Compare commits

...

29 Commits
b7375 ... b7404

Author SHA1 Message Date
Xuan-Son Nguyen
52392291b2 preset: handle negated arg, reverse the meaning if needed (#18041) 2025-12-14 22:08:10 +01:00
Sigbjørn Skjæret
5c8a717128 convert : refactor rope scaling handling (#18013)
* refactor rope scaling handling

* ws--

* missed a couple

* use find_hparam
2025-12-14 16:04:37 +01:00
Haowei Wu
37f5a1093b mtmd: enhance image resizing in llava_uhd (#18014) 2025-12-14 15:57:52 +01:00
Ruben Ortlam
9e6649ecf2 vulkan: fix mul_mat_vec_iq1_s formatting (#18026) 2025-12-14 14:52:46 +01:00
Xuan-Son Nguyen
0759b09c90 graph: add f_attn_temp_offset (#18025) 2025-12-14 13:05:59 +01:00
Georgi Gerganov
254098a279 common : refactor common_sampler + grammar logic changes (#17937)
* common : refactor common_sampler + grammar logic changes

* tests : increase max_tokens to get needed response

* batched : fix uninitialized samplers
2025-12-14 10:11:13 +02:00
Jeff Bolz
3238b1400c vulkan: Fix data race/hang in scalar/cm1 flash attention (#17887) 2025-12-14 09:00:00 +01:00
lovedheart
4722671641 vulkan: improve mul_mat_vec_iq1_s speed (#17874) 2025-12-14 08:47:49 +01:00
Eve
d15d177f43 vulkan: faster q6_k matmul (#17813)
* q6_k faster mul mat

* 8 values

* fix comment

* switch to two at a time

* start ci for .glsl files
2025-12-14 08:29:37 +01:00
Georgi Gerganov
77ad8542bd model-conversion : cast logits to float32 (#18009) 2025-12-14 08:58:13 +02:00
Georgi Gerganov
609a2d0268 models : fix YaRN regression + consolidate logic (#18006)
* models : fix YaRN regression + consolidate logic

* cont : fix the fix

* cont : remove header

* cont : add header
2025-12-14 08:34:56 +02:00
Georgi Gerganov
a63cbafbbc ggml : arm repack fix build 2025-12-14 08:33:51 +02:00
Georgi Gerganov
0e59224990 sync : ggml 2025-12-14 08:33:51 +02:00
Georgi Gerganov
71fdcf0616 ggml : arm repack fix build (whisper/0) 2025-12-14 08:33:51 +02:00
Congcong Cai
615655aafe cmake : set CMAKE_RUNTIME_OUTPUT_DIRECTORY for non standalone build (ggml/1394)
Some backend depends on CMAKE_RUNTIME_OUTPUT_DIRECTORY to create temporary file like metal backened.
Missing CMAKE_RUNTIME_OUTPUT_DIRECTORY will cause some cmake error like permission denied (try to copy file to root).
This PR wants to setup a default path for CMAKE_RUNTIME_OUTPUT_DIRECTORY when it does not exist.
2025-12-14 08:33:51 +02:00
Xuan-Son Nguyen
c00ff929dc scripts: add script to compare logprobs of llama.cpp against other frameworks (#17947)
* scripts: add script to compare logits of llama.cpp against other frameworks

* accept custom prompt file

* fix code style

* clarify endpoint

* fix displaying

* use abs for diff

* fix vllm case

* rm output file

* rename to compare-logprobs

* add "pattern"
2025-12-13 22:33:29 +01:00
Sergey Fedorov
4ed2bae50d server-models.cpp: add missing <filesystem> (#18000)
Fixes: https://github.com/ggml-org/llama.cpp/issues/17999
2025-12-13 22:02:43 +01:00
Jeff Bolz
5266379bca llama_context: synchronize before reallocating output buffer (#17974) 2025-12-13 09:19:51 -06:00
Xuan-Son Nguyen
4d5ae24c0a arg: fix common_params_parse not accepting negated arg (#17991) 2025-12-13 12:53:37 +01:00
Gustavo Rocha Dias
66ba51252e cmake: correct scope - link ws2_32 for MinGW/w64devkit builds in cpp-httplib (#17972)
* fix - w64devkit build

* fix - w64devkit build private scope
2025-12-13 12:46:36 +01:00
Jeff Bolz
36255a2268 vulkan: support get_rows for i32 (#17941) 2025-12-13 10:12:53 +01:00
Jeff Bolz
3229a23fa6 vulkan: support GGML_OP_DIAG (#17893) 2025-12-13 10:07:49 +01:00
Jeff Bolz
303f8615e9 vulkan: Multi-pass softmax for large number of cols (#17892)
When the number of cols is large, split each row across multiple workgroups.
There are three phases that communicate partial results through temp buffers:
(1) compute max partials
(2) take max of partials, compute sum(exp(x-max)) partials
(3) sum partials, compute scaled result
2025-12-13 10:04:29 +01:00
Georgi Gerganov
3c6391e748 speculative-simple : free batch on exit (#17985) 2025-12-13 09:48:34 +02:00
Sigbjørn Skjæret
8e4d678528 common : skip model validation when --completion-bash is requested (#17975) 2025-12-13 08:40:50 +01:00
Jeff Bolz
07a10c1090 vulkan: Allow non-pow2 n_experts in topk_moe (#17872) 2025-12-13 08:40:04 +01:00
Sigbjørn Skjæret
2bc94e7928 add llama-completion to completion-bash executables (#17976) 2025-12-13 08:35:50 +01:00
Daniel Bevenius
fd1085ffb7 model-conversion : use CONVERTED_MODEL value for converted model [no ci] (#17984)
* model-conversion : use CONVERTED_MODEL value for converted model [no ci]

This commit updates the model verification scripts to use the
CONVERTED_MODEL environment variable instead of using the MODEL_PATH
(the original model path) as the basis for the converted model file
name.

The motivation for this that currently if the converted model file name
differs from the original model directory/name the verification scripts
will look for the wrong .bin files that were generating when running the
models.
For example, the following steps were not possible:
```console
(venv) $ huggingface-cli download google/gemma-3-270m-it --local-dir ggml-org/gemma-3-270m
(venv) $ python3 convert_hf_to_gguf.py ggml-org/gemma-3-270m --outfile test-bf16.gguf --outtype bf16
(venv) $ cd examples/model-conversion/
(venv) $ export MODEL_PATH=../../ggml-org/gemma-3-270m
(venv) $ export CONVERTED_MODEL=../../test-bf16.gguf
(venv) $ make causal-verify-logits
...
Data saved to data/llamacpp-test-bf16.bin
Data saved to data/llamacpp-test-bf16.txt
Error: llama.cpp logits file not found: data/llamacpp-gemma-3-270m.bin
Please run scripts/run-converted-model.sh first to generate this file.
make: *** [Makefile:62: causal-verify-logits] Error 1
```

With the changes in this commit, the above steps will now work as
expected.
2025-12-13 08:34:26 +01:00
Xuan-Son Nguyen
380b4c984e common: support negated args (#17919)
* args: support negated args

* update docs

* fix typo

* add more neg options

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rm duplicated arg

* fix LLAMA_ARG_NO_HOST

* add test

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2025-12-12 23:58:53 +01:00
69 changed files with 1612 additions and 859 deletions

View File

@@ -20,7 +20,8 @@ on:
'**/*.swift',
'**/*.m',
'**/*.metal',
'**/*.comp'
'**/*.comp',
'**/*.glsl'
]
pull_request:
@@ -40,7 +41,8 @@ on:
'**/*.swift',
'**/*.m',
'**/*.metal',
'**/*.comp'
'**/*.comp',
'**/*.glsl'
]
concurrency:

1
.gitignore vendored
View File

@@ -54,6 +54,7 @@
/out/
/tmp/
/autogen-*.md
/common/build-info.cpp
# Deprecated

View File

@@ -105,6 +105,16 @@ bool common_arg::is_exclude(enum llama_example ex) {
bool common_arg::get_value_from_env(std::string & output) const {
if (env == nullptr) return false;
if (!args_neg.empty()) {
// for compatibility, we need to check LLAMA_ARG_NO_ env as well
std::string neg_env = env;
string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
char * neg_value = std::getenv(neg_env.c_str());
if (neg_value) {
output = "0"; // falsey
return true;
}
}
char * value = std::getenv(env);
if (value) {
output = value;
@@ -114,6 +124,14 @@ bool common_arg::get_value_from_env(std::string & output) const {
}
bool common_arg::has_value_from_env() const {
if (env != nullptr && !args_neg.empty()) {
// for compatibility, we need to check LLAMA_ARG_NO_ env as well
std::string neg_env = env;
string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
if (std::getenv(neg_env.c_str())) {
return true;
}
}
return env != nullptr && std::getenv(env);
}
@@ -151,9 +169,10 @@ std::string common_arg::to_string() const {
std::string leading_spaces(n_leading_spaces, ' ');
std::ostringstream ss;
for (const auto arg : args) {
if (arg == args.front()) {
if (args.size() == 1) {
auto all_args = get_args(); // also contains args_neg
for (const auto & arg : all_args) {
if (arg == all_args.front()) {
if (all_args.size() == 1) {
ss << arg;
} else {
// first arg is usually abbreviation, we need padding to make it more beautiful
@@ -162,7 +181,7 @@ std::string common_arg::to_string() const {
ss << tmp << spaces;
}
} else {
ss << arg << (arg != args.back() ? ", " : "");
ss << arg << (arg != all_args.back() ? ", " : "");
}
}
if (value_hint) ss << " " << value_hint;
@@ -181,6 +200,31 @@ std::string common_arg::to_string() const {
return ss.str();
}
std::vector<std::string> common_arg::get_args() const {
std::vector<std::string> result;
for (const auto & arg : args) {
result.push_back(std::string(arg));
}
for (const auto & arg : args_neg) {
result.push_back(std::string(arg));
}
return result;
}
std::vector<std::string> common_arg::get_env() const {
std::vector<std::string> result;
if (env) {
result.push_back(std::string(env));
}
if (!args_neg.empty() && env) {
// for compatibility, we need to add LLAMA_ARG_NO_ variant
std::string neg_env = env;
string_replace_all(neg_env, "LLAMA_ARG_", "LLAMA_ARG_NO_");
result.push_back(neg_env);
}
return result;
}
//
// utils
//
@@ -316,6 +360,16 @@ static std::string get_all_kv_cache_types() {
return msg.str();
}
static bool parse_bool_value(const std::string & value) {
if (is_truthy(value)) {
return true;
} else if (is_falsey(value)) {
return false;
} else {
throw std::invalid_argument("invalid boolean value");
}
}
//
// CLI argument parsing functions
//
@@ -323,10 +377,13 @@ static std::string get_all_kv_cache_types() {
static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
common_params & params = ctx_arg.params;
std::unordered_map<std::string, common_arg *> arg_to_options;
std::unordered_map<std::string, std::pair<common_arg *, bool>> arg_to_options;
for (auto & opt : ctx_arg.options) {
for (const auto & arg : opt.args) {
arg_to_options[arg] = &opt;
arg_to_options[arg] = {&opt, /* is_positive */ true};
}
for (const auto & arg : opt.args_neg) {
arg_to_options[arg] = {&opt, /* is_positive */ false};
}
}
@@ -335,12 +392,15 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
std::string value;
if (opt.get_value_from_env(value)) {
try {
if (opt.handler_void && (value == "1" || value == "true")) {
if (opt.handler_void && is_truthy(value)) {
opt.handler_void(params);
}
if (opt.handler_int) {
opt.handler_int(params, std::stoi(value));
}
if (opt.handler_bool) {
opt.handler_bool(params, parse_bool_value(value));
}
if (opt.handler_string) {
opt.handler_string(params, value);
continue;
@@ -369,7 +429,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
if (arg_to_options.find(arg) == arg_to_options.end()) {
throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
}
auto opt = *arg_to_options[arg];
auto & tmp = arg_to_options[arg];
auto opt = *tmp.first;
bool is_positive = tmp.second;
if (opt.has_value_from_env()) {
fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
}
@@ -378,6 +440,10 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
opt.handler_void(params);
continue;
}
if (opt.handler_bool) {
opt.handler_bool(params, is_positive);
continue;
}
// arg with single value
check_arg(i);
@@ -402,7 +468,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument(string_format(
"error while handling argument \"%s\": %s\n\n"
"usage:\n%s\n\nto show complete usage, run with -h",
arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
arg.c_str(), e.what(), opt.to_string().c_str()));
}
}
@@ -438,7 +504,7 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
// model is required (except for server)
// TODO @ngxson : maybe show a list of available models in CLI in this case
if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage) {
if (params.model.path.empty() && ctx_arg.ex != LLAMA_EXAMPLE_SERVER && !params.usage && !params.completion) {
throw std::invalid_argument("error: --model is required\n");
}
@@ -573,6 +639,7 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
"llama-batched-bench",
"llama-bench",
"llama-cli",
"llama-completion",
"llama-convert-llama2c-to-ggml",
"llama-cvector-generator",
"llama-embedding",
@@ -657,7 +724,7 @@ static void add_rpc_devices(const std::string & servers) {
}
}
bool common_params_parse(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map) {
bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map) {
common_params dummy_params;
common_params_context ctx_arg = common_params_parser_init(dummy_params, ex, nullptr);
@@ -666,6 +733,9 @@ bool common_params_parse(int argc, char ** argv, llama_example ex, std::map<comm
for (const auto & arg : opt.args) {
arg_to_options[arg] = &opt;
}
for (const auto & arg : opt.args_neg) {
arg_to_options[arg] = &opt;
}
}
// TODO @ngxson : find a way to deduplicate this code
@@ -750,11 +820,11 @@ static std::string list_builtin_chat_templates() {
}
bool common_arg_utils::is_truthy(const std::string & value) {
return value == "on" || value == "enabled" || value == "1";
return value == "on" || value == "enabled" || value == "true" || value == "1";
}
bool common_arg_utils::is_falsey(const std::string & value) {
return value == "off" || value == "disabled" || value == "0";
return value == "off" || value == "disabled" || value == "false" || value == "0";
}
bool common_arg_utils::is_autoy(const std::string & value) {
@@ -839,10 +909,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
));
add_opt(common_arg(
{"--display-prompt"},
{"--no-display-prompt"},
string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
[](common_params & params) {
params.display_prompt = false;
string_format("whether to print prompt at generation (default: %s)", params.display_prompt ? "true" : "false"),
[](common_params & params, bool value) {
params.display_prompt = value;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
@@ -1055,18 +1126,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.kv_unified = true;
}
).set_env("LLAMA_ARG_KV_UNIFIED"));
add_opt(common_arg(
{"--no-context-shift"},
string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
[](common_params & params) {
params.ctx_shift = false;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
add_opt(common_arg(
{"--context-shift"},
string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
[](common_params & params) {
params.ctx_shift = true;
{"--no-context-shift"},
string_format("whether to use context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.ctx_shift = value;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
add_opt(common_arg(
@@ -1106,20 +1171,22 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_DIFFUSION}));
add_opt(common_arg(
{"--perf"},
{"--no-perf"},
string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
[](common_params & params) {
params.no_perf = true;
params.sampling.no_perf = true;
string_format("whether to enable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
[](common_params & params, bool value) {
params.no_perf = !value;
params.sampling.no_perf = !value;
}
).set_env("LLAMA_ARG_NO_PERF"));
).set_env("LLAMA_ARG_PERF"));
add_opt(common_arg(
{"--show-timings"},
{"--no-show-timings"},
string_format("disable timing information after each response (default: %s)", params.show_timings ? "true" : "false"),
[](common_params & params) {
params.show_timings = false;
string_format("whether to show timing information after each response (default: %s)", params.show_timings ? "true" : "false"),
[](common_params & params, bool value) {
params.show_timings = value;
}
).set_examples({LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_NO_SHOW_TIMINGS"));
).set_examples({LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_SHOW_TIMINGS"));
add_opt(common_arg(
{"-f", "--file"}, "FNAME",
"a file containing the prompt (default: none)",
@@ -1171,16 +1238,10 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_excludes({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-e", "--escape"},
string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
[](common_params & params) {
params.escape = true;
}
));
add_opt(common_arg(
{"--no-escape"},
"do not process escape sequences",
[](common_params & params) {
params.escape = false;
string_format("whether to process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
[](common_params & params, bool value) {
params.escape = value;
}
));
add_opt(common_arg(
@@ -1227,19 +1288,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-cnv", "--conversation"},
"run in conversation mode:\n"
{"-no-cnv", "--no-conversation"},
"whether to run in conversation mode:\n"
"- does not print special tokens and suffix/prefix\n"
"- interactive mode is also enabled\n"
"(default: auto enabled if chat template is available)",
[](common_params & params) {
params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION}));
add_opt(common_arg(
{"-no-cnv", "--no-conversation"},
"force disable conversation mode (default: false)",
[](common_params & params) {
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
[](common_params & params, bool value) {
params.conversation_mode = value ? COMMON_CONVERSATION_MODE_ENABLED : COMMON_CONVERSATION_MODE_DISABLED;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
@@ -1297,10 +1352,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_COMPLETION}));
add_opt(common_arg(
{"--warmup"},
{"--no-warmup"},
"skip warming up the model with an empty run",
[](common_params & params) {
params.warmup = false;
string_format("whether to perform warmup with an empty run (default: %s)", params.warmup ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.warmup = value;
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
add_opt(common_arg(
@@ -1359,7 +1415,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.sampling.top_k = value;
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_K;
}
).set_sparam());
).set_sparam().set_env("LLAMA_ARG_TOP_K"));
add_opt(common_arg(
{"--top-p"}, "N",
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
@@ -1702,19 +1758,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_COMPLETION}));
add_opt(common_arg(
{"-kvo", "--kv-offload"},
{"-nkvo", "--no-kv-offload"},
"disable KV offload",
[](common_params & params) {
params.no_kv_offload = true;
string_format("whether to enable KV cache offloading (default: %s)", params.no_kv_offload ? "disabled" : "enabled"),
[](common_params & params, bool value) {
params.no_kv_offload = !value;
}
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
).set_env("LLAMA_ARG_KV_OFFLOAD"));
add_opt(common_arg(
{"--repack"},
{"-nr", "--no-repack"},
"disable weight repacking",
[](common_params & params) {
params.no_extra_bufts = true;
string_format("whether to enable weight repacking (default: %s)", params.no_extra_bufts ? "disabled" : "enabled"),
[](common_params & params, bool value) {
params.no_extra_bufts = !value;
}
).set_env("LLAMA_ARG_NO_REPACK"));
).set_env("LLAMA_ARG_REPACK"));
add_opt(common_arg(
{"--no-host"},
"bypass host buffer allowing extra buffers to be used",
@@ -1843,18 +1901,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_PARALLEL}));
add_opt(common_arg(
{"-cb", "--cont-batching"},
string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
[](common_params & params) {
params.cont_batching = true;
{"-nocb", "--no-cont-batching"},
string_format("whether to enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.cont_batching = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
add_opt(common_arg(
{"-nocb", "--no-cont-batching"},
"disable continuous batching",
[](common_params & params) {
params.cont_batching = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
add_opt(common_arg(
{"-mm", "--mmproj"}, "FILE",
"path to a multimodal projector file. see tools/mtmd/README.md\n"
@@ -1871,19 +1923,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
add_opt(common_arg(
{"--no-mmproj"},
"explicitly disable multimodal projector, useful when using -hf",
[](common_params & params) {
params.no_mmproj = true;
{"--mmproj-auto"},
{"--no-mmproj", "--no-mmproj-auto"},
string_format("whether to use multimodal projector file (if available), useful when using -hf (default: %s)", params.no_mmproj ? "disabled" : "enabled"),
[](common_params & params, bool value) {
params.no_mmproj = !value;
}
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_AUTO"));
add_opt(common_arg(
{"--mmproj-offload"},
{"--no-mmproj-offload"},
"do not offload multimodal projector to GPU",
[](common_params & params) {
params.mmproj_use_gpu = false;
string_format("whether to enable GPU offloading for multimodal projector (default: %s)", params.mmproj_use_gpu ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.mmproj_use_gpu = value;
}
).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_OFFLOAD"));
add_opt(common_arg(
{"--image", "--audio"}, "FILE",
"path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
@@ -1923,12 +1977,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_MLOCK"));
add_opt(common_arg(
{"--mmap"},
{"--no-mmap"},
"do not memory-map model (slower load but may reduce pageouts if not using mlock)",
[](common_params & params) {
params.use_mmap = false;
string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_mmap = value;
}
).set_env("LLAMA_ARG_NO_MMAP"));
).set_env("LLAMA_ARG_MMAP"));
add_opt(common_arg(
{"--numa"}, "TYPE",
"attempt optimizations that help on some NUMA systems\n"
@@ -2116,10 +2171,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
));
add_opt(common_arg(
{"--op-offload"},
{"--no-op-offload"},
string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
[](common_params & params) {
params.no_op_offload = true;
string_format("whether to offload host tensor operations to device (default: %s)", params.no_op_offload ? "false" : "true"),
[](common_params & params, bool value) {
params.no_op_offload = !value;
}
));
add_opt(common_arg(
@@ -2315,10 +2371,11 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
{"--ppl"},
{"--no-ppl"},
string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
[](common_params & params) {
params.compute_ppl = false;
string_format("whether to compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
[](common_params & params, bool value) {
params.compute_ppl = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX}));
add_opt(common_arg(
@@ -2437,12 +2494,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
add_opt(common_arg(
{"--webui"},
{"--no-webui"},
string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
[](common_params & params) {
params.webui = false;
string_format("whether to enable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.webui = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_WEBUI"));
add_opt(common_arg(
{"--embedding", "--embeddings"},
string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
@@ -2547,18 +2605,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
add_opt(common_arg(
{"--slots"},
string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params) {
params.endpoint_slots = true;
{"--no-slots"},
string_format("expose slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.endpoint_slots = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--no-slots"},
"disables slots monitoring endpoint",
[](common_params & params) {
params.endpoint_slots = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
add_opt(common_arg(
{"--slot-save-path"}, "PATH",
"path to save slot kv cache (default: disabled)",
@@ -2609,26 +2661,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_MAX"));
add_opt(common_arg(
{"--models-autoload"},
{"--no-models-autoload"},
"disables automatic loading of models (default: enabled)",
[](common_params & params) {
params.models_autoload = false;
string_format("for router server, whether to automatically load models (default: %s)", params.models_autoload ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.models_autoload = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_MODELS_AUTOLOAD"));
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODELS_AUTOLOAD"));
add_opt(common_arg(
{"--jinja"},
string_format("use jinja template for chat (default: %s)", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params) {
params.use_jinja = true;
{"--no-jinja"},
string_format("whether to use jinja template engine for chat (default: %s)", params.use_jinja ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_jinja = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--no-jinja"},
string_format("disable jinja template for chat (default: %s)", params.use_jinja ? "disabled" : "enabled"),
[](common_params & params) {
params.use_jinja = false;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_NO_JINJA"));
add_opt(common_arg(
{"--reasoning-format"}, "FORMAT",
"controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
@@ -2673,15 +2720,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_examples({LLAMA_EXAMPLE_COMPLETION, LLAMA_EXAMPLE_CLI, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
add_opt(common_arg(
{"--prefill-assistant"},
{"--no-prefill-assistant"},
string_format(
"whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
"when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
),
[](common_params & params) {
params.prefill_assistant = false;
[](common_params & params, bool value) {
params.prefill_assistant = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PREFILL_ASSISTANT"));
add_opt(common_arg(
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),

View File

@@ -16,6 +16,7 @@ struct common_arg {
std::set<enum llama_example> examples = {LLAMA_EXAMPLE_COMMON};
std::set<enum llama_example> excludes = {};
std::vector<const char *> args;
std::vector<const char *> args_neg; // for negated args like --no-xxx
const char * value_hint = nullptr; // help text or example for arg value
const char * value_hint_2 = nullptr; // for second arg value
const char * env = nullptr;
@@ -25,6 +26,7 @@ struct common_arg {
void (*handler_string) (common_params & params, const std::string &) = nullptr;
void (*handler_str_str)(common_params & params, const std::string &, const std::string &) = nullptr;
void (*handler_int) (common_params & params, int) = nullptr;
void (*handler_bool) (common_params & params, bool) = nullptr;
common_arg() = default;
@@ -48,6 +50,13 @@ struct common_arg {
void (*handler)(common_params & params)
) : args(args), help(help), handler_void(handler) {}
common_arg(
const std::initializer_list<const char *> & args,
const std::initializer_list<const char *> & args_neg,
const std::string & help,
void (*handler)(common_params & params, bool)
) : args(args), args_neg(args_neg), help(help), handler_bool(handler) {}
// support 2 values for arg
common_arg(
const std::initializer_list<const char *> & args,
@@ -80,6 +89,10 @@ struct common_arg {
}
return strcmp(args[0], other.args[0]) == 0;
}
// get all args and env vars (including negated args/env)
std::vector<std::string> get_args() const;
std::vector<std::string> get_env() const;
};
namespace common_arg_utils {
@@ -102,7 +115,7 @@ bool common_params_parse(int argc, char ** argv, common_params & params, llama_e
// parse input arguments from CLI into a map
// TODO: support repeated args in the future
bool common_params_parse(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map);
bool common_params_to_map(int argc, char ** argv, llama_example ex, std::map<common_arg, std::string> & out_map);
// initialize argument parser context - used by test-arg-parser and preset
common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **) = nullptr);

View File

@@ -1013,31 +1013,40 @@ bool tty_can_use_colors() {
// Model utils
//
static inline void common_init_sampler_from_model(
// TODO: move to common/sampling
static void common_init_sampler_from_model(
const llama_model * model,
common_params_sampling & sparams) {
const uint64_t config = sparams.user_sampling_config;
auto get_int32 = [&](const char * key, int32_t & dst, uint64_t user_config) {
if (config & user_config) return;
if (config & user_config) {
return;
}
char buf[64] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
int32_t v = strtol(buf, &end, 10);
if (end && end != buf) dst = v;
if (end && end != buf) {
dst = v;
}
}
};
auto get_float = [&](const char * key, float & dst, uint64_t user_config) {
if (config & user_config) return;
if (config & user_config) {
return;
}
char buf[128] = {0};
if (llama_model_meta_val_str(model, key, buf, sizeof(buf)) > 0) {
char * end = nullptr;
float v = strtof(buf, &end);
if (end && end != buf) dst = v;
if (end && end != buf) {
dst = v;
}
}
};
@@ -1065,31 +1074,122 @@ static inline void common_init_sampler_from_model(
get_float(llama_model_meta_key_str(LLAMA_MODEL_META_KEY_SAMPLING_MIROSTAT_ETA), sparams.mirostat_eta, common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA);
}
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
struct common_init_result::impl {
impl() = default;
~impl() = default;
llama_model_ptr model;
llama_context_ptr context;
std::vector<llama_adapter_lora_ptr> lora;
std::vector<common_sampler_ptr> samplers;
};
common_init_result::common_init_result(common_params & params) :
pimpl(new impl{}) {
const auto mparams = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return iparams;
return;
}
common_init_sampler_from_model(model, params.sampling);
pimpl->model.reset(model);
const llama_vocab * vocab = llama_model_get_vocab(model);
// updates params.sampling
// TODO: fix naming
common_init_sampler_from_model(model, params.sampling);
auto cparams = common_context_params_to_llama(params);
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(vocab, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
//if (params.sampling.penalty_last_n == -1) {
// LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.penalty_last_n = llama_n_ctx(lctx);
//}
//if (params.sampling.dry_penalty_last_n == -1) {
// LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
// params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
//}
pimpl->samplers.resize(cparams.n_seq_max);
for (int i = 0; i < (int) cparams.n_seq_max; ++i) {
pimpl->samplers[i].reset(common_sampler_init(model, params.sampling));
}
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
__func__, params.model.path.c_str());
return;
}
pimpl->context.reset(lctx);
}
llama_model * common_init_result::model() {
return pimpl->model.get();
}
llama_context * common_init_result::context() {
return pimpl->context.get();
}
common_sampler * common_init_result::sampler(llama_seq_id seq_id) {
return pimpl->samplers[seq_id].get();
}
std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
llama_model * model = res->model();
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return res;
}
llama_context * lctx = res->context();
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s', try reducing --n-gpu-layers if you're running out of VRAM\n",
__func__, params.model.path.c_str());
return res;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
if (params.ctx_shift && !llama_memory_can_shift(llama_get_memory(lctx))) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
@@ -1101,10 +1201,7 @@ struct common_init_result common_init_from_params(common_params & params) {
const auto cvec = common_control_vector_load(params.control_vectors);
if (cvec.n_embd == -1) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
int err = llama_apply_adapter_cvec(
@@ -1115,10 +1212,7 @@ struct common_init_result common_init_from_params(common_params & params) {
params.control_vector_layer_start,
params.control_vector_layer_end);
if (err) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1142,10 +1236,7 @@ struct common_init_result common_init_from_params(common_params & params) {
}
if (!ok) {
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
}
@@ -1155,9 +1246,7 @@ struct common_init_result common_init_from_params(common_params & params) {
lora.reset(llama_adapter_lora_init(model, la.path.c_str()));
if (lora == nullptr) {
LOG_ERR("%s: failed to apply lora adapter '%s'\n", __func__, la.path.c_str());
llama_free(lctx);
llama_model_free(model);
return iparams;
return res;
}
char buf[1024];
@@ -1166,43 +1255,13 @@ struct common_init_result common_init_from_params(common_params & params) {
la.task_name = buf;
llama_adapter_meta_val_str(la.ptr, "adapter.lora.prompt_prefix", buf, sizeof(buf));
la.prompt_prefix = buf;
iparams.lora.emplace_back(std::move(lora)); // copy to list of loaded adapters
res->lora().emplace_back(std::move(lora)); // copy to list of loaded adapters
}
if (!params.lora_init_without_apply) {
common_set_adapter_lora(lctx, params.lora_adapters);
}
if (params.sampling.ignore_eos && llama_vocab_eos(vocab) == LLAMA_TOKEN_NULL) {
LOG_WRN("%s: warning: vocab does not have an EOS token, ignoring --ignore-eos\n", __func__);
params.sampling.ignore_eos = false;
}
// initialize once
for (llama_token i = 0; i < llama_vocab_n_tokens(vocab); i++) {
if (llama_vocab_is_eog(vocab, i)) {
LOG_INF("%s: added %s logit bias = %f\n", __func__, common_token_to_piece(lctx, i).c_str(), -INFINITY);
params.sampling.logit_bias_eog.push_back({i, -INFINITY});
}
}
if (params.sampling.ignore_eos) {
// add EOG biases to the active set of logit biases
params.sampling.logit_bias.insert(
params.sampling.logit_bias.end(),
params.sampling.logit_bias_eog.begin(), params.sampling.logit_bias_eog.end());
}
if (params.sampling.penalty_last_n == -1) {
LOG_INF("%s: setting penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.penalty_last_n = llama_n_ctx(lctx);
}
if (params.sampling.dry_penalty_last_n == -1) {
LOG_INF("%s: setting dry_penalty_last_n to ctx_size = %d\n", __func__, llama_n_ctx(lctx));
params.sampling.dry_penalty_last_n = llama_n_ctx(lctx);
}
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
@@ -1241,12 +1300,11 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
iparams.context.reset(lctx);
return iparams;
return res;
}
common_init_result::~common_init_result() = default;
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
@@ -1255,7 +1313,9 @@ std::string get_model_endpoint() {
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
if (model_endpoint.back() != '/') {
model_endpoint += '/';
}
}
return model_endpoint;
}

View File

@@ -195,7 +195,6 @@ struct common_params_sampling {
std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
std::vector<enum common_sampler_type> samplers = {
COMMON_SAMPLER_TYPE_PENALTIES,
COMMON_SAMPLER_TYPE_DRY,
@@ -216,6 +215,10 @@ struct common_params_sampling {
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
std::vector<llama_logit_bias> logit_bias_eog; // pre-calculated logit biases for EOG tokens
bool has_logit_bias() const {
return !logit_bias.empty();
}
// print the parameters into a string
std::string print() const;
};
@@ -669,15 +672,29 @@ bool tty_can_use_colors();
// Model utils
//
// note: defines object's lifetime
struct common_init_result {
llama_model_ptr model;
llama_context_ptr context;
struct common_sampler;
std::vector<llama_adapter_lora_ptr> lora;
// note: defines the model, context, samplers, ets. lifetimes
struct common_init_result {
common_init_result(common_params & params);
~common_init_result();
llama_model * model();
llama_context * context();
common_sampler * sampler(llama_seq_id seq_id);
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
struct common_init_result common_init_from_params(common_params & params);
using common_init_result_ptr = std::unique_ptr<common_init_result>;
common_init_result_ptr common_init_from_params(common_params & params);
struct llama_model_params common_model_params_to_llama ( common_params & params);
struct llama_context_params common_context_params_to_llama(const common_params & params);

View File

@@ -23,8 +23,14 @@ std::vector<std::string> common_preset::to_args() const {
if (opt.value_hint == nullptr && opt.value_hint_2 == nullptr) {
// flag option, no value
if (common_arg_utils::is_falsey(value)) {
// skip the flag
args.pop_back();
// use negative arg if available
if (!opt.args_neg.empty()) {
args.back() = opt.args_neg.back();
} else {
// otherwise, skip the flag
// TODO: maybe throw an error instead?
args.pop_back();
}
}
}
if (opt.value_hint != nullptr) {
@@ -141,16 +147,31 @@ static std::map<std::string, std::map<std::string, std::string>> parse_ini_from_
static std::map<std::string, common_arg> get_map_key_opt(common_params_context & ctx_params) {
std::map<std::string, common_arg> mapping;
for (const auto & opt : ctx_params.options) {
if (opt.env != nullptr) {
mapping[opt.env] = opt;
for (const auto & env : opt.get_env()) {
mapping[env] = opt;
}
for (const auto & arg : opt.args) {
for (const auto & arg : opt.get_args()) {
mapping[rm_leading_dashes(arg)] = opt;
}
}
return mapping;
}
static bool is_bool_arg(const common_arg & arg) {
return !arg.args_neg.empty();
}
static std::string parse_bool_arg(const common_arg & arg, const std::string & key, const std::string & value) {
// if this is a negated arg, we need to reverse the value
for (const auto & neg_arg : arg.args_neg) {
if (rm_leading_dashes(neg_arg) == key) {
return common_arg_utils::is_truthy(value) ? "false" : "true";
}
}
// otherwise, not negated
return value;
}
common_presets common_presets_load(const std::string & path, common_params_context & ctx_params) {
common_presets out;
auto key_to_opt = get_map_key_opt(ctx_params);
@@ -167,8 +188,13 @@ common_presets common_presets_load(const std::string & path, common_params_conte
for (const auto & [key, value] : section.second) {
LOG_DBG("option: %s = %s\n", key.c_str(), value.c_str());
if (key_to_opt.find(key) != key_to_opt.end()) {
preset.options[key_to_opt[key]] = value;
LOG_DBG("accepted option: %s = %s\n", key.c_str(), value.c_str());
auto & opt = key_to_opt[key];
if (is_bool_arg(opt)) {
preset.options[opt] = parse_bool_arg(opt, key, value);
} else {
preset.options[opt] = value;
}
LOG_DBG("accepted option: %s = %s\n", key.c_str(), preset.options[opt].c_str());
} else {
// TODO: maybe warn about unknown key?
}

View File

@@ -104,9 +104,10 @@ struct ring_buffer {
struct common_sampler {
common_params_sampling params;
struct llama_sampler * grmr;
struct llama_sampler * chain;
bool grammar;
ring_buffer<llama_token> prev;
std::vector<llama_token_data> cur;
@@ -116,7 +117,6 @@ struct common_sampler {
void reset() {
prev.clear();
llama_sampler_reset(grmr);
llama_sampler_reset(chain);
}
@@ -167,10 +167,15 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
llama_sampler * chain = llama_sampler_chain_init(lparams);
bool grammar = false;
std::vector<llama_sampler *> samplers;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
samplers.push_back(llama_sampler_init_llg(vocab, "lark", params.grammar.c_str()));
grammar = true;
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
@@ -217,30 +222,23 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
if (!params.grammar.empty()) {
if (params.grammar_lazy) {
samplers.push_back(
llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size()));
} else {
samplers.push_back(llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"));
}
grammar = true;
}
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
llama_sampler_chain_add(result->chain,
llama_sampler_init_logit_bias(
llama_vocab_n_tokens(vocab),
params.logit_bias.size(),
params.logit_bias.data()));
if (params.has_logit_bias()) {
samplers.push_back(llama_sampler_init_logit_bias(llama_vocab_n_tokens(vocab), params.logit_bias.size(), params.logit_bias.data()));
}
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
@@ -253,58 +251,70 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
samplers.push_back(llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
samplers.push_back(llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
samplers.push_back(llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TOP_N_SIGMA:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
samplers.push_back(llama_sampler_init_top_n_sigma(params.top_n_sigma));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
samplers.push_back(llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
samplers.push_back(llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
samplers.push_back(llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
samplers.push_back(llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
samplers.push_back(llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
samplers.push_back(llama_sampler_init_penalties (params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
samplers.push_back(llama_sampler_init_dist(params.seed));
} else if (params.mirostat == 1) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat(llama_vocab_n_tokens(vocab), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
} else if (params.mirostat == 2) {
llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
samplers.push_back(llama_sampler_init_temp(params.temp));
samplers.push_back(llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
} else {
GGML_ASSERT(false && "unknown mirostat version");
}
for (auto * smpl : samplers) {
llama_sampler_chain_add(chain, smpl);
}
auto * result = new common_sampler {
/* .params = */ params,
/* .chain = */ chain,
/* .grammar = */ grammar,
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
/* .cur_p = */ {},
};
return result;
}
void common_sampler_free(struct common_sampler * gsmpl) {
if (gsmpl) {
llama_sampler_free(gsmpl->grmr);
llama_sampler_free(gsmpl->chain);
delete gsmpl;
@@ -314,11 +324,24 @@ void common_sampler_free(struct common_sampler * gsmpl) {
void common_sampler_accept(struct common_sampler * gsmpl, llama_token token, bool accept_grammar) {
const auto tm = gsmpl->tm();
if (accept_grammar) {
llama_sampler_accept(gsmpl->grmr, token);
}
if (gsmpl->grammar) {
const int n_smpl = llama_sampler_chain_n(gsmpl->chain);
llama_sampler_accept(gsmpl->chain, token);
for (int i = 0; i < n_smpl; i++) {
auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
// the grammar sampler is always the first one
if (i == 0) {
if (accept_grammar) {
llama_sampler_accept(smpl, token);
}
} else {
llama_sampler_accept(smpl, token);
}
}
} else {
llama_sampler_accept(gsmpl->chain, token);
}
gsmpl->prev.push_back(token);
}
@@ -329,12 +352,12 @@ void common_sampler_reset(struct common_sampler * gsmpl) {
struct common_sampler * common_sampler_clone(common_sampler * gsmpl) {
return new common_sampler {
/* .params = */ gsmpl->params,
/* .grmr = */ llama_sampler_clone(gsmpl->grmr),
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
/* .params = */ gsmpl->params,
/* .chain = */ llama_sampler_clone(gsmpl->chain),
/* .grammar = */ gsmpl->grammar,
/* .prev = */ gsmpl->prev,
/* .cur = */ gsmpl->cur,
/* .cur_p = */ gsmpl->cur_p,
};
}
@@ -383,58 +406,33 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
}
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl) {
return gsmpl->chain;
}
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx) {
llama_synchronize(ctx);
// start measuring sampling time after the llama_context synchronization in order to not measure any ongoing async operations
const auto tm = gsmpl->tm();
gsmpl->set_logits(ctx, idx);
llama_token id = LLAMA_TOKEN_NULL;
auto & grmr = gsmpl->grmr;
auto & chain = gsmpl->chain;
auto & cur_p = gsmpl->cur_p; // initialized by set_logits
if (grammar_first) {
llama_sampler_apply(grmr, &cur_p);
}
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");
const llama_token id = cur_p.data[cur_p.selected].id;
id = cur_p.data[cur_p.selected].id;
if (grammar_first) {
return id;
}
// check if it the sampled token fits the grammar
{
llama_token_data single_token_data = { id, 1.0f, 0.0f };
llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };
llama_sampler_apply(grmr, &single_token_data_array);
const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
if (is_valid) {
return id;
}
}
// resampling:
// if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
gsmpl->set_logits(ctx, idx);
llama_sampler_apply(grmr, &cur_p);
llama_sampler_apply(chain, &cur_p);
GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");
return cur_p.data[cur_p.selected].id;
return id;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft) {
GGML_ASSERT(idxs.size() == draft.size() + 1 && "idxs.size() must be draft.size() + 1");
std::vector<llama_token> result;
@@ -442,7 +440,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
size_t i = 0;
for (; i < draft.size(); i++) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -454,7 +452,7 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
}
if (i == draft.size()) {
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i], grammar_first);
const llama_token id = common_sampler_sample(gsmpl, ctx, idxs[i]);
common_sampler_accept(gsmpl, id, true);
@@ -464,13 +462,13 @@ std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sample
return result;
}
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first) {
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft) {
std::vector<int> idxs(draft.size() + 1);
for (size_t i = 0; i < idxs.size(); ++i) {
idxs[i] = i;
}
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft, grammar_first);
return common_sampler_sample_and_accept_n(gsmpl, ctx, idxs, draft);
}
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl) {
@@ -515,7 +513,8 @@ std::string common_sampler_print(const struct common_sampler * gsmpl) {
for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
result += std::string("-> ") + llama_sampler_name(smpl) + " ";
result += std::string("-> ");
result += std::string(llama_sampler_name(smpl)) + " ";
}
return result;

View File

@@ -48,6 +48,8 @@ struct common_sampler * common_sampler_clone (struct common_sampler * gsmpl);
// arguments can be nullptr to skip printing
void common_perf_print(const struct llama_context * ctx, const struct common_sampler * gsmpl);
struct llama_sampler * common_sampler_get(const struct common_sampler * gsmpl);
// extended sampling implementation:
//
// - set logits
@@ -55,10 +57,7 @@ void common_perf_print(const struct llama_context * ctx, const struct common_sam
// - check if the token fits the grammar (if any)
// - if not: resample by first applying the grammar constraints and then sampling again (slower path)
//
// if grammar_first is true, the grammar is applied before the samplers (slower)
// useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
//
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_context * ctx, int idx);
// generalized version of common_sampler_sample
//
@@ -76,10 +75,10 @@ llama_token common_sampler_sample(struct common_sampler * gsmpl, struct llama_co
//
// returns at least 1 token, up to idxs.size()
//
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const std::vector<int> & idxs, const llama_tokens & draft);
// assume idxs == [ 0, 1, 2, ..., draft.size() ]
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft, bool grammar_first = false);
std::vector<llama_token> common_sampler_sample_and_accept_n(struct common_sampler * gsmpl, struct llama_context * ctx, const llama_tokens & draft);
uint32_t common_sampler_get_seed(const struct common_sampler * gsmpl);
@@ -107,3 +106,9 @@ std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std:
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);
struct common_sampler_deleter {
void operator()(common_sampler * s) { common_sampler_free(s); }
};
typedef std::unique_ptr<common_sampler, common_sampler_deleter> common_sampler_ptr;

View File

@@ -315,7 +315,7 @@ llama_tokens common_speculative_gen_draft(
for (int i = 0; i < params.n_draft; ++i) {
common_batch_clear(batch);
common_sampler_sample(smpl, ctx_dft, 0, true);
common_sampler_sample(smpl, ctx_dft, 0);
const auto * cur_p = common_sampler_get_candidates(smpl, true);

View File

@@ -136,11 +136,19 @@ class ModelBase:
self.remote_hf_model_id = remote_hf_model_id
self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
self.metadata_override = metadata_override
self.model_name = model_name
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
# Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
self.rope_parameters["rope_theta"] = rope_theta
if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
self.rope_parameters["rope_type"] = rope_type
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
if self.ftype == gguf.LlamaFileType.GUESSED:
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
@@ -795,7 +803,7 @@ class TextModel(ModelBase):
def set_gguf_parameters(self):
self.gguf_writer.add_block_count(self.block_count)
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
@@ -815,7 +823,42 @@ class TextModel(ModelBase):
self.gguf_writer.add_head_count_kv(n_head_kv)
logger.info(f"gguf: key-value head count = {n_head_kv}")
if (rope_theta := self.hparams.get("rope_theta")) is not None:
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
if (rope_type := rope_params.get("rope_type")) is not None:
rope_factor = rope_params.get("factor")
rope_gguf_type = gguf.RopeScalingType.NONE
if rope_type == "linear" and rope_factor is not None:
rope_gguf_type = gguf.RopeScalingType.LINEAR
self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
self.gguf_writer.add_rope_scaling_factor(rope_factor)
elif rope_type == "yarn" and rope_factor is not None:
rope_gguf_type = gguf.RopeScalingType.YARN
self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
self.gguf_writer.add_rope_scaling_factor(rope_factor)
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
# self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
elif rope_type == "su" or rope_type == "longrope":
rope_gguf_type = gguf.RopeScalingType.LONGROPE
self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
elif rope_type == "dynamic":
# HunYuan, handled in model class
pass
elif rope_type.lower() == "llama3":
# Handled in generate_extra_tensors
pass
else:
logger.warning(f"Unknown RoPE type: {rope_type}")
logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
if (rope_theta := rope_params.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
logger.info(f"gguf: rope theta = {rope_theta}")
if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
@@ -1966,34 +2009,10 @@ class BaichuanModel(TextModel):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
raise ValueError("gguf: can not find ctx length parameter.")
super().set_gguf_parameters()
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
head_count = self.hparams["num_attention_heads"]
@@ -2089,34 +2108,10 @@ class XverseModel(TextModel):
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
raise ValueError("gguf: can not find ctx length parameter.")
super().set_gguf_parameters()
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -2430,11 +2425,6 @@ class LlamaModel(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
@@ -2518,16 +2508,16 @@ class LlamaModel(TextModel):
return [(self.map_tensor_name(name), data_torch)]
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
if rope_params.get("rope_type", '').lower() == "llama3":
base = rope_params.get("rope_theta", 10000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
factor = rope_params.get("factor", 8.0)
low_freq_factor = rope_params.get("low_freq_factor", 1.0)
high_freq_factor = rope_params.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
@@ -2564,11 +2554,6 @@ class ArceeModel(LlamaModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
@ModelBase.register("AfmoeForCausalLM")
@@ -2851,17 +2836,11 @@ class Mistral3Model(LlamaModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_params = self.hparams.get("rope_parameters")
rope_params = self.rope_parameters
if self.hparams.get("model_type") == "ministral3":
assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
assert rope_params, "ministral3 must have 'rope_parameters' config"
assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
@@ -2958,7 +2937,7 @@ class DeciModel(TextModel):
assert self.block_count == len(self._num_kv_heads)
assert self.block_count == len(self._num_heads)
assert self.block_count == len(self._ffn_dims)
if (rope_theta := self.hparams.get("rope_theta")) is not None:
if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
self.gguf_writer.add_head_count_kv(self._num_kv_heads)
self.gguf_writer.add_head_count(self._num_heads)
@@ -2983,11 +2962,6 @@ class DeciModel(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
@@ -3016,16 +2990,16 @@ class DeciModel(TextModel):
return [(self.map_tensor_name(name), data_torch)]
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
if rope_params.get("rope_type", '').lower() == "llama3":
base = rope_params.get("rope_theta", 10000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
factor = rope_params.get("factor", 8.0)
low_freq_factor = rope_params.get("low_freq_factor", 1.0)
high_freq_factor = rope_params.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
@@ -3279,10 +3253,6 @@ class MiniCPMModel(TextModel):
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
self.gguf_writer.add_logit_scale(logit_scale)
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
@@ -3402,17 +3372,6 @@ class QwenModel(TextModel):
def set_vocab(self):
self._set_vocab_qwen()
def set_gguf_parameters(self):
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
@ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
class Qwen2Model(TextModel):
@@ -3427,11 +3386,6 @@ class Qwen2Model(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if self.hf_arch == "Qwen2Model":
@@ -3499,12 +3453,6 @@ class DreamModel(TextModel):
# Dream models use non-causal attention for diffusion
self.gguf_writer.add_causal_attention(False)
# Handle RoPE scaling similar to Qwen2
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
# Add Dream-specific parameters
mask_token_id = self.hparams.get("mask_token_id")
@@ -4048,13 +3996,6 @@ class Qwen2MoeModel(TextModel):
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
@@ -4656,7 +4597,7 @@ class Phi3MiniModel(TextModel):
self.gguf_writer.add_head_count_kv(n_head_kv)
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
self.gguf_writer.add_rope_dimension_count(rope_dims)
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
self.gguf_writer.add_file_type(self.ftype)
sliding_window = self.hparams.get("sliding_window")
# use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
@@ -4932,7 +4873,7 @@ class Plamo2Model(TextModel):
self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
# Mamba parameters
self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
@@ -5130,21 +5071,6 @@ class InternLM2Model(TextModel):
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_file_type(self.ftype)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
num_kv_heads = self.hparams["num_key_value_heads"]
@@ -5221,11 +5147,6 @@ class InternLM3Model(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
@@ -5588,7 +5509,6 @@ class NomicBertModel(BertModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
if self.is_moe:
self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
self.gguf_writer.add_expert_count(self.hparams["num_experts"])
@@ -5711,8 +5631,6 @@ class XLMRobertaModel(BertModel):
super().set_gguf_parameters()
# jina-embeddings-v3
if rotary_emb_base := self.hparams.get("rotary_emb_base"):
self.gguf_writer.add_rope_freq_base(rotary_emb_base)
lora_alpha = self.hparams.get("lora_alpha")
if lora_prompt_prefixes := self.hparams.get("task_instructions"):
assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
@@ -5840,19 +5758,16 @@ class Gemma3Model(TextModel):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
# some default values are not specified in the hparams
self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
# attn_logit_softcapping is removed in Gemma3
assert hparams.get("attn_logit_softcapping") is None
if (final_logit_softcap := hparams.get("final_logit_softcapping")):
@@ -5860,19 +5775,6 @@ class Gemma3Model(TextModel):
if hparams.get("sliding_window_pattern") != 1:
self.gguf_writer.add_sliding_window(hparams["sliding_window"])
self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
if hparams.get("rope_scaling") is not None:
rope_scaling = hparams["rope_scaling"]
if rope_scaling["rope_type"] == "linear":
# important: this rope_scaling is only applied for global layers, and not used by 1B model
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
elif rope_scaling["rope_type"] == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"])
self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"])
self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
@@ -6776,13 +6678,6 @@ class Olmo2Model(TextModel):
def set_gguf_parameters(self):
super().set_gguf_parameters()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
if "sliding_window" in self.hparams:
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
@@ -7281,16 +7176,11 @@ class DeepseekV2Model(TextModel):
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
# [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
# note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
# ref https://github.com/ggml-org/llama.cpp/pull/17945
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
_experts: list[dict[str, Tensor]] | None = None
@@ -7898,11 +7788,6 @@ class Glm4Model(TextModel):
if (rope_dim := self.hparams.get("head_dim")) is None:
rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
if name.startswith("model.visual."): # ignore visual part of Glm4v
@@ -8240,50 +8125,26 @@ class ExaoneModel(TextModel):
model_arch = gguf.MODEL_ARCH.EXAONE
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
assert (hparams["activation_function"] == "silu")
max_position_embeddings = hparams["max_position_embeddings"]
embed_dim = hparams["hidden_size"]
num_heads = hparams["num_attention_heads"]
num_kv_heads = hparams.get("num_key_value_heads", num_heads)
layer_norm_eps = hparams["layer_norm_epsilon"]
intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
# ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
# attention_dropout_rate = hparams["attention_dropout"]
# ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
# embed_dropout_rate = hparams["embed_dropout"]
self.gguf_writer.add_embedding_length(embed_dim)
self.gguf_writer.add_head_count(num_heads)
self.gguf_writer.add_head_count_kv(num_kv_heads)
self.gguf_writer.add_context_length(max_position_embeddings)
self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
self.gguf_writer.add_feed_forward_length(intermediate_size)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_file_type(self.ftype)
if (rope_theta := self.hparams.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
rotary_factor = rotary_factor if rotary_factor is not None else 1.0
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
if rope_params.get("rope_type", '').lower() == "llama3":
base = self.rope_parameters.get("rope_theta", 10000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
factor = rope_params.get("factor", 8.0)
low_freq_factor = rope_params.get("low_freq_factor", 1.0)
high_freq_factor = rope_params.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
@@ -8338,22 +8199,17 @@ class Exaone4Model(TextModel):
if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10_000.0)
if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
if rope_params.get("rope_type", '').lower() == "llama3":
base = rope_params.get("rope_theta", 10_000.0)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 16.0)
low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
factor = rope_params.get("factor", 16.0)
low_freq_factor = rope_params.get("low_freq_factor", 1.0)
high_freq_factor = rope_params.get("high_freq_factor", 4.0)
old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
low_freq_wavelen = old_context_len / low_freq_factor
@@ -8664,13 +8520,6 @@ class BailingMoeModel(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
@@ -8777,13 +8626,6 @@ class BailingMoeV2Model(TextModel):
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
else:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
@@ -8862,13 +8704,6 @@ class GroveMoeModel(TextModel):
self.gguf_writer.add_experts_per_group(2)
# FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
self.gguf_writer.add_expert_group_scale(0.05)
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
_experts: list[dict[str, Tensor]] | None = None
_chunk_experts: list[dict[str, Tensor]] | None = None
@@ -9178,7 +9013,7 @@ class FalconH1Model(Mamba2Model):
assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
# Add any other Falcon Mamba2 specific configuration
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
@ModelBase.register("HunYuanMoEV1ForCausalLM")
@@ -9256,12 +9091,11 @@ class HunYuanMoEModel(TextModel):
self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
# Rope
rope_scaling = hparams.get("rope_scaling", {})
if rope_scaling.get("type") == "dynamic":
if self.rope_parameters.get("rope_type") == "dynamic":
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
alpha = rope_scaling.get("alpha", 1000)
base = hparams.get("rope_theta", 10000.0)
alpha = self.rope_parameters.get("alpha", 1000)
base = self.rope_parameters.get("rope_theta", 10000.0)
dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
self.gguf_writer.add_rope_freq_base(scaled_base)
@@ -9456,12 +9290,11 @@ class HunYuanModel(TextModel):
hparams = self.hparams
# Rope
rope_scaling = hparams.get("rope_scaling", {})
if rope_scaling.get("type") == "dynamic":
if self.rope_parameters.get("rope_type") == "dynamic":
# HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
# 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
alpha = rope_scaling.get("alpha", 50)
base = hparams.get("rope_theta", 10000.0)
alpha = self.rope_parameters.get("alpha", 50)
base = self.rope_parameters.get("rope_theta", 10000.0)
dim = hparams["head_dim"]
scaled_base = base * (alpha ** (dim / (dim - 2)))
self.gguf_writer.add_rope_freq_base(scaled_base)
@@ -9612,13 +9445,6 @@ class GptOssModel(TextModel):
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
rope_scaling = self.hparams.get("rope_scaling") or {}
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
@ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
class LFM2Model(TextModel):
@@ -9791,13 +9617,6 @@ class SmallThinkerModel(TextModel):
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
else:
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
# YaRN is not enabled by default
# To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
sliding_window_layout = self.hparams.get("sliding_window_layout")
if sliding_window_layout:

View File

@@ -2,6 +2,7 @@
#include "common.h"
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include <algorithm>
#include <cstdio>
@@ -64,17 +65,23 @@ int main(int argc, char ** argv) {
ctx_params.n_ctx = n_kv_req;
ctx_params.n_batch = std::max(n_predict, n_parallel);
llama_context * ctx = llama_init_from_model(model, ctx_params);
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * smpl = llama_sampler_chain_init(sparams);
std::vector<llama_sampler *> samplers;
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
for (int32_t i = 0; i < n_parallel; ++i) {
llama_sampler * smpl = llama_sampler_chain_init(sparams);
llama_sampler_chain_add(smpl, llama_sampler_init_top_k(params.sampling.top_k));
llama_sampler_chain_add(smpl, llama_sampler_init_top_p(params.sampling.top_p, params.sampling.min_keep));
llama_sampler_chain_add(smpl, llama_sampler_init_temp (params.sampling.temp));
llama_sampler_chain_add(smpl, llama_sampler_init_dist (params.sampling.seed));
samplers.push_back(smpl);
}
llama_context * ctx = llama_init_from_model(model, ctx_params);
if (ctx == NULL) {
LOG_ERR("%s: error: failed to create the llama_context\n" , __func__);
@@ -173,7 +180,7 @@ int main(int argc, char ** argv) {
continue;
}
const llama_token new_token_id = llama_sampler_sample(smpl, ctx, i_batch[i]);
const llama_token new_token_id = llama_sampler_sample(samplers[i], ctx, i_batch[i]);
// is it an end of generation? -> mark the stream as finished
if (llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_predict) {
@@ -229,14 +236,17 @@ int main(int argc, char ** argv) {
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
LOG("\n");
llama_perf_sampler_print(smpl);
llama_perf_sampler_print(samplers[0]);
llama_perf_context_print(ctx);
fprintf(stderr, "\n");
llama_batch_free(batch);
llama_sampler_free(smpl);
for (auto & sampler_config : samplers) {
llama_sampler_free(sampler_config);
}
llama_free(ctx);
llama_model_free(model);

View File

@@ -131,10 +131,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);

View File

@@ -202,10 +202,10 @@ int main(int argc, char ** argv) {
params.warmup = false;
// init
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);

View File

@@ -14,12 +14,13 @@ static void write_table_header(std::ofstream & file) {
static void write_table_entry(std::ofstream & file, const common_arg & opt) {
file << "| `";
// args
for (const auto & arg : opt.args) {
if (arg == opt.args.front()) {
auto all_args = opt.get_args();
for (const auto & arg : all_args) {
if (arg == all_args.front()) {
file << arg;
if (opt.args.size() > 1) file << ", ";
if (all_args.size() > 1) file << ", ";
} else {
file << arg << (arg != opt.args.back() ? ", " : "");
file << arg << (arg != all_args.back() ? ", " : "");
}
}
// value hint

View File

@@ -55,10 +55,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the target model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
auto * mem = llama_get_memory(ctx);

View File

@@ -18,16 +18,16 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
auto * model = llama_init->model();
auto * ctx = llama_init->context();
GGML_ASSERT(model != nullptr);
// tokenize the prompt
std::vector<llama_token> inp;
inp = common_tokenize(ctx.get(), params.prompt, true, true);
inp = common_tokenize(ctx, params.prompt, true, true);
fprintf(stderr, "%s: tokenization done\n", __func__);
common_ngram_cache ngram_cache;

View File

@@ -28,13 +28,13 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_context_ptr & ctx = llama_init.context;
llama_context * ctx = llama_init->context();
// tokenize the prompt
std::vector<llama_token> inp;
inp = common_tokenize(ctx.get(), params.prompt, true, true);
inp = common_tokenize(ctx, params.prompt, true, true);
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
@@ -65,7 +65,7 @@ int main(int argc, char ** argv){
}
const int n_input = inp.size();
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx = llama_n_ctx(ctx);
int n_drafted = 0;
int n_accept = 0;

View File

@@ -29,10 +29,10 @@ int main(int argc, char ** argv){
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
const llama_vocab * vocab = llama_model_get_vocab(model);

View File

@@ -1,10 +1,13 @@
#!/usr/bin/env python3
import numpy as np
import sys
import os
import numpy as np
from pathlib import Path
# Add utils directory to path for direct script execution
sys.path.insert(0, str(Path(__file__).parent.parent / "utils"))
from common import get_model_name_from_env_path # type: ignore[import-not-found]
def quick_logits_check(pytorch_file, llamacpp_file):
"""Lightweight sanity check before NMSE"""
@@ -35,20 +38,13 @@ def quick_logits_check(pytorch_file, llamacpp_file):
return True
def main():
model_path = os.getenv('MODEL_PATH')
if not model_path:
print("Error: MODEL_PATH environment variable not set")
sys.exit(1)
if not os.path.exists(model_path):
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
model_name = os.path.basename(model_path)
model_name = get_model_name_from_env_path('MODEL_PATH')
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
llamacpp_model_name = get_model_name_from_env_path('CONVERTED_MODEL')
print(f"Using converted model: {llamacpp_model_name}")
llamacpp_file = data_dir / f"llamacpp-{llamacpp_model_name}.bin"
if not pytorch_file.exists():
print(f"Error: PyTorch logits file not found: {pytorch_file}")

View File

@@ -200,7 +200,7 @@ with torch.no_grad():
logits = outputs.logits
# Extract logits for the last token (next token prediction)
last_logits = logits[0, -1, :].cpu().numpy()
last_logits = logits[0, -1, :].float().cpu().numpy()
print(f"Logits shape: {logits.shape}")
print(f"Last token logits shape: {last_logits.shape}")

View File

@@ -5,6 +5,7 @@ import sys
import os
import argparse
from pathlib import Path
from common import get_model_name_from_env_path # type: ignore[import-not-found]
def calculate_nmse(reference, test):
mse = np.mean((test - reference) ** 2)
@@ -67,11 +68,13 @@ def main():
parser.add_argument('-m', '--model-path', required=True, help='Path to the model directory')
args = parser.parse_args()
model_name = os.path.basename(args.model_path)
model_name = get_model_name_from_env_path('MODEL_PATH')
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
llamacpp_file = data_dir / f"llamacpp-{model_name}.bin"
llamacpp_model_name = get_model_name_from_env_path('CONVERTED_MODEL')
llamacpp_file = data_dir / f"llamacpp-{llamacpp_model_name}.bin"
print(f"Model name: {model_name}")
print(f"PyTorch logits file: {pytorch_file}")

View File

@@ -0,0 +1,20 @@
#!/usr/bin/env python3
import os
import sys
def get_model_name_from_env_path(env_path_name):
model_path = os.getenv(env_path_name)
if not model_path:
print(f"Error: {env_path_name} environment variable not set")
sys.exit(1)
if not os.path.exists(model_path):
print(f"Error: Model file not found: {model_path}")
sys.exit(1)
name = os.path.basename(os.path.normpath(model_path))
if name.endswith(".gguf"):
name = name[:-5]
return name

View File

@@ -192,10 +192,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the target model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
auto * mem = llama_get_memory(ctx);

View File

@@ -149,10 +149,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the model
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);

View File

@@ -34,10 +34,10 @@ int main(int argc, char ** argv) {
std::string result2;
// init
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
fprintf(stderr, "%s : failed to init\n", __func__);

View File

@@ -40,10 +40,10 @@ int main(int argc, char ** argv) {
llama_context * ctx_dft = NULL;
// load the target model
common_init_result llama_init_tgt = common_init_from_params(params);
auto llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context.get();
model_tgt = llama_init_tgt->model();
ctx_tgt = llama_init_tgt->context();
const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
@@ -61,10 +61,10 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
common_init_result llama_init_dft = common_init_from_params(params);
auto llama_init_dft = common_init_from_params(params);
//model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context.get();
//model_dft = llama_init_dft->model();
ctx_dft = llama_init_dft->context();
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
@@ -255,6 +255,8 @@ int main(int argc, char ** argv) {
LOG_INF("target:\n\n");
common_perf_print(ctx_tgt, smpl);
llama_batch_free(batch_tgt);
common_sampler_free(smpl);
common_speculative_free(spec);

View File

@@ -71,10 +71,10 @@ int main(int argc, char ** argv) {
llama_context * ctx_dft = NULL;
// load the target model
common_init_result llama_init_tgt = common_init_from_params(params);
auto llama_init_tgt = common_init_from_params(params);
model_tgt = llama_init_tgt.model.get();
ctx_tgt = llama_init_tgt.context.get();
model_tgt = llama_init_tgt->model();
ctx_tgt = llama_init_tgt->context();
// load the draft model
params.devices = params.speculative.devices;
@@ -87,10 +87,10 @@ int main(int argc, char ** argv) {
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
common_init_result llama_init_dft = common_init_from_params(params);
auto llama_init_dft = common_init_from_params(params);
model_dft = llama_init_dft.model.get();
ctx_dft = llama_init_dft.context.get();
model_dft = llama_init_dft->model();
ctx_dft = llama_init_dft->context();
const llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
@@ -242,7 +242,7 @@ int main(int argc, char ** argv) {
bool accept = false;
if (params.sampling.temp > 0) {
// stochastic verification
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft], true);
common_sampler_sample(smpl, ctx_tgt, drafts[s_keep].i_batch_tgt[i_dft]);
auto & dist_tgt = *common_sampler_get_candidates(smpl, true);
@@ -491,7 +491,7 @@ int main(int argc, char ** argv) {
continue;
}
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft, true);
common_sampler_sample(drafts[s].smpl, ctx_dft, drafts[s].i_batch_dft);
const auto * cur_p = common_sampler_get_candidates(drafts[s].smpl, true);

View File

@@ -39,9 +39,10 @@ int main(int argc, char ** argv) {
llama_backend_init();
llama_numa_init(params.numa);
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
llama_model_ptr & model = llama_init.model;
llama_context_ptr & ctx = llama_init.context;
auto llama_init = common_init_from_params(params);
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);
@@ -54,8 +55,8 @@ int main(int argc, char ** argv) {
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
}
std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get()) / 2);
std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, true);
ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx, tokens, llama_n_ctx(ctx) / 2);
struct lr_opt & lr = params.lr;
LOG_INF("-optimizer %s -lr0 %.2g -wd %.2g -lr-min %.2g -min-epochs %.2g -epochs %d -period %.2g -val %.2g\n",
@@ -70,7 +71,7 @@ int main(int argc, char ** argv) {
/*get_opt_pars_ud =*/&params.lr,
/*optimizer_type =*/params.optimizer,
};
llama_opt_init(ctx.get(), model.get(), lopt_params);
llama_opt_init(ctx, model, lopt_params);
const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - params.val_split);
@@ -78,7 +79,7 @@ int main(int argc, char ** argv) {
ggml_opt_result_t result_eval = ggml_opt_result_init();
for (lr.epoch = 0; lr.epoch < lr.epochs; ++lr.epoch) {
llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
llama_opt_epoch(ctx, dataset, result_train, result_eval, idata_split,
ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
fprintf(stderr, "\n");
@@ -88,7 +89,7 @@ int main(int argc, char ** argv) {
ggml_opt_result_free(result_train);
ggml_opt_result_free(result_eval);
llama_model_save_to_file(model.get(), params.out_file.c_str());
llama_model_save_to_file(model, params.out_file.c_str());
llama_backend_free();

View File

@@ -54,6 +54,10 @@ if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
# TODO
else()
set(GGML_STANDALONE OFF)
if (NOT CMAKE_RUNTIME_OUTPUT_DIRECTORY)
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
endif()
endif()
if (EMSCRIPTEN)

View File

@@ -24,6 +24,7 @@
#define UNUSED GGML_UNUSED
#if defined(__aarch64__) && defined(__ARM_NEON) && (defined(__ARM_FEATURE_MATMUL_INT8) || defined(__ARM_FEATURE_DOTPROD))
static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
int16x8_t * out_mins,
int8_t * out_scales) {
@@ -46,6 +47,7 @@ static inline void decode_q4_Kx8_scales_mins(const uint8_t * scales_in,
scales_u32[1] = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
memcpy(out_scales, scales_u32, 8);
}
#endif
void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);

View File

@@ -659,6 +659,7 @@ struct vk_device_struct {
vk_pipeline pipeline_cos_f32;
vk_pipeline pipeline_log[2];
vk_pipeline pipeline_tri[2];
vk_pipeline pipeline_diag[2];
vk_pipeline pipeline_clamp_f32;
vk_pipeline pipeline_pad_f32;
vk_pipeline pipeline_roll_f32;
@@ -722,6 +723,11 @@ struct vk_device_struct {
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
vk_pipeline pipeline_soft_max_back_f32;
vk_pipeline pipeline_soft_max_large1_f32, pipeline_soft_max_large1_f32_f16;
vk_pipeline pipeline_soft_max_large2_f32, pipeline_soft_max_large2_f32_f16;
vk_pipeline pipeline_soft_max_large3_f32, pipeline_soft_max_large3_f32_f16;
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16, pipeline_rope_norm_f32_f16;
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16, pipeline_rope_neox_f32_f16;
vk_pipeline pipeline_rope_multi_f32, pipeline_rope_multi_f16;
@@ -757,7 +763,8 @@ struct vk_device_struct {
vk_pipeline pipeline_flash_attn_split_k_reduce;
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT];
// [2] is for whether to take n_experts from spec constant (0) or push constant (1)
vk_pipeline pipeline_topk_moe[num_topk_moe_pipelines][TOPK_MOE_COUNT][2];
std::vector<vk_pipeline_ref> all_pipelines;
@@ -1149,6 +1156,7 @@ static_assert(sizeof(vk_op_multi_add_push_constants) <= 256);
struct vk_op_topk_moe_push_constants {
uint32_t n_rows;
uint32_t n_experts_push;
uint32_t n_expert_used;
float clamp_min;
float clamp_max;
@@ -3730,6 +3738,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_XS], "get_rows_iq4_xs", get_rows_iq4_xs_len, get_rows_iq4_xs_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_MXFP4], "get_rows_mxfp4", get_rows_mxfp4_len, get_rows_mxfp4_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_I32], "get_rows_i32", get_rows_i32_len, get_rows_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
@@ -3917,6 +3926,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_tri[0], "tri_f32", tri_f32_len, tri_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tri[1], "tri_f16", tri_f16_len, tri_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag[0], "diag_f32", diag_f32_len, diag_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag[1], "diag_f16", diag_f16_len, diag_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_pad_push_constants), {512, 1, 1}, {}, 1);
@@ -3996,6 +4008,13 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_back_f32, "soft_max_back_f32", soft_max_back_f32_len, soft_max_back_f32_data, "main", 3, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large1_f32, "soft_max_large1_f32", soft_max_large1_f32_len, soft_max_large1_f32_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large2_f32, "soft_max_large2_f32", soft_max_large2_f32_len, soft_max_large2_f32_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large3_f32, "soft_max_large3_f32", soft_max_large3_f32_len, soft_max_large3_f32_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large1_f32_f16, "soft_max_large1_f32_f16", soft_max_large1_f32_f16_len, soft_max_large1_f32_f16_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large2_f32_f16, "soft_max_large2_f32_f16", soft_max_large2_f32_f16_len, soft_max_large2_f32_f16_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_large3_f32_f16, "soft_max_large3_f32_f16", soft_max_large3_f32_f16_len, soft_max_large3_f32_f16_data, "main", 6, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 128, 4 }, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_rope_multi_f32, "rope_multi_f32", rope_multi_f32_len, rope_multi_f32_data, "main", 5, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
@@ -4204,10 +4223,12 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_whcn_f16_f32, "conv2d_dw_whcn_f16_f32", conv2d_dw_whcn_f16_f32_len, conv2d_dw_whcn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_conv2d_dw_cwhn_f16_f32, "conv2d_dw_cwhn_f16_f32", conv2d_dw_cwhn_f16_f32_len, conv2d_dw_cwhn_f16_f32_data, "main", 3, sizeof(vk_op_conv2d_dw_push_constants), {512, 1, 1}, {}, 1);
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1}, 1, true, true, device->subgroup_size);
for (uint32_t use_push = 0; use_push < 2; ++use_push) {
for (uint32_t i = 0; i < num_topk_moe_pipelines; ++i) {
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX][use_push], "topk_moe_f32_early_softmax_"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 0, use_push}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_EARLY_SOFTMAX_NORM][use_push], "topk_moe_f32_early_softmax_norm"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 1, 0, use_push}, 1, true, true, device->subgroup_size);
ggml_vk_create_pipeline2(device, device->pipeline_topk_moe[i][TOPK_MOE_LATE_SOFTMAX][use_push], "topk_moe_f32_late_softmax"+std::to_string(i), topk_moe_f32_len, topk_moe_f32_data, "main", 3, sizeof(vk_op_topk_moe_push_constants), {1, 1, 1}, {device->subgroup_size, 1u<<i, 0, 1, use_push}, 1, true, true, device->subgroup_size);
}
}
for (auto &c : compiles) {
@@ -8274,6 +8295,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
switch (op) {
case GGML_OP_GET_ROWS:
GGML_ASSERT(src1->type == GGML_TYPE_I32);
if (src0->type == GGML_TYPE_I32) {
// i32 src only supports i32 result
GGML_ASSERT(dst->type == GGML_TYPE_I32);
return ctx->device->pipeline_get_rows[src0->type];
}
if (dst->type == GGML_TYPE_F16) {
return ctx->device->pipeline_get_rows[src0->type];
}
@@ -8400,6 +8426,12 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_tri[dst->type == GGML_TYPE_F16];
}
return nullptr;
case GGML_OP_DIAG:
if (src0->type == dst->type &&
(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16)) {
return ctx->device->pipeline_diag[dst->type == GGML_TYPE_F16];
}
return nullptr;
case GGML_OP_CLAMP:
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
return ctx->device->pipeline_clamp_f32;
@@ -8554,7 +8586,9 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
uint32_t idx = (uint32_t)ceilf(log2f(float(dst->ne[0])));
GGML_ASSERT(idx < num_topk_moe_pipelines);
topk_moe_mode mode = ggml_vk_num_additional_ops_to_topk_moe_mode(ctx->num_additional_fused_ops);
return ctx->device->pipeline_topk_moe[idx][mode];
// use n_experts from push constant if it's not equal to the power of two spec constant
bool use_push = dst->ne[0] != (1u << idx);
return ctx->device->pipeline_topk_moe[idx][mode][use_push];
}
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
@@ -9091,6 +9125,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
case GGML_OP_COS:
case GGML_OP_LOG:
case GGML_OP_TRI:
case GGML_OP_DIAG:
case GGML_OP_CLAMP:
case GGML_OP_PAD:
case GGML_OP_ROLL:
@@ -9778,6 +9813,12 @@ static void ggml_vk_tri(ggml_backend_vk_context * ctx, vk_context& subctx, const
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_TRI, std::move(p));
}
static void ggml_vk_diag(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst, ggml_nelements(dst));
ggml_vk_op_f32(ctx, subctx, src0, nullptr, nullptr, nullptr, dst, GGML_OP_DIAG, std::move(p));
}
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst) {
vk_op_unary_push_constants p = vk_op_unary_push_constants_init(src0, dst);
p.param1 = ggml_get_op_params_f32(dst, 0);
@@ -10111,7 +10152,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_SOFT_MAX, {
vk_op_soft_max_push_constants pc {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],
@@ -10122,7 +10163,55 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx,
n_head_log2,
nrows_x,
src2 != nullptr
});
};
if (ncols <= 16384) {
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, nullptr, dst, GGML_OP_SOFT_MAX, std::move(pc));
} else {
vk_subbuffer buf_a = ggml_vk_tensor_subbuffer(ctx, src0);
vk_subbuffer buf_b = src1 ? ggml_vk_tensor_subbuffer(ctx, src1) : buf_a;
vk_subbuffer buf_c = src2 ? ggml_vk_tensor_subbuffer(ctx, src2) : buf_a;
vk_subbuffer buf_d = ggml_vk_tensor_subbuffer(ctx, dst);
uint32_t elems_per_wg = 128 * 4;
uint32_t num_wgs = CEIL_DIV(ncols, elems_per_wg);
size_t tmp_size = num_wgs * nrows_x * sizeof(float);
if (ctx->prealloc_size_x < tmp_size) {
ctx->prealloc_size_x = tmp_size;
ggml_vk_preallocate_buffers(ctx, subctx);
}
if (ctx->prealloc_size_y < tmp_size) {
ctx->prealloc_size_y = tmp_size;
ggml_vk_preallocate_buffers(ctx, subctx);
}
if (ctx->prealloc_x_need_sync || ctx->prealloc_y_need_sync) {
ggml_vk_sync_buffers(ctx, subctx);
}
vk_subbuffer buf_x = { ctx->prealloc_x, 0, tmp_size };
vk_subbuffer buf_y = { ctx->prealloc_y, 0, tmp_size };
std::array<uint32_t, 3> elements = { num_wgs, nrows_x, 1 };
vk_pipeline pipeline1 = src1 && src1->type == GGML_TYPE_F16 ? ctx->device->pipeline_soft_max_large1_f32_f16 : ctx->device->pipeline_soft_max_large1_f32;
vk_pipeline pipeline2 = src1 && src1->type == GGML_TYPE_F16 ? ctx->device->pipeline_soft_max_large2_f32_f16 : ctx->device->pipeline_soft_max_large2_f32;
vk_pipeline pipeline3 = src1 && src1->type == GGML_TYPE_F16 ? ctx->device->pipeline_soft_max_large3_f32_f16 : ctx->device->pipeline_soft_max_large3_f32;
ggml_pipeline_request_descriptor_sets(ctx, pipeline1, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline2, 1);
ggml_pipeline_request_descriptor_sets(ctx, pipeline3, 1);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline1, { buf_a, buf_b, buf_c, buf_d, buf_x, buf_y }, pc, elements);
ggml_vk_sync_buffers(ctx, subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline2, { buf_a, buf_b, buf_c, buf_d, buf_x, buf_y }, pc, elements);
ggml_vk_sync_buffers(ctx, subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline3, { buf_a, buf_b, buf_c, buf_d, buf_x, buf_y }, pc, elements);
ctx->prealloc_x_need_sync = true;
ctx->prealloc_y_need_sync = true;
}
}
static void ggml_vk_soft_max_back(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -10158,6 +10247,7 @@ static void ggml_vk_topk_moe(ggml_backend_vk_context * ctx, vk_context& subctx,
vk_op_topk_moe_push_constants pc {};
pc.n_rows = n_rows;
pc.n_experts_push = n_experts;
pc.n_expert_used = n_expert_used;
if (mode == TOPK_MOE_EARLY_SOFTMAX_NORM) {
ggml_tensor * clamp = cgraph->nodes[node_idx + 7];
@@ -11857,6 +11947,10 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_cgraph * cgr
case GGML_OP_TRI:
ggml_vk_tri(ctx, compute_ctx, src0, node);
break;
case GGML_OP_DIAG:
ggml_vk_diag(ctx, compute_ctx, src0, node);
break;
case GGML_OP_CLAMP:
ggml_vk_clamp(ctx, compute_ctx, src0, node);
@@ -12832,8 +12926,7 @@ static bool ggml_vk_can_fuse_topk_moe(ggml_backend_vk_context * ctx, const struc
}
const int n_expert = softmax->ne[0];
// n_expert must be a power of 2
if (!is_pow2(n_expert) || n_expert > (1 << (num_topk_moe_pipelines-1))) {
if (n_expert > (1 << (num_topk_moe_pipelines-1))) {
return false;
}
@@ -13877,6 +13970,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_TYPE_IQ4_XS:
case GGML_TYPE_IQ4_NL:
case GGML_TYPE_MXFP4:
case GGML_TYPE_I32:
return true;
default:
return false;
@@ -14001,6 +14095,7 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_LOG:
case GGML_OP_TRI:
case GGML_OP_DIAG:
return (op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) &&
op->type == op->src[0]->type;
case GGML_OP_ARGSORT:
@@ -14591,6 +14686,8 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_cgraph *
tensor_clone = ggml_log(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_TRI) {
tensor_clone = ggml_tri(ggml_ctx, src_clone[0], ggml_get_op_params_i32(tensor, 0));
} else if (tensor->op == GGML_OP_DIAG) {
tensor_clone = ggml_diag(ggml_ctx, src_clone[0]);
} else if (tensor->op == GGML_OP_CLAMP) {
const float * params = (const float *)tensor->op_params;
tensor_clone = ggml_clamp(ggml_ctx, src_clone[0], params[0], params[1]);

View File

@@ -0,0 +1,29 @@
#version 450
#include "rte.glsl"
#include "types.glsl"
#include "generic_unary_head.glsl"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
void main() {
const uint idx = get_idx();
if (idx >= p.ne) {
return;
}
const uint i13 = fastdiv(idx, p.ne1_012mp, p.ne1_012L);
const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;
const uint i12 = fastdiv(idx - i13_offset, p.ne1_01mp, p.ne1_01L);
const uint i12_offset = i12*p.ne11*p.ne10;
const uint i11 = fastdiv(idx - i13_offset - i12_offset, p.ne1_0mp, p.ne1_0L);
const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
if (i10 == i11) {
const float val = float(data_a[get_aoffset() + i13*p.nb03 + i12*p.nb02 + 0*p.nb01 + i10*p.nb00]);
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(val);
} else {
data_d[get_doffset() + dst_idx(idx)] = D_TYPE(0);
}
}

View File

@@ -256,6 +256,9 @@ void main() {
barrier();
}
// prevent race on tmpsh
barrier();
// reduce across threads
[[unroll]] for (uint32_t r = 0; r < Br; ++r) {

View File

@@ -302,6 +302,9 @@ void main() {
barrier();
}
// prevent race on tmpsh
barrier();
// reduce across threads
float rowmaxf[rows_per_thread], eMf[rows_per_thread], Moldf[rows_per_thread];

View File

@@ -26,9 +26,9 @@ void main() {
const uint d_offset = get_doffset() + i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
#if defined(DATA_A_BF16)
FLOAT_TYPE v = FLOAT_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
TEMP_TYPE v = TEMP_TYPE(bf16_to_fp32(data_a[a_offset + i00]));
#else
FLOAT_TYPE v = FLOAT_TYPE(data_a[a_offset + i00]);
TEMP_TYPE v = TEMP_TYPE(data_a[a_offset + i00]);
#endif
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(v);

View File

@@ -7,34 +7,50 @@ layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
const uint y_idx = i * QUANT_K + 32 * ib32;
uint ibi = a_offset / QUANT_K + first_row * num_blocks_per_row + i;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const float d = float(data_a[ibi].d);
const uint qh = data_a[ibi].qh[ib32];
const float dl = d * float(2 * bitfieldExtract(qh, 12, 3) + 1);
const float delta = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
void calc_superblock(const uint a_offset, const uint b_offset, const uint ib32, const uint i,
const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
const uint y_idx_base = i * QUANT_K + 32 * ib32;
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
const uint base_b_idx = (j * p.batch_stride_b + b_offset + y_idx_base) / 4;
[[unroll]] for (uint l = 0; l < 4; ++l) {
const uint qs = data_a[ibi].qs[4 * ib32 + l];
const uint idxhi = bitfieldExtract(qh, 3 * int(l), 3);
const int16_t grid = int16_t(iq1s_grid[qs | (idxhi << 8)]);
const vec4 b_val_0 = vec4(data_b_v4[base_b_idx + 2 * l]);
const vec4 b_val_1 = vec4(data_b_v4[base_b_idx + 2 * l + 1]);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 b0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 0]);
vec4 b4 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 2*l + 1]);
// index for data_a
uint ibi = a_offset / QUANT_K + first_row * num_blocks_per_row + i;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const float d = float(data_a[ibi].d);
const uint qh = data_a[ibi].qh[ib32];
const float dl = d * float(2 * bitfieldExtract(qh, 12, 3) + 1);
const uint qs = data_a[ibi].qs[4 * ib32 + l];
const uint idxhi = bitfieldExtract(qh, 3 * int(l), 3);
const uint16_t grid = uint16_t(iq1s_grid[qs | (idxhi << 8)]);
const float delta_val = ((qh & 0x8000) != 0) ? -IQ1S_DELTA : IQ1S_DELTA;
const vec4 delta_v = vec4(delta_val);
const vec4 fbits0 = vec4(
float(bitfieldExtract(grid, 0, 2)),
float(bitfieldExtract(grid, 2, 2)),
float(bitfieldExtract(grid, 4, 2)),
float(bitfieldExtract(grid, 6, 2))
);
const vec4 fbits1 = vec4(
float(bitfieldExtract(grid, 8, 2)),
float(bitfieldExtract(grid, 10, 2)),
float(bitfieldExtract(grid, 12, 2)),
float(bitfieldExtract(grid, 14, 2))
);
vec4 sum_v = fma(b_val_0, fbits0 + delta_v, vec4(0.0));
sum_v = fma(b_val_1, fbits1 + delta_v, sum_v);
FLOAT_TYPE sum = dot(sum_v, vec4(1.0));
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int k = 0; k < 4; ++k) {
sum = fma(FLOAT_TYPE(b0[k]), bitfieldExtract(grid, 2 * k, 2) + delta,
fma(FLOAT_TYPE(b4[k]), bitfieldExtract(grid, 8 + 2 * k, 2) + delta, sum));
}
temp[j][n] = fma(dl, sum, temp[j][n]);
ibi += num_blocks_per_row;
}
}
ibi += num_blocks_per_row;
}
}

View File

@@ -244,17 +244,20 @@ void load_a_to_shmem(const uint pos_a, const uint row, const uint col, const uin
const uint iqs = idx % 128; // 0..127
const uint n = iqs / 64; // 0,1
const uint b = (iqs % 64) / 32; // 0,1
const uint b = ((iqs % 64) / 32) * 4; // 0,4
const uint is_b = (iqs % 16) / 8; // 0,1
const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
const uint is = 8 * n + qhshift + is_b; // 0..15
const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
const uint qsi = n * 32 + (iqs % 32); // 0..63
const uint qhi = n * 16 + (iqs % 16); // 0..31
const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
buf_a[buf_idx] = FLOAT_TYPE_VEC2(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32),
dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));
const uint ql = (uint(data_a_packed16[ib].ql[qsi]) >> b) & 0x0F0F;
const uint qh = (uint(data_a_packed16[ib].qh[qhi]) >> qhshift) & 0x0303;
const vec2 q = (vec2(unpack8(ql | (qh << 4)).xy) - 32) * dscale;
buf_a[buf_idx] = FLOAT_TYPE_VEC2(q.x, q.y);
#elif defined(DATA_A_IQ1_S)
const uint idx = pos_a + col * p.stride_a / LOAD_VEC_A + row;
const uint buf_idx = col * SHMEM_STRIDE + row * LOAD_VEC_A / 2;

View File

@@ -0,0 +1,62 @@
#version 450
#include "soft_max_large_common.glsl"
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint rowx = gl_WorkGroupID.y;
const uint wg_start = gl_WorkGroupID.x * BLOCK_SIZE * num_iters;
const uint32_t i03 = rowx / (p.ne01 * p.ne02);
const uint32_t i02 = (rowx - i03 * p.ne01 * p.ne02) / p.ne01;
const uint32_t i01 = rowx % p.ne01;
uint rowy_start = 0;
if (p.KY > 0) {
rowy_start = i01 * p.nb11 + (i02 % p.ne12) * p.nb12 + (i03 % p.ne13) * p.nb13;
}
if (rowx >= p.nrows_x) {
return;
}
float slope = get_slope(rowx);
// Find max
FLOAT_TYPE max_val = p.has_sinks == 0 ? uintBitsToFloat(0xFF800000) : data_c[i02];
[[unroll]] for (uint col0 = wg_start, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
const uint col = col0 + tid;
FLOAT_TYPE a = FLOAT_TYPE(0);
if (col < p.KX) {
a = data_a[rowx * p.KX + col];
}
FLOAT_TYPE b = FLOAT_TYPE(0);
if (p.KY > 0 && col < p.KX) {
b = data_b[rowy_start + col];
}
FLOAT_TYPE v = a * p.scale + slope * b;
if (col < p.KX) {
max_val = max(max_val, v);
}
}
// reduce across the workgroup
vals[tid] = max_val;
barrier();
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] = max(vals[tid], vals[tid + s]);
}
barrier();
}
if (tid == 0) {
max_val = vals[0];
data_m[rowx * gl_NumWorkGroups.x + gl_WorkGroupID.x] = max_val;
}
}

View File

@@ -0,0 +1,79 @@
#version 450
#include "soft_max_large_common.glsl"
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint rowx = gl_WorkGroupID.y;
const uint wg_start = gl_WorkGroupID.x * BLOCK_SIZE * num_iters;
const uint32_t i03 = rowx / (p.ne01 * p.ne02);
const uint32_t i02 = (rowx - i03 * p.ne01 * p.ne02) / p.ne01;
const uint32_t i01 = rowx % p.ne01;
uint rowy_start = 0;
if (p.KY > 0) {
rowy_start = i01 * p.nb11 + (i02 % p.ne12) * p.nb12 + (i03 % p.ne13) * p.nb13;
}
if (rowx >= p.nrows_x) {
return;
}
float slope = get_slope(rowx);
// Find max
FLOAT_TYPE max_val = p.has_sinks == 0 ? uintBitsToFloat(0xFF800000) : data_c[i02];
[[unroll]] for (uint i = 0; i < gl_NumWorkGroups.x; i += BLOCK_SIZE) {
if (i + tid < gl_NumWorkGroups.x) {
max_val = max(max_val, data_m[rowx * gl_NumWorkGroups.x + i + tid]);
}
}
// reduce across the workgroup
vals[tid] = max_val;
barrier();
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] = max(max_val, vals[tid + s]);
}
barrier();
}
max_val = vals[0];
barrier();
FLOAT_TYPE sum = FLOAT_TYPE(0.0f);
// Compute sum{exp(x - max)}
[[unroll]] for (uint col0 = wg_start, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
const uint col = col0 + tid;
if (col >= p.KX) {
break;
}
// compute exp(a*scale+b*slope), add it to sum
const uint i = rowx * p.KX + col;
FLOAT_TYPE val;
val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy_start + col]) : FLOAT_TYPE(0.0f)) - max_val);
sum += val;
data_d[i] = D_TYPE(val);
}
// reduce across the workgroup
vals[tid] = sum;
barrier();
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] += vals[tid + s];
}
barrier();
}
if (tid == 0) {
sum = vals[0];
data_s[rowx * gl_NumWorkGroups.x + gl_WorkGroupID.x] = sum;
}
}

View File

@@ -0,0 +1,65 @@
#version 450
#include "soft_max_large_common.glsl"
shared FLOAT_TYPE sumsh[BLOCK_SIZE];
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint rowx = gl_WorkGroupID.y;
const uint wg_start = gl_WorkGroupID.x * BLOCK_SIZE * num_iters;
const uint32_t i03 = rowx / (p.ne01 * p.ne02);
const uint32_t i02 = (rowx - i03 * p.ne01 * p.ne02) / p.ne01;
const uint32_t i01 = rowx % p.ne01;
uint rowy_start = 0;
if (p.KY > 0) {
rowy_start = i01 * p.nb11 + (i02 % p.ne12) * p.nb12 + (i03 % p.ne13) * p.nb13;
}
if (rowx >= p.nrows_x) {
return;
}
FLOAT_TYPE max_val = p.has_sinks == 0 ? uintBitsToFloat(0xFF800000) : data_c[i02];
FLOAT_TYPE sum = FLOAT_TYPE(0.0f);
[[unroll]] for (uint i = 0; i < gl_NumWorkGroups.x; i += BLOCK_SIZE) {
if (i + tid < gl_NumWorkGroups.x) {
max_val = max(max_val, data_m[rowx * gl_NumWorkGroups.x + i + tid]);
sum += data_s[rowx * gl_NumWorkGroups.x + i + tid];
}
}
// reduce across the workgroup
vals[tid] = max_val;
sumsh[tid] = sum;
barrier();
[[unroll]] for (uint s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] = max(max_val, vals[tid + s]);
sumsh[tid] += sumsh[tid + s];
}
barrier();
}
max_val = vals[0];
sum = sumsh[0];
if (p.has_sinks != 0) {
sum += FLOAT_TYPE(exp(FLOAT_TYPE(data_c[i02]) - max_val));
}
FLOAT_TYPE rcpdivisor = 1.0/sum;
[[unroll]] for (uint col0 = wg_start, idx = 0; idx < num_iters; col0 += BLOCK_SIZE, ++idx) {
const uint col = col0 + tid;
if (col >= p.KX) {
continue;
}
data_d[rowx*p.KX + col] *= D_TYPE(rcpdivisor);
}
}

View File

@@ -0,0 +1,53 @@
#extension GL_EXT_control_flow_attributes : enable
layout (push_constant) uniform parameter
{
uint KX;
uint KY;
uint ne00;
uint ne01;
uint ne02;
uint ne12;
uint ne13;
uint nb11;
uint nb12;
uint nb13;
float scale;
float max_bias;
float m0;
float m1;
uint n_head_log2;
uint nrows_x;
uint has_sinks;
} p;
#include "types.glsl"
layout(constant_id = 0) const uint BLOCK_SIZE = 128;
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout(constant_id = 1) const uint num_iters = 4;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) readonly buffer Z {float data_c[];};
layout (binding = 3) buffer D {D_TYPE data_d[];};
layout (binding = 4) buffer M {float data_m[];};
layout (binding = 5) buffer S {float data_s[];};
shared FLOAT_TYPE vals[BLOCK_SIZE];
float get_slope(uint rowx) {
float slope = 1.0f;
// ALiBi
if (p.max_bias > 0.0f) {
const uint h = (rowx / p.ne01) % p.ne02; // head index
const float base = h < p.n_head_log2 ? p.m0 : p.m1;
const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
slope = pow(base, exp);
}
return slope;
}

View File

@@ -10,6 +10,7 @@
layout (push_constant) uniform parameter
{
uint n_rows;
uint n_experts_push;
uint n_expert_used;
float clamp_min;
float clamp_max;
@@ -18,11 +19,16 @@ layout (push_constant) uniform parameter
layout(local_size_x_id = 0, local_size_y = 4, local_size_z = 1) in;
layout(constant_id = 0) const uint WARP_SIZE = 32;
layout(constant_id = 1) const uint n_experts = 512;
layout(constant_id = 1) const uint n_experts_spec = 512;
layout(constant_id = 2) const bool with_norm = true;
layout(constant_id = 3) const bool late_softmax = false;
layout(constant_id = 4) const bool nexperts_use_push = false;
const uint experts_per_thread = (n_experts > WARP_SIZE) ? n_experts / WARP_SIZE : 1;
uint n_experts = nexperts_use_push ? n_experts_push : n_experts_spec;
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
const uint experts_per_thread = CEIL_DIV(n_experts_spec, WARP_SIZE);
layout (binding = 0, std430) readonly buffer Logits {float logits[];};
layout (binding = 1, std430) writeonly buffer Weights {float weights[];};
@@ -94,7 +100,7 @@ void main() {
}
if (!late_softmax) {
softmax_warp_inplace(wt, n_experts, lane, false);
softmax_warp_inplace(wt, n_experts, lane, nexperts_use_push);
}
// at this point, each thread holds a portion of softmax,

View File

@@ -704,13 +704,15 @@ void process_shaders() {
shader = (tname == "f32" || tname == "f16" || tname == "bf16") ? "get_rows.comp" : "get_rows_quant.comp";
if (tname == "f16") {
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{"TEMP_TYPE", "FLOAT_TYPE"}, {data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}}));
} else {
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}}));
string_to_spv("get_rows_" + tname, shader, merge_maps(base_dict, {{"TEMP_TYPE", "FLOAT_TYPE"}, {data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float16_t"}}));
}
string_to_spv("get_rows_" + tname + "_f32", shader, merge_maps(base_dict, {{data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}}));
string_to_spv("get_rows_" + tname + "_f32", shader, merge_maps(base_dict, {{"TEMP_TYPE", "FLOAT_TYPE"}, {data_a_key, "1"}, {"B_TYPE", "int"}, {"D_TYPE", "float"}}));
}
string_to_spv("get_rows_i32", "get_rows.comp", {{"TEMP_TYPE", "uint"}, {"A_TYPE", "uint"}, {"B_TYPE", "int"}, {"D_TYPE", "uint"}});
string_to_spv("mul_mat_vec_p021_f16_f32_subgroup_add", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}, {"USE_SUBGROUP_ADD", "1"}});
string_to_spv("mul_mat_vec_p021_f16_f32", "mul_mat_vec_p021.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}});
string_to_spv("mul_mat_vec_nc_f16_f32", "mul_mat_vec_nc.comp", {{"A_TYPE", "float16_t"}, {"A_TYPE_VEC4", "f16vec4"}, {"B_TYPE", "float"}, {"B_TYPE_VEC4", "vec4"}, {"D_TYPE", "float"}});
@@ -854,6 +856,8 @@ void process_shaders() {
string_to_spv("tri_f16", "tri.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("tri_f32", "tri.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("diag_f16", "diag.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("diag_f32", "diag.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
string_to_spv("softplus_f16", "softplus.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}});
string_to_spv("softplus_f32", "softplus.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float"}});
@@ -899,6 +903,13 @@ void process_shaders() {
string_to_spv("soft_max_f32_f16", "soft_max.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_back_f32", "soft_max_back.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large1_f32", "soft_max_large1.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large2_f32", "soft_max_large2.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large3_f32", "soft_max_large3.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large1_f32_f16", "soft_max_large1.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large2_f32_f16", "soft_max_large2.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}));
string_to_spv("soft_max_large3_f32_f16", "soft_max_large3.comp", merge_maps(base_dict, {{"A_TYPE", "float"}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}}));
string_to_spv("rope_norm_f32", "rope_norm.comp", {{"A_TYPE", "float"}, {"ROPE_D_TYPE", "float"}});
string_to_spv("rope_norm_f16", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"ROPE_D_TYPE", "float16_t"}});
string_to_spv("rope_norm_f16_rte", "rope_norm.comp", {{"A_TYPE", "float16_t"}, {"ROPE_D_TYPE", "float16_t"}, {"RTE16", "1"}});

View File

@@ -1,5 +1,5 @@
{
"extraPaths": ["gguf-py"],
"extraPaths": ["gguf-py", "examples/model-conversion/scripts"],
"pythonVersion": "3.9",
"pythonPlatform": "All",
"reportUnusedImport": "warning",

281
scripts/compare-logprobs.py Normal file
View File

@@ -0,0 +1,281 @@
import argparse
import requests
import json
from pathlib import Path
import logging
logger = logging.getLogger("compare-logprobs")
logging.basicConfig(level=logging.INFO)
DESCRIPTION = """
Compare logits between llama.cpp and another inference engine using OpenAI-compatible server endpoints.
Unlike compare-logits.py, it allows dumping logits from a hosted API endpoint. Useful when it's not possible to run both models locally.
Example usage:
Step 1: Dump logits from two different servers
python scripts/compare-logprobs.py dump logits_llama.log http://localhost:8080/v1/completions
python scripts/compare-logprobs.py dump logits_other.log http://other-engine:8000/v1/completions
(optionally, you can add --api-key <key> if the endpoint requires authentication)
Step 2: Compare the dumped logits
python scripts/compare-logprobs.py compare logits_llama.log logits_other.log report.md
"""
def generate_input_prompt(length: int) -> list[str]:
CORPUS = """
You are an advanced AI assistant capable of using tools to gather information, perform calculations, or execute tasks. Always think step by step before responding. If a user's query requires external data, computation, or actions beyond your internal knowledge, use the appropriate tools via function calls.
### Tool Call Format:
When you need to use a tool, output the call in this exact XML format. Include the opening and closing tags. Do not escape arguments; they will be parsed as plain text.
You can make multiple calls in one go by placing them one after another.
"""
words = [w.strip() for w in CORPUS.strip().split(" ")]
words = [w for w in words if len(w) > 0] # filter out empty strings
while len(words) < length:
words += words
return words[:length]
def dump_logits(
endpoint: str,
output_path: Path,
input_words: list[str],
pattern: list[tuple[bool, int]],
api_key=None,
):
logger.info(f"Dumping logits to {output_path} from endpoint {endpoint}...")
words = input_words
curr_text = ""
n_total = sum(n for get, n in pattern if get)
n_done = 0
i_cur = 0
i_total = len(words)
with output_path.open("w") as f:
for get, n in pattern:
if not get:
# skip n words
for i in range(n):
curr_text += words.pop(0) + " "
i_cur += 1
continue
# get n words
for i in range(n):
curr_text += words.pop(0) + " "
payload = {
"prompt": curr_text.strip(),
"temperature": 0.0,
"top_k": 1,
"max_tokens": 1,
"logprobs": 1,
"stream": False,
}
response = requests.post(
endpoint,
json=payload,
headers={"Authorization": f"Bearer {api_key}"} if api_key else {},
)
response.raise_for_status()
data = response.json()
data["__index"] = i_cur # add index for easier debugging later
data = json.dumps(data)
f.write(f"{data}\n")
n_done += 1
i_cur += 1
logger.info(
f"\n\n{data}\n\n[Step: {n_done}/{n_total} | Word: {i_cur}/{i_total}]"
)
logger.info(f"Logits dumped to {output_path}")
def get_token_logprobs(data: dict):
logprobs = data["choices"][0]["logprobs"]
if "content" in logprobs:
# llama.cpp case
top = logprobs["content"][0]["top_logprobs"][0]
return top["token"], top["logprob"]
else:
# vllm case
tokens = logprobs["tokens"]
token_logprobs = logprobs["token_logprobs"]
return tokens[0], token_logprobs[0]
def clean_text(text: str) -> str:
return (
"'"
+ text.replace("\n", "\\n")
.replace("\t", "\\t")
.replace("\r", "\\r")
.replace("|", "\\|")
+ "'"
)
def compare_logits(input1: Path, input2: Path, output_path: Path):
with input1.open("r") as f1, input2.open("r") as f2, output_path.open("w") as fout:
lines1 = f1.readlines()
lines2 = f2.readlines()
tab_header = [
"idx",
input1.name,
"logprob_1",
input2.name,
"logprob_2",
"diff (abs)",
]
tab_entries = []
tab_max_widths = [len(h) for h in tab_header]
assert len(lines1) == len(
lines2
), "Input files must have the same number of lines."
fout.write("# Logits Comparison Report\n\n")
for i, (line1, line2) in enumerate(zip(lines1, lines2)):
if not line1.strip() or not line2.strip():
continue # skip empty lines
data1 = json.loads(line1)
data2 = json.loads(line2)
idx1 = data1.get("__index", -1)
idx2 = data2.get("__index", -1)
if idx1 != idx2:
logger.warning(
f"Warning: Mismatched indices at line {i}: {idx1} vs {idx2}"
)
token1, logprob1 = get_token_logprobs(data1)
token2, logprob2 = get_token_logprobs(data2)
token1 = clean_text(token1)
token2 = clean_text(token2)
abs_diff = abs(logprob1 - logprob2)
tab_entries.append(
(
str(idx1 + 1),
token1,
f"{logprob1:.4f}",
token2,
f"{logprob2:.4f}",
f"{(abs_diff):.4f}",
)
)
for i in range(len(tab_entries)):
for j in range(len(tab_header)):
tab_max_widths[j] = max(tab_max_widths[j], len(tab_entries[i][j]))
output = ""
for j in range(len(tab_header)):
output += f"| {tab_header[j]:<{tab_max_widths[j]}} "
output += "|\n"
for j in range(len(tab_header)):
output += f"|{'-' * (tab_max_widths[j] + 2)}"
output += "|\n"
for entry in tab_entries:
for j in range(len(tab_header)):
output += f"| {entry[j]:<{tab_max_widths[j]}} "
output += "|\n"
logger.info("\n" + output)
fout.write(output)
logger.info(f"Report written to {output_path}")
def parse_pattern(pattern: str) -> list[tuple[bool, int]]:
parts = pattern.split(",")
result = []
for i, part in enumerate(parts):
n = int(part)
if i % 2 == 0:
result.append((True, n)) # get n words
else:
result.append((False, n)) # skip n words
return result
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter
)
subparsers = parser.add_subparsers(
dest="verb", required=True, help="action to perform"
)
# dump subcommand
parser_dump = subparsers.add_parser("dump", help="dump logits from an endpoint")
parser_dump.add_argument(
"output", type=Path, help="output path for dumped logits (.log)"
)
parser_dump.add_argument(
"endpoint", type=str, help="OAI-compat /completions endpoint"
)
parser_dump.add_argument(
"--api-key",
type=str,
default=None,
help="API key for authentication (if required)",
)
parser_dump.add_argument(
"--file",
type=Path,
default=None,
help="File containing prompt to use instead of the default",
)
parser_dump.add_argument(
"--pattern",
type=str,
default="10,1000,10,4000,10",
help="Pattern n_get,n_skip,... where n_get is number of words to get and n_skip is number of words to skip (num of words, NOT num of tokens)",
)
# compare subcommand
parser_compare = subparsers.add_parser(
"compare", help="compare two dumped logits files"
)
parser_compare.add_argument("input1", type=Path, help="first input file (.log)")
parser_compare.add_argument("input2", type=Path, help="second input file (.log)")
parser_compare.add_argument(
"output", type=Path, help="output path for comparison report (.md)"
)
try:
return parser.parse_args()
except Exception as e:
parser.print_help()
raise e
def main():
args = parse_args()
if args.verb == "dump":
pattern = parse_pattern(args.pattern)
input_length = sum(n for _, n in pattern)
input_words = generate_input_prompt(input_length)
if args.file is not None:
with args.file.open("r") as f:
input_words = f.read().strip().split(" ")
if input_length < sum(n for _, n in pattern):
raise ValueError(
f"Input file has only {input_length} words, but pattern requires at least {input_length} words."
)
input_length = len(input_words)
logger.info(f"Using {input_length} words")
dump_logits(args.endpoint, args.output, input_words, pattern, args.api_key)
elif args.verb == "compare":
compare_logits(args.input1, args.input2, args.output)
else:
raise ValueError(f"Unknown verb: {args.verb}")
if __name__ == "__main__":
main()

View File

@@ -1 +1 @@
55bc9320a4aae82af18e23eefd5de319a755d7b9
130bc125a88bb57664b88932c48c38a1cb316fac

View File

@@ -9,6 +9,7 @@
#include "llama-model.h"
#include <cinttypes>
#include <cmath>
#include <cstring>
#include <limits>
#include <stdexcept>
@@ -72,6 +73,43 @@ llama_context::llama_context(
cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
}
if (cparams.yarn_ext_factor != 0) {
static auto get_mscale = [](float scale, float mscale) {
return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
};
const float factor = 1.0f / cparams.rope_freq_scale;
// ref: https://github.com/huggingface/transformers/blob/6d00f6b0a5679c36510f203e4226e36f517c3032/src/transformers/modeling_rope_utils.py#L336-L348
if (hparams.rope_yarn_log_mul != 0.0f) {
// note: here we assume `mscale == 1.0f`
// TODO: start reading the actual value of mscale and handle the case where it is not 1.0f
float mscale = 1.0f;
const float mscale_all_dims = hparams.rope_yarn_log_mul;
// [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
// special-case DEEPSEEK v2:
// https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat/blob/main/config.json#L42-L43
if (model.arch == LLM_ARCH_DEEPSEEK2 && mscale_all_dims != 1.0f) {
mscale = mscale_all_dims;
}
cparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
LLAMA_LOG_WARN("%s: setting new yarn_attn_factor = %.4f (mscale == %.1f, mscale_all_dim = %.1f)\n",
__func__, cparams.yarn_attn_factor, mscale, mscale_all_dims);
} else {
cparams.yarn_attn_factor = get_mscale(factor, 1.0f);
}
// when YARN is applied with yarn_ext_factor != 0.0f, we need to cancel this factor:
// https://github.com/ggml-org/llama.cpp/blob/a81a569577cc38b32558958b048228150be63eae/ggml/src/ggml-cpu/ops.cpp#L5541-L5544
//
// ref: https://github.com/ggml-org/llama.cpp/discussions/7416
// https://github.com/ggml-org/llama.cpp/pull/17945
cparams.yarn_attn_factor *= 1.0f / (1.0f + 0.1f * logf(factor));
}
cparams.yarn_attn_factor *= hparams.rope_attn_factor;
if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
@@ -1318,6 +1356,7 @@ uint32_t llama_context::output_reserve(int32_t n_outputs) {
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
#endif
synchronize();
buf_output = nullptr;
logits = nullptr;
embd = nullptr;

View File

@@ -78,7 +78,7 @@ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
attn_scale_data[i] = std::log(
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
std::floor((pos + f_attn_temp_offset) / n_attn_temp_floor_scale) + 1.0
) * f_attn_temp_scale + 1.0;
}
@@ -574,7 +574,7 @@ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
freq_base (cparams.rope_freq_base),
freq_scale (cparams.rope_freq_scale),
ext_factor (cparams.yarn_ext_factor),
attn_factor (llama_hparams::yarn_attn_factor_adjust(cparams.yarn_attn_factor, cparams.rope_freq_scale, cparams.yarn_ext_factor)),
attn_factor (cparams.yarn_attn_factor),
beta_fast (cparams.yarn_beta_fast),
beta_slow (cparams.yarn_beta_slow),
norm_eps (hparams.f_norm_eps),
@@ -1203,7 +1203,7 @@ ggml_tensor * llm_graph_context::build_inp_pos() const {
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale, hparams.f_attn_temp_offset);
auto & cur = inp->attn_scale;

View File

@@ -132,8 +132,8 @@ public:
// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale, float f_attn_temp_offset)
: n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale), f_attn_temp_offset(f_attn_temp_offset) {}
virtual ~llm_graph_input_attn_temp() = default;
void set_input(const llama_ubatch * ubatch) override;
@@ -142,6 +142,7 @@ public:
const uint32_t n_attn_temp_floor_scale;
const float f_attn_temp_scale;
const float f_attn_temp_offset;
};
class llm_graph_input_pos_bucket : public llm_graph_input_i {

View File

@@ -3,7 +3,6 @@
#include "ggml.h"
#include <cassert>
#include <cmath>
void llama_hparams::set_swa_pattern(uint32_t n_pattern, bool dense_first) {
if (dense_first) {
@@ -231,13 +230,3 @@ bool llama_hparams::is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama
return false;
}
float llama_hparams::yarn_attn_factor_adjust(float attn_factor, float freq_scale, float ext_factor) {
GGML_ASSERT(ext_factor >= 0.0f);
if (ext_factor != 0.0f) {
attn_factor *= 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
}
return attn_factor;
}

View File

@@ -165,6 +165,7 @@ struct llama_hparams {
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 0;
float f_attn_temp_scale = 0.0f;
float f_attn_temp_offset = 0.0f; // offset position index
// gemma3n altup
uint32_t n_altup = 4; // altup_num_inputs
@@ -268,13 +269,6 @@ struct llama_hparams {
// TODO: think of a better place for this function
// TODO: pack the SWA params in a struct?
static bool is_masked_swa(uint32_t n_swa, llama_swa_type swa_type, llama_pos p0, llama_pos p1);
// when YARN is applied with yarn_ext_factor != 0.0f, we need to cancel this factor:
// https://github.com/ggml-org/llama.cpp/blob/a81a569577cc38b32558958b048228150be63eae/ggml/src/ggml-cpu/ops.cpp#L5541-L5544
//
// ref: https://github.com/ggml-org/llama.cpp/discussions/7416
// https://github.com/ggml-org/llama.cpp/pull/17945
static float yarn_attn_factor_adjust(float attn_factor, float freq_scale, float ext_factor);
};
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");

View File

@@ -1372,7 +1372,7 @@ ggml_tensor * llama_kv_cache::build_rope_shift(
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
const auto & yarn_attn_factor = llama_hparams::yarn_attn_factor_adjust(cparams.yarn_attn_factor, cparams.rope_freq_scale, cparams.yarn_ext_factor);
const auto & yarn_attn_factor = cparams.yarn_attn_factor;
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE || hparams.rope_type == LLAMA_ROPE_TYPE_IMROPE

View File

@@ -668,6 +668,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.n_swa = 8192;
hparams.n_attn_temp_floor_scale = 8192;
hparams.f_attn_temp_scale = 0.1f;
hparams.f_attn_temp_offset = 1.0f;
hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
}
@@ -1646,6 +1647,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_SCALE, hparams.f_attn_temp_scale, false);
ml.get_key(LLM_KV_ATTENTION_TEMPERATURE_LENGTH, hparams.n_attn_temp_floor_scale, false);
hparams.f_attn_temp_offset = 0.0f;
switch (hparams.n_layer) {
case 27: type = LLM_TYPE_16B; break;
case 60: type = LLM_TYPE_236B; break;
@@ -2276,6 +2279,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, hparams.yarn_beta_slow, false);
ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul, 0.0f);
hparams.f_attn_temp_offset = 0.0f;
// TODO: maybe add n_attn_temp_floor_scale as a separate KV?
if (hparams.f_attn_temp_scale != 0.0f) {
hparams.n_attn_temp_floor_scale = hparams.n_ctx_orig_yarn;
@@ -2294,32 +2299,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: throw std::runtime_error("unsupported model architecture");
}
// ref: https://github.com/huggingface/transformers/blob/6d00f6b0a5679c36510f203e4226e36f517c3032/src/transformers/modeling_rope_utils.py#L336-L348
if (hparams.rope_yarn_log_mul != 0.0f) {
const float factor = 1.0f / hparams.rope_freq_scale_train;
// note: here we assume `mscale == 1.0f`
// TODO: start reading the actual value of mscale and handle the case where it is not 1.0f
float mscale = 1.0f;
const float mscale_all_dims = hparams.rope_yarn_log_mul;
// [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
// special-case DEEPSEEK v2:
// https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat/blob/main/config.json#L42-L43
if (arch == LLM_ARCH_DEEPSEEK2 && mscale_all_dims != 1.0f) {
mscale = mscale_all_dims;
}
static auto get_mscale = [](float scale, float mscale) {
return scale <= 1.0f ? 1.0f : (0.1f * mscale * logf(scale) + 1.0f);
};
hparams.yarn_attn_factor = get_mscale(factor, mscale) / get_mscale(factor, mscale_all_dims);
LLAMA_LOG_WARN("%s: setting new yarn_attn_factor = %.4f (mscale == %.1f, mscale_all_dim = %.1f)\n",
__func__, hparams.yarn_attn_factor, mscale, mscale_all_dims);
}
pimpl->n_bytes = ml.n_bytes;
pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();

View File

@@ -20,20 +20,20 @@ int main(void) {
std::unordered_set<std::string> seen_env_vars;
for (const auto & opt : ctx_arg.options) {
// check for args duplications
for (const auto & arg : opt.args) {
for (const auto & arg : opt.get_args()) {
if (seen_args.find(arg) == seen_args.end()) {
seen_args.insert(arg);
} else {
fprintf(stderr, "test-arg-parser: found different handlers for the same argument: %s", arg);
fprintf(stderr, "test-arg-parser: found different handlers for the same argument: %s", arg.c_str());
exit(1);
}
}
// check for env var duplications
if (opt.env) {
if (seen_env_vars.find(opt.env) == seen_env_vars.end()) {
seen_env_vars.insert(opt.env);
for (const auto & env : opt.get_env()) {
if (seen_env_vars.find(env) == seen_env_vars.end()) {
seen_env_vars.insert(env);
} else {
fprintf(stderr, "test-arg-parser: found different handlers for the same env var: %s", opt.env);
fprintf(stderr, "test-arg-parser: found different handlers for the same env var: %s", env.c_str());
exit(1);
}
}
@@ -72,6 +72,10 @@ int main(void) {
argv = {"binary_name", "--draft", "123"};
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_EMBEDDING));
// negated arg
argv = {"binary_name", "--no-mmap"};
assert(false == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
printf("test-arg-parser: test valid usage\n\n");
@@ -115,6 +119,14 @@ int main(void) {
assert(params.model.path == "blah.gguf");
assert(params.cpuparams.n_threads == 1010);
printf("test-arg-parser: test negated environment variables\n\n");
setenv("LLAMA_ARG_MMAP", "0", true);
setenv("LLAMA_ARG_NO_PERF", "1", true); // legacy format
argv = {"binary_name"};
assert(true == common_params_parse(argv.size(), list_str_to_char(argv).data(), params, LLAMA_EXAMPLE_COMMON));
assert(params.use_mmap == false);
assert(params.no_perf == true);
printf("test-arg-parser: test environment variables being overwritten\n\n");

View File

@@ -7652,6 +7652,9 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f));
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {200001, 2, 3, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f));
for (float max_bias : {0.0f, 8.0f}) {
for (float scale : {1.0f, 0.1f}) {
for (int64_t ne0 : {16, 1024}) {
@@ -7971,8 +7974,12 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (bool with_norm : {false, true}) {
test_cases.emplace_back(new test_topk_moe({8, 22, 1, 1}, 4, with_norm));
test_cases.emplace_back(new test_topk_moe({31, 22, 1, 1}, 8, with_norm));
test_cases.emplace_back(new test_topk_moe({32, 22, 1, 1}, 8, with_norm));
test_cases.emplace_back(new test_topk_moe({40, 22, 1, 1}, 8, with_norm));
test_cases.emplace_back(new test_topk_moe({71, 22, 1, 1}, 8, with_norm));
test_cases.emplace_back(new test_topk_moe({128, 1, 1, 1}, 128, with_norm));
test_cases.emplace_back(new test_topk_moe({129, 1, 1, 1}, 128, with_norm));
}
test_cases.emplace_back(new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true));

View File

@@ -141,13 +141,15 @@ int main(int argc, char ** argv) {
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
auto llama_init = common_init_from_params(params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__);
ctx = llama_init->context();
model = llama_init->model();
smpl = llama_init->sampler(0);
if (ctx == NULL) {
LOG_ERR("%s: error: unable to create context\n", __func__);
return 1;
}
@@ -474,12 +476,6 @@ int main(int argc, char ** argv) {
}
}
smpl = common_sampler_init(model, sparams);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
return 1;
}
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
@@ -993,8 +989,6 @@ int main(int argc, char ** argv) {
LOG("\n\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
ggml_threadpool_free_fn(threadpool);

View File

@@ -419,10 +419,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the model to get hparams
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
// int n_ctx = llama_n_ctx(ctx);
int n_layers = llama_model_n_layer(model);

View File

@@ -1265,10 +1265,10 @@ int main(int argc, char ** argv) {
params.warmup = false;
// init
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == nullptr || ctx == nullptr) {
LOG_ERR("%s : failed to init\n", __func__);

View File

@@ -2230,7 +2230,14 @@ struct llava_uhd {
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
std::vector<slice_coordinates> slices;
img_tool::resize_algo interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR;
bool padding_overview = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
std::array<uint8_t, 3> pad_color_overview = {0, 0, 0};
img_tool::resize_algo interpolation_refined = img_tool::RESIZE_ALGO_BICUBIC;
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
std::array<uint8_t, 3> pad_color_refined = {0, 0, 0};
};
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
@@ -2257,10 +2264,11 @@ struct llava_uhd {
auto refine_size = llava_uhd::select_best_resolution(
original_size,
ctx->model.hparams.image_res_candidates);
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
res.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR; // preserve old behavior when padding
LOG_DBG("%s: using pinpoints for slicing\n", __func__);
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
@@ -2339,12 +2347,13 @@ struct llava_uhd {
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
std::vector<clip_image_u8_ptr> output;
img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
// resize to overview size
clip_image_u8_ptr resized_img(clip_image_u8_init());
img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
img_tool::resize(*img, *resized_img, inst.overview_size, inst.interpolation_overview,
inst.padding_overview, inst.pad_color_overview);
output.push_back(std::move(resized_img));
if (inst.slices.empty()) {
// no slices, just return the resized image
return output;
@@ -2352,13 +2361,8 @@ struct llava_uhd {
// resize to refined size
clip_image_u8_ptr refined_img(clip_image_u8_init());
if (inst.padding_refined) {
img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
} else {
// only algo bicubic preserves the ratio; old models rely on this behavior
// TODO: do we need to support other algos here?
img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
}
img_tool::resize(*img, *refined_img, inst.refined_size, inst.interpolation_refined,
inst.padding_refined, inst.pad_color_refined);
// create slices
for (const auto & slice : inst.slices) {

View File

@@ -65,7 +65,7 @@ static void sigint_handler(int signo) {
struct mtmd_cli_context {
mtmd::context_ptr ctx_vision;
common_init_result llama_init;
common_init_result_ptr llama_init;
llama_model * model;
llama_context * lctx;
@@ -89,8 +89,8 @@ struct mtmd_cli_context {
llama_pos n_past = 0;
mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
model = llama_init.model.get();
lctx = llama_init.context.get();
model = llama_init->model();
lctx = llama_init->context();
vocab = llama_model_get_vocab(model);
smpl = common_sampler_init(model, params.sampling);
n_threads = params.cpuparams.n_threads;

View File

@@ -2024,10 +2024,10 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
// load the model and apply lora adapter, if any
common_init_result llama_init = common_init_from_params(params);
auto llama_init = common_init_from_params(params);
llama_model * model = llama_init.model.get();
llama_context * ctx = llama_init.context.get();
auto * model = llama_init->model();
auto * ctx = llama_init->context();
if (model == NULL) {
LOG_ERR("%s: unable to load model\n", __func__);

View File

@@ -54,9 +54,8 @@ For the ful list of features, please refer to [server's changelog](https://githu
| `--swa-full` | use full-size SWA cache (default: false)<br/>[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)<br/>(env: LLAMA_ARG_SWA_FULL) |
| `--kv-unified, -kvu` | use single unified KV buffer for the KV cache of all sequences (default: false)<br/>[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)<br/>(env: LLAMA_ARG_KV_UNIFIED) |
| `-fa, --flash-attn [on\|off\|auto]` | set Flash Attention use ('on', 'off', or 'auto', default: 'auto')<br/>(env: LLAMA_ARG_FLASH_ATTN) |
| `--no-perf` | disable internal libllama performance timings (default: false)<br/>(env: LLAMA_ARG_NO_PERF) |
| `-e, --escape` | process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
| `--no-escape` | do not process escape sequences |
| `--perf, --no-perf` | whether to enable internal libllama performance timings (default: false)<br/>(env: LLAMA_ARG_PERF) |
| `-e, --escape, --no-escape` | whether to process escapes sequences (\n, \r, \t, \', \", \\) (default: true) |
| `--rope-scaling {none,linear,yarn}` | RoPE frequency scaling method, defaults to linear unless specified by the model<br/>(env: LLAMA_ARG_ROPE_SCALING_TYPE) |
| `--rope-scale N` | RoPE context scaling factor, expands context by a factor of N<br/>(env: LLAMA_ARG_ROPE_SCALE) |
| `--rope-freq-base N` | RoPE base frequency, used by NTK-aware scaling (default: loaded from model)<br/>(env: LLAMA_ARG_ROPE_FREQ_BASE) |
@@ -66,15 +65,15 @@ For the ful list of features, please refer to [server's changelog](https://githu
| `--yarn-attn-factor N` | YaRN: scale sqrt(t) or attention magnitude (default: -1.0)<br/>(env: LLAMA_ARG_YARN_ATTN_FACTOR) |
| `--yarn-beta-slow N` | YaRN: high correction dim or alpha (default: -1.0)<br/>(env: LLAMA_ARG_YARN_BETA_SLOW) |
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: -1.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
| `-nr, --no-repack` | disable weight repacking<br/>(env: LLAMA_ARG_NO_REPACK) |
| `--no-host` | bypass host buffer allowing extra buffers to be used<br/>(env: LLAMA_ARG_NO_HOST) |
| `-kvo, --kv-offload, -nkvo, --no-kv-offload` | whether to enable KV cache offloading (default: enabled)<br/>(env: LLAMA_ARG_KV_OFFLOAD) |
| `--repack, -nr, --no-repack` | whether to enable weight repacking (default: enabled)<br/>(env: LLAMA_ARG_REPACK) |
| `--no-host` | bypass host buffer allowing extra buffers to be used<br/>(env: LLAMA_ARG_HOST) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (DEPRECATED)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
| `--mmap, --no-mmap` | whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: enabled)<br/>(env: LLAMA_ARG_MMAP) |
| `--numa TYPE` | attempt optimizations that help on some NUMA systems<br/>- distribute: spread execution evenly over all nodes<br/>- isolate: only spawn threads on CPUs on the node that execution started on<br/>- numactl: use the CPU map provided by numactl<br/>if run without this previously, it is recommended to drop the system page cache before using this<br/>see https://github.com/ggml-org/llama.cpp/issues/1437<br/>(env: LLAMA_ARG_NUMA) |
| `-dev, --device <dev1,dev2,..>` | comma-separated list of devices to use for offloading (none = don't offload)<br/>use --list-devices to see a list of available devices<br/>(env: LLAMA_ARG_DEVICE) |
| `--list-devices` | print list of available devices and exit |
@@ -87,7 +86,7 @@ For the ful list of features, please refer to [server's changelog](https://githu
| `-mg, --main-gpu INDEX` | the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: 0)<br/>(env: LLAMA_ARG_MAIN_GPU) |
| `--check-tensors` | check model tensor data for invalid values (default: false) |
| `--override-kv KEY=TYPE:VALUE` | advanced option to override model metadata by key. may be specified multiple times.<br/>types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false |
| `--no-op-offload` | disable offloading host tensor operations to device (default: false) |
| `--op-offload, --no-op-offload` | whether to offload host tensor operations to device (default: true) |
| `--lora FNAME` | path to LoRA adapter (can be repeated to use multiple adapters) |
| `--lora-scaled FNAME SCALE` | path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters) |
| `--control-vector FNAME` | add a control vector<br/>note: this argument can be repeated to add multiple control vectors |
@@ -157,19 +156,18 @@ For the ful list of features, please refer to [server's changelog](https://githu
| -------- | ----------- |
| `--ctx-checkpoints, --swa-checkpoints N` | max number of context checkpoints to create per slot (default: 8)<br/>[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)<br/>(env: LLAMA_ARG_CTX_CHECKPOINTS) |
| `--cache-ram, -cram N` | set the maximum cache size in MiB (default: 8192, -1 - no limit, 0 - disable)<br/>[(more info)](https://github.com/ggml-org/llama.cpp/pull/16391)<br/>(env: LLAMA_ARG_CACHE_RAM) |
| `--no-context-shift` | disables context shift on infinite text generation (default: enabled)<br/>(env: LLAMA_ARG_NO_CONTEXT_SHIFT) |
| `--context-shift` | enables context shift on infinite text generation (default: disabled)<br/>(env: LLAMA_ARG_CONTEXT_SHIFT) |
| `--context-shift, --no-context-shift` | whether to use context shift on infinite text generation (default: disabled)<br/>(env: LLAMA_ARG_CONTEXT_SHIFT) |
| `-r, --reverse-prompt PROMPT` | halt generation at PROMPT, return control in interactive mode<br/> |
| `-sp, --special` | special tokens output enabled (default: false) |
| `--no-warmup` | skip warming up the model with an empty run |
| `--warmup, --no-warmup` | whether to perform warmup with an empty run (default: enabled) |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--pooling {none,mean,cls,last,rank}` | pooling type for embeddings, use model default if unspecified<br/>(env: LLAMA_ARG_POOLING) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-nocb, --no-cont-batching` | disable continuous batching<br/>(env: LLAMA_ARG_NO_CONT_BATCHING) |
| `-cb, --cont-batching, -nocb, --no-cont-batching` | whether to enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-cb, --cont-batching, -nocb, --no-cont-batching` | whether to enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
| `-mm, --mmproj FILE` | path to a multimodal projector file. see tools/mtmd/README.md<br/>note: if -hf is used, this argument can be omitted<br/>(env: LLAMA_ARG_MMPROJ) |
| `-mmu, --mmproj-url URL` | URL to a multimodal projector file. see tools/mtmd/README.md<br/>(env: LLAMA_ARG_MMPROJ_URL) |
| `--no-mmproj` | explicitly disable multimodal projector, useful when using -hf<br/>(env: LLAMA_ARG_NO_MMPROJ) |
| `--no-mmproj-offload` | do not offload multimodal projector to GPU<br/>(env: LLAMA_ARG_NO_MMPROJ_OFFLOAD) |
| `--mmproj-auto, --no-mmproj, --no-mmproj-auto` | whether to use multimodal projector file (if available), useful when using -hf (default: enabled)<br/>(env: LLAMA_ARG_MMPROJ_AUTO) |
| `--mmproj-offload, --no-mmproj-offload` | whether to enable GPU offloading for multimodal projector (default: enabled)<br/>(env: LLAMA_ARG_MMPROJ_OFFLOAD) |
| `--image-min-tokens N` | minimum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)<br/>(env: LLAMA_ARG_IMAGE_MIN_TOKENS) |
| `--image-max-tokens N` | maximum number of tokens each image can take, only used by vision models with dynamic resolution (default: read from model)<br/>(env: LLAMA_ARG_IMAGE_MAX_TOKENS) |
| `--override-tensor-draft, -otd <tensor name pattern>=<buffer type>,...` | override tensor buffer type for draft model |
@@ -180,7 +178,7 @@ For the ful list of features, please refer to [server's changelog](https://githu
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: )<br/>(env: LLAMA_ARG_STATIC_PATH) |
| `--api-prefix PREFIX` | prefix path the server serves from, without the trailing slash (default: )<br/>(env: LLAMA_ARG_API_PREFIX) |
| `--no-webui` | Disable the Web UI (default: enabled)<br/>(env: LLAMA_ARG_NO_WEBUI) |
| `--webui, --no-webui` | whether to enable the Web UI (default: enabled)<br/>(env: LLAMA_ARG_WEBUI) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)<br/>(env: LLAMA_ARG_RERANKING) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
@@ -193,20 +191,19 @@ For the ful list of features, please refer to [server's changelog](https://githu
| `--cache-reuse N` | min chunk size to attempt reusing from the cache via KV shifting (default: 0)<br/>[(card)](https://ggml.ai/f0.png)<br/>(env: LLAMA_ARG_CACHE_REUSE) |
| `--metrics` | enable prometheus compatible metrics endpoint (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_METRICS) |
| `--props` | enable changing global properties via POST /props (default: disabled)<br/>(env: LLAMA_ARG_ENDPOINT_PROPS) |
| `--slots` | enable slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_ENDPOINT_SLOTS) |
| `--no-slots` | disables slots monitoring endpoint<br/>(env: LLAMA_ARG_NO_ENDPOINT_SLOTS) |
| `--slots, --no-slots` | expose slots monitoring endpoint (default: enabled)<br/>(env: LLAMA_ARG_ENDPOINT_SLOTS) |
| `--slot-save-path PATH` | path to save slot kv cache (default: disabled) |
| `--media-path PATH` | directory for loading local media files; files can be accessed via file:// URLs using relative paths (default: disabled) |
| `--models-dir PATH` | directory containing models for the router server (default: disabled)<br/>(env: LLAMA_ARG_MODELS_DIR) |
| `--models-preset PATH` | path to INI file containing model presets for the router server (default: disabled)<br/>(env: LLAMA_ARG_MODELS_PRESET) |
| `--models-max N` | for router server, maximum number of models to load simultaneously (default: 4, 0 = unlimited)<br/>(env: LLAMA_ARG_MODELS_MAX) |
| `--models-allow-extra-args` | for router server, allow extra arguments for models; important: some arguments can allow users to access local file system, use with caution (default: disabled)<br/>(env: LLAMA_ARG_MODELS_ALLOW_EXTRA_ARGS) |
| `--no-models-autoload` | disables automatic loading of models (default: enabled)<br/>(env: LLAMA_ARG_NO_MODELS_AUTOLOAD) |
| `--jinja` | use jinja template for chat (default: enabled)<br/><br/>(env: LLAMA_ARG_JINJA) |
| `--no-jinja` | disable jinja template for chat (default: enabled)<br/><br/>(env: LLAMA_ARG_NO_JINJA) |
| `--models-autoload, --no-models-autoload` | for router server, whether to automatically load models (default: enabled)<br/>(env: LLAMA_ARG_MODELS_AUTOLOAD) |
| `--jinja, --no-jinja` | whether to use jinja template engine for chat (default: enabled)<br/>(env: LLAMA_ARG_JINJA) |
| `--reasoning-format FORMAT` | controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:<br/>- none: leaves thoughts unparsed in `message.content`<br/>- deepseek: puts thoughts in `message.reasoning_content`<br/>- deepseek-legacy: keeps `<think>` tags in `message.content` while also populating `message.reasoning_content`<br/>(default: auto)<br/>(env: LLAMA_ARG_THINK) |
| `--reasoning-budget N` | controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)<br/>(env: LLAMA_ARG_THINK_BUDGET) |
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted (unless --jinja is set before this flag):<br/>list of built-in templates:<br/>bailing, bailing-think, bailing2, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, grok-2, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, pangu-embedded, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
| `--chat-template-file JINJA_TEMPLATE_FILE` | set custom jinja chat template file (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>only commonly used templates are accepted (unless --jinja is set before this flag):<br/>list of built-in templates:<br/>bailing, bailing-think, bailing2, chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, deepseek3, exaone3, exaone4, falcon3, gemma, gigachat, glmedge, gpt-oss, granite, grok-2, hunyuan-dense, hunyuan-moe, kimi-k2, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, llama4, megrez, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, mistral-v7-tekken, monarch, openchat, orion, pangu-embedded, phi3, phi4, rwkv-world, seed_oss, smolvlm, vicuna, vicuna-orca, yandex, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE_FILE) |
| `--no-prefill-assistant` | whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)<br/>when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled<br/><br/>(env: LLAMA_ARG_NO_PREFILL_ASSISTANT) |
| `--prefill-assistant, --no-prefill-assistant` | whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)<br/>when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled<br/><br/>(env: LLAMA_ARG_PREFILL_ASSISTANT) |
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.10, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
| `-td, --threads-draft N` | number of threads to use during generation (default: same as --threads) |
@@ -236,6 +233,11 @@ For the ful list of features, please refer to [server's changelog](https://githu
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.
For boolean options like `--mmap` or `--kv-offload`, the environment variable is handled as shown in this example:
- `LLAMA_ARG_MMAP=true` means enabled, other accepted values are: `1`, `on`, `enabled`
- `LLAMA_ARG_MMAP=false` means disabled, other accepted values are: `0`, `off`, `disabled`
- If `LLAMA_ARG_NO_MMAP` is present (no matter the value), it means disabling mmap
Example usage of docker compose with environment variables:
```yml

View File

@@ -153,7 +153,7 @@ struct server_slot {
// sampling
json json_schema;
struct common_sampler * smpl = nullptr;
common_sampler_ptr smpl;
llama_token sampled; // in speculative mode, this is the last accepted token
llama_tokens drafted;
@@ -510,8 +510,8 @@ struct server_context_impl {
common_params params_base;
// note: keep these alive - they determine the lifetime of the model, context, etc.
common_init_result llama_init;
common_init_result llama_init_dft;
common_init_result_ptr llama_init;
common_init_result_ptr llama_init_dft;
llama_model * model = nullptr;
llama_context * ctx = nullptr;
@@ -557,9 +557,6 @@ struct server_context_impl {
// Clear any sampling context
for (server_slot & slot : slots) {
common_sampler_free(slot.smpl);
slot.smpl = nullptr;
llama_free(slot.ctx_dft);
slot.ctx_dft = nullptr;
@@ -580,8 +577,8 @@ struct server_context_impl {
llama_init = common_init_from_params(params_base);
model = llama_init.model.get();
ctx = llama_init.context.get();
model = llama_init->model();
ctx = llama_init->context();
if (model == nullptr) {
SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
@@ -613,25 +610,25 @@ struct server_context_impl {
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft.model.get();
model_dft = llama_init_dft->model();
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
return false;
}
vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft->context());
if (!vocab_dft_compatible) {
SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
const int n_ctx_dft = llama_n_ctx(llama_init_dft->context());
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
llama_init_dft->free_context();
}
chat_templates = common_chat_templates_init(model, params_base.chat_template);
@@ -1051,18 +1048,15 @@ struct server_context_impl {
// initialize samplers
{
if (slot.smpl != nullptr) {
common_sampler_free(slot.smpl);
}
slot.smpl.reset(common_sampler_init(model, task.params.sampling));
slot.smpl = common_sampler_init(model, task.params.sampling);
if (slot.smpl == nullptr) {
// for now, the only error that may happen here is invalid grammar
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
return false;
}
SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str());
SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl.get()).c_str());
}
// initialize draft batch
@@ -1216,11 +1210,10 @@ struct server_context_impl {
}
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
size_t n_probs = slot.task->params.sampling.n_probs;
size_t n_vocab = llama_vocab_n_tokens(vocab);
const size_t n_probs = slot.task->params.sampling.n_probs;
if (post_sampling) {
const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
const auto * cur_p = common_sampler_get_candidates(slot.smpl.get(), true);
const size_t max_probs = cur_p->size;
// set probability for sampled token
@@ -1245,7 +1238,7 @@ struct server_context_impl {
std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
// set probability for sampled token
for (size_t i = 0; i < n_vocab; i++) {
for (size_t i = 0; i < cur.size(); i++) {
// set probability for sampled token
if (cur[i].id == result.tok) {
result.prob = cur[i].p;
@@ -1255,7 +1248,7 @@ struct server_context_impl {
// set probability for top n_probs tokens
result.probs.reserve(n_probs);
for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
for (size_t i = 0; i < std::min(cur.size(), n_probs); i++) {
result.probs.push_back({
cur[i].id,
common_token_to_piece(ctx, cur[i].id, special),
@@ -2301,13 +2294,13 @@ struct server_context_impl {
GGML_ASSERT(batch.n_tokens > 0);
common_sampler_reset(slot.smpl);
common_sampler_reset(slot.smpl.get());
// Process all prompt tokens through sampler system
for (int i = 0; i < slot.task->n_tokens(); ++i) {
llama_token id = input_tokens[i];
if (id != LLAMA_TOKEN_NULL) {
common_sampler_accept(slot.smpl, id, false);
common_sampler_accept(slot.smpl.get(), id, false);
}
}
@@ -2525,11 +2518,11 @@ struct server_context_impl {
const int tok_idx = slot.i_batch - i;
llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
llama_token id = common_sampler_sample(slot.smpl.get(), ctx, tok_idx);
slot.i_batch = -1;
common_sampler_accept(slot.smpl, id, true);
common_sampler_accept(slot.smpl.get(), id, true);
slot.n_decoded += 1;
@@ -2570,7 +2563,7 @@ struct server_context_impl {
size_t n_draft = slot.drafted.size();
// the accepted tokens from the speculation
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, slot.i_batch_dft, slot.drafted);
const auto ids = common_sampler_sample_and_accept_n(slot.smpl.get(), ctx, slot.i_batch_dft, slot.drafted);
slot.i_batch_dft.clear();
slot.drafted.clear();

View File

@@ -16,6 +16,7 @@
#include <atomic>
#include <chrono>
#include <queue>
#include <filesystem>
#ifdef _WIN32
#include <winsock2.h>
@@ -171,7 +172,7 @@ server_presets::server_presets(int argc, char ** argv, common_params & base_para
}
// read base args from router's argv
common_params_parse(argc, argv, LLAMA_EXAMPLE_SERVER, base_args);
common_params_to_map(argc, argv, LLAMA_EXAMPLE_SERVER, base_args);
// remove any router-controlled args from base_args
for (const auto & cargs : control_args) {

View File

@@ -684,7 +684,7 @@ def test_anthropic_streaming_content_block_indices():
# Request that might produce both text and tool use
res = server.make_stream_request("POST", "/v1/messages", data={
"model": "test",
"max_tokens": 200,
"max_tokens": 400,
"stream": True,
"tools": [{
"name": "test_tool",

View File

@@ -568,10 +568,10 @@ int main(int argc, char ** argv) {
llama_context * ctx_ttc = NULL;
llama_context * ctx_cts = NULL;
common_init_result llama_init_ttc = common_init_from_params(params);
auto llama_init_ttc = common_init_from_params(params);
model_ttc = llama_init_ttc.model.get();
ctx_ttc = llama_init_ttc.context.get();
model_ttc = llama_init_ttc->model();
ctx_ttc = llama_init_ttc->context();
if (model_ttc == nullptr || ctx_ttc == nullptr) {
return ENOENT;
@@ -583,10 +583,10 @@ int main(int argc, char ** argv) {
params.embedding = true;
params.n_ubatch = params.n_batch;
common_init_result llama_init_cts = common_init_from_params(params);
auto llama_init_cts = common_init_from_params(params);
model_cts = llama_init_cts.model.get();
ctx_cts = llama_init_cts.context.get();
model_cts = llama_init_cts->model();
ctx_cts = llama_init_cts->context();
if (model_cts == nullptr || ctx_cts == nullptr) {
return ENOENT;

View File

@@ -11,8 +11,9 @@ endif()
target_link_libraries (${TARGET} PRIVATE Threads::Threads)
if (WIN32 AND NOT MSVC)
target_link_libraries(${TARGET} PUBLIC ws2_32)
target_link_libraries(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_17)
target_compile_definitions(${TARGET} PRIVATE