Compare commits

..

21 Commits

Author SHA1 Message Date
Georgi Gerganov
2a615b27e4 ggml : remove redundant src in ggml_cast 2025-12-09 11:16:15 +02:00
Johannes Gäßler
0cdce38a97 CUDA: fix FP16 overflow in tile FA kernel (#17875) 2025-12-09 09:34:02 +01:00
Aldehir Rojas
e39502e74b llama : add token matching support to llama-grammar (#17816)
* llama : add token support to llama-grammar

* fix inverse token comment

* refactor trigger_patterns to replay tokens instead of the entire string

* add token documentation

* fix test-llama-grammar

* improve test cases for tokens
2025-12-09 00:32:57 -06:00
philip-essential
1d2a1ab73d model : support Rnj-1 (#17811)
* add support for rnj1

* refactor gemma3 to support rnj-1

* address review comments
2025-12-09 04:49:03 +01:00
Sigbjørn Skjæret
c8554b66e0 graph : use fill instead of scale_bias in grouped expert selection (#17867)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
* use fill instead of scale_bias in grouped expert selection

* do not explicitly use _inplace
2025-12-08 21:29:59 +01:00
Daniel Bevenius
2fa51c19b0 model-conversion : add token ids to prompt token output [no ci] (#17863)
This commit adds the token ids to the printed prompt outputs.

The motivation for this is that is can be useful to see the actual token
ids alongside the token strings for debugging.
2025-12-08 17:13:08 +01:00
Xuan-Son Nguyen
951520ddb0 server: delegate result_state creation to server_task (#17835)
* server: delegate result_state creation to server_task

* remove unued states

* add more docs
2025-12-08 17:04:38 +01:00
Neo Zhang
68522c678d ci : support bfloat16 SYCL release package (#17855)
* support bfloat16 release package

* add fallback file
2025-12-08 15:09:39 +01:00
Xuan-Son Nguyen
f896d2c34f server: improve speed of speculative decoding (#17808)
* server: improve speed of speculative decoding

* fix small draft case

* add link to the PR

* server : fix generation time measurement

* server : fix draft acceptance logs (add SRV_CNT, SLT_CNT macros)

* server : add comment

* add PR to docs

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-08 14:35:28 +01:00
Piotr Wilkin (ilintar)
e4e9c4329c Make graph_max_nodes vary by ubatch size (#17794)
* Make graph_max_nodes vary by ubatch size for models where chunking might explode the graph

* Update src/llama-context.h

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Add missing const

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-12-08 14:32:41 +01:00
hksdpc255
636fc17a37 Fix Kimi-K2 tool-call parsing issues (#17376)
* Fix kimi-k2 parsing

* fix template & add more tests for kimi-k2

* Another fix for Kimi-K2 chat template.

* enable allow_toolcall_in_think for Kimi-K2

* Refine key-value separator and value end format

* Enable tool call in think for kimi-k2

* allow_toolcall_in_think is now tested with Kimi-K2

* Remove outdated TODO comment in XML tool call parser

Removed TODO comment about untested tool call feature.

* Rename function from "utf8_truncate_safe" to "utf8_truncate_safe_len"
2025-12-08 14:32:04 +01:00
Jay Zenith
51e0c2d917 cuda : add FILL op support (#17851)
* cuda : add FILL op support

* cuda : add missing FILL op files
2025-12-08 21:10:12 +08:00
Xuan-Son Nguyen
37a4f63244 server : add development documentation (#17760)
* first draft

* rewrite

* update & remove duplicated sections
2025-12-08 13:54:58 +01:00
Georgi Gerganov
2bc96931d2 server : make cache_reuse configurable per request (#17858) 2025-12-08 12:43:12 +02:00
wsbagnsv1
5814b4dce1 cuda: optimize SOLVE_TRI using registers and FMAF (#17703)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
* ggml-cuda: optimize solve_tri_f32_fast and fix stride handling

- Switch from using shared memory for the RHS/solution matrix to a register-based approach (x_low, x_high), reducing shared memory pressure and bank conflicts.
- Implement explicit `fmaf` instructions for the reduction loop.
- Update kernel arguments to pass strides in bytes rather than elements to align with standard ggml tensor arithmetic (casting to `char *` before addition).
- Remove unused `MAX_K_FAST` definition.

* Small cleanup

* Remove comments in solve_tri.cu

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Update ggml/src/ggml-cuda/solve_tri.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

* Use const for variables in solve_tri.cu

* Replace fmaf with more readable code

* remove last fmaf

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-12-08 10:41:08 +01:00
ixgbe
79d61896d3 ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support (#17784)
* ggml-cpu: add ggml_thread_cpu_relax with Zihintpause support

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>

* cmake: enable RISC-V zihintpause extension for Spacemit builds

* readme : add ZIHINTPAUSE support for RISC-V

---------

Signed-off-by: Wang Yang <yangwang@iscas.ac.cn>
2025-12-08 10:41:34 +02:00
Xuan-Son Nguyen
4d3726278b model: add llama 4 scaling for mistral-large (deepseek arch) (#17744)
Some checks are pending
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
2025-12-07 22:29:54 +01:00
lovedheart
08f9d3cc1d Vulkan: improve mul_mat_vec_iq1_m (#16907)
Some checks failed
CI / macOS-latest-cmake-arm64 (push) Waiting to run
CI / macOS-latest-cmake-x64 (push) Waiting to run
CI / macOS-latest-cmake-arm64-webgpu (push) Waiting to run
CI / ubuntu-cpu-cmake (arm64, ubuntu-22.04-arm) (push) Waiting to run
CI / ubuntu-cpu-cmake (ppc64le, ubuntu-24.04-ppc64le) (push) Waiting to run
CI / ubuntu-cpu-cmake (s390x, ubuntu-24.04-s390x) (push) Waiting to run
CI / ubuntu-cpu-cmake (x64, ubuntu-22.04) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, THREAD) (push) Waiting to run
CI / ubuntu-latest-cmake-sanitizer (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-latest-llguidance (push) Waiting to run
CI / ubuntu-latest-cmake-rpc (push) Waiting to run
CI / ubuntu-24-cmake-vulkan-deb (push) Waiting to run
CI / ubuntu-24-cmake-vulkan (push) Waiting to run
CI / ubuntu-24-cmake-webgpu (push) Waiting to run
CI / ubuntu-24-wasm-webgpu (push) Waiting to run
CI / ubuntu-22-cmake-hip (push) Waiting to run
CI / ubuntu-22-cmake-musa (push) Waiting to run
CI / ubuntu-22-cmake-sycl (push) Waiting to run
CI / ubuntu-22-cmake-sycl-fp16 (push) Waiting to run
CI / build-linux-cross (push) Waiting to run
CI / build-cmake-pkg (push) Waiting to run
CI / macOS-latest-cmake-ios (push) Waiting to run
CI / macOS-latest-cmake-tvos (push) Waiting to run
CI / macOS-latest-cmake-visionos (push) Waiting to run
CI / macOS-latest-swift (generic/platform=iOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=macOS) (push) Blocked by required conditions
CI / macOS-latest-swift (generic/platform=tvOS) (push) Blocked by required conditions
CI / windows-msys2 (Release, clang-x86_64, CLANG64) (push) Waiting to run
CI / windows-msys2 (Release, ucrt-x86_64, UCRT64) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON) (push) Waiting to run
CI / windows-latest-cmake (arm64, llvm-arm64-opencl-adreno, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON) (push) Waiting to run
CI / windows-latest-cmake (x64, cpu-x64 (static), -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF) (push) Waiting to run
CI / windows-latest-cmake (x64, openblas-x64, -G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/x64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_OPENMP=OFF -DGGML_BLAS=… (push) Waiting to run
CI / windows-latest-cmake (x64, vulkan-x64, -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DGGML_RPC=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DGGML_VULKAN=ON) (push) Waiting to run
CI / ubuntu-latest-cmake-cuda (push) Waiting to run
CI / windows-2022-cmake-cuda (12.4) (push) Waiting to run
CI / windows-latest-cmake-sycl (push) Waiting to run
CI / windows-latest-cmake-hip (push) Waiting to run
CI / ios-xcode-build (push) Waiting to run
CI / android-build (push) Waiting to run
CI / android-ndk-build (arm64-cpu, -D ANDROID_ABI=arm64-v8a -D ANDROID_PLATFORM=android-31 -D CMAKE_TOOLCHAIN_FILE=${ANDROID_NDK_ROOT}/build/cmake/android.toolchain.cmake -D GGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=armv8.5-a+fp16+i8mm -G Ninja -D LLAMA_CURL=OFF … (push) Waiting to run
CI / android-ndk-build (arm64-snapdragon, --preset arm64-android-snapdragon-release) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (aarch64, Release, 910b) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 310p) (push) Waiting to run
CI / openEuler-latest-cmake-cann (x86, Release, 910b) (push) Waiting to run
CI / ggml-ci-x64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-low-perf (push) Waiting to run
CI / ggml-ci-x64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf (push) Waiting to run
CI / ggml-ci-arm64-cpu-high-perf-sve (push) Waiting to run
CI / ggml-ci-x64-nvidia-cuda (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm (push) Waiting to run
CI / ggml-ci-x64-nvidia-vulkan-cm2 (push) Waiting to run
CI / ggml-ci-x64-cpu-amx (push) Waiting to run
CI / ggml-ci-mac-metal (push) Waiting to run
CI / ggml-ci-mac-vulkan (push) Waiting to run
CI / ggml-ci-arm64-cpu-kleidiai (push) Waiting to run
CI / ubuntu-cpu-cmake-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, ADDRESS) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, THREAD) (push) Waiting to run
CI / ubuntu-cmake-sanitizer-riscv64-native (Debug, UNDEFINED) (push) Waiting to run
CI / ubuntu-llguidance-riscv64-native (push) Waiting to run
CI / ubuntu-cmake-rpc-riscv64-native (push) Waiting to run
CI / ggml-ci-arm64-graviton4-kleidiai (push) Waiting to run
Check vendor / check-vendor (push) Has been cancelled
Check Pre-Tokenizer Hashes / pre-tokenizer-hashes (push) Has been cancelled
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Update Operations Documentation / update-ops-docs (push) Has been cancelled
* Optimize Vulkan shader for matrix-vector multiplication

* Revert changes on compute_outputs and main

Refactor compute_outputs to handle remaining rows correctly.

* Fix trailing whitespace
2025-12-07 18:40:42 +01:00
Sigbjørn Skjæret
0a540f9abd ci : add windows-cuda 13.1 release (#17839) 2025-12-07 14:02:04 +01:00
Sigbjørn Skjæret
22577583a3 common : change --color to accept on/off/auto, default to auto (#17827) 2025-12-07 03:43:50 +01:00
Law Po Ying
d9e03db1e7 sycl: add missing BF16 conversion support for Intel oneAPI (#17780)
* sycl: add missing BF16 conversion support for Intel oneAPI

* Fix Line 645: Trailing whitespace
2025-12-07 09:18:18 +08:00
51 changed files with 1365 additions and 469 deletions

View File

@@ -65,3 +65,34 @@ runs:
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4\libnvvp" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V12_4=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.4" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
- name: Install Cuda Toolkit 13.1
if: ${{ inputs.cuda_version == '13.1' }}
shell: pwsh
run: |
mkdir -p "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
choco install unzip -y
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_crt/windows-x86_64/cuda_crt-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvcc/windows-x86_64/cuda_nvcc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvrtc/windows-x86_64/cuda_nvrtc-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libcublas/windows-x86_64/libcublas-windows-x86_64-13.2.0.9-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/libnvvm/windows-x86_64/libnvvm-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_nvtx/windows-x86_64/cuda_nvtx-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_profiler_api/windows-x86_64/cuda_profiler_api-windows-x86_64-13.1.80-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/visual_studio_integration/windows-x86_64/visual_studio_integration-windows-x86_64-13.1.68-archive.zip"
curl -O "https://developer.download.nvidia.com/compute/cuda/redist/cuda_cccl/windows-x86_64/cuda_cccl-windows-x86_64-13.1.78-archive.zip"
unzip '*.zip' -d "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1"
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_crt-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cudart-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvcc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvrtc-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libcublas-windows-x86_64-13.2.0.9-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\libnvvm-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_nvtx-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_profiler_api-windows-x86_64-13.1.80-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\visual_studio_integration-windows-x86_64-13.1.68-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
xcopy "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\cuda_cccl-windows-x86_64-13.1.78-archive\*" "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" /E /I /H /Y
echo "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1\bin" | Out-File -FilePath $env:GITHUB_PATH -Encoding utf8 -Append
echo "CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8
echo "CUDA_PATH_V13_1=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v13.1" | Out-File -FilePath $env:GITHUB_ENV -Append -Encoding utf8

View File

@@ -291,6 +291,7 @@ jobs:
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DGGML_RV_ZIHINTPAUSE=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake

View File

@@ -421,7 +421,7 @@ jobs:
strategy:
matrix:
cuda: ['12.4']
cuda: ['12.4', '13.1']
steps:
- name: Clone
@@ -476,6 +476,7 @@ jobs:
$dst='.\build\bin\cudart\'
robocopy "${{env.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\lib" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
robocopy "${{env.CUDA_PATH}}\bin\x64" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
7z a cudart-llama-bin-win-cuda-${{ matrix.cuda }}-x64.zip $dst\*
- name: Upload Cuda runtime
@@ -545,6 +546,8 @@ jobs:
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libiomp5md.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl-ls.exe" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-fallback-bfloat16.spv" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libsycl-native-bfloat16.spv" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/dnnl/latest/bin/dnnl.dll" ./build/bin
cp "${{ env.ONEAPI_ROOT }}/tbb/latest/bin/tbb12.dll" ./build/bin
@@ -835,7 +838,8 @@ jobs:
**Windows:**
- [Windows x64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-x64.zip)
- [Windows arm64 (CPU)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cpu-arm64.zip)
- [Windows x64 (CUDA)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (CUDA 12)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-12.4-x64.zip)
- [Windows x64 (CUDA 13)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-cuda-13.1-x64.zip)
- [Windows x64 (Vulkan)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-vulkan-x64.zip)
- [Windows x64 (SYCL)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip)
- [Windows x64 (HIP)](https://github.com/ggml-org/llama.cpp/releases/download/${{ steps.tag.outputs.name }}/llama-${{ steps.tag.outputs.name }}-bin-win-hip-radeon-x64.zip)

View File

@@ -61,7 +61,7 @@ range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- RVV, ZVFH, ZFH and ZICBOP support for RISC-V architectures
- RVV, ZVFH, ZFH, ZICBOP and ZIHINTPAUSE support for RISC-V architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads GPUs via MUSA)
- Vulkan and SYCL backend support

View File

@@ -708,6 +708,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.use_jinja = true;
}
params.use_color = tty_can_use_colors();
// load dynamic backends
ggml_backend_load_all();
@@ -790,10 +792,20 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_MAIN}));
add_opt(common_arg(
{"-co", "--color"},
string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
[](common_params & params) {
params.use_color = true;
{"-co", "--color"}, "[on|off|auto]",
"Colorize output to distinguish prompt and user input from generations ('on', 'off', or 'auto', default: 'auto')\n"
"'auto' enables colors when output is to a terminal",
[](common_params & params, const std::string & value) {
if (is_truthy(value)) {
params.use_color = true;
} else if (is_falsey(value)) {
params.use_color = false;
} else if (is_autoy(value)) {
params.use_color = tty_can_use_colors();
} else {
throw std::invalid_argument(
string_format("error: unknown value for --color: '%s'\n", value.c_str()));
}
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
add_opt(common_arg(
@@ -1022,7 +1034,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
} else {
throw std::runtime_error(
string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
string_format("error: unknown value for --flash-attn: '%s'\n", value.c_str()));
}
}).set_env("LLAMA_ARG_FLASH_ATTN"));
add_opt(common_arg(
@@ -2696,7 +2708,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
} else {
throw std::invalid_argument(
string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
string_format("error: unknown value for --log-colors: '%s'\n", value.c_str()));
}
}
).set_env("LLAMA_LOG_COLORS"));

View File

@@ -724,16 +724,10 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
if (reasoning_unclosed) {
if (auto pos = content.find(end_think); pos == std::string::npos && builder.pos() != builder.input().size()) {
unclosed_reasoning_content += content;
if (form.allow_toolcall_in_think) {
builder.move_to(tc->groups[0].begin);
if (!builder.try_consume_xml_tool_calls(form)) {
unclosed_reasoning_content += tool_call_start;
builder.move_to(tc->groups[0].end);
}
} else {
if (!(form.allow_toolcall_in_think && tc)) {
unclosed_reasoning_content += tool_call_start;
continue;
}
continue;
} else {
reasoning_unclosed = false;
std::string reasoning_content;
@@ -781,8 +775,12 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
}
} else {
// This <tool_call> start is in thinking block, skip this tool call
auto pos = think_start + start_think.size();
unclosed_reasoning_content = content.substr(pos) + tool_call_start;
// This <tool_call> start is in thinking block
if (form.allow_toolcall_in_think) {
unclosed_reasoning_content = content.substr(think_start + start_think.size());
} else {
unclosed_reasoning_content = content.substr(think_start + start_think.size()) + tool_call_start;
}
reasoning_unclosed = true;
content.resize(think_start);
toolcall_in_think = true;
@@ -805,14 +803,35 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
}
// remove potential partial suffix
if (content.size() > 0 && builder.pos() == builder.input().size() && unclosed_reasoning_content.empty()) {
rstrip(content);
trim_potential_partial_word(content);
rstrip(content);
if (builder.pos() == builder.input().size()) {
if (unclosed_reasoning_content.empty()) {
rstrip(content);
trim_potential_partial_word(content);
rstrip(content);
} else {
rstrip(unclosed_reasoning_content);
trim_potential_partial_word(unclosed_reasoning_content);
rstrip(unclosed_reasoning_content);
}
}
// consume unclosed_reasoning_content if allow_toolcall_in_think is set
if (form.allow_toolcall_in_think && !unclosed_reasoning_content.empty()) {
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content) {
builder.add_reasoning_content(unclosed_reasoning_content);
} else {
if (content.empty()) {
content = start_think + unclosed_reasoning_content;
} else {
content += "\n\n" + start_think;
content += unclosed_reasoning_content;
}
}
unclosed_reasoning_content.clear();
}
// Add content
if (content.size() != 0) {
if (!content.empty()) {
// If there are multiple content blocks
if (builder.syntax().reasoning_format != COMMON_REASONING_FORMAT_NONE && !builder.syntax().reasoning_in_content && builder.result().content.size() != 0) {
builder.add_content("\n\n");
@@ -820,7 +839,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
builder.add_content(content);
}
// This <tool_call> start is in thinking block, skip this tool call
// This <tool_call> start is in thinking block and toolcall_in_think not set, skip this tool call
if (toolcall_in_think && !form.allow_toolcall_in_think) {
continue;
}
@@ -829,7 +848,7 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
if (!tc) {
GGML_ASSERT(builder.pos() == builder.input().size());
GGML_ASSERT(unclosed_reasoning_content.empty());
GGML_ASSERT(!reasoning_unclosed);
if (!form.allow_toolcall_in_think) GGML_ASSERT(!reasoning_unclosed);
break;
}
@@ -854,7 +873,6 @@ inline void parse_msg_with_xml_tool_calls(common_chat_msg_parser & builder, cons
/**
* Parse content uses reasoning and XML-Style tool call
* TODO: Note that form.allow_toolcall_in_think is not tested yet. If anyone confirms it works, this comment can be removed.
*/
void common_chat_msg_parser::consume_reasoning_with_xml_tool_calls(const struct xml_tool_call_format & form, const std::string & start_think, const std::string & end_think) {
parse_msg_with_xml_tool_calls(*this, form, start_think, end_think);

View File

@@ -31,7 +31,7 @@ struct xml_tool_call_format {
std::optional<std::string> last_val_end = std::nullopt;
std::optional<std::string> last_tool_end = std::nullopt;
bool trim_raw_argval = false;
bool allow_toolcall_in_think = false; // TODO: UNTESTED!!!
bool allow_toolcall_in_think = false;
};
// make a GBNF that accept any strings except those containing any of the forbidden strings.

View File

@@ -917,12 +917,13 @@ static void common_chat_parse_kimi_k2(common_chat_msg_parser & builder) {
form.tool_start = "<|tool_call_begin|>";
form.tool_sep = "<|tool_call_argument_begin|>{";
form.key_start = "\"";
form.key_val_sep = "\": ";
form.val_end = ", ";
form.key_val_sep = "\":";
form.val_end = ",";
form.tool_end = "}<|tool_call_end|>";
form.scope_end = "<|tool_calls_section_end|>";
form.raw_argval = false;
form.last_val_end = "";
form.allow_toolcall_in_think = true;
return form;
})();
builder.consume_reasoning_with_xml_tool_calls(form, "<think>", "</think>");

View File

@@ -982,6 +982,32 @@ std::vector<common_file_info> fs_list(const std::string & path, bool include_dir
return files;
}
//
// TTY utils
//
bool tty_can_use_colors() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
//
// Model utils

View File

@@ -655,6 +655,13 @@ struct common_file_info {
};
std::vector<common_file_info> fs_list(const std::string & path, bool include_directories);
//
// TTY utils
//
// Auto-detect if colors can be enabled based on terminal and environment
bool tty_can_use_colors();
//
// Model utils
//

View File

@@ -1,3 +1,4 @@
#include "common.h"
#include "log.h"
#include <chrono>
@@ -26,30 +27,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
// Auto-detect if colors should be enabled based on terminal and environment
static bool common_log_should_use_colors_auto() {
// Check NO_COLOR environment variable (https://no-color.org/)
if (const char * no_color = std::getenv("NO_COLOR")) {
if (no_color[0] != '\0') {
return false;
}
}
// Check TERM environment variable
if (const char * term = std::getenv("TERM")) {
if (std::strcmp(term, "dumb") == 0) {
return false;
}
}
// Check if stdout and stderr are connected to a terminal
// We check both because log messages can go to either
bool stdout_is_tty = isatty(fileno(stdout));
bool stderr_is_tty = isatty(fileno(stderr));
return stdout_is_tty || stderr_is_tty;
}
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -391,7 +368,7 @@ struct common_log * common_log_main() {
static std::once_flag init_flag;
std::call_once(init_flag, [&]() {
// Set default to auto-detect colors
log.set_colors(common_log_should_use_colors_auto());
log.set_colors(tty_can_use_colors());
});
return &log;
@@ -422,7 +399,7 @@ void common_log_set_file(struct common_log * log, const char * file) {
void common_log_set_colors(struct common_log * log, log_colors colors) {
if (colors == LOG_COLORS_AUTO) {
log->set_colors(common_log_should_use_colors_auto());
log->set_colors(tty_can_use_colors());
return;
}

View File

@@ -5825,9 +5825,11 @@ class Gemma3Model(TextModel):
norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
def set_vocab(self):
self._set_vocab_sentencepiece()
self.gguf_writer.add_add_space_prefix(False)
if (self.dir_model / "tokenizer.model").is_file():
self._set_vocab_sentencepiece()
self.gguf_writer.add_add_space_prefix(False)
else:
self._set_vocab_gpt2()
def set_gguf_parameters(self):
hparams = self.hparams
@@ -5845,13 +5847,24 @@ class Gemma3Model(TextModel):
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
# attn_logit_softcapping is removed in Gemma3
assert hparams.get("attn_logit_softcapping") is None
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
if (final_logit_softcap := hparams.get("final_logit_softcapping")):
self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
if hparams.get("sliding_window_pattern") != 1:
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
if hparams.get("rope_scaling") is not None:
assert hparams["rope_scaling"]["rope_type"] == "linear"
# important: this rope_scaling is only applied for global layers, and not used by 1B model
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
rope_scaling = hparams["rope_scaling"]
if rope_scaling["rope_type"] == "linear":
# important: this rope_scaling is only applied for global layers, and not used by 1B model
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
elif rope_scaling["rope_type"] == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -5865,8 +5878,10 @@ class Gemma3Model(TextModel):
# remove OOV (out-of-vocabulary) rows in token_embd
if "embed_tokens.weight" in name:
vocab = self._create_vocab_sentencepiece()
tokens = vocab[0]
if (self.dir_model / "tokenizer.model").is_file():
tokens = self._create_vocab_sentencepiece()[0]
else:
tokens = self.get_vocab_base()[0]
data_torch = data_torch[:len(tokens)]
# ref code in Gemma3RMSNorm

View File

@@ -19,6 +19,7 @@ cmake -B build \
-DGGML_RVV=ON \
-DGGML_RV_ZFH=ON \
-DGGML_RV_ZICBOP=ON \
-DGGML_RV_ZIHINTPAUSE=ON \
-DRISCV64_SPACEMIT_IME_SPEC=RISCV64_SPACEMIT_IME1 \
-DCMAKE_TOOLCHAIN_FILE=${PWD}/cmake/riscv64-spacemit-linux-gnu-gcc.cmake \
-DCMAKE_INSTALL_PREFIX=build/installed

View File

@@ -144,7 +144,7 @@ int main(int argc, char ** argv) {
return 1;
}
std::string s(buf, n);
printf("%s", s.c_str());
printf("%s (%d)", s.c_str(), id);
}
printf("\n");

View File

@@ -168,6 +168,7 @@ option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" ON)
option(GGML_RV_ZVFH "ggml: enable riscv zvfh" ON)
option(GGML_RV_ZICBOP "ggml: enable riscv zicbop" ON)
option(GGML_RV_ZIHINTPAUSE "ggml: enable riscv zihintpause " ON)
option(GGML_XTHEADVECTOR "ggml: enable xtheadvector" OFF)
option(GGML_VXE "ggml: enable vxe" ${GGML_NATIVE})

View File

@@ -469,6 +469,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_RV_ZICBOP)
string(APPEND MARCH_STR "_zicbop")
endif()
if (GGML_RV_ZIHINTPAUSE)
string(APPEND MARCH_STR "_zihintpause")
endif()
list(APPEND ARCH_FLAGS "-march=${MARCH_STR}" -mabi=lp64d)
else()
# Begin with the lowest baseline

View File

@@ -490,6 +490,15 @@ static inline void ggml_thread_cpu_relax(void) {
static inline void ggml_thread_cpu_relax(void) {
_mm_pause();
}
#elif defined(__riscv)
static inline void ggml_thread_cpu_relax(void) {
#ifdef __riscv_zihintpause
__asm__ __volatile__ ("pause");
#else
/* Encoding of the pause instruction */
__asm__ __volatile__ (".4byte 0x100000F");
#endif
}
#else
static inline void ggml_thread_cpu_relax(void) {;}
#endif

View File

@@ -564,6 +564,12 @@ static __device__ __forceinline__ void flash_attn_tile_iter(
for (int i_KQ_0 = 0; i_KQ_0 < nbatch_fa; i_KQ_0 += np*warp_size) {
const int i_KQ = i_KQ_0 + (threadIdx.y % np)*warp_size + threadIdx.x;
#if defined(FAST_FP16_AVAILABLE) && !defined(V_DOT2_F32_F16_AVAILABLE)
// Without the v_dot2_f32_f16 instruction there is a higher risk of numerical overflow in the KQ calculation.
// Therefore, scale down Q values and apply the inverse scale the FP32 KQ values afterwards again.
KQ_acc[i_KQ_0/(np*warp_size)*cpw + jc0] *= 4.0f;
#endif // defined(FAST_FP16_AVAILABLE) && !defined(V_DOT2_F32_F16_AVAILABLE)
if (use_logit_softcap) {
KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0] = logit_softcap * tanhf(KQ_acc[(i_KQ_0/(np*warp_size))*cpw + jc0]);
}
@@ -858,6 +864,11 @@ static __global__ void flash_attn_tile(
#pragma unroll
for (int i1 = 0; i1 < cpy_ne_D; i1 += 2) {
tmp_h2[i1/2] = make_half2(tmp_f[i1 + 0], tmp_f[i1 + 1]);
#if defined(FAST_FP16_AVAILABLE) && !defined(V_DOT2_F32_F16_AVAILABLE)
// Without the v_dot2_f32_f16 instruction there is a higher risk of numerical overflow in the KQ calculation.
// Therefore, scale down Q values and apply the inverse scale the FP32 KQ values afterwards again.
tmp_h2[i1/2] *= make_half2(0.25f, 0.25f);
#endif // defined(FAST_FP16_AVAILABLE) && !defined(V_DOT2_F32_F16_AVAILABLE)
}
ggml_cuda_memcpy_1<sizeof(tmp_h2)>(
&Q_tmp[jc*(DKQ/2) + i0/2 + (threadIdx.y % np)*(warp_size*cpy_ne_D/2) + threadIdx.x*(cpy_ne_D/2)],

View File

@@ -0,0 +1,37 @@
#include "fill.cuh"
#include "convert.cuh"
#define CUDA_FILL_BLOCK_SIZE 256
template <typename T>
static __global__ void fill_kernel(T * __restrict__ dst, const int64_t k, const T value) {
const int64_t i = (int64_t)blockDim.x * blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = value;
}
void ggml_cuda_op_fill(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
void * dst_d = dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(dst));
float value;
memcpy(&value, dst->op_params, sizeof(float));
const int64_t k = ggml_nelements(dst);
const int64_t num_blocks = (k + CUDA_FILL_BLOCK_SIZE - 1) / CUDA_FILL_BLOCK_SIZE;
switch (dst->type) {
case GGML_TYPE_F32:
fill_kernel<<<num_blocks, CUDA_FILL_BLOCK_SIZE, 0, stream>>>((float *)dst_d, k, value);
break;
case GGML_TYPE_F16:
fill_kernel<<<num_blocks, CUDA_FILL_BLOCK_SIZE, 0, stream>>>((half *)dst_d, k, ggml_cuda_cast<half>(value));
break;
default:
GGML_ABORT("unsupported type");
}
}

View File

@@ -0,0 +1,3 @@
#include "common.cuh"
void ggml_cuda_op_fill(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -56,6 +56,7 @@
#include "ggml-cuda/solve_tri.cuh"
#include "ggml-cuda/tri.cuh"
#include "ggml-cuda/cumsum.cuh"
#include "ggml-cuda/fill.cuh"
#include "ggml.h"
#include <algorithm>
@@ -2730,6 +2731,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SOLVE_TRI:
ggml_cuda_op_solve_tri(ctx, dst);
break;
case GGML_OP_FILL:
ggml_cuda_op_fill(ctx, dst);
break;
default:
return false;
}
@@ -4617,6 +4621,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
case GGML_OP_FILL:
case GGML_OP_CUMSUM:
case GGML_OP_TRI:
return true;

View File

@@ -3,7 +3,6 @@
#include "solve_tri.cuh"
#define MAX_N_FAST 64
#define MAX_K_FAST 32
// ======================
// Fast Kernel (n <= 64, k <= 32) - Warp-based parallel reduction
@@ -48,65 +47,58 @@ static __global__ void solve_tri_f32_fast(const float * __restrict__ A,
float * X_batch = (float *) (X + i02 * nb2 + i03 * nb3);
__shared__ float sA[MAX_N_FAST * MAX_N_FAST];
__shared__ float sXt[MAX_N_FAST * (MAX_K_FAST + 1)];
const int offset = threadIdx.x + threadIdx.y * blockDim.x;
#pragma unroll
for (int i = 0; i < n * n; i += k * WARP_SIZE) {
int i0 = i + offset;
const int i0 = i + offset;
if (i0 < n * n) {
sA[i0] = A_batch[i0];
}
}
const int rows_per_warp = (n + WARP_SIZE - 1) / WARP_SIZE;
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
sXt[col_idx * n + i0] = B_batch[i0 * k + col_idx];
}
}
__syncthreads();
float x_low = (lane < n) ? B_batch[lane * k + col_idx] : 0.0f;
float x_high = (WARP_SIZE + lane < n) ? B_batch[(WARP_SIZE + lane) * k + col_idx] : 0.0f;
const int half = WARP_SIZE;
const int nrows_low = (n < half) ? n : half;
#pragma unroll
for (int row = 0; row < n; ++row) {
for (int row = 0; row < nrows_low; ++row) {
float sum = 0.0f;
{
int j = lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
if (lane < row) {
sum += sA[row * n + lane] * x_low;
}
if (row >= WARP_SIZE) {
int j = WARP_SIZE + lane;
if (j < row) {
sum += sA[row * n + j] * sXt[col_idx * n + j];
}
}
sum = warp_reduce_sum(sum);
if (lane == 0) {
const float b_val = sXt[col_idx * n + row];
const float a_diag = sA[row * n + row];
// no safeguards for division by zero because that indicates corrupt
// data anyway
sXt[col_idx * n + row] = (b_val - sum) / a_diag;
if (lane == row) {
x_low = (x_low - sum) / sA[row * n + row];
}
}
__syncthreads();
#pragma unroll
for (int row = half; row < n; ++row) {
float sum = sA[row * n + lane] * x_low;
const int j = half + lane;
if (j < row) {
sum += sA[row * n + j] * x_high;
}
sum = warp_reduce_sum(sum);
if (lane == row - half) {
x_high = (x_high - sum) / sA[row * n + row];
}
}
#pragma unroll
for (int i = 0; i < rows_per_warp; i++) {
const int i0 = lane + i * WARP_SIZE;
if (i0 < n) {
X_batch[i0 * k + col_idx] = sXt[col_idx * n + i0];
for (int rr = 0; rr < 2; ++rr) {
const int row = rr * WARP_SIZE + lane;
if (row < n) {
const float val = (row < half) ? x_low : x_high;
X_batch[row * k + col_idx] = val;
}
}
}

View File

@@ -2,6 +2,13 @@
#include "dequantize.hpp"
#include "presets.hpp"
#if defined(__INTEL_LLVM_COMPILER)
#if __has_include(<sycl/ext/oneapi/bfloat16.hpp>)
#include <sycl/ext/oneapi/bfloat16.hpp>
#define GGML_SYCL_HAS_BF16
#endif
#endif
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k,
const sycl::nd_item<3> &item_ct1) {
@@ -566,6 +573,10 @@ to_fp16_sycl_t ggml_get_to_fp16_sycl(ggml_type type, ggml_tensor * dst) {
return dequantize_row_iq4_nl_sycl;
case GGML_TYPE_F32:
return convert_unary_sycl<float>;
#ifdef GGML_SYCL_HAS_BF16
case GGML_TYPE_BF16:
return convert_unary_sycl<sycl::ext::oneapi::bfloat16>;
#endif
default:
return nullptr;
}
@@ -627,6 +638,10 @@ to_fp32_sycl_t ggml_get_to_fp32_sycl(ggml_type type, ggml_tensor *dst) {
return dequantize_row_iq4_nl_sycl;
case GGML_TYPE_F16:
return convert_unary_sycl<sycl::half>;
#ifdef GGML_SYCL_HAS_BF16
case GGML_TYPE_BF16:
return convert_unary_sycl<sycl::ext::oneapi::bfloat16>;
#endif
default:
return nullptr;
}
@@ -636,6 +651,10 @@ to_fp16_nc_sycl_t get_to_fp16_nc_sycl(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_nc_sycl<float>;
#ifdef GGML_SYCL_HAS_BF16
case GGML_TYPE_BF16:
return convert_unary_nc_sycl<sycl::ext::oneapi::bfloat16>;
#endif
default:
return nullptr;
}

View File

@@ -7,35 +7,85 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i,
const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
// Compute starting index in matrix B for this superblock
const uint y_idx = i * QUANT_K + 32 * ib32;
uint ibi = a_offset / QUANT_K + first_row * num_blocks_per_row + i;
// Precompute indices for quantization lookup tables
const uint qh_base = 2 * ib32;
const uint qs_base = 4 * ib32;
const uint sc_index = ib32 / 2;
const uint sc_shift = 6 * (ib32 & 1);
// Loop over rows in the superblock
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
// Load per-block scales and shift for quantization
const uint16_t[4] scales = data_a[ibi].scales;
const u16vec4 s = u16vec4(scales[0], scales[1], scales[2], scales[3]) >> 12;
const float d = float(unpackHalf2x16(s.x | (s.y << 4) | (s.z << 8) | (s.w << 12)).x);
const uint sc = data_a[ibi].scales[sc_index] >> sc_shift;
const uint sc = data_a[ibi].scales[ib32 / 2] >> (6 * (ib32 & 1));
// Temporary caches for decoding
FLOAT_TYPE dl_cache[4];
uint16_t gvf_cache[4];
float delta_cache[4];
// Precompute the multiplier and lookup values for 4 sub-blocks
[[unroll]] for (uint l = 0; l < 4; ++l) {
const uint qh = data_a[ibi].qh[2 * ib32 + l / 2] >> (4 * (l&1));
const uint qs = data_a[ibi].qs[4 * ib32 + l];
const float delta = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
const float dl = d * (2 * bitfieldExtract(sc, 3 * int(l / 2), 3) + 1);
dl_cache[l] = FLOAT_TYPE(d * (2 * bitfieldExtract(sc, 3 * int(l / 2), 3) + 1));
const uint qh = data_a[ibi].qh[qh_base + l / 2] >> (4 * (l & 1));
const uint qs = data_a[ibi].qs[qs_base + l];
gvf_cache[l] = iq1s_grid[qs | ((qh & 7) << 8)];
delta_cache[l] = ((qh & 8) != 0) ? -IQ1M_DELTA : IQ1M_DELTA;
}
const int16_t grid = int16_t(iq1s_grid[qs | ((qh & 7) << 8)]);
// Loop over columns of the output
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
// Compute base index for matrix B
const uint base_b_idx = (j * p.batch_stride_b + b_offset + y_idx) / 4;
vec4 b_vals[8];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 b0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 0]);
vec4 b4 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 1]);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int k = 0; k < 4; ++k) {
sum = fma(FLOAT_TYPE(b0[k]), bitfieldExtract(grid, 2 * k, 2) + delta,
fma(FLOAT_TYPE(b4[k]), bitfieldExtract(grid, 8 + 2 * k, 2) + delta, sum));
}
temp[j][n] = fma(dl, sum, temp[j][n]);
// Load 8 vec4 values from matrix B
[[unroll]] for (int idx = 0; idx < 8; ++idx) {
b_vals[idx] = vec4(data_b_v4[base_b_idx + idx]);
}
FLOAT_TYPE col_sum = FLOAT_TYPE(0.0);
// Loop over sub-blocks
[[unroll]] for (uint l = 0; l < 4; ++l) {
const uint16_t grid = gvf_cache[l];
const float dl = dl_cache[l];
// Decode 8 2-bit fbits from gvf_cache
float f0 = float(bitfieldExtract(grid, 0, 2));
float f1 = float(bitfieldExtract(grid, 2, 2));
float f2 = float(bitfieldExtract(grid, 4, 2));
float f3 = float(bitfieldExtract(grid, 6, 2));
float f4 = float(bitfieldExtract(grid, 8, 2));
float f5 = float(bitfieldExtract(grid, 10, 2));
float f6 = float(bitfieldExtract(grid, 12, 2));
float f7 = float(bitfieldExtract(grid, 14, 2));
// Pack into vec4 for vectorized FMA
const vec4 fbits_v0 = vec4(f0, f1, f2, f3);
const vec4 fbits_v1 = vec4(f4, f5, f6, f7);
const vec4 delta_v = vec4(delta_cache[l]);
// Vectorized fused multiply-add
vec4 sum_v = fma(b_vals[2*l + 0], fbits_v0 + delta_v, vec4(0.0));
sum_v = fma(b_vals[2*l + 1], fbits_v1 + delta_v, sum_v);
// Horizontal add to get scalar sum
FLOAT_TYPE sum = sum_v.x + sum_v.y + sum_v.z + sum_v.w;
// Accumulate to column sum
col_sum = fma(dl, sum, col_sum);
}
// Write result to temporary buffer
temp[j][n] += col_sum;
}
ibi += num_blocks_per_row;
}

View File

@@ -3418,7 +3418,6 @@ struct ggml_tensor * ggml_cast(
result->op = GGML_OP_CPY;
result->src[0] = a;
result->src[1] = result;
return result;
}

View File

@@ -67,6 +67,30 @@ Parentheses `()` can be used to group sequences, which allows for embedding alte
- `{m,n}` repeats the precedent symbol or sequence at between `m` and `n` times (included)
- `{0,n}` repeats the precedent symbol or sequence at most `n` times (included)
## Tokens
Tokens allow grammars to match specific tokenizer tokens rather than character sequences. This is useful for constraining outputs based on special tokens (like `<think>` or `</think>`).
Tokens can be specified in two ways:
1. **Token ID**: Use angle brackets with the token ID in square brackets: `<[token-id]>`. For example, `<[1000]>` matches the token with ID 1000.
2. **Token string**: Use angle brackets with the token text directly: `<token>`. For example, `<think>` will match the token whose text is exactly `<think>`. This only works if the string tokenizes to exactly one token in the vocabulary, otherwise the grammar will fail to parse.
You can negate token matches using the `!` prefix: `!<[1000]>` or `!<think>` matches any token *except* the specified one.
```
# Match a thinking block: <think>...</think>
# Using token strings (requires these to be single tokens in the vocab)
root ::= <think> thinking </think> .*
thinking ::= !</think>*
# Equivalent grammar using explicit token IDs
# Assumes token 1000 = <think>, token 1001 = </think>
root ::= <[1000]> thinking <[1001]> .*
thinking ::= !<[1001]>*
```
## Comments and newlines
Comments can be specified with `#`:

View File

@@ -14,7 +14,7 @@
{%- endmacro %}
{%- set tool_response_queue = namespace(ids=[]) -%}
{%- set tool_call_counter = namespace(value=1) -%}
{%- set tool_call_counter = namespace(value=0) -%}
{%- if tools -%}
<|im_system|>tool_declare<|im_middle|>{{ tools | tojson }}<|im_end|>
@@ -36,12 +36,8 @@
{%- if message['role'] == 'assistant' and message.get('tool_calls') -%}
{{render_content(message)}}<|tool_calls_section_begin|>
{%- for tool_call in message['tool_calls'] -%}
{%- if tool_call['id'] is defined -%}
{%- set formatted_id = tool_call['id'] -%}
{%- else -%}
{%- set formatted_id = 'functions.' + tool_call['function']['name'] + ':' + (tool_call_counter.value | string) -%}
{%- set tool_call_counter.value = tool_call_counter.value + 1 -%}
{%- endif -%}
{%- set formatted_id = 'functions.' + tool_call['function']['name'] + ':' + (tool_call_counter.value | string) -%}
{%- set tool_call_counter.value = tool_call_counter.value + 1 -%}
{%- set _ = tool_response_queue.ids.append(formatted_id) -%}
<|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|>
{%- endfor -%}

View File

@@ -25,17 +25,13 @@
{%- endmacro -%}
{%- set tool_response_queue = namespace(ids=[]) -%}
{%- set tool_call_counter = namespace(value=1) -%}
{%- set tool_call_counter = namespace(value=0) -%}
{%- macro render_toolcalls(message) -%}
<|tool_calls_section_begin|>
{%- for tool_call in message['tool_calls'] -%}
{%- if tool_call['id'] is defined -%}
{%- set formatted_id = tool_call['id'] -%}
{%- else -%}
{%- set formatted_id = 'functions.' + tool_call['function']['name'] + ':' + (tool_call_counter.value | string) -%}
{%- set tool_call_counter.value = tool_call_counter.value + 1 -%}
{%- endif -%}
{%- set formatted_id = 'functions.' + tool_call['function']['name'] + ':' + (tool_call_counter.value | string) -%}
{%- set tool_call_counter.value = tool_call_counter.value + 1 -%}
{%- set _ = tool_response_queue.ids.append(formatted_id) -%}
<|tool_call_begin|>{{ formatted_id }}<|tool_call_argument_begin|>{% if tool_call['function']['arguments'] is string %}{{ tool_call['function']['arguments'] }}{% else %}{{ tool_call['function']['arguments'] | tojson }}{% endif %}<|tool_call_end|>
{%- endfor -%}

View File

@@ -67,7 +67,7 @@ add_library(llama
models/gemma-embedding.cpp
models/gemma.cpp
models/gemma2-iswa.cpp
models/gemma3-iswa.cpp
models/gemma3.cpp
models/gemma3n-iswa.cpp
models/glm4-moe.cpp
models/glm4.cpp

View File

@@ -248,7 +248,10 @@ llama_context::llama_context(
LLAMA_LOG_DEBUG("%s: backend_ptrs.size() = %zu\n", __func__, backend_ptrs.size());
const size_t max_nodes = this->graph_max_nodes();
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
const size_t max_nodes = this->graph_max_nodes(n_tokens);
LLAMA_LOG_DEBUG("%s: max_nodes = %zu\n", __func__, max_nodes);
@@ -300,9 +303,6 @@ llama_context::llama_context(
cross.v_embd.clear();
const uint32_t n_seqs = cparams.n_seq_max;
const uint32_t n_tokens = std::min(cparams.n_ctx, cparams.n_ubatch);
// avoid reserving graphs with zero outputs - assume one output per sequence
n_outputs = n_seqs;
@@ -1386,9 +1386,9 @@ void llama_context::output_reorder() {
// graph
//
uint32_t llama_context::graph_max_nodes() const {
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
return std::max<uint32_t>(8192u, 32u*model.n_tensors());
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
}
return std::max<uint32_t>(1024u, 8u*model.n_tensors());
}

View File

@@ -197,7 +197,7 @@ private:
//
public:
uint32_t graph_max_nodes() const;
uint32_t graph_max_nodes(uint32_t n_tokens) const;
// can reuse the llm_graph_result instance of the context (for example to update a memory module)
llm_graph_result * get_gf_res_reserve() const;

View File

@@ -181,6 +181,52 @@ static std::pair<uint32_t, const char *> parse_char(const char * src) {
throw std::runtime_error("unexpected end of input");
}
static std::pair<uint32_t, const char *> parse_token(const llama_vocab * vocab, const char * src) {
const char * pos = src;
if (*pos != '<') {
throw std::runtime_error(std::string("expecting '<' at ") + pos);
}
pos++;
// Parse <[id]>
if (*pos == '[') {
pos++;
const char * int_end = parse_int(pos);
uint32_t token_id = std::stoul(std::string(pos, int_end - pos));
pos = int_end;
if (*pos != ']') {
throw std::runtime_error(std::string("expecting ']' at ") + pos);
}
pos++;
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
return std::make_pair(token_id, pos);
}
if (vocab == nullptr) {
throw std::runtime_error(std::string("no vocab to parse token at ") + src);
}
// Parse <token> and tokenize to obtain the token id
while (*pos != 0 && *pos != '>') {
pos++;
}
if (*pos != '>') {
throw std::runtime_error(std::string("expecting '>' at ") + pos);
}
pos++;
llama_token tokens[2];
int32_t n_tokens = vocab->tokenize(src, static_cast<int32_t>(pos - src), tokens, 2, false, true);
if (n_tokens != 1) {
// must tokenize to exactly 1 token
throw std::runtime_error("invalid token '" + std::string(src, pos - src) + "'");
}
return std::make_pair(tokens[0], pos);
}
static void print_grammar_char(FILE * file, uint32_t c) {
if (0x20 <= c && c <= 0x7f) {
fprintf(file, "%c", static_cast<char>(c));
@@ -212,6 +258,8 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
case LLAMA_GRETYPE_CHAR_ANY: fprintf(file, "CHAR_ANY"); break;
case LLAMA_GRETYPE_TOKEN: fprintf(file, "TOKEN"); break;
case LLAMA_GRETYPE_TOKEN_NOT: fprintf(file, "TOKEN_NOT"); break;
}
switch (elem.type) {
case LLAMA_GRETYPE_END:
@@ -228,6 +276,17 @@ static void print_rule_binary(FILE * file, const llama_grammar_rule & rule) {
print_grammar_char(file, elem.value);
fprintf(file, "\") ");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
}
fprintf(file, "\n");
@@ -284,6 +343,17 @@ static void print_rule(
case LLAMA_GRETYPE_CHAR_ANY:
fprintf(file, ".");
break;
case LLAMA_GRETYPE_TOKEN:
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
case LLAMA_GRETYPE_TOKEN_NOT:
fprintf(file, "!");
fprintf(file, "<[");
fprintf(file, "%u", elem.value);
fprintf(file, "]> ");
break;
}
if (is_char_element(elem)) {
switch (rule[i + 1].type) {
@@ -444,6 +514,17 @@ const char * llama_grammar_parser::parse_sequence(
}
}
pos = parse_space(pos + 1, is_nested);
} else if (*pos == '<' || *pos == '!') { // token
auto type = LLAMA_GRETYPE_TOKEN;
if (*pos == '!') { // token inverse
type = LLAMA_GRETYPE_TOKEN_NOT;
pos++;
}
auto token_pair = parse_token(vocab, pos);
const char * token_end = token_pair.second;
last_sym_start = rule.size();
rule.push_back({type, token_pair.first});
pos = parse_space(token_end, is_nested);
} else if (is_word_char(*pos)) { // rule reference
const char * name_end = parse_name(pos);
uint32_t ref_rule_id = get_symbol_id(pos, name_end - pos);
@@ -691,6 +772,21 @@ static bool llama_grammar_match_partial_char(
return !is_positive_char;
}
// returns true iff token matches the rule at pos (regular or inverse)
// asserts that pos is pointing to a token element
static bool llama_grammar_match_token(
const llama_grammar_element * pos,
const llama_token token) {
GGML_ASSERT(pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT);
if (pos->type == LLAMA_GRETYPE_TOKEN) {
return pos->value == static_cast<uint32_t>(token);
}
if (pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return pos->value != static_cast<uint32_t>(token);
}
return false;
}
// transforms a grammar pushdown stack into N possible stacks, all ending
// at a character range (terminal element)
static void llama_grammar_advance_stack(
@@ -738,6 +834,8 @@ static void llama_grammar_advance_stack(
case LLAMA_GRETYPE_CHAR:
case LLAMA_GRETYPE_CHAR_NOT:
case LLAMA_GRETYPE_CHAR_ANY:
case LLAMA_GRETYPE_TOKEN:
case LLAMA_GRETYPE_TOKEN_NOT:
if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
// only add the stack if it's not a duplicate of one we already have
new_stacks.emplace_back(stack);
@@ -831,26 +929,38 @@ llama_grammar_stacks & llama_grammar_get_stacks(struct llama_grammar * grammar)
return grammar->stacks;
}
static void llama_grammar_accept_chr(
struct llama_grammar & grammar,
const llama_grammar_stack & stack,
uint32_t chr,
llama_grammar_stacks & new_stacks) {
if (stack.empty()) {
return;
}
const llama_grammar_element * pos = stack.back();
// ignore if this turns into a token
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
return;
}
auto match = llama_grammar_match_char(pos, chr);
if (match.first) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(match.second)) {
new_stack.push_back(match.second);
}
llama_grammar_advance_stack(grammar.rules, new_stack, new_stacks);
}
}
void llama_grammar_accept(struct llama_grammar * grammar, uint32_t chr) {
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar->stacks.size());
for (const auto & stack : grammar->stacks) {
if (stack.empty()) {
continue;
}
auto match = llama_grammar_match_char(stack.back(), chr);
if (match.first) {
const llama_grammar_element * pos = match.second;
// update top of stack to next element, if any
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos)) {
new_stack.push_back(pos);
}
llama_grammar_advance_stack(grammar->rules, new_stack, stacks_new);
}
llama_grammar_accept_chr(*grammar, stack, chr, stacks_new);
}
grammar->stacks = std::move(stacks_new);
@@ -875,6 +985,22 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
const llama_grammar_element * stack_pos = stack.back();
// if the top of the stack is a token rule, then we only need to check the token id
if (stack_pos->type == LLAMA_GRETYPE_TOKEN || stack_pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
for (const auto & tok : candidates) {
if (*tok.code_points == 0) {
// reached the end of a token consumed by char rules, reject iff it ended
// in a partial response
if (tok.partial_utf8.n_remain != 0) {
rejects.push_back(tok);
}
} else if (!llama_grammar_match_token(stack_pos, tok.id)) {
rejects.push_back(tok);
}
}
return rejects;
}
llama_grammar_candidates next_candidates;
next_candidates.reserve(candidates.size());
@@ -887,7 +1013,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
rejects.push_back(tok);
}
} else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8, tok.id });
} else {
rejects.push_back(tok);
}
@@ -905,7 +1031,7 @@ llama_grammar_candidates llama_grammar_reject_candidates_for_stack(
auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
for (const auto & tok : next_rejects) {
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8, tok.id });
}
return rejects;
@@ -972,12 +1098,13 @@ struct llama_grammar * llama_grammar_init_impl(
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy =*/ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
/* .partial_utf8 = */ {},
/* .lazy = */ false,
/* .awaiting_trigger = */ false,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
/* .trigger_tokens = */ {},
/* .trigger_patterns = */ {},
};
}
@@ -990,7 +1117,7 @@ struct llama_grammar * llama_grammar_init_impl(
size_t num_trigger_patterns,
const llama_token * trigger_tokens,
size_t num_trigger_tokens) {
llama_grammar_parser parser;
llama_grammar_parser parser(vocab);
// if there is a grammar, parse it
// rules will be empty (default) if there are parse errors
@@ -1077,10 +1204,11 @@ struct llama_grammar * llama_grammar_init_impl(
vocab,
std::move(vec_rules),
std::move(stacks),
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .partial_utf8 = */ {},
/* .lazy = */ lazy,
/* .awaiting_trigger = */ lazy,
/* .trigger_buffer = */ "",
/* .trigger_buffer_positions = */ {},
std::move(vec_trigger_tokens),
std::move(vec_trigger_patterns),
};
@@ -1103,6 +1231,7 @@ struct llama_grammar * llama_grammar_clone_impl(const struct llama_grammar & gra
grammar.lazy,
grammar.awaiting_trigger,
grammar.trigger_buffer,
grammar.trigger_buffer_positions,
grammar.trigger_tokens,
grammar.trigger_patterns,
};
@@ -1156,7 +1285,7 @@ void llama_grammar_apply_impl(const struct llama_grammar & grammar, llama_token_
cur_p->data[i].logit = -INFINITY;
} else {
candidates_decoded.push_back(decode_utf8(piece, grammar.partial_utf8));
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second, id });
}
}
@@ -1175,10 +1304,12 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (std::find(grammar.trigger_tokens.begin(), grammar.trigger_tokens.end(), token) != grammar.trigger_tokens.end()) {
grammar.awaiting_trigger = false;
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
LLAMA_LOG_DEBUG("Grammar triggered on token %u (`%s`)", token, piece.c_str());
return;
} else {
auto position = std::make_pair(grammar.trigger_buffer.size(), grammar.trigger_buffer.size() + piece.size());
grammar.trigger_buffer_positions.push_back(std::make_pair(token, position));
grammar.trigger_buffer += piece;
std::smatch match;
@@ -1196,10 +1327,23 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
if (start == std::string::npos) {
start = match.position(0);
}
// replay tokens that overlap with [start, end)
for (const auto & [tok, tok_pos] : grammar.trigger_buffer_positions) {
auto [tok_start, tok_end] = tok_pos;
if (tok_end <= start) {
continue;
}
size_t piece_start = (tok_start < start) ? start : tok_start; // allow for partial token pieces
size_t piece_len = tok_end - piece_start;
auto tok_piece = grammar.trigger_buffer.substr(piece_start, piece_len);
llama_grammar_accept_token(grammar, tok, tok_piece);
}
auto constrained_str = grammar.trigger_buffer.substr(start);
// std::string constrained_str(match[1].first, grammar.trigger_buffer.end());
grammar.trigger_buffer.clear();
llama_grammar_accept_str(grammar, constrained_str);
grammar.trigger_buffer_positions.clear();
LLAMA_LOG_DEBUG("Grammar triggered on regex: '%s'\n", constrained_str.c_str());
return;
}
@@ -1218,7 +1362,7 @@ void llama_grammar_accept_impl(struct llama_grammar & grammar, llama_token token
GGML_ABORT("fatal error");
}
llama_grammar_accept_str(grammar, piece);
llama_grammar_accept_token(grammar, token, piece);
}
void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string & piece) {
@@ -1235,3 +1379,59 @@ void llama_grammar_accept_str(struct llama_grammar & grammar, const std::string
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece);
}
}
void llama_grammar_accept_token(struct llama_grammar & grammar, llama_token token, const std::string & piece) {
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar.partial_utf8);
const auto & code_points = decoded.first;
llama_grammar_stacks stacks_new;
stacks_new.reserve(grammar.stacks.size());
for (const auto & stack : grammar.stacks) {
if (stack.empty()) {
continue;
}
const llama_grammar_element * pos = stack.back();
if (pos->type == LLAMA_GRETYPE_TOKEN || pos->type == LLAMA_GRETYPE_TOKEN_NOT) {
if (llama_grammar_match_token(pos, token)) {
llama_grammar_stack new_stack(stack.begin(), stack.end() - 1);
if (!llama_grammar_is_end_of_sequence(pos + 1)) {
new_stack.push_back(pos + 1);
}
llama_grammar_advance_stack(grammar.rules, new_stack, stacks_new);
}
} else {
llama_grammar_stacks current_stacks = {stack};
for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
llama_grammar_stacks next_stacks;
for (const auto & cur_stack : current_stacks) {
llama_grammar_accept_chr(grammar, cur_stack, *it, next_stacks);
}
current_stacks = std::move(next_stacks);
if (current_stacks.empty()) {
break;
}
}
for (auto & surviving_stack : current_stacks) {
if (std::find(stacks_new.begin(), stacks_new.end(), surviving_stack) == stacks_new.end()) {
stacks_new.emplace_back(surviving_stack);
}
}
}
}
grammar.stacks = std::move(stacks_new);
grammar.partial_utf8 = decoded.second;
if (grammar.stacks.empty()) {
throw std::runtime_error("Unexpected empty grammar stack after accepting piece: " + piece + " (" + std::to_string(token) + ")");
}
}

View File

@@ -36,11 +36,17 @@ enum llama_gretype {
// any character (.)
LLAMA_GRETYPE_CHAR_ANY = 7,
// terminal element: token (<[token-id]>)
LLAMA_GRETYPE_TOKEN = 8,
// inverse token (!<[token-id]>)
LLAMA_GRETYPE_TOKEN_NOT = 9,
};
typedef struct llama_grammar_element {
enum llama_gretype type;
uint32_t value; // Unicode code point or rule ID
uint32_t value; // Unicode code point, rule ID, or token ID
} llama_grammar_element;
struct llama_partial_utf8 {
@@ -52,6 +58,7 @@ struct llama_grammar_candidate {
size_t index;
const uint32_t * code_points;
llama_partial_utf8 partial_utf8;
llama_token id;
};
using llama_grammar_rule = std::vector< llama_grammar_element>;
@@ -77,10 +84,13 @@ std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
const llama_grammar_candidates & candidates);
struct llama_grammar_parser {
const llama_vocab * vocab;
std::map<std::string, uint32_t> symbol_ids;
llama_grammar_rules rules;
llama_grammar_parser(const struct llama_vocab * vocab = nullptr) : vocab(vocab) {}
llama_grammar_stack c_rules() const;
uint32_t get_symbol_id(const char * src, size_t len);
@@ -112,6 +122,9 @@ struct llama_grammar_trigger_pattern {
};
struct llama_grammar {
// maintain a list of llama_tokens and their positions in the trigger_buffer
using token_pos = std::pair<llama_token, std::pair<size_t, size_t>>;
// note: allow null vocab for testing (not great)
const llama_vocab * vocab;
@@ -127,6 +140,7 @@ struct llama_grammar {
bool lazy = false;
bool awaiting_trigger = false; // Initialized to true for lazy grammars only
std::string trigger_buffer; // Output buffered by lazy grammar. Will be cleared once trigger is found.
std::vector<token_pos> trigger_buffer_positions; // Tokens buffered by lazy grammar. Used to replay when a trigger is found.
std::vector<llama_token> trigger_tokens; // Tokens that trigger a lazy grammar, or tokens to force printing of (even if special).
std::vector<llama_grammar_trigger_pattern>
trigger_patterns; // Regular expressions that trigger a lazy grammar. Must be a full match of the entire generated
@@ -171,3 +185,8 @@ void llama_grammar_accept_impl(
void llama_grammar_accept_str(
struct llama_grammar & grammar,
const std::string & piece);
void llama_grammar_accept_token(
struct llama_grammar & grammar,
llama_token token,
const std::string & piece);

View File

@@ -973,7 +973,7 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
// mask out the other groups
selection_probs = ggml_get_rows(ctx0, selection_groups, expert_groups); // [n_exp_per_group, n_group_used, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_scale_bias(ctx0, selection_groups, 0.0f, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_set_rows(ctx0, ggml_fill(ctx0, selection_groups, -INFINITY), selection_probs, expert_groups); // [n_exp_per_group, n_expert_groups, n_tokens]
selection_probs = ggml_reshape_2d(ctx0, selection_probs, n_expert, n_tokens); // [n_expert, n_tokens]
cb(selection_probs, "ffn_moe_probs_masked", il);
}

View File

@@ -1264,18 +1264,25 @@ void llama_model::load_hparams(llama_model_loader & ml) {
} break;
case LLM_ARCH_GEMMA3:
{
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(6);
const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
if (found_swa && hparams.n_swa > 0) {
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
hparams.set_swa_pattern(6);
hparams.rope_freq_base_train_swa = 10000.0f;
hparams.rope_freq_scale_train_swa = 1.0f;
hparams.rope_freq_base_train_swa = 10000.0f;
hparams.rope_freq_scale_train_swa = 1.0f;
} else {
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
}
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
hparams.f_final_logit_softcapping = 0.0f;
ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 18: type = LLM_TYPE_270M; break;
case 26: type = LLM_TYPE_1B; break;
case 32: type = LLM_TYPE_8B; break; // Rnj-1
case 34: type = LLM_TYPE_4B; break;
case 48: type = LLM_TYPE_12B; break;
case 62: type = LLM_TYPE_27B; break;
@@ -1628,6 +1635,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, false);
// (optional) temperature tuning - used by mistral-large
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
switch (hparams.n_layer) {
case 27: type = LLM_TYPE_16B; break;
case 60: type = LLM_TYPE_236B; break;
@@ -7300,7 +7311,11 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
} break;
case LLM_ARCH_GEMMA3:
{
llm = std::make_unique<llm_build_gemma3_iswa>(*this, params);
if (hparams.swa_type == LLAMA_SWA_TYPE_STANDARD) {
llm = std::make_unique<llm_build_gemma3<true>>(*this, params);
} else {
llm = std::make_unique<llm_build_gemma3<false>>(*this, params);
}
} break;
case LLM_ARCH_GEMMA3N:
{

View File

@@ -30,6 +30,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// (optional) temperature tuning - used by mistral-large
ggml_tensor * inp_attn_scale = nullptr;
if (hparams.f_attn_temp_scale != 0.0f) {
inp_attn_scale = build_inp_attn_scale();
}
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
@@ -128,6 +134,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
if (inp_attn_scale) {
// apply llama 4 temperature scaling
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
cb(Qcur, "Qcur_attn_temp_scaled", il);
}
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,
@@ -160,6 +172,12 @@ llm_build_deepseek2::llm_build_deepseek2(const llama_model & model, const llm_gr
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
cb(Kcur, "Kcur", il);
if (inp_attn_scale) {
// apply llama 4 temperature scaling
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
cb(Qcur, "Qcur_attn_temp_scaled", il);
}
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn,
model.layers[il].wo, NULL,

View File

@@ -1,6 +1,7 @@
#include "models.h"
llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
template <bool iswa>
llm_build_gemma3<iswa>::llm_build_gemma3(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_k;
ggml_tensor * cur;
@@ -17,13 +18,28 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
ggml_tensor * inp_pos = build_inp_pos();
// TODO: is causal == true correct? might need some changes
auto * inp_attn = build_attn_inp_kv_iswa();
using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_iswa, llm_graph_input_attn_kv>;
inp_attn_type * inp_attn = nullptr;
if constexpr (iswa) {
inp_attn = build_attn_inp_kv_iswa();
} else {
inp_attn = build_attn_inp_kv();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
const float freq_base_l = model.get_rope_freq_base (cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
float freq_base_l = 0.0f;
float freq_scale_l = 0.0f;
if constexpr (iswa) {
freq_base_l = model.get_rope_freq_base (cparams, il);
freq_scale_l = model.get_rope_freq_scale(cparams, il);
} else {
freq_base_l = freq_base;
freq_scale_l = freq_scale;
}
// norm
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
@@ -102,7 +118,7 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
cur = build_norm(cur,
model.layers[il].ffn_post_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "ffn_post_norm", -1);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, sa_out);
@@ -124,8 +140,17 @@ llm_build_gemma3_iswa::llm_build_gemma3_iswa(const llama_model & model, const ll
// lm_head
cur = build_lora_mm(model.output, cur);
if (hparams.f_final_logit_softcapping) {
cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
cur = ggml_tanh(ctx0, cur);
cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
}
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
template struct llm_build_gemma3<false>;
template struct llm_build_gemma3<true>;

View File

@@ -179,8 +179,9 @@ struct llm_build_gemma2_iswa : public llm_graph_context {
llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3_iswa : public llm_graph_context {
llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params);
template <bool iswa>
struct llm_build_gemma3 : public llm_graph_context {
llm_build_gemma3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_gemma3n_iswa : public llm_graph_context {

View File

@@ -428,10 +428,38 @@ static void test_templates(const struct common_chat_templates * tmpls, const std
*/
template <typename T>
static void test_parser_with_streaming(const common_chat_msg & expected, const std::string & raw_message, T parse_msg) {
constexpr auto utf8_truncate_safe_len = [](const std::string_view s) -> size_t {
auto len = s.size();
if (len == 0) return 0;
auto i = len;
for (size_t back = 0; back < 4 && i > 0; ++back) {
--i;
unsigned char c = s[i];
if ((c & 0x80) == 0) {
return len;
} else if ((c & 0xC0) == 0xC0) {
size_t expected_len = 0;
if ((c & 0xE0) == 0xC0) expected_len = 2;
else if ((c & 0xF0) == 0xE0) expected_len = 3;
else if ((c & 0xF8) == 0xF0) expected_len = 4;
else return i;
if (len - i >= expected_len) {
return len;
} else {
return i;
}
}
}
return len - std::min(len, size_t(3));
};
constexpr auto utf8_truncate_safe_view = [utf8_truncate_safe_len](const std::string_view s) {
return s.substr(0, utf8_truncate_safe_len(s));
};
auto merged = simple_assist_msg("");
auto last_msg = parse_msg("");
for (size_t i = 1; i <= raw_message.size(); ++i) {
auto curr_msg = parse_msg(raw_message.substr(0, i));
auto curr_msg = parse_msg(std::string(utf8_truncate_safe_view(std::string_view(raw_message).substr(0, i))));
if (curr_msg == simple_assist_msg("")) continue;
LOG_INF("Streaming msg: %s\n", common_chat_msgs_to_json_oaicompat<json>({curr_msg}).dump().c_str());
for (auto diff: common_chat_msg_diff::compute_diffs(last_msg, curr_msg)) {
@@ -2659,14 +2687,14 @@ Hey there!<|im_end|>
// Test parsing tool calls
assert_msg_equals(message_assist_call,
common_chat_parse(
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
/* is_partial= */ false,
{COMMON_CHAT_FORMAT_KIMI_K2}));
// Test parsing tool calls with thinking
assert_msg_equals(message_assist_call_thoughts,
common_chat_parse(
"<think>I'm\nthinking</think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking</think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
/* is_partial= */ false,
{
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
@@ -2676,7 +2704,7 @@ Hey there!<|im_end|>
// Test tool calls with extra content
assert_msg_equals(message_assist_call_content,
common_chat_parse(
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>Hello, world!\nWhat's up?",
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>Hello, world!\nWhat's up?",
/* is_partial= */ false,
{COMMON_CHAT_FORMAT_KIMI_K2}
));
@@ -2684,7 +2712,7 @@ Hey there!<|im_end|>
// Test tool calls with extra content AND thinking
assert_msg_equals(message_assist_call_thoughts_content,
common_chat_parse(
"<think>I'm\nthinking</think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>Hello, world!\nWhat's up?",
"<think>I'm\nthinking</think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>Hello, world!\nWhat's up?",
/* is_partial= */ false,
{
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
@@ -2693,47 +2721,152 @@ Hey there!<|im_end|>
// Test streaming
test_parser_with_streaming(message_assist_call_thoughts_content,
"<think>I'm\nthinking\n</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking\n</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(message_assist_call_thoughts_unparsed,
"<think>I'm\nthinking</think>\n\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking</think>\n\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_NONE
}); });
test_parser_with_streaming(message_assist_call_thoughts_content,
"<think>I'm\nthinking\n</think>\n\nHello, world!\nWhat's up?\n\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>\n",
"<think>I'm\nthinking\n</think>\n\nHello, world!\nWhat's up?\n\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>\n",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(message_assist_call_withopt,
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:1<|tool_call_argument_begin|>{\"arg1\": 1, \"arg2\": 2}<|tool_call_end|><|tool_calls_section_end|>",
"<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:0<|tool_call_argument_begin|>{\"arg1\": 1, \"arg2\": 2}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_NONE
}); });
test_parser_with_streaming(simple_assist_msg("Hello, world!\nWhat's up?", "I'm\nthinking", "special_function", "{\"arg1\": \"123456\"}"),
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": \"123456\"}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": \"123456\"}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(simple_assist_msg("Hello, world!\nWhat's up?", "I'm\nthinking", "special_function", "{\"arg1\": [1, 2, \"345\", 6]}"),
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": [1, 2, \"345\", 6]}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": [1, 2, \"345\", 6]}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(simple_assist_msg("Hello, world!\nWhat's up?", "I'm\nthinking", "special_function", "{\"arg1\": {\"12\": 34, \"5\": [67, 8], \"9\": \"10\"}}"),
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": {\"12\": 34, \"5\": [67, 8], \"9\": \"10\"}}<|tool_call_end|><|tool_calls_section_end|>",
"<think>I'm\nthinking</think>Hello, world!\nWhat's up?\n<|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": {\"12\": 34, \"5\": [67, 8], \"9\": \"10\"}}<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
/* .format = */ COMMON_CHAT_FORMAT_KIMI_K2,
/* .reasoning_format = */ COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(
simple_assist_msg("", "", "complex_function", "{\"name\":\"John Doe\",\"age\":30,\"active\":true,\"score\":95.5}"),
"<|tool_calls_section_begin|><|tool_call_begin|>functions.complex_function:0<|tool_call_argument_begin|>"
"{\"name\": \"John Doe\", \"age\": 30, \"active\": true, \"score\": 95.5}"
"<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {COMMON_CHAT_FORMAT_KIMI_K2}); });
test_parser_with_streaming(
simple_assist_msg("", "", "web_search", "{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}"),
"<|tool_calls_section_begin|><|tool_call_begin|>functions.web_search:0<|tool_call_argument_begin|>"
"{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}"
"<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {COMMON_CHAT_FORMAT_KIMI_K2}); });
test_parser_with_streaming(
simple_assist_msg("", "", "read_file", "{\"args\": [{\"path\": \"src/providers/ThemeProvider.tsx\"}, {\"path\": \"src/components/Header.tsx\"}, {\"path\": \"src/components/ThemeToggle.tsx\"}, {\"path\": \"src/app/globals.css\"}, {\"path\": \"src/app/layout.tsx\"}]}"),
"<|tool_calls_section_begin|><|tool_call_begin|>functions.read_file:0<|tool_call_argument_begin|>"
"{\"args\": [{\"path\": \"src/providers/ThemeProvider.tsx\"}, {\"path\": \"src/components/Header.tsx\"}, {\"path\": \"src/components/ThemeToggle.tsx\"}, {\"path\": \"src/app/globals.css\"}, {\"path\": \"src/app/layout.tsx\"}]}"
"<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {COMMON_CHAT_FORMAT_KIMI_K2}); });
test_parser_with_streaming(
simple_assist_msg(
"Let me start by examining the relevant files to understand the current implementation.", "",
"read_file",
"{\"files\": [{\"path\": \"src/app/Partners.tsx\", \"line_ranges\": [\"1-100\"]}]}"),
"Let me start by examining the relevant files to understand the current implementation."
"<|tool_calls_section_begin|><|tool_call_begin|>functions.read_file:0<|tool_call_argument_begin|>"
"{\"files\":[{\"path\":\"src/app/Partners.tsx\",\"line_ranges\":[\"1-100\"]}]}"
"<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {COMMON_CHAT_FORMAT_KIMI_K2}); });
auto multi_tool_msg = simple_assist_msg("Let me call multiple tools.", "I'm thinking.");
multi_tool_msg.tool_calls.push_back({ "read_file", "{\"files\": [{\"path\": \"src/app/Partners.tsx\", \"line_ranges\": [\"1-100\"]}]}", "" });
multi_tool_msg.tool_calls.push_back({ "web_search", "{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}", "" });
multi_tool_msg.tool_calls.push_back({ "complex_function", "{\"name\": \"John Doe\", \"age\": 30, \"active\": true, \"score\": 95.5}", "" });
multi_tool_msg.tool_calls.push_back({ "emoji_function", "{\"message\":\"Hello! 👋 🌟 🚀 Testing emojis: 😀😃😄😁 and symbols: ∑∏∆∇\"}", "" });
test_parser_with_streaming(multi_tool_msg,
"<think>I'm thinking.</think>Let me call multiple tools."
"<|tool_calls_section_begin|>"
"<|tool_call_begin|>functions.read_file:0<|tool_call_argument_begin|>"
"{\"files\":[{\"path\":\"src/app/Partners.tsx\",\"line_ranges\":[\"1-100\"]}]}"
"<|tool_call_end|>"
"<|tool_call_begin|>functions.web_search:1<|tool_call_argument_begin|>"
"{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}"
"<|tool_call_end|>"
"<|tool_call_begin|>functions.complex_function:2<|tool_call_argument_begin|>"
"{\"name\": \"John Doe\", \"age\": 30, \"active\": true, \"score\": 95.5}"
"<|tool_call_end|>"
"<|tool_call_begin|>functions.emoji_function:3<|tool_call_argument_begin|>"
"{\"message\":\"Hello! 👋 🌟 🚀 Testing emojis: 😀😃😄😁 and symbols: ∑∏∆∇\"}"
"<|tool_call_end|>"
"<|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
COMMON_CHAT_FORMAT_KIMI_K2,
COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(
simple_assist_msg("", "I'm thinking", "complex_function_in_think", "{\"name\":\"John Doe\",\"age\":30,\"active\":true,\"score\":95.5}"),
"<think>I'm thinking<|tool_calls_section_begin|><|tool_call_begin|>functions.complex_function_in_think:0<|tool_call_argument_begin|>"
"{\"name\": \"John Doe\", \"age\": 30, \"active\": true, \"score\": 95.5}"
"<|tool_call_end|><|tool_calls_section_end|>",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
COMMON_CHAT_FORMAT_KIMI_K2,
COMMON_REASONING_FORMAT_DEEPSEEK
}); });
test_parser_with_streaming(
simple_assist_msg("Hello", "I'm thinkingI'm still thinking", "complex_function_in_think", "{\"name\":\"John Doe\",\"age\":30,\"active\":true,\"score\":95.5}"),
"<think>I'm thinking<|tool_calls_section_begin|><|tool_call_begin|>functions.complex_function_in_think:0<|tool_call_argument_begin|>"
"{\"name\": \"John Doe\", \"age\": 30, \"active\": true, \"score\": 95.5}"
"<|tool_call_end|><|tool_calls_section_end|>I'm still thinking</think>Hello",
[&](const std::string &msg) { return common_chat_parse(msg, /* is_partial= */ true, {
COMMON_CHAT_FORMAT_KIMI_K2,
COMMON_REASONING_FORMAT_DEEPSEEK
}); });
// Test template rendering
common_chat_templates_inputs conversation_with_tools = inputs_tools;
conversation_with_tools.messages.push_back(simple_assist_msg("Let's do it", "Think first", "complex_function", "{\"name\":\"John Doe\",\"age\":30,\"active\":true,\"score\":95.5}"));
conversation_with_tools.messages.push_back({
"tool",
"Tool response 1",
/* .content_parts = */ {},
/* .tool_calls = */ {},
/* .reasoning_content = */ "",
/* .tool_name = */ "complex_function",
/* .tool_call_id = */ "",
});
conversation_with_tools.messages.push_back(simple_assist_msg("Continue", "Think next", "web_search", "{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}"));
conversation_with_tools.messages.push_back({
"tool",
"Tool response 2",
/* .content_parts = */ {},
/* .tool_calls = */ {},
/* .reasoning_content = */ "",
/* .tool_name = */ "web_search",
/* .tool_call_id = */ "",
});
conversation_with_tools.messages.push_back(simple_assist_msg("CC", "Think last", "read_file", "{\"args\": [{\"path\": \"src/providers/ThemeProvider.tsx\"}, {\"path\": \"src/components/Header.tsx\"}, {\"path\": \"src/components/ThemeToggle.tsx\"}, {\"path\": \"src/app/globals.css\"}, {\"path\": \"src/app/layout.tsx\"}]}"));
conversation_with_tools.messages.push_back({
"tool",
"Tool response 3",
/* .content_parts = */ {},
/* .tool_calls = */ {},
/* .reasoning_content = */ "",
/* .tool_name = */ "read_file",
/* .tool_call_id = */ "",
});
assert_equals(common_chat_templates_apply(tmpls.get(), conversation_with_tools).prompt, std::string("<|im_system|>tool_declare<|im_middle|>[{\"type\": \"function\", \"function\": {\"name\": \"special_function\", \"description\": \"I'm special\", \"parameters\": {\"type\": \"object\", \"properties\": {\"arg1\": {\"type\": \"integer\", \"description\": \"The arg.\"}}, \"required\": [\"arg1\"]}}}]<|im_end|><|im_system|>system<|im_middle|>You are Kimi, an AI assistant created by Moonshot AI.<|im_end|><|im_user|>user<|im_middle|>Hey there!<|im_end|><|im_assistant|>assistant<|im_middle|><think>Think first</think>Let's do it<|tool_calls_section_begin|><|tool_call_begin|>functions.complex_function:0<|tool_call_argument_begin|>{\"name\":\"John Doe\",\"age\":30,\"active\":true,\"score\":95.5}<|tool_call_end|><|tool_calls_section_end|><|im_end|><|im_system|>complex_function<|im_middle|>## Return of functions.complex_function:0\nTool response 1<|im_end|><|im_assistant|>assistant<|im_middle|><think>Think next</think>Continue<|tool_calls_section_begin|><|tool_call_begin|>functions.web_search:1<|tool_call_argument_begin|>{\"query\":\"\\\"From Zero\\\" Linkin Park album tracklist complete songs\",\"limit\":3,\"type\":\"text\"}<|tool_call_end|><|tool_calls_section_end|><|im_end|><|im_system|>web_search<|im_middle|>## Return of functions.web_search:1\nTool response 2<|im_end|><|im_assistant|>assistant<|im_middle|><think>Think last</think>CC<|tool_calls_section_begin|><|tool_call_begin|>functions.read_file:2<|tool_call_argument_begin|>{\"args\": [{\"path\": \"src/providers/ThemeProvider.tsx\"}, {\"path\": \"src/components/Header.tsx\"}, {\"path\": \"src/components/ThemeToggle.tsx\"}, {\"path\": \"src/app/globals.css\"}, {\"path\": \"src/app/layout.tsx\"}]}<|tool_call_end|><|tool_calls_section_end|><|im_end|><|im_system|>read_file<|im_middle|>## Return of functions.read_file:2\nTool response 3<|im_end|><|im_assistant|>assistant<|im_middle|>"));
// Test template generation for regular content
test_templates(tmpls.get(), end_tokens, message_assist, tools,
@@ -2742,7 +2875,7 @@ Hey there!<|im_end|>
// Test template generation for tool calls
test_templates(tmpls.get(), end_tokens, message_assist_call, tools,
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
/* expect_grammar_triggered= */ true,
/* test_grammar_if_triggered= */ true,
/* common_reasoning_format= */ COMMON_REASONING_FORMAT_DEEPSEEK,
@@ -2751,14 +2884,14 @@ Hey there!<|im_end|>
// Test template generation for tools with optional parameters
test_templates(tmpls.get(), end_tokens, message_assist_call_noopt, tools,
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:1<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:0<|tool_call_argument_begin|>{\"arg1\": 1}<|tool_call_end|><|tool_calls_section_end|>",
/* expect_grammar_triggered= */ true,
/* test_grammar_if_triggered= */ true,
/* common_reasoning_format= */ COMMON_REASONING_FORMAT_DEEPSEEK,
/* ignore_whitespace_differences= */ true
);
test_templates(tmpls.get(), end_tokens, message_assist_call_withopt, tools,
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:1<|tool_call_argument_begin|>{\"arg1\": 1, \"arg2\": 2}<|tool_call_end|><|tool_calls_section_end|>",
"<think></think><|tool_calls_section_begin|><|tool_call_begin|>functions.special_function_with_opt:0<|tool_call_argument_begin|>{\"arg1\": 1, \"arg2\": 2}<|tool_call_end|><|tool_calls_section_end|>",
/* expect_grammar_triggered= */ true,
/* test_grammar_if_triggered= */ true,
/* common_reasoning_format= */ COMMON_REASONING_FORMAT_DEEPSEEK,

View File

@@ -32,13 +32,66 @@ static bool test_build_grammar_fails(const std::string & grammar_str) {
return grammar_fails;
}
struct token_and_piece {
llama_token token;
std::string piece;
};
// token() encodes a 32-bit ID as 5 bytes: a 0xff marker followed by the ID in big-endian order.
static std::string token(llama_token id) {
return std::string{
static_cast<char>(0xff),
static_cast<char>((id >> 24) & 0xff),
static_cast<char>((id >> 16) & 0xff),
static_cast<char>((id >> 8) & 0xff),
static_cast<char>(id & 0xff)
};
}
// parse_tokens() parses the token encodes above and UTF-8 text.
static std::vector<token_and_piece> parse_tokens(const std::string & input) {
std::vector<token_and_piece> result;
result.reserve(input.size());
size_t offset = 0;
while (offset < input.size()) {
try {
if (static_cast<unsigned char>(input[offset]) == 0xff) {
if (offset + 5 > input.size()) {
throw std::runtime_error("not enough bytes for token id");
}
uint32_t val =
(static_cast<unsigned char>(input[offset + 1]) << 24) |
(static_cast<unsigned char>(input[offset + 2]) << 16) |
(static_cast<unsigned char>(input[offset + 3]) << 8) |
(static_cast<unsigned char>(input[offset + 4]));
auto piece = "<[" + std::to_string(val) + "]>";
result.push_back({static_cast<llama_token>(val), piece});
offset += 5;
} else {
uint32_t cpt = unicode_cpt_from_utf8(input, offset);
result.push_back({0, unicode_cpt_to_utf8(cpt)});
}
} catch (const std::invalid_argument & /*ex*/) {
// Silently ignore invalid UTF-8 input to avoid leaking the exception beyond llama_tokenize
++offset;
result.push_back({0, unicode_cpt_to_utf8(0xFFFD)}); // replacement character
}
}
return result;
}
static bool match_string(const std::string & input, llama_grammar * grammar) {
const auto cpts = unicode_cpts_from_utf8(input);
const auto parsed = parse_tokens(input);
auto & stacks_cur = llama_grammar_get_stacks(grammar);
for (const auto & cpt : cpts) {
llama_grammar_accept(grammar, cpt);
for (const auto & in : parsed) {
try {
llama_grammar_accept_token(*grammar, in.token, in.piece);
} catch (const std::runtime_error & /*e*/) {
// normally this shouldn't get hit because of llama_grammar_apply
return false;
}
if (stacks_cur.empty()) {
// no stacks means that the grammar failed to match at this point
@@ -426,6 +479,30 @@ static void test_simple_grammar() {
"12a45",
}
);
// Test case for a simple grammar with tokens
test_grammar(
"simple grammar with tokens",
R"""(
root ::= <[10]> content <[11]>
content ::= (!<[11]>)*)""",
// Passing strings
{
token(10) + "hello world" + token(11),
token(10) + "text with " + token(12) + " other tokens " + token(13) + " mixed in" + token(11),
token(10) + token(11),
token(10) + token(12) + token(13) + token(14) + token(15) + token(11),
token(10) + "a" + token(11),
},
// Failing strings
{
token(10) + "missing end token",
token(10),
"missing start token" + token(11),
token(10) + token(11) + token(11), // double end token
token(11) + "wrong order" + token(10),
}
);
}
static void test_complex_grammar() {
@@ -487,6 +564,34 @@ static void test_complex_grammar() {
"123+456*789-123/456+789*123-456/789+123*456-789/123+456*789-123/456+789*123-456/",
}
);
// Test case for a more complex grammar with tokens
test_grammar(
"complex grammar with tokens",
R"""(
root ::= reasoning+ content tool-call*
reasoning ::= <[10]> (!<[11]>)* <[11]>
content ::= <[20]> (!<[21]>)* <[21]>
tool-call ::= <[12]> name <[13]> args <[14]>
name ::= (!<[13]>)+
args ::= (!<[14]>)*)""",
// Passing strings
{
token(10) + "I am thinking" + token(11) + token(20) + "hello world!" + token(21) + token(12) + "search" + token(13) + "query=test" + token(14),
token(10) + "reasoning 1" + token(11) + token(10) + "reasoning 2" + token(11) + token(20) + token(21) + token(12) + "tool" + token(13) + token(14),
token(10) + token(11) + token(20) + "content" + token(21),
token(10) + "think" + token(12) + " nested" + token(11) + token(20) + token(10) + "more content" + token(21) + token(12) + "fn" + token(13) + "x=1,y=2" + token(14) + token(12) + "fn2" + token(13) + token(14),
token(10) + "reasoning" + token(11) + token(10) + "more" + token(11) + token(10) + "even more" + token(11) + token(20) + "text" + token(21) + token(12) + "a" + token(13) + "b" + token(14) + token(12) + "c" + token(13) + "d" + token(14),
},
// Failing strings
{
token(20) + "content only" + token(21),
token(10) + "no closing reasoning",
token(10) + token(11) + token(20) + "no closing content",
token(10) + token(11) + token(20) + token(21) + token(12) + "incomplete tool",
token(10) + token(11) + token(11) + token(20) + token(21),
}
);
}
static void test_special_chars() {

View File

@@ -515,5 +515,19 @@ int main()
{LLAMA_GRETYPE_END, 0},
});
// <[1000]> = "<think>"
// <[1001]> = "</think>"
verify_parsing(R"""(
root ::= <[1000]> !<[1001]> <[1001]>
)""", {
{"root", 0}
}, {
// root (index 0)
{LLAMA_GRETYPE_TOKEN, 1000},
{LLAMA_GRETYPE_TOKEN_NOT, 1001},
{LLAMA_GRETYPE_TOKEN, 1001},
{LLAMA_GRETYPE_END, 0},
});
return 0;
}

View File

@@ -202,7 +202,7 @@ int main()
uint32_t *cp = new uint32_t[2]; // dynamically allocate memory for code_point
cp[0] = 37 + i;
cp[1] = 0;
next_candidates[i] = {i, cp, {}};
next_candidates[i] = {i, cp, {}, 0};
}
std::vector<std::vector<std::pair<uint32_t, uint16_t>>> expected_reject = {

177
tools/server/README-dev.md Normal file
View File

@@ -0,0 +1,177 @@
# llama-server Development Documentation
This document provides an in-depth technical overview of `llama-server`, intended for maintainers and contributors.
If you are an end user consuming `llama-server` as a product, please refer to the main [README](./README.md) instead.
## Backend
### Overview
The server supports two primary operating modes:
- **Inference mode**: The default mode for performing inference with a single loaded GGUF model.
- **Router mode**: Enables management of multiple inference server instances behind a single API endpoint. Requests are automatically routed to the appropriate backend instance based on the requested model.
The core architecture consists of the following components:
- `server_context`: Holds the primary inference state, including the main `llama_context` and all active slots.
- `server_slot`: An abstraction over a single “sequence” in llama.cpp, responsible for managing individual parallel inference requests.
- `server_routes`: Middleware layer between `server_context` and the HTTP interface; handles JSON parsing/formatting and request routing logic.
- `server_http_context`: Implements the HTTP server using `cpp-httplib`.
- `server_queue`: Thread-safe queue used by HTTP workers to submit new tasks to `server_context`.
- `server_response`: Thread-safe queue used by `server_context` to return results to HTTP workers.
- `server_response_reader`: Higher-level wrapper around the two queues above for cleaner code.
- `server_task`: Unit of work pushed into `server_queue`.
- `server_task_result`: Unit of result pushed into `server_response`.
- `server_tokens`: Unified representation of token sequences (supports both text and multimodal tokens); used by `server_task` and `server_slot`.
- `server_prompt_checkpoint`: For recurrent (e.g., RWKV) and SWA models, stores snapshots of KV cache state. Enables reuse when subsequent requests share the same prompt prefix, saving redundant computation.
- `server_models`: Standalone component for managing multiple backend instances (used in router mode). It is completely independent of `server_context`.
```mermaid
graph TD
API_User <--> server_http_context
server_http_context <-- router mode --> server_models
server_http_context <-- inference mode --> server_routes
server_routes -- server_task --> server_queue
subgraph server_context
server_queue --> server_slot
server_slot -- server_task_result --> server_response
server_slot[multiple server_slot]
end
server_response --> server_routes
```
### Batching
The server context maintains a single batch shared across all slots. When `update_slots()` is invoked, the system iterates through all active slots to populate this batch. For each slot, either a generated token from the previous decoding step or available prompt tokens are added to the batch.
Batching constraints apply: slots can only be batched together if they share compatible configurations. For instance, slots using a specific LoRA adapter can be batched with each other, but not with slots using a different LoRA adapter or no adapter at all.
Once the batch reaches capacity or all slots have been processed, `llama_decode` is called to execute the inference. This operation represents the primary computational bottleneck in `update_slots()`.
Following decoding, the system either retrieves embeddings or samples the next token using `common_sampler_sample`. If a slot has remaining prompt tokens to process, it yields until the next `update_slots()` iteration.
### Thread Management
`server_context` runs on a dedicated single thread. Because it is single-threaded, heavy post-processing (especially after token generation) should be avoided, as it directly impacts multi-sequence throughput.
Each incoming HTTP request is handled by its own thread managed by the HTTP library. The following operations are performed in HTTP worker threads:
- JSON request parsing
- Chat template application
- Tokenization
- Conversion of `server_task_result` into final JSON response
- Error formatting into JSON
- Tracking of partial/incremental responses (e.g., streaming tool calls or reasoning steps)
**Best practices to follow:**
- All JSON formatting and chat template logic must stay in the HTTP layer.
- Avoid passing raw JSON between the HTTP layer and `server_slot`. Instead, parse everything into native C++ types as early as possible.
### Example trace of a request
Here is an example trace of an API request for text completion:
- A request arrives at the HTTP layer.
- The request is routed to the corresponding handler inside `server_routes`. In this case, `handle_completions_impl` is invoked.
- The handler parses the input request, constructs a new `server_task`, and passes it to `server_res_generator`.
- `server_res_generator` creates a new `task_result_state` for each task:
- `task_result_state` stays in the HTTP layer, responsible for keeping track of the current state of the response (e.g., parsing tool calls or thinking messages).
- `server_task` is moved into `server_queue` inside `server_context`.
- `server_context` launches the task by moving it into an available slot (see `launch_slot_with_task()`).
- `update_slot()` processes the task as described in the "Batching" section above.
- Results may be sent using `send_partial_response` or `send_final_response`, which creates a new `server_task_result` and pushes it to the response queue.
- At the same time, `server_res_generator` listens to the response queue and retrieves this response.
- As the response is stateless, `server_res_generator` calls `response->update()` to update the response with the current state.
- `server_res_generator` then calls `response->to_json()` and passes the response to the HTTP layer.
### Testing
`llama-server` includes an automated test suite based on `pytest`.
The framework automatically starts a `llama-server` instance, sends requests, and validates responses.
For detailed instructions, see the [test documentation](./tests/README.md).
### Notable Related PRs
- Initial server implementation: https://github.com/ggml-org/llama.cpp/pull/1443
- Parallel decoding support: https://github.com/ggml-org/llama.cpp/pull/3228
- Refactor introducing `server_queue` and `server_response`: https://github.com/ggml-org/llama.cpp/pull/5065
- Reranking endpoint: https://github.com/ggml-org/llama.cpp/pull/9510
- Multimodal model support (`libmtmd`): https://github.com/ggml-org/llama.cpp/pull/12898
- Unified KV cache handling: https://github.com/ggml-org/llama.cpp/pull/16736
- Separation of HTTP logic into dedicated files: https://github.com/ggml-org/llama.cpp/pull/17216
- Large-scale code base split into smaller files: https://github.com/ggml-org/llama.cpp/pull/17362
- Introduction of router mode: https://github.com/ggml-org/llama.cpp/pull/17470
- Speculative decoding: https://github.com/ggml-org/llama.cpp/pull/17808 and rework in https://github.com/ggml-org/llama.cpp/pull/17808
## Web UI
The project includes a web-based user interface for interacting with `llama-server`. It supports both single-model (`MODEL` mode) and multi-model (`ROUTER` mode) operation.
The SvelteKit-based Web UI is introduced in this PR: https://github.com/ggml-org/llama.cpp/pull/14839
### Features
- **Chat interface** with streaming responses
- **Multi-model support** (ROUTER mode) - switch between models, auto-load on selection
- **Modality validation** - ensures selected model supports conversation's attachments (images, audio)
- **Conversation management** - branching, regeneration, editing with history preservation
- **Attachment support** - images, audio, PDFs (with vision/text fallback)
- **Configurable parameters** - temperature, top_p, etc. synced with server defaults
- **Dark/light theme**
### Tech Stack
- **SvelteKit** - frontend framework with Svelte 5 runes for reactive state
- **TailwindCSS** + **shadcn-svelte** - styling and UI components
- **Vite** - build tooling
- **IndexedDB** (Dexie) - local storage for conversations
- **LocalStorage** - user settings persistence
### Architecture
The WebUI follows a layered architecture:
```
Routes → Components → Hooks → Stores → Services → Storage/API
```
- **Stores** - reactive state management (`chatStore`, `conversationsStore`, `modelsStore`, `serverStore`, `settingsStore`)
- **Services** - stateless API/database communication (`ChatService`, `ModelsService`, `PropsService`, `DatabaseService`)
- **Hooks** - reusable logic (`useModelChangeValidation`, `useProcessingState`)
For detailed architecture diagrams, see [`tools/server/webui/docs/`](webui/docs/):
- `high-level-architecture.mmd` - full architecture with all modules
- `high-level-architecture-simplified.mmd` - simplified overview
- `data-flow-simplified-model-mode.mmd` - data flow for single-model mode
- `data-flow-simplified-router-mode.mmd` - data flow for multi-model mode
- `flows/*.mmd` - detailed per-domain flows (chat, conversations, models, etc.)
### Development
```sh
# make sure you have Node.js installed
cd tools/server/webui
npm i
# run dev server (with hot reload)
npm run dev
# run tests
npm run test
# build production bundle
npm run build
```
After `public/index.html.gz` has been generated, rebuild `llama-server` as described in the [build](#build) section to include the updated UI.
**Note:** The Vite dev server automatically proxies API requests to `http://localhost:8080`. Make sure `llama-server` is running on that port during development.

View File

@@ -2,7 +2,7 @@
Fast, lightweight, pure C/C++ HTTP server based on [httplib](https://github.com/yhirose/cpp-httplib), [nlohmann::json](https://github.com/nlohmann/json) and **llama.cpp**.
Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
Set of LLM REST APIs and a web UI to interact with llama.cpp.
**Features:**
* LLM inference of F16 and quantized models on GPU and CPU
@@ -19,7 +19,7 @@ Set of LLM REST APIs and a simple web front end to interact with llama.cpp.
* Speculative decoding
* Easy-to-use web UI
The project is under active development, and we are [looking for feedback and contributors](https://github.com/ggml-org/llama.cpp/issues/4216).
For the ful list of features, please refer to [server's changelog](https://github.com/ggml-org/llama.cpp/issues/9291)
## Usage
@@ -289,69 +289,6 @@ For more details, please refer to [multimodal documentation](../../docs/multimod
cmake --build build --config Release -t llama-server
```
## Web UI
The project includes a web-based user interface for interacting with `llama-server`. It supports both single-model (`MODEL` mode) and multi-model (`ROUTER` mode) operation.
### Features
- **Chat interface** with streaming responses
- **Multi-model support** (ROUTER mode) - switch between models, auto-load on selection
- **Modality validation** - ensures selected model supports conversation's attachments (images, audio)
- **Conversation management** - branching, regeneration, editing with history preservation
- **Attachment support** - images, audio, PDFs (with vision/text fallback)
- **Configurable parameters** - temperature, top_p, etc. synced with server defaults
- **Dark/light theme**
### Tech Stack
- **SvelteKit** - frontend framework with Svelte 5 runes for reactive state
- **TailwindCSS** + **shadcn-svelte** - styling and UI components
- **Vite** - build tooling
- **IndexedDB** (Dexie) - local storage for conversations
- **LocalStorage** - user settings persistence
### Architecture
The WebUI follows a layered architecture:
```
Routes → Components → Hooks → Stores → Services → Storage/API
```
- **Stores** - reactive state management (`chatStore`, `conversationsStore`, `modelsStore`, `serverStore`, `settingsStore`)
- **Services** - stateless API/database communication (`ChatService`, `ModelsService`, `PropsService`, `DatabaseService`)
- **Hooks** - reusable logic (`useModelChangeValidation`, `useProcessingState`)
For detailed architecture diagrams, see [`tools/server/webui/docs/`](webui/docs/):
- `high-level-architecture.mmd` - full architecture with all modules
- `high-level-architecture-simplified.mmd` - simplified overview
- `data-flow-simplified-model-mode.mmd` - data flow for single-model mode
- `data-flow-simplified-router-mode.mmd` - data flow for multi-model mode
- `flows/*.mmd` - detailed per-domain flows (chat, conversations, models, etc.)
### Development
```sh
# make sure you have Node.js installed
cd tools/server/webui
npm i
# run dev server (with hot reload)
npm run dev
# run tests
npm run test
# build production bundle
npm run build
```
After `public/index.html.gz` has been generated, rebuild `llama-server` as described in the [build](#build) section to include the updated UI.
**Note:** The Vite dev server automatically proxies API requests to `http://localhost:8080`. Make sure `llama-server` is running on that port during development.
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
@@ -380,7 +317,7 @@ docker run -p 8080:8080 -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:se
docker run -p 8080:8080 -v /path/to/models:/models --gpus all ghcr.io/ggml-org/llama.cpp:server-cuda -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080 --n-gpu-layers 99
```
## Testing with CURL
## Using with CURL
Using [curl](https://curl.se/). On Windows, `curl.exe` should be available in the base OS.
@@ -391,46 +328,6 @@ curl --request POST \
--data '{"prompt": "Building a website can be done in 10 simple steps:","n_predict": 128}'
```
## Advanced testing
We implemented a [server test framework](./tests/README.md) using human-readable scenario.
*Before submitting an issue, please try to reproduce it with this format.*
## Node JS Test
You need to have [Node.js](https://nodejs.org/en) installed.
```bash
mkdir llama-client
cd llama-client
```
Create an index.js file and put this inside:
```javascript
const prompt = "Building a website can be done in 10 simple steps:"
async function test() {
let response = await fetch("http://127.0.0.1:8080/completion", {
method: "POST",
body: JSON.stringify({
prompt,
n_predict: 64,
})
})
console.log((await response.json()).content)
}
test()
```
And run it:
```bash
node index.js
```
## API Endpoints
### GET `/health`: Returns health check result
@@ -495,6 +392,8 @@ By default, this value is set to `0`, meaning no tokens are kept. Use `-1` to re
`n_cmpl`: Number of completions to generate from the current prompt. If input has multiple prompts, the output will have N prompts times `n_cmpl` entries.
`n_cache_reuse`: Min chunk size to attempt reusing from the cache via KV shifting. For more info, see `--cache-reuse` arg. Default: `0`, which is disabled.
`stream`: Allows receiving each predicted token in real-time instead of waiting for the completion to finish (uses a different response format). To enable this, set to `true`.
`stop`: Specify a JSON array of stopping strings.
@@ -1636,6 +1535,22 @@ Response:
}
```
## API errors
`llama-server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
Example of an error:
```json
{
"error": {
"code": 401,
"message": "Invalid API Key",
"type": "authentication_error"
}
}
```
## More examples
### Interactive mode
@@ -1655,26 +1570,6 @@ Run with bash:
bash chat.sh
```
### OAI-like API
The HTTP `llama-server` supports an OAI-like API: https://github.com/openai/openai-openapi
### API errors
`llama-server` returns errors in the same format as OAI: https://github.com/openai/openai-openapi
Example of an error:
```json
{
"error": {
"code": 401,
"message": "Invalid API Key",
"type": "authentication_error"
}
}
```
Apart from error types supported by OAI, we also have custom types that are specific to functionalities of llama.cpp:
**When /metrics or /slots endpoint is disabled**

View File

@@ -18,11 +18,13 @@ const static std::string build_info("b" + std::to_string(LLAMA_BUILD_NUMBER) + "
using json = nlohmann::ordered_json;
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_CNT(slot, fmt, ...) LOG_CNT("" fmt, __VA_ARGS__)
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, ((slot).task ? (slot).task->id : -1), __VA_ARGS__)
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_CNT(fmt, ...) LOG_CNT("" fmt, __VA_ARGS__)
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)

View File

@@ -102,6 +102,11 @@ struct server_slot {
std::string generated_text;
llama_tokens generated_tokens;
// idx of draft tokens in the main batch
// non-empty if we went to evaluate draft tokens
// ref: https://github.com/ggml-org/llama.cpp/pull/17808
std::vector<int32_t> i_batch_dft;
std::vector<completion_token_output> generated_token_probs;
bool has_next_token = true;
@@ -150,7 +155,8 @@ struct server_slot {
struct common_sampler * smpl = nullptr;
llama_token sampled;
llama_token sampled; // in speculative mode, this is the last accepted token
llama_tokens drafted;
// stats
size_t n_sent_text = 0; // number of sent text character
@@ -180,6 +186,8 @@ struct server_slot {
stopping_word = "";
n_sent_text = 0;
drafted.clear();
i_batch_dft.clear();
generated_tokens.clear();
generated_token_probs.clear();
json_schema = json();
@@ -255,6 +263,31 @@ struct server_slot {
generated_token_probs.push_back(token);
}
int get_n_draft_max() const {
if (!can_speculate()) {
return 0;
}
// determine the max draft that fits the current slot state
int n_draft_max = task->params.speculative.n_max;
// note: slot.prompt is not yet expanded with the `id` token sampled above
// also, need to leave space for 1 extra token to allow context shifts
n_draft_max = std::min(n_draft_max, n_ctx - prompt.n_tokens() - 2);
if (n_remaining > 0) {
n_draft_max = std::min(n_draft_max, n_remaining - 1);
}
SLT_DBG(*this, "max possible draft: %d\n", n_draft_max);
if (n_draft_max < task->params.speculative.n_min) {
SLT_DBG(*this, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, task->params.speculative.n_min);
n_draft_max = 0;
}
return n_draft_max;
}
// note: a slot can also be either a parent or a child
bool is_parent() const {
return is_processing() && task->n_children > 0;
@@ -353,8 +386,7 @@ struct server_slot {
if (n_draft_total > 0) {
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
SLT_INF(*this,
"\n"
SLT_CNT(*this,
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
draft_ratio, n_draft_accepted, n_draft_total
);
@@ -1774,14 +1806,57 @@ struct server_context_impl {
continue;
}
slot.i_batch = batch.n_tokens;
// generate draft tokens in speculative decoding mode
// TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
// perform the speculative drafting for all sequences at the same time in a single batch
int n_draft_max = slot.get_n_draft_max();
if (n_draft_max > 0) {
if (mctx) {
// we should never reach this, as speculative is automatically disabled if mmproj is loaded
GGML_ABORT("not supported by multimodal");
}
common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
params_spec.p_min = slot.task->params.speculative.p_min;
const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled);
slot.prompt.tokens.push_back(slot.sampled);
// add the sampled token to the batch
slot.i_batch_dft.push_back(batch.n_tokens);
common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
slot.prompt.tokens.push_back(slot.sampled);
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
if (slot.task->params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
// fallback to normal decoding
slot.i_batch = slot.i_batch_dft[0];
slot.drafted.clear();
slot.i_batch_dft.clear();
} else {
// keep track of total number of drafted tokens tested
slot.n_draft_total += draft.size();
// add all drafted tokens to the batch
for (size_t i = 0; i < draft.size(); i++) {
slot.i_batch_dft.push_back(batch.n_tokens);
common_batch_add(batch, draft[i], slot.prompt.tokens.pos_next(), { slot.id }, true);
slot.prompt.tokens.push_back(draft[i]);
}
slot.drafted = std::move(draft);
}
} else {
// no speculative decoding
slot.i_batch = batch.n_tokens;
common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
slot.prompt.tokens.push_back(slot.sampled);
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
}
}
// process in chunks of params.n_batch
@@ -1880,8 +1955,18 @@ struct server_context_impl {
n_past = std::min(n_past, slot.alora_invocation_start - 1);
}
const auto n_cache_reuse = slot.task->params.n_cache_reuse;
const bool can_cache_reuse =
llama_memory_can_shift(llama_get_memory(ctx)) &&
!slot.prompt.tokens.has_mtmd;
if (!can_cache_reuse && n_cache_reuse > 0) {
SLT_WRN(slot, "cache reuse is not supported - ignoring n_cache_reuse = %d\n", n_cache_reuse);
}
// reuse chunks from the cached prompt by shifting their KV cache in the new position
if (params_base.n_cache_reuse > 0) {
if (can_cache_reuse && n_cache_reuse > 0) {
GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
size_t head_c = n_past; // cache
@@ -1892,7 +1977,7 @@ struct server_context_impl {
GGML_ABORT("not supported by multimodal");
}
SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past);
SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", n_cache_reuse, n_past);
while (head_c < slot.prompt.tokens.size() &&
head_p < input_tokens.size()) {
@@ -1901,11 +1986,10 @@ struct server_context_impl {
while (head_c + n_match < slot.prompt.tokens.size() &&
head_p + n_match < input_tokens.size() &&
slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
n_match++;
}
if (n_match >= (size_t) params_base.n_cache_reuse) {
if (n_match >= (size_t) n_cache_reuse) {
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
//for (size_t i = head_p; i < head_p + n_match; i++) {
// SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
@@ -2336,6 +2420,10 @@ struct server_context_impl {
// on successful decode, restore the original batch size
n_batch = llama_n_batch(ctx);
// technically, measuring the time here excludes the sampling time for the last batch
// but on the other hand, we don't want to do too many system calls to measure the time, so it's ok
const int64_t t_current = ggml_time_us();
for (auto & slot : slots) {
// may need to copy state to other slots
if (slot.state == SLOT_STATE_DONE_PROMPT && slot.is_parent()) {
@@ -2390,6 +2478,10 @@ struct server_context_impl {
continue; // continue loop of slots
}
if (slot.i_batch_dft.size() > 0) {
continue; // sample using speculative decoding
}
const int tok_idx = slot.i_batch - i;
llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
@@ -2400,8 +2492,6 @@ struct server_context_impl {
slot.n_decoded += 1;
const int64_t t_current = ggml_time_us();
if (slot.n_decoded == 1) {
slot.t_start_generation = t_current;
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
@@ -2430,84 +2520,32 @@ struct server_context_impl {
}
}
// do speculative decoding
// TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
// perform the speculative drafting for all sequences at the same time in a single batch
// speculative decoding - main model sample and accept
for (auto & slot : slots) {
if (!slot.is_processing() || !slot.can_speculate()) {
if (slot.state != SLOT_STATE_GENERATING || slot.i_batch_dft.empty()) {
continue;
}
if (slot.state != SLOT_STATE_GENERATING) {
continue;
}
if (mctx) {
// we should never reach this, as speculative is automatically disabled if mmproj is loaded
GGML_ABORT("not supported by multimodal");
}
// determine the max draft that fits the current slot state
int n_draft_max = slot.task->params.speculative.n_max;
// note: slot.prompt is not yet expanded with the `id` token sampled above
// also, need to leave space for 1 extra token to allow context shifts
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2);
if (slot.n_remaining > 0) {
n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
}
SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
if (n_draft_max < slot.task->params.speculative.n_min) {
SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min);
continue;
}
llama_token id = slot.sampled;
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
params_spec.p_min = slot.task->params.speculative.p_min;
const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
// ignore small drafts
if (slot.task->params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
continue;
}
// keep track of total number of drafted tokens tested
slot.n_draft_total += draft.size();
// construct the speculation batch
common_batch_clear(slot.batch_spec);
common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true);
for (size_t i = 0; i < draft.size(); ++i) {
common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true);
}
SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
llama_decode(ctx, slot.batch_spec);
size_t n_draft = slot.drafted.size();
// the accepted tokens from the speculation
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, slot.i_batch_dft, slot.drafted);
slot.i_batch_dft.clear();
slot.drafted.clear();
slot.n_decoded += ids.size();
slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
// update how many tokens out of those tested were accepted
slot.n_draft_accepted += ids.size() - 1;
slot.prompt.tokens.push_back(id);
// rollback to the state before sampling the draft tokens
slot.prompt.tokens.keep_first(slot.prompt.n_tokens() - n_draft);
// add accepted tokens to the prompt
slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
slot.sampled = ids.back(); // last accepted token
llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
@@ -2530,7 +2568,7 @@ struct server_context_impl {
}
}
SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens());
SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) slot.drafted.size(), slot.prompt.n_tokens());
}
}
@@ -2551,6 +2589,10 @@ struct server_context_impl {
int get_slot_n_ctx() {
return slots.back().n_ctx;
}
server_response_reader get_response_reader() {
return server_response_reader(queue_tasks, queue_results, HTTP_POLLING_SECONDS);
}
};
//
@@ -2580,8 +2622,8 @@ llama_context * server_context::get_llama_context() const {
return impl->ctx;
}
std::pair<server_queue &, server_response &> server_context::get_queues() {
return { impl->queue_tasks, impl->queue_results };
server_response_reader server_context::get_response_reader() {
return impl->get_response_reader();
}
@@ -2590,7 +2632,7 @@ std::pair<server_queue &, server_response &> server_context::get_queues() {
struct server_res_generator : server_http_res {
server_response_reader rd;
server_res_generator(server_context_impl & ctx_server)
: rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS) {}
: rd(ctx_server.queue_tasks, ctx_server.queue_results, HTTP_POLLING_SECONDS) {}
void ok(const json & response_data) {
status = 200;
data = safe_json_to_str(response_data);
@@ -2623,9 +2665,6 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
try {
std::vector<server_task> tasks;
// tracking generation state and partial tool calls
std::vector<task_result_state> states;
const auto & prompt = data.at("prompt");
// TODO: this log can become very long, put it behind a flag or think about a more compact format
//SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
@@ -2641,7 +2680,6 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
}
tasks.reserve(inputs.size());
states.reserve(inputs.size());
int idx = 0;
for (size_t i = 0; i < inputs.size(); i++) {
server_task task = server_task(type);
@@ -2660,7 +2698,6 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
task.params.res_type = res_type;
task.params.oaicompat_cmpl_id = completion_id;
task.params.oaicompat_model = ctx_server.model_name;
states.push_back(task.params.oaicompat_chat_syntax);
if (task.params.n_cmpl > 1) {
task.n_children = task.params.n_cmpl - 1;
@@ -2669,7 +2706,6 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
task.id,
ctx_server.queue_tasks.get_new_id(),
idx++);
states.push_back(child.params.oaicompat_chat_syntax);
tasks.push_back(std::move(child));
}
}
@@ -2677,7 +2713,6 @@ static std::unique_ptr<server_res_generator> handle_completions_impl(
tasks.push_back(std::move(task));
}
rd.set_states(std::move(states));
rd.post_tasks(std::move(tasks));
} catch (const std::exception & e) {
res->error(format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
@@ -3407,7 +3442,7 @@ void server_routes::init_routes() {
// create and queue the task
json responses = json::array();
server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
server_response_reader rd = ctx_server.get_response_reader();
{
std::vector<server_task> tasks;
tasks.reserve(documents.size());
@@ -3667,7 +3702,7 @@ std::unique_ptr<server_res_generator> server_routes::handle_embeddings_impl(cons
// create and queue the task
json responses = json::array();
server_response_reader rd({ctx_server.queue_tasks, ctx_server.queue_results}, HTTP_POLLING_SECONDS);
server_response_reader rd = ctx_server.get_response_reader();
{
std::vector<server_task> tasks;
for (size_t i = 0; i < tokenized_prompts.size(); i++) {

View File

@@ -31,9 +31,8 @@ struct server_context {
// get the underlaying llama_context
llama_context * get_llama_context() const;
// get the underlaying queue_tasks and queue_results
// used by CLI application
std::pair<server_queue &, server_response &> get_queues();
// get a new response reader, used by CLI application
server_response_reader get_response_reader();
};

View File

@@ -271,12 +271,21 @@ void server_response::terminate() {
// server_response_reader
//
void server_response_reader::set_states(std::vector<task_result_state> && states) {
this->states = std::move(states);
void server_response_reader::post_task(server_task && task) {
GGML_ASSERT(id_tasks.empty() && "post_task() can only be called once per reader");
id_tasks.insert(task.id);
states.push_back(task.create_state());
queue_results.add_waiting_task_id(task.id);
queue_tasks.post(std::move(task));
}
void server_response_reader::post_tasks(std::vector<server_task> && tasks) {
GGML_ASSERT(id_tasks.empty() && "post_tasks() can only be called once per reader");
id_tasks = server_task::get_list_id(tasks);
states.reserve(tasks.size());
for (size_t i = 0; i < tasks.size(); i++) {
states.push_back(tasks[i].create_state());
}
queue_results.add_waiting_tasks(tasks);
queue_tasks.post(std::move(tasks));
}

View File

@@ -129,13 +129,13 @@ struct server_response_reader {
std::vector<task_result_state> states;
// should_stop function will be called each polling_interval_seconds
server_response_reader(std::pair<server_queue &, server_response &> server_queues, int polling_interval_seconds)
: queue_tasks(server_queues.first), queue_results(server_queues.second), polling_interval_seconds(polling_interval_seconds) {}
server_response_reader(server_queue & queue_tasks, server_response & queue_results, int polling_interval_seconds)
: queue_tasks(queue_tasks), queue_results(queue_results), polling_interval_seconds(polling_interval_seconds) {}
~server_response_reader() {
stop();
}
void set_states(std::vector<task_result_state> && states);
void post_task(server_task && tasks);
void post_tasks(std::vector<server_task> && tasks);
bool has_next() const;

View File

@@ -155,11 +155,12 @@ task_params server_task::params_from_json_cmpl(
// Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
task_params defaults;
defaults.sampling = params_base.sampling;
defaults.speculative = params_base.speculative;
defaults.n_keep = params_base.n_keep;
defaults.n_predict = params_base.n_predict;
defaults.antiprompt = params_base.antiprompt;
defaults.sampling = params_base.sampling;
defaults.speculative = params_base.speculative;
defaults.n_keep = params_base.n_keep;
defaults.n_predict = params_base.n_predict;
defaults.n_cache_reuse = params_base.n_cache_reuse;
defaults.antiprompt = params_base.antiprompt;
// enabling this will output extra debug information in the HTTP responses from the server
params.verbose = params_base.verbosity > 9;
@@ -176,6 +177,7 @@ task_params server_task::params_from_json_cmpl(
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
params.n_discard = json_value(data, "n_discard", defaults.n_discard);
params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
params.response_fields = json_value(data, "response_fields", std::vector<std::string>());

View File

@@ -55,6 +55,8 @@ struct task_params {
int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
int32_t n_cmpl = 1; // number of completions to generate from this prompt
int32_t n_cache_reuse = 0; // min chunk size to attempt reusing from the cache via KV shifting (0 = disabled)
int64_t t_max_prompt_ms = -1; // TODO: implement
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
@@ -62,18 +64,19 @@ struct task_params {
std::vector<std::string> antiprompt;
std::vector<std::string> response_fields;
bool timings_per_token = false;
bool timings_per_token = false;
bool post_sampling_probs = false;
struct common_params_sampling sampling;
struct common_params_speculative speculative;
// response formatting
bool verbose = false;
task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
bool verbose = false;
task_response_type res_type = TASK_RESPONSE_TYPE_NONE;
std::string oaicompat_model;
std::string oaicompat_cmpl_id;
common_chat_syntax oaicompat_chat_syntax;
// Embeddings
int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
@@ -82,6 +85,25 @@ struct task_params {
json to_json(bool only_metrics = false) const;
};
// struct for tracking the state of a task (e.g., for streaming)
struct task_result_state {
// tracking diffs for partial tool calls
std::vector<common_chat_msg_diff> diffs;
common_chat_syntax oaicompat_chat_syntax;
common_chat_msg chat_msg;
std::string generated_text; // append new chunks of generated text here
std::vector<std::string> generated_tool_call_ids;
task_result_state(const common_chat_syntax & oaicompat_chat_syntax)
: oaicompat_chat_syntax(oaicompat_chat_syntax) {}
// parse partial tool calls and update the internal state
common_chat_msg update_chat_msg(
const std::string & text_added,
bool is_partial,
std::vector<common_chat_msg_diff> & diffs);
};
struct server_task {
int id = -1; // to be filled by server_queue
int index = -1; // used when there are multiple prompts (batch request)
@@ -146,6 +168,12 @@ struct server_task {
copy.tokens = tokens.clone();
return copy;
}
// the task will be moved into queue, then onto slots
// however, the state must be kept by caller (e.g., HTTP thread)
task_result_state create_state() const {
return task_result_state(params.oaicompat_chat_syntax);
}
};
struct result_timings {
@@ -177,25 +205,6 @@ struct result_prompt_progress {
json to_json() const;
};
// struct for tracking the state of a task (e.g., for streaming)
struct task_result_state {
// tracking diffs for partial tool calls
std::vector<common_chat_msg_diff> diffs;
common_chat_syntax oaicompat_chat_syntax;
common_chat_msg chat_msg;
std::string generated_text; // append new chunks of generated text here
std::vector<std::string> generated_tool_call_ids;
task_result_state(const common_chat_syntax & oaicompat_chat_syntax)
: oaicompat_chat_syntax(oaicompat_chat_syntax) {}
// parse partial tool calls and update the internal state
common_chat_msg update_chat_msg(
const std::string & text_added,
bool is_partial,
std::vector<common_chat_msg_diff> & diffs);
};
struct server_task_result {
int id = -1;
int id_slot = -1;