Compare commits

...

16 Commits
b7656 ... b7672

Author SHA1 Message Date
Johannes Gäßler
64848deb18 llama-fit-params: free memory target per device (#18679) 2026-01-08 10:07:58 +01:00
Doctor Shotgun
9a5724dee2 ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH (#18535)
* ggml: add env var GGML_OP_OFFLOAD_MIN_BATCH
* makes the min_batch_size for triggering op offload configurable via env var, defaulting to the prior hardcoded value of 32

* ggml: read GGML_OP_OFFLOAD_MIN_BATCH once and store to dev ctx

* cann: forward declaration of device context struct

* cann: move offload op check after device context declaration

* cuda: fix whitespace

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-01-08 11:03:21 +02:00
Daniel Bevenius
9c142e3a2a model-conversion : add warn about transformers mismatch (#18691)
This commit adds a check comparing the installed transformers library
with the transformers version that the original model supports. This
check will be performed upon a model verification failure and prints a
warning/hint to the user suggesting to install the correct version of
the transformers library.

The motivation for this change is that it is possible for the model
verification to fail due to differences in the transformers library used
and it might not be obvious that this could be the cause of the failure.
With this warning the correct version can be checked and hopefully save
time troubleshooting the cause of the verification failure.
2026-01-08 09:29:53 +01:00
Daniel Bevenius
df7fb92170 model-conversion : remove -st targets for converted model (#18689)
This commit removes the '-st` make target for running the converted
embedding model.

The motivation for this is that the pooling type is now part of the
.gguf metdata of the model and this is used by llama-debug when running
the model. So there is no need to specify the pooling type separately
any more.

The commit also adds an option to specify the type of normalization
applied to the output embeddings when running the converted model.

And the readme documentation has been  updated to reflect these changes.
2026-01-08 09:29:15 +01:00
Julius Tischbein
2038101bd9 llama : add use_direct_io flag for model loading (#18166)
* Adding --direct-io flag for model loading

* Fixing read_raw() calls

* Fixing Windows read_raw_at

* Changing type off_t to size_t for windows and Renaming functions

* disable direct io when mmap is explicitly enabled

* Use read_raw_unsafe when upload_backend is available, not functional on some devices with Vulkan and SYCL

* Fallback to std::fread in case O_DIRECT fails due to bad address

* Windows: remove const keywords and unused functions

* Update src/llama-mmap.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: jtischbein <jtischbein@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-08 08:35:30 +02:00
shaofeiqi
568371a726 opencl: add FILL op support (#18682) 2026-01-07 22:04:50 -08:00
Sigbjørn Skjæret
5b8844ae53 scripts : fix repos cloned with .git extension (#18669) 2026-01-07 22:35:34 +01:00
Sigbjørn Skjæret
7e16fef085 convert : more variants of rope_theta config entries (#18668) 2026-01-07 22:34:51 +01:00
Oliver Walsh
f5245b5e4e cuda : fix build on cuda 12.8 (#18672)
compute121 requires 12.9

Signed-off-by: Oliver Walsh <owalsh@redhat.com>
2026-01-07 22:32:44 +01:00
R
ae9f8df778 fix(docker): add missing libglvnd libraries to Vulkan image (#18664)
Add libglvnd0, libgl1, libglx0, libegl1, libgles2 to the Vulkan
Dockerfile base image. These libraries are required by mesa-vulkan-drivers
to properly initialize the Vulkan ICD and detect GPU devices.

Without these libraries, vkEnumeratePhysicalDevices() returns an empty
list, resulting in "ggml_vulkan: No devices found." error.

Fixes #17761
2026-01-07 16:57:42 +01:00
Adrien Gallouët
56d2fed2b3 tools : remove llama-run (#18661)
* tools : remove llama-run
* Remove licenses/LICENSE-linenoise

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-01-07 16:18:26 +01:00
Georgi Gerganov
56426673cb scripts : add pr2wt.sh (#18644)
* scripts : add pr2wt.sh

* script : shebang

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-07 15:16:20 +02:00
Daniel Bevenius
bb77764c2d convert : clarify sentence-transformers-dense-modules help [no ci] (#18662)
* convert : clarify sentence-transformers-dense-modules help [no ci]

This commit updates this options help message which currently looks
like this:
```console
  --sentence-transformers-dense-modules
                        Whether to include sentence-transformers dense modules.It can be used for sentence-transformers models, like
                        google/embeddinggemma-300mDefault these modules are not included.
```
2026-01-07 13:18:53 +01:00
Sigbjørn Skjæret
9dfa8ee950 ci : run cann build unconditionally [no ci] (#18659) 2026-01-07 13:07:08 +01:00
Jeff Bolz
ca4a8370bc vulkan: reject ops when a tensor is too large to allocate (#18646) 2026-01-07 12:03:32 +01:00
virajwad
03023296cf vulkan: Warptile tuning for Intel Xe2/Xe3 (#18178)
* modify warptile tuning for xe3

* intel vendor check w/ coopmat support

* fix back formatting

* fix formatting change 2

* move intel check to chip specific tuning part

* Change to support both windows and linux

* modify m_warptile to l_warptile for intel

* modify warptile tuning for bf16 matmuls to fix regression (m_warptile to l_warptile)

* Code style changes

* Code style changes (2)

* Code style changes (3)
2026-01-07 11:59:47 +01:00
43 changed files with 517 additions and 3841 deletions

View File

@@ -33,6 +33,7 @@ FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl libvulkan1 mesa-vulkan-drivers \
libglvnd0 libgl1 libglx0 libegl1 libgles2 \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@@ -1418,7 +1418,6 @@ jobs:
echo "FIXME: test on devices"
openEuler-latest-cmake-cann:
if: ${{ github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'Ascend NPU') }}
defaults:
run:
shell: bash -el {0}

1
.gitignore vendored
View File

@@ -130,6 +130,7 @@ poetry.toml
# Local scripts
/run-vim.sh
/run-chat.sh
/run-spec.sh
/.ccache/
# IDE

View File

@@ -482,21 +482,6 @@ To learn more about model quantization, [read this documentation](tools/quantize
</details>
## [`llama-run`](tools/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
- <details>
<summary>Run a model with a specific prompt (by default it's pulled from Ollama registry)</summary>
```bash
llama-run granite-code
```
</details>
[^3]: [RamaLama](https://github.com/containers/ramalama)
## [`llama-simple`](examples/simple)
#### A minimal example for implementing apps with `llama.cpp`. Useful for developers.
@@ -600,7 +585,6 @@ $ echo "source ~/.llama-completion.bash" >> ~/.bashrc
- [stb-image](https://github.com/nothings/stb) - Single-header image format decoder, used by multimodal subsystem - Public domain
- [nlohmann/json](https://github.com/nlohmann/json) - Single-header JSON library, used by various tools/examples - MIT License
- [minja](https://github.com/google/minja) - Minimal Jinja parser in C++, used by various tools/examples - MIT License
- [linenoise.cpp](./tools/run/linenoise.cpp/linenoise.cpp) - C++ library that provides readline-like line editing capabilities, used by `llama-run` - BSD 2-Clause License
- [curl](https://curl.se/) - Client-side URL transfer library, used by various tools/examples - [CURL License](https://curl.se/docs/copyright.html)
- [miniaudio.h](https://github.com/mackron/miniaudio) - Single-header audio format decoder, used by multimodal subsystem - Public domain
- [subprocess.h](https://github.com/sheredom/subprocess.h) - Single-header process launching solution for C and C++ - Public domain

View File

@@ -679,7 +679,6 @@ static void common_params_print_completion(common_params_context & ctx_arg) {
"llama-quantize",
"llama-qwen2vl-cli",
"llama-retrieval",
"llama-run",
"llama-save-load-state",
"llama-server",
"llama-simple",
@@ -2089,11 +2088,22 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"--mmap"},
{"--no-mmap"},
string_format("whether to memory-map model (if disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
string_format("whether to memory-map model. Explicitly enabling mmap disables direct-io. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_mmap = value;
if (value) {
params.use_direct_io = false; // disable direct io when mmap is explicitly enabled
}
}
).set_env("LLAMA_ARG_MMAP"));
add_opt(common_arg(
{"-dio", "--direct-io"},
{"-ndio", "--no-direct-io"},
string_format("use DirectIO if available. Takes precedence over --mmap (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_direct_io = value;
}
).set_env("LLAMA_ARG_DIO"));
add_opt(common_arg(
{"--numa"}, "TYPE",
"attempt optimizations that help on some NUMA systems\n"
@@ -2245,7 +2255,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
throw std::invalid_argument(
string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
string_format("got %zu input configs, but system only has %zu devices", split_arg.size(), llama_max_devices())
);
}
for (size_t i = 0; i < llama_max_devices(); ++i) {
@@ -2285,10 +2295,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_FIT"));
add_opt(common_arg(
{ "-fitt", "--fit-target" }, "MiB",
string_format("target margin per device for --fit option, default: %zu", params.fit_params_target/(1024*1024)),
[](common_params & params, int value) {
params.fit_params_target = value * size_t(1024*1024);
{ "-fitt", "--fit-target" }, "MiB0,MiB1,MiB2,...",
string_format("target margin per device for --fit, comma-separated list of values, "
"single value is broadcast across all devices, default: %zu", params.fit_params_target[0]/(1024*1024)),
[](common_params & params, const std::string & value) {
std::string arg_next = value;
// split string by , and /
const std::regex regex{ R"([,/]+)" };
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
if (split_arg.size() >= llama_max_devices()) {
throw std::invalid_argument(
string_format("got %zu input configs, but system only has %zu devices", split_arg.size(), llama_max_devices())
);
}
if (split_arg.size() == 1) {
std::fill(params.fit_params_target.begin(), params.fit_params_target.end(), std::stoul(split_arg[0]) * 1024*1024);
return;
}
for (size_t i = 0; i < split_arg.size(); i++) {
params.fit_params_target[i] = std::stoul(split_arg[i]) * 1024*1024;
}
}
).set_env("LLAMA_ARG_FIT_TARGET"));
add_opt(common_arg(

View File

@@ -1097,7 +1097,7 @@ common_init_result::common_init_result(common_params & params) :
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
@@ -1366,6 +1366,7 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_direct_io = params.use_direct_io;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.use_extra_bufts = !params.no_extra_bufts;

View File

@@ -332,12 +332,14 @@ struct common_params {
// offload params
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
size_t fit_params_target = 1024 * 1024*1024; // margin per device in bytes for fitting parameters to free memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
int32_t n_gpu_layers = -1; // number of layers to store in VRAM, -1 is auto, <= -2 is all
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
bool fit_params = true; // whether to fit unset model/context parameters to free device memory
int32_t fit_params_min_ctx = 4096; // minimum context size to set when trying to reduce memory use
// margin per device in bytes for fitting parameters to free memory:
std::vector<size_t> fit_params_target = std::vector<size_t>(llama_max_devices(), 1024 * 1024*1024);
enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
@@ -428,7 +430,8 @@ struct common_params {
bool kv_unified = false; // enable unified KV cache
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // use mmap for faster loads
bool use_mmap = true; // enable mmap to use filesystem cache
bool use_direct_io = true; // read from disk without buffering for faster model loading
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation

View File

@@ -771,8 +771,8 @@ class TextModel(ModelBase):
self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
rope_theta = self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "swa_rope_theta", "rope_local_base_freq"], optional=True)
rope_theta = self.find_hparam(["global_rope_theta", "rope_global_theta", "rope_theta_global", "rope_theta", "rotary_emb_base"], optional=True)
local_rope_theta = self.find_hparam(["local_rope_theta", "rope_local_theta", "rope_theta_local", "swa_rope_theta", "rope_local_base_freq"], optional=True)
# Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
@@ -10974,8 +10974,8 @@ def parse_args() -> argparse.Namespace:
parser.add_argument(
"--sentence-transformers-dense-modules", action="store_true",
help=("Whether to include sentence-transformers dense modules."
"It can be used for sentence-transformers models, like google/embeddinggemma-300m"
help=("Whether to include sentence-transformers dense modules. "
"It can be used for sentence-transformers models, like google/embeddinggemma-300m. "
"Default these modules are not included.")
)

View File

@@ -553,6 +553,7 @@ int main(int argc, char ** argv) {
model_params.n_gpu_layers = params.n_gpu_layers;
model_params.devices = params.devices.data();
model_params.use_mmap = params.use_mmap;
model_params.use_direct_io = params.use_direct_io;
model_params.use_mlock = params.use_mlock;
model_params.check_tensors = params.check_tensors;

View File

@@ -61,7 +61,7 @@ causal-run-converted-model:
@CONVERTED_MODEL="$(CONVERTED_MODEL)" ./scripts/causal/run-converted-model.sh
causal-verify-logits: causal-run-original-model causal-run-converted-model
@./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/causal/compare-logits.py
@MODEL_PATH="$(MODEL_PATH)" ./scripts/utils/check-nmse.py -m ${MODEL_PATH}
causal-run-original-embeddings:
@@ -138,16 +138,13 @@ embedding-run-original-model-st: embedding-run-original-model
embedding-run-converted-model:
@./scripts/embedding/run-converted-model.sh $(CONVERTED_EMBEDDING_MODEL) \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)") \
$(if $(USE_POOLING),--pooling)
embedding-run-converted-model-st: USE_POOLING=1
embedding-run-converted-model-st: embedding-run-converted-model
$(if $(EMBD_NORMALIZE),--embd-normalize "$(EMBD_NORMALIZE)")
embedding-verify-logits: embedding-run-original-model embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model-st
embedding-verify-logits-st: embedding-run-original-model-st embedding-run-converted-model
@./scripts/embedding/compare-embeddings-logits.sh \
$(if $(PROMPTS_FILE),--prompts-file "$(PROMPTS_FILE)")

View File

@@ -198,14 +198,13 @@ model, and the other is a text file which allows for manual visual inspection.
#### Using SentenceTransformer with numbered layers
For models that have numbered SentenceTransformer layers (01_Pooling, 02_Dense,
03_Dense, 04_Normalize), use the `-st` targets to apply all these layers:
03_Dense, 04_Normalize), these will be applied automatically when running the
converted model but currently there is a separate target to run the original
version:
```console
# Run original model with SentenceTransformer (applies all numbered layers)
(venv) $ make embedding-run-original-model-st
# Run converted model with pooling enabled
(venv) $ make embedding-run-converted-model-st
```
This will use the SentenceTransformer library to load and run the model, which
@@ -213,6 +212,17 @@ automatically applies all the numbered layers in the correct order. This is
particularly useful when comparing with models that should include these
additional transformation layers beyond just the base model output.
The type of normalization can be specified for the converted model but is not
strictly necessary as the verification uses cosine similarity and the magnitude
of the output vectors does not affect this. But the normalization type can be
specified as an argument to the target which might be useful for manual
inspection:
```console
(venv) $ make embedding-verify-logits-st EMBD_NORMALIZE=1
```
The original model will apply the normalization according to the normalization
layer specified in the modules.json configuration file.
### Model conversion
After updates have been made to [gguf-py](../../gguf-py) to add support for the
new model the model can be converted to GGUF format using the following command:

View File

@@ -3,10 +3,11 @@
import sys
import numpy as np
from pathlib import Path
import os
# Add utils directory to path for direct script execution
sys.path.insert(0, str(Path(__file__).parent.parent / "utils"))
from common import get_model_name_from_env_path, compare_tokens # type: ignore[import-not-found]
from common import get_model_name_from_env_path, compare_tokens, exit_with_warning # type: ignore[import-not-found]
def quick_logits_check(pytorch_file, llamacpp_file):
"""Lightweight sanity check before NMSE"""
@@ -38,6 +39,7 @@ def quick_logits_check(pytorch_file, llamacpp_file):
return True
def main():
model_path = os.environ.get('MODEL_PATH')
model_name = get_model_name_from_env_path('MODEL_PATH')
data_dir = Path("data")
pytorch_file = data_dir / f"pytorch-{model_name}.bin"
@@ -62,8 +64,7 @@ def main():
print("🔍 Token Comparison Check")
print("=" * 40)
if not compare_tokens(f"pytorch-{model_name}", f"llamacpp-{llamacpp_model_name}"):
print("\n❌ Token mismatch detected")
sys.exit(1)
exit_with_warning("\n❌ Token mismatch detected", model_path)
print()
print("🔍 GGML Model Validation for model ", model_name)
@@ -80,8 +81,7 @@ def main():
print(" Ok to proceed with NMSE check...")
sys.exit(0)
else:
print(f"❌ NOK: Top 10 predictions don't match - generation will differ")
sys.exit(1)
exit_with_warning(f"❌ NOK: Top 10 predictions don't match - generation will differ", model_path)
if __name__ == "__main__":
main()

View File

@@ -5,7 +5,7 @@ set -e
# Parse command line arguments
CONVERTED_MODEL=""
PROMPTS_FILE=""
USE_POOLING=""
EMBD_NORMALIZE="2"
while [[ $# -gt 0 ]]; do
case $1 in
@@ -13,9 +13,9 @@ while [[ $# -gt 0 ]]; do
PROMPTS_FILE="$2"
shift 2
;;
--pooling)
USE_POOLING="1"
shift
--embd-normalize)
EMBD_NORMALIZE="$2"
shift 2
;;
*)
if [ -z "$CONVERTED_MODEL" ]; then
@@ -51,8 +51,4 @@ fi
echo $CONVERTED_MODEL
cmake --build ../../build --target llama-debug -j8
if [ -n "$USE_POOLING" ]; then
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding --pooling mean -p "$PROMPT" --save-logits
else
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding --pooling none -p "$PROMPT" --save-logits
fi
../../build/bin/llama-debug -m "$CONVERTED_MODEL" --embedding -p "$PROMPT" --save-logits --embd-normalize $EMBD_NORMALIZE

View File

@@ -3,6 +3,9 @@
import os
import sys
import torch
import transformers
import json
import textwrap
import numpy as np
from pathlib import Path
@@ -243,3 +246,54 @@ def compare_tokens(original, converted, type_suffix="", output_dir="data"):
print(f" ... and {len(mismatches) - num_to_show} more mismatches")
return False
def show_version_warning(current_version, model_version):
if not model_version:
return False
try:
from packaging.version import parse, InvalidVersion
try:
return parse(current_version) < parse(model_version)
except InvalidVersion:
return current_version != model_version
except ImportError:
return current_version != model_version
def get_model_transformers_version(model_path):
if not model_path:
return None
config_path = Path(model_path) / "config.json"
if not config_path.is_file():
return None
try:
with open(config_path, "r", encoding="utf-8") as f:
config = json.load(f)
return config.get("transformers_version")
except (IOError, json.JSONDecodeError) as e:
print(f"Warning: Could not read or parse {config_path}: {e}", file=sys.stderr)
return None
def exit_with_warning(message, model_path):
print(message)
if model_path and transformers is not None:
model_transformers_version = get_model_transformers_version(model_path)
transformers_version = transformers.__version__
if show_version_warning(transformers_version, model_transformers_version):
warning_message = f"""
=====================================================================
Verification failure might be due to a transformers version mismatch:
Current transformers version: {transformers_version}
Model's required version : {model_transformers_version}
Consider installing the version specified by the model's config:
pip install transformers=={model_transformers_version}
=====================================================================
"""
print(textwrap.dedent(warning_message))
sys.exit(1)

View File

@@ -7,7 +7,7 @@ import importlib
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoModel
from common import compare_tokens # type: ignore[import-not-found]
from common import compare_tokens, exit_with_warning # type: ignore[import-not-found]
unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
@@ -174,8 +174,7 @@ def main():
print("=" * 70)
data_dir = python_emb_path.parent
if not compare_tokens(python_model_name, cpp_model_name, type_suffix="-embeddings", output_dir=str(data_dir)):
print("\n❌ Token mismatch detected")
exit(1)
exit_with_warning("\n❌ Token mismatch detected", args.model_path)
print()
# Single prompt detailed comparison
@@ -237,7 +236,7 @@ def main():
elif avg_cross_sim > 0.70:
print("⚠️ FAIR: Models have some differences")
else:
print("❌ POOR: Models are significantly different")
exit_with_warning("❌ POOR: Models are significantly different", args.model_path)
if __name__ == "__main__":
main()

View File

@@ -2541,27 +2541,6 @@ static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
* @brief Determines if a tensor operation should be offloaded to the CANN
* backend.
*
* This function checks if a given tensor operation should be offloaded to the
* CANN backend based on the operation type and the size of the tensor. It
* returns true if the second dimension (ne[1]) of the tensor is greater than or
* equal to the minimum batch size and the operation is not GGML_OP_GET_ROWS.
*
* @param backend Pointer to the CANN backend.
* @param op Pointer to the tensor operation to check.
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
static bool ggml_backend_cann_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
GGML_UNUSED(dev);
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
}
/**
* @brief Records an event on the CANN backend stream.
*
@@ -2637,6 +2616,7 @@ struct ggml_backend_cann_device_context {
int device;
std::string name;
std::string description;
int op_offload_min_batch_size;
};
static const char * ggml_backend_cann_device_get_name(ggml_backend_dev_t dev) {
@@ -2713,6 +2693,26 @@ static ggml_backend_buffer_type_t ggml_backend_cann_device_get_host_buffer_type(
return ggml_backend_cann_host_buffer_type();
}
/**
* @brief Determines if a tensor operation should be offloaded to the CANN
* backend.
*
* This function checks if a given tensor operation should be offloaded to the
* CANN backend based on the operation type and the size of the tensor. It
* returns true if the second dimension (ne[1]) of the tensor is greater than or
* equal to the minimum batch size and the operation is not GGML_OP_GET_ROWS.
*
* @param backend Pointer to the CANN backend.
* @param op Pointer to the tensor operation to check.
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
static bool ggml_backend_cann_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_cann_device_context * dev_ctx = (ggml_backend_cann_device_context *)dev->context;
return op->ne[1] >= dev_ctx->op_offload_min_batch_size && op->op != GGML_OP_GET_ROWS;
}
/**
* @brief Creates a new event for the CANN backend device.
*
@@ -2829,12 +2829,14 @@ ggml_backend_reg_t ggml_backend_cann_reg() {
if (!initialized) {
aclInit(nullptr);
ggml_backend_cann_reg_context * ctx = new ggml_backend_cann_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_cann_info().device_count; i++) {
ggml_backend_cann_device_context * dev_ctx = new ggml_backend_cann_device_context();
dev_ctx->description = aclrtGetSocName();
dev_ctx->device = i;
dev_ctx->name = GGML_CANN_NAME + std::to_string(i);
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_cann_set_device(i);
ggml_backend_dev_t dev = new ggml_backend_device{ /* .iface = */ ggml_backend_cann_device_interface,
/* .reg = */ &reg,

View File

@@ -47,7 +47,10 @@ if (CUDAToolkit_FOUND)
# check Modules/Internal/CMakeCUDAArchitecturesValidate.cmake in the CMake git repository instead.
# However, the architectures 120a-real and 121a-real should work with basically any CMake version and
# until the release of e.g. Rubin there is no benefit to shipping virtual architectures for Blackwell.
list(APPEND CMAKE_CUDA_ARCHITECTURES 120a-real 121a-real)
list(APPEND CMAKE_CUDA_ARCHITECTURES 120a-real)
endif()
if (CUDAToolkit_VERSION VERSION_GREATER_EQUAL "12.9")
list(APPEND CMAKE_CUDA_ARCHITECTURES 121a-real)
endif()
endif()
endif()

View File

@@ -4122,6 +4122,7 @@ struct ggml_backend_cuda_device_context {
std::string name;
std::string description;
std::string pci_bus_id;
int op_offload_min_batch_size;
};
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
@@ -4676,11 +4677,9 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
return get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
return get_op_batch_size(op) >= dev_ctx->op_offload_min_batch_size;
}
static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
@@ -4848,6 +4847,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
@@ -4861,6 +4861,7 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
char pci_bus_id[16] = {};
snprintf(pci_bus_id, sizeof(pci_bus_id), "%04x:%02x:%02x.0", prop.pciDomainID, prop.pciBusID, prop.pciDeviceID);
dev_ctx->pci_bus_id = pci_bus_id;
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_cuda_device_interface,

View File

@@ -219,6 +219,8 @@ struct ggml_metal_device_props {
bool use_shared_buffers;
bool supports_gpu_family_apple7;
int op_offload_min_batch_size;
};
ggml_metal_device_t ggml_metal_device_init(void);

View File

@@ -782,6 +782,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
dev->props.supports_gpu_family_apple7 = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
dev->props.op_offload_min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
dev->props.max_buffer_size = dev->mtl_device.maxBufferLength;
dev->props.max_working_set_size = dev->mtl_device.recommendedMaxWorkingSetSize;
dev->props.max_theadgroup_memory_size = dev->mtl_device.maxThreadgroupMemoryLength;

View File

@@ -625,14 +625,11 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
return (op->op == GGML_OP_MUL_MAT ||
op->op == GGML_OP_MUL_MAT_ID) &&
get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
GGML_UNUSED(op);
get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size;
}
static ggml_backend_device_i ggml_backend_metal_device_i = {

View File

@@ -57,6 +57,7 @@ set(GGML_OPENCL_KERNELS
add
add_id
argsort
fill
clamp
cpy
cvt

View File

@@ -489,6 +489,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
cl_kernel kernel_relu;
cl_kernel kernel_sigmoid_f32, kernel_sigmoid_f16;
cl_kernel kernel_fill;
cl_kernel kernel_clamp;
cl_kernel kernel_geglu, kernel_reglu, kernel_swiglu, kernel_swiglu_oai, kernel_geglu_erf, kernel_geglu_quick,
kernel_geglu_f16, kernel_reglu_f16, kernel_swiglu_f16, kernel_geglu_erf_f16, kernel_geglu_quick_f16;
@@ -787,6 +788,24 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
GGML_LOG_CONT(".");
}
// fill
{
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src {
#include "fill.cl.h"
};
#else
const std::string kernel_src = read_file("fill.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_fill = clCreateKernel(prog, "kernel_fill_f32", &err), err));
GGML_LOG_CONT(".");
CL_CHECK(clReleaseProgram(prog));
}
// clamp
{
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -3104,6 +3123,8 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
default:
return false;
}
case GGML_OP_FILL:
return op->type == GGML_TYPE_F32 && ggml_is_contiguous(op);
case GGML_OP_CLAMP:
return op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_SOFT_MAX:
@@ -5860,6 +5881,36 @@ static void ggml_cl_sigmoid(ggml_backend_t backend, const ggml_tensor * src0, co
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_fill(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src0);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offsetd = extrad->offset + dst->view_offs;
float v = 0.0f;
memcpy(&v, ((int32_t *) dst->op_params), sizeof(float));
const int64_t n = ggml_nelements(dst);
cl_kernel kernel = backend_ctx->kernel_fill;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(float), &v));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(float), &n));
size_t local_work_size[1] = { 256 };
size_t global_work_size[1] = { ((size_t)n + local_work_size[0] - 1) / local_work_size[0] * local_work_size[0] };
backend_ctx->enqueue_ndrange_kernel(kernel, 1, global_work_size, local_work_size, dst);
}
static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -9595,6 +9646,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_glu;
break;
case GGML_OP_FILL:
if (!any_on_device) {
return false;
}
func = ggml_cl_fill;
break;
case GGML_OP_CLAMP:
if (!any_on_device) {
return false;

View File

@@ -0,0 +1,17 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// fill
//------------------------------------------------------------------------------
__kernel void kernel_fill_f32(
__global float *dst,
ulong offsetd,
float v,
int n
) {
dst = (global float*)((global char*)dst + offsetd);
if(get_global_id(0) < n){
dst[get_global_id(0)] = v;
}
}

View File

@@ -4286,6 +4286,7 @@ struct ggml_backend_sycl_device_context {
int device;
std::string name;
std::string description;
int op_offload_min_batch_size;
};
static const char * ggml_backend_sycl_device_get_name(ggml_backend_dev_t dev) {
@@ -4674,9 +4675,8 @@ static int64_t get_op_batch_size(const ggml_tensor * op) {
}
static bool ggml_backend_sycl_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
return get_op_batch_size(op) >= min_batch_size;
GGML_UNUSED(dev);
ggml_backend_sycl_device_context * sycl_ctx = (ggml_backend_sycl_device_context *)dev->context;
return get_op_batch_size(op) >= sycl_ctx->op_offload_min_batch_size;
}
static ggml_backend_event_t
@@ -4799,6 +4799,7 @@ ggml_backend_reg_t ggml_backend_sycl_reg() {
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
ggml_backend_sycl_reg_context * ctx = new ggml_backend_sycl_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
ggml_backend_sycl_device_context * dev_ctx = new ggml_backend_sycl_device_context;
@@ -4812,6 +4813,7 @@ ggml_backend_reg_t ggml_backend_sycl_reg() {
prop, dpct::dev_mgr::instance().get_device(i))));
dev_ctx->description = prop.get_name();
dev_ctx->op_offload_min_batch_size = min_batch_size;
ggml_backend_dev_t dev = new ggml_backend_device {
/* .iface = */ ggml_backend_sycl_device_interface,

View File

@@ -2996,6 +2996,10 @@ static void ggml_vk_load_shaders(vk_device& device) {
if ((device->architecture == AMD_GCN) && (device->driver_id != vk::DriverId::eAmdProprietary)) {
m_warptile_mmq = m_warptile_mmq_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
m_warptile_mmqid = m_warptile_mmqid_int = { 256, 64, 64, 32, 16, 16, 2, 2, 2, 1, 16 };
} else if (device->vendor_id == VK_VENDOR_ID_INTEL && device->coopmat_support && device->architecture == INTEL_XE2) {
// Xe2/Xe3 with coopmat enabled - warptile performance tuning
l_warptile = { 512, 128, 128, 16, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
l_warptile_mmq = { 512, 128, 128, 32, subgroup_size_8, 32, 2, tm_m, tn_m, tk_m, subgroup_size_8 };
}
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
@@ -3678,6 +3682,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
m_wg_denoms = { 64, 64, 1 };
s_wg_denoms = { 32, 32, 1 };
if (device->vendor_id == VK_VENDOR_ID_INTEL && device->architecture == INTEL_XE2) {
// Xe2/Xe3 - bf16 warptile performance tuning
l_warptile = { 512, 128, 128, 16, subgroup_size_8, 32, 2, 4, 4, 1, subgroup_size_8 };
}
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_bf16, matmul_bf16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, , 0);
CREATE_MM(GGML_TYPE_BF16, pipeline_matmul_id_bf16, matmul_id_bf16, , wg_denoms, warptile, vk_mat_mat_id_push_constants, mul_mat_id_param_count, _id, 0);
}
@@ -5061,11 +5070,23 @@ static vk_device ggml_vk_get_device(size_t idx) {
switch (device->vendor_id) {
#ifndef GGML_VULKAN_RUN_TESTS
case VK_VENDOR_ID_AMD:
device->mul_mat_l[i] = false;
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
case VK_VENDOR_ID_INTEL:
device->mul_mat_l[i] = false;
if (!device->coopmat_support || device->architecture != INTEL_XE2) {
device->mul_mat_l[i] = false;
device->mul_mat_id_l[i] = false;
} else {
device->mul_mat_l[i] = true; // if coopmat & XE2+, allow large matmul warptile config for Intel
device->mul_mat_id_l[i] = true;
}
device->mul_mat_m[i] = true;
device->mul_mat_s[i] = true;
device->mul_mat_id_l[i] = false;
device->mul_mat_id_m[i] = true;
device->mul_mat_id_s[i] = true;
break;
@@ -14228,6 +14249,7 @@ struct ggml_backend_vk_device_context {
std::string description;
bool is_integrated_gpu;
std::string pci_bus_id;
int op_offload_min_batch_size;
};
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
@@ -14284,6 +14306,19 @@ static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const
}
static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
// reject any tensors larger than the max buffer size
for (int i = 0; i < GGML_MAX_SRC; i++) {
if (op->src[i] && ggml_nbytes(op->src[i]) > device->max_buffer_size) {
return false;
}
}
if (ggml_nbytes(op) > device->max_buffer_size) {
return false;
}
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
@@ -14332,8 +14367,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
case GGML_OP_MUL_MAT_ID:
{
ggml_type src0_type = op->src[0]->type;
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->op == GGML_OP_MUL_MAT_ID) {
if (!device->mul_mat_id_s[src0_type] && !device->mul_mat_id_m[src0_type] && !device->mul_mat_id_l[src0_type]) {
// If there's not enough shared memory for row_ids and the result tile, fallback to CPU
@@ -14394,8 +14427,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
bool coopmat2 = device->coopmat2;
uint32_t HSK = op->src[1]->ne[0];
uint32_t HSV = op->src[2]->ne[0];
@@ -14617,8 +14648,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (!ggml_is_contiguous(op) || !ggml_is_contiguous(op->src[0])) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
// pipeline_argsort_large_f32 requires vulkan memory model.
if (device->vulkan_memory_model) {
return true;
@@ -14631,8 +14660,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
if (!ggml_is_contiguous(op) || !ggml_is_contiguous(op->src[0])) {
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
// We could potentially support larger, using argsort to sort the
// whole thing. Not clear if this is needed.
uint32_t min_pipeline = (uint32_t)log2f(float(op->ne[0])) + 1;
@@ -14679,8 +14706,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_CUMSUM:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
auto device = ggml_vk_get_device(ctx->device);
if (device->subgroup_arithmetic && device->subgroup_require_full_support) {
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous_rows(op->src[0]);
}
@@ -14688,9 +14713,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
}
case GGML_OP_SOLVE_TRI:
{
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
if (op->type != GGML_TYPE_F32 || op->src[0]->type != GGML_TYPE_F32) {
return false;
}
@@ -14755,9 +14777,6 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
return false;
}
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
const vk_device& device = ggml_vk_get_device(ctx->device);
const uint32_t SPLIT_H = 16;
size_t stateC_size = SPLIT_H * d_state * sizeof(float);
@@ -14802,12 +14821,10 @@ static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_ba
}
static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
const int min_batch_size = 32;
ggml_backend_vk_device_context * dev_ctx = (ggml_backend_vk_device_context *)dev->context;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
UNUSED(dev);
return (op->ne[1] >= dev_ctx->op_offload_min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= dev_ctx->op_offload_min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
}
static ggml_backend_event_t ggml_backend_vk_device_event_new(ggml_backend_dev_t dev) {
@@ -14933,6 +14950,7 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
char desc[256];
@@ -14942,6 +14960,7 @@ static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg,
ctx->description = desc;
ctx->is_integrated_gpu = ggml_backend_vk_get_device_type(i) == vk::PhysicalDeviceType::eIntegratedGpu;
ctx->pci_bus_id = ggml_backend_vk_get_device_pci_id(i);
ctx->op_offload_min_batch_size = min_batch_size;
devices.push_back(new ggml_backend_device {
/* .iface = */ ggml_backend_vk_device_i,
/* .reg = */ reg,

View File

@@ -309,6 +309,7 @@ extern "C" {
// Keep the booleans together to avoid misalignment during copy-by-value.
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_direct_io; // use direct io, takes precedence over use_mmap
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
bool use_extra_bufts; // use extra buffer types (used for weight repacking)
@@ -494,7 +495,7 @@ extern "C" {
struct llama_context_params * cparams,
float * tensor_split, // writable buffer for tensor split, needs at least llama_max_devices elements
struct llama_model_tensor_buft_override * tensor_buft_overrides, // writable buffer for overrides, needs at least llama_max_tensor_buft_overrides elements
size_t margin, // margin of memory to leave per device in bytes
size_t * margins, // margins of memory to leave per device in bytes
uint32_t n_ctx_min, // minimum context size to set when trying to reduce memory use
enum ggml_log_level log_level); // minimum log level to print during fitting, lower levels go to debug log

View File

@@ -1,26 +0,0 @@
Copyright (c) 2010-2014, Salvatore Sanfilippo <antirez at gmail dot com>
Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

66
scripts/pr2wt.sh Executable file
View File

@@ -0,0 +1,66 @@
#!/usr/bin/env bash
# intialize a new worktree from a PR number:
#
# - creates a new remote using the fork's clone URL
# - creates a local branch tracking the remote branch
# - creates a new worktree in a parent folder, suffixed with "-pr-${PR}"
#
# sample usage:
# ./scripts/pr2wt.sh 12345
# ./scripts/pr2wt.sh 12345 opencode
function usage() {
echo "usage: $0 <pr_number> [cmd]"
exit 1
}
# check we are in the right directory
if [[ ! -f "scripts/pr2wt.sh" ]]; then
echo "error: this script must be run from the root of the repository"
exit 1
fi
if [[ $# -lt 1 || $# -gt 2 ]]; then
usage
fi
PR=$1
[[ "$PR" =~ ^[0-9]+$ ]] || { echo "error: PR number must be numeric"; exit 1; }
url_origin=$(git config --get remote.origin.url) || {
echo "error: no remote named 'origin' in this repository"
exit 1
}
org_repo=$(echo $url_origin | cut -d/ -f4-)
org_repo=${org_repo%.git}
echo "org/repo: $org_repo"
meta=$(curl -sSf -H "Accept: application/vnd.github+json" "https://api.github.com/repos/${org_repo}/pulls/${PR}")
url_remote=$(echo "$meta" | jq -r '.head.repo.clone_url')
head_ref=$(echo "$meta" | jq -r '.head.ref')
echo "url: $url_remote"
echo "head_ref: $head_ref"
git remote rm pr/${PR}
git remote add pr/${PR} $url_remote
git fetch pr/${PR} $head_ref
dir=$(basename $(pwd))
git branch -D pr/$PR 2> /dev/null
git worktree add -b pr/$PR ../$dir-pr-$PR pr/$PR/${head_ref} 2> /dev/null
wt_path=$(cd ../$dir-pr-$PR && pwd)
echo "git worktree created in $wt_path"
# if a command was provided, execute it
if [[ $# -eq 2 ]]; then
cd ../$dir-pr-$PR
exec $2
fi

View File

@@ -110,7 +110,7 @@ struct llama_file::impl {
}
}
void read_raw(void * ptr, size_t len) const {
void read_raw(void * ptr, size_t len) {
size_t bytes_read = 0;
while (bytes_read < len) {
size_t chunk_size = std::min<size_t>(len - bytes_read, 64*1024*1024);
@@ -127,7 +127,7 @@ struct llama_file::impl {
}
}
uint32_t read_u32() const {
uint32_t read_u32() {
uint32_t val;
read_raw(&val, sizeof(val));
return val;
@@ -154,8 +154,8 @@ struct llama_file::impl {
write_raw(&val, sizeof(val));
}
void read_aligned_chunk(size_t offset, void * dest, size_t size) const {
throw std::runtime_error("DirectIO is not implemented on Windows.");
bool has_direct_io() const {
return true;
}
~impl() {
@@ -164,33 +164,45 @@ struct llama_file::impl {
}
}
#else
impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) {
impl(const char * fname, const char * mode, [[maybe_unused]] const bool use_direct_io = false) : fname(fname) {
#ifdef __linux__
// Try unbuffered I/O for read only
if (use_direct_io && std::strcmp(mode, "rb") == 0) {
fd = open(fname, O_RDONLY | O_DIRECT);
if (fd != -1) {
struct stat file_stats{};
fstat(fd, &file_stats);
size = file_stats.st_size;
alignment = file_stats.st_blksize;
off_t ret = lseek(fd, 0, SEEK_SET);
if (ret == -1) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
if (init_fd()) {
return;
}
LLAMA_LOG_WARN("Failed to open model %s with error: %s. Falling back to buffered I/O",
fname, strerror(errno));
LLAMA_LOG_WARN("Failed to open file '%s' with error: %s. Falling back to buffered I/O",
fname, strerror(errno));
}
#endif
fp = ggml_fopen(fname, mode);
init_fp(mode);
}
#ifdef __linux__
bool init_fd() {
fd = open(fname.c_str(), O_RDONLY | O_DIRECT);
if (fd != -1) {
struct stat file_stats{};
fstat(fd, &file_stats);
size = file_stats.st_size;
alignment = file_stats.st_blksize;
off_t ret = lseek(fd, 0, SEEK_SET);
if (ret == -1) {
throw std::runtime_error(format("seek error: %s", strerror(errno)));
}
return true;
}
return false;
}
#endif
void init_fp(const char * mode) {
fp = ggml_fopen(fname.c_str(), mode);
if (fp == NULL) {
throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
throw std::runtime_error(format("failed to open %s: %s", fname.c_str(), strerror(errno)));
}
seek(0, SEEK_END);
size = tell();
@@ -226,7 +238,7 @@ struct llama_file::impl {
}
}
void read_raw(void * ptr, size_t len) const {
void read_raw_unsafe(void * ptr, size_t len) {
if (len == 0) {
return;
}
@@ -249,6 +261,17 @@ struct llama_file::impl {
if (errno == EINTR) {
continue; // Interrupted by signal, retry
}
// Fallback to std::fread in case the DMA controller cannot access the buffer
if (errno == EFAULT) {
auto curr_off = tell();
close(fd);
fd = -1;
alignment = 1;
init_fp("rb");
seek(curr_off, SEEK_SET);
read_raw_unsafe(ptr, len);
return;
}
throw std::runtime_error(format("read error: %s", strerror(errno)));
}
if (ret == 0) {
@@ -266,7 +289,8 @@ struct llama_file::impl {
}
}
void read_aligned_chunk(size_t offset, void * dest, size_t size) const {
void read_aligned_chunk(void * dest, size_t size) {
size_t offset = tell();
off_t aligned_offset = offset & ~(alignment - 1);
off_t offset_from_alignment = offset - aligned_offset;
size_t bytes_to_read = (offset_from_alignment + size + alignment - 1) & ~(alignment - 1);
@@ -283,13 +307,21 @@ struct llama_file::impl {
std::unique_ptr<void, aligned_buffer_deleter> buffer(raw_buffer);
seek(aligned_offset, SEEK_SET);
read_raw(buffer.get(), bytes_to_read);
read_raw_unsafe(buffer.get(), bytes_to_read);
uintptr_t actual_data = reinterpret_cast<uintptr_t>(buffer.get()) + offset_from_alignment;
memcpy(dest, reinterpret_cast<void *>(actual_data), size);
}
uint32_t read_u32() const {
void read_raw(void * ptr, size_t len) {
if (has_direct_io()) {
read_aligned_chunk(ptr, len);
} else {
read_raw_unsafe(ptr, len);
}
}
uint32_t read_u32() {
uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
@@ -310,6 +342,10 @@ struct llama_file::impl {
write_raw(&val, sizeof(val));
}
bool has_direct_io() const {
return fd != -1 && alignment > 1;
}
~impl() {
if (fd != -1) {
close(fd);
@@ -318,17 +354,9 @@ struct llama_file::impl {
}
}
int fd = -1;
std::string fname;
#endif
void read_raw_at(void * ptr, size_t len, size_t offset) const {
if (alignment != 1) {
read_aligned_chunk(offset, ptr, len);
} else {
seek(offset, SEEK_SET);
read_raw(ptr, len);
}
}
size_t read_alignment() const {
return alignment;
}
@@ -347,6 +375,7 @@ size_t llama_file::tell() const { return pimpl->tell(); }
size_t llama_file::size() const { return pimpl->size; }
size_t llama_file::read_alignment() const { return pimpl->read_alignment(); }
bool llama_file::has_direct_io() const { return pimpl->has_direct_io(); }
int llama_file::file_id() const {
#ifdef _WIN32
@@ -361,10 +390,14 @@ int llama_file::file_id() const {
}
void llama_file::seek(size_t offset, int whence) const { pimpl->seek(offset, whence); }
void llama_file::read_raw(void * ptr, size_t len) const { pimpl->read_raw(ptr, len); }
void llama_file::read_raw_at(void * ptr, size_t len, size_t offset) const { pimpl->read_raw_at(ptr, len, offset); }
void llama_file::read_raw(void * ptr, size_t len) { pimpl->read_raw(ptr, len); }
#ifdef _WIN32
void llama_file::read_raw_unsafe(void * ptr, size_t len) { pimpl->read_raw(ptr, len); }
#else
void llama_file::read_raw_unsafe(void * ptr, size_t len) { pimpl->read_raw_unsafe(ptr, len); }
#endif
uint32_t llama_file::read_u32() const { return pimpl->read_u32(); }
uint32_t llama_file::read_u32() { return pimpl->read_u32(); }
void llama_file::write_raw(const void * ptr, size_t len) const { pimpl->write_raw(ptr, len); }
void llama_file::write_u32(uint32_t val) const { pimpl->write_u32(val); }

View File

@@ -24,15 +24,16 @@ struct llama_file {
void seek(size_t offset, int whence) const;
void read_raw(void * ptr, size_t len) const;
void read_raw_at(void * ptr, size_t len, size_t offset) const;
void read_aligned_chunk(size_t offset, void * dest, size_t size) const;
uint32_t read_u32() const;
void read_raw(void * ptr, size_t len);
void read_raw_unsafe(void * ptr, size_t len);
void read_aligned_chunk(void * dest, size_t size);
uint32_t read_u32();
void write_raw(const void * ptr, size_t len) const;
void write_u32(uint32_t val) const;
size_t read_alignment() const;
bool has_direct_io() const;
private:
struct impl;
std::unique_ptr<impl> pimpl;

View File

@@ -495,6 +495,7 @@ llama_model_loader::llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits,
bool use_mmap,
bool use_direct_io,
bool check_tensors,
bool no_alloc,
const llama_model_kv_override * param_overrides_p,
@@ -527,9 +528,17 @@ llama_model_loader::llama_model_loader(
get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
llm_kv = LLM_KV(llm_arch_from_string(arch_name));
files.emplace_back(new llama_file(fname.c_str(), "rb", !use_mmap));
files.emplace_back(new llama_file(fname.c_str(), "rb", use_direct_io));
contexts.emplace_back(ctx);
use_direct_io = use_direct_io && files.back()->has_direct_io();
// Disable mmap in case Direct I/O is enabled and available
if (use_direct_io && use_mmap) {
use_mmap = false;
LLAMA_LOG_WARN("%s: direct I/O is enabled, disabling mmap\n", __func__);
}
// Save tensors data offset of the main file.
// For subsidiary files, `meta` tensor data offset must not be used,
// so we build a unified tensors index for weights.
@@ -595,7 +604,7 @@ llama_model_loader::llama_model_loader(
}
}
files.emplace_back(new llama_file(fname_split, "rb", !use_mmap));
files.emplace_back(new llama_file(fname_split, "rb", use_direct_io));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.
@@ -739,6 +748,7 @@ llama_model_loader::llama_model_loader(
}
this->use_mmap = use_mmap;
this->use_direct_io = use_direct_io;
this->check_tensors = check_tensors;
this->no_alloc = no_alloc;
}
@@ -1100,7 +1110,8 @@ bool llama_model_loader::load_all_data(
const auto & file = files.at(weight->idx);
if (ggml_backend_buffer_is_host(cur->buffer)) {
file->read_raw_at(cur->data, n_size, weight->offs);
file->seek(weight->offs, SEEK_SET);
file->read_raw(cur->data, n_size);
if (check_tensors) {
validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
@@ -1132,7 +1143,7 @@ bool llama_model_loader::load_all_data(
ggml_backend_event_synchronize(events[buffer_idx]);
// Read aligned chunk from file
file->read_raw(reinterpret_cast<void *>(ptr_dest_aligned), read_size);
file->read_raw_unsafe(reinterpret_cast<void *>(ptr_dest_aligned), read_size);
// Calculate actual data portion (excluding alignment padding)
uintptr_t ptr_data = ptr_dest_aligned;
@@ -1162,7 +1173,8 @@ bool llama_model_loader::load_all_data(
}
} else {
read_buf.resize(n_size);
file->read_raw_at(read_buf.data(), n_size, weight->offs);
file->seek(weight->offs, SEEK_SET);
file->read_raw(read_buf.data(), n_size);
ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));

View File

@@ -70,6 +70,7 @@ struct llama_model_loader {
size_t n_bytes = 0;
bool use_mmap = false;
bool use_direct_io = false;
bool check_tensors;
bool no_alloc;
@@ -97,6 +98,7 @@ struct llama_model_loader {
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool use_direct_io,
bool check_tensors,
bool no_alloc,
const llama_model_kv_override * param_overrides_p,

View File

@@ -2440,7 +2440,8 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const bool use_mmap_buffer = true;
LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s, direct_io = %s)\n",
__func__, ml.use_mmap ? "true" : "false", ml.use_direct_io ? "true" : "false");
// build a list of buffer types for the CPU and GPU devices
pimpl->cpu_buft_list = make_cpu_buft_list(devices, params.use_extra_bufts, params.no_host);
@@ -7973,6 +7974,7 @@ llama_model_params llama_model_default_params() {
/*.kv_overrides =*/ nullptr,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_direct_io =*/ true,
/*.use_mlock =*/ false,
/*.check_tensors =*/ false,
/*.use_extra_bufts =*/ true,

View File

@@ -596,7 +596,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
}
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, /*no_alloc*/ false, kv_overrides, nullptr);
llama_model_loader ml(fname_inp, splits, use_mmap, /*use_direct_io*/ true, /*check_tensors*/ true, /*no_alloc*/ false, kv_overrides, nullptr);
ml.init_mappings(false); // no prefetching
llama_model model(llama_model_default_params());

View File

@@ -147,9 +147,8 @@ class llama_params_fit_exception : public std::runtime_error {
static void llama_params_fit_impl(
const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams,
float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides,
size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
size_t * margins_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
constexpr int64_t MiB = 1024*1024;
const int64_t margin = margin_s; // this function uses int64_t rather than size_t for memory sizes to more conveniently handle deficits
typedef std::vector<llama_device_memory_data> dmds_t;
const llama_model_params default_mparams = llama_model_default_params();
@@ -168,6 +167,12 @@ static void llama_params_fit_impl(
return;
}
std::vector<int64_t> margins; // this function uses int64_t rather than size_t for memory sizes to more conveniently handle deficits
margins.reserve(nd);
for (size_t id = 0; id < nd; id++) {
margins.push_back(margins_s[id]);
}
std::vector<std::string> dev_names;
{
dev_names.reserve(nd);
@@ -187,9 +192,10 @@ static void llama_params_fit_impl(
int64_t sum_free = 0;
int64_t sum_projected_free = 0;
int64_t min_projected_free = INT64_MAX;
int64_t sum_projected_used = 0;
int64_t sum_projected_model = 0;
std::vector<int64_t> projected_free_per_device;
projected_free_per_device.reserve(nd);
if (nd > 1) {
LLAMA_LOG_INFO("%s: projected memory use with initial parameters [MiB]:\n", __func__);
@@ -199,45 +205,63 @@ static void llama_params_fit_impl(
const int64_t projected_used = dmd.mb.total();
const int64_t projected_free = dmd.free - projected_used;
projected_free_per_device.push_back(projected_free);
sum_free += dmd.free;
sum_projected_used += projected_used;
sum_projected_free += projected_free;
min_projected_free = std::min(min_projected_free, projected_free);
sum_projected_model += dmd.mb.model;
if (nd > 1) {
LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " %s\n",
__func__, dev_names[id].c_str(), dmd.total/MiB, projected_used/MiB, std::abs(projected_free)/MiB,
projected_free >= 0 ? "surplus" : "deficit");
LLAMA_LOG_INFO("%s: - %s: %6" PRId64 " total, %6" PRId64 " used, %6" PRId64 " free vs. target of %6" PRId64 "\n",
__func__, dev_names[id].c_str(), dmd.total/MiB, projected_used/MiB, projected_free/MiB, margins[id]/MiB);
}
}
assert(sum_free >= 0 && sum_projected_used >= 0);
LLAMA_LOG_INFO("%s: projected to use %" PRId64 " MiB of device memory vs. %" PRId64 " MiB of free device memory\n",
__func__, sum_projected_used/MiB, sum_free/MiB);
if (min_projected_free >= margin) {
if (nd == 1) {
if (nd == 1) {
if (projected_free_per_device[0] >= margins[0]) {
LLAMA_LOG_INFO("%s: will leave %" PRId64 " >= %" PRId64 " MiB of free device memory, no changes needed\n",
__func__, min_projected_free/MiB, margin/MiB);
__func__, projected_free_per_device[0]/MiB, margins[0]/MiB);
return;
}
} else {
bool changes_needed = false;
for (size_t id = 0; id < nd; id++) {
if (projected_free_per_device[id] < margins[id]) {
changes_needed = true;
break;
}
}
if (!changes_needed) {
LLAMA_LOG_INFO("%s: targets for free memory can be met on all devices, no changes needed\n", __func__);
return;
}
LLAMA_LOG_INFO("%s: will leave at least %" PRId64 " >= %" PRId64 " MiB of free memory on all devices, no changes needed\n",
__func__, min_projected_free/MiB, margin/MiB);
return;
}
// step 2: try reducing memory use by reducing the context size
{
int64_t global_surplus = sum_projected_free - int64_t(nd)*margin;
int64_t global_surplus = sum_projected_free;
for (size_t id = 0; id < nd; id++) {
global_surplus -= margins[id];
}
if (global_surplus < 0) {
LLAMA_LOG_INFO(nd == 1 ?
"%s: cannot fulfill margin of %" PRId64 " MiB, need to reduce device memory by %" PRId64 " MiB\n" :
"%s: cannot fulfill margin of %" PRId64 " MiB on all devices, need to use %" PRId64 " MiB less in total\n",
__func__, margin/MiB, -global_surplus/MiB);
if (nd == 1) {
LLAMA_LOG_INFO("%s: cannot meet free memory target of %" PRId64 " MiB, need to reduce device memory by %" PRId64 " MiB\n",
__func__, margins[0]/MiB, -global_surplus/MiB);
} else {
LLAMA_LOG_INFO(
"%s: cannot meet free memory targets on all devices, need to use %" PRId64 " MiB less in total\n",
__func__, -global_surplus/MiB);
}
if (cparams->n_ctx == 0) {
if (hp_nct > n_ctx_min) {
int64_t sum_used_target = sum_free - nd*margin_s;
int64_t sum_used_target = sum_free;
for (size_t id = 0; id < nd; id++) {
sum_used_target -= margins[id];
}
if (nd > 1) {
// for multiple devices we need to be more conservative in terms of how much context we think can fit:
// - for dense models only whole layers can be assigned to devices
@@ -448,9 +472,9 @@ static void llama_params_fit_impl(
const dmds_t dmds_cpu_moe = llama_get_device_memory_data(
path_model, mparams, cparams, devs, hp_ngl, hp_nct, hp_nex, log_level);
for (const llama_device_memory_data & dmd : dmds_cpu_moe) {
global_surplus_cpu_moe += dmd.free;
global_surplus_cpu_moe -= int64_t(dmd.mb.total()) + margin;
for (size_t id = 0; id < nd; id++) {
global_surplus_cpu_moe += dmds_cpu_moe[id].free;
global_surplus_cpu_moe -= int64_t(dmds_cpu_moe[id].mb.total()) + margins[id];
}
if (global_surplus_cpu_moe > 0) {
@@ -469,7 +493,7 @@ static void llama_params_fit_impl(
std::vector<int64_t> targets; // maximum acceptable memory use per device
targets.reserve(nd);
for (size_t id = 0; id < nd; id++) {
targets.push_back(dmds_full[id].free - margin);
targets.push_back(dmds_full[id].free - margins[id]);
LLAMA_LOG_DEBUG("%s: id=%zu, target=%" PRId64 " MiB\n", __func__, id, targets[id]/MiB);
}
@@ -701,11 +725,11 @@ static void llama_params_fit_impl(
enum llama_params_fit_status llama_params_fit(
const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams,
float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides,
size_t margin_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
size_t * margins, uint32_t n_ctx_min, enum ggml_log_level log_level) {
const int64_t t0_us = llama_time_us();
llama_params_fit_status status = LLAMA_PARAMS_FIT_STATUS_SUCCESS;
try {
llama_params_fit_impl(path_model, mparams, cparams, tensor_split, tensor_buft_overrides, margin_s, n_ctx_min, log_level);
llama_params_fit_impl(path_model, mparams, cparams, tensor_split, tensor_buft_overrides, margins, n_ctx_min, log_level);
LLAMA_LOG_INFO("%s: successfully fit params to free device memory\n", __func__);
} catch (const llama_params_fit_exception & e) {
LLAMA_LOG_WARN("%s: failed to fit params to free device memory: %s\n", __func__, e.what());
@@ -794,7 +818,7 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
model.t_start_us = tm.t_start_us;
try {
llama_model_loader ml(fname, splits, params.use_mmap, params.check_tensors, params.no_alloc, params.kv_overrides, params.tensor_buft_overrides);
llama_model_loader ml(fname, splits, params.use_mmap, params.use_direct_io, params.check_tensors, params.no_alloc, params.kv_overrides, params.tensor_buft_overrides);
ml.print_info();

View File

@@ -25,7 +25,6 @@ else()
if (LLAMA_BUILD_SERVER)
add_subdirectory(server)
endif()
add_subdirectory(run)
add_subdirectory(tokenize)
add_subdirectory(tts)
add_subdirectory(mtmd)

View File

@@ -27,7 +27,7 @@ int main(int argc, char ** argv) {
auto mparams = common_model_params_to_llama(params);
auto cparams = common_context_params_to_llama(params);
const llama_params_fit_status status = llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target, params.fit_params_min_ctx,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
if (status != LLAMA_PARAMS_FIT_STATUS_SUCCESS) {
LOG_ERR("%s: failed to fit CLI arguments to free memory, exiting...\n", __func__);

View File

@@ -1,23 +0,0 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
# TODO: avoid copying this code block from common/CMakeLists.txt
set(LLAMA_RUN_EXTRA_LIBS "")
if (LLAMA_CURL)
find_package(CURL REQUIRED)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
set(LLAMA_RUN_EXTRA_LIBS ${LLAMA_RUN_EXTRA_LIBS} ${CURL_LIBRARIES})
endif ()
if(LLAMA_TOOLS_INSTALL)
install(TARGETS ${TARGET} RUNTIME)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "AIX")
# AIX's flock() function comes from libbsd.a
target_link_libraries(${TARGET} PRIVATE -lbsd)
endif()
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_RUN_EXTRA_LIBS})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -1,52 +0,0 @@
# llama.cpp/example/run
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
```bash
llama-run granite3-moe
```
```bash
Description:
Runs a llm
Usage:
llama-run [options] model [prompt]
Options:
-c, --context-size <value>
Context size (default: 2048)
-n, -ngl, --ngl <value>
Number of GPU layers (default: 0)
--temp <value>
Temperature (default: 0.8)
-v, --verbose, --log-verbose
Set verbosity level to infinity (i.e. log all messages, useful for debugging)
-h, --help
Show help message
Commands:
model
Model is a string with an optional prefix of
huggingface:// (hf://), ollama://, https:// or file://.
If no protocol is specified and a file exists in the specified
path, file:// is assumed, otherwise if a file does not exist in
the specified path, ollama:// is assumed. Models that are being
pulled are downloaded with .partial extension while being
downloaded and then renamed as the file without the .partial
extension when complete.
Examples:
llama-run llama3
llama-run ollama://granite-code
llama-run ollama://smollm:135m
llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
llama-run ms://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
llama-run modelscope://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
llama-run https://example.com/some-file1.gguf
llama-run some-file2.gguf
llama-run file://some-file3.gguf
llama-run --ngl 999 some-file4.gguf
llama-run --ngl 999 some-file5.gguf Hello World
```

File diff suppressed because it is too large Load Diff

View File

@@ -1,137 +0,0 @@
/* linenoise.h -- VERSION 1.0
*
* Guerrilla line editing library against the idea that a line editing lib
* needs to be 20,000 lines of C++ code.
*
* See linenoise.cpp for more information.
*
* ------------------------------------------------------------------------
*
* Copyright (c) 2010-2023, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
* Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __LINENOISE_H
#define __LINENOISE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h> /* For size_t. */
#include <stdlib.h>
extern const char * linenoiseEditMore;
/* The linenoiseState structure represents the state during line editing.
* We pass this state to functions implementing specific editing
* functionalities. */
struct linenoiseState {
int in_completion; /* The user pressed TAB and we are now in completion
* mode, so input is handled by completeLine(). */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char * buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char * prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldcolpos; /* Previous refresh cursor column position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refreshed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
};
struct linenoiseCompletions {
size_t len = 0;
char ** cvec = nullptr;
bool to_free = true;
~linenoiseCompletions() {
if (!to_free) {
return;
}
for (size_t i = 0; i < len; ++i) {
free(cvec[i]);
}
free(cvec);
}
};
/* Non blocking API. */
int linenoiseEditStart(struct linenoiseState * l, int stdin_fd, int stdout_fd, char * buf, size_t buflen,
const char * prompt);
const char * linenoiseEditFeed(struct linenoiseState * l);
void linenoiseEditStop(struct linenoiseState * l);
void linenoiseHide(struct linenoiseState * l);
void linenoiseShow(struct linenoiseState * l);
/* Blocking API. */
const char * linenoise(const char * prompt);
void linenoiseFree(void * ptr);
/* Completion API. */
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
typedef const char *(linenoiseHintsCallback) (const char *, int * color, int * bold);
typedef void(linenoiseFreeHintsCallback)(const char *);
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
/* History API. */
int linenoiseHistoryAdd(const char * line);
int linenoiseHistorySetMaxLen(int len);
int linenoiseHistorySave(const char * filename);
int linenoiseHistoryLoad(const char * filename);
/* Other utilities. */
void linenoiseClearScreen(void);
void linenoiseSetMultiLine(int ml);
void linenoisePrintKeyCodes(void);
void linenoiseMaskModeEnable(void);
void linenoiseMaskModeDisable(void);
/* Encoding functions. */
typedef size_t(linenoisePrevCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseNextCharLen)(const char * buf, size_t buf_len, size_t pos, size_t * col_len);
typedef size_t(linenoiseReadCode)(int fd, char * buf, size_t buf_len, int * c);
void linenoiseSetEncodingFunctions(linenoisePrevCharLen * prevCharLenFunc, linenoiseNextCharLen * nextCharLenFunc,
linenoiseReadCode * readCodeFunc);
#ifdef __cplusplus
}
#endif
#endif /* __LINENOISE_H */

File diff suppressed because it is too large Load Diff