hardware_available(const int cc) {
}
static bool bf16_mma_hardware_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) || GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3;
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_AMPERE) ||
GGML_CUDA_CC_IS_CDNA(cc) || cc >= GGML_CUDA_CC_RDNA3 ||
(GGML_CUDA_CC_IS_MTHREADS(cc) && cc >= GGML_CUDA_CC_PH1);
}
static bool fp32_mma_hardware_available(const int cc) {
@@ -288,7 +294,7 @@ static bool amd_mfma_available(const int cc) {
}
static bool amd_wmma_available(const int cc) {
return GGML_CUDA_CC_IS_RDNA4(cc);
return (GGML_CUDA_CC_IS_RDNA4(cc) || GGML_CUDA_CC_IS_RDNA3(cc));
}
static bool volta_mma_available(const int cc) {
@@ -457,6 +463,53 @@ static __device__ __forceinline__ float warp_reduce_max(float x) {
return x;
}
template<typename T, int width = WARP_SIZE>
static __device__ __forceinline__ T warp_prefix_inclusive_sum(T x) {
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const T t = __shfl_up_sync(0xffffffff, x, offset, width);
if (lane_id >= offset) {
x += t;
}
}
return x;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ float2 warp_prefix_inclusive_sum(float2 a) {
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const float t_x = __shfl_up_sync(0xffffffff, a.x, offset, width);
const float t_y = __shfl_up_sync(0xffffffff, a.y, offset, width);
if (lane_id >= offset) {
a.x += t_x;
a.y += t_y;
}
}
return a;
}
template<int width = WARP_SIZE>
static __device__ __forceinline__ half2 warp_prefix_inclusive_sum(half2 a) {
#ifdef FP16_AVAILABLE
const int lane_id = threadIdx.x % width;
#pragma unroll
for (int offset = 1; offset < width; offset <<= 1) {
const half2 t = __shfl_up_sync(0xffffffff, a, offset, width);
if (lane_id >= offset) {
a = __hadd2(a, t);
}
}
return a;
#else
NO_DEVICE_CODE;
return a;
#endif // FP16_AVAILABLE
}
static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
#ifdef FP16_AVAILABLE
@@ -558,8 +611,12 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const float2 v
acc += v.y*u.y;
}
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#if defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
#define V_DOT2_F32_F16_AVAILABLE
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(__gfx906__) || defined(CDNA))
static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v, const half2 u) {
#ifdef V_DOT2_F32_F16_AVAILABLE
asm volatile("v_dot2_f32_f16 %0, %1, %2, %0" : "+v"(acc) : "v"(v), "v"(u));
#else
#ifdef FAST_FP16_AVAILABLE
@@ -571,7 +628,7 @@ static __device__ __forceinline__ void ggml_cuda_mad(float & acc, const half2 v,
acc += tmpv.x * tmpu.x;
acc += tmpv.y * tmpu.y;
#endif // FAST_FP16_AVAILABLE
#endif // defined(GGML_USE_HIP) && (defined(RDNA2) || defined(RDNA3) || defined(RDNA4) || defined(GCN5) || defined(CDNA))
#endif // V_DOT2_F32_F16_AVAILABLE
}
static __device__ __forceinline__ void ggml_cuda_mad(half2 & acc, const half2 v, const half2 u) {
@@ -972,6 +1029,157 @@ struct ggml_cuda_graph {
#endif
};
struct ggml_cuda_concurrent_event {
std::vector<cudaEvent_t> join_events;
cudaEvent_t fork_event = nullptr;
int n_streams = 0;
std::unordered_map<const ggml_tensor *, int> stream_mapping;
// Original order of nodes in this concurrent region (before interleaving)
// Used to restore grouping for fusion within streams
std::vector<const ggml_tensor *> original_order;
const ggml_tensor * join_node;
ggml_cuda_concurrent_event() = default;
ggml_cuda_concurrent_event(const ggml_cuda_concurrent_event &) = delete;
ggml_cuda_concurrent_event & operator=(const ggml_cuda_concurrent_event &) = delete;
explicit ggml_cuda_concurrent_event(int n_streams) : n_streams(n_streams) {
join_events.resize(n_streams);
for (size_t i = 0; i < join_events.size(); ++i) {
CUDA_CHECK(cudaEventCreateWithFlags(&join_events[i], cudaEventDisableTiming));
}
CUDA_CHECK(cudaEventCreateWithFlags(&fork_event, cudaEventDisableTiming));
}
ggml_cuda_concurrent_event(ggml_cuda_concurrent_event && other) noexcept
: join_events(std::move(other.join_events))
, fork_event(other.fork_event)
, n_streams(other.n_streams)
, stream_mapping(std::move(other.stream_mapping))
, original_order(std::move(other.original_order))
, join_node(other.join_node) {
other.fork_event = nullptr;
}
// 1. check if any branches write to overlapping memory ranges (except the join node)
// 2. check whether all srcs are either within the branch or outside the nodes covered by ggml_cuda_concurrent_event
// we assume all nodes have the same buffer
bool is_valid() const {
std::vector<std::vector<std::pair<int64_t, int64_t>>> write_ranges;
write_ranges.resize(n_streams);
// get join_node's memory range to exclude from overlap checking.
// multiple nodes can use join_node's buffer; we synchronize on the join node.
const ggml_tensor * join_t = join_node->view_src ? join_node->view_src : join_node;
const int64_t join_start = (int64_t) join_t->data;
const int64_t join_end = join_start + ggml_nbytes(join_t);
for (const auto & [tensor, stream] : stream_mapping) {
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
const int64_t t_start = (int64_t) t->data;
const int64_t t_end = t_start + ggml_nbytes(t);
// skip tensors that overlap with join_node's buffer.
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
continue;
}
// concurrent streams begin from 1
write_ranges[stream - 1].emplace_back(t_start, t_end);
}
for (int i = 0; i < n_streams; ++i) {
// sorts first by start then by end of write range
std::sort(write_ranges[i].begin(), write_ranges[i].end());
}
bool writes_overlap = false;
bool dependent_srcs = false;
for (const auto & [tensor, stream] : stream_mapping) {
const ggml_tensor * t = tensor->view_src ? tensor->view_src : tensor;
const int64_t t_start = (int64_t) t->data;
const int64_t t_end = t_start + ggml_nbytes(t);
// skip tensors that overlap with join_node's buffer
if ((t_start <= join_start && join_start < t_end) || (join_start <= t_start && t_start < join_end)) {
continue;
}
// check if this buffer's write data overlaps with another stream's
std::pair<int64_t, int64_t> data_range = std::make_pair(t_start, t_end);
for (int i = 0; i < n_streams; ++i) {
if (i == stream - 1) {
continue;
}
auto it = std::lower_bound(write_ranges[i].begin(), write_ranges[i].end(), data_range);
if (it != write_ranges[i].end()) {
const std::pair<int64_t, int64_t> & other = *it;
// std::lower_bound returns the first element where other >= data_range (lexicographically).
// This guarantees other.first >= data_range.first.
// Therefore, overlap occurs iff other.first < data_range.second
// (i.e., the other range starts before this range ends).
if (other.first < data_range.second) {
GGML_LOG_DEBUG("Writes overlap for %s", tensor->name);
writes_overlap = true;
break;
}
}
}
//check if all srcs are either in branch or don't have a branch
for (int i = 0; i < GGML_MAX_SRC; ++i) {
if (!tensor->src[i]) {
continue;
}
auto it = stream_mapping.find(tensor->src[i]);
if (it == stream_mapping.end()) {
continue;
}
if (it->second != stream) {
dependent_srcs = true;
break;
}
}
if (dependent_srcs || writes_overlap) {
break;
}
}
return !writes_overlap && !dependent_srcs;
}
~ggml_cuda_concurrent_event() {
if (fork_event != nullptr) {
CUDA_CHECK(cudaEventDestroy(fork_event));
}
for (cudaEvent_t e : join_events) {
if (e != nullptr) {
CUDA_CHECK(cudaEventDestroy(e));
}
}
}
};
struct ggml_cuda_stream_context {
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> concurrent_events;
void reset() {
concurrent_events.clear();
}
};
struct ggml_backend_cuda_context {
int device;
std::string name;
@@ -982,11 +1190,15 @@ struct ggml_backend_cuda_context {
std::unique_ptr<ggml_cuda_graph> cuda_graph;
int curr_stream_no = 0;
explicit ggml_backend_cuda_context(int device) :
device(device),
name(GGML_CUDA_NAME + std::to_string(device)) {
}
ggml_cuda_stream_context concurrent_stream_context;
~ggml_backend_cuda_context();
cudaStream_t stream(int device, int stream) {
@@ -997,9 +1209,9 @@ struct ggml_backend_cuda_context {
return streams[device][stream];
}
cudaStream_t stream() {
return stream(device, 0);
}
cudaStream_t stream() { return stream(device, curr_stream_no); }
ggml_cuda_stream_context & stream_context() { return concurrent_stream_context; }
cublasHandle_t cublas_handle(int device) {
if (cublas_handles[device] == nullptr) {
@@ -1015,15 +1227,15 @@ struct ggml_backend_cuda_context {
}
// pool
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS];
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device, int stream_no);
ggml_cuda_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(device);
if (pools[device][curr_stream_no] == nullptr) {
pools[device][curr_stream_no] = new_pool_for_device(device, curr_stream_no);
}
return *pools[device];
return *pools[device][curr_stream_no];
}
ggml_cuda_pool & pool() {

View File

@@ -86,6 +86,9 @@ static __global__ void cpy_scalar_transpose(const char * cx, char * cdst, const
}
}
}
GGML_UNUSED_VARS(ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11,
nb12, nb13);
}
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
@@ -202,7 +205,7 @@ static void ggml_cpy_scalar_cuda(
ne00n = ne00;
ne01n = ne01;
ne02n = ne02;
} else if (nb00 > nb02) {
} else {
ne00n = ne00;
ne01n = ne01*ne02;
ne02n = 1;

View File

@@ -0,0 +1,237 @@
#include <algorithm>
#include "cumsum.cuh"
#include "convert.cuh"
#include "ggml-cuda/common.cuh"
#include "ggml.h"
#ifdef GGML_CUDA_USE_CUB
# include <cub/device/device_scan.cuh>
#endif // GGML_CUDA_USE_CUB
template<typename T, int BLOCK_SIZE>
static __global__ void cumsum_cub_kernel(
const T * __restrict__ src,
T * __restrict__ dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s1, const int64_t s2, const int64_t s3) {
#ifdef GGML_CUDA_USE_CUB
using BlockScan = cub::BlockScan<T, BLOCK_SIZE>;
__shared__ typename BlockScan::TempStorage temp_storage;
__shared__ T block_carry; // carry from previous tile
const int tid = threadIdx.x;
const int64_t i1 = blockIdx.x;
const int64_t i2 = blockIdx.y;
const int64_t i3 = blockIdx.z;
if (i1 >= ne01 || i2 >= ne02 || i3 >= ne03) {
return;
}
const T * src_row = src + i1 * s01 + i2 * s02 + i3 * s03;
T * dst_row = dst + i1 * s1 + i2 * s2 + i3 * s3;
if (tid == 0) {
block_carry = 0;
}
__syncthreads();
for (int64_t start = 0; start < ne00; start += BLOCK_SIZE) {
int64_t idx = start + tid;
T x = (idx < ne00) ? src_row[idx] : T(0);
T inclusive;
T block_total;
BlockScan(temp_storage).InclusiveSum(x, inclusive, block_total);
__syncthreads();
T final_val = inclusive + block_carry;
// store result
if (idx < ne00) {
dst_row[idx] = final_val;
}
__syncthreads();
if (tid == 0) {
block_carry += block_total;
}
__syncthreads();
}
#else
NO_DEVICE_CODE;
#endif // GGML_CUDA_USE_CUB
}
// Fallback kernel implementation (original)
template<typename T>
static __global__ void cumsum_kernel(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t s00, const int64_t s01, const int64_t s02, const int64_t s03,
const int64_t s0, const int64_t s1, const int64_t s2, const int64_t s3) {
GGML_UNUSED_VARS(s00, s0);
const int tid = threadIdx.x;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
const int lane = tid % warp_size;
const int warp = tid / warp_size;
const int warps_per_block = blockDim.x / warp_size;
extern __shared__ float smem[];
float * s_vals = smem;
float * s_warp_sums = smem + blockDim.x;
float * s_carry = smem + blockDim.x + warps_per_block;
float * s_chunk_total = s_carry + 1;
// Initialize carry
if (tid == 0) {
*s_carry = 0.0f;
}
__syncthreads();
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
const T * src_row = src + i1 * s01 + i2 * s02 + i3 * s03;
T * dst_row = dst + i1 * s1 + i2 * s2 + i3 * s3;
for (int64_t start = 0; start < ne00; start += blockDim.x) {
int64_t idx = start + tid;
float val = (idx < ne00) ? ggml_cuda_cast<float, T>(src_row[idx]) : 0.0f;
// 1. Warp inclusive scan
val = warp_prefix_inclusive_sum<T, warp_size>(val);
s_vals[tid] = val;
// Store warp total
if (lane == warp_size - 1) {
s_warp_sums[warp] = val;
}
__syncthreads();
// 2. Exclusive scan of warp sums (warp 0 only)
if (warp == 0) {
float w = (tid < warps_per_block) ? s_warp_sums[tid] : 0.0f;
float inc = warp_prefix_inclusive_sum<T, warp_size>(w);
if (tid < warps_per_block) {
s_warp_sums[tid] = inc - w; // exclusive sum
}
if (tid == warps_per_block - 1) {
*s_chunk_total = inc; // total sum of this chunk
}
}
__syncthreads();
float carry = *s_carry;
float final_val = s_vals[tid] + s_warp_sums[warp] + carry;
if (idx < ne00) {
dst_row[idx] = ggml_cuda_cast<T, float>(final_val);
}
__syncthreads();
// Update carry for next chunk
if (tid == 0) {
*s_carry += *s_chunk_total;
}
__syncthreads();
}
}
template<typename T>
static void cumsum_cuda(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
cudaStream_t stream) {
const size_t type_size = sizeof(T);
bool use_cub = false;
#ifdef GGML_CUDA_USE_CUB
// Check if we can use CUB (data must be contiguous along innermost dimension)
const bool is_contiguous = (nb00 == type_size) && (nb0 == type_size);
if (is_contiguous) {
use_cub = true;
}
#endif // GGML_CUDA_USE_CUB
dim3 grid_dims(ne01, ne02, ne03);
const auto &info = ggml_cuda_info().devices[ggml_cuda_get_device()];
const int warp_size = info.warp_size;
const int num_warps = (ne00 + warp_size - 1) / warp_size;
int block_size = num_warps * warp_size;
block_size = std::min(block_size, CUDA_CUMSUM_BLOCK_SIZE);
dim3 block_dims(block_size, 1, 1);
const int warps_per_block = block_size / warp_size;
const size_t shmem_size = (block_size + warps_per_block + 2) * sizeof(float);
if (use_cub) {
cumsum_cub_kernel<T, CUDA_CUMSUM_BLOCK_SIZE><<<grid_dims, CUDA_CUMSUM_BLOCK_SIZE, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else {
cumsum_kernel<<<grid_dims, block_dims, shmem_size, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
}
void ggml_cuda_op_cumsum(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == dst->type);
switch(src0->type) {
case GGML_TYPE_F32:
{
cumsum_cuda(
(const float *)src0->data, (float *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;
// We do not support those on CPU for now anyway, so comment them out because they cause errors on some CI platforms
/*case GGML_TYPE_F16:
{
cumsum_cuda(
(const half *)src0->data, (half *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;
case GGML_TYPE_BF16:
{
cumsum_cuda(
(const nv_bfloat16 *)src0->data, (nv_bfloat16 *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
stream
);
} break;*/
default:
GGML_ABORT("fatal error");
}
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_CUMSUM_BLOCK_SIZE 256
void ggml_cuda_op_cumsum(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -10,6 +10,12 @@
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
// log(2) = 0.6931, by adding this to the KQ maximum used for the softmax the numerical range representable
// by the VKQ accumulators is effectively being shifted up by a factor of 8.
// This reduces issues with numerical overflow but also causes larger values to be flushed to zero.
// However, as the output from FlashAttention will usually be used as an input for a matrix multiplication this should be negligible.
#define FATTN_KQ_MAX_OFFSET 0.6931f
typedef void (* fattn_kernel_t)(
const char * __restrict__ Q,
const char * __restrict__ K,
@@ -25,7 +31,7 @@ typedef void (* fattn_kernel_t)(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@@ -55,11 +61,11 @@ static __device__ __forceinline__ float vec_dot_fattn_vec_KQ_f16(
ggml_cuda_memcpy_1<sizeof(tmp)>(tmp, K_h2 + k_KQ_0 + (threadIdx.x % nthreads)*cpy_ne);
#pragma unroll
for (int k_KQ_1 = 0; k_KQ_1 < cpy_ne; ++k_KQ_1) {
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
ggml_cuda_mad(sum, tmp[k_KQ_1] , ((const half2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#else
ggml_cuda_mad(sum, __half22float2(tmp[k_KQ_1]), ((const float2 *) Q_v)[k_KQ_0/nthreads + k_KQ_1]);
#endif // FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}
@@ -621,7 +627,8 @@ static __global__ void flash_attn_mask_to_KV_max(
template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11) {
float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11,
const int nbatch_fa) {
constexpr int ncols = ncols1*ncols2;
const int bidx0 = blockIdx.x;
@@ -632,8 +639,8 @@ static __global__ void flash_attn_stream_k_fixup(
const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);
const int iter_k = ne11 / FATTN_KQ_STRIDE;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
const int iter_k = (ne11 + (nbatch_fa - 1)) / nbatch_fa;
const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;
const int kbc0 = (bidx0 + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
const int kbc0_stop = (bidx0 + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
@@ -765,7 +772,7 @@ static __global__ void flash_attn_combine_results(
template <int DV, int ncols1, int ncols2>
void launch_fattn(
ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
const int nbatch_fa, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
) {
constexpr int ncols = ncols1 * ncols2;
@@ -790,8 +797,6 @@ void launch_fattn(
GGML_ASSERT(!V || V->nb[0] == ggml_element_size(V));
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
@@ -915,7 +920,7 @@ void launch_fattn(
dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
} else {
const int ntiles_KQ = (K->ne[1] + KQ_row_granularity - 1) / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.
const int ntiles_KQ = (K->ne[1] + nbatch_fa - 1) / nbatch_fa; // Max. number of parallel blocks limited by tensor size.
// parallel_blocks must not be larger than what the tensor size allows:
parallel_blocks = std::min(parallel_blocks, ntiles_KQ);
@@ -970,6 +975,9 @@ void launch_fattn(
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// TODO other tensor dimensions after removal of WMMA kernel:
const uint3 ne01 = init_fastdiv_values(Q->ne[1]);
GGML_ASSERT(block_dim.x % warp_size == 0);
fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
(const char *) Q->data,
@@ -980,7 +988,7 @@ void launch_fattn(
KV_max.ptr,
!stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
Q->ne[0], ne01, Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3], nb11, nb12, nb13,
nb21, nb22, nb23,
mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0,
@@ -995,7 +1003,7 @@ void launch_fattn(
flash_attn_stream_k_fixup<DV, ncols1, ncols2>
<<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1]);
((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1], nbatch_fa);
}
} else if (parallel_blocks > 1) {
const dim3 block_dim_combine(DV, 1, 1);

File diff suppressed because it is too large Load Diff

View File

@@ -501,6 +501,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
const half2 * const __restrict__ K_h2,
const half2 * const __restrict__ V_h2,
const half * const __restrict__ mask,
const uint3 ne01,
const float logit_softcap,
const float slope,
T_KQ * const KQ,
@@ -512,7 +513,8 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
float * const KQ_sum,
T_acc * const VKQ,
const int k_VKQ_0,
const int k_VKQ_max) {
const int k_VKQ_max,
const int col_Q_0) {
constexpr int cpy_nb = ggml_cuda_get_max_cpy_bytes();
constexpr int cpy_ne = cpy_nb / 4;
@@ -556,7 +558,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
// Apply logit softcap + mask, update KQ_max:
#pragma unroll
for (int jc0 = 0; jc0 < cpw; ++jc0) {
const int j = (jc0 + (threadIdx.y / np)*cpw)/ncols2;
const int j = fastmodulo(col_Q_0 + (jc0 + (threadIdx.y / np)*cpw)/ncols2, ne01);
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
@@ -570,7 +572,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] += (ncols2 > 1 || mask) ?
slope*__half2float(mask[j*stride_mask + k_VKQ_0 + i_KQ]) : 0.0f;
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
KQ_max_new[jc0] = fmaxf(KQ_max_new[jc0], KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] + FATTN_KQ_MAX_OFFSET);
}
}
@@ -609,7 +611,7 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
float KQ_sum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < nbatch_fa; i0 += np*warp_size) {
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < k_VKQ_sup ?
const float val = !oob_check || i0 + (threadIdx.y % np)*warp_size + threadIdx.x < static_cast<uint32_t>(k_VKQ_sup) ?
expf(KQ_acc[(i0/(np*warp_size))*cpw + jc] - KQ_max[jc]) : 0.0f;
KQ_sum_add += val;
tmp[i0/(np*warp_size)][jc1] = val;
@@ -736,7 +738,7 @@ static __global__ void flash_attn_tile(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@@ -781,11 +783,11 @@ static __global__ void flash_attn_tile(
const int sequence = blockIdx.z / (ne02/ncols2);
const int head0 = blockIdx.z*ncols2 - sequence*ne02; // == blockIdx.z % (ne02/ncols2)
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0 + nb01*col_Q_0);
const float * Q_f = (const float *) (Q + nb03*sequence + nb02* head0);
const half2 * K_h2 = (const half2 *) (K + nb13*sequence + nb12*(head0 / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb23*sequence + nb22*(head0 / gqa_ratio)); // K and V have same shape
const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33) + nb31*col_Q_0) : nullptr;
const half * maskh = mask ? (const half *) (mask + nb33*(sequence % ne33)) : nullptr;
const int stride_K2 = nb11 / sizeof(half2);
const int stride_V2 = nb21 / sizeof(half2);
@@ -842,11 +844,9 @@ static __global__ void flash_attn_tile(
for (int i0 = 0; i0 < DKQp; i0 += np*warp_size*cpy_ne_D) {
if (i0 + np*warp_size*cpy_ne_D <= DKQ || i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D < DKQ) {
float tmp_f[cpy_ne_D] = {0.0f};
if (ncols1 == 1 || col_Q_0 + j < ne01) {
ggml_cuda_memcpy_1<sizeof(tmp_f)>
(tmp_f, &Q_f[c*(nb02/sizeof(float)) + j*(nb01/sizeof(float))
+ i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D]);
}
ggml_cuda_memcpy_1<sizeof(tmp_f)>
(tmp_f, &Q_f[c*(nb02/sizeof(float)) + fastmodulo(col_Q_0 + j, ne01)*(nb01/sizeof(float))
+ i0 + (threadIdx.y % np)*(warp_size*cpy_ne_D) + threadIdx.x*cpy_ne_D]);
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; ++i1) {
@@ -881,23 +881,23 @@ static __global__ void flash_attn_tile(
while (k_VKQ_0 < k_VKQ_max - nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
k_VKQ_0 += gridDim.y*nbatch_fa;
}
if (k_VKQ_0 < k_VKQ_max) {
constexpr bool oob_check = true;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
}
} else {
// Branch without out-of-bounds checks.
for (int k_VKQ_0 = blockIdx.y*nbatch_fa; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*nbatch_fa) {
constexpr bool oob_check = false;
flash_attn_tile_iter<warp_size, nwarps, ncols1, ncols2, DKQ, DV, nbatch_fa, nbatch_K, use_logit_softcap, oob_check>
(Q_tmp, K_h2, V_h2, maskh, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max);
(Q_tmp, K_h2, V_h2, maskh, ne01, logit_softcap, slope, KQ, KV_tmp,
stride_K2, stride_V2, stride_mask, KQ_max, KQ_sum, VKQ, k_VKQ_0, k_VKQ_max, col_Q_0);
}
}
@@ -1010,13 +1010,13 @@ static __global__ void flash_attn_tile(
const int j = jc / ncols2;
const int c = jc % ncols2;
if (ncols1 > 1 && col_Q_0 + j >= ne01) {
if (ncols1 > 1 && col_Q_0 + j >= int(ne01.z)) {
return;
}
const float scale = gridDim.y == 1 ? 1.0f/KQ_sum[jc0] : 1.0f;
const int j_dst_unrolled = ((sequence*ne01 + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
const int j_dst_unrolled = ((sequence*int(ne01.z) + col_Q_0 + j)*ne02 + head0 + c)*gridDim.y + blockIdx.y;
#ifdef FAST_FP16_AVAILABLE
constexpr int cpy_ne_D = cpy_ne/2 < (DVp/2)/warp_size ? cpy_ne/2 : (DVp/2)/warp_size;

View File

@@ -33,7 +33,7 @@ static __global__ void flash_attn_ext_vec(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
@@ -86,11 +86,11 @@ static __global__ void flash_attn_ext_vec(
constexpr vec_dot_KQ_t vec_dot_KQ = get_vec_dot_KQ<type_K, D, nthreads_KQ>();
constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, half, V_rows_per_thread>();
#else
constexpr dequantize_V_t dequantize_V = get_dequantize_V<type_V, float, V_rows_per_thread>();
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.
@@ -112,13 +112,13 @@ static __global__ void flash_attn_ext_vec(
constexpr int ne_KQ = ncols*D;
constexpr int ne_combine = nwarps*V_cols_per_iter*D;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ half KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#else
float2 VKQ[ncols][(D/2)/nthreads_V] = {{{0.0f, 0.0f}}};
__shared__ float KQ[ne_KQ > ne_combine ? ne_KQ : ne_combine];
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
float KQ_max[ncols];
float KQ_sum[ncols];
@@ -129,11 +129,11 @@ static __global__ void flash_attn_ext_vec(
}
// Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 Q_reg[ncols][(D/2)/nthreads_KQ]; // Will be initialized completely.
#else
float2 Q_reg[ncols][(D/2)/nthreads_KQ] = {{{0.0f, 0.0f}}}; // May be only partially initialized.
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
int Q_i32[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
float2 Q_ds[ncols][1 > D/(sizeof(int)*nthreads_KQ) ? 1 : D/(sizeof(int)*nthreads_KQ)];
if constexpr (Q_q8_1) {
@@ -150,12 +150,12 @@ static __global__ void flash_attn_ext_vec(
float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
// Set memory to zero if out of bounds:
if (ncols > 1 && ic0 + j >= ne01) {
if (ncols > 1 && ic0 + j >= int(ne01.z)) {
#pragma unroll
for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE <= D/sizeof(int) || i < D/sizeof(int)) {
if (i0 + WARP_SIZE <= int(D/sizeof(int)) || i < int(D/sizeof(int))) {
tmp_q_i32[i] = 0;
}
}
@@ -191,7 +191,7 @@ static __global__ void flash_attn_ext_vec(
__syncthreads();
} else {
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 scale_h2 = make_half2(scale, scale);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
@@ -201,7 +201,7 @@ static __global__ void flash_attn_ext_vec(
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
float2 tmp[cpy_ne] = {{0.0f, 0.0f}};
if (ncols == 1 || ic0 + j < ne01) {
if (ncols == 1 || ic0 + j < int(ne01.z)) {
ggml_cuda_memcpy_1<cpy_nb>(tmp, &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(tmp + cpy_ne/2, &Q_j[i + cpy_ne/2]);
}
@@ -222,7 +222,7 @@ static __global__ void flash_attn_ext_vec(
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += nthreads_KQ*cpy_ne) {
const int i = i0 + (nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ)*cpy_ne;
if (ncols == 1 || ic0 + j < ne01) {
if (ncols == 1 || ic0 + j < int(ne01.z)) {
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ], &Q_j[i]);
ggml_cuda_memcpy_1<cpy_nb>(&Q_reg[j][i0/nthreads_KQ + cpy_ne/2], &Q_j[i + cpy_ne/2]);
}
@@ -233,7 +233,7 @@ static __global__ void flash_attn_ext_vec(
Q_reg[j][k].y *= scale;
}
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
@@ -266,13 +266,13 @@ static __global__ void flash_attn_ext_vec(
sum = logit_softcap*tanhf(sum);
}
if (mask) {
if (mask && (ncols == 1 || ic0 + j < int(ne01.z))) {
sum += slope*__half2float(maskh[j*ne11 + i_KQ]);
}
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum);
KQ_max_new[j] = fmaxf(KQ_max_new[j], sum + FATTN_KQ_MAX_OFFSET);
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == i_KQ_0) {
if ((nthreads_KQ == WARP_SIZE ? threadIdx.x : threadIdx.x % nthreads_KQ) == uint32_t(i_KQ_0)) {
KQ_reg[j] = sum;
}
}
@@ -291,7 +291,7 @@ static __global__ void flash_attn_ext_vec(
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + KQ_reg[j];
KQ[j*nthreads + tid] = KQ_reg[j];
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
@@ -303,7 +303,7 @@ static __global__ void flash_attn_ext_vec(
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
#ifndef GGML_USE_HIP
@@ -314,7 +314,7 @@ static __global__ void flash_attn_ext_vec(
for (int k0 = 0; k0 < WARP_SIZE; k0 += V_cols_per_iter) {
const int k = threadIdx.y*WARP_SIZE + k0 + (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V);
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 KQ_k[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
@@ -353,7 +353,7 @@ static __global__ void flash_attn_ext_vec(
}
}
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}
@@ -374,7 +374,7 @@ static __global__ void flash_attn_ext_vec(
KQ_sum[j] = KQ_sum[j]*KQ_max_scale + (threadIdx.x == 0 ? expf(sink - KQ_max[j]) : 0.0f);
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
const half2 KQ_max_scale_h2 = make_half2(KQ_max_scale, KQ_max_scale);
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D/2; i_VKQ_0 += nthreads_V) {
@@ -386,7 +386,7 @@ static __global__ void flash_attn_ext_vec(
VKQ[j][i_VKQ_0/nthreads_V].x *= KQ_max_scale;
VKQ[j][i_VKQ_0/nthreads_V].y *= KQ_max_scale;
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
}
}
@@ -412,7 +412,7 @@ static __global__ void flash_attn_ext_vec(
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 1 && ic0 + j_VKQ >= ne01) {
if (ncols > 1 && ic0 + j_VKQ >= int(ne01.z)) {
break;
}
@@ -421,7 +421,7 @@ static __global__ void flash_attn_ext_vec(
const float kqmax_scale = expf(KQ_max[j_VKQ] - kqmax_new);
KQ_max[j_VKQ] = kqmax_new;
#ifdef FAST_FP16_AVAILABLE
#ifdef V_DOT2_F32_F16_AVAILABLE
half2 * VKQ_tmp = (half2 *) KQ + threadIdx.y*(V_cols_per_iter*D/2)
+ (nthreads_V == WARP_SIZE ? 0 : threadIdx.x / nthreads_V)*(D/2);
@@ -452,7 +452,7 @@ static __global__ void flash_attn_ext_vec(
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ, &VKQ[j_VKQ][i_VKQ_0/nthreads_V]);
ggml_cuda_memcpy_1<V_rows_per_thread/2*sizeof(float)>(VKQ_tmp + i_VKQ + V_rows_per_thread/4, &VKQ[j_VKQ][i_VKQ_0/nthreads_V + V_rows_per_thread/4]);
}
#endif // FAST_FP16_AVAILABLE
#endif // V_DOT2_F32_F16_AVAILABLE
KQ_sum[j_VKQ] *= kqmax_scale;
KQ_sum[j_VKQ] = warp_reduce_sum(KQ_sum[j_VKQ]);
@@ -479,7 +479,7 @@ static __global__ void flash_attn_ext_vec(
if (gridDim.y == 1) {
dst_val /= KQ_sum[j_VKQ];
}
dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
dst[(((sequence*int(ne01.z) + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + i0 + tid] = dst_val;
}
}
@@ -489,8 +489,8 @@ static __global__ void flash_attn_ext_vec(
}
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < ne01)) {
dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
if (gridDim.y != 1 && tid < ncols && (ncols == 1 || ic0 + tid < int(ne01.z))) {
dst_meta[((sequence*int(ne01.z) + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(KQ_max[tid], KQ_sum[tid]);
}
#else
GGML_UNUSED_VARS(Q, K, V, mask, sinks, KV_max, dst, dst_meta, scale,

View File

@@ -38,14 +38,14 @@ static __global__ void flash_attn_ext_f16(
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
const int32_t ne00, const uint3 ne01, const int32_t ne02, const int32_t ne03,
const int32_t nb01, const int32_t nb02, const int32_t nb03,
const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
const int32_t nb11, const int32_t nb12, const int64_t nb13,
const int32_t nb21, const int32_t nb22, const int64_t nb23,
const int32_t ne31, const int32_t ne32, const int32_t ne33,
const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#if defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
#if defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
@@ -149,7 +149,7 @@ static __global__ void flash_attn_ext_f16(
if (i0 + warp_size > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
KQ[j*D_padded + i] = ic0 + j < int(ne01.z) ? Q_f[j*stride_Q + i] * scale : 0.0f;
}
}
@@ -218,8 +218,9 @@ static __global__ void flash_attn_ext_f16(
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/warp_size] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size]);
KQ_f_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ?
__half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/warp_size] + FATTN_KQ_MAX_OFFSET);
}
KQ_max_new = warp_reduce_max<warp_size>(KQ_max_new);
@@ -270,7 +271,7 @@ static __global__ void flash_attn_ext_f16(
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += warp_size) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/warp_size] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ2_tmp[k0/warp_size] += mask && ic0 + j < int(ne01.z) ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/warp_size]);
}
KQ_max_new = __half2half2(warp_reduce_max<warp_size>(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
@@ -431,7 +432,7 @@ static __global__ void flash_attn_ext_f16(
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j_VKQ = j0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
if (ic0 + j_VKQ >= int(ne01.z)) {
return;
}
@@ -442,7 +443,7 @@ static __global__ void flash_attn_ext_f16(
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
const int j_dst_unrolled = ((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
const int j_dst_unrolled = ((sequence*int(ne01.z) + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += warp_size) {
@@ -481,7 +482,7 @@ static __global__ void flash_attn_ext_f16(
ne31, ne32, ne33,
nb31, nb32, nb33);
NO_DEVICE_CODE;
#endif // defined(FLASH_ATTN_AVAILABLE) && (__CUDA_ARCH__ == GGML_CUDA_CC_VOLTA || (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN)))
#endif // defined(FLASH_ATTN_AVAILABLE) && (defined(GGML_HIP_ROCWMMA_FATTN) && defined(GGML_USE_WMMA_FATTN))
}
constexpr int get_max_power_of_2(int x) {

View File

@@ -2,9 +2,9 @@
#include "common.cuh"
#if (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#if defined(GGML_USE_MUSA)
#define GGML_USE_WMMA_FATTN
#endif // (!defined(GGML_USE_HIP) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA) || defined(GGML_USE_MUSA)
#endif // defined(GGML_USE_MUSA)
#if defined(GGML_HIP_ROCWMMA_FATTN)
#if defined(CDNA) && (ROCWMMA_VERSION_MAJOR < 2 || ROCWMMA_VERSION_MINOR > 0 || ROCWMMA_VERSION_PATCH > 0)

View File

@@ -12,13 +12,13 @@ static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols1(ggml_backend_cuda_con
const ggml_tensor * Q = dst->src[0];
if constexpr (ncols2 <= 8) {
if (Q->ne[1] <= 8/ncols2) {
if (turing_mma_available(cc) && Q->ne[1] <= 8/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 8/ncols2, ncols2>(ctx, dst);
return;
}
}
if (Q->ne[1] <= 16/ncols2) {
if (turing_mma_available(cc) && Q->ne[1] <= 16/ncols2) {
ggml_cuda_flash_attn_ext_mma_f16_case<DKQ, DV, 16/ncols2, ncols2>(ctx, dst);
return;
}
@@ -41,7 +41,7 @@ static void ggml_cuda_flash_attn_ext_mma_f16_switch_ncols2(ggml_backend_cuda_con
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) KQV->op_params + 1, sizeof(float));
const bool use_gqa_opt = mask && max_bias == 0.0f;
const bool use_gqa_opt = mask && max_bias == 0.0f && K->ne[1] % FATTN_KQ_STRIDE == 0;
GGML_ASSERT(Q->ne[2] % K->ne[2] == 0);
const int gqa_ratio = Q->ne[2] / K->ne[2];
@@ -275,8 +275,8 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
// For small batch sizes the vector kernel may be preferable over the kernels optimized for large batch sizes:
const bool can_use_vector_kernel = Q->ne[0] <= 256 && Q->ne[0] % 64 == 0 && K->ne[1] % FATTN_KQ_STRIDE == 0;
// If Turing tensor cores available, use them:
if (turing_mma_available(cc) && K->ne[1] % FATTN_KQ_STRIDE == 0 && Q->ne[0] != 40 && Q->ne[0] != 72) {
// If Turing tensor cores are available, use them:
if (turing_mma_available(cc) && Q->ne[0] != 40 && Q->ne[0] != 72) {
if (can_use_vector_kernel) {
if (!ggml_is_quantized(K->type) && !ggml_is_quantized(V->type)) {
if (cc >= GGML_CUDA_CC_ADA_LOVELACE && Q->ne[1] == 1 && Q->ne[3] == 1 && !(gqa_ratio > 4 && K->ne[1] >= 8192)) {
@@ -297,7 +297,21 @@ static best_fattn_kernel ggml_cuda_get_best_fattn_kernel(const int device, const
return BEST_FATTN_KERNEL_VEC;
}
}
return BEST_FATTN_KERNEL_MMA_F16;
}
if (volta_mma_available(cc) && Q->ne[0] != 40 && Q->ne[0] != 72) {
int gqa_ratio_eff = 1;
const int ncols2_max = Q->ne[0] == 576 ? 16 : 8;
while (gqa_ratio % (2*gqa_ratio_eff) == 0 && gqa_ratio_eff < ncols2_max) {
gqa_ratio_eff *= 2;
}
if (can_use_vector_kernel && Q->ne[1] * gqa_ratio_eff <= 2) {
return BEST_FATTN_KERNEL_VEC;
}
if (Q->ne[1] * gqa_ratio_eff <= 16) {
return BEST_FATTN_KERNEL_TILE; // On Volta tensor cores are only faster for sufficiently large matrices.
}
return BEST_FATTN_KERNEL_MMA_F16;
}

View File

@@ -53,6 +53,9 @@
#include "ggml-cuda/set.cuh"
#include "ggml-cuda/set-rows.cuh"
#include "ggml-cuda/pad_reflect_1d.cuh"
#include "ggml-cuda/solve_tri.cuh"
#include "ggml-cuda/tri.cuh"
#include "ggml-cuda/cumsum.cuh"
#include "ggml.h"
#include <algorithm>
@@ -521,7 +524,8 @@ struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
};
#endif // defined(GGML_USE_VMM)
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device,
[[maybe_unused]] int stream_no) {
#if defined(GGML_USE_VMM)
if (ggml_cuda_info().devices[device].vmm) {
return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
@@ -2699,6 +2703,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_CROSS_ENTROPY_LOSS:
ggml_cuda_cross_entropy_loss(ctx, dst);
break;
case GGML_OP_CUMSUM:
ggml_cuda_op_cumsum(ctx, dst);
break;
case GGML_OP_TRI:
ggml_cuda_op_tri(ctx, dst);
break;
case GGML_OP_RWKV_WKV6:
ggml_cuda_op_rwkv_wkv6(ctx, dst);
break;
@@ -2717,6 +2727,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_OPT_STEP_SGD:
ggml_cuda_opt_step_sgd(ctx, dst);
break;
case GGML_OP_SOLVE_TRI:
ggml_cuda_op_solve_tri(ctx, dst);
break;
default:
return false;
}
@@ -3046,7 +3059,12 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
std::initializer_list<enum ggml_op> topk_moe_ops_delayed_softmax =
ggml_cuda_topk_moe_ops(/*with_norm=*/false, /*delayed_softmax=*/true);
if (ops.size() == topk_moe_ops_with_norm.size() &&
const auto is_equal = [](const std::initializer_list<enum ggml_op> & list1,
const std::initializer_list<enum ggml_op> & list2) {
return std::equal(list1.begin(), list1.end(), list2.begin(), list2.end());
};
if (is_equal(topk_moe_ops_with_norm, ops) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 9 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx + 9];
@@ -3056,8 +3074,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == topk_moe_ops.size() &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
if (is_equal(topk_moe_ops, ops) && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 3, node_idx + 4 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx];
ggml_tensor * weights = cgraph->nodes[node_idx + 4];
if (ggml_cuda_should_use_topk_moe(softmax, weights)) {
@@ -3065,7 +3082,7 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == topk_moe_ops_delayed_softmax.size() &&
if (is_equal(topk_moe_ops_delayed_softmax, ops) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 1, node_idx + 5 })) {
ggml_tensor * softmax = cgraph->nodes[node_idx + 4];
ggml_tensor * weights = cgraph->nodes[node_idx + 5];
@@ -3081,9 +3098,8 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
std::initializer_list<enum ggml_op> mul_mat_id_glu_ops = { GGML_OP_MUL_MAT_ID, GGML_OP_MUL_MAT_ID, GGML_OP_GLU };
std::initializer_list<enum ggml_op> mul_mat_glu_ops = { GGML_OP_MUL_MAT, GGML_OP_MUL_MAT, GGML_OP_GLU };
if (ops.size() == 5 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 4}))) {
if ((is_equal(mul_mat_bias_glu_ops, ops) || is_equal(mul_mat_id_bias_glu_ops, ops)) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 4 })) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_gate_bias = cgraph->nodes[node_idx + 1];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 2];
@@ -3095,9 +3111,8 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == 3 && (ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}) ||
ggml_can_fuse_subgraph(cgraph, node_idx, ops, {node_idx + 2}))) {
if ((is_equal(mul_mat_id_glu_ops, ops) || is_equal(mul_mat_glu_ops, ops)) &&
ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
const ggml_tensor * ffn_gate = cgraph->nodes[node_idx];
const ggml_tensor * ffn_up = cgraph->nodes[node_idx + 1];
const ggml_tensor * glu = cgraph->nodes[node_idx + 2];
@@ -3107,7 +3122,9 @@ static bool ggml_cuda_can_fuse(const struct ggml_cgraph * cgraph, int node_idx,
}
}
if (ops.size() == 3 && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
std::initializer_list<enum ggml_op> rope_set_rows_ops = { GGML_OP_ROPE, GGML_OP_VIEW, GGML_OP_SET_ROWS };
if (is_equal(rope_set_rows_ops, ops) && ggml_can_fuse_subgraph(cgraph, node_idx, ops, { node_idx + 2 })) {
const ggml_tensor * rope = cgraph->nodes[node_idx];
const ggml_tensor * view = cgraph->nodes[node_idx + 1];
const ggml_tensor * set_rows = cgraph->nodes[node_idx + 2];
@@ -3192,27 +3209,141 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
// flag used to determine whether it is an integrated_gpu
const bool integrated = ggml_cuda_info().devices[cuda_ctx->device].integrated;
ggml_cuda_stream_context & stream_ctx = cuda_ctx->stream_context();
bool is_concurrent_event_active = false;
ggml_cuda_concurrent_event * concurrent_event = nullptr;
bool should_launch_concurrent_events = false;
const auto try_launch_concurrent_event = [&](const ggml_tensor * node) {
if (stream_ctx.concurrent_events.find(node) != stream_ctx.concurrent_events.end()) {
concurrent_event = &stream_ctx.concurrent_events[node];
is_concurrent_event_active = true;
GGML_LOG_DEBUG("Launching %d streams at %s\n", concurrent_event->n_streams, node->name);
cudaStream_t main_stream = cuda_ctx->stream(); // this should be stream 0
GGML_ASSERT(cuda_ctx->curr_stream_no == 0);
CUDA_CHECK(cudaEventRecord(concurrent_event->fork_event, main_stream));
for (int i = 1; i <= concurrent_event->n_streams; ++i) {
cudaStream_t stream = cuda_ctx->stream(cuda_ctx->device, i);
CUDA_CHECK(cudaStreamWaitEvent(stream, concurrent_event->fork_event));
}
}
};
while (!graph_evaluated_or_captured) {
// Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
// With the use of CUDA graphs, the execution will be performed by the graph launch.
if (!use_cuda_graph || cuda_graph_update_required) {
[[maybe_unused]] int prev_i = 0;
if (stream_ctx.concurrent_events.size() > 0) {
should_launch_concurrent_events = true;
for (const auto & [tensor, event] : stream_ctx.concurrent_events) {
should_launch_concurrent_events = should_launch_concurrent_events && event.is_valid();
}
}
if (should_launch_concurrent_events) {
// Restore original node order within each concurrent region to enable fusion within streams
std::unordered_map<const ggml_tensor *, int> node_to_idx;
node_to_idx.reserve(cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; ++i) {
node_to_idx[cgraph->nodes[i]] = i;
}
for (auto & [fork_node, event] : stream_ctx.concurrent_events) {
// Find positions of all nodes from this event in the current graph
std::vector<int> positions;
positions.reserve(event.original_order.size());
bool all_found = true;
for (const ggml_tensor * orig_node : event.original_order) {
auto it = node_to_idx.find(orig_node);
if (it != node_to_idx.end()) {
positions.push_back(it->second);
} else {
all_found = false;
break;
}
}
if (!all_found || positions.size() != event.original_order.size()) {
continue;
}
// Sort positions to get contiguous range
std::vector<int> sorted_positions = positions;
std::sort(sorted_positions.begin(), sorted_positions.end());
bool is_contiguous = true;
for (size_t i = 1; i < sorted_positions.size(); ++i) {
if (sorted_positions[i] != sorted_positions[i-1] + 1) {
is_contiguous = false;
break;
}
}
if (!is_contiguous) {
continue;
}
// Restore original order at the sorted positions
int start_pos = sorted_positions[0];
for (size_t i = 0; i < event.original_order.size(); ++i) {
cgraph->nodes[start_pos + i] = const_cast<ggml_tensor *>(event.original_order[i]);
}
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
if (is_concurrent_event_active) {
GGML_ASSERT(concurrent_event);
if (node == concurrent_event->join_node) {
cuda_ctx->curr_stream_no = 0;
for (int i = 1; i <= concurrent_event->n_streams; ++i) {
// Wait on join events of forked streams in the main stream
CUDA_CHECK(cudaEventRecord(concurrent_event->join_events[i - 1],
cuda_ctx->stream(cuda_ctx->device, i)));
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), concurrent_event->join_events[i - 1]));
}
is_concurrent_event_active = false;
concurrent_event = nullptr;
} else {
GGML_ASSERT (concurrent_event->stream_mapping.find(node) != concurrent_event->stream_mapping.end());
cuda_ctx->curr_stream_no = concurrent_event->stream_mapping[node];
GGML_LOG_DEBUG("Setting stream no to %d for node %s\n", cuda_ctx->curr_stream_no, node->name);
}
} else if (i - prev_i > 1) {
//the previous node was fused
const ggml_tensor * prev_node = cgraph->nodes[i - 1];
try_launch_concurrent_event(prev_node);
if (is_concurrent_event_active) {
cuda_ctx->curr_stream_no = concurrent_event->stream_mapping[node];
GGML_LOG_DEBUG("Setting stream no to %d for node %s\n", cuda_ctx->curr_stream_no, node->name);
}
}
#ifdef GGML_CUDA_DEBUG
const int nodes_fused = i - prev_i - 1;
prev_i = i;
if (nodes_fused > 0) {
GGML_LOG_INFO("nodes_fused: %d\n", nodes_fused);
}
#endif
prev_i = i;
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
continue;
}
// start of fusion operations
static bool disable_fusion = (getenv("GGML_CUDA_DISABLE_FUSION") != nullptr);
if (!disable_fusion) {
@@ -3505,13 +3636,17 @@ static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx
}
#else
GGML_UNUSED(integrated);
#endif // NDEBUG
#endif // NDEBUG
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
if (!ok) {
GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
if (!is_concurrent_event_active) {
try_launch_concurrent_event(node);
}
}
}
@@ -3651,6 +3786,234 @@ static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_ev
}
}
static void ggml_backend_cuda_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
static bool enable_graph_optimization = [] {
const char * env = getenv("GGML_CUDA_GRAPH_OPT");
return env != nullptr && atoi(env) == 1;
}();
if (!enable_graph_optimization) {
return;
}
GGML_ASSERT(ggml_backend_cuda_get_device_count() == 1 && "compute graph optimization is only supported on single GPU in the CUDA backend");
GGML_LOG_DEBUG("Optimizing CUDA graph %p with %d nodes\n", cgraph->nodes, cgraph->n_nodes);
ggml_cuda_stream_context & stream_context = cuda_ctx->stream_context();
stream_context.reset();
// number of out-degrees for a particular node
std::unordered_map<const ggml_tensor *, int> fan_out;
// reverse mapping of node to index in the cgraph
std::unordered_map<const ggml_tensor *, int> node_indices;
const auto & is_noop = [](const ggml_tensor * node) -> bool {
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE ||
node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
};
const auto & depends_on = [](const ggml_tensor * dst, const ggml_tensor * src) -> bool {
for (uint32_t s = 0; s < GGML_MAX_SRC; ++s) {
if (dst->src[s] == src) {
return true;
}
}
// implicit dependency if they view the same tensor
const ggml_tensor * dst2 = dst->view_src ? dst->view_src : dst;
const ggml_tensor * src2 = src->view_src ? src->view_src : src;
if (dst2 == src2) {
return true;
}
return false;
};
for (int node_idx = 0; node_idx < cgraph->n_nodes; node_idx++) {
const ggml_tensor * node = cgraph->nodes[node_idx];
node_indices[node] = node_idx;
if (is_noop(node)) {
continue;
}
for (int src_idx = 0; src_idx < GGML_MAX_SRC; ++src_idx) {
const ggml_tensor * src = cgraph->nodes[node_idx]->src[src_idx];
//TODO: check why nrows > 1 fails
if (node && !is_noop(node) && ggml_nrows(node) <= 1) {
fan_out[src] += 1;
}
}
}
// Target Q, K, V for concurrency
// this is a more general way to find nodes which can be candidates for concurrency (although it has not been tested for anything else):
// 1. find fan-out (fork) nodes where the same input is used at least N times (in QKV, it would be "attn-norm")
// 2. find the join node, where 2 or more of the outputs are required (in QKV, this would "KQ" or "flash-attn")
// 3. account for all branches from the fork to the join
// 4. To extend lifetimes of the tensors, we interleave the branches (see below for more details)
// 5. save the original cgraph and restore it in graph_compute, to enable fusion within streams
// See discussion: https://github.com/ggml-org/llama.cpp/pull/16991#issuecomment-3522620030
const int min_fan_out = 3;
const int max_fan_out = 3;
// store {fork_idx, join_idx}
std::vector<std::pair<int, int>> concurrent_node_ranges;
for (const auto & [root_node, count] : fan_out) {
if (count >= min_fan_out && count <= max_fan_out) {
const int root_node_idx = node_indices[root_node];
bool is_part_of_event = false;
for (const auto & [start, end] : concurrent_node_ranges) {
if (root_node_idx >= start && root_node_idx <= end) {
is_part_of_event = true;
}
}
if (is_part_of_event) {
continue;
}
std::vector<std::vector<const ggml_tensor *>> nodes_per_branch;
for (int i = root_node_idx + 1; i < cgraph->n_nodes; ++i) {
const ggml_tensor * node = cgraph->nodes[i];
if (!is_noop(node) && depends_on(node, root_node)) {
nodes_per_branch.push_back({ node });
}
}
GGML_ASSERT(nodes_per_branch.size() == (size_t) count);
//find the join point
const ggml_tensor * join_node = nullptr;
const auto & belongs_to_branch = [&](const ggml_tensor * node,
const std::vector<const ggml_tensor *> & branch) -> bool {
for (const ggml_tensor * n : branch) {
if (depends_on(node, n)) {
return true;
}
}
return false;
};
for (int i = root_node_idx + 1; i < cgraph->n_nodes; ++i) {
const ggml_tensor * curr_node = cgraph->nodes[i];
int num_joins = 0;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
if (belongs_to_branch(curr_node, nodes_per_branch[branch_idx])) {
num_joins++;
}
}
if (num_joins >= 2) {
join_node = curr_node;
break;
}
bool found_branch = false;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
std::vector<const ggml_tensor *> & branch_vec = nodes_per_branch[branch_idx];
if (belongs_to_branch(curr_node, branch_vec)) {
//continue accumulating
if (std::find(branch_vec.begin(), branch_vec.end(), curr_node) == branch_vec.end()) {
branch_vec.push_back(curr_node);
}
found_branch = true;
}
}
if (!found_branch && is_noop(curr_node)) {
// we can put it in any branch because it will be ignored
nodes_per_branch[0].push_back({ curr_node });
}
}
if (join_node) {
//Create ggml_cuda_concurrent_event
ggml_cuda_concurrent_event concurrent_event(nodes_per_branch.size());
concurrent_event.join_node = join_node;
for (size_t branch_idx = 0; branch_idx < nodes_per_branch.size(); branch_idx++) {
for (const ggml_tensor * n : nodes_per_branch[branch_idx]) {
concurrent_event.stream_mapping[n] = branch_idx + 1;
}
}
int fork_node_idx = node_indices[root_node];
int join_node_idx = node_indices[join_node];
int current_branch_idx = 0;
int current_node_idx = fork_node_idx + 1;
const int n_branches = nodes_per_branch.size();
int total_branch_nodes = 0;
for (std::vector<const ggml_tensor *> branch_nodes : nodes_per_branch) {
total_branch_nodes += branch_nodes.size();
}
// there are other nodes in the middle which are unaccounted for
// usually (cpy) nodes, then ignore this fork
if (join_node_idx - fork_node_idx - 1 != total_branch_nodes) {
GGML_LOG_DEBUG(
"Skipping %s because the number of nodes in the middle is not equal to the total number of "
"branch nodes %d != %d\n",
root_node->name, join_node_idx - fork_node_idx - 1, total_branch_nodes);
continue;
}
// Save the original order of nodes in this region before interleaving
// This is used later to restore grouping for fusion within streams
concurrent_event.original_order.reserve(total_branch_nodes);
for (int i = fork_node_idx + 1; i < join_node_idx; ++i) {
concurrent_event.original_order.push_back(cgraph->nodes[i]);
}
std::unordered_map<const ggml_tensor *, ggml_cuda_concurrent_event> & concurrent_events = cuda_ctx->stream_context().concurrent_events;
GGML_ASSERT(concurrent_events.find(root_node) == concurrent_events.end());
concurrent_events.emplace(root_node, std::move(concurrent_event));
GGML_LOG_DEBUG("Adding stream at node %s %p\n", root_node->name, root_node);
concurrent_node_ranges.emplace_back(fork_node_idx, join_node_idx);
// interleave tensors to extend lifetimes so that ggml graph doesn't recycle them
// example transformation:
// [attn-norm, QMul, QNorm, QRope, KMul, KNorm, KRope, VMul, attn] ->
// [attn-norm, QMul, KMul, VMul, QNorm, VNorm, QRope, KRope, attn]
while (current_node_idx < join_node_idx) {
std::vector<const ggml_tensor *> & branch_nodes = nodes_per_branch[current_branch_idx];
bool has_node = false;
for (std::vector<const ggml_tensor *> branch_node : nodes_per_branch) {
has_node |= branch_node.size() > 0;
}
GGML_ASSERT(has_node);
if (branch_nodes.empty()) {
current_branch_idx = (current_branch_idx + 1) % n_branches;
continue;
}
cgraph->nodes[current_node_idx] = const_cast<ggml_tensor *>(branch_nodes.front());
current_node_idx++;
branch_nodes.erase(branch_nodes.begin());
// append all empty nodes
while (!branch_nodes.empty() && is_noop(branch_nodes.front())) {
cgraph->nodes[current_node_idx] = const_cast<ggml_tensor *>(branch_nodes.front());
current_node_idx++;
branch_nodes.erase(branch_nodes.begin());
}
current_branch_idx = (current_branch_idx + 1) % n_branches;
}
}
}
}
}
static const ggml_backend_i ggml_backend_cuda_interface = {
/* .get_name = */ ggml_backend_cuda_get_name,
/* .free = */ ggml_backend_cuda_free,
@@ -3665,7 +4028,7 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
/* .event_record = */ ggml_backend_cuda_event_record,
/* .event_wait = */ ggml_backend_cuda_event_wait,
/* .graph_optimize = */ NULL,
/* .graph_optimize = */ ggml_backend_cuda_graph_optimize,
};
static ggml_guid_t ggml_backend_cuda_guid() {
@@ -3837,7 +4200,7 @@ static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t *
// Check if UMA is explicitly enabled via environment variable
bool uma_env = getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr;
bool is_uma = prop.unifiedAddressing > 0 || uma_env;
bool is_uma = prop.integrated > 0 || uma_env;
if (is_uma) {
// For UMA systems (like DGX Spark), use system memory info
@@ -4254,7 +4617,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
case GGML_OP_CUMSUM:
case GGML_OP_TRI:
return true;
case GGML_OP_SOLVE_TRI:
return op->src[0]->ne[0] <= 64 && op->src[1]->ne[0] <= 32;
default:
return false;
}

View File

@@ -68,10 +68,31 @@ static __device__ __forceinline__ half2 ggml_cuda_movmatrix(const half2 x) {
namespace ggml_cuda_mma {
// Some architectures like Volta or CDNA3 perform multiple matrix multiplications per warp in parallel,
// effectively the warp is being split into subgroups of threads that each perform a single mma instruction.
// In those cases the data can be split in different ways across the warp.
enum data_layout {
// By default the data uses the I direction as its major dimension and the J direction as its minor dimension.
// For the A/C matrices this means I major == row major, J major == column major.
// For the B matrix this means I major == column major, J major == row major.
// MIRRORED == Each data value is held exactly once per thread subgroup.
DATA_LAYOUT_I_MAJOR = 0, // Always used for Turing, Ampere, Ada Lovelace, consumer Blackwell.
DATA_LAYOUT_I_MAJOR_MIRRORED = 10,
DATA_LAYOUT_J_MAJOR_MIRRORED = 20,
};
// Implemented mma combinations are:
// - (I_MAJOR, I_MAJOR) -> I_MAJOR
// - (I_MAJOR, I_MAJOR_MIRRORED) -> I_MAJOR
// - (I_MAJOR, J_MAJOR_MIRRORED) -> I_MAJOR
template <int I_, int J_, typename T, data_layout ds_=DATA_LAYOUT_I_MAJOR>
struct tile {};
template <int I_, int J_, typename T>
struct tile {
static constexpr int I = I_;
static constexpr int J = J_;
struct tile<I_, J_, T, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
#if defined(AMD_MFMA_AVAILABLE)
static constexpr int ne = I * J / 64;
@@ -131,9 +152,9 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 32 && J == 8) {
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (l & 2) | (threadIdx.x % 2);
return (((threadIdx.x % 16) / 4) * 8) + ((threadIdx.x / 16) * 4) + (l & 2) + (threadIdx.x % 2);
#else
return (l & 2) | (threadIdx.x & ~2);
return (l & 2) + (threadIdx.x & ~2);
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
} else {
NO_DEVICE_CODE;
@@ -143,7 +164,7 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 32 && J == 8) {
return (threadIdx.x & 2) | (l & (4 + 1));
return (threadIdx.x & 2) + (l & (4 + 1));
} else {
NO_DEVICE_CODE;
return -1;
@@ -152,6 +173,9 @@ namespace ggml_cuda_mma {
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
static constexpr int ne = I * J / 32;
#elif defined(RDNA3)
static constexpr int ne = (I == 16 && J == 16) ? I * J / 32 : I * J / 16;
#endif // defined(RDNA4)
T x[ne] = {0};
static constexpr __device__ bool supported() {
@@ -161,7 +185,11 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 16 && J == 16) {
#if defined(RDNA4)
return 8 * (threadIdx.x / 16) + l;
#elif defined(RDNA3)
return 2 * l + (threadIdx.x / 16);
#endif // defined(RDNA4)
} else {
NO_DEVICE_CODE;
return -1;
@@ -176,7 +204,6 @@ namespace ggml_cuda_mma {
return -1;
}
}
#endif
#else
static constexpr int ne = I * J / 32;
T x[ne] = {0};
@@ -196,9 +223,9 @@ namespace ggml_cuda_mma {
} else if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 8) | (threadIdx.x / 4);
return ((l / 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 16) {
return (((l / 2) % 2) * 8) | (threadIdx.x / 4);
return (((l / 2) % 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 32 && J == 8) {
return tile<16, 8, T>::get_i(l); // Memory layout simply repeated with same pattern in i direction.
} else {
@@ -211,11 +238,11 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 8) {
return ((threadIdx.x % 4) * 2) | (l % 2);
return ((threadIdx.x % 4) * 2) + (l % 2);
} else if constexpr (I == 16 && J == 16) {
return ((l / 4) * 8) | ((threadIdx.x % 4) * 2) | (l % 2);
return ((l / 4) * 8) + ((threadIdx.x % 4) * 2) + (l % 2);
} else if constexpr (I == 32 && J == 8) {
return tile<16, 8, T>::get_j(l); // Memory layout simply repeated with same pattern in i direction.
} else {
@@ -227,26 +254,24 @@ namespace ggml_cuda_mma {
};
template <int I_, int J_>
struct tile<I_, J_, half2> {
static constexpr int I = I_;
static constexpr int J = J_;
struct tile<I_, J_, half2, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
static constexpr int ne = I == 8 && J == 8 ? I * J / (WARP_SIZE/4) : I * J / WARP_SIZE;
static constexpr int ne = I * J / WARP_SIZE;
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 8) return true;
if (I == 32 && J == 8) return true;
if (I == 32 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 8 && J == 8) {
return ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
} else if constexpr (I == 32 && J == 8) {
if constexpr (I == 32 && J == 4) {
#ifdef GGML_CUDA_MMA_NO_VOLTA_PERM
return (((threadIdx.x % 16) / 4) * 8) | ((threadIdx.x / 16) * 4) | (threadIdx.x % 4);
return (((threadIdx.x % 16) / 4) * 8) + ((threadIdx.x / 16) * 4) + (threadIdx.x % 4);
#else
return threadIdx.x;
#endif // GGML_CUDA_MMA_NO_VOLTA_PERM
@@ -257,7 +282,7 @@ namespace ggml_cuda_mma {
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr ((I == 8 || I == 32) && J == 8) {
if constexpr (I == 32 && J == 4) {
return l;
} else {
NO_DEVICE_CODE;
@@ -265,6 +290,7 @@ namespace ggml_cuda_mma {
}
}
#elif defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
half2 x[ne] = {{0.0f, 0.0f}};
@@ -307,11 +333,11 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 4) {
return (l * 8) | (threadIdx.x / 4);
return (l * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 8) {
return ((l % 2) * 8) | (threadIdx.x / 4);
return ((l % 2) * 8) + (threadIdx.x / 4);
} else if constexpr (I == 32 && J == 8) {
return ((l / 4) * 16) | ((l % 2) * 8) | (threadIdx.x / 4);
return ((l / 4) * 16) + ((l % 2) * 8) + (threadIdx.x / 4);
} else {
NO_DEVICE_CODE;
return -1;
@@ -320,13 +346,13 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 4) | (threadIdx.x % 4);
return ((l / 2) * 4) + (threadIdx.x % 4);
} else if constexpr (I == 32 && J == 8) {
return ((l & 2) * 2) | (threadIdx.x % 4);
return ((l & 2) * 2) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
@@ -336,14 +362,15 @@ namespace ggml_cuda_mma {
};
template <int I_, int J_>
struct tile<I_, J_, nv_bfloat162> {
static constexpr int I = I_;
static constexpr int J = J_;
struct tile<I_, J_, nv_bfloat162, DATA_LAYOUT_I_MAJOR> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR;
static constexpr int ne = I * J / WARP_SIZE;
#if defined(AMD_WMMA_AVAILABLE)
static constexpr int ne = I * J / 32;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
#if defined(AMD_WMMA_AVAILABLE)
static constexpr __device__ bool supported() {
if (I == 16 && J == 8) return true;
return false;
@@ -367,9 +394,6 @@ namespace ggml_cuda_mma {
}
}
#else
static constexpr int ne = I * J / WARP_SIZE;
nv_bfloat162 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 8) return true;
if (I == 16 && J == 4) return true;
@@ -381,9 +405,9 @@ namespace ggml_cuda_mma {
if constexpr (I == 8 && J == 8) {
return threadIdx.x / 4;
} else if constexpr (I == 16 && J == 4) {
return (l * 8) | (threadIdx.x / 4);
return (l * 8) + (threadIdx.x / 4);
} else if constexpr (I == 16 && J == 8) {
return ((l % 2) * 8) | (threadIdx.x / 4);
return ((l % 2) * 8) + (threadIdx.x / 4);
} else {
NO_DEVICE_CODE;
return -1;
@@ -392,11 +416,11 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 8) {
return (l * 4) | (threadIdx.x % 4);
return (l * 4) + (threadIdx.x % 4);
} else if constexpr (I == 16 && J == 4) {
return threadIdx.x % 4;
} else if constexpr (I == 16 && J == 8) {
return ((l / 2) * 4) | (threadIdx.x % 4);
return ((l / 2) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
@@ -405,6 +429,73 @@ namespace ggml_cuda_mma {
#endif // defined(AMD_WMMA_AVAILABLE)
};
template <int I_, int J_>
struct tile<I_, J_, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_I_MAJOR_MIRRORED;
static constexpr int ne = I * J / (WARP_SIZE/4);
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int /*l*/) {
if constexpr (I == 8 && J == 4) {
return ((threadIdx.x / 16) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 4) {
return l;
} else {
NO_DEVICE_CODE;
return -1;
}
}
};
template <int I_, int J_>
struct tile<I_, J_, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> {
static constexpr int I = I_;
static constexpr int J = J_;
static constexpr data_layout dl = DATA_LAYOUT_J_MAJOR_MIRRORED;
static constexpr int ne = I * J / (WARP_SIZE/4);
half2 x[ne] = {{0.0f, 0.0f}};
static constexpr __device__ bool supported() {
if (I == 8 && J == 4) return true;
return false;
}
static __device__ __forceinline__ int get_i(const int l) {
if constexpr (I == 8 && J == 4) {
return ((l / 2) * 4) + (threadIdx.x % 4);
} else {
NO_DEVICE_CODE;
return -1;
}
}
static __device__ __forceinline__ int get_j(const int l) {
if constexpr (I == 8 && J == 4) {
return ((threadIdx.x / 16) * 2) + (l % 2);
} else {
NO_DEVICE_CODE;
return -1;
}
}
};
#if defined(TURING_MMA_AVAILABLE)
template <int I, int J>
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
tile<I, J/2, half2> ret;
@@ -422,9 +513,26 @@ namespace ggml_cuda_mma {
return ret;
}
#else // Volta
template <int I, int J>
static __device__ __forceinline__ tile<I, J/2, half2> get_half2(const tile<I, J, float> & tile_float) {
tile<I, J/2, half2> ret;
#pragma unroll
for (int l0 = 0; l0 < tile_float.ne; l0 += 4) {
ret.x[l0/2 + 0] = make_half2(tile_float.x[l0 + 0], tile_float.x[l0 + 1]);
ret.x[l0/2 + 1] = make_half2(tile_float.x[l0 + 2], tile_float.x[l0 + 3]);
template <int I, int J, typename T>
static __device__ __forceinline__ void load_generic(tile<I, J, T> & t, const T * __restrict__ xs0, const int stride) {
// On Volta FP16 and FP32 tiles have a different memory layout,
// for the conversion threads with an offset of 2 need to exchange half their values:
ret.x[l0/2 + (((threadIdx.x % 4) / 2) ^ 1)] = __shfl_xor_sync(
0xFFFFFFFF, ret.x[l0/2 + (((threadIdx.x % 4) / 2) ^ 1)], 2, WARP_SIZE);
}
return ret;
}
#endif // defined(TURING_MMA_AVAILABLE)
template <int I, int J, typename T, data_layout dl>
static __device__ __forceinline__ void load_generic(tile<I, J, T, dl> & t, const T * __restrict__ xs0, const int stride) {
#if defined(AMD_MFMA_AVAILABLE)
if constexpr (I == 64 && J == 2) { // Special tile size to load <16, 4> as <16, 8>
#pragma unroll
@@ -443,18 +551,34 @@ namespace ggml_cuda_mma {
} else if constexpr (std::is_same_v<T, int>) {
if constexpr (I == 16 && J == 4) {
int64_t * xi = (int64_t *) t.x;
#if defined(RDNA4)
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 2 * (threadIdx.x / t.I));
xi[0] = xs[0];
}else if constexpr (I == 16 && J == 8) {
#elif defined(RDNA3)
static_assert(tile<I,J,T>::ne >= 4, "fragment too small");
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride);
xi[0] = xs[0];
xi[1] = xs[1];
#endif // defined(RDNA4)
} else if constexpr (I == 16 && J == 8) {
int64_t * xi = (int64_t *) t.x;
#if defined(RDNA4)
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I));
xi[0] = xs[0];
const int64_t * xs1 = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride + 4 * (threadIdx.x / t.I) + 2);
xi[1] = xs1[0];
}else{
#elif defined(RDNA3)
static_assert(tile<I,J,T>::ne >= 8, "fragment too small");
const int64_t * xs = (int64_t *) ((const int *) xs0 + (threadIdx.x % t.I) * stride);
// contiguous four 64-bit chunks per lane for the wider RDNA3 fragment
xi[0] = xs[0];
xi[1] = xs[1];
const int64_t * xs1 = xs + 2;
xi[2] = xs1[0];
xi[3] = xs1[1];
#endif // defined(RDNA4)
} else {
NO_DEVICE_CODE;
}
} else {
@@ -511,18 +635,6 @@ namespace ggml_cuda_mma {
: "=r"(xi[0]), "=r"(xi[1]), "=r"(xi[2]), "=r"(xi[3])
: "l"(xs));
#else
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
GGML_UNUSED_VARS(t, xs0, stride);
NO_DEVICE_CODE;
#else
load_generic(t, xs0, stride);
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // TURING_MMA_AVAILABLE
}
template <typename T>
static __device__ __forceinline__ void load_ldmatrix(
tile<32, 8, T> & t, const T * __restrict__ xs0, const int stride) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#if 1
// TODO: more generic handling
@@ -533,9 +645,31 @@ namespace ggml_cuda_mma {
load_generic(t, xs0, stride);
#endif // 1
#else
tile<16, 8, T> * t16 = (tile<16, 8, T> *) &t;
load_ldmatrix(t16[0], xs0 + 0*stride, stride);
load_ldmatrix(t16[1], xs0 + 16*stride, stride);
load_generic(t, xs0, stride);
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
#endif // TURING_MMA_AVAILABLE
}
static __device__ __forceinline__ void load_ldmatrix(
tile<8, 4, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> & t, const half2 * __restrict__ xs0, const int stride) {
ggml_cuda_memcpy_1<4*sizeof(half2)>(t.x, xs0 + t.get_i(0)*stride);
}
static __device__ __forceinline__ void load_ldmatrix(
tile<8, 4, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> & t, const half2 * __restrict__ xs0, const int stride) {
#pragma unroll
for (int l0 = 0; l0 < t.ne; l0 += 2) {
ggml_cuda_memcpy_1<2*sizeof(half2)>(t.x + l0, xs0 + t.get_i(l0)*stride + t.get_j(l0));
}
}
static __device__ __forceinline__ void load_ldmatrix(
tile<32, 4, half2> & t, const half2 * __restrict__ xs0, const int stride) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
ggml_cuda_memcpy_1<4*sizeof(half2)>(t.x, xs0 + t.get_i(0)*stride);
#else
GGML_UNUSED_VARS(t, xs0, stride);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
}
@@ -747,12 +881,14 @@ namespace ggml_cuda_mma {
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[3]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#elif defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
using halfx8_t = __attribute__((ext_vector_type(8))) _Float16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const halfx8_t& a_frag = reinterpret_cast<const halfx8_t&>(A.x[0]);
const halfx8_t& b_frag = reinterpret_cast<const halfx8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32_gfx12(a_frag, b_frag, acc_frag);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@@ -762,12 +898,14 @@ namespace ggml_cuda_mma {
static __device__ __forceinline__ void mma(
tile<16, 16, float> & D, const tile<16, 8, nv_bfloat162> & A, const tile<16, 8, nv_bfloat162> & B) {
#if defined(AMD_WMMA_AVAILABLE)
#if defined(RDNA4)
using bf16x8_t = __attribute__((ext_vector_type(8))) __bf16;
using floatx8_t = __attribute__((ext_vector_type(8))) float;
floatx8_t& acc_frag = reinterpret_cast<floatx8_t&>(D.x[0]);
const bf16x8_t& a_frag = reinterpret_cast<const bf16x8_t&>(A.x[0]);
const bf16x8_t& b_frag = reinterpret_cast<const bf16x8_t&>(B.x[0]);
acc_frag = __builtin_amdgcn_wmma_f32_16x16x16_bf16_w32_gfx12(a_frag, b_frag, acc_frag);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
@@ -796,14 +934,14 @@ namespace ggml_cuda_mma {
#endif // defined(CDNA3)
#elif defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
@@ -822,7 +960,30 @@ namespace ggml_cuda_mma {
acc[0],
true
);
#endif // defined(RDNA4)
#elif defined(RDNA3)
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
int32x4_t * a_vec = (int32x4_t *) A.x;
int32x4_t * b_vec = (int32x4_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
true
);
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[1],
true,
b_vec[1],
acc[0],
true
);
#endif // RDNA4
#else
GGML_UNUSED_VARS(D, A, B);
@@ -860,14 +1021,14 @@ namespace ggml_cuda_mma {
template <typename T1, typename T2, int J, int K>
static __device__ __forceinline__ void mma(
tile<32, J, T1> & D, const tile<32, K, T2> & A, const tile<J, K, T2> & B) {
tile<16, J, T1> * D16 = (tile<16, J, T1> *) &D;
tile<16, K, T2> * A16 = (tile<16, K, T2> *) &A;
tile <16, J, T1> * D16 = reinterpret_cast< tile<16, J, T1> *>(&D);
const tile<16, K, T2> * A16 = reinterpret_cast<const tile<16, K, T2> *>(&A);
mma(D16[0], A16[0], B);
mma(D16[1], A16[1], B);
}
static __device__ __forceinline__ void mma(
tile<32, 8, float> & D, const tile<32, 8, half2> & A, const tile<8, 8, half2> & B) {
tile<32, 8, float> & D, const tile<32, 4, half2> & A, const tile<8, 4, half2, DATA_LAYOUT_I_MAJOR_MIRRORED> & B) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
@@ -880,46 +1041,69 @@ namespace ggml_cuda_mma {
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[4]), "r"(Axi[5]), "r"(Bxi[4]), "r"(Bxi[5]));
asm("mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f32 "
"{%0, %1, %2, %3, %4, %5, %6, %7}, {%8, %9}, {%10, %11}, {%0, %1, %2, %3, %4, %5, %6, %7};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3]), "+r"(Dxi[4]), "+r"(Dxi[5]), "+r"(Dxi[6]), "+r"(Dxi[7])
: "r"(Axi[6]), "r"(Axi[7]), "r"(Bxi[6]), "r"(Bxi[7]));
#else
tile<16, 8, float> * D16 = (tile<16, 8, float> *) &D;
tile<16, 8, half2> * A16 = (tile<16, 8, half2> *) &A;
mma(D16[0], A16[0], B);
mma(D16[1], A16[1], B);
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
}
static __device__ __forceinline__ void mma(
tile<32, 4, half2> & D, const tile<32, 4, half2> & A, const tile<8, 4, half2, DATA_LAYOUT_J_MAJOR_MIRRORED> & B) {
#if __CUDA_ARCH__ == GGML_CUDA_CC_VOLTA
const int * Axi = (const int *) A.x;
const int * Bxi = (const int *) B.x;
int * Dxi = (int *) D.x;
asm("mma.sync.aligned.m8n8k4.row.row.f16.f16.f16.f16 "
"{%0, %1, %2, %3}, {%4, %5}, {%6, %7}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]), "r"(Bxi[1]));
asm("mma.sync.aligned.m8n8k4.row.row.f16.f16.f16.f16 "
"{%0, %1, %2, %3}, {%4, %5}, {%6, %7}, {%0, %1, %2, %3};"
: "+r"(Dxi[0]), "+r"(Dxi[1]), "+r"(Dxi[2]), "+r"(Dxi[3])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[2]), "r"(Bxi[3]));
#else
GGML_UNUSED_VARS(D, A, B);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
}
static __device__ __forceinline__ void mma(
tile<16, 16, int> & D, const tile<16, 4, int> & A, const tile<16, 4, int> & B) {
#if defined(AMD_WMMA_AVAILABLE)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
#if defined(RDNA4)
using int32x2_t = __attribute__((__vector_size__(2 * sizeof(int)))) int;
int32x2_t * a_vec = (int32x2_t *) A.x;
int32x2_t * b_vec = (int32x2_t *) B.x;
using int32x8_t = __attribute__((__vector_size__(8 * sizeof(int)))) int;
int32x8_t * acc = (int32x8_t *) D.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
#elif defined(RDNA3)
using int32x4_t = __attribute__((__vector_size__(4 * sizeof(int)))) int;
int32x4_t * a_vec = (int32x4_t *) A.x;
int32x4_t * b_vec = (int32x4_t *) B.x;
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32_gfx12(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
acc[0] = __builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
true,
a_vec[0],
true,
b_vec[0],
acc[0],
false
);
#endif // RDNA4
#else
GGML_UNUSED(D);
GGML_UNUSED(A);
GGML_UNUSED(B);
NO_DEVICE_CODE;
#endif
#endif // AMD_WMMA_AVAILABLE
}
}

View File

@@ -151,7 +151,7 @@ bool ggml_cuda_should_use_mmf(enum ggml_type type, int cc, int warp_size, const
return false;
}
} else {
if (src1_ncols > 16 || GGML_CUDA_CC_IS_RDNA4(cc)) {
if (src1_ncols > 16) {
return false;
}
}

View File

@@ -37,23 +37,19 @@ static __global__ void mul_mat_f(
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
#ifdef VOLTA_MMA_AVAILABLE
if constexpr (!std::is_same_v<T, half2>) {NO_DEVICE_CODE;} else {
typedef tile<32, 4, T, DATA_LAYOUT_I_MAJOR> tile_A;
typedef tile< 8, 4, T, DATA_LAYOUT_I_MAJOR_MIRRORED> tile_B;
typedef tile<32, 8, float, DATA_LAYOUT_I_MAJOR> tile_C;
#else
typedef tile<16, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<16, 8, float> tile_C;
#endif // VOLTA_MMA_AVAILABLE
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
if constexpr (!tile_A::supported() || !tile_B::supported() || !tile_C::supported()) {
NO_DEVICE_CODE;
return;
}
@@ -248,6 +244,9 @@ static __global__ void mul_mat_f(
}
}
}
#ifdef VOLTA_MMA_AVAILABLE
}
#endif //VOLTA_MMA_AVAILABLE
#else
GGML_UNUSED_VARS(x, y, ids, dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,
@@ -278,27 +277,24 @@ static __global__ void mul_mat_f_ids(
typedef tile<16, 8, T> tile_A;
typedef tile<tile_B_I, 8, T> tile_B;
typedef tile<16, tile_C_J, float> tile_C;
constexpr bool a_supported = tile_A::supported();
constexpr bool b_supported = tile_B::supported();
constexpr bool c_supported = tile_C::supported();
constexpr bool supported = a_supported && b_supported && c_supported;
#else
constexpr bool I_16_supported = tile<16, 8, T>::supported() && tile<16, 8, float>::supported();
constexpr bool I_32_supported = tile<32, 8, T>::supported() && tile<32, 8, float>::supported();
constexpr bool supported = I_16_supported || I_32_supported;
constexpr int I_preferred = I_16_supported ? 16 : 32; // For Turing MMA both work but 16 is ~1% faster.
typedef tile<I_preferred, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<I_preferred, 8, float> tile_C;
#ifdef VOLTA_MMA_AVAILABLE
if constexpr (!std::is_same_v<T, half2>) {NO_DEVICE_CODE;} else {
typedef tile<32, 4, T, DATA_LAYOUT_I_MAJOR> tile_A;
typedef tile< 8, 4, T, DATA_LAYOUT_I_MAJOR_MIRRORED> tile_B;
typedef tile<32, 8, float, DATA_LAYOUT_I_MAJOR> tile_C;
#else
typedef tile<16, 8, T> tile_A;
typedef tile<8, 8, T> tile_B;
typedef tile<16, 8, float> tile_C;
#endif // VOLTA_MMA_AVAILABLE
#endif // defined(AMD_WMMA_AVAILABLE)
if constexpr (!supported) {
if constexpr (!tile_A::supported() || !tile_B::supported() || !tile_C::supported()) {
NO_DEVICE_CODE;
return;
}
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
constexpr int tile_k_padded = warp_size + 4;
constexpr int ntA = rows_per_block / tile_A::I;
@@ -517,6 +513,9 @@ static __global__ void mul_mat_f_ids(
}
}
}
#ifdef VOLTA_MMA_AVAILABLE
}
#endif // VOLTA_MMA_AVAILABLE
#else
GGML_UNUSED_VARS(x, y, ids_src_compact, ids_dst_compact, expert_bounds, dst,
ncols, ncols_dst_total, nchannels_dst, stride_row, stride_col_y, stride_col_dst,

View File

@@ -307,10 +307,9 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
}
if (amd_wmma_available(cc)) {
if (GGML_CUDA_CC_IS_RDNA4(cc)) {
return true;
}
return true;
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -1542,8 +1542,10 @@ static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma(
tile_C Cm;
if (k01 >= MMQ_TILE_NE_K * 3/4) {
tile_A A1;
A1.x[0] = 0x01010101;
A1.x[1] = 0x01010101;
#pragma unroll
for (int l = 0; l < tile_A::ne; ++l) {
A1.x[l] = 0x01010101;
}
mma(Cm, A1, B);
}

View File

@@ -0,0 +1,203 @@
#include "common.cuh"
#include "ggml.h"
#include "solve_tri.cuh"
#define MAX_N_FAST 64
#define MAX_K_FAST 32
// ======================
// Fast Kernel (n <= 64, k <= 32) - Warp-based parallel reduction
// ======================
// When ncols_template == 0 the bounds for the loops in this function are not
// known and can't be unrolled. As we want to keep pragma unroll for all other
// cases we supress the clang transformation warning here.
#ifdef __clang__
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template <int n_template, int k_template>
static __global__ void solve_tri_f32_fast(const float * __restrict__ A,
const float * __restrict__ B,
float * __restrict__ X,
const uint3 ne02,
const size_t nb02,
const size_t nb03,
const size_t nb12,
const size_t nb13,
const size_t nb2,
const size_t nb3,
const int n_arg,
const int k_arg) {
const int n = n_template == 0 ? n_arg : n_template;
const int k = k_template == 0 ? k_arg : k_template;
const int batch_idx = blockIdx.x;
const int lane = threadIdx.x;
const int col_idx = threadIdx.y;
if (col_idx >= k) {
return;
}
const uint2 i02_i03 = fast_div_modulo(batch_idx, ne02);
const int64_t i02 = i02_i03.y;
const int64_t i03 = i02_i03.x;
const float * const A_batch = (const float *) (A + i02 * nb02 + i03 * nb03);
const float * const B_batch = (const float *) (B + i02 * nb12 + i03 * nb13);
float * X_batch = (float *) (X + i02 * nb2 + i03 * nb3);
__shared__ float sA[MAX_N_FAST * MAX_N_FAST];
__shared__ float sXt[MAX_N_FAST * (MAX_K_FAST + 1)];
const int offset = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
for (int i = 0; i < n * n; i += k * WARP_SIZE) {
int i0 = i + offset;
if (i0 < n * n) {
sA[i0] = A_batch[i0];
}
}
const int rows_per_warp = (n + WARP_SIZE - 1) / WARP_SIZE;
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
sXt[col_idx * n + i0] = B_batch[i0 * k + col_idx];
}
}
__syncthreads();
#pragma unroll
for (int row = 0; row < n; ++row) {
float sum = 0.0f;
{
int j = lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
}
if (row >= WARP_SIZE) {
int j = WARP_SIZE + lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
}
sum = warp_reduce_sum(sum);
if (lane == 0) {
const float b_val = sXt[col_idx * n + row];
const float a_diag = sA[row * n + row];
// no safeguards for division by zero because that indicates corrupt
// data anyway
sXt[col_idx * n + row] = (b_val - sum) / a_diag;
}
}
__syncthreads();
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
X_batch[i0 * k + col_idx] = sXt[col_idx * n + i0];
}
}
}
#ifdef __clang__
# pragma clang diagnostic pop
#endif // __clang__
static void solve_tri_f32_cuda(const float * A,
const float * B,
float * X,
int n,
int k,
int64_t ne02,
int64_t ne03,
size_t nb02,
size_t nb03,
size_t nb12,
size_t nb13,
size_t nb2,
size_t nb3,
cudaStream_t stream) {
const uint3 ne02_fd = init_fastdiv_values((uint32_t) ne02);
dim3 threads(WARP_SIZE, k);
dim3 grid(ne02 * ne03);
if (n == 64) {
switch (k) {
case 32:
solve_tri_f32_fast<64, 32>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 16:
solve_tri_f32_fast<64, 16>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 14:
solve_tri_f32_fast<64, 14>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 12:
solve_tri_f32_fast<64, 12>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 10:
solve_tri_f32_fast<64, 10>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 8:
solve_tri_f32_fast<64, 8>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 6:
solve_tri_f32_fast<64, 6>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 4:
solve_tri_f32_fast<64, 4>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 2:
solve_tri_f32_fast<64, 2>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
case 1:
solve_tri_f32_fast<64, 1>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, 0, 0);
break;
default:
solve_tri_f32_fast<0, 0>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, n, k);
}
} else { // run general case
solve_tri_f32_fast<0, 0>
<<<grid, threads, 0, stream>>>(A, B, X, ne02_fd, nb02, nb03, nb12, nb13, nb2, nb3, n, k);
}
}
void ggml_cuda_op_solve_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // A (triangular n x x matrix)
const ggml_tensor * src1 = dst->src[1]; // B (right hand side of n x k equation columns)
ggml_is_contiguous(src0);
ggml_is_contiguous(src1);
const int64_t n = src0->ne[0];
const int64_t k = src1->ne[0];
GGML_ASSERT(n <= 64);
GGML_ASSERT(k <= 32);
solve_tri_f32_cuda((const float *) src0->data, (const float *) src1->data, (float *) dst->data, n, k, src0->ne[2],
src0->ne[3], src0->nb[2] / sizeof(float), src0->nb[3] / sizeof(float),
src1->nb[2] / sizeof(float), src1->nb[3] / sizeof(float), dst->nb[2] / sizeof(float),
dst->nb[3] / sizeof(float), ctx.stream());
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_solve_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

136
ggml/src/ggml-cuda/tri.cu Normal file
View File

@@ -0,0 +1,136 @@
#include "common.cuh"
#include "convert.cuh"
#include "tri.cuh"
#include "ggml.h"
template<typename T, bool prefix_keep, int add_to_split>
static __global__ void tri_kernel(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3) {
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
const int64_t split_point = i1 + add_to_split;
GGML_UNUSED_VARS(nb00, nb0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
const T * src_row = src + i1*nb01 + i2*nb02 + i3*nb03;
T * dst_row = dst + i1*nb1 + i2*nb2 + i3*nb3;
if constexpr (prefix_keep) {
for (int64_t i0 = threadIdx.x; i0 < split_point; i0 += blockDim.x) {
dst_row[i0] = src_row[i0];
}
for (int64_t i0 = threadIdx.x + split_point; i0 < ne00; i0 += blockDim.x) {
dst_row[i0] = ggml_cuda_cast<T, float>(0.0f);
}
} else {
for (int64_t i0 = threadIdx.x; i0 < split_point; i0 += blockDim.x) {
dst_row[i0] = ggml_cuda_cast<T, float>(0.0f);
}
for (int64_t i0 = threadIdx.x + split_point; i0 < ne00; i0 += blockDim.x) {
dst_row[i0] = src_row[i0];
}
}
}
template<typename T>
static void tri_cuda(
const T * src, T * dst,
const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne03,
const int64_t nb00, const int64_t nb01, const int64_t nb02, const int64_t nb03,
const int64_t nb0, const int64_t nb1, const int64_t nb2, const int64_t nb3,
const ggml_tri_type ttype,
cudaStream_t stream) {
dim3 block_dims(CUDA_TRI_BLOCK_SIZE, 1, 1);
dim3 grid_dims(ne01, ne02, ne03);
const size_t type_size = sizeof(T);
const int add_to_split = (ttype == GGML_TRI_TYPE_LOWER_DIAG || ttype == GGML_TRI_TYPE_UPPER) ? 1 : 0;
const bool prefix_keep = (ttype == GGML_TRI_TYPE_LOWER || ttype == GGML_TRI_TYPE_LOWER_DIAG);
if (prefix_keep) {
if (add_to_split == 0) {
tri_kernel<T, true, 0><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else { // only 0 and 1 supported
tri_kernel<T, true, 1><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
} else {
if (add_to_split == 0) {
tri_kernel<T, false, 0><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
} else {
tri_kernel<T, false, 1><<<grid_dims, block_dims, 0, stream>>>(
src, dst,
ne00, ne01, ne02, ne03,
nb00 / type_size, nb01 / type_size, nb02 / type_size, nb03 / type_size,
nb0 / type_size, nb1 / type_size, nb2 / type_size, nb3 / type_size
);
}
}
}
void ggml_cuda_op_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
cudaStream_t stream = ctx.stream();
const ggml_tri_type ttype = static_cast<ggml_tri_type>(ggml_get_op_params_i32(dst, 0));
GGML_ASSERT(src0->type == dst->type);
switch(src0->type) {
case GGML_TYPE_F32:
{
tri_cuda(
(const float *)src0->data, (float *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
case GGML_TYPE_F16:
{
tri_cuda(
(const half *)src0->data, (half *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
case GGML_TYPE_BF16:
{
tri_cuda(
(const nv_bfloat16 *)src0->data, (nv_bfloat16 *)dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3],
ttype, stream
);
} break;
default:
GGML_ABORT("fatal error");
}
}

View File

@@ -0,0 +1,5 @@
#include "common.cuh"
#define CUDA_TRI_BLOCK_SIZE 256
void ggml_cuda_op_tri(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -81,6 +81,76 @@ static __global__ void upscale_f32_bilinear(const float * x, float * dst,
dst[index] = result;
}
// Similar to F.interpolate(..., mode="bilinear", align_corners=False, antialias=True)
// https://github.com/pytorch/pytorch/blob/8871ff29b743948d1225389d5b7068f37b22750b/aten/src/ATen/native/cpu/UpSampleKernel.cpp
static __global__ void upscale_f32_bilinear_antialias(const float * src0, float * dst,
const int nb00, const int nb01, const int nb02, const int nb03,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset) {
const int64_t index = threadIdx.x + blockIdx.x * blockDim.x;
const int64_t dst_total_elements = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
if (index >= dst_total_elements) {
return;
}
const int i10_dst = index % ne10_dst;
const int i11_dst = (index / ne10_dst) % ne11_dst;
const int i12_dst = (index / (ne10_dst * ne11_dst)) % ne12_dst;
const int i13_dst = index / (ne10_dst * ne11_dst * ne12_dst);
const int i02_src = (int)(i12_dst / sf2);
const int i03_src = (int)(i13_dst / sf3);
const float y = ((float)i11_dst + pixel_offset) / sf1;
const float x = ((float)i10_dst + pixel_offset) / sf0;
// support and invscale, minimum 1 pixel for bilinear
const float support1 = max(1.0f / sf1, 1.0f);
const float invscale1 = 1.0f / support1;
const float support0 = max(1.0f / sf0, 1.0f);
const float invscale0 = 1.0f / support0;
// the range of source pixels that contribute
const int64_t x_min = max(int64_t(0), int64_t(x - support0 + pixel_offset));
const int64_t x_max = min(int64_t(ne00_src), int64_t(x + support0 + pixel_offset));
const int64_t y_min = max(int64_t(0), int64_t(y - support1 + pixel_offset));
const int64_t y_max = min(int64_t(ne01_src), int64_t(y + support1 + pixel_offset));
// bilinear filter with antialiasing
float val = 0.0f;
float total_weight = 0.0f;
auto triangle_filter = [](float x) -> float {
return max(1.0f - fabsf(x), 0.0f);
};
for (int64_t sy = y_min; sy < y_max; sy++) {
const float weight_y = triangle_filter((sy - y + pixel_offset) * invscale1);
for (int64_t sx = x_min; sx < x_max; sx++) {
const float weight_x = triangle_filter((sx - x + pixel_offset) * invscale0);
const float weight = weight_x * weight_y;
if (weight <= 0.0f) {
continue;
}
const float pixel = *(const float *)((const char *)src0 + sx*nb00 + sy*nb01 + i02_src*nb02 + i03_src*nb03);
val += pixel * weight;
total_weight += weight;
}
}
if (total_weight > 0.0f) {
val /= total_weight;
}
dst[index] = val;
}
namespace bicubic_interpolation {
// https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm
__device__ const float a = -0.75f; // use alpha = -0.75 (same as PyTorch)
@@ -161,11 +231,15 @@ static void upscale_f32_bilinear_cuda(const float * x, float * dst,
const int ne00_src, const int ne01_src,
const int ne10_dst, const int ne11_dst, const int ne12_dst, const int ne13_dst,
const float sf0, const float sf1, const float sf2, const float sf3,
const float pixel_offset, cudaStream_t stream) {
const float pixel_offset, bool antialias, cudaStream_t stream) {
const int64_t dst_size = ne10_dst * ne11_dst * ne12_dst * ne13_dst;
const int64_t num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
upscale_f32_bilinear<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
if (antialias) {
upscale_f32_bilinear_antialias<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
} else {
upscale_f32_bilinear<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne00_src, ne01_src, ne10_dst, ne11_dst, ne12_dst, ne13_dst, sf0, sf1, sf2, sf3, pixel_offset);
}
}
static void upscale_f32_bicubic_cuda(const float * x, float * dst,
@@ -207,9 +281,10 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
if (mode == GGML_SCALE_MODE_NEAREST) {
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
} else if (mode == GGML_SCALE_MODE_BILINEAR) {
const bool antialias = (mode_flags & GGML_SCALE_FLAG_ANTIALIAS);
upscale_f32_bilinear_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src0->ne[0], src0->ne[1], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
sf0, sf1, sf2, sf3, pixel_offset, stream);
sf0, sf1, sf2, sf3, pixel_offset, antialias, stream);
} else if (mode == GGML_SCALE_MODE_BICUBIC) {
upscale_f32_bicubic_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src0->ne[0], src0->ne[1], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],

View File

@@ -105,7 +105,7 @@
#define cudaStreamNonBlocking hipStreamNonBlocking
#define cudaStreamPerThread hipStreamPerThread
#define cudaStreamSynchronize hipStreamSynchronize
#define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
#define cudaStreamWaitEvent hipStreamWaitEvent
#define cudaGraphExec_t hipGraphExec_t
#define cudaGraphNode_t hipGraphNode_t
#define cudaKernelNodeParams hipKernelNodeParams

View File

@@ -24,9 +24,6 @@ struct ggml_metal_command_buffer {
};
struct ggml_metal {
id<MTLDevice> device;
id<MTLCommandQueue> queue; // currently a pointer to the device queue, but might become separate queue [TAG_QUEUE_PER_BACKEND]
ggml_metal_device_t dev;
ggml_metal_library_t lib;
@@ -91,15 +88,15 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
// init context
ggml_metal_t res = calloc(1, sizeof(struct ggml_metal));
res->device = ggml_metal_device_get_obj(dev);
id<MTLDevice> device = ggml_metal_device_get_obj(dev);
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[res->device name] UTF8String]);
GGML_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
// TODO: would it be better to have one queue for the backend and one queue for the device?
// the graph encoders and async ops would use the backend queue while the sync ops would use the device queue?
//res->queue = [device newCommandQueue]; [TAG_QUEUE_PER_BACKEND]
res->queue = ggml_metal_device_get_queue(dev);
if (res->queue == nil) {
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(dev);
if (queue == nil) {
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
return NULL;
}
@@ -274,7 +271,8 @@ static struct ggml_metal_buffer_id ggml_metal_get_buffer_id(const struct ggml_te
void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
@autoreleasepool {
// wrap the source data into a Metal buffer
id<MTLBuffer> buf_src = [ctx->device newBufferWithBytes:data
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_src = [device newBufferWithBytes:data
length:size
options:MTLResourceStorageModeShared];
@@ -289,7 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
// queue the copy operation into the queue of the Metal context
// this will be queued at the end, after any currently ongoing GPU operations
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBuffer];
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
[encoder copyFromBuffer:buf_src
@@ -315,7 +314,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
@autoreleasepool {
id<MTLBuffer> buf_dst = [ctx->device newBufferWithBytesNoCopy:data
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
@@ -331,7 +331,8 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
// queue the copy operation into the queue of the Metal context
// this will be queued at the end, after any currently ongoing GPU operations
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBuffer];
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
[encoder copyFromBuffer:bid_src.metal
@@ -362,6 +363,9 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
// number of threads in addition to the main thread
const int n_cb = ctx->n_cb;
// keep the memory wired
ggml_metal_device_rsets_keep_alive(ctx->dev);
// submit the ggml compute graph to the GPU by creating command buffers and encoding the ops in them
// the first n_nodes_0 are encoded and submitted for processing directly by the calling thread
// while these nodes are processing, we start n_cb threads to enqueue the rest of the nodes
@@ -389,7 +393,8 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
if (!ctx->capture_started) {
// create capture scope
ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:ctx->device];
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
ctx->capture_scope = [[MTLCaptureManager sharedCaptureManager] newCaptureScopeWithDevice:device];
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
descriptor.captureObject = ctx->capture_scope;
@@ -406,10 +411,13 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
}
}
// short-hand
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
// the main thread commits the first few commands immediately
// cmd_buf[n_cb]
{
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
[cmd_buf retain];
if (ctx->cmd_bufs[n_cb].obj) {
@@ -428,7 +436,7 @@ enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph *
// prepare the rest of the command buffers asynchronously (optional)
// cmd_buf[0.. n_cb)
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
id<MTLCommandBuffer> cmd_buf = [ctx->queue commandBufferWithUnretainedReferences];
id<MTLCommandBuffer> cmd_buf = [queue commandBufferWithUnretainedReferences];
[cmd_buf retain];
if (ctx->cmd_bufs[cb_idx].obj) {
@@ -589,9 +597,11 @@ void ggml_metal_set_abort_callback(ggml_metal_t ctx, ggml_abort_callback abort_c
}
bool ggml_metal_supports_family(ggml_metal_t ctx, int family) {
GGML_ASSERT(ctx->device != nil);
GGML_ASSERT(ctx->dev != nil);
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
return [device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
}
void ggml_metal_capture_next_compute(ggml_metal_t ctx) {

File diff suppressed because it is too large Load Diff

View File

@@ -35,20 +35,6 @@ typedef struct ggml_metal_pipeline * ggml_metal_pipeline_t;
ggml_metal_pipeline_t ggml_metal_pipeline_init(void);
void ggml_metal_pipeline_free(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nsg(ggml_metal_pipeline_t pipeline, int nsg);
int ggml_metal_pipeline_get_nsg(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nr0(ggml_metal_pipeline_t pipeline, int nr0);
int ggml_metal_pipeline_get_nr0(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_nr1(ggml_metal_pipeline_t pipeline, int nr1);
int ggml_metal_pipeline_get_nr1(ggml_metal_pipeline_t pipeline);
void ggml_metal_pipeline_set_smem(ggml_metal_pipeline_t pipeline, size_t smem);
size_t ggml_metal_pipeline_get_smem(ggml_metal_pipeline_t pipeline);
int ggml_metal_pipeline_max_theads_per_threadgroup(ggml_metal_pipeline_t pipeline);
// a collection of pipelines
typedef struct ggml_metal_pipelines * ggml_metal_pipelines_t;
@@ -58,6 +44,19 @@ void ggml_metal_pipelines_free(ggml_metal_pipelines_t ppls);
void ggml_metal_pipelines_add(ggml_metal_pipelines_t ppls, const char * name, ggml_metal_pipeline_t pipeline);
ggml_metal_pipeline_t ggml_metal_pipelines_get(ggml_metal_pipelines_t ppls, const char * name);
struct ggml_metal_pipeline_with_params {
ggml_metal_pipeline_t pipeline;
int nsg;
int nr0;
int nr1;
size_t smem;
};
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline);
//
// MTLCommandBuffer wrapper
//
@@ -76,7 +75,7 @@ void ggml_metal_encoder_free(ggml_metal_encoder_t encoder);
void ggml_metal_encoder_debug_group_push(ggml_metal_encoder_t encoder, const char * name);
void ggml_metal_encoder_debug_group_pop (ggml_metal_encoder_t encoder);
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, ggml_metal_pipeline_t pipeline);
void ggml_metal_encoder_set_pipeline(ggml_metal_encoder_t encoder, struct ggml_metal_pipeline_with_params pipeline);
void ggml_metal_encoder_set_bytes (ggml_metal_encoder_t encoder, void * data, size_t size, int idx);
void ggml_metal_encoder_set_buffer(ggml_metal_encoder_t encoder, struct ggml_metal_buffer_id buffer, int idx);
@@ -100,66 +99,67 @@ ggml_metal_library_t ggml_metal_library_init_from_source(ggml_metal_device_t dev
void ggml_metal_library_free(ggml_metal_library_t lib);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
ggml_metal_pipeline_t ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline (ggml_metal_library_t lib, const char * name);
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_base (ggml_metal_library_t lib, enum ggml_op op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cpy (ggml_metal_library_t lib, enum ggml_type tsrc, enum ggml_type tdst);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cumsum_blk (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_cumsum_add (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id_map0 (ggml_metal_library_t lib, int ne02, int ne20);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mm_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_mul_mv_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_conv_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_base (ggml_metal_library_t lib, enum ggml_op op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cpy (ggml_metal_library_t lib, enum ggml_type tsrc, enum ggml_type tdst);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_sum_rows (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cumsum_blk (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_cumsum_add (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_soft_max (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm_id_map0 (ggml_metal_library_t lib, int ne02, int ne20);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_id (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argmax (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rope (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_im2col (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_transpose_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_transpose_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_conv_2d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_upscale (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pad (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pad_reflect_1d (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_arange (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_timestep_embedding(ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_adamw (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_opt_step_sgd (ggml_metal_library_t lib, const struct ggml_tensor * op);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_pad(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_pad(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
int32_t ncpsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_blk(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_blk(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
int32_t nqptg,
int32_t ncpsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
@@ -169,7 +169,7 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext(
bool has_kvpad,
int32_t nsg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_vec(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
bool has_mask,
@@ -180,12 +180,22 @@ ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec(
int32_t nsg,
int32_t nwg);
ggml_metal_pipeline_t ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_vec_reduce(
ggml_metal_library_t lib,
const struct ggml_tensor * op,
int32_t dv,
int32_t nwg);
// MTLResidencySet wrapper
typedef void * ggml_metal_rset_t;
// a collection of residency sets (non-owning)
typedef struct ggml_metal_rsets * ggml_metal_rsets_t;
ggml_metal_rsets_t ggml_metal_rsets_init(void);
void ggml_metal_rsets_free(ggml_metal_rsets_t rsets);
//
// device
//
@@ -219,6 +229,11 @@ void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQue
ggml_metal_library_t ggml_metal_device_get_library(ggml_metal_device_t dev);
void ggml_metal_device_rsets_add(ggml_metal_device_t dev, ggml_metal_rset_t rset);
void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset);
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev);
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);

Some files were not shown because too many files have changed in this diff Show More