mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
134 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
e0c93af2a0 | ||
|
|
423bee462b | ||
|
|
8abcc70a74 | ||
|
|
eaba92c3dc | ||
|
|
6ab881b7c3 | ||
|
|
d838c22bb3 | ||
|
|
25f40ca65f | ||
|
|
015deb9048 | ||
|
|
2ceda3f662 | ||
|
|
44008ce8f9 | ||
|
|
6a9bf2f788 | ||
|
|
faa1bc26ee | ||
|
|
32b17abdb0 | ||
|
|
8bece2eb20 | ||
|
|
a6fd8ca1fe | ||
|
|
c55bce4159 | ||
|
|
1f1e57f2bf | ||
|
|
e9a859db3c | ||
|
|
41e3f02647 | ||
|
|
1efb5f7ae1 | ||
|
|
aeb827a3cc | ||
|
|
91ea44e89b | ||
|
|
0dfcd3b607 | ||
|
|
07a7412a3b | ||
|
|
9f682fb640 | ||
|
|
a3fa035822 | ||
|
|
15818ac44c | ||
|
|
bf38346d13 | ||
|
|
4d5e972673 | ||
|
|
6fdddb4987 | ||
|
|
6156ae5111 | ||
|
|
59377a6c87 | ||
|
|
1239267cc4 | ||
|
|
7a4ca3cbd9 | ||
|
|
b4d05a3d2f | ||
|
|
2dc3ce2166 | ||
|
|
3bc8d2cf23 | ||
|
|
8a98ba4582 | ||
|
|
2634ed207a | ||
|
|
41ea26144e | ||
|
|
89f10baad5 | ||
|
|
3dd95914d0 | ||
|
|
ec6c7421e4 | ||
|
|
1488339138 | ||
|
|
4927795810 | ||
|
|
971facc38e | ||
|
|
d9a2a4bcaa | ||
|
|
dfd6106c84 | ||
|
|
bbada8bfb9 | ||
|
|
13f3ebfae1 | ||
|
|
dabaa2e77a | ||
|
|
2e916f996a | ||
|
|
f3bc98890c | ||
|
|
c3b87cebff | ||
|
|
0562503154 | ||
|
|
83bcdf7217 | ||
|
|
b316895ff9 | ||
|
|
ecbf01d441 | ||
|
|
1025fd2c09 | ||
|
|
c7358ddf64 | ||
|
|
d284baf1b5 | ||
|
|
bd90fc74c3 | ||
|
|
ce38a4db47 | ||
|
|
4fdbc1e4db | ||
|
|
7b7ae857f6 | ||
|
|
84b0a98319 | ||
|
|
b45ef2702c | ||
|
|
f3dd7b8e68 | ||
|
|
eed25bc6b0 | ||
|
|
b33df266d0 | ||
|
|
3bcc990997 | ||
|
|
d4964a7c66 | ||
|
|
50e8962f79 | ||
|
|
f6b533d898 | ||
|
|
72d3b1898a | ||
|
|
ebf5725870 | ||
|
|
0cd7032ca4 | ||
|
|
60368e1d73 | ||
|
|
88d23ad515 | ||
|
|
0a95026da9 | ||
|
|
b7feacf7f3 | ||
|
|
6ad70c5a77 | ||
|
|
631cbfcc7a | ||
|
|
2eee6c866c | ||
|
|
b931f81b5a | ||
|
|
c5c64f72ac | ||
|
|
eef375ce16 | ||
|
|
06961e2876 | ||
|
|
f2571df8b7 | ||
|
|
2b4cbd2834 | ||
|
|
68ac3acb43 | ||
|
|
a5bb8ba4c5 | ||
|
|
c0204a0893 | ||
|
|
be8890e721 | ||
|
|
a83c73a18a | ||
|
|
fc3cdf32ce | ||
|
|
7afdfc9b84 | ||
|
|
94eeb5967c | ||
|
|
b0311c16d2 | ||
|
|
8f80d1b254 | ||
|
|
142cbe2ac6 | ||
|
|
56f3ebf38e | ||
|
|
0c21677e43 | ||
|
|
0440bfd160 | ||
|
|
0bf5636938 | ||
|
|
bcb43163ae | ||
|
|
d9c6ce46f7 | ||
|
|
70d860824a | ||
|
|
080b161995 | ||
|
|
1243f93a2d | ||
|
|
24bc238303 | ||
|
|
16639ba217 | ||
|
|
9981c30130 | ||
|
|
e9fd8dcab4 | ||
|
|
4e5b83b226 | ||
|
|
bb02f74c61 | ||
|
|
8f91ca54ec | ||
|
|
81ab64f3c8 | ||
|
|
8af1f5f430 | ||
|
|
557515be1e | ||
|
|
cb6caca191 | ||
|
|
b5b8fa1c8b | ||
|
|
a14b960bc7 | ||
|
|
091a46cb8d | ||
|
|
a3e812811d | ||
|
|
51fa458a92 | ||
|
|
a5eaa1d6a3 | ||
|
|
e2baf02162 | ||
|
|
e34d6d03b2 | ||
|
|
9c96465f99 | ||
|
|
4e595b250a | ||
|
|
0e4ebeb057 | ||
|
|
8b30840703 | ||
|
|
9eb5bfec1a |
@@ -4,7 +4,7 @@
|
||||
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
|
||||
# `_module.args.pkgs` (defined in this case by flake-parts).
|
||||
perSystem =
|
||||
{ system, ... }:
|
||||
{ lib, system, ... }:
|
||||
{
|
||||
_module.args = {
|
||||
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
|
||||
@@ -33,7 +33,7 @@
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
) (p.meta.licenses or [ p.meta.license ]);
|
||||
) (p.meta.licenses or (lib.toList p.meta.license));
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
llamaVersion,
|
||||
numpy,
|
||||
tqdm,
|
||||
requests,
|
||||
sentencepiece,
|
||||
pyyaml,
|
||||
poetry-core,
|
||||
@@ -20,6 +21,7 @@ buildPythonPackage {
|
||||
tqdm
|
||||
sentencepiece
|
||||
pyyaml
|
||||
requests
|
||||
];
|
||||
src = lib.cleanSource ../../gguf-py;
|
||||
pythonImportsCheck = [
|
||||
|
||||
@@ -7,13 +7,6 @@
|
||||
|
||||
let
|
||||
pythonPackages = python3.pkgs;
|
||||
buildPythonPackage = pythonPackages.buildPythonPackage;
|
||||
numpy = pythonPackages.numpy;
|
||||
tqdm = pythonPackages.tqdm;
|
||||
sentencepiece = pythonPackages.sentencepiece;
|
||||
pyyaml = pythonPackages.pyyaml;
|
||||
poetry-core = pythonPackages.poetry-core;
|
||||
pytestCheckHook = pythonPackages.pytestCheckHook;
|
||||
in
|
||||
|
||||
# We're using `makeScope` instead of just writing out an attrset
|
||||
@@ -23,17 +16,18 @@ in
|
||||
lib.makeScope newScope (self: {
|
||||
inherit llamaVersion;
|
||||
gguf-py = self.callPackage ./package-gguf-py.nix {
|
||||
inherit
|
||||
buildPythonPackage
|
||||
inherit (pythonPackages)
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
poetry-core
|
||||
pyyaml
|
||||
pytestCheckHook
|
||||
requests
|
||||
buildPythonPackage
|
||||
poetry-core
|
||||
;
|
||||
};
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit (pythonPackages) buildPythonPackage poetry-core; };
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
|
||||
14
.github/workflows/build.yml
vendored
14
.github/workflows/build.yml
vendored
@@ -21,7 +21,8 @@ on:
|
||||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
pull_request:
|
||||
@@ -42,7 +43,8 @@ on:
|
||||
'**/*.m',
|
||||
'**/*.metal',
|
||||
'**/*.comp',
|
||||
'**/*.glsl'
|
||||
'**/*.glsl',
|
||||
'**/*.wgsl'
|
||||
]
|
||||
|
||||
concurrency:
|
||||
@@ -291,6 +293,7 @@ jobs:
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
@@ -301,6 +304,7 @@ jobs:
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=OFF
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
@@ -1371,7 +1375,7 @@ jobs:
|
||||
id: update_presets
|
||||
if: ${{ matrix.build == 'arm64-snapdragon' }}
|
||||
run: |
|
||||
cp docs/backend/hexagon/CMakeUserPresets.json .
|
||||
cp docs/backend/snapdragon/CMakeUserPresets.json .
|
||||
|
||||
- name: Build
|
||||
id: ndk_build
|
||||
@@ -1530,7 +1534,7 @@ jobs:
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
@@ -1556,7 +1560,7 @@ jobs:
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf-sve:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
|
||||
2
.github/workflows/check-vendor.yml
vendored
2
.github/workflows/check-vendor.yml
vendored
@@ -19,7 +19,7 @@ on:
|
||||
|
||||
jobs:
|
||||
check-vendor:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
|
||||
steps:
|
||||
- name: Checkout
|
||||
|
||||
2
.github/workflows/close-issue.yml
vendored
2
.github/workflows/close-issue.yml
vendored
@@ -10,7 +10,7 @@ permissions:
|
||||
|
||||
jobs:
|
||||
close-issues:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
|
||||
2
.github/workflows/editorconfig.yml
vendored
2
.github/workflows/editorconfig.yml
vendored
@@ -20,7 +20,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
editorconfig:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
- uses: editorconfig-checker/action-editorconfig-checker@v2
|
||||
|
||||
2
.github/workflows/gguf-publish.yml
vendored
2
.github/workflows/gguf-publish.yml
vendored
@@ -21,7 +21,7 @@ on:
|
||||
jobs:
|
||||
deploy:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
|
||||
2
.github/workflows/labeler.yml
vendored
2
.github/workflows/labeler.yml
vendored
@@ -7,7 +7,7 @@ jobs:
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
steps:
|
||||
- uses: actions/checkout@v6
|
||||
with:
|
||||
|
||||
2
.github/workflows/pre-tokenizer-hashes.yml
vendored
2
.github/workflows/pre-tokenizer-hashes.yml
vendored
@@ -12,7 +12,7 @@ on:
|
||||
|
||||
jobs:
|
||||
pre-tokenizer-hashes:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
|
||||
@@ -20,7 +20,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
python-check-requirements:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
name: check-requirements
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
|
||||
2
.github/workflows/python-lint.yml
vendored
2
.github/workflows/python-lint.yml
vendored
@@ -15,7 +15,7 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
flake8-lint:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
name: Lint
|
||||
steps:
|
||||
- name: Check out source repository
|
||||
|
||||
4
.github/workflows/python-type-check.yml
vendored
4
.github/workflows/python-type-check.yml
vendored
@@ -29,9 +29,7 @@ jobs:
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: "3.11"
|
||||
- name: Install Python dependencies
|
||||
# TODO: use a venv
|
||||
run: pip install -r requirements/requirements-all.txt
|
||||
pip-install: -r requirements/requirements-all.txt
|
||||
- name: Type-check with Pyright
|
||||
uses: jakebailey/pyright-action@v2
|
||||
with:
|
||||
|
||||
2
.github/workflows/release.yml
vendored
2
.github/workflows/release.yml
vendored
@@ -897,7 +897,7 @@ jobs:
|
||||
for (let file of await fs.readdirSync('./release')) {
|
||||
if (path.extname(file) === '.zip' || file.endsWith('.tar.gz')) {
|
||||
console.log('uploadReleaseAsset', file);
|
||||
await github.repos.uploadReleaseAsset({
|
||||
await github.rest.repos.uploadReleaseAsset({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
release_id: release_id,
|
||||
|
||||
18
.github/workflows/server.yml
vendored
18
.github/workflows/server.yml
vendored
@@ -36,7 +36,7 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow
|
||||
build_type: [RelWithDebInfo]
|
||||
include:
|
||||
- build_type: Release
|
||||
@@ -45,7 +45,7 @@ jobs:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Dependencies
|
||||
@@ -72,7 +72,15 @@ jobs:
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON
|
||||
cmake -B build \
|
||||
-DLLAMA_BUILD_BORINGSSL=ON \
|
||||
-DGGML_SCHED_NO_REALLOC=ON \
|
||||
-DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \
|
||||
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
|
||||
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
@@ -88,7 +96,7 @@ jobs:
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
export ${{ matrix.extra_args }}
|
||||
@@ -108,7 +116,7 @@ jobs:
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON
|
||||
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
|
||||
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
|
||||
2
.github/workflows/update-ops-docs.yml
vendored
2
.github/workflows/update-ops-docs.yml
vendored
@@ -14,7 +14,7 @@ on:
|
||||
|
||||
jobs:
|
||||
update-ops-docs:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-slim
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
|
||||
13
.github/workflows/winget.yml
vendored
13
.github/workflows/winget.yml
vendored
@@ -28,16 +28,17 @@ jobs:
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
});
|
||||
console.log("Latest release:", releases[0].tag_name);
|
||||
return releases[0].tag_name;
|
||||
const { tag_name: version, assets: assets } = releases.find(({assets}) => assets.find(asset => asset.name.includes('win-vulkan')));
|
||||
const { browser_download_url: asset_url } = assets.find(asset => asset.name.includes('win-vulkan'));
|
||||
console.log("Latest release:", version);
|
||||
core.setOutput('VERSION', version);
|
||||
core.setOutput('ASSETURL', asset_url);
|
||||
|
||||
- name: Update manifest
|
||||
env:
|
||||
VERSION: ${{ steps.find_latest_release.outputs.result }}
|
||||
run: |
|
||||
echo "Updating manifest..."
|
||||
komac update --version ${{ env.VERSION }} \
|
||||
--urls "https://github.com/ggml-org/llama.cpp/releases/download/${{ env.VERSION }}/llama-${{ env.VERSION }}-bin-win-vulkan-x64.zip" \
|
||||
komac update --version ${{ steps.find_latest_release.outputs.VERSION }} \
|
||||
--urls "${{ steps.find_latest_release.outputs.ASSETURL }}" \
|
||||
--token ${{ secrets.WINGET_GITHUB_TOKEN }} \
|
||||
--submit \
|
||||
ggml.llamacpp
|
||||
|
||||
@@ -164,29 +164,6 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include("cmake/license.cmake")
|
||||
license_add_file("llama.cpp" "LICENSE")
|
||||
|
||||
|
||||
@@ -18,6 +18,7 @@
|
||||
/common/jinja/ @ngxson @CISC @aldehir
|
||||
/common/llguidance.* @ggerganov
|
||||
/common/log.* @ggerganov
|
||||
/common/ngram-map.* @srogmann
|
||||
/common/peg-parser.* @aldehir
|
||||
/common/sampling.* @ggerganov
|
||||
/common/speculative.* @ggerganov
|
||||
@@ -67,6 +68,7 @@
|
||||
/ggml/src/ggml-rpc/ @rgerganov
|
||||
/ggml/src/ggml-threading.* @ggerganov
|
||||
/ggml/src/ggml-vulkan/ @0cc4m
|
||||
/ggml/src/ggml-virtgpu/ @kpouget
|
||||
/ggml/src/ggml-webgpu/ @reeselevine
|
||||
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
|
||||
/ggml/src/ggml.c @ggerganov
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023-2024 The ggml authors
|
||||
Copyright (c) 2023-2026 The ggml authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
@@ -132,6 +132,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
|
||||
- [x] [RWKV-7](https://huggingface.co/collections/shoumenchougou/rwkv7-gxx-gguf)
|
||||
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
|
||||
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
|
||||
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
|
||||
@@ -212,6 +213,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
|
||||
- [LARS](https://github.com/abgulati/LARS) (AGPL)
|
||||
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
|
||||
- [LlamaLib](https://github.com/undreamai/LlamaLib) (Apache-2.0)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
|
||||
27
ci/run.sh
27
ci/run.sh
@@ -635,6 +635,29 @@ function gg_check_build_requirements {
|
||||
fi
|
||||
}
|
||||
|
||||
function gg_run_test_backend_ops_cpu {
|
||||
cd ${SRC}
|
||||
|
||||
cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_test_backend_ops_cpu {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs test-backend-ops for CPU backend\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '\n'
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
export LLAMA_LOG_PREFIX=1
|
||||
@@ -663,6 +686,10 @@ ret=0
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run test_backend_ops_cpu
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run embd_bge_small
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
||||
@@ -32,4 +32,27 @@ function(llama_add_compile_flags)
|
||||
set(CXX_FLAGS "" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -73,6 +73,10 @@ add_library(${TARGET} STATIC
|
||||
log.h
|
||||
ngram-cache.cpp
|
||||
ngram-cache.h
|
||||
ngram-map.cpp
|
||||
ngram-map.h
|
||||
ngram-mod.cpp
|
||||
ngram-mod.h
|
||||
peg-parser.cpp
|
||||
peg-parser.h
|
||||
preset.cpp
|
||||
|
||||
149
common/arg.cpp
149
common/arg.cpp
@@ -6,6 +6,7 @@
|
||||
#include "json-schema-to-grammar.h"
|
||||
#include "log.h"
|
||||
#include "sampling.h"
|
||||
#include "speculative.h"
|
||||
#include "preset.h"
|
||||
|
||||
// fix problem with std::min and std::max
|
||||
@@ -579,14 +580,14 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
|
||||
params.mmproj = res.mmproj;
|
||||
}
|
||||
// only download mmproj if the current example is using it
|
||||
for (auto & ex : mmproj_examples) {
|
||||
for (const auto & ex : mmproj_examples) {
|
||||
if (ctx_arg.ex == ex) {
|
||||
common_params_handle_model(params.mmproj, params.hf_token, params.offline);
|
||||
break;
|
||||
}
|
||||
}
|
||||
common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
|
||||
common_params_handle_model(params.speculative.mparams_dft, params.hf_token, params.offline);
|
||||
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
|
||||
}
|
||||
|
||||
// model is required (except for server)
|
||||
@@ -1216,21 +1217,25 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-lcs", "--lookup-cache-static"}, "FNAME",
|
||||
"path to static lookup cache to use for lookup decoding (not updated by generation)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.lookup_cache_static = value;
|
||||
params.speculative.lookup_cache_static = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-lcd", "--lookup-cache-dynamic"}, "FNAME",
|
||||
"path to dynamic lookup cache to use for lookup decoding (updated by generation)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.lookup_cache_dynamic = value;
|
||||
params.speculative.lookup_cache_dynamic = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
|
||||
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-c", "--ctx-size"}, "N",
|
||||
string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
|
||||
[](common_params & params, int value) {
|
||||
params.n_ctx = value;
|
||||
if (value == 0) {
|
||||
// disable context reduction in llama_params_fit if the user explicitly requests the full context size:
|
||||
params.fit_params_min_ctx = UINT32_MAX;
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_CTX_SIZE"));
|
||||
add_opt(common_arg(
|
||||
@@ -1291,11 +1296,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
|
||||
add_opt(common_arg(
|
||||
{"-kvu", "--kv-unified"},
|
||||
{"-no-kvu", "--no-kv-unified"},
|
||||
"use single unified KV buffer shared across all sequences (default: enabled if number of slots is auto)",
|
||||
[](common_params & params) {
|
||||
params.kv_unified = true;
|
||||
[](common_params & params, bool value) {
|
||||
params.kv_unified = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED}));
|
||||
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH}));
|
||||
add_opt(common_arg(
|
||||
{"--context-shift"},
|
||||
{"--no-context-shift"},
|
||||
@@ -1573,7 +1579,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--temp"}, "N",
|
||||
string_format("temperature (default: %.1f)", (double)params.sampling.temp),
|
||||
string_format("temperature (default: %.2f)", (double)params.sampling.temp),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.temp = std::stof(value);
|
||||
params.sampling.temp = std::max(params.sampling.temp, 0.0f);
|
||||
@@ -1590,7 +1596,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam().set_env("LLAMA_ARG_TOP_K"));
|
||||
add_opt(common_arg(
|
||||
{"--top-p"}, "N",
|
||||
string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
string_format("top-p sampling (default: %.2f, 1.0 = disabled)", (double)params.sampling.top_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_TOP_P;
|
||||
@@ -1598,7 +1604,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--min-p"}, "N",
|
||||
string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
string_format("min-p sampling (default: %.2f, 0.0 = disabled)", (double)params.sampling.min_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.min_p = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIN_P;
|
||||
@@ -1606,14 +1612,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--top-nsigma"}, "N",
|
||||
string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
|
||||
string_format("top-n-sigma sampling (default: %.2f, -1.0 = disabled)", params.sampling.top_n_sigma),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.top_n_sigma = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-probability"}, "N",
|
||||
string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
string_format("xtc probability (default: %.2f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_probability = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_PROBABILITY;
|
||||
@@ -1621,7 +1627,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--xtc-threshold"}, "N",
|
||||
string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
string_format("xtc threshold (default: %.2f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.xtc_threshold = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_XTC_THRESHOLD;
|
||||
@@ -1629,7 +1635,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--typical"}, "N",
|
||||
string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
|
||||
string_format("locally typical sampling, parameter p (default: %.2f, 1.0 = disabled)", (double)params.sampling.typ_p),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.typ_p = std::stof(value);
|
||||
}
|
||||
@@ -1648,7 +1654,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--repeat-penalty"}, "N",
|
||||
string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
string_format("penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.penalty_repeat = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_PENALTY_REPEAT;
|
||||
@@ -1656,21 +1662,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--presence-penalty"}, "N",
|
||||
string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
|
||||
string_format("repeat alpha presence penalty (default: %.2f, 0.0 = disabled)", (double)params.sampling.penalty_present),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.penalty_present = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--frequency-penalty"}, "N",
|
||||
string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
|
||||
string_format("repeat alpha frequency penalty (default: %.2f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.penalty_freq = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dry-multiplier"}, "N",
|
||||
string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
|
||||
string_format("set DRY sampling multiplier (default: %.2f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.dry_multiplier = std::stof(value);
|
||||
}
|
||||
@@ -1751,14 +1757,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-range"}, "N",
|
||||
string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
|
||||
string_format("dynamic temperature range (default: %.2f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.dynatemp_range = std::stof(value);
|
||||
}
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--dynatemp-exp"}, "N",
|
||||
string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
|
||||
string_format("dynamic temperature exponent (default: %.2f)", (double)params.sampling.dynatemp_exponent),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.dynatemp_exponent = std::stof(value);
|
||||
}
|
||||
@@ -1774,7 +1780,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-lr"}, "N",
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
|
||||
string_format("Mirostat learning rate, parameter eta (default: %.2f)", (double)params.sampling.mirostat_eta),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_eta = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA;
|
||||
@@ -1782,7 +1788,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_sparam());
|
||||
add_opt(common_arg(
|
||||
{"--mirostat-ent"}, "N",
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
|
||||
string_format("Mirostat target entropy, parameter tau (default: %.2f)", (double)params.sampling.mirostat_tau),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.sampling.mirostat_tau = std::stof(value);
|
||||
params.sampling.user_sampling_config |= common_params_sampling_config::COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_TAU;
|
||||
@@ -1916,28 +1922,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
|
||||
add_opt(common_arg(
|
||||
{"--yarn-ext-factor"}, "N",
|
||||
string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
|
||||
string_format("YaRN: extrapolation mix factor (default: %.2f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.yarn_ext_factor = std::stof(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
|
||||
add_opt(common_arg(
|
||||
{"--yarn-attn-factor"}, "N",
|
||||
string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
|
||||
string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.2f)", (double)params.yarn_attn_factor),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.yarn_attn_factor = std::stof(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
|
||||
add_opt(common_arg(
|
||||
{"--yarn-beta-slow"}, "N",
|
||||
string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
|
||||
string_format("YaRN: high correction dim or alpha (default: %.2f)", (double)params.yarn_beta_slow),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.yarn_beta_slow = std::stof(value);
|
||||
}
|
||||
).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
|
||||
add_opt(common_arg(
|
||||
{"--yarn-beta-fast"}, "N",
|
||||
string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
|
||||
string_format("YaRN: low correction dim or beta (default: %.2f)", (double)params.yarn_beta_fast),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.yarn_beta_fast = std::stof(value);
|
||||
}
|
||||
@@ -2194,18 +2200,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
add_opt(common_arg(
|
||||
{"--mmap"},
|
||||
{"--no-mmap"},
|
||||
string_format("whether to memory-map model. Explicitly enabling mmap disables direct-io. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
|
||||
string_format("whether to memory-map model. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
|
||||
[](common_params & params, bool value) {
|
||||
params.use_mmap = value;
|
||||
if (value) {
|
||||
params.use_direct_io = false; // disable direct io when mmap is explicitly enabled
|
||||
}
|
||||
}
|
||||
).set_env("LLAMA_ARG_MMAP"));
|
||||
add_opt(common_arg(
|
||||
{"-dio", "--direct-io"},
|
||||
{"-ndio", "--no-direct-io"},
|
||||
string_format("use DirectIO if available. Takes precedence over --mmap (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
|
||||
string_format("use DirectIO if available. (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
|
||||
[](common_params & params, bool value) {
|
||||
params.use_direct_io = value;
|
||||
}
|
||||
@@ -2561,7 +2564,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
|
||||
"Same as --hf-repo, but for the draft model (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model.hf_repo = value;
|
||||
params.speculative.mparams_dft.hf_repo = value;
|
||||
}
|
||||
).set_env("LLAMA_ARG_HFD_REPO"));
|
||||
add_opt(common_arg(
|
||||
@@ -3331,14 +3334,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_DRAFT_MIN"));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-split"}, "P",
|
||||
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
|
||||
string_format("speculative decoding split probability (default: %.2f)", (double)params.speculative.p_split),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_split = std::stof(value);
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
|
||||
add_opt(common_arg(
|
||||
{"--draft-p-min"}, "P",
|
||||
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
|
||||
string_format("minimum speculative decoding probability (greedy) (default: %.2f)", (double)params.speculative.p_min),
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.p_min = std::stof(value);
|
||||
}
|
||||
@@ -3382,7 +3385,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
{"-md", "--model-draft"}, "FNAME",
|
||||
"draft model for speculative decoding (default: unused)",
|
||||
[](common_params & params, const std::string & value) {
|
||||
params.speculative.model.path = value;
|
||||
params.speculative.mparams_dft.path = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_MODEL_DRAFT"));
|
||||
add_opt(common_arg(
|
||||
@@ -3392,6 +3395,68 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.replacements.push_back({ tgt, dft });
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]",
|
||||
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
|
||||
common_speculative_type_to_str(params.speculative.type).c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
if (value == "none") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NONE;
|
||||
} else if (value == "ngram-cache") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_CACHE;
|
||||
} else if (value == "ngram-simple") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE;
|
||||
} else if (value == "ngram-map-k") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
|
||||
} else if (value == "ngram-map-k4v") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
|
||||
} else if (value == "ngram-mod") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MOD;
|
||||
} else {
|
||||
throw std::invalid_argument("unknown speculative decoding type without draft model");
|
||||
}
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-size-n"}, "N",
|
||||
string_format("ngram size N for ngram-simple/ngram-map speculative decoding, length of lookup n-gram (default: %d)", params.speculative.ngram_size_n),
|
||||
[](common_params & params, int value) {
|
||||
if (value < 1 || value > 1024) {
|
||||
throw std::invalid_argument("ngram size N must be between 1 and 1024 inclusive");
|
||||
}
|
||||
params.speculative.ngram_size_n = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-size-m"}, "N",
|
||||
string_format("ngram size M for ngram-simple/ngram-map speculative decoding, length of draft m-gram (default: %d)", params.speculative.ngram_size_m),
|
||||
[](common_params & params, int value) {
|
||||
if (value < 1 || value > 1024) {
|
||||
throw std::invalid_argument("ngram size M must be between 1 and 1024 inclusive");
|
||||
}
|
||||
params.speculative.ngram_size_m = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-check-rate"}, "N",
|
||||
string_format("ngram check rate for ngram-simple/ngram-map speculative decoding (default: %d)", params.speculative.ngram_check_rate),
|
||||
[](common_params & params, int value) {
|
||||
if (value < 1) {
|
||||
throw std::invalid_argument("ngram check rate must be at least 1");
|
||||
}
|
||||
params.speculative.ngram_check_rate = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-min-hits"}, "N",
|
||||
string_format("minimum hits for ngram-map speculative decoding (default: %d)", params.speculative.ngram_min_hits),
|
||||
[](common_params & params, int value) {
|
||||
if (value < 1) {
|
||||
throw std::invalid_argument("ngram min hits must be at least 1");
|
||||
}
|
||||
params.speculative.ngram_min_hits = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
|
||||
string_format(
|
||||
@@ -3618,8 +3683,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.mparams_dft.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.mparams_dft.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
@@ -3634,8 +3699,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
[](common_params & params) {
|
||||
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
|
||||
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
|
||||
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.speculative.mparams_dft.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
|
||||
params.speculative.mparams_dft.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
|
||||
params.port = 8012;
|
||||
params.n_ubatch = 1024;
|
||||
params.n_batch = 1024;
|
||||
|
||||
@@ -1630,7 +1630,7 @@ common_chat_msg common_chat_parse(const std::string & input, bool is_partial, co
|
||||
}
|
||||
auto msg = builder.result();
|
||||
if (!is_partial) {
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat({msg}).at(0).dump().c_str());
|
||||
}
|
||||
return msg;
|
||||
}
|
||||
@@ -1663,7 +1663,7 @@ common_chat_msg common_chat_peg_parse(const common_peg_arena & parser, const std
|
||||
mapper.from_ast(ctx.ast, result);
|
||||
}
|
||||
if (!is_partial) {
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat<json>({msg}).at(0).dump().c_str());
|
||||
LOG_DBG("Parsed message: %s\n", common_chat_msgs_to_json_oaicompat({msg}).at(0).dump().c_str());
|
||||
}
|
||||
return msg;
|
||||
}
|
||||
|
||||
398
common/chat.cpp
398
common/chat.cpp
@@ -7,9 +7,6 @@
|
||||
#include "log.h"
|
||||
#include "regex-partial.h"
|
||||
|
||||
// #include <minja/chat-template.hpp>
|
||||
// #include <minja/minja.hpp>
|
||||
|
||||
#include "jinja/parser.h"
|
||||
#include "jinja/value.h"
|
||||
#include "jinja/runtime.h"
|
||||
@@ -56,39 +53,73 @@ static bool has_content_or_tool_calls(const common_chat_msg & msg) {
|
||||
return !msg.content.empty() || !msg.tool_calls.empty();
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_chat_msg::to_json_oaicompat() const
|
||||
{
|
||||
json message {
|
||||
{"role", "assistant"},
|
||||
};
|
||||
if (!reasoning_content.empty()) {
|
||||
message["reasoning_content"] = reasoning_content;
|
||||
json common_chat_msg::to_json_oaicompat(bool concat_typed_text) const {
|
||||
if (!content.empty() && !content_parts.empty()) {
|
||||
throw std::runtime_error("Cannot specify both content and content_parts");
|
||||
}
|
||||
if (content.empty() && !tool_calls.empty()) {
|
||||
message["content"] = json();
|
||||
json jmsg {
|
||||
{"role", role},
|
||||
};
|
||||
if (!content.empty()) {
|
||||
jmsg["content"] = content;
|
||||
} else if (!content_parts.empty()) {
|
||||
if (concat_typed_text) {
|
||||
std::string text;
|
||||
for (const auto & part : content_parts) {
|
||||
if (part.type != "text") {
|
||||
LOG_WRN("Ignoring content part type: %s\n", part.type.c_str());
|
||||
continue;
|
||||
}
|
||||
if (!text.empty()) {
|
||||
text += '\n';
|
||||
}
|
||||
text += part.text;
|
||||
}
|
||||
jmsg["content"] = text;
|
||||
} else {
|
||||
auto & parts = jmsg["content"] = json::array();
|
||||
for (const auto & part : content_parts) {
|
||||
parts.push_back({
|
||||
{"type", part.type},
|
||||
{"text", part.text},
|
||||
});
|
||||
}
|
||||
}
|
||||
} else {
|
||||
message["content"] = content;
|
||||
jmsg["content"] = "";
|
||||
}
|
||||
if (!reasoning_content.empty()) {
|
||||
jmsg["reasoning_content"] = reasoning_content;
|
||||
}
|
||||
if (!tool_name.empty()) {
|
||||
jmsg["name"] = tool_name;
|
||||
}
|
||||
if (!tool_call_id.empty()) {
|
||||
jmsg["tool_call_id"] = tool_call_id;
|
||||
}
|
||||
if (!tool_calls.empty()) {
|
||||
auto arr = json::array();
|
||||
for (const auto & tc : tool_calls) {
|
||||
arr.push_back({
|
||||
jmsg["tool_calls"] = json::array();
|
||||
auto & jtool_calls = jmsg["tool_calls"];
|
||||
for (const auto & tool_call : tool_calls) {
|
||||
json tc {
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"name", tc.name},
|
||||
{"arguments", tc.arguments},
|
||||
{"name", tool_call.name},
|
||||
{"arguments", tool_call.arguments},
|
||||
}},
|
||||
{"id", tc.id},
|
||||
// // Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
|
||||
// // We only generate a random id for the ones that don't generate one by themselves
|
||||
// // (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
|
||||
// {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
|
||||
});
|
||||
};
|
||||
if (!tool_call.id.empty()) {
|
||||
tc["id"] = tool_call.id;
|
||||
}
|
||||
// Some templates generate and require an id (sometimes in a very specific format, e.g. Mistral Nemo).
|
||||
// We only generate a random id for the ones that don't generate one by themselves
|
||||
// (they also won't get to see it as their template likely doesn't use it, so it's all for the client)
|
||||
// {"id", tc.id.empty() ? gen_tool_call_id() : tc.id},
|
||||
jtool_calls.push_back(tc);
|
||||
}
|
||||
message["tool_calls"] = arr;
|
||||
}
|
||||
return message;
|
||||
|
||||
return jmsg;
|
||||
}
|
||||
|
||||
std::vector<common_chat_msg_diff> common_chat_msg_diff::compute_diffs(const common_chat_msg & msg_prv, const common_chat_msg & msg_new) {
|
||||
@@ -256,7 +287,6 @@ bool common_chat_templates_support_enable_thinking(const common_chat_templates *
|
||||
return rendered_no_thinking.prompt != rendered_with_thinking.prompt;
|
||||
}
|
||||
|
||||
template <>
|
||||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messages) {
|
||||
std::vector<common_chat_msg> msgs;
|
||||
|
||||
@@ -350,80 +380,15 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
return msgs;
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
|
||||
json messages = json::array();
|
||||
for (const auto & msg : msgs) {
|
||||
if (!msg.content.empty() && !msg.content_parts.empty()) {
|
||||
throw std::runtime_error("Cannot specify both content and content_parts");
|
||||
}
|
||||
json jmsg {
|
||||
{"role", msg.role},
|
||||
};
|
||||
if (!msg.content.empty()) {
|
||||
jmsg["content"] = msg.content;
|
||||
} else if (!msg.content_parts.empty()) {
|
||||
if (concat_typed_text) {
|
||||
std::string text;
|
||||
for (const auto & part : msg.content_parts) {
|
||||
if (part.type != "text") {
|
||||
LOG_WRN("Ignoring content part type: %s\n", part.type.c_str());
|
||||
continue;
|
||||
}
|
||||
if (!text.empty()) {
|
||||
text += '\n';
|
||||
}
|
||||
text += part.text;
|
||||
}
|
||||
jmsg["content"] = text;
|
||||
} else {
|
||||
auto & parts = jmsg["content"] = json::array();
|
||||
for (const auto & part : msg.content_parts) {
|
||||
parts.push_back({
|
||||
{"type", part.type},
|
||||
{"text", part.text},
|
||||
});
|
||||
}
|
||||
}
|
||||
} else {
|
||||
jmsg["content"] = "";
|
||||
}
|
||||
if (!msg.reasoning_content.empty()) {
|
||||
jmsg["reasoning_content"] = msg.reasoning_content;
|
||||
}
|
||||
if (!msg.tool_name.empty()) {
|
||||
jmsg["name"] = msg.tool_name;
|
||||
}
|
||||
if (!msg.tool_call_id.empty()) {
|
||||
jmsg["tool_call_id"] = msg.tool_call_id;
|
||||
}
|
||||
if (!msg.tool_calls.empty()) {
|
||||
auto & tool_calls = jmsg["tool_calls"] = json::array();
|
||||
for (const auto & tool_call : msg.tool_calls) {
|
||||
json tc {
|
||||
{"type", "function"},
|
||||
{"function", {
|
||||
{"name", tool_call.name},
|
||||
{"arguments", tool_call.arguments},
|
||||
}},
|
||||
};
|
||||
if (!tool_call.id.empty()) {
|
||||
tc["id"] = tool_call.id;
|
||||
}
|
||||
tool_calls.push_back(tc);
|
||||
}
|
||||
}
|
||||
json jmsg = msg.to_json_oaicompat(concat_typed_text);
|
||||
messages.push_back(jmsg);
|
||||
}
|
||||
return messages;
|
||||
}
|
||||
|
||||
template <>
|
||||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const std::string & messages) {
|
||||
return common_chat_msgs_parse_oaicompat(json::parse(messages));
|
||||
}
|
||||
|
||||
template <>
|
||||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & tools) {
|
||||
std::vector<common_chat_tool> result;
|
||||
|
||||
@@ -459,12 +424,6 @@ std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & too
|
||||
return result;
|
||||
}
|
||||
|
||||
template <>
|
||||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const std::string & tools) {
|
||||
return common_chat_tools_parse_oaicompat(json::parse(tools));
|
||||
}
|
||||
|
||||
template <>
|
||||
json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools) {
|
||||
if (tools.empty()) {
|
||||
return json();
|
||||
@@ -484,7 +443,7 @@ json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & t
|
||||
return result;
|
||||
}
|
||||
|
||||
template <> json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
|
||||
json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff) {
|
||||
json delta = json::object();
|
||||
if (!diff.reasoning_content_delta.empty()) {
|
||||
delta["reasoning_content"] = diff.reasoning_content_delta;
|
||||
@@ -812,10 +771,12 @@ static std::string apply(
|
||||
|
||||
nlohmann::ordered_json inp = nlohmann::ordered_json{
|
||||
{"messages", messages_override.has_value() ? *messages_override : inputs.messages},
|
||||
{"tools", tools_override.has_value() ? *tools_override : inputs.tools},
|
||||
{"bos_token", tmpl.bos_token()},
|
||||
{"eos_token", tmpl.eos_token()},
|
||||
};
|
||||
if (tools_override.has_value() || !inputs.tools.empty()) {
|
||||
inp["tools"] = tools_override.has_value() ? *tools_override : inputs.tools;
|
||||
}
|
||||
if (inputs.extra_context.is_object()) {
|
||||
// TODO: do we need to merge, or replacing is fine?
|
||||
for (const auto & [k, v] : inputs.extra_context.items()) {
|
||||
@@ -831,9 +792,6 @@ static std::string apply(
|
||||
if (inputs.add_generation_prompt) {
|
||||
inp["add_generation_prompt"] = true;
|
||||
}
|
||||
if (inp["tools"].is_null()) {
|
||||
inp["tools"] = json::array();
|
||||
}
|
||||
|
||||
jinja::global_from_json(ctx, inp, inputs.mark_input);
|
||||
|
||||
@@ -2260,12 +2218,11 @@ static common_chat_params common_chat_params_init_glm_4_5(const common_chat_temp
|
||||
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
LOG_DBG("%s\n", __func__);
|
||||
common_chat_params data;
|
||||
const std::optional<json> tools_override = json();
|
||||
const std::optional<json> additional_context = json {
|
||||
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
|
||||
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
|
||||
};
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, tools_override, additional_context);
|
||||
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override =*/ std::nullopt, additional_context);
|
||||
if (inputs.tools.is_array() && !inputs.tools.empty()) {
|
||||
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
@@ -2614,20 +2571,165 @@ static common_chat_params common_chat_params_init_granite(const common_chat_temp
|
||||
static common_chat_params common_chat_params_init_solar_open(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// TODO: Reasoning effort
|
||||
json additional_context = {};
|
||||
// Copy `reasoning_content` to `reasoning`
|
||||
auto adjusted_messages = json::array();
|
||||
for (const auto & msg : inputs.messages) {
|
||||
if (msg.contains("reasoning_content") && msg.at("reasoning_content").is_string()) {
|
||||
auto adjusted_message = msg;
|
||||
adjusted_message["reasoning"] = msg.at("reasoning_content");
|
||||
adjusted_message.erase("reasoning_content");
|
||||
adjusted_messages.push_back(adjusted_message);
|
||||
} else {
|
||||
adjusted_messages.push_back(msg);
|
||||
}
|
||||
}
|
||||
|
||||
data.prompt = apply(tmpl, inputs, std::nullopt, std::nullopt, additional_context);
|
||||
data.format = COMMON_CHAT_FORMAT_SOLAR_OPEN;
|
||||
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
|
||||
auto include_grammar = true;
|
||||
|
||||
auto prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
|
||||
|
||||
// Check if we need to replace the flush token with end token during inference and without generation prompt.
|
||||
if (inputs.is_inference && !inputs.add_generation_prompt) {
|
||||
static constexpr std::string_view return_token = "<|flush|>";
|
||||
static constexpr std::string_view end_token = "<|end|>";
|
||||
if (size_t pos = prompt.rfind(return_token); pos != std::string::npos) {
|
||||
prompt.replace(pos, return_token.length(), end_token);
|
||||
}
|
||||
}
|
||||
|
||||
data.prompt = prompt;
|
||||
data.format = COMMON_CHAT_FORMAT_PEG_NATIVE;
|
||||
data.preserved_tokens = {
|
||||
"<|think|>",
|
||||
"<|content|>",
|
||||
"<|begin|>",
|
||||
"<|end|>",
|
||||
"<|tool_calls|>",
|
||||
"<|tool_call:begin|>",
|
||||
"<|tool_call:end|>",
|
||||
"<|tool_call:name|>",
|
||||
"<|tool_call:args|>",
|
||||
};
|
||||
|
||||
// TODO: Tool calling
|
||||
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
|
||||
auto lit_think = p.atomic(p.literal("<|think|>"));
|
||||
auto lit_assistant_begin = p.atomic(p.literal("<|begin|>assistant"));
|
||||
auto lit_content = p.atomic(p.literal("<|content|>"));
|
||||
auto lit_end = p.atomic(p.literal("<|end|>"));
|
||||
auto parser_until_end = p.until("<|end|>");
|
||||
|
||||
// reasoning <- "<|think|>" (!"<|end|>" .)*
|
||||
auto parser_reasoning = p.rule("reasoning", lit_think + p.reasoning(parser_until_end));
|
||||
|
||||
// content <- "<|content|>" (!"<|end|>" .)*
|
||||
auto parser_content = p.rule("content", lit_content + p.content(parser_until_end));
|
||||
|
||||
// wrap_choice(items) <- item-choice wrapped*
|
||||
// item-choice <- items[0] / ... / items[n]
|
||||
// wrapped <- "<|end|><|begin|>assistant" item-choice
|
||||
auto wrap_choice = [&](const std::vector<common_peg_parser> & items) {
|
||||
auto choice = p.choice(items);
|
||||
return choice + p.zero_or_more(lit_end + lit_assistant_begin + choice);
|
||||
};
|
||||
|
||||
// wrap_seq(items) <- item[0] "<|end|><|begin|>assistant" item[1] ...
|
||||
auto wrap_seq = [&](const std::vector<common_peg_parser> & items) {
|
||||
auto seq = p.sequence();
|
||||
for (auto i = 0u; i < items.size(); i++) {
|
||||
if (i == 0) {
|
||||
seq += items[i];
|
||||
continue;
|
||||
}
|
||||
seq += lit_end + lit_assistant_begin + items[i];
|
||||
}
|
||||
return seq;
|
||||
};
|
||||
|
||||
// Response format parser
|
||||
if (inputs.json_schema.is_object() && !inputs.json_schema.empty()) {
|
||||
auto parser_response_format = lit_content + p.content(p.schema(p.json(), "response-format", inputs.json_schema));
|
||||
return p.choice({
|
||||
wrap_seq({parser_reasoning, parser_response_format}),
|
||||
wrap_seq({parser_response_format})
|
||||
});
|
||||
}
|
||||
|
||||
auto lit_tool_call_begin = p.literal("<|tool_call:begin|>");
|
||||
auto lit_tool_call_name = p.literal("<|tool_call:name|>");
|
||||
auto lit_tool_call_args = p.literal("<|tool_call:args|>");
|
||||
auto lit_tool_call_end = p.literal("<|tool_call:end|>");
|
||||
|
||||
// Tool call parser
|
||||
if (has_tools && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||||
auto parser_tool_call = p.choice();
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
std::string name = function.at("name");
|
||||
const auto & schema = function.at("parameters");
|
||||
|
||||
// tool(name, schema) <- name "<|tool_call:args|>" schema
|
||||
parser_tool_call |= p.rule("tool-" + name,
|
||||
p.atomic(p.tool_name(p.literal(name)) + lit_tool_call_args)
|
||||
+ p.tool_args(p.schema(p.json(), "tool-" + name + "-schema", schema)));
|
||||
});
|
||||
|
||||
auto min_calls = inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_REQUIRED ? 1 : 0;
|
||||
auto max_calls = inputs.parallel_tool_calls ? -1 : 1;
|
||||
|
||||
// tool-calls <- "<|tool_calls|>" tool-call+
|
||||
// tool-call <- "<|tool_call:begin|> call-id "<|tool_call:name|>" &([^<]+ "<|tool_call:args|>") tool-choice "<|tool_call:end|>"
|
||||
// call-id <- [a-zA-Z0-9_-]+
|
||||
// tool-choice <- tool(t[0].name, t[0].schema) / ... / tool(t[n].name, t[n].schema)
|
||||
auto parser_tool_calls = p.trigger_rule("tool-calls",
|
||||
p.atomic(p.literal("<|tool_calls|>"))
|
||||
+ p.repeat(
|
||||
p.tool_open(
|
||||
lit_tool_call_begin
|
||||
+ p.tool_id(p.chars("[a-zA-Z0-9_-]", 1, -1))
|
||||
+ lit_tool_call_name
|
||||
+ p.peek(p.chars("[^<]", 1, -1) + lit_tool_call_args))
|
||||
+ parser_tool_call
|
||||
+ p.tool_close(lit_tool_call_end),
|
||||
/* min = */ 1,
|
||||
/* max = */ max_calls));
|
||||
|
||||
if (min_calls == 1) {
|
||||
// If required, then try any combination of the reasoning, content, and tool call
|
||||
return p.choice({
|
||||
wrap_seq({parser_reasoning, parser_content, parser_tool_calls}),
|
||||
wrap_seq({parser_reasoning, parser_tool_calls}),
|
||||
wrap_seq({parser_content, parser_tool_calls}),
|
||||
wrap_seq({parser_tool_calls})
|
||||
});
|
||||
}
|
||||
|
||||
return wrap_choice({parser_reasoning, parser_content, parser_tool_calls});
|
||||
}
|
||||
|
||||
// Content only parser
|
||||
include_grammar = false;
|
||||
return wrap_choice({parser_reasoning, parser_content});
|
||||
});
|
||||
|
||||
data.parser = parser.save();
|
||||
|
||||
if (include_grammar) {
|
||||
data.grammar_lazy = has_tools && inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_AUTO;
|
||||
|
||||
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
|
||||
foreach_function(inputs.tools, [&](const json & tool) {
|
||||
const auto & function = tool.at("function");
|
||||
auto schema = function.at("parameters");
|
||||
builder.resolve_refs(schema);
|
||||
});
|
||||
parser.build_grammar(builder, data.grammar_lazy);
|
||||
});
|
||||
|
||||
data.grammar_triggers = {
|
||||
{COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool_calls|>"}
|
||||
};
|
||||
}
|
||||
|
||||
return data;
|
||||
}
|
||||
@@ -2691,6 +2793,51 @@ static common_chat_params common_chat_params_init_exaone_moe(const common_chat_t
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_translate_gemma(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
|
||||
// This template does not support tools or reasoning
|
||||
// we just need to transform the messages into the correct schema
|
||||
|
||||
templates_params inputs_new = inputs;
|
||||
json & messages = inputs_new.messages;
|
||||
|
||||
// default to chat_template_kwargs, or en-GB if not specified
|
||||
std::string default_src_lang = inputs.extra_context.value("source_lang_code", "en-GB");
|
||||
std::string default_tgt_lang = inputs.extra_context.value("target_lang_code", "en-GB");
|
||||
|
||||
GGML_ASSERT(messages.is_array());
|
||||
for (auto & message : messages) {
|
||||
if (message.contains("role") && message["role"].get<std::string>() != "user") {
|
||||
continue;
|
||||
}
|
||||
if (!message.contains("content")) {
|
||||
message["content"] = json::array();
|
||||
}
|
||||
if (message.contains("content") && !message["content"].is_array()) {
|
||||
auto content_str = message["content"].get<std::string>();
|
||||
// default to en-GB if not specified (to make common_chat_format_example works)
|
||||
auto src_lang = message.contains("source_lang_code")
|
||||
? message["source_lang_code"].get<std::string>() : default_src_lang;
|
||||
auto tgt_lang = message.contains("target_lang_code")
|
||||
? message["target_lang_code"].get<std::string>() : default_tgt_lang;
|
||||
message["content"] = json::array({
|
||||
json{
|
||||
{"type", "text"},
|
||||
{"text", content_str},
|
||||
{"source_lang_code", src_lang},
|
||||
{"target_lang_code", tgt_lang},
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
data.prompt = apply(tmpl, inputs_new, std::nullopt, std::nullopt);
|
||||
data.format = COMMON_CHAT_FORMAT_GENERIC;
|
||||
|
||||
return data;
|
||||
}
|
||||
|
||||
static common_chat_params common_chat_params_init_without_tools(const common_chat_template & tmpl, const struct templates_params & inputs) {
|
||||
common_chat_params data;
|
||||
data.prompt = apply(tmpl, inputs);
|
||||
@@ -2867,13 +3014,13 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
const struct common_chat_templates_inputs & inputs)
|
||||
{
|
||||
templates_params params;
|
||||
params.tools = common_chat_tools_to_json_oaicompat<json>(inputs.tools);
|
||||
params.tools = common_chat_tools_to_json_oaicompat(inputs.tools);
|
||||
const auto & tmpl = params.tools.is_array() && tmpls->template_tool_use
|
||||
? *tmpls->template_tool_use
|
||||
: *tmpls->template_default;
|
||||
const auto & src = tmpl.source();
|
||||
const auto & caps = tmpl.original_caps();
|
||||
params.messages = common_chat_msgs_to_json_oaicompat<json>(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
|
||||
params.messages = common_chat_msgs_to_json_oaicompat(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
|
||||
params.add_generation_prompt = inputs.add_generation_prompt;
|
||||
params.tool_choice = inputs.tool_choice;
|
||||
params.reasoning_format = inputs.reasoning_format;
|
||||
@@ -2943,6 +3090,10 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
src.find("<arg_value>") != std::string::npos &&
|
||||
params.json_schema.is_null()) {
|
||||
workaround::func_args_not_string(params.messages);
|
||||
if (!params.extra_context.contains("clear_thinking")) {
|
||||
// by default, do not clear reasoning_content (added since GLM-4.7)
|
||||
params.extra_context["clear_thinking"] = false;
|
||||
}
|
||||
return common_chat_params_init_glm_4_5(tmpl, params);
|
||||
}
|
||||
|
||||
@@ -3035,6 +3186,13 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_apriel_1_5(tmpl, params);
|
||||
}
|
||||
|
||||
// Solar Open
|
||||
if (src.find("<|tool_response:begin|>") != std::string::npos &&
|
||||
src.find("<|tool_response:name|>") != std::string::npos &&
|
||||
src.find("<|tool_response:result|>") != std::string::npos) {
|
||||
return common_chat_params_init_solar_open(tmpl, params);
|
||||
}
|
||||
|
||||
// Use generic handler when mixing tools + JSON schema.
|
||||
// TODO: support that mix in handlers below.
|
||||
if ((params.tools.is_array() && params.json_schema.is_object())) {
|
||||
@@ -3082,6 +3240,12 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
return common_chat_params_init_solar_open(tmpl, params);
|
||||
}
|
||||
|
||||
// TranslateGemma
|
||||
if (src.find("[source_lang_code]") != std::string::npos &&
|
||||
src.find("[target_lang_code]") != std::string::npos) {
|
||||
return common_chat_params_init_translate_gemma(tmpl, params);
|
||||
}
|
||||
|
||||
// Plain handler (no tools)
|
||||
if (params.tools.is_null() || inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_NONE) {
|
||||
return common_chat_params_init_without_tools(tmpl, params);
|
||||
@@ -3174,3 +3338,9 @@ common_chat_params common_chat_templates_apply(
|
||||
? common_chat_templates_apply_jinja(tmpls, inputs)
|
||||
: common_chat_templates_apply_legacy(tmpls, inputs);
|
||||
}
|
||||
|
||||
std::map<std::string, bool> common_chat_templates_get_caps(const common_chat_templates * chat_templates) {
|
||||
GGML_ASSERT(chat_templates != nullptr);
|
||||
GGML_ASSERT(chat_templates->template_default != nullptr);
|
||||
return chat_templates->template_default->caps.to_map();
|
||||
}
|
||||
|
||||
@@ -10,6 +10,8 @@
|
||||
#include <vector>
|
||||
#include <map>
|
||||
|
||||
#include <nlohmann/json_fwd.hpp>
|
||||
|
||||
struct common_chat_templates;
|
||||
|
||||
struct common_chat_tool_call {
|
||||
@@ -26,6 +28,11 @@ struct common_chat_msg_content_part {
|
||||
std::string type;
|
||||
std::string text;
|
||||
|
||||
// TODO @ngxson : no known chat templates support reasoning_content in content parts yet
|
||||
// this can be useful for models with interleaved thinking (like Kimi-K2)
|
||||
// if you see any templates explicitly support this, please ping me
|
||||
// std::string reasoning_content;
|
||||
|
||||
bool operator==(const common_chat_msg_content_part & other) const {
|
||||
return type == other.type && text == other.text;
|
||||
}
|
||||
@@ -40,7 +47,7 @@ struct common_chat_msg {
|
||||
std::string tool_name;
|
||||
std::string tool_call_id;
|
||||
|
||||
template <class T> T to_json_oaicompat() const;
|
||||
nlohmann::ordered_json to_json_oaicompat(bool concat_typed_text = false) const;
|
||||
|
||||
bool empty() const {
|
||||
return content.empty() && content_parts.empty() && tool_calls.empty() && reasoning_content.empty() && tool_name.empty() && tool_call_id.empty();
|
||||
@@ -232,13 +239,13 @@ common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::strin
|
||||
bool common_chat_templates_support_enable_thinking(const common_chat_templates * chat_templates);
|
||||
|
||||
// Parses a JSON array of messages in OpenAI's chat completion API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
|
||||
template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
|
||||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const nlohmann::ordered_json & messages);
|
||||
nlohmann::ordered_json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
|
||||
|
||||
// Parses a JSON array of tools in OpenAI's chat completion tool call API format.
|
||||
// T can be std::string containing JSON or nlohmann::ordered_json
|
||||
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
|
||||
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
||||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const nlohmann::ordered_json & tools);
|
||||
nlohmann::ordered_json common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);
|
||||
|
||||
template <class T> T common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);
|
||||
nlohmann::ordered_json common_chat_msg_diff_to_json_oaicompat(const common_chat_msg_diff & diff);
|
||||
|
||||
// get template caps, useful for reporting to server /props endpoint
|
||||
std::map<std::string, bool> common_chat_templates_get_caps(const common_chat_templates * chat_templates);
|
||||
|
||||
@@ -1097,7 +1097,10 @@ common_init_result::common_init_result(common_params & params) :
|
||||
if (params.fit_params) {
|
||||
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
|
||||
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
|
||||
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
|
||||
params.tensor_split,
|
||||
params.tensor_buft_overrides.data(),
|
||||
params.fit_params_target.data(),
|
||||
params.fit_params_min_ctx,
|
||||
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
|
||||
}
|
||||
|
||||
@@ -1208,10 +1211,6 @@ std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
|
||||
return pimpl->lora;
|
||||
}
|
||||
|
||||
void common_init_result::free_context() {
|
||||
pimpl->context.reset();
|
||||
}
|
||||
|
||||
common_init_result_ptr common_init_from_params(common_params & params) {
|
||||
common_init_result_ptr res(new common_init_result(params));
|
||||
|
||||
|
||||
@@ -164,6 +164,17 @@ enum common_params_sampling_config : uint64_t {
|
||||
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
|
||||
};
|
||||
|
||||
enum common_speculative_type {
|
||||
COMMON_SPECULATIVE_TYPE_NONE, // no speculative decoding
|
||||
COMMON_SPECULATIVE_TYPE_DRAFT, // draft model
|
||||
COMMON_SPECULATIVE_TYPE_EAGLE3, // eagle draft model
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
|
||||
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
|
||||
};
|
||||
|
||||
// sampling parameters
|
||||
struct common_params_sampling {
|
||||
@@ -242,17 +253,40 @@ struct common_params_model {
|
||||
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
|
||||
};
|
||||
|
||||
struct common_params_speculative {
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
struct common_ngram_mod;
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
struct common_params_speculative {
|
||||
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
|
||||
|
||||
// general-purpose speculative decoding parameters
|
||||
|
||||
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
|
||||
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
|
||||
|
||||
// ngram-based speculative decoding
|
||||
|
||||
uint16_t ngram_size_n = 12; // ngram size for lookup
|
||||
uint16_t ngram_size_m = 48; // mgram size for speculative tokens
|
||||
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
|
||||
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
|
||||
|
||||
std::shared_ptr<common_ngram_mod> ngram_mod;
|
||||
|
||||
std::string lookup_cache_static; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
|
||||
// draft-model speculative decoding
|
||||
|
||||
struct common_params_model mparams_dft;
|
||||
|
||||
llama_model * model_dft = nullptr; // a llama_model that can be shared by multiple speculative contexts
|
||||
|
||||
llama_context_params cparams_dft; // these are the parameters for the draft llama_context
|
||||
|
||||
int32_t n_ctx = 0; // draft context size
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
|
||||
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
|
||||
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
|
||||
@@ -260,7 +294,14 @@ struct common_params_speculative {
|
||||
struct cpu_params cpuparams;
|
||||
struct cpu_params cpuparams_batch;
|
||||
|
||||
struct common_params_model model;
|
||||
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
|
||||
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
|
||||
|
||||
bool has_dft() const {
|
||||
return !mparams_dft.path.empty() || !mparams_dft.hf_repo.empty();
|
||||
}
|
||||
};
|
||||
|
||||
struct common_params_vocoder {
|
||||
@@ -378,8 +419,6 @@ struct common_params {
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
|
||||
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
|
||||
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
|
||||
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
std::string logits_file = ""; // file for saving *all* logits // NOLINT
|
||||
|
||||
// llama-debug specific options
|
||||
@@ -438,7 +477,7 @@ struct common_params {
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool use_mmap = true; // enable mmap to use filesystem cache
|
||||
bool use_direct_io = true; // read from disk without buffering for faster model loading
|
||||
bool use_direct_io = false; // read from disk without buffering
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool display_prompt = true; // print prompt before generation
|
||||
@@ -575,10 +614,6 @@ struct common_params {
|
||||
// return false from callback to abort model loading or true to continue
|
||||
llama_progress_callback load_progress_callback = NULL;
|
||||
void * load_progress_callback_user_data = NULL;
|
||||
|
||||
bool has_speculative() const {
|
||||
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
|
||||
}
|
||||
};
|
||||
|
||||
// call once at the start of a program if it uses libcommon
|
||||
@@ -714,8 +749,6 @@ struct common_init_result {
|
||||
|
||||
std::vector<llama_adapter_lora_ptr> & lora();
|
||||
|
||||
void free_context();
|
||||
|
||||
private:
|
||||
struct impl;
|
||||
std::unique_ptr<impl> pimpl;
|
||||
|
||||
@@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data,
|
||||
return v;
|
||||
}
|
||||
|
||||
#define INDENT " "
|
||||
|
||||
template <bool abort>
|
||||
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
GGML_ASSERT(n > 0);
|
||||
@@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n
|
||||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT "[\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT "..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT INDENT "[\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT INDENT "..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG_ERR(" [");
|
||||
LOG(INDENT INDENT INDENT "[");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2 * n) {
|
||||
LOG_ERR("..., ");
|
||||
LOG(" ..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
LOG_ERR("%12.4f", v);
|
||||
LOG("%12.4f", v);
|
||||
if (i0 < ne[0] - 1) {
|
||||
LOG_ERR(", ");
|
||||
LOG(", ");
|
||||
}
|
||||
}
|
||||
LOG_ERR("],\n");
|
||||
LOG(" ],\n");
|
||||
}
|
||||
LOG_ERR(" ],\n");
|
||||
LOG(INDENT INDENT "],\n");
|
||||
}
|
||||
LOG_ERR(" ]\n");
|
||||
LOG_ERR(" sum = %f\n", sum);
|
||||
LOG(INDENT "]\n");
|
||||
LOG(INDENT "sum = %f\n", sum);
|
||||
}
|
||||
|
||||
if constexpr (abort) {
|
||||
if (std::isnan(sum)) {
|
||||
LOG_ERR("encountered NaN - aborting\n");
|
||||
LOG("encountered NaN - aborting\n");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
@@ -137,9 +139,9 @@ template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, b
|
||||
}
|
||||
|
||||
if (matches_filter) {
|
||||
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
}
|
||||
|
||||
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
||||
|
||||
@@ -60,10 +60,10 @@ static std::pair<httplib::Client, common_http_url> common_http_client(const std:
|
||||
#ifndef CPPHTTPLIB_OPENSSL_SUPPORT
|
||||
if (parts.scheme == "https") {
|
||||
throw std::runtime_error(
|
||||
"HTTPS is not supported. Please rebuild with:\n"
|
||||
"HTTPS is not supported. Please rebuild with one of:\n"
|
||||
" -DLLAMA_BUILD_BORINGSSL=ON\n"
|
||||
" -DLLAMA_BUILD_LIBRESSL=ON\n"
|
||||
"or ensure dev files of an OpenSSL-compatible library are available when building."
|
||||
" -DLLAMA_OPENSSL=ON (default, requires OpenSSL dev files installed)"
|
||||
);
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -61,14 +61,23 @@ static void caps_print_stats(value & v, const std::string & path) {
|
||||
ops.c_str());
|
||||
}
|
||||
|
||||
std::map<std::string, bool> caps::to_map() const {
|
||||
return {
|
||||
{"requires_typed_content", requires_typed_content},
|
||||
{"supports_tools", supports_tools},
|
||||
{"supports_tool_calls", supports_tool_calls},
|
||||
{"supports_parallel_tool_calls", supports_parallel_tool_calls},
|
||||
{"supports_system_role", supports_system_role},
|
||||
{"supports_preserve_reasoning", supports_preserve_reasoning},
|
||||
};
|
||||
}
|
||||
|
||||
std::string caps::to_string() const {
|
||||
std::ostringstream ss;
|
||||
ss << "Caps(\n";
|
||||
ss << " requires_typed_content=" << requires_typed_content << "\n";
|
||||
ss << " supports_tools=" << supports_tools << "\n";
|
||||
ss << " supports_tool_calls=" << supports_tool_calls << "\n";
|
||||
ss << " supports_parallel_tool_calls=" << supports_parallel_tool_calls << "\n";
|
||||
ss << " supports_system_role=" << supports_system_role << "\n";
|
||||
for (const auto & [key, value] : to_map()) {
|
||||
ss << " " << key << "=" << (value ? "true" : "false") << "\n";
|
||||
}
|
||||
ss << ")";
|
||||
return ss.str();
|
||||
}
|
||||
@@ -229,6 +238,40 @@ caps caps_get(jinja::program & prog) {
|
||||
}
|
||||
);
|
||||
|
||||
// case: preserve reasoning content in chat history
|
||||
caps_try_execute(
|
||||
prog,
|
||||
[&]() {
|
||||
// messages
|
||||
return json::array({
|
||||
{
|
||||
{"role", "user"},
|
||||
{"content", "User message"}
|
||||
},
|
||||
{
|
||||
{"role", "assistant"},
|
||||
{"content", "Assistant message"},
|
||||
{"reasoning_content", "Reasoning content"}
|
||||
},
|
||||
{
|
||||
{"role", "user"},
|
||||
{"content", "User message"}
|
||||
},
|
||||
});
|
||||
},
|
||||
[&]() {
|
||||
// tools
|
||||
return json::array();
|
||||
},
|
||||
[&](bool, value & messages, value &) {
|
||||
auto & content = messages->at(1)->at("reasoning_content");
|
||||
caps_print_stats(content, "messages[1].reasoning_content");
|
||||
if (content->stats.used) {
|
||||
result.supports_preserve_reasoning = true;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
JJ_DEBUG("%s\n", result.to_string().c_str());
|
||||
|
||||
return result;
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "runtime.h"
|
||||
|
||||
#include <string>
|
||||
#include <map>
|
||||
|
||||
namespace jinja {
|
||||
|
||||
@@ -11,14 +12,17 @@ struct caps {
|
||||
bool supports_tool_calls = true;
|
||||
bool supports_system_role = true;
|
||||
bool supports_parallel_tool_calls = true;
|
||||
bool supports_preserve_reasoning = false; // support assistant message with reasoning_content
|
||||
|
||||
bool requires_typed_content = false; // default: use string content
|
||||
|
||||
// for reporting on server
|
||||
std::map<std::string, bool> to_map() const;
|
||||
|
||||
// for debugging
|
||||
std::string to_string() const;
|
||||
};
|
||||
|
||||
caps caps_get(jinja::program & prog);
|
||||
void debug_print_caps(const caps & c);
|
||||
|
||||
} // namespace jinja
|
||||
|
||||
@@ -44,6 +44,12 @@ static std::string get_line_col(const std::string & source, size_t pos) {
|
||||
return "line " + std::to_string(line) + ", column " + std::to_string(col);
|
||||
}
|
||||
|
||||
static void ensure_key_type_allowed(const value & val) {
|
||||
if (!val->is_hashable()) {
|
||||
throw std::runtime_error("Type: " + val->type() + " is not allowed as object key");
|
||||
}
|
||||
}
|
||||
|
||||
// execute with error handling
|
||||
value statement::execute(context & ctx) {
|
||||
try {
|
||||
@@ -95,20 +101,10 @@ value identifier::execute_impl(context & ctx) {
|
||||
value object_literal::execute_impl(context & ctx) {
|
||||
auto obj = mk_val<value_object>();
|
||||
for (const auto & pair : val) {
|
||||
value key_val = pair.first->execute(ctx);
|
||||
if (!is_val<value_string>(key_val) && !is_val<value_int>(key_val)) {
|
||||
throw std::runtime_error("Object literal: keys must be string or int values, got " + key_val->type());
|
||||
}
|
||||
std::string key = key_val->as_string().str();
|
||||
value key = pair.first->execute(ctx);
|
||||
value val = pair.second->execute(ctx);
|
||||
JJ_DEBUG("Object literal: setting key '%s' with value type %s", key.c_str(), val->type().c_str());
|
||||
JJ_DEBUG("Object literal: setting key '%s' with value type %s", key->as_string().str().c_str(), val->type().c_str());
|
||||
obj->insert(key, val);
|
||||
|
||||
if (is_val<value_int>(key_val)) {
|
||||
obj->val_obj.is_key_numeric = true;
|
||||
} else if (obj->val_obj.is_key_numeric) {
|
||||
throw std::runtime_error("Object literal: cannot mix numeric and non-numeric keys");
|
||||
}
|
||||
}
|
||||
return obj;
|
||||
}
|
||||
@@ -127,9 +123,9 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
value right_val = right->execute(ctx);
|
||||
JJ_DEBUG("Executing binary expression %s '%s' %s", left_val->type().c_str(), op.value.c_str(), right_val->type().c_str());
|
||||
if (op.value == "==") {
|
||||
return mk_val<value_bool>(value_compare(left_val, right_val, value_compare_op::eq));
|
||||
return mk_val<value_bool>(*left_val == *right_val);
|
||||
} else if (op.value == "!=") {
|
||||
return mk_val<value_bool>(!value_compare(left_val, right_val, value_compare_op::eq));
|
||||
return mk_val<value_bool>(!(*left_val == *right_val));
|
||||
}
|
||||
|
||||
auto workaround_concat_null_with_str = [&](value & res) -> bool {
|
||||
@@ -148,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
return false;
|
||||
};
|
||||
|
||||
auto test_is_in = [&]() -> bool {
|
||||
func_args args(ctx);
|
||||
args.push_back(left_val);
|
||||
args.push_back(right_val);
|
||||
return global_builtins().at("test_is_in")(args)->as_bool();
|
||||
};
|
||||
|
||||
// Handle undefined and null values
|
||||
if (is_val<value_undefined>(left_val) || is_val<value_undefined>(right_val)) {
|
||||
if (is_val<value_undefined>(right_val) && (op.value == "in" || op.value == "not in")) {
|
||||
@@ -227,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
return result;
|
||||
}
|
||||
} else if (is_val<value_array>(right_val)) {
|
||||
auto & arr = right_val->as_array();
|
||||
bool member = false;
|
||||
for (const auto & item : arr) {
|
||||
if (value_compare(left_val, item, value_compare_op::eq)) {
|
||||
member = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// case: 1 in [0, 1, 2]
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
@@ -256,23 +251,23 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
|
||||
// String membership
|
||||
if (is_val<value_string>(left_val) && is_val<value_string>(right_val)) {
|
||||
auto left_str = left_val->as_string().str();
|
||||
auto right_str = right_val->as_string().str();
|
||||
// case: "a" in "abc"
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) != std::string::npos);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) == std::string::npos);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
// String in object
|
||||
if (is_val<value_string>(left_val) && is_val<value_object>(right_val)) {
|
||||
auto key = left_val->as_string().str();
|
||||
bool has_key = right_val->has_key(key);
|
||||
// Value key in object
|
||||
if (is_val<value_object>(right_val)) {
|
||||
// case: key in {key: value}
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(has_key);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(!has_key);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -465,14 +460,8 @@ value for_statement::execute_impl(context & ctx) {
|
||||
JJ_DEBUG("%s", "For loop over object keys");
|
||||
auto & obj = iterable_val->as_ordered_object();
|
||||
for (auto & p : obj) {
|
||||
auto tuple = mk_val<value_array>();
|
||||
if (iterable_val->val_obj.is_key_numeric) {
|
||||
tuple->push_back(mk_val<value_int>(std::stoll(p.first)));
|
||||
} else {
|
||||
tuple->push_back(mk_val<value_string>(p.first));
|
||||
}
|
||||
tuple->push_back(p.second);
|
||||
items.push_back(tuple);
|
||||
auto tuple = mk_val<value_tuple>(p);
|
||||
items.push_back(std::move(tuple));
|
||||
}
|
||||
if (ctx.is_get_stats) {
|
||||
iterable_val->stats.used = true;
|
||||
@@ -602,11 +591,13 @@ value set_statement::execute_impl(context & ctx) {
|
||||
auto rhs = val ? val->execute(ctx) : exec_statements(body, ctx);
|
||||
|
||||
if (is_stmt<identifier>(assignee)) {
|
||||
// case: {% set my_var = value %}
|
||||
auto var_name = cast_stmt<identifier>(assignee)->val;
|
||||
JJ_DEBUG("Setting global variable '%s' with value type %s", var_name.c_str(), rhs->type().c_str());
|
||||
ctx.set_val(var_name, rhs);
|
||||
|
||||
} else if (is_stmt<tuple_literal>(assignee)) {
|
||||
// case: {% set a, b = value %}
|
||||
auto tuple = cast_stmt<tuple_literal>(assignee);
|
||||
if (!is_val<value_array>(rhs)) {
|
||||
throw std::runtime_error("Cannot unpack non-iterable type in set: " + rhs->type());
|
||||
@@ -625,6 +616,7 @@ value set_statement::execute_impl(context & ctx) {
|
||||
}
|
||||
|
||||
} else if (is_stmt<member_expression>(assignee)) {
|
||||
// case: {% set ns.my_var = value %}
|
||||
auto member = cast_stmt<member_expression>(assignee);
|
||||
if (member->computed) {
|
||||
throw std::runtime_error("Cannot assign to computed member");
|
||||
@@ -767,22 +759,22 @@ value member_expression::execute_impl(context & ctx) {
|
||||
}
|
||||
|
||||
JJ_DEBUG("Member expression on object type %s, property type %s", object->type().c_str(), property->type().c_str());
|
||||
ensure_key_type_allowed(property);
|
||||
|
||||
value val = mk_val<value_undefined>("object_property");
|
||||
|
||||
if (is_val<value_undefined>(object)) {
|
||||
JJ_DEBUG("%s", "Accessing property on undefined object, returning undefined");
|
||||
return val;
|
||||
|
||||
} else if (is_val<value_object>(object)) {
|
||||
if (!is_val<value_string>(property)) {
|
||||
throw std::runtime_error("Cannot access object with non-string: got " + property->type());
|
||||
}
|
||||
auto key = property->as_string().str();
|
||||
val = object->at(key, val);
|
||||
val = object->at(property, val);
|
||||
if (is_val<value_undefined>(val)) {
|
||||
val = try_builtin_func(ctx, key, object, true);
|
||||
}
|
||||
JJ_DEBUG("Accessed property '%s' value, got type: %s", key.c_str(), val->type().c_str());
|
||||
|
||||
} else if (is_val<value_array>(object) || is_val<value_string>(object)) {
|
||||
if (is_val<value_int>(property)) {
|
||||
int64_t index = property->as_int();
|
||||
@@ -806,6 +798,7 @@ value member_expression::execute_impl(context & ctx) {
|
||||
auto key = property->as_string().str();
|
||||
JJ_DEBUG("Accessing %s built-in '%s'", is_val<value_array>(object) ? "array" : "string", key.c_str());
|
||||
val = try_builtin_func(ctx, key, object, true);
|
||||
|
||||
} else {
|
||||
throw std::runtime_error("Cannot access property with non-string/non-number: got " + property->type());
|
||||
}
|
||||
|
||||
@@ -79,18 +79,18 @@ struct context {
|
||||
}
|
||||
|
||||
value get_val(const std::string & name) {
|
||||
auto it = env->val_obj.unordered.find(name);
|
||||
if (it != env->val_obj.unordered.end()) {
|
||||
return it->second;
|
||||
} else {
|
||||
return mk_val<value_undefined>(name);
|
||||
}
|
||||
value default_val = mk_val<value_undefined>(name);
|
||||
return env->at(name, default_val);
|
||||
}
|
||||
|
||||
void set_val(const std::string & name, const value & val) {
|
||||
env->insert(name, val);
|
||||
}
|
||||
|
||||
void set_val(const value & name, const value & val) {
|
||||
env->insert(name, val);
|
||||
}
|
||||
|
||||
void print_vars() const {
|
||||
printf("Context Variables:\n%s\n", value_to_json(env, 2).c_str());
|
||||
}
|
||||
@@ -344,9 +344,19 @@ struct array_literal : public expression {
|
||||
}
|
||||
};
|
||||
|
||||
struct tuple_literal : public array_literal {
|
||||
explicit tuple_literal(statements && val) : array_literal(std::move(val)) {}
|
||||
struct tuple_literal : public expression {
|
||||
statements val;
|
||||
explicit tuple_literal(statements && val) : val(std::move(val)) {
|
||||
for (const auto& item : this->val) chk_type<expression>(item);
|
||||
}
|
||||
std::string type() const override { return "TupleLiteral"; }
|
||||
value execute_impl(context & ctx) override {
|
||||
auto arr = mk_val<value_array>();
|
||||
for (const auto & item_stmt : val) {
|
||||
arr->push_back(item_stmt->execute(ctx));
|
||||
}
|
||||
return mk_val<value_tuple>(std::move(arr->as_array()));
|
||||
}
|
||||
};
|
||||
|
||||
struct object_literal : public expression {
|
||||
|
||||
@@ -61,6 +61,12 @@ size_t string::length() const {
|
||||
return len;
|
||||
}
|
||||
|
||||
void string::hash_update(hasher & hash) const noexcept {
|
||||
for (const auto & part : parts) {
|
||||
hash.update(part.val.data(), part.val.length());
|
||||
}
|
||||
}
|
||||
|
||||
bool string::all_parts_are_input() const {
|
||||
for (const auto & part : parts) {
|
||||
if (!part.is_input) {
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "utils.h"
|
||||
|
||||
namespace jinja {
|
||||
|
||||
// allow differentiate between user input strings and template strings
|
||||
@@ -37,6 +39,7 @@ struct string {
|
||||
|
||||
std::string str() const;
|
||||
size_t length() const;
|
||||
void hash_update(hasher & hash) const noexcept;
|
||||
bool all_parts_are_input() const;
|
||||
bool is_uppercase() const;
|
||||
bool is_lowercase() const;
|
||||
|
||||
@@ -3,6 +3,8 @@
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
|
||||
namespace jinja {
|
||||
|
||||
@@ -46,4 +48,102 @@ static std::string fmt_error_with_source(const std::string & tag, const std::str
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
// Note: this is a simple hasher, not cryptographically secure, just for hash table usage
|
||||
struct hasher {
|
||||
static constexpr auto size_t_digits = sizeof(size_t) * 8;
|
||||
static constexpr size_t prime = size_t_digits == 64 ? 0x100000001b3 : 0x01000193;
|
||||
static constexpr size_t seed = size_t_digits == 64 ? 0xcbf29ce484222325 : 0x811c9dc5;
|
||||
static constexpr auto block_size = sizeof(size_t); // in bytes; allowing the compiler to vectorize the computation
|
||||
|
||||
static_assert(size_t_digits == 64 || size_t_digits == 32);
|
||||
static_assert(block_size == 8 || block_size == 4);
|
||||
|
||||
uint8_t buffer[block_size];
|
||||
size_t idx = 0; // current index in buffer
|
||||
size_t state = seed;
|
||||
|
||||
hasher() = default;
|
||||
hasher(const std::type_info & type_inf) noexcept {
|
||||
const auto type_hash = type_inf.hash_code();
|
||||
update(&type_hash, sizeof(type_hash));
|
||||
}
|
||||
|
||||
// Properties:
|
||||
// - update is not associative: update(a).update(b) != update(b).update(a)
|
||||
// - update(a ~ b) == update(a).update(b) with ~ as concatenation operator --> useful for streaming
|
||||
// - update("", 0) --> state unchanged with empty input
|
||||
hasher& update(void const * bytes, size_t len) noexcept {
|
||||
const uint8_t * c = static_cast<uint8_t const *>(bytes);
|
||||
if (len == 0) {
|
||||
return *this;
|
||||
}
|
||||
size_t processed = 0;
|
||||
|
||||
// first, fill the existing buffer if it's partial
|
||||
if (idx > 0) {
|
||||
size_t to_fill = block_size - idx;
|
||||
if (to_fill > len) {
|
||||
to_fill = len;
|
||||
}
|
||||
std::memcpy(buffer + idx, c, to_fill);
|
||||
idx += to_fill;
|
||||
processed += to_fill;
|
||||
if (idx == block_size) {
|
||||
update_block(buffer);
|
||||
idx = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// process full blocks from the remaining input
|
||||
for (; processed + block_size <= len; processed += block_size) {
|
||||
update_block(c + processed);
|
||||
}
|
||||
|
||||
// buffer any remaining bytes
|
||||
size_t remaining = len - processed;
|
||||
if (remaining > 0) {
|
||||
std::memcpy(buffer, c + processed, remaining);
|
||||
idx = remaining;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
// convenience function for testing only
|
||||
hasher& update(const std::string & s) noexcept {
|
||||
return update(s.data(), s.size());
|
||||
}
|
||||
|
||||
// finalize and get the hash value
|
||||
// note: after calling digest, the hasher state is modified, do not call update() again
|
||||
size_t digest() noexcept {
|
||||
// if there are remaining bytes in buffer, fill the rest with zeros and process
|
||||
if (idx > 0) {
|
||||
for (size_t i = idx; i < block_size; ++i) {
|
||||
buffer[i] = 0;
|
||||
}
|
||||
update_block(buffer);
|
||||
idx = 0;
|
||||
}
|
||||
|
||||
return state;
|
||||
}
|
||||
|
||||
private:
|
||||
// IMPORTANT: block must have at least block_size bytes
|
||||
void update_block(const uint8_t * block) noexcept {
|
||||
size_t blk = static_cast<uint32_t>(block[0])
|
||||
| (static_cast<uint32_t>(block[1]) << 8)
|
||||
| (static_cast<uint32_t>(block[2]) << 16)
|
||||
| (static_cast<uint32_t>(block[3]) << 24);
|
||||
if constexpr (block_size == 8) {
|
||||
blk = blk | (static_cast<uint64_t>(block[4]) << 32)
|
||||
| (static_cast<uint64_t>(block[5]) << 40)
|
||||
| (static_cast<uint64_t>(block[6]) << 48)
|
||||
| (static_cast<uint64_t>(block[7]) << 56);
|
||||
}
|
||||
state ^= blk;
|
||||
state *= prime;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace jinja
|
||||
|
||||
@@ -114,6 +114,18 @@ static T slice(const T & array, int64_t start, int64_t stop, int64_t step = 1) {
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static value empty_value_fn(const func_args &) {
|
||||
if constexpr (std::is_same_v<T, value_int>) {
|
||||
return mk_val<T>(0);
|
||||
} else if constexpr (std::is_same_v<T, value_float>) {
|
||||
return mk_val<T>(0.0);
|
||||
} else if constexpr (std::is_same_v<T, value_bool>) {
|
||||
return mk_val<T>(false);
|
||||
} else {
|
||||
return mk_val<T>();
|
||||
}
|
||||
}
|
||||
template<typename T>
|
||||
static value test_type_fn(const func_args & args) {
|
||||
args.ensure_count(1);
|
||||
@@ -128,6 +140,13 @@ static value test_type_fn(const func_args & args) {
|
||||
JJ_DEBUG("test_type_fn: type=%s or %s result=%d", typeid(T).name(), typeid(U).name(), is_type ? 1 : 0);
|
||||
return mk_val<value_bool>(is_type);
|
||||
}
|
||||
template<typename T, typename U, typename V>
|
||||
static value test_type_fn(const func_args & args) {
|
||||
args.ensure_count(1);
|
||||
bool is_type = is_val<T>(args.get_pos(0)) || is_val<U>(args.get_pos(0)) || is_val<V>(args.get_pos(0));
|
||||
JJ_DEBUG("test_type_fn: type=%s, %s or %s result=%d", typeid(T).name(), typeid(U).name(), typeid(V).name(), is_type ? 1 : 0);
|
||||
return mk_val<value_bool>(is_type);
|
||||
}
|
||||
template<value_compare_op op>
|
||||
static value test_compare_fn(const func_args & args) {
|
||||
args.ensure_count(2, 2);
|
||||
@@ -163,7 +182,7 @@ static value selectattr(const func_args & args) {
|
||||
args.ensure_vals<value_array, value_string, value_string, value_string>(true, true, false, false);
|
||||
|
||||
auto arr = args.get_pos(0)->as_array();
|
||||
auto attr_name = args.get_pos(1)->as_string().str();
|
||||
auto attribute = args.get_pos(1);
|
||||
auto out = mk_val<value_array>();
|
||||
value val_default = mk_val<value_undefined>();
|
||||
|
||||
@@ -173,7 +192,7 @@ static value selectattr(const func_args & args) {
|
||||
if (!is_val<value_object>(item)) {
|
||||
throw raised_exception("selectattr: item is not an object");
|
||||
}
|
||||
value attr_val = item->at(attr_name, val_default);
|
||||
value attr_val = item->at(attribute, val_default);
|
||||
bool is_selected = attr_val->as_bool();
|
||||
if constexpr (is_reject) is_selected = !is_selected;
|
||||
if (is_selected) out->push_back(item);
|
||||
@@ -217,7 +236,7 @@ static value selectattr(const func_args & args) {
|
||||
if (!is_val<value_object>(item)) {
|
||||
throw raised_exception("selectattr: item is not an object");
|
||||
}
|
||||
value attr_val = item->at(attr_name, val_default);
|
||||
value attr_val = item->at(attribute, val_default);
|
||||
func_args test_args(args.ctx);
|
||||
test_args.push_back(attr_val); // attribute value
|
||||
test_args.push_back(extra_arg); // extra argument
|
||||
@@ -347,8 +366,8 @@ const func_builtins & global_builtins() {
|
||||
{"test_is_integer", test_type_fn<value_int>},
|
||||
{"test_is_float", test_type_fn<value_float>},
|
||||
{"test_is_number", test_type_fn<value_int, value_float>},
|
||||
{"test_is_iterable", test_type_fn<value_array, value_string>},
|
||||
{"test_is_sequence", test_type_fn<value_array, value_string>},
|
||||
{"test_is_iterable", test_type_fn<value_array, value_string, value_undefined>},
|
||||
{"test_is_sequence", test_type_fn<value_array, value_string, value_undefined>},
|
||||
{"test_is_mapping", test_type_fn<value_object>},
|
||||
{"test_is_lower", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_string>();
|
||||
@@ -374,6 +393,33 @@ const func_builtins & global_builtins() {
|
||||
{"test_is_lt", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_lessthan", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_ne", test_compare_fn<value_compare_op::ne>},
|
||||
{"test_is_in", [](const func_args & args) -> value {
|
||||
args.ensure_count(2);
|
||||
auto needle = args.get_pos(0);
|
||||
auto haystack = args.get_pos(1);
|
||||
if (is_val<value_undefined>(haystack)) {
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_array>(haystack)) {
|
||||
for (const auto & item : haystack->as_array()) {
|
||||
if (*needle == *item) {
|
||||
return mk_val<value_bool>(true);
|
||||
}
|
||||
}
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_string>(haystack)) {
|
||||
if (!is_val<value_string>(needle)) {
|
||||
throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type());
|
||||
}
|
||||
return mk_val<value_bool>(
|
||||
haystack->as_string().str().find(needle->as_string().str()) != std::string::npos);
|
||||
}
|
||||
if (is_val<value_object>(haystack)) {
|
||||
return mk_val<value_bool>(haystack->has_key(needle));
|
||||
}
|
||||
throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type());
|
||||
}},
|
||||
{"test_is_test", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_string>();
|
||||
auto & builtins = global_builtins();
|
||||
@@ -741,6 +787,7 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
args.ensure_count(1, 4);
|
||||
args.ensure_vals<value_array, value_int, value_int, value_int>(true, true, false, false);
|
||||
|
||||
auto val = args.get_pos(0);
|
||||
auto arg0 = args.get_pos(1);
|
||||
auto arg1 = args.get_pos(2, mk_val<value_undefined>());
|
||||
auto arg2 = args.get_pos(3, mk_val<value_undefined>());
|
||||
@@ -762,10 +809,8 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
if (step == 0) {
|
||||
throw raised_exception("slice step cannot be zero");
|
||||
}
|
||||
auto arr = slice(args.get_pos(0)->as_array(), start, stop, step);
|
||||
auto res = mk_val<value_array>();
|
||||
res->val_arr = std::move(arr);
|
||||
return res;
|
||||
auto arr = slice(val->as_array(), start, stop, step);
|
||||
return is_val<value_tuple>(val) ? mk_val<value_tuple>(std::move(arr)) : mk_val<value_array>(std::move(arr));
|
||||
}},
|
||||
{"selectattr", selectattr<false>},
|
||||
{"select", selectattr<false>},
|
||||
@@ -785,15 +830,14 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
}
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string delim = val_delim->is_undefined() ? "" : val_delim->as_string().str();
|
||||
const std::string attr_name = attribute->is_undefined() ? "" : attribute->as_string().str();
|
||||
std::string result;
|
||||
for (size_t i = 0; i < arr.size(); ++i) {
|
||||
value val_arr = arr[i];
|
||||
if (!attribute->is_undefined()) {
|
||||
if (attr_is_int && is_val<value_array>(val_arr)) {
|
||||
val_arr = val_arr->at(attr_int);
|
||||
} else if (!attr_is_int && !attr_name.empty() && is_val<value_object>(val_arr)) {
|
||||
val_arr = val_arr->at(attr_name);
|
||||
} else if (!attr_is_int && is_val<value_object>(val_arr)) {
|
||||
val_arr = val_arr->at(attribute);
|
||||
}
|
||||
}
|
||||
if (!is_val<value_string>(val_arr) && !is_val<value_int>(val_arr) && !is_val<value_float>(val_arr)) {
|
||||
@@ -808,9 +852,7 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
}},
|
||||
{"string", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_array>();
|
||||
auto str = mk_val<value_string>();
|
||||
gather_string_parts_recursive(args.get_pos(0), str);
|
||||
return str;
|
||||
return mk_val<value_string>(args.get_pos(0)->as_string());
|
||||
}},
|
||||
{"tojson", tojson},
|
||||
{"map", [](const func_args & args) -> value {
|
||||
@@ -821,26 +863,26 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
if (!is_val<value_kwarg>(args.get_args().at(1))) {
|
||||
throw not_implemented_exception("map: filter-mapping not implemented");
|
||||
}
|
||||
value val = args.get_pos(0);
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 1);
|
||||
const bool attr_is_int = is_val<value_int>(attribute);
|
||||
if (!is_val<value_string>(attribute) && !attr_is_int) {
|
||||
throw raised_exception("map: attribute must be string or integer");
|
||||
}
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string attr_name = attribute->as_string().str();
|
||||
value default_val = args.get_kwarg("default", mk_val<value_undefined>());
|
||||
auto out = mk_val<value_array>();
|
||||
auto arr = args.get_pos(0)->as_array();
|
||||
auto arr = val->as_array();
|
||||
for (const auto & item : arr) {
|
||||
value attr_val;
|
||||
if (attr_is_int) {
|
||||
attr_val = is_val<value_array>(item) ? item->at(attr_int, default_val) : default_val;
|
||||
} else {
|
||||
attr_val = is_val<value_object>(item) ? item->at(attr_name, default_val) : default_val;
|
||||
attr_val = is_val<value_object>(item) ? item->at(attribute, default_val) : default_val;
|
||||
}
|
||||
out->push_back(attr_val);
|
||||
}
|
||||
return out;
|
||||
return is_val<value_tuple>(val) ? mk_val<value_tuple>(std::move(out->as_array())) : out;
|
||||
}},
|
||||
{"append", [](const func_args & args) -> value {
|
||||
args.ensure_count(2);
|
||||
@@ -867,6 +909,7 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
if (!is_val<value_array>(args.get_pos(0))) {
|
||||
throw raised_exception("sort: first argument must be an array");
|
||||
}
|
||||
value val = args.get_pos(0);
|
||||
value val_reverse = args.get_kwarg_or_pos("reverse", 1);
|
||||
value val_case = args.get_kwarg_or_pos("case_sensitive", 2);
|
||||
value attribute = args.get_kwarg_or_pos("attribute", 3);
|
||||
@@ -875,8 +918,7 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
const bool reverse = val_reverse->as_bool(); // undefined == false
|
||||
const bool attr_is_int = is_val<value_int>(attribute);
|
||||
const int64_t attr_int = attr_is_int ? attribute->as_int() : 0;
|
||||
const std::string attr_name = attribute->is_undefined() ? "" : attribute->as_string().str();
|
||||
std::vector<value> arr = cast_val<value_array>(args.get_pos(0))->as_array(); // copy
|
||||
std::vector<value> arr = val->as_array(); // copy
|
||||
std::sort(arr.begin(), arr.end(),[&](const value & a, const value & b) {
|
||||
value val_a = a;
|
||||
value val_b = b;
|
||||
@@ -884,22 +926,23 @@ const func_builtins & value_array_t::get_builtins() const {
|
||||
if (attr_is_int && is_val<value_array>(a) && is_val<value_array>(b)) {
|
||||
val_a = a->at(attr_int);
|
||||
val_b = b->at(attr_int);
|
||||
} else if (!attr_is_int && !attr_name.empty() && is_val<value_object>(a) && is_val<value_object>(b)) {
|
||||
val_a = a->at(attr_name);
|
||||
val_b = b->at(attr_name);
|
||||
} else if (!attr_is_int && is_val<value_object>(a) && is_val<value_object>(b)) {
|
||||
val_a = a->at(attribute);
|
||||
val_b = b->at(attribute);
|
||||
} else {
|
||||
throw raised_exception("sort: unsupported object attribute comparison");
|
||||
throw raised_exception("sort: unsupported object attribute comparison between " + a->type() + " and " + b->type());
|
||||
}
|
||||
}
|
||||
return value_compare(val_a, val_b, reverse ? value_compare_op::gt : value_compare_op::lt);
|
||||
});
|
||||
return mk_val<value_array>(arr);
|
||||
return is_val<value_tuple>(val) ? mk_val<value_tuple>(std::move(arr)) : mk_val<value_array>(std::move(arr));
|
||||
}},
|
||||
{"reverse", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_array>();
|
||||
std::vector<value> arr = cast_val<value_array>(args.get_pos(0))->as_array(); // copy
|
||||
value val = args.get_pos(0);
|
||||
std::vector<value> arr = val->as_array(); // copy
|
||||
std::reverse(arr.begin(), arr.end());
|
||||
return mk_val<value_array>(arr);
|
||||
return is_val<value_tuple>(val) ? mk_val<value_tuple>(std::move(arr)) : mk_val<value_array>(std::move(arr));
|
||||
}},
|
||||
{"unique", [](const func_args &) -> value {
|
||||
throw not_implemented_exception("Array unique builtin not implemented");
|
||||
@@ -930,7 +973,7 @@ const func_builtins & value_object_t::get_builtins() const {
|
||||
default_val = args.get_pos(2);
|
||||
}
|
||||
const value obj = args.get_pos(0);
|
||||
std::string key = args.get_pos(1)->as_string().str();
|
||||
const value key = args.get_pos(1);
|
||||
return obj->at(key, default_val);
|
||||
}},
|
||||
{"keys", [](const func_args & args) -> value {
|
||||
@@ -938,7 +981,7 @@ const func_builtins & value_object_t::get_builtins() const {
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
auto result = mk_val<value_array>();
|
||||
for (const auto & pair : obj) {
|
||||
result->push_back(mk_val<value_string>(pair.first));
|
||||
result->push_back(pair.first);
|
||||
}
|
||||
return result;
|
||||
}},
|
||||
@@ -956,15 +999,16 @@ const func_builtins & value_object_t::get_builtins() const {
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
auto result = mk_val<value_array>();
|
||||
for (const auto & pair : obj) {
|
||||
auto item = mk_val<value_array>();
|
||||
item->push_back(mk_val<value_string>(pair.first));
|
||||
item->push_back(pair.second);
|
||||
auto item = mk_val<value_tuple>(pair);
|
||||
result->push_back(std::move(item));
|
||||
}
|
||||
return result;
|
||||
}},
|
||||
{"tojson", tojson},
|
||||
{"string", tojson},
|
||||
{"string", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
return mk_val<value_string>(args.get_pos(0)->as_string());
|
||||
}},
|
||||
{"length", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_object>();
|
||||
const auto & obj = args.get_pos(0)->as_ordered_object();
|
||||
@@ -985,11 +1029,11 @@ const func_builtins & value_object_t::get_builtins() const {
|
||||
const bool reverse = val_reverse->as_bool(); // undefined == false
|
||||
const bool by_value = is_val<value_string>(val_by) && val_by->as_string().str() == "value" ? true : false;
|
||||
auto result = mk_val<value_object>(val_input); // copy
|
||||
std::sort(result->val_obj.ordered.begin(), result->val_obj.ordered.end(), [&](const auto & a, const auto & b) {
|
||||
std::sort(result->val_obj.begin(), result->val_obj.end(), [&](const auto & a, const auto & b) {
|
||||
if (by_value) {
|
||||
return value_compare(a.second, b.second, reverse ? value_compare_op::gt : value_compare_op::lt);
|
||||
} else {
|
||||
return reverse ? a.first > b.first : a.first < b.first;
|
||||
return value_compare(a.first, b.first, reverse ? value_compare_op::gt : value_compare_op::lt);
|
||||
}
|
||||
});
|
||||
return result;
|
||||
@@ -1005,7 +1049,22 @@ const func_builtins & value_none_t::get_builtins() const {
|
||||
static const func_builtins builtins = {
|
||||
{"default", default_value},
|
||||
{"tojson", tojson},
|
||||
{"string", [](const func_args &) -> value { return mk_val<value_string>("None"); }}
|
||||
{"string", [](const func_args &) -> value {
|
||||
return mk_val<value_string>("None");
|
||||
}},
|
||||
{"safe", [](const func_args &) -> value {
|
||||
return mk_val<value_string>("None");
|
||||
}},
|
||||
{"strip", [](const func_args &) -> value {
|
||||
return mk_val<value_string>("None");
|
||||
}},
|
||||
{"items", empty_value_fn<value_array>},
|
||||
{"map", empty_value_fn<value_array>},
|
||||
{"reject", empty_value_fn<value_array>},
|
||||
{"rejectattr", empty_value_fn<value_array>},
|
||||
{"select", empty_value_fn<value_array>},
|
||||
{"selectattr", empty_value_fn<value_array>},
|
||||
{"unique", empty_value_fn<value_array>},
|
||||
};
|
||||
return builtins;
|
||||
}
|
||||
@@ -1014,10 +1073,33 @@ const func_builtins & value_none_t::get_builtins() const {
|
||||
const func_builtins & value_undefined_t::get_builtins() const {
|
||||
static const func_builtins builtins = {
|
||||
{"default", default_value},
|
||||
{"tojson", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_undefined>();
|
||||
return mk_val<value_string>("null");
|
||||
}},
|
||||
{"capitalize", empty_value_fn<value_string>},
|
||||
{"first", empty_value_fn<value_undefined>},
|
||||
{"items", empty_value_fn<value_array>},
|
||||
{"join", empty_value_fn<value_string>},
|
||||
{"last", empty_value_fn<value_undefined>},
|
||||
{"length", empty_value_fn<value_int>},
|
||||
{"list", empty_value_fn<value_array>},
|
||||
{"lower", empty_value_fn<value_string>},
|
||||
{"map", empty_value_fn<value_array>},
|
||||
{"max", empty_value_fn<value_undefined>},
|
||||
{"min", empty_value_fn<value_undefined>},
|
||||
{"reject", empty_value_fn<value_array>},
|
||||
{"rejectattr", empty_value_fn<value_array>},
|
||||
{"replace", empty_value_fn<value_string>},
|
||||
{"reverse", empty_value_fn<value_array>},
|
||||
{"safe", empty_value_fn<value_string>},
|
||||
{"select", empty_value_fn<value_array>},
|
||||
{"selectattr", empty_value_fn<value_array>},
|
||||
{"sort", empty_value_fn<value_array>},
|
||||
{"string", empty_value_fn<value_string>},
|
||||
{"strip", empty_value_fn<value_string>},
|
||||
{"sum", empty_value_fn<value_int>},
|
||||
{"title", empty_value_fn<value_string>},
|
||||
{"truncate", empty_value_fn<value_string>},
|
||||
{"unique", empty_value_fn<value_array>},
|
||||
{"upper", empty_value_fn<value_string>},
|
||||
{"wordcount", empty_value_fn<value_int>},
|
||||
};
|
||||
return builtins;
|
||||
}
|
||||
@@ -1134,6 +1216,8 @@ void global_from_json(context & ctx, const nlohmann::ordered_json & json_obj, bo
|
||||
}
|
||||
}
|
||||
|
||||
// recursively convert value to JSON string
|
||||
// TODO: avoid circular references
|
||||
static void value_to_json_internal(std::ostringstream & oss, const value & val, int curr_lvl, int indent, const std::string_view item_sep, const std::string_view key_sep) {
|
||||
auto indent_str = [indent, curr_lvl]() -> std::string {
|
||||
return (indent > 0) ? std::string(curr_lvl * indent, ' ') : "";
|
||||
@@ -1196,7 +1280,8 @@ static void value_to_json_internal(std::ostringstream & oss, const value & val,
|
||||
size_t i = 0;
|
||||
for (const auto & pair : obj) {
|
||||
oss << indent_str() << (indent > 0 ? std::string(indent, ' ') : "");
|
||||
oss << "\"" << pair.first << "\"" << key_sep;
|
||||
value_to_json_internal(oss, mk_val<value_string>(pair.first->as_string().str()), curr_lvl + 1, indent, item_sep, key_sep);
|
||||
oss << key_sep;
|
||||
value_to_json_internal(oss, pair.second, curr_lvl + 1, indent, item_sep, key_sep);
|
||||
if (i < obj.size() - 1) {
|
||||
oss << item_sep;
|
||||
@@ -1219,4 +1304,19 @@ std::string value_to_json(const value & val, int indent, const std::string_view
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
// TODO: avoid circular references
|
||||
std::string value_to_string_repr(const value & val) {
|
||||
if (is_val<value_string>(val)) {
|
||||
const std::string val_str = val->as_string().str();
|
||||
|
||||
if (val_str.find('\'') != std::string::npos) {
|
||||
return value_to_json(val);
|
||||
} else {
|
||||
return "'" + val_str + "'";
|
||||
}
|
||||
} else {
|
||||
return val->as_repr();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace jinja
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
#include "string.h"
|
||||
#include "utils.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
@@ -10,6 +12,7 @@
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace jinja {
|
||||
@@ -93,7 +96,8 @@ void global_from_json(context & ctx, const T_JSON & json_obj, bool mark_input);
|
||||
|
||||
struct func_args; // function argument values
|
||||
|
||||
using func_handler = std::function<value(const func_args &)>;
|
||||
using func_hptr = value(const func_args &);
|
||||
using func_handler = std::function<func_hptr>;
|
||||
using func_builtins = std::map<std::string, func_handler>;
|
||||
|
||||
enum value_compare_op { eq, ge, gt, lt, ne };
|
||||
@@ -103,28 +107,9 @@ struct value_t {
|
||||
int64_t val_int;
|
||||
double val_flt;
|
||||
string val_str;
|
||||
bool val_bool;
|
||||
|
||||
std::vector<value> val_arr;
|
||||
|
||||
struct map {
|
||||
// once set to true, all keys must be numeric
|
||||
// caveat: we only allow either all numeric keys or all non-numeric keys
|
||||
// for now, this only applied to for_statement in case of iterating over object keys/items
|
||||
bool is_key_numeric = false;
|
||||
std::map<std::string, value> unordered;
|
||||
std::vector<std::pair<std::string, value>> ordered;
|
||||
void insert(const std::string & key, const value & val) {
|
||||
if (unordered.find(key) != unordered.end()) {
|
||||
// if key exists, remove from ordered list
|
||||
ordered.erase(std::remove_if(ordered.begin(), ordered.end(),
|
||||
[&](const std::pair<std::string, value> & p) { return p.first == key; }),
|
||||
ordered.end());
|
||||
}
|
||||
unordered[key] = val;
|
||||
ordered.push_back({key, val});
|
||||
}
|
||||
} val_obj;
|
||||
std::vector<std::pair<value, value>> val_obj;
|
||||
|
||||
func_handler val_func;
|
||||
|
||||
@@ -139,6 +124,7 @@ struct value_t {
|
||||
value_t(const value_t &) = default;
|
||||
virtual ~value_t() = default;
|
||||
|
||||
// Note: only for debugging and error reporting purposes
|
||||
virtual std::string type() const { return ""; }
|
||||
|
||||
virtual int64_t as_int() const { throw std::runtime_error(type() + " is not an int value"); }
|
||||
@@ -146,7 +132,7 @@ struct value_t {
|
||||
virtual string as_string() const { throw std::runtime_error(type() + " is not a string value"); }
|
||||
virtual bool as_bool() const { throw std::runtime_error(type() + " is not a bool value"); }
|
||||
virtual const std::vector<value> & as_array() const { throw std::runtime_error(type() + " is not an array value"); }
|
||||
virtual const std::vector<std::pair<std::string, value>> & as_ordered_object() const { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual const std::vector<std::pair<value, value>> & as_ordered_object() const { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value invoke(const func_args &) const { throw std::runtime_error(type() + " is not a function value"); }
|
||||
virtual bool is_none() const { return false; }
|
||||
virtual bool is_undefined() const { return false; }
|
||||
@@ -154,43 +140,66 @@ struct value_t {
|
||||
throw std::runtime_error("No builtins available for type " + type());
|
||||
}
|
||||
|
||||
virtual bool has_key(const std::string & key) {
|
||||
return val_obj.unordered.find(key) != val_obj.unordered.end();
|
||||
}
|
||||
virtual value & at(const std::string & key, value & default_val) {
|
||||
auto it = val_obj.unordered.find(key);
|
||||
if (it == val_obj.unordered.end()) {
|
||||
return default_val;
|
||||
}
|
||||
return val_obj.unordered.at(key);
|
||||
}
|
||||
virtual value & at(const std::string & key) {
|
||||
auto it = val_obj.unordered.find(key);
|
||||
if (it == val_obj.unordered.end()) {
|
||||
throw std::runtime_error("Key '" + key + "' not found in value of type " + type());
|
||||
}
|
||||
return val_obj.unordered.at(key);
|
||||
}
|
||||
virtual value & at(int64_t index, value & default_val) {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
return default_val;
|
||||
}
|
||||
return val_arr[index];
|
||||
}
|
||||
virtual value & at(int64_t index) {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
throw std::runtime_error("Index " + std::to_string(index) + " out of bounds for array of size " + std::to_string(val_arr.size()));
|
||||
}
|
||||
return val_arr[index];
|
||||
}
|
||||
virtual bool has_key(const value &) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual void insert(const value & /* key */, const value & /* val */) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value & at(const value & /* key */, value & /* default_val */) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value & at(const value & /* key */) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value & at(const std::string & /* key */, value & /* default_val */) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value & at(const std::string & /* key */) { throw std::runtime_error(type() + " is not an object value"); }
|
||||
virtual value & at(int64_t /* idx */, value & /* default_val */) { throw std::runtime_error(type() + " is not an array value"); }
|
||||
virtual value & at(int64_t /* idx */) { throw std::runtime_error(type() + " is not an array value"); }
|
||||
|
||||
virtual bool is_numeric() const { return false; }
|
||||
virtual bool is_hashable() const { return false; }
|
||||
virtual bool is_immutable() const { return true; }
|
||||
virtual hasher unique_hash() const noexcept = 0;
|
||||
// TODO: C++20 <=> operator
|
||||
// NOTE: We are treating == as equivalent (for normal comparisons) and != as strict nonequal (for strict (is) comparisons)
|
||||
virtual bool operator==(const value_t & other) const { return equivalent(other); }
|
||||
virtual bool operator!=(const value_t & other) const { return nonequal(other); }
|
||||
|
||||
// Note: only for debugging purposes
|
||||
virtual std::string as_repr() const { return as_string().str(); }
|
||||
|
||||
protected:
|
||||
virtual bool equivalent(const value_t &) const = 0;
|
||||
virtual bool nonequal(const value_t & other) const { return !equivalent(other); }
|
||||
};
|
||||
|
||||
//
|
||||
// utils
|
||||
//
|
||||
|
||||
const func_builtins & global_builtins();
|
||||
|
||||
std::string value_to_json(const value & val, int indent = -1, const std::string_view item_sep = ", ", const std::string_view key_sep = ": ");
|
||||
|
||||
// Note: only used for debugging purposes
|
||||
std::string value_to_string_repr(const value & val);
|
||||
|
||||
struct not_implemented_exception : public std::runtime_error {
|
||||
not_implemented_exception(const std::string & msg) : std::runtime_error("NotImplemented: " + msg) {}
|
||||
};
|
||||
|
||||
struct value_hasher {
|
||||
size_t operator()(const value & val) const noexcept {
|
||||
return val->unique_hash().digest();
|
||||
}
|
||||
};
|
||||
|
||||
struct value_equivalence {
|
||||
bool operator()(const value & lhs, const value & rhs) const {
|
||||
return *lhs == *rhs;
|
||||
}
|
||||
bool operator()(const std::pair<value, value> & lhs, const std::pair<value, value> & rhs) const {
|
||||
return *(lhs.first) == *(rhs.first) && *(lhs.second) == *(rhs.second);
|
||||
}
|
||||
};
|
||||
|
||||
struct value_equality {
|
||||
bool operator()(const value & lhs, const value & rhs) const {
|
||||
return !(*lhs != *rhs);
|
||||
}
|
||||
};
|
||||
|
||||
//
|
||||
@@ -198,24 +207,49 @@ struct value_t {
|
||||
//
|
||||
|
||||
struct value_int_t : public value_t {
|
||||
value_int_t(int64_t v) { val_int = v; }
|
||||
value_int_t(int64_t v) {
|
||||
val_int = v;
|
||||
val_flt = static_cast<double>(v);
|
||||
if (static_cast<int64_t>(val_flt) != v) {
|
||||
val_flt = v < 0 ? -INFINITY : INFINITY;
|
||||
}
|
||||
}
|
||||
virtual std::string type() const override { return "Integer"; }
|
||||
virtual int64_t as_int() const override { return val_int; }
|
||||
virtual double as_float() const override { return static_cast<double>(val_int); }
|
||||
virtual double as_float() const override { return val_flt; }
|
||||
virtual string as_string() const override { return std::to_string(val_int); }
|
||||
virtual bool as_bool() const override {
|
||||
return val_int != 0;
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_numeric() const override { return true; }
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
return hasher(typeid(*this))
|
||||
.update(&val_int, sizeof(val_int))
|
||||
.update(&val_flt, sizeof(val_flt));
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return other.is_numeric() && val_int == other.val_int && val_flt == other.val_flt;
|
||||
}
|
||||
virtual bool nonequal(const value_t & other) const override {
|
||||
return !(typeid(*this) == typeid(other) && val_int == other.val_int);
|
||||
}
|
||||
};
|
||||
using value_int = std::shared_ptr<value_int_t>;
|
||||
|
||||
|
||||
struct value_float_t : public value_t {
|
||||
value_float_t(double v) { val_flt = v; }
|
||||
value val;
|
||||
value_float_t(double v) {
|
||||
val_flt = v;
|
||||
val_int = std::isfinite(v) ? static_cast<int64_t>(v) : 0;
|
||||
val = mk_val<value_int>(val_int);
|
||||
}
|
||||
virtual std::string type() const override { return "Float"; }
|
||||
virtual double as_float() const override { return val_flt; }
|
||||
virtual int64_t as_int() const override { return static_cast<int64_t>(val_flt); }
|
||||
virtual int64_t as_int() const override { return val_int; }
|
||||
virtual string as_string() const override {
|
||||
std::string out = std::to_string(val_flt);
|
||||
out.erase(out.find_last_not_of('0') + 1, std::string::npos); // remove trailing zeros
|
||||
@@ -226,6 +260,24 @@ struct value_float_t : public value_t {
|
||||
return val_flt != 0.0;
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_numeric() const override { return true; }
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
if (static_cast<double>(val_int) == val_flt) {
|
||||
return val->unique_hash();
|
||||
} else {
|
||||
return hasher(typeid(*this))
|
||||
.update(&val_int, sizeof(val_int))
|
||||
.update(&val_flt, sizeof(val_flt));
|
||||
}
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return other.is_numeric() && val_int == other.val_int && val_flt == other.val_flt;
|
||||
}
|
||||
virtual bool nonequal(const value_t & other) const override {
|
||||
return !(typeid(*this) == typeid(other) && val_flt == other.val_flt);
|
||||
}
|
||||
};
|
||||
using value_float = std::shared_ptr<value_float_t>;
|
||||
|
||||
@@ -247,19 +299,49 @@ struct value_string_t : public value_t {
|
||||
return val_str.length() > 0;
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
const auto type_hash = typeid(*this).hash_code();
|
||||
auto hash = hasher();
|
||||
hash.update(&type_hash, sizeof(type_hash));
|
||||
val_str.hash_update(hash);
|
||||
return hash;
|
||||
}
|
||||
void mark_input() {
|
||||
val_str.mark_input();
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return typeid(*this) == typeid(other) && val_str.str() == other.val_str.str();
|
||||
}
|
||||
};
|
||||
using value_string = std::shared_ptr<value_string_t>;
|
||||
|
||||
|
||||
struct value_bool_t : public value_t {
|
||||
value_bool_t(bool v) { val_bool = v; }
|
||||
value val;
|
||||
value_bool_t(bool v) {
|
||||
val_int = static_cast<int64_t>(v);
|
||||
val_flt = static_cast<double>(v);
|
||||
val = mk_val<value_int>(val_int);
|
||||
}
|
||||
virtual std::string type() const override { return "Boolean"; }
|
||||
virtual bool as_bool() const override { return val_bool; }
|
||||
virtual string as_string() const override { return std::string(val_bool ? "True" : "False"); }
|
||||
virtual int64_t as_int() const override { return val_int; }
|
||||
virtual bool as_bool() const override { return val_int; }
|
||||
virtual string as_string() const override { return std::string(val_int ? "True" : "False"); }
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_numeric() const override { return true; }
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
return val->unique_hash();
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return other.is_numeric() && val_int == other.val_int && val_flt == other.val_flt;
|
||||
}
|
||||
virtual bool nonequal(const value_t & other) const override {
|
||||
return !(typeid(*this) == typeid(other) && val_int == other.val_int);
|
||||
}
|
||||
};
|
||||
using value_bool = std::shared_ptr<value_bool_t>;
|
||||
|
||||
@@ -269,13 +351,34 @@ struct value_array_t : public value_t {
|
||||
value_array_t(value & v) {
|
||||
val_arr = v->val_arr;
|
||||
}
|
||||
value_array_t(std::vector<value> && arr) {
|
||||
val_arr = arr;
|
||||
}
|
||||
value_array_t(const std::vector<value> & arr) {
|
||||
val_arr = arr;
|
||||
}
|
||||
void reverse() { std::reverse(val_arr.begin(), val_arr.end()); }
|
||||
void push_back(const value & val) { val_arr.push_back(val); }
|
||||
void push_back(value && val) { val_arr.push_back(std::move(val)); }
|
||||
void reverse() {
|
||||
if (is_immutable()) {
|
||||
throw std::runtime_error("Attempting to modify immutable type");
|
||||
}
|
||||
std::reverse(val_arr.begin(), val_arr.end());
|
||||
}
|
||||
void push_back(const value & val) {
|
||||
if (is_immutable()) {
|
||||
throw std::runtime_error("Attempting to modify immutable type");
|
||||
}
|
||||
val_arr.push_back(val);
|
||||
}
|
||||
void push_back(value && val) {
|
||||
if (is_immutable()) {
|
||||
throw std::runtime_error("Attempting to modify immutable type");
|
||||
}
|
||||
val_arr.push_back(std::move(val));
|
||||
}
|
||||
value pop_at(int64_t index) {
|
||||
if (is_immutable()) {
|
||||
throw std::runtime_error("Attempting to modify immutable type");
|
||||
}
|
||||
if (index < 0) {
|
||||
index = static_cast<int64_t>(val_arr.size()) + index;
|
||||
}
|
||||
@@ -287,64 +390,225 @@ struct value_array_t : public value_t {
|
||||
return val;
|
||||
}
|
||||
virtual std::string type() const override { return "Array"; }
|
||||
virtual bool is_immutable() const override { return false; }
|
||||
virtual const std::vector<value> & as_array() const override { return val_arr; }
|
||||
virtual string as_string() const override {
|
||||
const bool immutable = is_immutable();
|
||||
std::ostringstream ss;
|
||||
ss << "[";
|
||||
ss << (immutable ? "(" : "[");
|
||||
for (size_t i = 0; i < val_arr.size(); i++) {
|
||||
if (i > 0) ss << ", ";
|
||||
ss << val_arr.at(i)->as_repr();
|
||||
value val = val_arr.at(i);
|
||||
ss << value_to_string_repr(val);
|
||||
}
|
||||
ss << "]";
|
||||
if (immutable && val_arr.size() == 1) {
|
||||
ss << ",";
|
||||
}
|
||||
ss << (immutable ? ")" : "]");
|
||||
return ss.str();
|
||||
}
|
||||
virtual bool as_bool() const override {
|
||||
return !val_arr.empty();
|
||||
}
|
||||
virtual value & at(int64_t index, value & default_val) override {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
return default_val;
|
||||
}
|
||||
return val_arr[index];
|
||||
}
|
||||
virtual value & at(int64_t index) override {
|
||||
if (index < 0) {
|
||||
index += val_arr.size();
|
||||
}
|
||||
if (index < 0 || static_cast<size_t>(index) >= val_arr.size()) {
|
||||
throw std::runtime_error("Index " + std::to_string(index) + " out of bounds for array of size " + std::to_string(val_arr.size()));
|
||||
}
|
||||
return val_arr[index];
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_hashable() const override {
|
||||
if (std::all_of(val_arr.begin(), val_arr.end(), [&](auto & val) -> bool {
|
||||
return val->is_immutable() && val->is_hashable();
|
||||
})) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
auto hash = hasher(typeid(*this));
|
||||
for (const auto & val : val_arr) {
|
||||
// must use digest to prevent problems from "concatenation" property of hasher
|
||||
// for ex. hash of [ "ab", "c" ] should be different from [ "a", "bc" ]
|
||||
const size_t val_hash = val->unique_hash().digest();
|
||||
hash.update(&val_hash, sizeof(size_t));
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return typeid(*this) == typeid(other) && is_hashable() && other.is_hashable() && std::equal(val_arr.begin(), val_arr.end(), other.val_arr.begin(), value_equivalence());
|
||||
}
|
||||
};
|
||||
using value_array = std::shared_ptr<value_array_t>;
|
||||
|
||||
|
||||
struct value_tuple_t : public value_array_t {
|
||||
value_tuple_t(value & v) {
|
||||
val_arr = v->val_arr;
|
||||
}
|
||||
value_tuple_t(std::vector<value> && arr) {
|
||||
val_arr = arr;
|
||||
}
|
||||
value_tuple_t(const std::vector<value> & arr) {
|
||||
val_arr = arr;
|
||||
}
|
||||
value_tuple_t(const std::pair<value, value> & pair) {
|
||||
val_arr.push_back(pair.first);
|
||||
val_arr.push_back(pair.second);
|
||||
}
|
||||
virtual std::string type() const override { return "Tuple"; }
|
||||
virtual bool is_immutable() const override { return true; }
|
||||
};
|
||||
using value_tuple = std::shared_ptr<value_tuple_t>;
|
||||
|
||||
|
||||
struct value_object_t : public value_t {
|
||||
std::unordered_map<value, value, value_hasher, value_equivalence> unordered;
|
||||
bool has_builtins = true; // context and loop objects do not have builtins
|
||||
value_object_t() = default;
|
||||
value_object_t(value & v) {
|
||||
val_obj = v->val_obj;
|
||||
}
|
||||
value_object_t(const std::map<std::string, value> & obj) {
|
||||
for (const auto & pair : obj) {
|
||||
val_obj.insert(pair.first, pair.second);
|
||||
for (const auto & pair : val_obj) {
|
||||
unordered[pair.first] = pair.second;
|
||||
}
|
||||
}
|
||||
value_object_t(const std::vector<std::pair<std::string, value>> & obj) {
|
||||
value_object_t(const std::map<value, value> & obj) {
|
||||
for (const auto & pair : obj) {
|
||||
val_obj.insert(pair.first, pair.second);
|
||||
insert(pair.first, pair.second);
|
||||
}
|
||||
}
|
||||
value_object_t(const std::vector<std::pair<value, value>> & obj) {
|
||||
for (const auto & pair : obj) {
|
||||
insert(pair.first, pair.second);
|
||||
}
|
||||
}
|
||||
void insert(const std::string & key, const value & val) {
|
||||
val_obj.insert(key, val);
|
||||
insert(mk_val<value_string>(key), val);
|
||||
}
|
||||
virtual std::string type() const override { return "Object"; }
|
||||
virtual const std::vector<std::pair<std::string, value>> & as_ordered_object() const override { return val_obj.ordered; }
|
||||
virtual bool is_immutable() const override { return false; }
|
||||
virtual const std::vector<std::pair<value, value>> & as_ordered_object() const override { return val_obj; }
|
||||
virtual string as_string() const override {
|
||||
std::ostringstream ss;
|
||||
ss << "{";
|
||||
for (size_t i = 0; i < val_obj.size(); i++) {
|
||||
if (i > 0) ss << ", ";
|
||||
auto & [key, val] = val_obj.at(i);
|
||||
ss << value_to_string_repr(key) << ": " << value_to_string_repr(val);
|
||||
}
|
||||
ss << "}";
|
||||
return ss.str();
|
||||
}
|
||||
virtual bool as_bool() const override {
|
||||
return !val_obj.unordered.empty();
|
||||
return !unordered.empty();
|
||||
}
|
||||
virtual bool has_key(const value & key) override {
|
||||
if (!key->is_immutable() || !key->is_hashable()) {
|
||||
throw std::runtime_error("Object key of unhashable type: " + key->type());
|
||||
}
|
||||
return unordered.find(key) != unordered.end();
|
||||
}
|
||||
virtual void insert(const value & key, const value & val) override {
|
||||
bool replaced = false;
|
||||
if (is_immutable()) {
|
||||
throw std::runtime_error("Attempting to modify immutable type");
|
||||
}
|
||||
if (has_key(key)) {
|
||||
// if key exists, replace value in ordered list instead of appending
|
||||
for (auto & pair : val_obj) {
|
||||
if (*(pair.first) == *key) {
|
||||
pair.second = val;
|
||||
replaced = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
unordered[key] = val;
|
||||
if (!replaced) {
|
||||
val_obj.push_back({key, val});
|
||||
}
|
||||
}
|
||||
virtual value & at(const value & key, value & default_val) override {
|
||||
if (!has_key(key)) {
|
||||
return default_val;
|
||||
}
|
||||
return unordered.at(key);
|
||||
}
|
||||
virtual value & at(const value & key) override {
|
||||
if (!has_key(key)) {
|
||||
throw std::runtime_error("Key '" + key->as_string().str() + "' not found in value of type " + type());
|
||||
}
|
||||
return unordered.at(key);
|
||||
}
|
||||
virtual value & at(const std::string & key, value & default_val) override {
|
||||
value key_val = mk_val<value_string>(key);
|
||||
return at(key_val, default_val);
|
||||
}
|
||||
virtual value & at(const std::string & key) override {
|
||||
value key_val = mk_val<value_string>(key);
|
||||
return at(key_val);
|
||||
}
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_hashable() const override {
|
||||
if (std::all_of(val_obj.begin(), val_obj.end(), [&](auto & pair) -> bool {
|
||||
const auto & val = pair.second;
|
||||
return val->is_immutable() && val->is_hashable();
|
||||
})) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
auto hash = hasher(typeid(*this));
|
||||
for (const auto & [key, val] : val_obj) {
|
||||
// must use digest to prevent problems from "concatenation" property of hasher
|
||||
// for ex. hash of key="ab", value="c" should be different from key="a", value="bc"
|
||||
const size_t key_hash = key->unique_hash().digest();
|
||||
const size_t val_hash = val->unique_hash().digest();
|
||||
hash.update(&key_hash, sizeof(key_hash));
|
||||
hash.update(&val_hash, sizeof(val_hash));
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return typeid(*this) == typeid(other) && is_hashable() && other.is_hashable() && std::equal(val_obj.begin(), val_obj.end(), other.val_obj.begin(), value_equivalence());
|
||||
}
|
||||
};
|
||||
using value_object = std::shared_ptr<value_object_t>;
|
||||
|
||||
//
|
||||
// null and undefined types
|
||||
// none and undefined types
|
||||
//
|
||||
|
||||
struct value_none_t : public value_t {
|
||||
virtual std::string type() const override { return "None"; }
|
||||
virtual bool is_none() const override { return true; }
|
||||
virtual bool as_bool() const override { return false; }
|
||||
virtual string as_string() const override { return string("None"); }
|
||||
virtual string as_string() const override { return string(type()); }
|
||||
virtual std::string as_repr() const override { return type(); }
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
return hasher(typeid(*this));
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return typeid(*this) == typeid(other);
|
||||
}
|
||||
};
|
||||
using value_none = std::shared_ptr<value_none_t>;
|
||||
|
||||
@@ -356,6 +620,13 @@ struct value_undefined_t : public value_t {
|
||||
virtual bool as_bool() const override { return false; }
|
||||
virtual std::string as_repr() const override { return type(); }
|
||||
virtual const func_builtins & get_builtins() const override;
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
return hasher(typeid(*this));
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
return is_undefined() == other.is_undefined();
|
||||
}
|
||||
};
|
||||
using value_undefined = std::shared_ptr<value_undefined_t>;
|
||||
|
||||
@@ -436,7 +707,23 @@ struct value_func_t : public value_t {
|
||||
return val_func(new_args);
|
||||
}
|
||||
virtual std::string type() const override { return "Function"; }
|
||||
virtual std::string as_repr() const override { return type(); }
|
||||
virtual std::string as_repr() const override { return type() + "<" + name + ">(" + (arg0 ? arg0->as_repr() : "") + ")"; }
|
||||
virtual bool is_hashable() const override { return false; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
// Note: this is unused for now, we don't support function as object keys
|
||||
// use function pointer as unique identifier
|
||||
const auto target = val_func.target<func_hptr>();
|
||||
return hasher(typeid(*this)).update(&target, sizeof(target));
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
// Note: this is unused for now, we don't support function as object keys
|
||||
// compare function pointers
|
||||
// (val_func == other.val_func does not work as std::function::operator== is only used for nullptr check)
|
||||
const auto target_this = this->val_func.target<func_hptr>();
|
||||
const auto target_other = other.val_func.target<func_hptr>();
|
||||
return typeid(*this) == typeid(other) && target_this == target_other;
|
||||
}
|
||||
};
|
||||
using value_func = std::shared_ptr<value_func_t>;
|
||||
|
||||
@@ -447,18 +734,21 @@ struct value_kwarg_t : public value_t {
|
||||
value_kwarg_t(const std::string & k, const value & v) : key(k), val(v) {}
|
||||
virtual std::string type() const override { return "KwArg"; }
|
||||
virtual std::string as_repr() const override { return type(); }
|
||||
virtual bool is_hashable() const override { return true; }
|
||||
virtual hasher unique_hash() const noexcept override {
|
||||
const auto type_hash = typeid(*this).hash_code();
|
||||
auto hash = val->unique_hash();
|
||||
hash.update(&type_hash, sizeof(type_hash))
|
||||
.update(key.data(), key.size());
|
||||
return hash;
|
||||
}
|
||||
protected:
|
||||
virtual bool equivalent(const value_t & other) const override {
|
||||
const value_kwarg_t & other_val = static_cast<const value_kwarg_t &>(other);
|
||||
return typeid(*this) == typeid(other) && key == other_val.key && val == other_val.val;
|
||||
}
|
||||
};
|
||||
using value_kwarg = std::shared_ptr<value_kwarg_t>;
|
||||
|
||||
|
||||
// utils
|
||||
|
||||
const func_builtins & global_builtins();
|
||||
std::string value_to_json(const value & val, int indent = -1, const std::string_view item_sep = ", ", const std::string_view key_sep = ": ");
|
||||
|
||||
struct not_implemented_exception : public std::runtime_error {
|
||||
not_implemented_exception(const std::string & msg) : std::runtime_error("NotImplemented: " + msg) {}
|
||||
};
|
||||
|
||||
|
||||
} // namespace jinja
|
||||
|
||||
@@ -192,12 +192,12 @@ void common_ngram_cache_draft(
|
||||
break;
|
||||
}
|
||||
|
||||
LOG(" - draft candidate: token=%d\n", drafted_token);
|
||||
LOG_DBG(" - draft candidate: token=%d\n", drafted_token);
|
||||
draft.push_back(drafted_token);
|
||||
}
|
||||
}
|
||||
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename) {
|
||||
std::ofstream file_out(filename, std::ios::binary);
|
||||
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
|
||||
const common_ngram ngram = item.first;
|
||||
@@ -217,10 +217,9 @@ void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & fil
|
||||
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename) {
|
||||
common_ngram_cache common_ngram_cache_load(const std::string & filename) {
|
||||
std::ifstream hashmap_file(filename, std::ios::binary);
|
||||
if (!hashmap_file) {
|
||||
throw std::ifstream::failure("Unable to open file " + filename);
|
||||
|
||||
@@ -88,12 +88,12 @@ void common_ngram_cache_draft(
|
||||
// Save an ngram cache to a file.
|
||||
// ngram_cache: the ngram cache to save.
|
||||
// filename: the path under which to save the ngram cache.
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
|
||||
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename);
|
||||
|
||||
// Load an ngram cache saved with common_ngram_cache_save.
|
||||
// filename: the path from which to load the ngram cache.
|
||||
// returns: an ngram cache containing the information saved to filename.
|
||||
common_ngram_cache common_ngram_cache_load(std::string & filename);
|
||||
common_ngram_cache common_ngram_cache_load(const std::string & filename);
|
||||
|
||||
// Merge two ngram caches.
|
||||
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.
|
||||
|
||||
531
common/ngram-map.cpp
Normal file
531
common/ngram-map.cpp
Normal file
@@ -0,0 +1,531 @@
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
#include "ngram-map.h"
|
||||
|
||||
#include <cinttypes>
|
||||
#include <cstdint>
|
||||
#include <cstdio>
|
||||
#include <sstream>
|
||||
|
||||
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
|
||||
#define LCG_FACTOR 2654435761UL
|
||||
|
||||
// Compute the LCG hash of a n-gram of size len at offset start.
|
||||
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
|
||||
uint32_t hash = 0;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
hash = hash * LCG_FACTOR + tokens[start + i];
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
oss << '[';
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (i > 0) {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << inp[start + i];
|
||||
}
|
||||
oss << ']';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
// n-gram simple
|
||||
//
|
||||
|
||||
/**
|
||||
* Perform speculative generation using the model's own token history.
|
||||
* Searches for a matching pattern in the token history and returns draft tokens.
|
||||
*
|
||||
* @param state Current state of this implementation
|
||||
* @param tokens Token history to search in
|
||||
* @param sampled Last sampled token
|
||||
* @return Vector of draft tokens, empty if no matching pattern is found
|
||||
*/
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled) {
|
||||
|
||||
// Simple implementation of self-speculative decoding without a draft model.
|
||||
//
|
||||
const size_t cur_len = tokens.size();
|
||||
|
||||
const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history
|
||||
const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft
|
||||
|
||||
// vector for tokens we want to verify.
|
||||
// return empty vector if there is no match.
|
||||
llama_tokens draft_tokens;
|
||||
|
||||
// We need at least n_draft_min + n_draft_max + 1 tokens.
|
||||
if (cur_len <= static_cast<size_t>(n_draft_min + n_draft_max + 1)) {
|
||||
return draft_tokens;
|
||||
}
|
||||
|
||||
// pattern search
|
||||
llama_tokens pattern;
|
||||
pattern.reserve(n_draft_min);
|
||||
for (size_t j = cur_len - n_draft_min + 1; j < cur_len; ++j) {
|
||||
pattern.push_back(tokens[j]);
|
||||
}
|
||||
pattern.push_back(sampled); // add the last token to the pattern
|
||||
|
||||
size_t match_pos = 0; // we ignore position 0, position 0 == no match
|
||||
// search backwards, but skip the current match (we are currently there)
|
||||
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < pattern.size(); ++k) {
|
||||
if (tokens[j + k] != pattern[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match_pos == 0) {
|
||||
return draft_tokens;
|
||||
}
|
||||
|
||||
const size_t copy_max = std::min(
|
||||
n_draft_max,
|
||||
cur_len - (match_pos + n_draft_min)
|
||||
);
|
||||
if (copy_max < n_draft_min) {
|
||||
return draft_tokens;
|
||||
}
|
||||
LOG_DBG("%s: #tokens = %zu: found matching pattern at pos %zu, length %zu, draft length %zu\n",
|
||||
__func__, cur_len,
|
||||
match_pos, pattern.size(), copy_max);
|
||||
|
||||
draft_tokens.reserve(copy_max);
|
||||
for (size_t j = 0; j < copy_max; ++j) {
|
||||
draft_tokens.push_back(tokens[match_pos + n_draft_min + j]);
|
||||
}
|
||||
return draft_tokens;
|
||||
}
|
||||
|
||||
|
||||
// n-gram map
|
||||
//
|
||||
|
||||
// maximum number of counted values of a ngram map value.
|
||||
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
|
||||
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map, const llama_tokens & tokens) {
|
||||
size_t size_begin = tokens.size();
|
||||
|
||||
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin, map.keys.size());
|
||||
|
||||
size_t count_map_entries_upd = 0;
|
||||
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
|
||||
if (map.show_key_map_stats) {
|
||||
// Print statistics of hash map map_key.
|
||||
size_t count_nonzero = 0;
|
||||
uint32_t min_idx = UINT32_MAX;
|
||||
uint32_t max_idx = 0;
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx != 0) {
|
||||
++count_nonzero;
|
||||
if (key_idx < min_idx) min_idx = key_idx;
|
||||
if (key_idx > max_idx) max_idx = key_idx;
|
||||
}
|
||||
}
|
||||
if (count_nonzero == 0) {
|
||||
min_idx = 0;
|
||||
}
|
||||
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
|
||||
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
|
||||
}
|
||||
|
||||
// Update the map from hash to key index (clear outdated entries).
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx >= map.size_last_begin) {
|
||||
map.key_map[i] = 0;
|
||||
count_map_entries_upd++;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
}
|
||||
|
||||
if (size_begin < map.idx_last_check && !map.keys.empty()) {
|
||||
// The next token generation will start at index size_begin.
|
||||
// The tokens between map.size_last_begin and size_begin are no longer valid.
|
||||
//
|
||||
// Refresh map: Remove all entries with index >= map.size_last_begin.
|
||||
size_t count_keys = map.keys.size();
|
||||
size_t count_keys_del = 0;
|
||||
size_t count_values_del = 0;
|
||||
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
|
||||
common_ngram_map_key & key = map.keys[i];
|
||||
if (key.key_idx >= map.size_last_begin) {
|
||||
// Delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
continue;
|
||||
}
|
||||
if (map.key_only) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check the indices of the values.
|
||||
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
|
||||
common_ngram_map_value & value = key.values[j];
|
||||
if (value.value_idx >= map.size_last_begin) {
|
||||
// Delete the value.
|
||||
count_values_del++;
|
||||
|
||||
// Move all values after this value to the left.
|
||||
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
|
||||
key.values[k] = key.values[k + 1];
|
||||
}
|
||||
// Clear the last value.
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
|
||||
}
|
||||
}
|
||||
if (key.values[0].value_idx == 0) {
|
||||
// No values left, delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin,
|
||||
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
|
||||
}
|
||||
|
||||
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
map.size_last_begin = size_begin;
|
||||
}
|
||||
|
||||
void common_ngram_map_draft(common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
llama_tokens & draft) {
|
||||
// reset last key and value.
|
||||
map.last_draft_created = false;
|
||||
map.last_draft_key_idx = 0;
|
||||
map.last_draft_value_idx = 0;
|
||||
|
||||
const size_t cur_len = inp.size();
|
||||
const uint16_t n = map.size_key;
|
||||
const uint16_t m = map.size_value;
|
||||
if (cur_len < static_cast<size_t>(2 * n + m)) {
|
||||
return;
|
||||
}
|
||||
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
|
||||
// key_map uses uint32_t instead of size_t.
|
||||
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
|
||||
}
|
||||
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
if (map.idx_last_check + map.check_rate > cur_len) {
|
||||
return;
|
||||
}
|
||||
map.idx_last_check = cur_len;
|
||||
|
||||
// search pattern, the key n-gram
|
||||
std::vector<llama_token> key_tokens;
|
||||
key_tokens.reserve(n);
|
||||
for (size_t j = cur_len - n + 1; j < cur_len; ++j) {
|
||||
key_tokens.push_back(inp[j]);
|
||||
}
|
||||
key_tokens.push_back(sampled);
|
||||
|
||||
// search for the key in the map
|
||||
size_t match_pos = 0;
|
||||
if (map.size_last_begin > cur_len) {
|
||||
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
|
||||
}
|
||||
if (!map.key_map.empty()) {
|
||||
// Search for the key in the map key_map from hash of ngrams to index of ngram.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
|
||||
uint32_t idx_key = map.key_map[idx_hash];
|
||||
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
|
||||
// Check if the key matches the key at idx_key (because of possible collisions).
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[idx_key + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
|
||||
if (match) {
|
||||
match_pos = idx_key;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// Check if the key matches the key.
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos == 0) {
|
||||
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
|
||||
//
|
||||
// Search in [size_last_begin, cur_len - n - m - 1], descending.
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos > 0) {
|
||||
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
cur_len, n, m, key_tokens.size(), sampled, match_pos);
|
||||
}
|
||||
|
||||
if (!map.key_map.empty()) {
|
||||
// Add hashes of new ngrams in key_map.
|
||||
//
|
||||
// Use the same order as above.
|
||||
if (map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j; // collisions may occur
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
|
||||
}
|
||||
|
||||
if (match_pos == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// We have a match, now we look for the statistics of the key.
|
||||
size_t key_offset = map.keys.size(); // offset in the map
|
||||
// We iterate through the std::vector<common_ngram_map_key> map->keys.
|
||||
for (size_t i = 0; i < map.keys.size(); ++i) {
|
||||
bool match = true;
|
||||
for (size_t j = 0; j < n; ++j) {
|
||||
if (inp[map.keys[i].key_idx + j] != key_tokens[j]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
key_offset = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (key_offset == map.keys.size()) {
|
||||
// We create a new key-entry, it will get offset key_offset.
|
||||
common_ngram_map_key new_key;
|
||||
new_key.key_idx = match_pos;
|
||||
new_key.stat_idx = 0;
|
||||
new_key.key_num = 0;
|
||||
for (int i = 0; i < COMMON_NGRAM_MAX_VALUES; ++i) {
|
||||
new_key.values[i].value_num = 0;
|
||||
new_key.values[i].n_accepted = m;
|
||||
}
|
||||
map.keys.push_back(new_key);
|
||||
}
|
||||
|
||||
// our key n-gram:
|
||||
common_ngram_map_key & curr_key = map.keys[key_offset];
|
||||
|
||||
// update number of key hits
|
||||
curr_key.key_num = (uint16_t) std::min((int) map.keys[key_offset].key_num + 1,
|
||||
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
|
||||
|
||||
if (map.key_only) {
|
||||
// simple mode:
|
||||
// Fill in the draft with the m tokens following the key.
|
||||
// We work with value values[0] only.
|
||||
int n_draft_tokens = std::min((int) m, (int) curr_key.values[0].n_accepted);
|
||||
|
||||
for (int i = 0; i < n_draft_tokens; ++i) {
|
||||
draft.push_back(inp[match_pos + n + i]);
|
||||
}
|
||||
|
||||
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
|
||||
|
||||
map.last_draft_created = false;
|
||||
map.last_draft_key_idx = key_offset;
|
||||
map.last_draft_value_idx = 0; // value 0 is used for simple mode
|
||||
return;
|
||||
}
|
||||
|
||||
if (curr_key.key_num < map.min_hits) {
|
||||
// not enough hits to consider this a good draft
|
||||
LOG_DBG("%s: key_offset = %zu, key_num = %d, min_hits = %d, no draft\n", __func__,
|
||||
key_offset, curr_key.key_num, map.min_hits);
|
||||
return;
|
||||
}
|
||||
|
||||
// complex mode: examine the different m-grams after this key n-gram.
|
||||
//
|
||||
|
||||
// determine all (max COMMON_NGRAM_MAX_VALUES) m-grams after the key n-gram.
|
||||
for (size_t i = curr_key.stat_idx; i <= match_pos; ++i) {
|
||||
// begins the key n-gram at index i?
|
||||
bool match_key = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[i + k] != key_tokens[k]) {
|
||||
match_key = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!match_key) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Do we haven a existing value m-gram or a new one after the key at index i?
|
||||
size_t idx_begin_value_key = i + n;
|
||||
int idx_value = -1;
|
||||
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
|
||||
size_t idx_begin_value_v = curr_key.values[v].value_idx;
|
||||
if (idx_begin_value_v == 0) {
|
||||
// We found an empty value slot => we found a new value m-gram after the key n-gram.
|
||||
curr_key.values[v].value_idx = idx_begin_value_key;
|
||||
curr_key.values[v].value_num = 0;
|
||||
curr_key.values[v].n_accepted = m;
|
||||
idx_value = v;
|
||||
break;
|
||||
}
|
||||
bool match = true;
|
||||
for (size_t j = 0; j < m; ++j) {
|
||||
if (inp[idx_begin_value_key + j] != inp[idx_begin_value_v + j]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
// We found an existing value m-gram after the key n-gram.
|
||||
idx_value = v;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (idx_value >= 0) {
|
||||
// We found a value m-gram of the key n-gram.
|
||||
curr_key.values[idx_value].value_num = (uint16_t) std::min((int) curr_key.values[idx_value].value_num + 1,
|
||||
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
|
||||
}
|
||||
}
|
||||
// the statistics are updated up to match_pos.
|
||||
curr_key.stat_idx = match_pos;
|
||||
|
||||
// Do we have a value we could use for the draft?
|
||||
uint16_t max_occur = 0;
|
||||
int slot_max = 0;
|
||||
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
|
||||
uint16_t curr_occur = curr_key.values[v].value_num;
|
||||
if (curr_occur > max_occur) {
|
||||
max_occur = curr_occur;
|
||||
slot_max = v;
|
||||
}
|
||||
}
|
||||
// What is sum of the other occurences?
|
||||
uint32_t sum_occur = 0;
|
||||
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
|
||||
if (v == slot_max) {
|
||||
continue;
|
||||
}
|
||||
uint16_t curr_occur = curr_key.values[v].value_num;
|
||||
sum_occur += curr_occur;
|
||||
}
|
||||
|
||||
LOG_INF("%s: key_offset = %zu, max_occur = %d, sum_occur = %d, slot_max = %d [%zu/%d, %zu/%d, %zu/%d, %zu/%d]\n", __func__,
|
||||
key_offset,
|
||||
max_occur, sum_occur, slot_max,
|
||||
curr_key.values[0].value_idx, curr_key.values[0].value_num,
|
||||
curr_key.values[1].value_idx, curr_key.values[1].value_num,
|
||||
curr_key.values[2].value_idx, curr_key.values[2].value_num,
|
||||
curr_key.values[3].value_idx, curr_key.values[3].value_num
|
||||
);
|
||||
// Print the tokens of the four values (if idx != 0), use LOG_INF
|
||||
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
|
||||
if (curr_key.values[v].value_idx != 0) {
|
||||
LOG_INF("%s: value[%d] = %s\n", __func__, v, common_tokens_to_str(inp, curr_key.values[v].value_idx, m).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
|
||||
// The most frequent value is not much more frequent than the other values.
|
||||
// We do not use the draft.
|
||||
return;
|
||||
}
|
||||
|
||||
// We use the most frequent value values[slot_max] for the draft.
|
||||
// Fill in the draft with the m tokens following the key.
|
||||
int n_draft_tokens = std::min((int) m, (int) curr_key.values[slot_max].n_accepted);
|
||||
|
||||
for (int i = 0; i < n_draft_tokens; ++i) {
|
||||
draft.push_back(inp[match_pos + n + i]);
|
||||
}
|
||||
|
||||
LOG_INF("%s: key_offset = %zu, slot_max = %d, key_num = %d, draft.size = %zu\n", __func__,
|
||||
key_offset, slot_max,
|
||||
curr_key.key_num, draft.size());
|
||||
|
||||
map.last_draft_created = true;
|
||||
map.last_draft_key_idx = key_offset;
|
||||
map.last_draft_value_idx = slot_max; // value used for draft generation.
|
||||
}
|
||||
|
||||
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
|
||||
if (!map.last_draft_created) {
|
||||
return;
|
||||
}
|
||||
|
||||
// find the key and its chosen value.
|
||||
const size_t key_idx = map.last_draft_key_idx;
|
||||
const size_t val_idx = map.last_draft_value_idx;
|
||||
|
||||
// find key corresponding to key_idx.
|
||||
common_ngram_map_key & curr_key = map.keys[key_idx];
|
||||
// find value corresponding to val_idx.
|
||||
struct common_ngram_map_value & curr_value = curr_key.values[val_idx]; // value used for draft generation.
|
||||
|
||||
// update the value statistics
|
||||
LOG_INF("common_ngram_map_send_accepted: n_accepted = %d, prev value_num = %d\n",
|
||||
n_accepted, curr_value.n_accepted);
|
||||
curr_value.n_accepted = n_accepted;
|
||||
}
|
||||
117
common/ngram-map.h
Normal file
117
common/ngram-map.h
Normal file
@@ -0,0 +1,117 @@
|
||||
#pragma once
|
||||
//
|
||||
// common/ngram-map.h: structures used to manage a map from n-grams to a list of m-grams
|
||||
//
|
||||
// These structures are used to do a lookup of n-grams followed by m-grams in token history.
|
||||
//
|
||||
// There are two algorithms implemented:
|
||||
// 1. ngram_simple: lookup of n-grams followed by m-grams in token history.
|
||||
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
|
||||
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
|
||||
//
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
|
||||
//
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
// n-gram simple
|
||||
//
|
||||
|
||||
// config of n-gram simple.
|
||||
struct common_ngram_simple_config {
|
||||
uint16_t size_ngram; // size of n-grams to lookup in self-mode
|
||||
uint16_t size_mgram; // size of m-grams to draft in self-mode
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
};
|
||||
|
||||
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled);
|
||||
|
||||
|
||||
// n-gram map
|
||||
//
|
||||
|
||||
// maximum number of m-gram values stored for each key n-gram.
|
||||
#define COMMON_NGRAM_MAX_VALUES 4
|
||||
|
||||
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
|
||||
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
|
||||
|
||||
// statistics of a m-gram after a known n-gram
|
||||
struct common_ngram_map_value {
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
|
||||
};
|
||||
|
||||
// statistics of a n-gram
|
||||
struct common_ngram_map_key {
|
||||
size_t key_idx; // index of key n-gram in token-history
|
||||
size_t stat_idx; // index of last token of stastistics computation (key_num, values)
|
||||
|
||||
uint16_t key_num; // number of occurences of this key n-gram in token-history
|
||||
common_ngram_map_value values[COMMON_NGRAM_MAX_VALUES]; // some known values after the key
|
||||
};
|
||||
|
||||
// map from n-grams to following m-grams in token-history
|
||||
struct common_ngram_map {
|
||||
uint16_t size_key; // size of key n-grams
|
||||
uint16_t size_value; // size of value m-grams
|
||||
|
||||
bool key_only; // true if only key n-grams are used, no values.
|
||||
|
||||
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
uint16_t min_hits; // minimum number of key hits to consider a draft
|
||||
|
||||
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
|
||||
|
||||
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
|
||||
uint16_t check_rate, uint16_t min_hits)
|
||||
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
|
||||
check_rate(check_rate), min_hits(min_hits) {
|
||||
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
|
||||
}
|
||||
|
||||
// In reasoning chats the previous reasoning block will be removed from context history.
|
||||
// A rebuild of the ngram map is needed after that.
|
||||
|
||||
size_t size_last_begin = 0; // number of tokens at previous start of generation
|
||||
|
||||
bool last_draft_created = false; // true if a draft was created at last call.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
|
||||
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history
|
||||
|
||||
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
|
||||
//
|
||||
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
|
||||
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
|
||||
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
|
||||
};
|
||||
|
||||
// Initialize the n-gram map with the given token history.
|
||||
// map: the ngram map to initialize.
|
||||
// tokens: the token history to base the map on.
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map,
|
||||
const llama_tokens & tokens);
|
||||
|
||||
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// map: the ngram map to search in.
|
||||
// inp: the tokens generated so far.
|
||||
// sampled: the token that was just sampled.
|
||||
// draft: vector to store the draft tokens, initially empty.
|
||||
void common_ngram_map_draft(
|
||||
common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
llama_tokens & draft);
|
||||
|
||||
// Update the statistics of a value after a draft was processed.
|
||||
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted);
|
||||
60
common/ngram-mod.cpp
Normal file
60
common/ngram-mod.cpp
Normal file
@@ -0,0 +1,60 @@
|
||||
#include "ngram-mod.h"
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
//
|
||||
|
||||
common_ngram_mod::common_ngram_mod(uint16_t n, size_t size) : n(n), used(0) {
|
||||
entries.resize(size);
|
||||
|
||||
reset();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::idx(const entry_t * tokens) const {
|
||||
size_t res = 0;
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
res = res*6364136223846793005ULL + tokens[i];
|
||||
}
|
||||
|
||||
res = res % entries.size();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void common_ngram_mod::add(const entry_t * tokens) {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
if (entries[i] == EMPTY) {
|
||||
used++;
|
||||
}
|
||||
|
||||
entries[i] = tokens[n];
|
||||
}
|
||||
|
||||
common_ngram_mod::entry_t common_ngram_mod::get(const entry_t * tokens) const {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
return entries[i];
|
||||
}
|
||||
|
||||
void common_ngram_mod::reset() {
|
||||
std::fill(entries.begin(), entries.end(), EMPTY);
|
||||
used = 0;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_n() const {
|
||||
return n;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_used() const {
|
||||
return used;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size() const {
|
||||
return entries.size();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size_bytes() const {
|
||||
return entries.size() * sizeof(entries[0]);
|
||||
}
|
||||
38
common/ngram-mod.h
Normal file
38
common/ngram-mod.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/19164
|
||||
//
|
||||
|
||||
// basic n-gram hasher
|
||||
struct common_ngram_mod {
|
||||
using entry_t = int32_t;
|
||||
|
||||
static constexpr entry_t EMPTY = -1;
|
||||
|
||||
common_ngram_mod(uint16_t n, size_t size);
|
||||
|
||||
size_t idx(const entry_t * tokens) const;
|
||||
void add(const entry_t * tokens);
|
||||
entry_t get(const entry_t * tokens) const; // return -1 if not found
|
||||
|
||||
void reset();
|
||||
|
||||
size_t get_n() const;
|
||||
size_t get_used() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t size_bytes() const;
|
||||
|
||||
private:
|
||||
size_t n; // ngram size to hash
|
||||
|
||||
size_t used;
|
||||
|
||||
std::vector<entry_t> entries;
|
||||
};
|
||||
File diff suppressed because it is too large
Load Diff
@@ -5,31 +5,33 @@
|
||||
|
||||
struct common_speculative;
|
||||
|
||||
struct common_speculative_params {
|
||||
int n_draft = 16; // max drafted tokens
|
||||
int n_reuse = 256;
|
||||
// comma separated list of all types
|
||||
std::string common_speculative_type_name_str();
|
||||
|
||||
float p_min = 0.75f; // min probability required to accept a token in the draft
|
||||
};
|
||||
// convert string to type
|
||||
enum common_speculative_type common_speculative_type_from_name(const std::string & name);
|
||||
|
||||
struct common_speculative * common_speculative_init(
|
||||
struct llama_context * ctx_tgt,
|
||||
struct llama_context * ctx_dft
|
||||
);
|
||||
// convert type to string
|
||||
std::string common_speculative_type_to_str(enum common_speculative_type type);
|
||||
|
||||
void common_speculative_free(struct common_speculative * spec);
|
||||
common_speculative * common_speculative_init(
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
|
||||
bool common_speculative_are_compatible(
|
||||
const struct llama_context * ctx_tgt,
|
||||
const struct llama_context * ctx_dft);
|
||||
void common_speculative_free(common_speculative * spec);
|
||||
|
||||
void common_speculative_add_replacement_tgt_dft(
|
||||
struct common_speculative * spec,
|
||||
const char *source, const char *dest);
|
||||
// optionally call once at the beginning of a new generation
|
||||
void common_speculative_begin(common_speculative * spec, const llama_tokens & prompt);
|
||||
|
||||
// sample up to n_draft tokens and add them to the batch using the draft model
|
||||
llama_tokens common_speculative_gen_draft(
|
||||
struct common_speculative * spec,
|
||||
struct common_speculative_params params,
|
||||
const llama_tokens & prompt,
|
||||
llama_token id_last);
|
||||
llama_tokens common_speculative_draft(
|
||||
common_speculative * spec,
|
||||
const common_params_speculative & params,
|
||||
const llama_tokens & prompt,
|
||||
llama_token id_last);
|
||||
|
||||
// informs the speculative decoder that n_accepted tokens were accepted by the target model
|
||||
void common_speculative_accept(common_speculative * spec, uint16_t n_accepted);
|
||||
|
||||
// print statistics about the speculative decoding
|
||||
void common_speculative_print_stats(const common_speculative * spec);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -22,12 +22,11 @@
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
|
||||
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
|
||||
SYCL cross-platform capabilities enable support for other vendor GPUs as well.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
@@ -35,13 +34,16 @@ The following releases are verified and recommended:
|
||||
|
||||
|Commit ID|Tag|Release|Verified Platform| Update date|
|
||||
|-|-|-|-|-|
|
||||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |ArcB580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |Arc B580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|
||||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|
||||
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|
||||
|
||||
|
||||
## News
|
||||
|
||||
- 2026.02
|
||||
- Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU.
|
||||
|
||||
- 2025.11
|
||||
- Support malloc memory on device more than 4GB.
|
||||
|
||||
@@ -51,7 +53,7 @@ The following releases are verified and recommended:
|
||||
|-|-|-|-|
|
||||
|PVC 1550|39|73|+87%|
|
||||
|Flex 170|39|50|+28%|
|
||||
|Arc770|42|55|+30%|
|
||||
|Arc A770|42|55|+30%|
|
||||
|MTL|13|16|+23%|
|
||||
|ARL-H|14|17|+21%|
|
||||
|
||||
@@ -62,7 +64,7 @@ The following releases are verified and recommended:
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc A770.
|
||||
- Arch Linux is verified successfully.
|
||||
|
||||
- 2024.4
|
||||
@@ -111,14 +113,15 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
||||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc Series | Support | Arc 770, 730M, Arc A750, B580 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- **Memory**
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-completion`.
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
|
||||
|
||||
- **Execution Unit (EU)**
|
||||
@@ -126,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
||||
|
||||
### Other Vendor GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|-----------|----------------|
|
||||
| Ampere Series | Supported | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
|
||||
|
||||
| AMD GPU | Status | Verified Model |
|
||||
|--------------------------|--------------|----------------|
|
||||
| Radeon Pro | Experimental | W6800 |
|
||||
| Radeon RX | Experimental | 6700 XT |
|
||||
|
||||
Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
NA
|
||||
|
||||
## Docker
|
||||
|
||||
@@ -148,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets.
|
||||
### Build image
|
||||
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP32
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
@@ -211,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
||||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
SYCL backend depends on:
|
||||
@@ -247,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|2025.1|
|
||||
|2024.1|
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneDNN.git
|
||||
cd oneDNN
|
||||
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build build-nvidia --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@@ -284,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
|
||||
```
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
```
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
|
||||
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
@@ -331,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
|
||||
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
#### Retrieve and prepare model
|
||||
@@ -422,16 +327,12 @@ Choose one of following methods to run.
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh 0
|
||||
./examples/sycl/test.sh -mg 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh
|
||||
./examples/sycl/test.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -454,13 +355,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@@ -576,13 +477,13 @@ Or, use CMake presets to build:
|
||||
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-completion
|
||||
```
|
||||
|
||||
#### 3. Visual Studio
|
||||
@@ -607,7 +508,7 @@ You can use Visual Studio to open the `llama.cpp` folder directly as a CMake pro
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
cmake --build build --config Release -j --target llama-completion
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
@@ -713,13 +614,7 @@ Choose one of following methods to run.
|
||||
1. Script
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-2.bat
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-3.bat
|
||||
examples\sycl\win-test.bat
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -743,13 +638,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
|
||||
@@ -775,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
|
||||
1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`.
|
||||
|
||||
#### Runtime
|
||||
|
||||
@@ -791,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": 4,
|
||||
"version": 5,
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
@@ -16,7 +16,9 @@
|
||||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "android_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
@@ -31,7 +33,15 @@
|
||||
"name": "arm64-windows-snapdragon",
|
||||
"inherits": [ "base", "arm64-windows-llvm" ],
|
||||
"cacheVariables": {
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
|
||||
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
|
||||
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
|
||||
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
|
||||
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
|
||||
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
|
||||
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
|
||||
"PREBUILT_LIB_DIR": "windows_aarch64",
|
||||
"GGML_OPENMP": "OFF",
|
||||
"GGML_LLAMAFILE": "OFF",
|
||||
@@ -1,6 +1,8 @@
|
||||
# Snapdragon-based Android devices
|
||||
# Snapdragon-based devices
|
||||
|
||||
## How to Build
|
||||
## Setup
|
||||
|
||||
### Android
|
||||
|
||||
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
|
||||
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
|
||||
@@ -12,7 +14,24 @@ This method works on Linux, macOS, and Windows. macOS and Windows users should i
|
||||
[d]/> cd /workspace
|
||||
```
|
||||
|
||||
The rest of the Android build process assumes that you're running inside the toolchain container.
|
||||
Note: The rest of the **Android** build process assumes that you're running inside the toolchain container.
|
||||
|
||||
### Windows On Snapdragon
|
||||
|
||||
Native Windows 11 arm64 builds has the following tools dependencies:
|
||||
- MS Visual Studio 2026 (Community Edition or Pro)
|
||||
- MSVC arm64 standard and runtime libraries
|
||||
- UCRT and Driver Kit
|
||||
- LLVM core libraries and Clang compiler (winget)
|
||||
- CMake, Git, Python (winget)
|
||||
- Hexagon SDK Community Edition 6.4 or later (see windows.md)
|
||||
- OpenCL SDK 2.3 or later (see windows.md)
|
||||
|
||||
Note: The rest of the **Windows** build process assumes that you're running natively in Powershell.
|
||||
Adapt below build commands accordingly.
|
||||
|
||||
## How to Build
|
||||
|
||||
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
|
||||
|
||||
```
|
||||
@@ -49,24 +68,26 @@ Preset CMake variables:
|
||||
To generate an installable "package" simply use cmake --install:
|
||||
|
||||
```
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
|
||||
[d]/workspace> cmake --install build-snapdragon --prefix pkg-snapdragon/llama.cpp
|
||||
-- Install configuration: "Release"
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-cpu.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-opencl.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-hexagon.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v73.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v75.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v79.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v81.so
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml.so
|
||||
...
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-bench
|
||||
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-cli
|
||||
...
|
||||
```
|
||||
|
||||
## How to Install
|
||||
|
||||
### Android
|
||||
|
||||
For this step, your device needs to be configured for on-device development.
|
||||
Please see https://developer.android.com/studio/debug/dev-options for details.
|
||||
|
||||
@@ -74,10 +95,10 @@ Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
|
||||
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
|
||||
|
||||
```
|
||||
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
|
||||
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
~/src/llama.cpp$ adb push pkg-snapdragon/llama.cpp /data/local/tmp/
|
||||
pkg-snapdragon/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
|
||||
pkg-snapdragon/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
|
||||
pkg-snapdragon/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
|
||||
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
|
||||
```
|
||||
|
||||
@@ -92,6 +113,11 @@ At this point, you should also install some models:
|
||||
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
|
||||
```
|
||||
|
||||
### Windows
|
||||
|
||||
All artifacts are already installed in the `pkg-snapdragon` folder.
|
||||
To run, adapt below instructions to use Powershell scrits in `scripts/snapdragon/windows`.
|
||||
|
||||
## How to Run
|
||||
|
||||
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.
|
||||
161
docs/backend/snapdragon/windows.md
Normal file
161
docs/backend/snapdragon/windows.md
Normal file
@@ -0,0 +1,161 @@
|
||||
## Overview
|
||||
|
||||
The document covers procedures for installing the latest GPU and NPU drivers, and OpenCL and Hexagon SDKs.
|
||||
|
||||
|
||||
In order to use Hexagon NPU on Snapdragon Windows devices the underlying HTP Ops libraries (e.g libggml-htp-v73.so)
|
||||
must be included in the .cat file digitally signed with a trusted certificate.
|
||||
|
||||
This document covers details on how to generate personal certificate files (.pfx) and how to configure the system
|
||||
to allow for test signatures (aka test-signing).
|
||||
|
||||
## Install the latest Adreno OpenCL SDK
|
||||
|
||||
Either use the trimmed down version (optimized for CI) from
|
||||
|
||||
https://github.com/snapdragon-toolchain/opencl-sdk/releases/download/v2.3.2/adreno-opencl-sdk-v2.3.2-arm64-wos.tar.xz
|
||||
|
||||
Or download the complete official version from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Adreno_OpenCL_SDK?version=2.3.2
|
||||
|
||||
Unzip/untar the archive into
|
||||
```
|
||||
c:\Qualcomm\OpenCL_SDK\2.3.2
|
||||
```
|
||||
|
||||
## Install the latest Hexagon SDK Community Edition
|
||||
|
||||
Either use the trimmed down version (optimized for CI) from
|
||||
|
||||
https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v6.4.0.2/hexagon-sdk-v6.4.0.2-arm64-wos.tar.xz
|
||||
|
||||
Or download the complete official version from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Hexagon_SDK?version=6.4.0.2
|
||||
|
||||
Unzip/untar the archive into
|
||||
```
|
||||
c:\Qualcomm\Hexagon_SDK\6.4.0.2
|
||||
```
|
||||
|
||||
## Install the latest Adreno GPU driver
|
||||
|
||||
Download the driver from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Windows_Graphics_Driver
|
||||
|
||||
After the automated installation and reboot please make sure that the GPU device shows up in the `Device Manager` (under 'Display Adapters`)
|
||||
|
||||
## Install the latest Qualcomm NPU driver
|
||||
|
||||
Download the driver from
|
||||
|
||||
https://softwarecenter.qualcomm.com/catalog/item/Qualcomm_HND
|
||||
|
||||
After the automated installation and reboot please make sure that the Hexagon NPU device shows up in the `Device Manager` (under `Neural Processors`).
|
||||
|
||||
If the device is not available you can try installing all components (`qcnspmcdm8380`, `qcnspmcdm8380_ext`) manually.
|
||||
The components are extracted into
|
||||
```
|
||||
c:\QCDrivers\qcnspmcdm...
|
||||
```
|
||||
|
||||
## Enable NPU driver test signatures
|
||||
|
||||
Please note that the following steps are required only for the Hexagon NPU.
|
||||
Adreno GPU backend does not require test signatures.
|
||||
|
||||
### Enable testsigning
|
||||
|
||||
Use `bcdedit` to enable test-signing
|
||||
```
|
||||
> bcdedit /set TESTSIGNING ON
|
||||
```
|
||||
(Secure Boot may need to be disabled for this to work)
|
||||
|
||||
Make sure test-signing is enabled after reboot
|
||||
```
|
||||
> bcdedit /enum
|
||||
...
|
||||
testsigning Yes
|
||||
...
|
||||
```
|
||||
For additional details see Microsoft guide at
|
||||
|
||||
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
|
||||
|
||||
### Create personal certificate
|
||||
|
||||
The tools required for this procedure are available as part of Windows SDK and Windows Driver Kit which should be
|
||||
installed as part of the MS Visual Studio.
|
||||
They are typically located at
|
||||
```
|
||||
c:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0
|
||||
```
|
||||
(replace 10.0.26100.0 with correct version).
|
||||
|
||||
To create personal self-signed certificate run the following commands (either from cmd or power-shell):
|
||||
```
|
||||
> cd c:\Users\MyUser
|
||||
> mkdir Certs
|
||||
> cd Certs
|
||||
> makecert -r -pe -ss PrivateCertStore -n CN=GGML.HTP.v1 -eku 1.3.6.1.5.5.7.3.3 -sv ggml-htp-v1.pvk ggml-htp-v1.cer
|
||||
> pvk2pfx.exe -pvk ggml-htp-v1.pvk -spc ggml-htp-v1.cer -pfx ggml-htp-v1.pfx
|
||||
```
|
||||
(replace `MyUser` with your username).
|
||||
|
||||
Add this certificate to `Trusted Root Certification Authorities` and `Trusted Publishers` stores.
|
||||
This can be done using `certlm` Certificate Manager tool.
|
||||
Right click on the certificate store, select `All Tasks -> Import` and follow the prompts to import the certificate from the
|
||||
PFX file you created above.
|
||||
|
||||
For additional details see Microsoft guide at
|
||||
|
||||
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/introduction-to-test-signing
|
||||
|
||||
Make sure to save the PFX file, you will need it for the build procedures.
|
||||
Please note that the same certificate can be used for signing any number of builds.
|
||||
|
||||
## Build Hexagon backend with signed HTP ops libraries
|
||||
|
||||
The overall Hexagon backend build procedure for Windows on Snapdragon is the same as for other platforms.
|
||||
However, additional settings are required for generating and signing HTP Ops libraries.
|
||||
```
|
||||
> $env:OPENCL_SDK_ROOT="C:\Qualcomm\OpenCL_SDK\2.3.2"
|
||||
> $env:HEXAGON_SDK_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2"
|
||||
> $env:HEXAGON_TOOLS_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2\tools\HEXAGON_Tools\19.0.04"
|
||||
> $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx"
|
||||
> $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64"
|
||||
|
||||
> cmake --preset arm64-windows-snapdragon-release -B build-wos
|
||||
...
|
||||
> cmake --install build-wos --prefix pkg-snapdragon
|
||||
```
|
||||
|
||||
Once the build is complete HTP ops libraries will be installed like this
|
||||
```
|
||||
> dir pkg-snapdragon/lib
|
||||
...
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v73.so
|
||||
-a---- 1/22/2026 6:01 PM 191752 libggml-htp-v75.so
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v79.so
|
||||
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v81.so
|
||||
-a---- 1/22/2026 6:01 PM 4139 libggml-htp.cat
|
||||
```
|
||||
|
||||
The .cat file, the signature and proper certicate installation can be verified with
|
||||
|
||||
```
|
||||
> signtool.exe verify /v /pa .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
Verifying: .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
|
||||
Signature Index: 0 (Primary Signature)
|
||||
Hash of file (sha256): 9820C664DA59D5EAE31DBB664127FCDAEF59CDC31502496BC567544EC2F401CF
|
||||
|
||||
Signing Certificate Chain:
|
||||
Issued to: GGML.HTP.v1
|
||||
...
|
||||
Successfully verified: .\pkg-snapdragon\lib\libggml-htp.cat
|
||||
...
|
||||
```
|
||||
@@ -144,7 +144,7 @@ We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in
|
||||
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
|
||||
- (there are no supported CUDA packages for these systems)
|
||||
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
|
||||
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
|
||||
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your host operating system)
|
||||
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
|
||||
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
|
||||
|
||||
@@ -248,6 +248,12 @@ You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda
|
||||
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
|
||||
```
|
||||
|
||||
#### CUDA_SCALE_LAUNCH_QUEUES
|
||||
|
||||
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
|
||||
|
||||
Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
|
||||
@@ -487,6 +493,37 @@ Finally, after finishing your build, you should be able to do something like thi
|
||||
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
|
||||
```
|
||||
|
||||
### For Mac users:
|
||||
|
||||
Generally, follow LunarG's [Getting Started with the MacOS Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html) guide for installation and setup of the Vulkan SDK. There are two options of Vulkan drivers on macOS, both of which implement translation layers to map Vulkan to Metal. They can be hot-swapped by setting the `VK_ICD_FILENAMES` environment variable to point to the respective ICD JSON file.
|
||||
|
||||
Check the box for "KosmicKrisp" during the LunarG Vulkan SDK installation.
|
||||
|
||||
Set environment variable for the LunarG Vulkan SDK after installation (and optionally add to your shell profile for persistence):
|
||||
```bash
|
||||
source /path/to/vulkan-sdk/setup-env.sh
|
||||
```
|
||||
|
||||
#### Using MoltenVK
|
||||
|
||||
MoltenVK is the default Vulkan driver installed with the LunarG Vulkan SDK on macOS, so you can use the above environment variable settings as is.
|
||||
|
||||
#### Using KosmicKrisp
|
||||
|
||||
Override the environment variable for KosmicKrisp:
|
||||
```bash
|
||||
export VK_ICD_FILENAMES=$VULKAN_SDK/share/vulkan/icd.d/libkosmickrisp_icd.json
|
||||
export VK_DRIVER_FILES=$VULKAN_SDK/share/vulkan/icd.d/libkosmickrisp_icd.json
|
||||
```
|
||||
|
||||
#### Build
|
||||
|
||||
This is the only step different from [above](#common-steps) instructions.
|
||||
```bash
|
||||
cmake -B build -DGGML_VULKAN=1 -DGGML_METAL=OFF
|
||||
cmake --build build --config Release
|
||||
```
|
||||
|
||||
## CANN
|
||||
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250731
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250826
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -97,7 +97,7 @@ Legend:
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
@@ -113,8 +113,8 @@ Legend:
|
||||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |
|
||||
|
||||
1818
docs/ops/SYCL.csv
1818
docs/ops/SYCL.csv
File diff suppressed because it is too large
Load Diff
184
docs/speculative.md
Normal file
184
docs/speculative.md
Normal file
@@ -0,0 +1,184 @@
|
||||
# Speculative Decoding
|
||||
|
||||
llama.cpp supports speculative decoding, a technique that can significantly accelerate token generation by predicting multiple tokens ahead of the main model.
|
||||
|
||||
[Speculative decoding](https://en.wikipedia.org/wiki/Transformer_(deep_learning)#Speculative_decoding) leverages the fact that computing n tokens in a batch (as in prompt processing) is more efficient than computing n sequentially (as in response generation). By generating draft tokens quickly and then verifying them with the target model in a single batch, this approach can achieve substantial speedups when the draft predictions are frequently correct.
|
||||
|
||||
## Implementations
|
||||
|
||||
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
|
||||
|
||||
### Draft Model (`draft`)
|
||||
|
||||
A much smaller model (called the _draft model_) generates drafts.
|
||||
A draft model is the most used approach in speculative decoding.
|
||||
|
||||
### n-gram Cache (`ngram-cache`)
|
||||
|
||||
An n-gram is a sequence of n tokens. The n-gram cache implementation maintains statistics about short n-gram sequences.
|
||||
A draft is computed using probabilities derived from these statistics. External statistics can also be loaded from files for improved accuracy.
|
||||
|
||||
See:
|
||||
|
||||
- #5479, #6828, #6848
|
||||
|
||||
### n-gram Map (`ngram-simple`, `ngram-map-*`)
|
||||
|
||||
These implementations search the token history for patterns and use matching sequences as draft candidates.
|
||||
They require no additional model but rely on patterns that have already appeared in the generated text.
|
||||
An example to use this approach can be the rewriting of source code by a LLM.
|
||||
|
||||
#### n-gram Map (`ngram-simple`)
|
||||
|
||||
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
|
||||
|
||||
```
|
||||
llama-server [...] --spec-type ngram-simple --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key (`ngram-map-k`)
|
||||
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
|
||||
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
|
||||
|
||||
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
|
||||
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:** Server options to be used if there are a lot of longer repetitions.
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
|
||||
```
|
||||
|
||||
### n-gram Mod (`ngram-mod`)
|
||||
|
||||
Add basic ngram hasher for speculative decoding:
|
||||
|
||||
- For each ngram, compute a hash using LCG
|
||||
- For each computed hash, store the next token
|
||||
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
|
||||
|
||||
Some characteristics:
|
||||
|
||||
- Lightweight (~16 MB)
|
||||
- Constant memory and complexity
|
||||
- Can generate variable draft lengths (i.e. m is not fixed)
|
||||
|
||||
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
|
||||
|
||||
**Sample usage:**
|
||||
|
||||
```
|
||||
# notes:
|
||||
# - small `n` are not recommended
|
||||
# - MoEs require long drafts
|
||||
# - dense models: can reduce `--draft-min` and `--draft-max`
|
||||
|
||||
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
|
||||
```
|
||||
|
||||
Applications:
|
||||
|
||||
- Iterating over a block of text/code (e.g. in llama.vim)
|
||||
- Reasoning models (when they have to repeat their thinking in the final answer)
|
||||
- Summarization
|
||||
|
||||
Example Video:
|
||||
|
||||
- See #19164
|
||||
|
||||
### Differences between ngram-simple, ngram-map and ngram-mod
|
||||
|
||||
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
|
||||
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
|
||||
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
|
||||
|
||||
## Command-Line Options
|
||||
|
||||
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
|
||||
|
||||
```
|
||||
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
|
||||
(env: LLAMA_ARG_DRAFT_MAX)
|
||||
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
|
||||
(default: 0)
|
||||
(env: LLAMA_ARG_DRAFT_MIN)
|
||||
[...]
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
|
||||
type of speculative decoding to use when no draft model is provided
|
||||
(default: none)
|
||||
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
|
||||
of lookup n-gram (default: 12)
|
||||
--spec-ngram-size-m N ngram size M for ngram-simple/ngram-map speculative decoding, length
|
||||
of draft m-gram (default: 48)
|
||||
--spec-ngram-check-rate N ngram check rate for ngram-simple/ngram-map speculative decoding
|
||||
(default: 1)
|
||||
--spec-ngram-min-hits N minimum hits for ngram-map speculative decoding (default: 1)
|
||||
```
|
||||
|
||||
### `--spec-type TYPE`
|
||||
|
||||
Specifies a type of speculative decoding without draft model.
|
||||
|
||||
| Type | Description |
|
||||
|------|-------------|
|
||||
| `none` | No speculative decoding (default) |
|
||||
| `ngram-cache` | Use n-gram cache lookup |
|
||||
| `ngram-simple` | Use simple n-gram pattern matching |
|
||||
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
|
||||
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
|
||||
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
|
||||
|
||||
**Example:** Server-instance used to refactor source code.
|
||||
```bash
|
||||
./llama-server [...] --spec-type ngram-simple
|
||||
```
|
||||
|
||||
### `--spec-ngram-size-n N`
|
||||
|
||||
Sets the size N of the lookup n-gram for n-gram map based speculative decoding.
|
||||
The n-gram size N determines how many tokens in a row to look back when searching for matching patterns.
|
||||
|
||||
### `--spec-ngram-size-m M`
|
||||
|
||||
Sets the size M of the draft m-gram for n-gram map based speculative decoding.
|
||||
The m-gram size determines how many tokens to draft when a match is found.
|
||||
Larger values can provide more speedup but may reduce acceptance rate.
|
||||
|
||||
### `--spec-ngram-check-rate R`
|
||||
|
||||
This option aims at performance if the n-gram lookup in history is to costly. A lookup will be executed at every R tokens (default is 1, every token).
|
||||
|
||||
### `--spec-ngram-min-hits H`
|
||||
|
||||
This option defines how often a key has to appear in the token history to be used as a draft (default is 1).
|
||||
|
||||
## Statistics
|
||||
Each speculative decoding implementation prints statistics.
|
||||
|
||||
```
|
||||
draft acceptance rate = 0.57576 ( 171 accepted / 297 generated)
|
||||
statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tokens = 187, #acc tokens = 73
|
||||
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
|
||||
```
|
||||
|
||||
```
|
||||
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
|
||||
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
|
||||
```
|
||||
|
||||
- `#calls`: number of calls of this implementations
|
||||
- `#gen drafts`: number of drafts generated by this implementation
|
||||
- `#acc drafts`: number of drafts accepted (partially) by the main model
|
||||
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
|
||||
- `#acc tokens`: number of tokens accepted by the main model
|
||||
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Migration notice for binary filenames
|
||||
|
||||
> [!IMPORTANT]
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809)
|
||||
|
||||
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ int main(int argc, char** argv) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
|
||||
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
|
||||
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
return EXIT_FAILURE;
|
||||
|
||||
@@ -402,7 +402,7 @@ class SchemaConverter:
|
||||
Transforms a regular expression pattern into a GBNF rule.
|
||||
|
||||
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
|
||||
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
|
||||
Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md
|
||||
|
||||
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
|
||||
|
||||
|
||||
@@ -50,6 +50,12 @@ int main(int argc, char ** argv) {
|
||||
const int N = 5; // n-gram size
|
||||
const int G = 15; // max verification n-grams
|
||||
|
||||
// lookahead requires W + G + 1 sequences for parallel Jacobi decoding
|
||||
params.n_parallel = W + G + 1;
|
||||
|
||||
// unified KV cache is required for coupled sequences in batch splitting
|
||||
params.kv_unified = true;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -115,7 +121,7 @@ int main(int argc, char ** argv) {
|
||||
// seq_id == 0 : the current input token
|
||||
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
|
||||
// seq_id [W + 1, W + G] : verification n-grams
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
llama_batch batch = llama_batch_init(llama_n_ctx(ctx), 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
@@ -32,9 +32,9 @@ int main(int argc, char ** argv){
|
||||
|
||||
common_ngram_cache ngram_cache;
|
||||
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
|
||||
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.speculative.lookup_cache_static.c_str());
|
||||
|
||||
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
|
||||
common_ngram_cache_save(ngram_cache, params.speculative.lookup_cache_static);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -46,18 +46,18 @@ int main(int argc, char ** argv){
|
||||
{
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
if (!params.speculative.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
if (!params.speculative.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
|
||||
@@ -51,18 +51,18 @@ int main(int argc, char ** argv){
|
||||
const int64_t t_start_draft_us = ggml_time_us();
|
||||
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
|
||||
|
||||
if (!params.lookup_cache_static.empty()) {
|
||||
if (!params.speculative.lookup_cache_static.empty()) {
|
||||
try {
|
||||
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
|
||||
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
|
||||
} catch (std::ifstream::failure const &) {
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
|
||||
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.lookup_cache_dynamic.empty()) {
|
||||
if (!params.speculative.lookup_cache_dynamic.empty()) {
|
||||
try {
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
|
||||
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
|
||||
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
|
||||
}
|
||||
|
||||
@@ -106,7 +106,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx), 0, 1);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
@@ -210,7 +210,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
// Update dynamic ngram cache with context ngram cache and save it to disk:
|
||||
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
|
||||
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
|
||||
common_ngram_cache_save(ngram_cache_dynamic, params.speculative.lookup_cache_dynamic);
|
||||
|
||||
LOG("\n\n");
|
||||
|
||||
|
||||
@@ -33,11 +33,14 @@ DEVICE ?= auto
|
||||
causal-convert-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-model-bf16: causal-convert-model
|
||||
|
||||
causal-convert-model-debug: DEBUG=--debug
|
||||
causal-convert-model-debug: causal-convert-model
|
||||
|
||||
causal-convert-model:
|
||||
$(call validate_model_path,causal-convert-model)
|
||||
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
||||
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
||||
./scripts/causal/convert-model.sh
|
||||
./scripts/causal/convert-model.sh $(DEBUG)
|
||||
|
||||
causal-convert-mm-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
|
||||
|
||||
@@ -4,12 +4,17 @@ set -e
|
||||
|
||||
# Parse command line arguments
|
||||
MMPROJ=""
|
||||
DEBUG=""
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case $1 in
|
||||
--mmproj)
|
||||
MMPROJ="--mmproj"
|
||||
shift
|
||||
;;
|
||||
--debug)
|
||||
DEBUG="1"
|
||||
shift
|
||||
;;
|
||||
*)
|
||||
shift
|
||||
;;
|
||||
@@ -28,7 +33,12 @@ echo "Data type: ${TYPE}"
|
||||
echo "Converted model path:: ${CONVERTED_MODEL}"
|
||||
echo "Metadata override: ${METADATA_OVERRIDE}"
|
||||
|
||||
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
|
||||
if [[ -n "$DEBUG" ]]; then
|
||||
CMD_ARGS=("python" "-m" "pdb")
|
||||
else
|
||||
CMD_ARGS=("python")
|
||||
fi
|
||||
CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose")
|
||||
CMD_ARGS+=("${MODEL_PATH}")
|
||||
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
|
||||
CMD_ARGS+=("--outtype" "${TYPE}")
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
set -e
|
||||
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
BUILD_DIR="${2:-"$BUILD_DIR"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
@@ -25,9 +26,13 @@ mkdir -p ppl
|
||||
OUTPUTFILE="ppl/$(basename $CONVERTED_MODEL).kld"
|
||||
echo "Model: $CONVERTED_MODEL"
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
../.././build/bin/llama-perplexity -m $CONVERTED_MODEL \
|
||||
cmake --build $BUILD_DIR --target llama-perplexity -j8
|
||||
|
||||
${BUILD_DIR}/bin/llama-perplexity -m $CONVERTED_MODEL \
|
||||
-f ppl/wikitext-2-raw/wiki.test.raw \
|
||||
--kl-divergence-base $OUTPUTFILE
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
set -e
|
||||
|
||||
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
|
||||
BUILD_DIR="${2:-"$BUILD_DIR"}"
|
||||
|
||||
if [ -z "$QUANTIZED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
@@ -20,8 +21,12 @@ if [ ! -d "ppl/wikitext-2-raw" ]; then
|
||||
popd
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL -f ppl/wikitext-2-raw/wiki.test.raw
|
||||
cmake --build $BUILD_DIR --target llama-perplexity -j8
|
||||
|
||||
${BUILD_DIR}/bin/llama-perplexity -m $QUANTIZED_MODEL -f ppl/wikitext-2-raw/wiki.test.raw
|
||||
|
||||
|
||||
|
||||
@@ -3,7 +3,8 @@
|
||||
set -e
|
||||
|
||||
QUANTIZED_MODEL="${1:-"$QUANTIZED_MODEL"}"
|
||||
LOGITS_FILE="${1:-"$LOGITS_FILE"}"
|
||||
LOGITS_FILE="${2:-"$LOGITS_FILE"}"
|
||||
BUILD_DIR="${3:-"$BUILD_DIR"}"
|
||||
|
||||
if [ -z "$QUANTIZED_MODEL" ]; then
|
||||
echo "Error: Model path must be provided either as:" >&2
|
||||
@@ -18,11 +19,15 @@ if [ ! -f ${LOGITS_FILE} ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
echo "Model: $QUANTIZED_MODEL"
|
||||
echo "Data file: $LOGITS_FILE"
|
||||
|
||||
cmake --build ../../build --target llama-perplexity -j8
|
||||
cmake --build $BUILD_DIR --target llama-perplexity -j8
|
||||
|
||||
../.././build/bin/llama-perplexity -m $QUANTIZED_MODEL \
|
||||
${BUILD_DIR}/bin/llama-perplexity -m $QUANTIZED_MODEL \
|
||||
--kl-divergence-base $LOGITS_FILE \
|
||||
--kl-divergence
|
||||
|
||||
@@ -6,6 +6,7 @@ CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
QUANTIZED_TYPE="${2:-"$QUANTIZED_TYPE"}"
|
||||
TOKEN_EMBD_TYPE="${3:-"${TOKEN_EMBD_TYPE}"}"
|
||||
OUTPUT_TYPE="${4:-"${OUTPUT_TYPE}"}"
|
||||
BUILD_DIR="${5:-"$BUILD_DIR"}"
|
||||
QUANTIZED_MODEL=$CONVERTED_MODEL
|
||||
|
||||
# Final check if we have a model path
|
||||
@@ -33,12 +34,16 @@ else
|
||||
exit 1
|
||||
fi
|
||||
|
||||
cmake --build ../../build --target llama-quantize -j8
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
cmake --build $BUILD_DIR --target llama-quantize -j8
|
||||
|
||||
echo $TOKEN_EMBD_TYPE
|
||||
echo $OUTPUT_TYPE
|
||||
|
||||
CMD_ARGS=("../../build/bin/llama-quantize")
|
||||
CMD_ARGS=("${BUILD_DIR}/bin/llama-quantize")
|
||||
[[ -n "$TOKEN_EMBD_TYPE" ]] && CMD_ARGS+=("--token-embedding-type" "$TOKEN_EMBD_TYPE")
|
||||
[[ -n "$OUTPUT_TYPE" ]] && CMD_ARGS+=("--output-tensor-type" "$OUTPUT_TYPE")
|
||||
CMD_ARGS+=("$CONVERTED_MODEL" "$QUANTIZED_MODEL" "$QUANTIZED_TYPE")
|
||||
|
||||
@@ -4,6 +4,7 @@ set -e
|
||||
#
|
||||
# First try command line argument, then environment variable, then file
|
||||
CONVERTED_MODEL="${1:-"$CONVERTED_MODEL"}"
|
||||
BUILD_DIR="${2:-"$BUILD_DIR"}"
|
||||
|
||||
# Final check if we have a model path
|
||||
if [ -z "$CONVERTED_MODEL" ]; then
|
||||
@@ -13,10 +14,14 @@ if [ -z "$CONVERTED_MODEL" ]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -z "$BUILD_DIR" ]; then
|
||||
BUILD_DIR="../../build"
|
||||
fi
|
||||
|
||||
echo $CONVERTED_MODEL
|
||||
|
||||
cmake --build ../../build --target llama-server
|
||||
cmake --build $BUILD_DIR --target llama-server
|
||||
|
||||
../../build/bin/llama-server -m $CONVERTED_MODEL \
|
||||
${BUILD_DIR}/bin/llama-server -m $CONVERTED_MODEL \
|
||||
--embedding \
|
||||
--pooling none
|
||||
|
||||
159
examples/model-conversion/scripts/utils/tensor-info.py
Executable file
159
examples/model-conversion/scripts/utils/tensor-info.py
Executable file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from safetensors import safe_open
|
||||
|
||||
|
||||
MODEL_SAFETENSORS_FILE = "model.safetensors"
|
||||
MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json"
|
||||
|
||||
|
||||
def get_weight_map(model_path: Path) -> Optional[dict[str, str]]:
|
||||
index_file = model_path / MODEL_SAFETENSORS_INDEX
|
||||
|
||||
if index_file.exists():
|
||||
with open(index_file, 'r') as f:
|
||||
index = json.load(f)
|
||||
return index.get("weight_map", {})
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_all_tensor_names(model_path: Path) -> list[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return list(weight_map.keys())
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
try:
|
||||
with safe_open(single_file, framework="pt", device="cpu") as f:
|
||||
return list(f.keys())
|
||||
except Exception as e:
|
||||
print(f"Error reading {single_file}: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Error: No safetensors files found in {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return weight_map.get(tensor_name)
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
return single_file.name
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def normalize_tensor_name(tensor_name: str) -> str:
|
||||
normalized = re.sub(r'\.\d+\.', '.#.', tensor_name)
|
||||
normalized = re.sub(r'\.\d+$', '.#', normalized)
|
||||
return normalized
|
||||
|
||||
|
||||
def list_all_tensors(model_path: Path, unique: bool = False):
|
||||
tensor_names = get_all_tensor_names(model_path)
|
||||
|
||||
if unique:
|
||||
seen = set()
|
||||
for tensor_name in sorted(tensor_names):
|
||||
normalized = normalize_tensor_name(tensor_name)
|
||||
if normalized not in seen:
|
||||
seen.add(normalized)
|
||||
print(normalized)
|
||||
else:
|
||||
for tensor_name in sorted(tensor_names):
|
||||
print(tensor_name)
|
||||
|
||||
|
||||
def print_tensor_info(model_path: Path, tensor_name: str):
|
||||
tensor_file = find_tensor_file(model_path, tensor_name)
|
||||
|
||||
if tensor_file is None:
|
||||
print(f"Error: Could not find tensor '{tensor_name}' in model index")
|
||||
print(f"Model path: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
file_path = model_path / tensor_file
|
||||
|
||||
try:
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
if tensor_name in f.keys():
|
||||
tensor_slice = f.get_slice(tensor_name)
|
||||
shape = tensor_slice.get_shape()
|
||||
print(f"Tensor: {tensor_name}")
|
||||
print(f"File: {tensor_file}")
|
||||
print(f"Shape: {shape}")
|
||||
else:
|
||||
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
|
||||
sys.exit(1)
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{file_path}' was not found.")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Print tensor information from a safetensors model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"tensor_name",
|
||||
nargs="?", # optional (if --list is used for example)
|
||||
help="Name of the tensor to inspect"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m", "--model-path",
|
||||
type=Path,
|
||||
help="Path to the model directory (default: MODEL_PATH environment variable)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l", "--list",
|
||||
action="store_true",
|
||||
help="List unique tensor patterns in the model (layer numbers replaced with #)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = args.model_path
|
||||
if model_path is None:
|
||||
model_path_str = os.environ.get("MODEL_PATH")
|
||||
if model_path_str is None:
|
||||
print("Error: --model-path not provided and MODEL_PATH environment variable not set")
|
||||
sys.exit(1)
|
||||
model_path = Path(model_path_str)
|
||||
|
||||
if not model_path.exists():
|
||||
print(f"Error: Model path does not exist: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if not model_path.is_dir():
|
||||
print(f"Error: Model path is not a directory: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if args.list:
|
||||
list_all_tensors(model_path, unique=True)
|
||||
else:
|
||||
if args.tensor_name is None:
|
||||
print("Error: tensor_name is required when not using --list")
|
||||
sys.exit(1)
|
||||
print_tensor_info(model_path, args.tensor_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.path.empty()) {
|
||||
if (params.speculative.mparams_dft.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -34,10 +34,8 @@ int main(int argc, char ** argv) {
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
llama_model * model_tgt = NULL;
|
||||
//llama_model * model_dft = NULL;
|
||||
|
||||
llama_context * ctx_tgt = NULL;
|
||||
llama_context * ctx_dft = NULL;
|
||||
|
||||
// load the target model
|
||||
auto llama_init_tgt = common_init_from_params(params);
|
||||
@@ -48,26 +46,38 @@ int main(int argc, char ** argv) {
|
||||
const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.n_ctx = params.speculative.n_ctx;
|
||||
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
llama_model_ptr model_dft;
|
||||
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
}
|
||||
// TODO: simplify this logic
|
||||
{
|
||||
const auto & params_spec = params.speculative;
|
||||
|
||||
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
|
||||
auto params_dft = params;
|
||||
|
||||
auto llama_init_dft = common_init_from_params(params);
|
||||
params_dft.n_parallel = 1;
|
||||
params_dft.n_ctx = params_spec.n_ctx;
|
||||
params_dft.n_batch = llama_n_ctx_seq(ctx_tgt);
|
||||
params_dft.devices = params_spec.devices;
|
||||
params_dft.model = params_spec.mparams_dft;
|
||||
params_dft.n_gpu_layers = params_spec.n_gpu_layers;
|
||||
|
||||
//model_dft = llama_init_dft->model();
|
||||
ctx_dft = llama_init_dft->context();
|
||||
if (params_spec.cpuparams.n_threads > 0) {
|
||||
params_dft.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
params_dft.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
|
||||
}
|
||||
|
||||
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
|
||||
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
|
||||
params_dft.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
|
||||
|
||||
auto mparams_dft = common_model_params_to_llama(params_dft);
|
||||
|
||||
model_dft.reset(llama_model_load_from_file(params_dft.model.path.c_str(), mparams_dft));
|
||||
if (model_dft == nullptr) {
|
||||
LOG_ERR("failed to load draft model, '%s'\n", params_dft.model.path.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.speculative.model_dft = model_dft.get();
|
||||
params.speculative.cparams_dft = common_context_params_to_llama(params_dft);
|
||||
}
|
||||
|
||||
// Tokenize the prompt
|
||||
@@ -92,12 +102,6 @@ int main(int argc, char ** argv) {
|
||||
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
|
||||
}
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.speculative.n_max;
|
||||
int n_draft_min = params.speculative.n_min;
|
||||
|
||||
float p_min = params.speculative.p_min;
|
||||
|
||||
int n_predict = 0;
|
||||
int n_drafted = 0;
|
||||
int n_accept = 0;
|
||||
@@ -127,15 +131,11 @@ int main(int argc, char ** argv) {
|
||||
int n_past = inp.size() - 1;
|
||||
|
||||
// init the speculator
|
||||
struct common_speculative_params params_spec;
|
||||
params_spec.n_draft = n_draft;
|
||||
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
|
||||
params_spec.p_min = p_min;
|
||||
const auto & params_spec = params.speculative;
|
||||
|
||||
struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
|
||||
for (auto &pair : params.speculative.replacements) {
|
||||
common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
|
||||
}
|
||||
struct common_speculative * spec = common_speculative_init(params.speculative, ctx_tgt);
|
||||
|
||||
common_speculative_begin(spec, prompt_tgt);
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
|
||||
|
||||
@@ -151,7 +151,7 @@ int main(int argc, char ** argv) {
|
||||
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
|
||||
// from a cache or lookup tables.
|
||||
//
|
||||
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
|
||||
llama_tokens draft = common_speculative_draft(spec, params_spec, prompt_tgt, id_last);
|
||||
|
||||
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
|
||||
|
||||
@@ -162,7 +162,7 @@ int main(int argc, char ** argv) {
|
||||
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
|
||||
{
|
||||
// do not waste time on small drafts
|
||||
if (draft.size() < (size_t) n_draft_min) {
|
||||
if (draft.size() < (size_t) params_spec.n_min) {
|
||||
draft.clear();
|
||||
}
|
||||
|
||||
@@ -240,7 +240,7 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("n_draft = %d\n", n_draft);
|
||||
LOG_INF("n_draft = %d\n", params_spec.n_max);
|
||||
LOG_INF("n_predict = %d\n", n_predict);
|
||||
LOG_INF("n_drafted = %d\n", n_drafted);
|
||||
LOG_INF("n_accept = %d\n", n_accept);
|
||||
@@ -249,8 +249,6 @@ int main(int argc, char ** argv) {
|
||||
LOG_INF("\n");
|
||||
LOG_INF("draft:\n\n");
|
||||
|
||||
llama_perf_context_print(ctx_dft);
|
||||
|
||||
LOG_INF("\n");
|
||||
LOG_INF("target:\n\n");
|
||||
common_perf_print(ctx_tgt, smpl);
|
||||
|
||||
@@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
common_init();
|
||||
|
||||
if (params.speculative.model.path.empty()) {
|
||||
if (params.speculative.mparams_dft.path.empty()) {
|
||||
LOG_ERR("%s: --model-draft is required\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
@@ -78,7 +78,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// load the draft model
|
||||
params.devices = params.speculative.devices;
|
||||
params.model = params.speculative.model;
|
||||
params.model = params.speculative.mparams_dft;
|
||||
params.n_gpu_layers = params.speculative.n_gpu_layers;
|
||||
if (params.speculative.cpuparams.n_threads > 0) {
|
||||
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
|
||||
|
||||
@@ -18,13 +18,14 @@ CONTEXT=4096
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
LOAD_MODE='--mmap'
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none ${LOAD_MODE}
|
||||
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} ${LOAD_MODE}
|
||||
fi
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# If you want more control, DPC++ Allows selecting a specific device through the
|
||||
# following environment variable
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
|
||||
CONTEXT=4096
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "Using $GGML_SYCL_DEVICE as the main GPU"
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
fi
|
||||
130
examples/sycl/test.sh
Executable file
130
examples/sycl/test.sh
Executable file
@@ -0,0 +1,130 @@
|
||||
#!/bin/bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
Help() {
|
||||
cat << EOF
|
||||
Usage: $(basename "$0") [OPTIONS]
|
||||
|
||||
This script processes files with specified options.
|
||||
|
||||
Options:
|
||||
-h, --help Display this help message and exit.
|
||||
-c, --context <value> Set context length. Bigger need more memory.
|
||||
-p, --promote <value> Prompt to start generation with.
|
||||
-m, --model <value> Full model file path.
|
||||
-mg,--main-gpu <value> Set main GPU ID (0 - n) for single GPU mode.
|
||||
-sm,--split-mode <value> How to split the model across multiple GPUs, one of:
|
||||
- none: use one GPU only
|
||||
- layer (default): split layers and KV across GPUs
|
||||
- row: split rows across GPUs
|
||||
-ngl,--n-gpu-layers <value> Max. number of layers to store in VRAM (default: -1)
|
||||
-lv,--log-verbosity <value> Set the verbosity threshold. Messages with a higher verbosity will be
|
||||
ignored. Values:
|
||||
- 0: generic output
|
||||
- 1: error
|
||||
- 2: warning
|
||||
- 3: info
|
||||
- 4: debug
|
||||
|
||||
|
||||
EOF
|
||||
}
|
||||
|
||||
BIN_FILE=./build/bin/llama-completion
|
||||
SEED=0
|
||||
GPUS_SETTING=""
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=99
|
||||
CONTEXT=4096
|
||||
GGML_SYCL_DEVICE=-1
|
||||
SPLIT_MODE=layer
|
||||
LOG_VERBOSE=3
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-c|--context)
|
||||
CONTEXT=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-p|--promote)
|
||||
# Option that is a simple flag (boolean)
|
||||
INPUT_PROMPT="$2"
|
||||
# Shift once to consume the option flag
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-m|--model)
|
||||
MODEL_FILE="$2"
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-mg|--main-gpu)
|
||||
GGML_SYCL_DEVICE=$2
|
||||
SPLIT_MODE=none
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-sm|--split-mode)
|
||||
SPLIT_MODE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-ngl|--n-gpu-layers)
|
||||
NGL=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-lv|--log-verbosity)
|
||||
LOG_VERBOSE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-h|--help)
|
||||
Help
|
||||
exit 0
|
||||
;;
|
||||
*)
|
||||
# Handle unknown options or stop processing options
|
||||
echo "Invalid option: $1"
|
||||
# Optional: exit script or shift to treat remaining as positional args
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
echo "UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=${UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS}"
|
||||
|
||||
if [ $GGML_SYCL_DEVICE -ne -1 ]; then
|
||||
echo "Use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
GPUS_SETTING="-mg $GGML_SYCL_DEVICE -sm ${SPLIT_MODE}"
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:${$GGML_SYCL_DEVICE}"
|
||||
echo "ONEAPI_DEVICE_SELECTOR=${ONEAPI_DEVICE_SELECTOR}"
|
||||
else
|
||||
echo "Use all Intel GPUs, including iGPU & dGPU"
|
||||
fi
|
||||
|
||||
echo "run cmd: ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap "
|
||||
ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap
|
||||
|
||||
@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
|
||||
@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -no-cnv -p %INPUT2% -n 400 -s 0 -e -ngl 99
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
@@ -1,4 +1,4 @@
|
||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
cmake_minimum_required(VERSION 3.14...3.28) # for add_link_options and implicit target directories.
|
||||
project("ggml" C CXX ASM)
|
||||
|
||||
### GGML Version
|
||||
@@ -228,6 +228,8 @@ option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)
|
||||
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
|
||||
option(GGML_WEBGPU_JSPI "ggml: use JSPI for WebGPU" ON)
|
||||
option(GGML_ZDNN "ggml: use zDNN" OFF)
|
||||
option(GGML_VIRTGPU "ggml: use the VirtGPU/Virglrenderer API Remoting frontend" OFF)
|
||||
option(GGML_VIRTGPU_BACKEND "ggml: build the VirtGPU/Virglrenderer API Remoting backend" OFF)
|
||||
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
|
||||
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
|
||||
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
|
||||
@@ -320,6 +322,7 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-opt.h
|
||||
include/ggml-metal.h
|
||||
include/ggml-rpc.h
|
||||
include/ggml-virtgpu.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h
|
||||
include/ggml-webgpu.h
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -19,6 +19,9 @@ extern "C" {
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
// use only reference implementations
|
||||
bool use_ref;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
@@ -132,6 +135,8 @@ extern "C" {
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
|
||||
14
ggml/include/ggml-virtgpu.h
Normal file
14
ggml/include/ggml-virtgpu.h
Normal file
@@ -0,0 +1,14 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg();
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
@@ -6,7 +6,7 @@
|
||||
// This documentation is still a work in progress.
|
||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||
//
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||
// https://github.com/ggml-org/whisper.cpp/issues/40
|
||||
//
|
||||
// ## Overview
|
||||
//
|
||||
|
||||
@@ -222,6 +222,7 @@ if (GGML_SCHED_NO_REALLOC)
|
||||
endif()
|
||||
|
||||
add_library(ggml
|
||||
ggml-backend-dl.cpp
|
||||
ggml-backend-reg.cpp)
|
||||
add_library(ggml::ggml ALIAS ggml)
|
||||
|
||||
@@ -451,6 +452,7 @@ ggml_add_backend(HIP)
|
||||
ggml_add_backend(METAL)
|
||||
ggml_add_backend(MUSA)
|
||||
ggml_add_backend(RPC)
|
||||
ggml_add_backend(VirtGPU)
|
||||
ggml_add_backend(SYCL)
|
||||
ggml_add_backend(Vulkan)
|
||||
ggml_add_backend(WebGPU)
|
||||
|
||||
48
ggml/src/ggml-backend-dl.cpp
Normal file
48
ggml/src/ggml-backend-dl.cpp
Normal file
@@ -0,0 +1,48 @@
|
||||
#include "ggml-backend-dl.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
return handle;
|
||||
}
|
||||
|
||||
void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
45
ggml/src/ggml-backend-dl.h
Normal file
45
ggml/src/ggml-backend-dl.h
Normal file
@@ -0,0 +1,45 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef _WIN32
|
||||
# define WIN32_LEAN_AND_MEAN
|
||||
# ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
# endif
|
||||
# include <windows.h>
|
||||
# include <winevt.h>
|
||||
#else
|
||||
# include <dlfcn.h>
|
||||
# include <unistd.h>
|
||||
#endif
|
||||
#include <filesystem>
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
dl_handle * dl_load_library(const fs::path & path);
|
||||
void * dl_get_sym(dl_handle * handle, const char * name);
|
||||
const char * dl_error();
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-dl.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <algorithm>
|
||||
#include <cstring>
|
||||
@@ -69,6 +70,10 @@
|
||||
#include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VIRTGPU_FRONTEND
|
||||
#include "ggml-virtgpu.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CANN
|
||||
#include "ggml-cann.h"
|
||||
#endif
|
||||
@@ -94,72 +99,6 @@ static std::string path_str(const fs::path & path) {
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef _WIN32
|
||||
|
||||
using dl_handle = std::remove_pointer_t<HMODULE>;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(HMODULE handle) {
|
||||
FreeLibrary(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static dl_handle * dl_load_library(const fs::path & path) {
|
||||
// suppress error dialogs for missing DLLs
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
HMODULE handle = LoadLibraryW(path.wstring().c_str());
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
|
||||
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
|
||||
|
||||
void * p = (void *) GetProcAddress(handle, name);
|
||||
|
||||
SetErrorMode(old_mode);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
return "";
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using dl_handle = void;
|
||||
|
||||
struct dl_handle_deleter {
|
||||
void operator()(void * handle) {
|
||||
dlclose(handle);
|
||||
}
|
||||
};
|
||||
|
||||
static void * dl_load_library(const fs::path & path) {
|
||||
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
|
||||
|
||||
return handle;
|
||||
}
|
||||
|
||||
static void * dl_get_sym(dl_handle * handle, const char * name) {
|
||||
return dlsym(handle, name);
|
||||
}
|
||||
|
||||
static const char * dl_error() {
|
||||
const char *rslt = dlerror();
|
||||
return rslt != nullptr ? rslt : "";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
|
||||
|
||||
struct ggml_backend_reg_entry {
|
||||
ggml_backend_reg_t reg;
|
||||
dl_handle_ptr handle;
|
||||
@@ -180,7 +119,12 @@ struct ggml_backend_registry {
|
||||
register_backend(ggml_backend_sycl_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_VULKAN
|
||||
// Add runtime disable check
|
||||
if (getenv("GGML_DISABLE_VULKAN") == nullptr) {
|
||||
register_backend(ggml_backend_vk_reg());
|
||||
} else {
|
||||
GGML_LOG_DEBUG("Vulkan backend disabled by GGML_DISABLE_VULKAN environment variable\n");
|
||||
}
|
||||
#endif
|
||||
#ifdef GGML_USE_WEBGPU
|
||||
register_backend(ggml_backend_webgpu_reg());
|
||||
@@ -188,6 +132,10 @@ struct ggml_backend_registry {
|
||||
#ifdef GGML_USE_ZDNN
|
||||
register_backend(ggml_backend_zdnn_reg());
|
||||
#endif
|
||||
#ifdef GGML_USE_VIRTGPU_FRONTEND
|
||||
register_backend(ggml_backend_virtgpu_reg());
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_OPENCL
|
||||
register_backend(ggml_backend_opencl_reg());
|
||||
#endif
|
||||
@@ -604,6 +552,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
|
||||
ggml_backend_load_best("rpc", silent, dir_path);
|
||||
ggml_backend_load_best("sycl", silent, dir_path);
|
||||
ggml_backend_load_best("vulkan", silent, dir_path);
|
||||
ggml_backend_load_best("virtgpu", silent, dir_path);
|
||||
ggml_backend_load_best("opencl", silent, dir_path);
|
||||
ggml_backend_load_best("hexagon", silent, dir_path);
|
||||
ggml_backend_load_best("musa", silent, dir_path);
|
||||
|
||||
@@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
if (backend->iface.set_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
@@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
if (backend->iface.get_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user