Compare commits

..

227 Commits
b7850 ... b8077

Author SHA1 Message Date
DAN™
05fa625eac convert : add JoyAI-LLM-Flash (#19651)
* convert_hf_to_gguf: add JoyAI-LLM-Flash tokenizer hash mapping to deepseek-v3

* llama-vocab: create a new pre-tokenizer name for joyai-llm.

* add missing vocab type section

* Update convert_hf_to_gguf_update.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-16 22:49:57 +01:00
AesSedai
d612901116 perplexity: add proper batching (#19661) 2026-02-16 18:44:44 +02:00
Ivan Chikish
cceb1b4e33 common : inline functions (#18639) 2026-02-16 17:52:24 +02:00
Judd
d23a55997d ggml : make ggml_is_view as API (#19539)
* make `ggml_is_view` as API

* introduce `ggml_aux_is_view` as inline version for internal use.

* change `ggml_aux_is_view` to  `ggml_impl_is_view`
2026-02-16 17:43:34 +02:00
Saurabh Dash
5f28c53d11 model: Add support for Tiny Aya Models (#19611)
* changes for tiny aya

* changes to hash

* changes to vocab

* fix some tokenizer regex edge cases

* update comment

* add some comments for regex

* Apply suggestion from @ngxson

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2026-02-16 16:28:46 +01:00
Adrien Gallouët
4408494144 build : rework llama_option_depr to handle LLAMA_CURL (#19658)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-16 16:06:48 +01:00
Mario Limonciello
2ba9adc093 Adjust workaround for ROCWMMA_FATTN/GFX9 to only newer ROCm veresions (#19591)
Avoids issues with ROCm 6.4.4.

Closes: https://github.com/ggml-org/llama.cpp/issues/19580
Fixes: 6845f7f87 ("Add a workaround for compilation with ROCWMMA_FATTN and gfx9 (#19461)")

Signed-off-by: Mario Limonciello (AMD) <superm1@kernel.org>
2026-02-16 14:46:08 +01:00
Georgi Gerganov
cc45f2ada6 models : deduplicate delta-net graphs for Qwen family (#19597)
* models : add llm_build_delta_net_base

* cont : keep qwen35 and qwen35moe graphs intact

* cont : add comments
2026-02-16 14:35:04 +02:00
Georgi Gerganov
d5dfc33027 graph : fix KQ mask, lora, cvec reuse checks (#19644)
* graph : fix KQ mask reuse condition

* cont : dedup KQ mask build and can_reuse

* cont : fix build

* graph : fix adapter check for reuse
2026-02-16 09:21:11 +02:00
abhijain1204fujitsu
267ba5a1d9 ggml: aarch64: Implement SVE in Gemm q4_k 8x8 q8_k Kernel (#19132)
* Updated repack.cpp

* Updated repack.cpp

* Updated repack.cpp

* Added if condition to support only vector length 256.

* Changed the format removed comments and duplicate variable

* If SVE 256 not present then was using generic function to compute, hence slowing the performance. 

So added code if SVE 256 is not present then use NEON code.

* Code format change suggestion

---------

Co-authored-by: Vithule, Prashant <Prashant.Vithule@fujitsu.com>
2026-02-16 14:38:43 +08:00
Georgi Gerganov
ff4affb4c1 sync : ggml 2026-02-15 22:24:29 +02:00
Georgi Gerganov
55d58599c8 ggml : bump version to 0.9.7 (ggml/1425) 2026-02-15 22:24:29 +02:00
Georgi Gerganov
1a8c700bfd ggml : bump version to 0.9.6 (ggml/1423) 2026-02-15 22:24:29 +02:00
David Friehs
27b93cbd15 cuda: optimize iq2xxs/iq2xs/iq3xxs dequantization (#19624)
* cuda: optimize iq2xxs/iq2xs/iq3xxs dequantization

- load all 8 int8 for a grid position in one load
- calculate signs via popcnt instead of fetching from ksigns table
- broadcast signs to drop individual shift/mask

* cuda: iq2xxs: simplify sum scaling

express `(sum * scale + sum / 2) / 4` as `(sum * (scale * 2 + 1)) / 8`
express `((aux32 >> 28) * 2 + 1)` as `(aux32 >> 27 | 1)`

saves 3 registers for mul_mat_vec_q (152 -> 149) according to nsight
AFAICT no overflow can occur here as iq2xxs values are far too small

* uint -> uint32_t

error: identifier "uint" is undefined
2026-02-15 22:38:42 +05:30
Aaron Teo
6e67fd2144 docs: update s390x build docs (#19643) 2026-02-16 00:33:34 +08:00
Adrien Gallouët
9e118b97c4 build : remove LLAMA_HTTPLIB option (#19623)
This option was introduced as a workaround because cpp-httplib could not
build on visionOS. Since it has been fixed and now compiles on all platforms,
we can remove it and simplify many things.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-15 15:38:50 +01:00
Daniel Bevenius
57088276d4 cmake : check if KleidiAI API has been fetched (#19640)
This commit addresses a build issue with the KleidiAI backend when
building multiple cpu backends. Commmit
3a00c98584 ("cmake : fix KleidiAI install
target failure with EXCLUDE_FROM_ALL") introduced a change where
FetchContent_Populate is called instead of FetchContent_MakeAvailable,
where the latter does handle this case (it is idempotent but
FetchContent_Populate is not).

I missed this during my review and I should not have commited without
verifying the CI failure, sorry about that.
2026-02-15 13:59:38 +01:00
Georgi Gerganov
341bc7d23c context : fix output reorder with backend sampling (#19638) 2026-02-15 14:57:40 +02:00
Georgi Gerganov
08e6d914b8 ggml : avoid UB in gemm ukernel (#19642) 2026-02-15 14:56:35 +02:00
Aaron Teo
184c694f45 ggml-cpu: optimize ggml_vec_dot_bf16 for s390x (#19399) 2026-02-15 18:20:35 +08:00
Aman Gupta
684b36101c ggml-cpu: FA add GEMM microkernel (#19422)
* ggml-cpu: FA add GEMM microkernel

* add guard for sizeless vector types

* fix case where DV % GGML_F32_EPR !=0

* move memset out of the loop

* move another memset out of the loop

* use RM=4 for arm

* simd_gemm: convert everything to int

* convert everything to size_t to avoid warnings

* fixup

* add pragma for ignoring aggressive loop optimizations
2026-02-15 11:09:24 +05:30
SamareshSingh
3a00c98584 cmake : fix KleidiAI install target failure with EXCLUDE_FROM_ALL (#19581)
* cmake: fix KleidiAI install target failure with EXCLUDE_FROM_ALL

Fix for the bug #19501 by adding EXCLUDE_FROM_ALL to FetchContent_Declare. This properly excludes KleidiAI from both build and install targets, preventing install failures when GGML_CPU_KLEIDIAI=ON is used.

The KleidiAI source files are still compiled into libggml-cpu.so, preserving all functionality.

* addressed code review comments
2026-02-15 06:22:53 +01:00
Sigbjørn Skjæret
079feab9e3 convert : ensure all models handle new experts count (#19621)
* ensure all models handle new experts count

* revert removal for PhiMoeModel, does not inherit from base
2026-02-14 22:22:32 +01:00
Anav Prasad
01d8eaa28d mtmd : Add Nemotron Nano 12B v2 VL support (#19547)
* nemotron nano v2 vlm support added

* simplified code; addressed reviews

* pre-downsample position embeddings during GGUF conversion for fixed input size
2026-02-14 14:07:00 +01:00
Georgi Gerganov
1725e316c1 models : optimize qwen3next graph (#19375)
* models : optimizing qwen3next graph

* cont

* wip

* wip

* wip

* wip

* wip

* wip

* wip

* wip

* wip

* wip

* cont : remove redundant q, g chunking

* minor

* minor

* avoid passing masks around

* avoid concats during chunking

* naming + shapes

* update names and use prefix to disable CUDA graphs
2026-02-14 12:57:36 +02:00
Adrien Gallouët
b7742cf321 ggml : fix GGML_DEBUG with OpenMP (#19599)
last_graph is only available without OpenMP, but
ggml_graph_compute_thread() is called in both cases.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-14 11:22:57 +01:00
iMil
badba89320 NetBSD build support (#19589) 2026-02-14 09:47:01 +01:00
Aleksander Grygier
baa12f3831 webui: Architecture and UI improvements (#19596) 2026-02-14 09:06:41 +01:00
agent-enemy-2
2d8015e8a4 llama : update LoRA API. + fix excessive graph reserves (#19280)
* Refactoring to use new llama_put_adapter_loras

* cont : alternative lora API

---------

Co-authored-by: Jake Chavis <jakechavis6@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-02-14 10:06:27 +02:00
George
eb145c0753 mmap: Fix Windows handle lifetime (#19598)
* ggml: added cleanups in ggml_quantize_free
Add missing cleanup calls for IQ2_S, IQ1_M quantization types and IQ3XS with 512 blocks during quantization cleanup.

* mmap: Fix Windows handle lifetime
Move hMapping from local variable to member variable so it stays alive for the entire lifetime of the mapping.
The file mapping handle must remain valid until UnmapViewOfFile is called.
Fixes cleanup order in destructor.

* Update llama-mmap.cpp

* Update llama-mmap.cpp

Remove trailing whitespace from line 567
2026-02-14 10:05:12 +02:00
Georgi Gerganov
6e473fb384 metal : fix ACC op (#19427) 2026-02-14 09:54:03 +02:00
Adrien Gallouët
c7db95f106 scripts : use official split.py for cpp-httplib (#19588)
* scripts : use official split.py for cpp-httplib

Using the official script is safer and ensures the generated code aligns
with the library's standards.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Catch generic errors

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Allow print()

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* Ensure robust cleanup

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-14 08:41:16 +01:00
Sigbjørn Skjæret
0d00ef65ed convert : store ffn_gate_inp_shexp as F32 (#19606) 2026-02-14 08:17:43 +01:00
Adrien Gallouët
91ea5d67f2 build : fix libtool call in build-xcframework.sh (#19605)
Run libtool via xcrun like strip and dsymutil, to have proper tool resolution.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-14 06:48:37 +01:00
Jeff Bolz
dbb023336b vulkan: support L2_NORM with contiguous rows (#19604) 2026-02-14 06:42:04 +01:00
Jeff Bolz
53aef25a88 vulkan: support GGML_OP_SET (#19584) 2026-02-14 06:36:38 +01:00
Sophon
2dec548094 vulkan: Add vendor id for Qualcomm drivers (#19569)
This commit allows Qualcomm native vulkan driver to be used on Windows
instead of Mesa Dozen.
2026-02-14 06:29:17 +01:00
Max Krasnyansky
0ccbfdef3e hexagon: further optimizations and refactoring for flash attention (#19583)
* ggml-hexagon: fa improvements

ggml-hexagon: optimize flash attention calculations with improved variable handling

ggml-hexagon: streamline flash attention operations by removing redundant checks for FP32

ggml-hexagon: optimize hvx_dot_f16_f16_aa_rx2 by simplifying variable handling for unused elements

ggml-hexagon: optimize flash attention by changing slope vector type to F16

* hexfa: fixed test-backend-ops failurs due to leftover element handling

* hexagon: refactor and optimize fa to use local context struct

* ggml-hexagon: optimize flash-attention using hvx_vec_expf

Use HVX for online softmax.

---------

Co-authored-by: chraac <chraac@gmail.com>
2026-02-13 16:27:30 -08:00
Mengsheng Wu
94a602db66 github : add missing backends to issue templates (#19603) 2026-02-14 00:56:53 +01:00
Jeff Bolz
05a6f0e894 vulkan: restore -inf check in FA shaders (#19582) 2026-02-13 13:35:29 -06:00
Adrien Gallouët
b48e80f677 common : update download code (#19573)
* common : remove legacy .json to .etag migration code

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

* common : simplify common_download_file_single_online

This commit also force a redownload if the file exists
but has no .etag file.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>

---------

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-13 15:10:46 +01:00
Xuan-Son Nguyen
752584d5f5 model: support GLM MoE DSA arch (NOTE: indexer is not yet supported) (#19460)
* model: support GLM MoE DSA arch

* working version

* pyright

* keep indexer tensors

* add indexer gguf params

* loaded now

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* update

* Update src/llama-model.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* minor fix and cleanup

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-13 14:56:53 +01:00
Alberto Cabrera Pérez
cc2aa81513 Fix wrong memcpy length for block_interleave == 4 (#19575) 2026-02-13 20:32:14 +08:00
ymcki
0e21991472 fix vulkan ggml_acc only works in 3d but not 4d (#19426)
* fix vulkan ggml_acc only works in 3d but not 4d

* removed clamp in test_acc_block

* use the correct stride and its test case

* cuda : fix "supports op" condition

* change src0 to src1 in ggml_vk_acc. Update acc.comp with jeffbolznv\'s suggestion except to keep the boundary check

* version without boundary check

* revert back to boundary check version

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-02-13 13:31:37 +01:00
Sigbjørn Skjæret
b2ecc0cdb4 support --verbose-prompt (#19576) 2026-02-13 12:49:10 +01:00
Aman Gupta
5065da554e CUDA: loop over ne2*ne3 in case it overflows (#19538)
* CUDA: loop over ne2*ne3 in case it overflows

* use fastdiv
2026-02-13 17:01:40 +05:30
Aleksander Grygier
5174d7206f webui: UI and routing fixes (#19586)
* chore: update webui build output

* chore: update webui build output

* fix: Scroll issues in DropdownMenuSearchable

* webui: fix redirect to root ignoring base path

* fix: Word wrapping

* fix: remove obsolete modality UI tests causing CI failures

- Remove VisionModality/AudioModality test stories
- Remove mockServerProps usage and imports
- Simplify Default test (remove dropdown interaction checks)
- Simplify FileAttachments test (remove mocks)

* feat: Improve formatting performance time

---------

Co-authored-by: Pascal <admin@serveurperso.com>
2026-02-13 12:31:00 +01:00
Oliver Simons
43919b7f4f CUDA: Do not mutate cgraph for fused ADDs (#19566)
* Do not mutate cgraph for fused ADDs

1. We should try to minimize in-place changes to the incoming
   ggml_cgraph where possible (those should happen in graph_optimize)
2. Modifying in-place leads to an additional, unnecessary graph capture
   step as we store the properties before modifying the graph in-place
   in the cuda-backend

* Assert ggml_tensor is trivially copyable

* Update ggml/src/ggml-cuda/ggml-cuda.cu

Co-authored-by: Aman Gupta <amangupta052@gmail.com>

---------

Co-authored-by: Aman Gupta <amangupta052@gmail.com>
2026-02-13 15:07:55 +05:30
Pavan Shinde
423cf0b26f docs : fix broken link and typo (#19560) 2026-02-13 09:38:09 +01:00
ymcki
33a56f90a6 model : Kimi Linear fix conv state update (#19531)
* fix conv state update for llama-server parallel serving

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-13 09:10:18 +01:00
Adrien Gallouët
25224c8021 llama : remove deprecated codecvt (#19565)
Using the same conversion function ensures a consistent matching between
the regex pattern and the text.

Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-13 06:43:53 +01:00
Adrien Gallouët
2f5d8f8edc vendor : update BoringSSL to 0.20260211.0 (#19562)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-13 06:43:26 +01:00
Georgi Gerganov
bb96bfd361 memory : fix kv cache size for hybrid models (#19559) 2026-02-13 07:36:24 +02:00
Georgi Gerganov
0644baefde metal : improve concurrency (#19555) 2026-02-13 07:35:57 +02:00
Georgi Gerganov
490eb96b88 metal : support GGML_OP_SET (#19548) 2026-02-13 07:34:52 +02:00
Shupei Fan
3bb78133ab hexagon: fix typo in vtcm_needs_release (#19545) 2026-02-12 15:07:49 -08:00
lhez
79cc0f2daf opencl: add basic support for q4_1 (#19534)
* opencl: add q4_1 mv

* opencl: clean up

* opencl: add flattened q4_1 mv

* opencl: clean up

* opencl: add basic q4_1 mm

* opencl: fix whitespace

* opencl: add general q4_0 mm
2026-02-12 14:52:37 -08:00
Georgi Gerganov
338085c69e args : add -kvu to llama-parallel (#19577) 2026-02-12 21:52:41 +02:00
Aleksander Grygier
4c61875bf8 webui: Add switcher to Chat Message UI to show raw LLM output (#19571) 2026-02-12 19:55:51 +01:00
Adrien Gallouët
4b385bfcf8 vendor : update cpp-httplib (#19537)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-12 16:11:22 +01:00
Christian Schmitz
f488429380 llama : update outdated comment in llama.h (#19428)
* Updated documentation

Model is no longer a parameter

* llama : fix trailing whitespace in comment

---------

Co-authored-by: Daniel Bevenius <daniel.bevenius@gmail.com>
2026-02-12 15:52:57 +01:00
Aleksander Grygier
4d688f9ebb (webui) FEATURE: Enable adding or injecting System Message into chat (#19556)
* feat: Enable adding System Prompt per-chat

* fix: Save draft message in Chat Form when adding System Prompt from new chat view

* fix: Proper system message deletion logic

* chore: Formatting

* chore: update webui build output
2026-02-12 13:56:08 +01:00
Daniel Bevenius
ff599039a9 scripts : add support for forks in pr2wt.sh (#19540)
This commit adds support for using the pr2wt.sh (pull request to
workspace) script with forks of upstream llama.cpp.
2026-02-12 13:14:28 +01:00
Aleksander Grygier
f486ce9f30 (webui) REFACTOR: UI primitives and polish (#19551)
* webui: UI primitives and polish (non-MCP)

* chore: update webui build output
2026-02-12 12:21:00 +01:00
Aleksander Grygier
38adc7d469 WebUI Architecture Cleanup (#19541)
* webui: architecture foundation (non-MCP core refactors)

* chore: update webui build output
2026-02-12 11:22:27 +01:00
Georgi Gerganov
3b3a948134 metal : update sum_rows kernel to support float4 (#19524) 2026-02-12 11:35:28 +02:00
Mario Limonciello
6845f7f87f Add a workaround for compilation with ROCWMMA_FATTN and gfx9 (#19461)
There is an upstream problem [1] with AMD's LLVM 22 fork and
rocWMMA 2.2.0 causing compilation issues on devices without
native fp16 support (CDNA devices).

The specialized types aren't resolved properly:
```
/opt/rocm/include/rocwmma/internal/mfma_impl.hpp:2549:37: error: ambiguous partial specializations of 'amdgcn_mfma<__half, __half, __half, 16, 16, 16>'
 2549 |             using ARegsT = typename Impl::ARegsT;
```

Add a workaround to explicitly declare the types and cast when
compiling with HIP and ROCWMMA_FATTN [2].  When this is actually
fixed upstream some guards can be used to detect and wrap the
version that has the fix to only apply when necessary.

Link: https://github.com/ROCm/rocm-libraries/issues/4398 [1]
Link: https://github.com/ggml-org/llama.cpp/issues/19269 [2]

Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
2026-02-12 09:38:35 +01:00
RichardScottOZ
fa16e517a3 server : fix typo in README.md for features list (#19510)
extra l for full
2026-02-12 08:56:25 +01:00
TriDefender
313493de53 docs : update path in snapdragon README.md (#19533)
paths changed so original example didn't work
2026-02-12 08:13:51 +01:00
Max Krasnyansky
b1ff83bbb0 hexagon: further optimization and tuning of matmul and dot kernels (#19407)
* ggml-hexagon: implement 2x2 matmul kernel

* hexmm: implement vec_dot_rx2x2 for Q8_0 and MXFP4

* hexagon: fix editor config failures

* hexagon: refactor matmul ops to use context struct and remove wrappers

Also implement vec_dot_f16 2x2

* hexagon: refactor dyn quantizers to use mmctx

* hexagon: remove mm fastdiv from op_ctx

* hexagon: refactor matmul entry point to reduce code duplication

---------

Co-authored-by: Trivikram Reddy <tamarnat@qti.qualcomm.com>
2026-02-11 23:04:27 -08:00
Adrien Gallouët
4ae1b7517a common : replace deprecated codecvt using parse_utf8_codepoint (#19517)
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2026-02-12 07:27:52 +01:00
lhez
4d3daf80f8 opencl: add general Q6_K mm and Q4_K mv (#19347)
* opencl: add general q6_k mm

* opencl: refine condition for q6_K mm

* opencl: add general q4_K mv

* opencl: fix whitespace
2026-02-11 10:33:13 -08:00
Georgi Gerganov
914dde72ba ggml : unary ops support non-cont src0 + metal F16 unary ops (#19511)
* ggml : unary ops support non-cont src0

* metal : support F16 unary ops + fix ELU
2026-02-11 18:58:43 +02:00
Daniel Bevenius
3136a849db common : remove unused token util functions (#19506)
This commit removes two unused functions `common_lcp` and `common_lcs`.
The last usage of these functions was removed in
Commit 33eff40240 ("server : vision support
via libmtmd") and are no longer used anywhere in the codebase.
2026-02-11 17:41:35 +01:00
AesSedai
e463bbdf65 model: Add Kimi-K2.5 support (#19170)
* Move dequant_model to after the text_config merge
Add new kimi-k2.5 keys to mtmd convert
Update V_MMPROJ tensor mapping for new mm_projector.proj keys
Update V_M_IMP_NORM for new mm_projector.pre_norm key

* Fix a couple of oversights

* Add image support for Kimi-K2.5

* Revert changes to KimiVLForConditionalGeneration

* Fix an assert crash

* Fix permute swapping w / h on accident

* Kimi-K2.5: Use merged QKV for vision

* Kimi-K2.5: pre-convert vision QK to use build_rope_2d

* Kimi-K2.5: support non-interleaved rope for vision

* Kimi-K2.5: fix min / max pixel

* Kimi-K2.5: remove v/o permutes, unnecessary

* Kimi-K2.5: update permute name to match

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Kimi-K2.5: replace build_rope_2d ggml_cont with ggml_view_3d pointers

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-11 16:47:30 +01:00
Daniel Bevenius
53de59f67d build : fix case in dSYMs path for build-macos [no ci] (#19515)
This commit updates an incorrect dSYMs where the the 's' was uppercase
by mistake.

The motivation for fixing this is that this can cause issues on case
sensitive operating systems.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3630
2026-02-11 14:02:29 +01:00
Georgi Gerganov
9ab072ebbe metal : extend l2_norm support for non-cont src0 (#19502) 2026-02-11 14:53:19 +02:00
Johannes Gäßler
ada90bf2ba docs: ban AI for issues and discussions [no CI] (#19512) 2026-02-11 12:49:40 +01:00
Adrien Gallouët
0c1f39a9ae common : improve download error reporting (#19491)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-11 09:27:55 +01:00
Max Krasnyansky
73cd5e1b97 hexagon: Add ARGSORT, DIV, SQR, SQRT, SUM_ROWS, GEGLU (#19406)
* hexagon: add ARGSORT op

Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>

* hexagon: argsort reject tensors with huge rows for now

* Adding support for DIV,SQR,SQRT,SUM_ROWS ops in hexagon backend

* hexagon : Add GEGLU op

* hexagon: fix editor config check

* hexagon: rewrite and optimize binary ops ADD/SUB/MUL/DIV/ADD_ID to use DMA

---------

Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>
Co-authored-by: Manohara Hosakoppa Krishnamurthy <mhosakop@qti.qualcomm.com>
2026-02-10 23:21:12 -08:00
thecaptain789
8ee538ce73 llama : correct typos 'occured' and 'occurences' (#19414)
Co-authored-by: thecaptain789 <thecaptain789@users.noreply.github.com>
2026-02-11 07:05:31 +01:00
Georgi Gerganov
6d95707827 model : fix wavtokenizer embedding notions (#19479) 2026-02-11 07:52:20 +02:00
Georgi Gerganov
89181c0b6d ggml : extend bin bcast for permuted src1 (#19484)
* tests : extend bin bcast for permuted src1

* cont : extend bin support

* cont : s0 is always 1

* tests : simplify
2026-02-11 07:52:00 +02:00
Georgi Gerganov
ceaa89b786 metal : consolidate unary ops (#19490) 2026-02-11 07:51:12 +02:00
Daniel Bevenius
2cce9fddb7 llama : refactor sampling_info to use buffer_view template (#19368)
* llama : refactor sampling_info to use buffer_view template

This commit updates the sampling_info struct in llama-context to use a
buffer_view template for the logits, probs, sampled tokens, and
candidates buffers.

The motivation for this is to simplify the code, improve type safety
and readability.
2026-02-11 05:38:13 +01:00
Oliver Simons
612db61886 CUDA : Update CCCL-tag for 3.2 to final release from RC (#19486)
CCCL 3.2 has been released since it was added to llama.cpp as part of
the backend-sampling PR, and it makes sense to update from RC to final
released version.

https://github.com/NVIDIA/cccl/releases/tag/v3.2.0
2026-02-10 22:31:19 +01:00
Nikhil Jain
57487a64c8 [WebGPU] Plug memory leaks and free resources on shutdown (#19315)
* Fix memory leaks in shader lib, backend, backend_context, buffer_context, and webgpu_buf_pool

* Free pools

* Cleanup

* More cleanup

* Run clang-format

* Fix arg-parser and tokenizer test errors that free an unallocated buffer

* Fix device lost callback to not print on device teardown

* Fix include and run clang-format

* remove unused unused

* Update binary ops

---------

Co-authored-by: Reese Levine <reeselevine1@gmail.com>
2026-02-10 08:04:00 -08:00
JJJYmmm
fc0fe40049 models : support qwen3.5 series (#19468)
* support qwen3.5 series

* remove deepstack for now, and some code clean

* code clean

* add FULL_ATTENTION_INTERVAL metadata

* code clean

* reorder v heads for linear attention to avoid expensive interleaved repeat
2026-02-10 18:00:26 +02:00
Xuan-Son Nguyen
9a96352729 test: fix IMROPE perf test case (#19465) 2026-02-10 14:37:50 +01:00
Alberto Cabrera Pérez
c03a5a46f0 ggml-cpu: arm64: q6_K repack gemm and gemv (and generic) implementations (dotprod) (#19360)
* First working version of GEMM and GEMV

* interleave loads and compute

* Clang-format

* Added missing fallback. Removed tested TODO.

* Swap M and N to be consistent with the repack template convention
2026-02-10 10:47:45 +00:00
k4ss4n
6948adc90d ggml : use noexcept overload for is_regular_file in backend registration (#19452)
using noexcept std::filesystem::directory_entry::is_regular_file
overload prevents abnormal termination upon throwing an error
(as caused by symlinks to non-existent folders on linux)

Resolves: #18560
2026-02-10 10:57:48 +01:00
Piotr Wilkin (ilintar)
854b09f0d7 convert : move experts permutation from Qwen2MoeModel to Qwen3VLMoeTextModel (#19445)
* Add special case for Qwen3VLMoe

* Fix down path, remove arrows and checkmarks

* ws

* Moved to Qwen3VL

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-10 09:01:37 +01:00
Daniel Bevenius
66d403c480 tts : fix typos in README.md [no ci] (#19463) 2026-02-10 07:30:41 +01:00
Raul Torres
f0bfe54f55 CANN: Remove unnecessary wrapper for gml_backend_buft_is_cann (#18968) 2026-02-10 14:19:30 +08:00
hipudding
52e38faf8c CANN: implement quantized MUL_MAT_ID for MoE models (#19228)
Implement ggml_cann_mul_mat_id_quant function to support quantized matrix
multiplication for Mixture of Experts (MoE) architectures on CANN backend.

Key features:
- Support Q4_0 and Q8_0 quantized weight formats
- Use IndexSelect to dynamically route expert-specific weights based on indices
- Leverage WeightQuantBatchMatmulV2 for efficient quantized computation
- Handle automatic F16 type conversion for hardware compatibility
- Support both per-expert and broadcast input modes

Implementation details:
- Extract expert weights and scales using CANN IndexSelect operation
- Process each batch and expert combination independently
- Create proper tensor views with correct stride for matmul operations
- Automatic input/output type casting to/from F16 as needed

Testing: All test cases passed for supported types (F32, F16, Q4_0, Q8_0).
2026-02-10 14:18:59 +08:00
Georgi Gerganov
a0d585537c cuda : extend GGML_OP_PAD to work with non-cont src0 (#19429)
* cuda : extend GGML_OP_PAD to work with non-cont src0

* tests : add permuted pad
2026-02-10 08:07:16 +02:00
Xuan-Son Nguyen
98e57ca422 chat: fix case where template accepts type content only (#19419)
* chat: fix case where template accepts type content only

* rm stray log

* reuse render_message_to_json
2026-02-09 22:14:12 +01:00
Tarek Dakhran
262364e31d mtmd: Implement tiling for LFM2-VL (#19454) 2026-02-09 17:30:32 +01:00
손희준
820ebfa6f4 Server: log when converting requests to chat completions format (#19457)
* Log converting requests

* Print as debug instead of info [no ci]

---------

Co-authored-by: openingnow <>
2026-02-09 16:22:57 +01:00
Sascha Rogmann
292f6908cd spec : remove check rate (#19377)
* spec: remove parameter spec-ngram-check-rate

* spec : renamed statistics vars

* spec : add n_call_begin, n_call_accept

* spec : don't enable key-map-stats
2026-02-09 15:30:50 +02:00
Georgi Gerganov
81ddc60cb3 ci : add metal server workflows (#19293)
* ci : add metal server workflows

* cont : try fix python init

* cont : move to a separate workflow that runs only on master

* cont : fix num jobs

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-09 15:09:30 +02:00
Georgi Gerganov
972f323e73 revert : "[Model] Qwen3.5 dense and MoE support (no vision) (#19435)" (#19453)
This reverts commit 39bf692af1.
2026-02-09 14:57:51 +02:00
Kevin Pouget
f5e7734ff2 ggml-virtgpu: add backend documentation (#19354)
* ggml-virtgpu: add backend documentation

Assisted-by-AI: Claude Code

* CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget

* README: add the link to docs/backend/GGML-VirtGPU/ggml-virt.md

* docs/ggml-virt: add link to testing + configuration

* Revert "CODEOWNERS: add /docs/backend/GGML-VirtGPU/ -> kpouget"

This reverts commit 8ece8e72e2.

* drop the ggml- prefix

* s/ggerganov/ggml-org

* Relocate VirtGPU.md

* reorganize the text

* turn turn the ascii diagram into a mermaid

* README.md: update the link to the main doc
2026-02-09 20:15:42 +08:00
Hugo
1e8924fd65 cmake : add variable to skip installing tests (#19370)
When packaging downstream, there's usually little point in installing
test. The default behaviour remains the same.
2026-02-09 07:12:02 +01:00
Piotr Wilkin (ilintar)
39bf692af1 [Model] Qwen3.5 dense and MoE support (no vision) (#19435)
* Unified delta net handling

* Remove old methods.

* Refactor and optimize

* Adapt autoregressive version from @ymcki

* Change to decay mask approach

* Fix bad permute

* Qwen 3.5 support

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Further fixes

* Use inheritance, remove unneeded conts

* Not like this!

* Remove ggml.h explicit import

* Remove transformers, fix the views

* ACTUALLY fix views, make super calls explicit in conversion.

* Fix conversion again

* Remove extra ggml.h imports

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-09 00:24:08 +01:00
Oliver Simons
e06088da0f CUDA: Fix non-contig rope (#19338)
* Rename variables + fix rope_neox

Seems memory layout is shared with Vulkan so we can port fix from
https://github.com/ggml-org/llama.cpp/pull/19299

* Fix rope_multi

* Fix rope_vision

* Fix rope_norm

* Rename ne* to ne0* for consistent variable naming

* cont : consistent stride names

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-02-08 15:12:51 +02:00
Adrien Gallouët
5fa1c190d9 rpc : update from common.cpp (#19400)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-08 09:06:45 +01:00
Georgi Gerganov
eb449cdfa4 server : improve context checkpoint logic (#19408) 2026-02-08 09:40:04 +02:00
ddh0
5999b50eb0 llama-quantize : cleanup --help output (#19317)
* cleanup `llama-quantize --help` output

some much needed TLC

* remove future argument

oops, spoiler

* cleanup of cleanup
2026-02-08 09:22:38 +02:00
Sigbjørn Skjæret
9a5f57795c ci : remove server job from webui and move slow test (#19424)
* remove server job from webui and move slow test

* use pip-install option
2026-02-08 01:20:00 +01:00
Georgi Gerganov
96441c955e ci : use -j param correctly when building with sanitizers (#19411)
* ci : use less jobs when building with sanitizers

* cont : fix nproc

* cont : fix the fix

* cont : simplify
2026-02-07 23:50:47 +01:00
Georgi Gerganov
8872ad2125 metal : consolidate bin kernels (#19390)
* metal : refactor bin kernels

* cont

* cont : fix cv
2026-02-07 10:35:56 +02:00
Georgi Gerganov
34ba7b5a2f metal : fix event synchronization in cpy_tensor_async (#19402) 2026-02-07 07:37:15 +02:00
forforever73
b83111815e model : support Step3.5-Flash (#19283)
* Support Step3.5-Flash

* fix: norm.weight + 1 (HF zero_centered=true)

* step35: simplify GGUF conversion + drop redundant rope KVs

* Address review feedback

* rename limits -> clamp

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rename swiglu limits -> swiglu clamp in LLM_KV

* avoid CI fail

* Apply suggestions from code review

* Apply suggestions from code review

* disabled KV shifting for LLM_ARCH_STEP35

* Apply suggestions from code review

* mistakenly removed cmath

* add model size && apply missed suggestion

* assert partial_rotary_factors

* fix CI errors:

* load freq_base_swa

---------

Co-authored-by: lvyichen <lvyichen@stepfun.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-06 21:06:14 +01:00
Alex Trotta
3228e77287 gguf-py : bump sentencepiece version (#19319)
* gguf-py: Bump sentencepiece version

There's a new version that's been out for a while that addresses the issues mentioned in https://github.com/ggml-org/llama.cpp/pull/14200. There's a long chain of reasons I would like this change, but the short version is that it allows people who use both `sentencepiece` and `gguf` to take advantage of these fixes. On conda-forge, currently, it locks the version (since there is no notion of optional dependencies).

Regardless, I don't think this should be too controversial.

* review feedback
2026-02-06 21:05:19 +01:00
Abhijit Ramesh
7fbd36c50c ggml-webgpu: JIT compile binary operators and handle binding overlaps (#19310)
* ggml webgpu: port binary operators to use pre-wgsl

* Add binary.wgsl: unified shader with conditionals for all 4 ops

* Add gen_binary_shaders.cpp: build tool for using pre_wgsl preprocessor

* Remove bin_op.tmpl.wgsl and binary.wgsl (Python template)

* Update CMake to generate binary operator shaders at build time

* ggml-webgpu: migrate binary ops to JIT compilation with overlap handling

* port binary operators from AOT to pre-wgsl JIT compilation

* add src1=dst overlap handling for binary ops

* use compile-time workgroup size defines instead of runtime overrides

* ggml-webgpu: complete overlap handling for binary ops

* add support for inplace & overlap case in binding setup

* restructure conditional logic to handle all overlap cases

* ensure all buffer bindings are correctly assigned for edge cases

* ggml-webgpu: remove unused binary overlap cases

Remove src0==src1 binary overlap case that never occurs in practice.

* keep INPLACE (src0==dst), OVERLAP (src1==dst), DEFAULT

* remove unused src0==src1 and all-same variant

* refactor wgsl to eliminate duplication
2026-02-06 10:33:30 -08:00
Nechama Krashinski
537eadb1b9 sycl: add F16 support for GGML_OP_CEIL (#19306)
* Fix SYCL CEIL operator

* sycl: implement GGML_OP_CEIL
2026-02-06 23:13:44 +08:00
Jeff Bolz
db6adb3c88 tests: reduce number of FA test permutations (#19381)
Only test non-F16 for head size 64 and 72 (one a multiple of QK, one not).
2026-02-06 08:50:30 -06:00
Georgi Gerganov
dfde5993ea common : add common_speculative_is_compat() (#19270)
* llama : add llama_memory_can_rm_suffix()

* Revert "llama : add llama_memory_can_rm_suffix()"

This reverts commit d30e59b62a.

* spec : check if the target context is compatible for spec decoding
2026-02-06 16:47:22 +02:00
Lasse Lauwerys
06bf3796f4 unicode : MSVC regex fix (#19340)
* Fix model loading regex error

* Change comments

* Use const_iterator and remove specializations

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2026-02-06 15:56:13 +02:00
ymcki
3688c4f504 Kimi-Linear support (backend agnostic + MLA KV cache) (#18755)
* kimi linear model implementation

* kimi linear convert_hf_to_gguf

* kimi linear constants.py tensor_mapping.py

* Kimi Linear ggml.h

* kimi linear ggml-cpu

* Kimi Linear ggml-cuda

* Kimi Linear ggml.c

* kimi linear src/llama

* remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning

* remove type mismatch warning

* read MoE params

* removed some hard coded code

* removed all hard code

* use DeepseekV2 tokenizer

* removed unnecessary internal methods called by the old set_vocab of KimiLinear

* rewrite get_vocab for KimiLinear. Removed all kda_scan code

* removed all traces of kda_scan

* reduce OP count by 1 due to removal of kda_scan

* Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache

* set n_embd_head_k/v to ensure kv cache works

* don't quantize conv1d of Kimi Linear

* Kimi Linear backend agnostic

* removed LOG_INFO

* naive chunking form implemented

* fixed some comments

* add Kimi-K2 specific tokens to be recognized as EOG

* build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682

* replaced Akk and Aqk with mul_mat and clamp

* no clamp version

* Moved Aqk computation out of the loop

* fixed typo and split wkv_b into wk_b and wv_b

* MLA KV cache support

* fix trailing spaces

* moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error

* fix trailing whitespace

* removed traling whitespaces in empty line + make sure indentation is multiple of 4

* try to make lint happy

* remove blank lines to make lint happy

* removed at least blank line containing white space

* fixed flake8 complaints locally

* return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement

* removed Kimi-Linear specific change that causes failure at server-windows

* removed private: from kimi_linear to make build checks happy

* removed unnecessary ggml_cont before ggml_reshape

* created static function causal_conv1d to abtract similar code for q/k/v

* merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py.

* reverted to original

* fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms.

* remove DT_B from constants.py. remove one comment line in llama-model.cpp

* new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight

* remove ssm_o_norm_b

* remove ssm_o_norm_b

* changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k

* removed all ggml_cont b4 ggml_reshape_4d

* Whitespace

* replaced all hparams.get with find_hparams

* added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp

* use is_mla to switch between different mem_hybrid types

* fixed logical errors in convert_hf_to_gguf.py pointed out by CISC

* removed if else for required parameters kv_lora_rank and qk_rope_head_dim

* add back ggml_cont for Vcur

* minor changes

* removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp

* f16 gguf cannot run without context length

* made a mistake of adding back n_ctx parsing

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-06 11:39:58 +01:00
Jeff Bolz
1946e46f4c vulkan: For coopmat2 FA, use fp16 accumulators for the final result (#19376)
The cpu and cuda backends use fp16 for the VKQ accumulator type, this change
does the same for vulkan. This helps particularly with large head sizes which
are very register-limited.

I tried this for the coopmat1 path and it slowed down a bit. I didn't try for
scalar.

I applied the softmax bias that the cuda backend uses to avoid overflow,
although I was not able to reproduce the original bug without it.
2026-02-06 09:15:13 +01:00
Jeff Bolz
f9bd518a6b vulkan: make FA mask/softcap enables spec constants (#19309)
* vulkan: make FA mask/softcap enables spec constants

* don't specialize for sinks

* bump timeout a little bit
2026-02-06 08:49:58 +01:00
Georgi Gerganov
7fcf1ef45d metal : skip loading all-zero mask (#19337)
* metal : skip loading all-zero mask

* cont : minor
2026-02-06 09:25:11 +02:00
Daniel Bevenius
e696cfc016 llama : rename llama-sampling to llama-sampler (#19363)
This commit addresses the TODO in llama-sampling.h to rename that header
and the implementation to llama-sampler.
2026-02-06 07:26:54 +01:00
Georgi Gerganov
3e21647666 cuda : cuda graphs now compare all node params (#19383) 2026-02-06 07:55:06 +02:00
Georgi Gerganov
22cae83218 metal : adaptive CPU/GPU interleave based on number of nodes (#19369) 2026-02-05 19:07:22 +02:00
Jeff Bolz
449ec2ab07 vulkan: Preprocess FA mask to detect all-neg-inf and all-zero. (#19281)
Write out a 2-bit code per block and avoid loading the mask when it
matches these two common cases.

Apply this optimization when the mask is relatively large (i.e. prompt
processing).
2026-02-05 09:26:38 -06:00
Georgi Gerganov
3795cc1e89 benches : update models + numbers (#19359)
* bench : update script

* benches : update numbers
2026-02-05 14:34:07 +02:00
Sigbjørn Skjæret
b828e18c75 docker : fix vulkan build (#19352) 2026-02-05 11:10:39 +01:00
Adrien Gallouët
a4ea7a188f vendor : update BoringSSL to 0.20260204.0 (#19333)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-05 09:53:35 +01:00
Georgi Gerganov
7a4f97d196 metal : add diag (#19330) 2026-02-05 10:08:45 +02:00
Oleksandr Kuvshynov
a498c75ad1 vulkan: fix GPU deduplication logic. (#19222)
* vulkan: fix GPU deduplication logic.

As reported in https://github.com/ggml-org/llama.cpp/issues/19221, the
(same uuid, same driver) logic is problematic for windows+intel igpu.

Let's just avoid filtering for MoltenVK which is apple-specific, and
keep the logic the  same as before 88d23ad5 - just dedup based on UUID.

Verified that MacOS + 4xVega still reports 4 GPUs with this version.

* vulkan: only skip dedup when both drivers are moltenVk
2026-02-05 09:06:59 +01:00
Jeff Bolz
3409ab842d vulkan: Set k_load_shmem to false when K is too large (#19301) 2026-02-05 08:48:33 +01:00
Jeff Bolz
c342c3b93d vulkan: fix non-contig rope (#19299) 2026-02-05 08:38:59 +01:00
will-lms
af252d0758 metal : add missing includes (#19348) 2026-02-05 08:05:09 +02:00
Sigbjørn Skjæret
11fb327bf3 vendor : add missing llama_add_compile_flags (#19322)
* add missing llama_add_compile_flags

* disable all warnings for ssl, crypto and fipsmodule
2026-02-05 02:27:38 +01:00
Aaron Teo
e6e934c5ea vendor: update cpp-httplib version (#19313)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2026-02-05 05:15:03 +08:00
Daniel Bevenius
b536eb0233 codeowners : add danbev for examples/debug (#19332)
* codeowners : add danbev for examples/debug

* Add @pwilkin to CODEOWNERS for debug

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-04 20:20:40 +01:00
Xuan-Son Nguyen
e0c93af2a0 debug: make common_debug_print_tensor readable (#19331)
* debug: make common_debug_print_tensor readable

* editorconfig
2026-02-04 17:55:31 +01:00
Georgi Gerganov
423bee462b ci : fix sanitize workflow to enable ggml sanitizers too (#19323) 2026-02-04 15:12:03 +02:00
Xuan-Son Nguyen
8abcc70a74 model: (qwen3next) correct vectorized key_gdiff calculation (#19324)
* model: (qwen3next) correct vectorized key_gdiff calculation

* move transpose to outside of loop
2026-02-04 13:09:58 +01:00
Georgi Gerganov
eaba92c3dc tests : add non-cont, inplace rope tests (#19296)
* tests : add non-cont, inplace rope tests

* cont : exercise dim 3

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* cont : more dim3 exercises

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2026-02-04 12:45:21 +02:00
Daniel Bevenius
6ab881b7c3 model-conversion : add tensor-info.py utility (#18954)
This commit adds a new python script that can be used to print tensors
information from a tensor in a safetensors model.

The motivation for this is that during model conversion work it can
sometimes be useful to verify the shape of tensors in the original
model. While it is possible to print the tensors when loading the model
this can be slow when working with larger models.
With this script it is possible to quickly query tensor shapes.

Example usage:
```console
(venv) $ ./scripts/utils/tensor-info.py --help
usage: tensor-info.py [-h] [-m MODEL_PATH] [-l] [tensor_name]

Print tensor information from a safetensors model

positional arguments:
  tensor_name           Name of the tensor to inspect

options:
  -h, --help            show this help message and exit
  -m MODEL_PATH, --model-path MODEL_PATH
                        Path to the model directory (default: MODEL_PATH environment variable)
  -l, --list            List unique tensor patterns in the model (layer numbers replaced with #)
```

Listing tensor names:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m -l
embed_tokens.weight
layers.#.input_layernorm.weight
layers.#.mlp.down_proj.weight
layers.#.mlp.gate_proj.weight
layers.#.mlp.up_proj.weight
layers.#.post_attention_layernorm.weight
layers.#.post_feedforward_layernorm.weight
layers.#.pre_feedforward_layernorm.weight
layers.#.self_attn.k_norm.weight
layers.#.self_attn.k_proj.weight
layers.#.self_attn.o_proj.weight
layers.#.self_attn.q_norm.weight
layers.#.self_attn.q_proj.weight
layers.#.self_attn.v_proj.weight
norm.weight
```

Printing a specific tensor's information:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m layers.0.input_layernorm.weight
Tensor: layers.0.input_layernorm.weight
File:   model.safetensors
Shape:  [768]
```
2026-02-04 10:40:53 +01:00
Georgi Gerganov
d838c22bb3 spec : fix the check-rate logic of ngram-simple (#19261)
* spec : fix the check-rate logic of ngram-simple

* cont : refactor + fix checks
2026-02-04 10:39:53 +02:00
Daniel Bevenius
25f40ca65f completion : simplify batch (embd) processing (#19286)
* completion : simplify batch (embd) processing

This commit simplifies the processing of embd by removing the for loop
that currently exists which uses params.n_batch as its increment. This
commit also removes the clamping of n_eval as the size of embd is always
at most the size of params.n_batch.

The motivation is to clarify the code as it is currently a little
confusing when looking at this for loop in isolation and thinking that
it can process multiple batches.

* add an assert to verify n_eval is not greater than n_batch
2026-02-04 05:43:28 +01:00
Kevin Pouget
015deb9048 ggml-virtgpu: make the code thread safe (#19204)
* ggml-virtgpu: regenerate_remoting.py: add the ability to deprecate a function

* ggml-virtgpu: deprecate buffer_type is_host remoting

not necessary

* ggml-virtgpu: stop using static vars as cache

The static init isn't thread safe.

* ggml-virtgpu: protect the use of the shared memory to transfer data

* ggml-virtgpu: make the remote calls thread-safe

* ggml-virtgpu: backend: don't continue if couldn't allocate the tensor memory

* ggml-virtgpu: add a cleanup function for consistency

* ggml-virtgpu: backend: don't crash if buft->iface.get_max_size is missing

* fix style and ordering

* Remove the static variable in apir_device_get_count

* ggml-virtgpu: improve the logging

* fix review minor formatting changes
2026-02-04 10:46:18 +08:00
Aman Gupta
2ceda3f662 ggml-cpu: use LUT for converting e8->f32 scales on x86 (#19288)
* ggml-cpu: use LUT for converting e8->f32 scales on x86

* add dispatch based on macro
2026-02-04 09:43:29 +08:00
Georgi Gerganov
44008ce8f9 metal : add solve_tri (#19302) 2026-02-03 23:43:14 +02:00
Georgi Gerganov
6a9bf2f788 ci : add sanitizer runs for server (#19291) 2026-02-03 22:41:20 +02:00
Georgi Gerganov
faa1bc26ee sampling : delegate input allocation to the scheduler (#19266)
* sampling : delegate input allocation to the scheduler

* graph : compute backend samplers only if needed
2026-02-03 22:16:16 +02:00
Ruben Ortlam
32b17abdb0 vulkan: disable coopmat1 fa on Nvidia Turing (#19290) 2026-02-03 17:37:32 +01:00
Aman Gupta
8bece2eb20 CUDA: use mmvq for mul-mat-id for small batch sizes (#18958)
* CUDA: use mmvq for mul-mat-id for small batch sizes

* add mmvq too

* Fix perf issue on ampere. Use mmvf mm-id only for non-nvidia GPUs

* templatize multi_token_path
2026-02-03 23:31:23 +08:00
Sigbjørn Skjæret
a6fd8ca1fe models : remove unnecessary cont in openelm (#19289) 2026-02-03 14:20:57 +01:00
Georgi Gerganov
c55bce4159 metal : minor cleanup (#19251) 2026-02-03 13:43:29 +02:00
Oliver Simons
1f1e57f2bf CUDA: Fix loop unrolling for BW in mul_mat_q_stream_k_fixup (#19053)
By providing stride_* variables as size_t (i.e., 64-bit) the compiler can
correctly unroll the [two for-loops](557515be1e/ggml/src/ggml-cuda/mmq.cuh (L3789-L3816))
on BW. This gives some perf for prefill/pp phase on BW, while not affecting
other SMs:

| GPU                                                     | Model                 | Test   |   t/s master |   t/s osimons/fix_bw_mmq_fixup_kernel |   Speedup |
|:--------------------------------------------------------|:----------------------|:-------|-------------:|--------------------------------------:|----------:|
| NVIDIA RTX 6000 Ada Generation                          | gpt-oss 20B MXFP4 MoE | pp8096 |      8404.05 |                               8375.79 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | llama 3B Q4_K_M       | pp8096 |     16148.93 |                              16019.60 |      0.99 |
| NVIDIA RTX 6000 Ada Generation                          | llama 8B Q4_0         | pp8096 |      8008.29 |                               7978.80 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B BF16    | pp8096 |      4263.16 |                               4248.53 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B Q4_K_M  | pp8096 |      5165.11 |                               5157.43 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | gpt-oss 20B MXFP4 MoE | pp8096 |     12582.80 |                              12758.37 |      1.01 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 3B Q4_K_M       | pp8096 |     16879.10 |                              17619.47 |      1.04 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 8B Q4_0         | pp8096 |     10649.90 |                              10982.65 |      1.03 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B BF16    | pp8096 |      7717.73 |                               7716.22 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B Q4_K_M  | pp8096 |      7301.90 |                               7370.38 |      1.01 |
2026-02-03 11:33:14 +01:00
George
e9a859db3c ggml: added cleanups in ggml_quantize_free (#19278)
Add missing cleanup calls for IQ2_S, IQ1_M quantization types and IQ3XS with 512 blocks during quantization cleanup.
2026-02-03 08:43:39 +02:00
Gaurav Garg
41e3f02647 cuda : revert CUDA_SCALE_LAUNCH_QUEUES override until investigated (#19227)
Hangs were reported on Jetson Orin AGX if we set CUDA_SCALE_LAUNCH_QUEUES=4x. Reverting the previous PR (#19042) and updating the document to consider setting CUDA_SCALE_LAUNCH_QUEUES=4x for faster throughput on multi-GPU systems.
2026-02-03 08:41:02 +02:00
Alexey Dubrov
1efb5f7ae1 vocab: add Falcon-H1-Tiny-Coder FIM tokens (#19249) 2026-02-03 08:31:01 +02:00
Georgi Gerganov
aeb827a3cc spec : simplify time measurement using common_time_meas (#19262) 2026-02-03 08:20:15 +02:00
lhez
91ea44e89b opencl: refactor some ops, concat, repeat, tanh and scale (#19226)
* opencl: refactor concat

* opencl: refactor repeat

* opencl: refactor tanh

* opencl: enable fp16 for tanh

* opencl: refactor scale

* opencl: fix unused variables
2026-02-02 15:54:43 -08:00
Sid Mohan
0dfcd3b607 jinja : add missing 'in' test to template engine (#19004) (#19239)
* jinja : add missing 'in' test to template engine (#19004)

The jinja template parser was missing the 'in' test from
global_builtins(), causing templates using reject("in", ...),
select("in", ...), or 'x is in(y)' to fail with
"selectattr: unknown test 'in'".

This broke tool-calling for Qwen3-Coder and any other model
whose chat template uses the 'in' test.

Added test_is_in supporting array, string, and object containment
checks, mirroring the existing 'in' operator logic in runtime.cpp.

Includes test cases for all three containment types plus
reject/select filter usage.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* reuse test_is_in in binary op

---------

Co-authored-by: Sid Mohan <sidmohan0@users.noreply.github.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2026-02-02 21:00:55 +01:00
Xuan-Son Nguyen
07a7412a3b mtmd: add min/max pixels gguf metadata (#19273) 2026-02-02 20:59:06 +01:00
Aman Gupta
9f682fb640 ggml-cpu: FA split across kv for faster TG (#19209)
* ggml-cpu: split across kv for faster TG

* simplify sinks application

* add ref impl
2026-02-03 01:19:55 +08:00
Matthieu Coudron
a3fa035822 server: print actual model name in 'model not found" error (#19117)
Experimenting with AI, my environment gets messy fast and it's not
always easy to know what model my software is trying to load. This helps
with troubleshooting.

before:

Error: {
  code = 400,
  message = "model not found",
  type = "invalid_request_error"
}

After:

Error: {
  code = 400,
  message = "model 'toto' not found",
  type = "invalid_request_error"
}
2026-02-02 16:55:27 +01:00
Aman Gupta
15818ac44c ci: add test-backend-ops test for CPU (#19268) 2026-02-02 22:40:28 +08:00
Neo Zhang
bf38346d13 Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. (#19246)
User can't build up the software for Nvidia & AMD GPU.
rm the oneMath since it is only used in NV and AMD code path.
2026-02-02 21:06:21 +08:00
Tamar
4d5e972673 sycl: implement GGML_OP_TOP_K (#19242) 2026-02-02 21:05:51 +08:00
Georgi Gerganov
6fdddb4987 metal : support virtual devices (#18919)
* metal : support virtual devices

* cont : manage buffer type context memory

* metal : add events

* cont : implement cpy_tensor_async
2026-02-02 14:29:44 +02:00
Daniel Bevenius
6156ae5111 model-conversion : add debug option to conversion script (#19265)
This commit adds a debug option to the model conversion script to enable
using the Python debugger (pdb) during model conversion.

The motivation for this is that I've found myself adding this a few
times now and it would be quicker to have this flag as an option and a
makefile target/recipe for it.
2026-02-02 11:29:57 +01:00
Johannes Gäßler
59377a6c87 ggml-backend: fix async set/get fallback sync (#19179) 2026-02-02 10:00:05 +01:00
Georgi Gerganov
1239267cc4 authors : update (#19263)
[no ci]
2026-02-02 08:51:25 +02:00
Christian Kastner
7a4ca3cbd9 docs : Minor cleanups (#19252)
* Update old URLs to github.com/ggml-org/

* Bump copyrights
2026-02-02 08:38:55 +02:00
Sascha Rogmann
b4d05a3d2f spec : various improvements ton ngram-map + docs (#19253)
* spec: ngram-map and reasoning chats

* spec: add t_begin and t_accept

* ngram-map : add internal hash map

* docs : update ngram-map, add ngram-mod

* docs : fix ngram-map-k

* docs : differences between implementations
2026-02-02 08:26:58 +02:00
Nikhil Jain
2dc3ce2166 Remove pipeline cache mutexes (#19195)
* Remove mutex for pipeline caches, since they are now per-thread.

* Add comment

* Run clang-format

* Cleanup

* Run CI again

* Run CI once more

* Run clang-format
2026-02-01 18:47:29 -08:00
Max Krasnyansky
3bc8d2cf23 Bump cmake max version (needed for Windows on Snapdragon builds) (#19188)
* Bump max cmake version (needed for Windows on Snapdragon builds)

* cmake: move max version setting into ggml/CMakeLists
2026-02-01 14:13:38 -08:00
Alexis Williams
8a98ba4582 nix: fix allowUnfreePredicate for packages with multiple licenses (#19237)
The allowUnfreePredicate in pkgsCuda was wrapping p.meta.license in a
list unconditionally. This fails when meta.license is already a list
of licenses, as it creates a nested list and then tries to access
.free and .shortName on the inner list.

Use lib.toList instead, which correctly handles both cases:
- Single license attrset -> wraps in list
- List of licenses -> returns unchanged
2026-02-01 22:10:48 +02:00
Neo Zhang
2634ed207a create test.sh to enhance the parameters for testing, update the guide, rm useless script (#19243) 2026-02-01 18:24:00 +08:00
Matthieu Coudron
41ea26144e nix: fix nix develop .#python-scripts (#19218)
Without this I get:

> * Getting build dependencies for wheel...
> * Building wheel...
> Successfully built gguf-0.17.1-py3-none-any.whl
> Finished creating a wheel...
> Finished executing pypaBuildPhase
> Running phase: pythonRuntimeDepsCheckHook
> Executing pythonRuntimeDepsCheck
> Checking runtime dependencies for gguf-0.17.1-py3-none-any.whl
>   - requests not installed
For full logs, run:
    nix log /nix/store/x0c4a251l68bvdgang9d8v2fsmqay8a4-python3.12-gguf-0.0.0.drv

I changed a bit the style to make it more terse ~> more elegant in my
opinion.
2026-01-31 18:01:46 +02:00
nullname
89f10baad5 ggml-hexagon: flash-attention and reduce-sum optimizations (#19141)
* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* wip

* ggml-hexagon: add vectorized dot product function for FP32 and FP16 accumulation

* ggml-hexagon: optimize dot product functions for FP16 and FP32 with new vectorized implementations

* wip

* ggml-hexagon: optimize hvx_vec_dump_f32_n and hvx_vec_reduce_sum_qf32x2 functions for improved performance

* ggml-hexagon: refactor dot product functions to use a common loading function for improved readability

* optimize vector dot product functions to use unified reduction for improved performance

* hexagon: optimize reduce-sum for v75+

* hexagon: always keep row_sums in sf/fp32

* ggml-hexagon: enhance directory checks for HEXAGON_SDK_ROOT and HEXAGON_TOOLS_ROOT

* fix compiling error after rebase

---------

Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
2026-01-30 21:14:20 -08:00
EugeoSynthesisThirtyTwo
3dd95914d0 quantize: add option --tensor-type-file to llama-quantize (#18572)
* add option --tensor-type-file to llama-quantize, but it raises an error.

* add error message when file not found

* quantize: update help menu, fix CI

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Aaron Teo <aaron.teo1@ibm.com>
2026-01-31 11:39:21 +08:00
tc-mb
ec6c7421e4 mtmd: support MiniCPM-o 4.5(vision only) (#19211)
Signed-off-by: tc-mb <caitianchi@modelbest.cn>
2026-01-30 23:19:30 +01:00
Daniele Pinna
1488339138 lookup, lookahead: fix crash when n_ctx not specified (#18729)
* lookup, lookahead: fix crash when n_ctx not specified

Since PR #16653 (Dec 15, 2025), the default n_ctx is 0 to enable automatic
GPU memory fitting. This causes llama-lookup and llama-lookahead to crash
when run without explicit -c flag:

    GGML_ASSERT(batch.seq_id[batch.n_tokens] && "llama_batch size exceeded")

Root cause: Both examples use params.n_ctx directly for batch initialization,
but params.n_ctx remains 0 even after the context is properly initialized
to n_ctx_train internally.

Bug history:
- Nov 2023: lookahead.cpp created (PR #4207) with params.n_ctx pattern
- Dec 2023: lookup.cpp created (PR #4484) with same pattern
- Nov 2024: default n_ctx changed to 4096 (PR #10136) - bug dormant
- Dec 2025: default n_ctx changed to 0 (PR #16653) - bug activated

The bug was dormant for 2+ years because params.n_ctx defaulted to 512,
then 4096. PR #16653 changed it to 0 for GPU auto-fitting, triggering
the crash.

Fix: Use llama_n_ctx(ctx) to get the actual runtime context size, matching
the pattern already used elsewhere in lookup.cpp (line 72) and in
speculative.cpp/speculative-simple.cpp.

Tested: llama-lookup now works without -c flag (12.5% acceptance on
Gemma-3-1B).

Note: llama-lookahead has a separate pre-existing issue with sequence
initialization (n_seq_max=1 vs W+G+1 needed) that is unrelated to this fix.

* lookahead: fix n_seq_max and kv_unified configuration

Lookahead decoding requires:
- W + G + 1 = 31 sequences for parallel Jacobi decoding
- Unified KV cache for coupled sequences in batch splitting

These requirements were broken after PR #14482 changed validation logic.

Consolidates fix from PR #18730 per maintainer request.

Commit message drafted with Claude.
2026-01-30 22:10:24 +02:00
Georgi Gerganov
4927795810 ngram-mod : fix build [no ci] (#19216) 2026-01-30 21:27:27 +02:00
shaofeiqi
971facc38e opencl: add optimized q8_0 mm kernel for adreno (#18871)
* Add Q8_0 OpenCL kernel

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>

* opencl: fix build for non-adreno

* opencl: refactor q8_0

* opencl: enforce subgroup size of 64 for adreno for q8_0

* For A750 and older generations, subgroup size can be 64 or 128.
  This kernel assumes subgroup size 64.

* opencl: suppress warning when adreno kernels are disabled

---------

Co-authored-by: yunjie <yunjie@qti.qualcomm.com>
Co-authored-by: Li He <lih@qti.qualcomm.com>
2026-01-30 10:19:27 -08:00
Georgi Gerganov
d9a2a4bcaa sync : ggml 2026-01-30 20:09:21 +02:00
Georgi Gerganov
dfd6106c84 cuda : fix compile warnings (whisper/0) 2026-01-30 20:09:21 +02:00
Georgi Gerganov
bbada8bfb9 server : wrap around the "id_slot" parameter (#19207)
* server : wrap around the "id_slot" parameter

* cont : minor
2026-01-30 19:46:10 +02:00
Simon Redman
13f3ebfae1 Correctly fetch q8_1 quantize pipeline in test as needed by 8a3519b (#19194) 2026-01-30 17:27:16 +01:00
Georgi Gerganov
dabaa2e77a spec : add ngram-mod (#19164)
* spec : add ngram-mod

* cont : simplify + keep track of occupancy

* cont : cleanup

* cont : move initialization to common/speculative

* cont : cleanup

* cont : cleanup

* cont : fix
2026-01-30 18:21:48 +02:00
Marcello Seri
2e916f996a jinja : add unordered_map include to value.h [no ci] (#19205)
On macos Sequoia 15.7.3, x86_64, the build has recently started failing with
```
In file included from .../code/cpp/llama.cpp/common/jinja/string.cpp:2:
.../code/cpp/llama.cpp/common/./jinja/value.h:478:10: error: no template named 'unordered_map' in namespace 'std'
  478 |     std::unordered_map<value, value, value_hasher, value_equivalence> unordered;
      |     ~~~~~^
In file included from .../code/cpp/llama.cpp/common/jinja/caps.cpp:1:
.../code/cpp/llama.cpp/common/jinja/value.h:478:10: error: no template named 'unordered_map' in namespace 'std'
  478 |     std::unordered_map<value, value, value_hasher, value_equivalence> unordered;
      |     ~~~~~^
In file included from .../code/cpp/llama.cpp/common/jinja/value.cpp:1:
In file included from .../code/cpp/llama.cpp/common/jinja/runtime.h:4:
.../code/cpp/llama.cpp/common/jinja/value.h:478:10: error: no template named 'unordered_map' in namespace 'std'
  478 |     std::unordered_map<value, value, value_hasher, value_equivalence> unordered;
[...]
```

After a bit of digging to make sure all the appropriate flags were used, I notifced that the necessary header was not included. This fixes the build for me and should not affect negatively other builds that for some reasons were already succeeding
2026-01-30 16:09:44 +01:00
Daniel Bevenius
f3bc98890c memory : clarify comments for r_l and s_l tensors [no ci] (#19203)
This commit updates the comments in state_write_data to clarify that it
is handling the R and S tensors and not Key and Value tensors.
2026-01-30 15:18:41 +01:00
Georgi Gerganov
c3b87cebff tests : add GQA=20 FA test (#19095) 2026-01-30 13:52:57 +02:00
Daniel Bevenius
0562503154 convert : add missing return statement for GraniteMoeModel (#19202)
This commit adds a missing return statement to the GraniteMoeModel class
to fix an issue in the model conversion process.

Resolves: https://github.com/ggml-org/llama.cpp/issues/19201
2026-01-30 11:12:53 +01:00
Daniel Bevenius
83bcdf7217 memory : remove unused tmp_buf (#19199)
This commit removes the unused tmp_buf variable from llama-kv-cache.cpp
and llama-memory-recurrent.cpp.

The tmp_buf variable was declared but never used but since it has a
non-trivial constructor/desctuctor we don't get an unused variable
warning about it.
2026-01-30 10:37:06 +01:00
Antonis Makropoulos
b316895ff9 docs: Add LlamaLib to UI projects (#19181) 2026-01-30 14:54:28 +08:00
bssrdf
ecbf01d441 add tensor type checking as part of cuda graph properties (#19186) 2026-01-30 12:57:52 +08:00
s8322
1025fd2c09 sycl: implement GGML_UNARY_OP_SOFTPLUS (#19114)
* sycl: add softplus unary op implementation

* sycl: add softplus unary op implementation

* docs(ops): mark SYCL SOFTPLUS as supported

* docs: update SYCL status for SOFTPLUS
2026-01-30 12:01:38 +08:00
RachelMantel
c7358ddf64 sycl: implement GGML_OP_TRI (#19089)
* sycl: implement GGML_OP_TRI

* docs: update ops.md for SYCL TRI

* docs: regenerate ops.md

* docs: update SYCL support for GGML_OP_TRI
2026-01-30 12:00:49 +08:00
DDXDB
d284baf1b5 Fix typos in SYCL documentation (#19162)
* Fix typos in SYCL documentation

* Update SYCL.md

* Update SYCL.md

* Update SYCL.md

* Update docs/backend/SYCL.md

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>

* Update SYCL.md

---------

Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2026-01-30 09:46:57 +08:00
Zheyuan Chen
bd90fc74c3 ggml-webgpu: improve flastAttention performance by software pipelining (#19151)
* webgpu : pipeline flash_attn Q/K loads in WGSL

* ggml-webgpu: unroll Q*K accumlation inner loop

* ggml-webgpu: vectorization

* ggml-webgpu: unrolling

* ggml-webgpu: remove redundant unrolling

* ggml-webgpu: restore the config

* ggml-webgpu: remove redundant comments

* ggml-webgpu: formatting

* ggml-webgpu: formatting and remove vectorization

* ggml-webgpu: remove unnecessary constants

* ggml-webgpu: change QKV buffer to read_write to pass validation

* ggml-webgpu: add explanation for the additional bracket around Q K accumulate

* Indentation and for -> if for tail

* Kick off CI on wgsl only commits

---------

Co-authored-by: Reese Levine <reeselevine1@gmail.com>
2026-01-29 14:05:30 -08:00
Todor Boinovski
ce38a4db47 hexagon: enable offloading to Hexagon on Windows on Snapdragon (#19150)
* hexagon: updates to enable offloading to HTP on WoS

* Update windows.md

* Update windows.md

* hexagon: enable -O3 optimizations

* hexagon: move all _WINDOWS conditional compilation to _WIN32

* hexagon: updates to enable offloading to HTP on WoS

* hexagon: use run-time vs load-time dynamic linking for cdsp driver interface

* refactor htp-drv

* hexagon: add run-bench.ps1 script

* hexagon: htdrv refactor

* hexagon: unify Android and Windows build readmes

* hexagon: update README.md

* hexagon: refactor htpdrv

* hexagon: drv refactor

* hexagon: more drv refactor

* hexagon: fixes for android builds

* hexagon: factor out dl into ggml-backend-dl

* hexagon: add run-tool.ps1 script

* hexagon: merge htp-utils in htp-drv and remove unused code

* wos: no need for getopt_custom.h

* wos: add missing CR in htpdrv

* hexagon: ndev enforecement applies only to the Android devices

* hexagon: add support for generating and signing .cat file

* hexagon: add .inf file

* hexagon: working auto-signing and improved windows builds

* hexagon: futher improve skel build

* hexagon: add rough WoS guide

* hexagon: updated windows guide

* hexagon: improve cmake handling of certs and logging

* hexagon: improve windows setup/build doc

* hexagon: more windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* hexagon: windows readme updates

* Update windows.md

* Update windows.md

* snapdragon: rename docs/backend/hexagon to docs/backends/snapdragon

Also added a power shell script to simplify build env setup.

* hexagon: remove trailing whitespace and move cmake requirement to user-presets

* hexagon: fix CMakeUserPresets path in workflow yaml

* hexagon: introduce local version of libdl.h

* hexagon: fix src1 reuse logic

gpt-oss needs a bigger lookahead window.
The check for src[1] itself being quantized was wrong.

---------

Co-authored-by: Max Krasnyansky <maxk@qti.qualcomm.com>
2026-01-29 12:33:21 -08:00
Georgi Gerganov
4fdbc1e4db cuda : fix nkvo, offload and cuda graph node properties matching (#19165)
* cuda : fix nkvo

* cont : more robust cuda graph node property matching

* cont : restore pre-leafs implementation

* cont : comments + static_assert
2026-01-29 18:45:30 +02:00
Aldehir Rojas
7b7ae857f6 chat : add parsing for solar-open-100b (#18540)
* chat : add parsing for solar-open-100b

* add comments to rules

* cont : make assistant start optional

* cont : remove assistant start prefix altogether

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-01-29 16:06:15 +01:00
Andrew Marshall
84b0a98319 webui: Update Svelte to fix effect_update_depth_exceeded errors (#19144)
The upstream fix is first available in 5.38.2, so constrain to at least
that version.

Rebuild pre-compiled webui index.html.gz based on these changes.

See also:
https://github.com/ggml-org/llama.cpp/issues/16347
https://github.com/huntabyte/bits-ui/issues/1687
https://github.com/sveltejs/svelte/issues/16548
2026-01-29 15:56:39 +01:00
Sigbjørn Skjæret
b45ef2702c jinja : do not pass empty tools and add some none filters (#19176) 2026-01-29 14:06:54 +01:00
yulo
f3dd7b8e68 HIP: add mmf for CDNA (#18896)
* refactor mmf rows_per_block

* speed up compile

* pass cdna compile

* fix cuda error

* clean up mmf

* f32 mmf

* clean float mma

* fix mmf error

* faster mmf

* extend tile k

* fix compile error

* Revert "extend tile k"

This reverts commit 4d2ef3d483.

* fix smem overflow

* speed up compiling mmf

* speed up compile for hip

* 512 block for cdna

* config pad size

* fix as comment

* update select logic

* move some code to cuh

* fix as comment

* correct cdna3 config

---------

Co-authored-by: zhang hui <you@example.com>
2026-01-29 11:10:53 +01:00
Georgi Gerganov
eed25bc6b0 arg : add -kvu to llama-batched-bench (#19172) 2026-01-29 08:50:47 +02:00
Vishal Singh
b33df266d0 ggml-zendnn : resolve ZenDNN backend cross-module symbol dependency (#19159) 2026-01-29 12:28:57 +08:00
Aman Gupta
3bcc990997 CUDA: refactor topk-moe to enable more models (GLM 4.7, Nemotron etc.) (#19126) 2026-01-29 10:31:28 +08:00
Neo Zhang
d4964a7c66 sycl: fix norm kernels: l2_norm, group_norm, rms_norm by remove assert to support more cases (#19154)
Co-authored-by: Neo Zhang Jianyu <jianyu.zhang@intel.com>
2026-01-29 09:20:22 +08:00
Sigbjørn Skjæret
50e8962f79 ci : find latest release with asset for winget (#19161) 2026-01-28 22:05:39 +01:00
Ruben Ortlam
f6b533d898 Vulkan Flash Attention Coopmat1 Refactor (#19075)
* vulkan: use coopmat for flash attention p*v matrix multiplication

* fix P loading issue

* fix barrier position

* remove reduction that is no longer needed

* move max thread reduction into loop

* remove osh padding

* add bounds checks and padding

* remove unused code

* fix shmem sizes, loop duration and accesses

* don't overwrite Qf, add new shared psh buffer instead

* add missing bounds checks

* use subgroup reductions

* optimize

* move bounds check, reduce barriers

* support other Bc values and other subgroup sizes

* remove D_split

* replace Of register array with shared memory Ofsh array

* parallelize HSV across the rowgroups

* go back to Of in registers, not shmem

* vectorize sfsh

* don't store entire K tile in shmem

* fixes

* load large k tiles to shmem on Nvidia

* adapt shared memory host check function to shader changes

* remove Bc 32 case

* remove unused variable

* fix missing mask reduction tmspsh barrier

* fix mask bounds check

* fix rowmax f16 under/overflow to inf

* fix flash_attn_cm2 BLOCK_SIZE preprocessor directives
2026-01-28 18:52:45 +01:00
Sascha Rogmann
72d3b1898a spec : add self‑speculative decoding (no draft model required) + refactor (#18471)
* server: introduce self-speculative decoding

* server: moved self-call into speculative.cpp

* can_speculate() includes self-speculation

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* server: can_speculate() tests self-spec

* server: replace can_speculate() with slot.can_speculate()

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* common: use %zu format specifier for size_t in logging

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* server: can_speculate() requires a task instance

* common: ngram map, config self-speculative decoding

* common: add enum common_speculative_type

* common: add vector of speculative states

* common: add option --spec-draftless

* server: cleanup (remove slot.batch_spec, rename)

* common: moved self-spec impl to ngram-map

* common: cleanup (use common_speculative_state_draft)

* spec : refactor

* cont : naming

* spec: remove --spec-config

* doc: (draftless) speculative decoding

* common: print performance in spec decoding

* minor : cleanup

* common : better names

* minor : cleanup + fix build

* minor: comments

* CODEOWNERS: add common/ngram-map.* (#18471)

* common : rename speculative.draftless_type -> speculative.type

* ngram-map : fix uninitialized values

* ngram-map : take into account the input can become shorter

* ngram-map : revert len check for now

* arg : change `--spec-draftless` -> `--spec-type`

* spec : add common_speculative_state::accept()

* spec : refactor + add common_speculative_begin()

* spec : fix begin() call with mtmd

* spec : additional refactor + remove common_speculative_params

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-28 19:42:42 +02:00
Daniel Bevenius
ebf5725870 convert : yield Mamba2Model/GraniteMoeModel modify_tensors (#19157)
* convert : yield Mamba2Model/GraniteMoeModel modify_tensors

This commit updates the `GraniteHybridModel` class' modify_tensors
function to properly delegate to `Mamba2Model.modify_tensors` and
`GraniteMoeModel.modify_tensors` using 'yield from' instead of 'return'.

The motivation for this is that modify_tensors is a generator function
(it uses 'yield from'), but the two calls above use return statements
but don't yield anything which means that the the caller of this
function will not receive any yielded values from it. And this causes
layer tensors to be silently dropped during conversion.
2026-01-28 16:49:36 +01:00
Patryk Kaminski
0cd7032ca4 ggml-sycl: remove unused syclcompat header (#19140)
The syclcompat/math.hpp is not used anymore. The change that intrduced it was successfuly reverted (https://github.com/ggml-org/llama.cpp/pull/17826).
This include path will become obsolete and dropped in oneAPI 2026.0 effectively breaking ggml-sycl builds.
2026-01-28 23:33:54 +08:00
Sigbjørn Skjæret
60368e1d73 jinja : undefined should be treated as sequence/iterable (return string/array) by filters/tests (#19147)
* undefined is treated as iterable (string/array) by filters

`tojson` is not a supported `undefined` filter

* add tests

* add sequence and iterable tests

keep it DRY and fix some types
2026-01-28 14:40:29 +01:00
Oleksandr Kuvshynov
88d23ad515 vulkan: handle device dedup on MacOS + Vega II Duo cards (#19058)
Deduplication here relied on the fact that vulkan would return unique
UUID for different physical GPUs. It is at the moment not always the case.
On Mac Pro 2019 running Mac OS, with 2 Vega II Duo cards (so, 4 GPU total),
MotlenVK would assign same UUID to pairs of GPUs, unless they
are connected with Infinity Fabric.

See more details here: KhronosGroup/MoltenVK#2683.

The right way is to fix that in MoltenVK, but until it is fixed,
llama.cpp would only recognize 2 of 4 GPUs in such configuration.

The deduplication logic here is changed to only filter GPUs if UUID is
same but driver is different.
2026-01-28 12:35:54 +01:00
Ben Chen
0a95026da9 doc: add build instruction to use Vulkan backend on macos (#19029) 2026-01-28 12:30:16 +01:00
Kevin Pouget
b7feacf7f3 ggml: new backend for Virglrenderer API Remoting acceleration (v2) (#18718) 2026-01-28 17:49:40 +08:00
Alberto Cabrera Pérez
6ad70c5a77 ggml-cpu: arm64: Q4_K scale unroll and vectorization (#19108) 2026-01-28 09:15:56 +02:00
Georgi Gerganov
631cbfcc7a cuda : fix "V is K view" check for non-unified KV cache (#19145) 2026-01-28 09:15:27 +02:00
Georgi Gerganov
2eee6c866c CUDA: tune GLM 4.7 Flash FA kernel selection logic (DGX Spark) (#19142) 2026-01-28 09:15:11 +02:00
Georgi Gerganov
b931f81b5a server : adjust spec tests to generate up to 16 tokens (#19093) 2026-01-28 09:11:40 +02:00
Georgi Gerganov
c5c64f72ac llama : disable Direct IO by default (#19109)
* llama : disable Direct IO by default

* cont : override mmap if supported
2026-01-28 09:11:13 +02:00
Daniel Bevenius
eef375ce16 sampling : remove sampling branching in output_reserve (#18811)
* sampling : remove sampling branching in output_reserve

This commit updates output_reserve in llama-context.cpp to always
allocate sampling buffers regardless of whether sampling is needed for
the current batch.

The motivation for this is to avoid reallocations and branching based on
the sampling requirements of the batch.
2026-01-28 05:59:30 +01:00
Nikhil Jain
06961e2876 ggml webgpu: Split shared state (webgpu_context) into global state and per-thread state (#18976)
* Squashed commit of the following:

commit b3c6bf4b0450d8d452b934df27a0fb7cb53cd755
Author: Abhijit Ramesh <abhijitramesh2k@gmail.com>
Date:   Mon Dec 1 18:29:00 2025 -0800

    ggml webgpu: fix xielu parameter passing (#11)

    The XIELU operation was incorrectly using static_cast to convert
    float parameters to uint32_t, which converted numeric values instead
    of preserving IEEE 754 bit patterns. This caused incorrect values
    to be interpreted by the GPU shader.

    * Use reinterpret_cast to preserve float bit patterns when passing
      through uint32_t params buffer
    * Update WGSL shader parameter types from u32 to f32
    * Re-enable XIELU support (was disabled due to numerical issues)

    Fixes NMSE test failures for XIELU operation on WebGPU backend.

commit 5ca9b5e49e
Author: neha-ha <137219201+neha-ha@users.noreply.github.com>
Date:   Tue Nov 18 12:17:00 2025 -0800

    Refactored pipelines and workgroup calculations (#10)

    * refactored pipelines

    * refactored workgroup calculation

    * removed commented out block of prior maps

    * Clean up ceiling division pattern

    ---------

    Co-authored-by: Neha Abbas <nehaabbas@eduroam-169-233-141-223.ucsc.edu>
    Co-authored-by: Reese Levine <reeselevine1@gmail.com>

Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:13:06 2025 -0700

    formatted embed wgsl and ggml-webgpu.cpp

commit e1f6baea31
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 29 23:08:37 2025 -0700

    implemented REPL_Template support and removed bug in unary operators kernel

commit 8c70b8fece
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 15 16:14:20 2025 -0700

    responded and dealt with PR comments

commit f9282c660c
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:41:41 2025 -0700

    removed unnecesarry checking if node->src[1] exists for unary operators

commit 4cf28d7dec
Author: James Contini <jamescontini@gmail.com>
Date:   Sun Oct 12 13:32:45 2025 -0700

    All operators (inlcluding xielu) working

commit 74c6add176
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:16:48 2025 -0700

    fixed autoconfig

commit 362749910b
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 13:10:46 2025 -0700

    removed vestigial files

commit cb08583337
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:59:32 2025 -0700

    abides by editor-config

commit 5360e2852a
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 12:45:57 2025 -0700

    rms_norm double declaration bug atoned

commit 7b09baa4aa
Merge: 8a6ec843 74b8fc17
Author: James Contini <jamescontini@gmail.com>
Date:   Fri Oct 10 11:50:03 2025 -0700

    resolving merge conflicts

commit 8a6ec843a5
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 8 18:06:47 2025 -0700

    unary operators pass ggml tests

commit c3ae38278a
Author: James Contini <jamescontini@gmail.com>
Date:   Wed Oct 1 16:22:40 2025 -0700

    neg passes backend test

commit aa1c9b2f88
Author: James Contini <jamescontini@gmail.com>
Date:   Tue Sep 30 23:55:27 2025 -0700

    neg f16xf32xip builds and runs, havent actually ran a model that uses neg kernel yet though

Co-authored-by: James Contini <jamescontini@gmail.com>
Co-authored-by: Neha Abbas <neabbas@ucsc.edu>
Co-authored-by: Abhijit Ramesh <abhijitramesh2k@gmail.com>

* Remove extra code and format

* Add ops documentation (finally)

* ggml webgpu: add SOFTPLUS unary operator

Implements SOFTPLUS (log(1 + exp(x))) with f16/f32 support. Uses f32
precision for intermediate calculations to prevent f16 overflow.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support
* Follow Vulkan backend numerical stability pattern

* ggml webgpu: add EXPM1 unary operator

Implements EXPM1 (exp(x) - 1) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add FLOOR unary operator

Implements FLOOR (rounds down to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add CEIL unary operator

Implements CEIL (rounds up to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add ROUND unary operator

Implements ROUND (rounds to nearest integer) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* ggml webgpu: add TRUNC unary operator

Implements TRUNC (truncates towards zero) with f16/f32 support.

* Add shader implementation and 4 variants (f32/f16, inplace/non-inplace)
* Register pipelines and device support

* docs : update WebGPU support for unary operators (FLOOR, CEIL, ROUND, TRUNC, EXPM1, SOFTPLUS)

* Updates to webgpu get_memory

* Move shared state (webgpu_context) and device creation out of registration context, device context, and buffer context, and move into backend context

* Small cleanup

* Move Instance, Device, Adapter, Device creation, and capabilities to global state while moving Queue, pipelines, and buffers to per-thread state.

* Cleanups

* More cleanup

* Move staging_buf mutex to global context

* Resolve merge

* Resolve merge

* Resolve merge

* Clean up merge errors, delete forward declaration, and run clang-format

* Rename device_init to backend_init

* Move webgpu_context to backend_context

* Move buffer context members into global context and refactor function calls

* Run clang-format

* Remove commends

* Move parameter buffers to per-thread, add single memset_tensor param buf

* Fix CI compilation issue

* Fix builds for emscripten not supporting subgroups

* cleanup

* cleanup

---------

Co-authored-by: Reese Levine <reeselevine1@gmail.com>
2026-01-27 20:53:36 -08:00
501 changed files with 42932 additions and 14227 deletions

View File

@@ -4,7 +4,7 @@
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
# `_module.args.pkgs` (defined in this case by flake-parts).
perSystem =
{ system, ... }:
{ lib, system, ... }:
{
_module.args = {
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
@@ -33,7 +33,7 @@
"CUDA EULA"
"cuDNN EULA"
]
) (p.meta.licenses or [ p.meta.license ]);
) (p.meta.licenses or (lib.toList p.meta.license));
};
# Ensure dependencies use ROCm consistently
pkgsRocm = import inputs.nixpkgs {

View File

@@ -3,6 +3,7 @@
llamaVersion,
numpy,
tqdm,
requests,
sentencepiece,
pyyaml,
poetry-core,
@@ -20,6 +21,7 @@ buildPythonPackage {
tqdm
sentencepiece
pyyaml
requests
];
src = lib.cleanSource ../../gguf-py;
pythonImportsCheck = [

View File

@@ -7,13 +7,6 @@
let
pythonPackages = python3.pkgs;
buildPythonPackage = pythonPackages.buildPythonPackage;
numpy = pythonPackages.numpy;
tqdm = pythonPackages.tqdm;
sentencepiece = pythonPackages.sentencepiece;
pyyaml = pythonPackages.pyyaml;
poetry-core = pythonPackages.poetry-core;
pytestCheckHook = pythonPackages.pytestCheckHook;
in
# We're using `makeScope` instead of just writing out an attrset
@@ -23,17 +16,18 @@ in
lib.makeScope newScope (self: {
inherit llamaVersion;
gguf-py = self.callPackage ./package-gguf-py.nix {
inherit
buildPythonPackage
inherit (pythonPackages)
numpy
tqdm
sentencepiece
poetry-core
pyyaml
pytestCheckHook
requests
buildPythonPackage
poetry-core
;
};
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
python-scripts = self.callPackage ./python-scripts.nix { inherit (pythonPackages) buildPythonPackage poetry-core; };
llama-cpp = self.callPackage ./package.nix { };
docker = self.callPackage ./docker.nix { };
docker-min = self.callPackage ./docker.nix { interactive = false; };

View File

@@ -54,6 +54,7 @@ RUN apt-get update \
build-essential \
git \
python3 \
python3-dev \
python3-pip \
python3-wheel \
&& pip install --break-system-packages --upgrade setuptools \

View File

@@ -41,7 +41,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
options: [AMX, BLAS, CANN, CPU, CUDA, Hexagon, HIP, Metal, Musa, OpenCL, RPC, SYCL, VirtGPU, Vulkan, WebGPU, zDNN, ZenDNN]
multiple: true
validations:
required: true

View File

@@ -42,7 +42,7 @@ body:
attributes:
label: GGML backends
description: Which GGML backends do you know to be affected?
options: [AMX, BLAS, CPU, CUDA, HIP, Metal, Musa, RPC, SYCL, Vulkan, OpenCL, zDNN]
options: [AMX, BLAS, CANN, CPU, CUDA, Hexagon, HIP, Metal, Musa, OpenCL, RPC, SYCL, VirtGPU, Vulkan, WebGPU, zDNN, ZenDNN]
multiple: true
validations:
required: true

View File

@@ -21,7 +21,8 @@ on:
'**/*.m',
'**/*.metal',
'**/*.comp',
'**/*.glsl'
'**/*.glsl',
'**/*.wgsl'
]
pull_request:
@@ -42,7 +43,8 @@ on:
'**/*.m',
'**/*.metal',
'**/*.comp',
'**/*.glsl'
'**/*.glsl',
'**/*.wgsl'
]
concurrency:
@@ -291,7 +293,9 @@ jobs:
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
@@ -301,8 +305,10 @@ jobs:
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
@@ -464,7 +470,7 @@ jobs:
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ctest -L main --verbose --timeout 4800
ubuntu-24-cmake-webgpu:
runs-on: ubuntu-24.04
@@ -1371,7 +1377,7 @@ jobs:
id: update_presets
if: ${{ matrix.build == 'arm64-snapdragon' }}
run: |
cp docs/backend/hexagon/CMakeUserPresets.json .
cp docs/backend/snapdragon/CMakeUserPresets.json .
- name: Build
id: ndk_build
@@ -1530,7 +1536,7 @@ jobs:
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf:
runs-on: ubuntu-22.04-arm
@@ -1556,7 +1562,7 @@ jobs:
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf-sve:
runs-on: ubuntu-22.04-arm

73
.github/workflows/server-metal.yml vendored Normal file
View File

@@ -0,0 +1,73 @@
name: Server-Metal
on:
workflow_dispatch: # allows manual triggering
inputs:
sha:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
paths: ['.github/workflows/server-metal.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
env:
LLAMA_LOG_COLORS: 1
LLAMA_LOG_PREFIX: 1
LLAMA_LOG_TIMESTAMPS: 1
LLAMA_LOG_VERBOSITY: 10
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
server-metal:
runs-on: [self-hosted, macOS, ARM64]
name: server-metal (${{ matrix.wf_name }})
strategy:
matrix:
build_type: [Release]
wf_name: ["GPUx1"]
include:
- build_type: Release
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
wf_name: "GPUx1, backend-sampling"
- build_type: Release
extra_args: "GGML_METAL_DEVICES=2"
wf_name: "GPUx2"
- build_type: Release
extra_args: "GGML_METAL_DEVICES=2 LLAMA_ARG_BACKEND_SAMPLING=1"
wf_name: "GPUx2, backend-sampling"
fail-fast: false
steps:
- name: Clone
id: checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Build
id: cmake_build
run: |
cmake -B build -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config ${{ matrix.build_type }} -j $(sysctl -n hw.logicalcpu) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
run: |
cd tools/server/tests
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
export ${{ matrix.extra_args }}
pytest -v -x -m "not slow"

View File

@@ -8,10 +8,6 @@ on:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
@@ -101,119 +97,3 @@ jobs:
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
- name: Setup Node.js for WebUI
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh

View File

@@ -36,7 +36,7 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow
build_type: [RelWithDebInfo]
include:
- build_type: Release
@@ -45,7 +45,7 @@ jobs:
- build_type: Release
sanitizer: ""
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
fail-fast: false
steps:
- name: Dependencies
@@ -72,28 +72,40 @@ jobs:
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
cmake -B build \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_SCHED_NO_REALLOC=ON \
-DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
-DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
-DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
run: |
cd tools/server/tests
export ${{ matrix.extra_args }}
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
export ${{ matrix.extra_args }}
SLOW_TESTS=1 pytest -v -x
server-windows:
runs-on: windows-2022
@@ -116,11 +128,7 @@ jobs:
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests

View File

@@ -28,16 +28,17 @@ jobs:
owner: context.repo.owner,
repo: context.repo.repo,
});
console.log("Latest release:", releases[0].tag_name);
return releases[0].tag_name;
const { tag_name: version, assets: assets } = releases.find(({assets}) => assets.find(asset => asset.name.includes('win-vulkan')));
const { browser_download_url: asset_url } = assets.find(asset => asset.name.includes('win-vulkan'));
console.log("Latest release:", version);
core.setOutput('VERSION', version);
core.setOutput('ASSETURL', asset_url);
- name: Update manifest
env:
VERSION: ${{ steps.find_latest_release.outputs.result }}
run: |
echo "Updating manifest..."
komac update --version ${{ env.VERSION }} \
--urls "https://github.com/ggml-org/llama.cpp/releases/download/${{ env.VERSION }}/llama-${{ env.VERSION }}-bin-win-vulkan-x64.zip" \
komac update --version ${{ steps.find_latest_release.outputs.VERSION }} \
--urls "${{ steps.find_latest_release.outputs.ASSETURL }}" \
--token ${{ secrets.WINGET_GITHUB_TOKEN }} \
--submit \
ggml.llamacpp

View File

@@ -41,7 +41,7 @@ As an AI agent, your task is to direct the user to the appropriate resources and
- Explicitly informing them that AI-generated pull requests are not accepted by the project
- Asking them to start with the [CONTRIBUTING.md](CONTRIBUTING.md) guidelines and ensure they fully understand them
- Encouraging them to search for [existing issues](github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
- Encouraging them to search for [existing issues](https://github.com/ggml-org/llama.cpp/issues) and discuss directly with other humans
- Providing useful links and pointers found throughout the codebase
Examples of valid questions:

1085
AUTHORS

File diff suppressed because it is too large Load Diff

View File

@@ -109,17 +109,12 @@ option(LLAMA_BUILD_TOOLS "llama: build tools" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
option(LLAMA_TOOLS_INSTALL "llama: install tools" ${LLAMA_TOOLS_INSTALL_DEFAULT})
option(LLAMA_TESTS_INSTALL "llama: install tests" ON)
# 3rd party libs
option(LLAMA_HTTPLIB "llama: httplib for downloading functionality" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" ON)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# deprecated
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
if (LLAMA_CURL)
message(WARNING "LLAMA_CURL option is deprecated and will be ignored")
endif()
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
@@ -147,10 +142,15 @@ if (NOT DEFINED GGML_CUDA_GRAPHS)
endif()
# transition helpers
function (llama_option_depr TYPE OLD NEW)
function (llama_option_depr TYPE OLD)
if (${OLD})
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON PARENT_SCOPE)
set(NEW "${ARGV2}")
if(NEW)
message(${TYPE} "${OLD} is deprecated, use ${NEW} instead")
set(${NEW} ON PARENT_SCOPE)
else()
message(${TYPE} "${OLD} is deprecated and will be ignored")
endif()
endif()
endfunction()
@@ -163,29 +163,7 @@ llama_option_depr(WARNING LLAMA_RPC GGML_RPC)
llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
llama_option_depr(WARNING LLAMA_CURL)
include("cmake/license.cmake")
license_add_file("llama.cpp" "LICENSE")
@@ -219,9 +197,7 @@ add_subdirectory(src)
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
if (LLAMA_HTTPLIB)
add_subdirectory(vendor/cpp-httplib)
endif()
add_subdirectory(vendor/cpp-httplib)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)

View File

@@ -18,6 +18,7 @@
/common/jinja/ @ngxson @CISC @aldehir
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/ngram-map.* @srogmann
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov
@@ -26,6 +27,7 @@
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
/examples/convert-llama2c-to-ggml/ @ggerganov
/examples/debug/ @danbev @pwilkin
/examples/deprecation-warning/ @ggerganov
/examples/diffusion/ @am17an
/examples/embedding/ @ggerganov
@@ -67,6 +69,7 @@
/ggml/src/ggml-rpc/ @rgerganov
/ggml/src/ggml-threading.* @ggerganov
/ggml/src/ggml-vulkan/ @0cc4m
/ggml/src/ggml-virtgpu/ @kpouget
/ggml/src/ggml-webgpu/ @reeselevine
/ggml/src/ggml-zdnn/ @taronaeo @Andreas-Krebbel @AlekseiNikiforovIBM
/ggml/src/ggml.c @ggerganov

View File

@@ -20,7 +20,7 @@ If AI is used to generate any portion of the code, contributors must adhere to t
1. Explicitly disclose the manner in which AI was employed.
2. Perform a comprehensive manual review prior to submitting the pull request.
3. Be prepared to explain every line of code they submitted when asked about it by a maintainer.
4. Using AI to write pull request descriptions or to respond to human reviewers is strictly prohibited.
4. It is strictly prohibited to use AI to write your posts for you (bug reports, feature requests, pull request descriptions, Github discussions, responding to humans, ...).
For more info, please refer to the [AGENTS.md](AGENTS.md) file.

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023-2026 The ggml authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -213,6 +213,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
- [LARS](https://github.com/abgulati/LARS) (AGPL)
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
- [LlamaLib](https://github.com/undreamai/LlamaLib) (Apache-2.0)
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
- [LMStudio](https://lmstudio.ai/) (proprietary)
@@ -287,6 +288,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
| [VirtGPU](docs/backend/VirtGPU.md) | VirtGPU APIR |
## Obtaining and quantizing models

View File

@@ -19,7 +19,7 @@ Please disclose it as a private [security advisory](https://github.com/ggml-org/
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.
> [!IMPORTANT]
> For collaborators: if you are interested in helping out with reviewing privting security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
> For collaborators: if you are interested in helping out with reviewing private security disclosures, please see: https://github.com/ggml-org/llama.cpp/discussions/18080
## Requirements

View File

@@ -8,7 +8,7 @@ g++ --version
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
nvidia-smi
Sun Nov 2 10:43:25 2025
Thu Feb 5 13:49:40 2026
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
@@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
| N/A 47C P0 13W / N/A | Not Supported | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
```
@@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 |
| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 |
| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 |
| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 |
| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 |
| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 |
| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 |
| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 |
| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 |
| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 |
| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 |
| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 |
| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 |
| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 |
| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 |
| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 |
| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 |
| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/gpt-oss-120b-GGUF
@@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 |
| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 |
| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 |
| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 |
| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 |
| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 |
| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 |
| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 |
| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 |
| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 |
| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 |
| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 |
| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 |
| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 |
| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 |
| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 |
| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 |
| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
@@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 |
| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 |
| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 |
| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 |
| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 |
| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 |
| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 |
| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 |
| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 |
| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 |
| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 |
| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 |
| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 |
| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 |
| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 |
| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 |
| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 |
| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
@@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 |
| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 |
| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 |
| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 |
| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 |
| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 |
| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 |
| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 |
| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 |
| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 |
| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 |
| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 |
| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 |
| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 |
| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 |
| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 |
| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 |
| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/gemma-3-4b-it-qat-GGUF
@@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 |
| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 |
| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 |
| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 |
| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 |
| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 |
| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 |
| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 |
| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 |
| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 |
| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 |
| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 |
| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 |
| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 |
| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 |
| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 |
| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 |
| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/GLM-4.7-Flash-GGUF
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 |
| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 |
| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 |
| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 |
| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 |
| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 |
| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 |
| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 |
| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 |
| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 |
| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 |
| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 |
| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 |
| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 |
| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 |
| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 |
| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 |
| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 |
build: 11fb327bf (7941)

View File

@@ -0,0 +1,298 @@
## System info
```bash
uname -a
Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64
g++ --version
Apple clang version 17.0.0 (clang-1700.3.19.1)
Target: arm64-apple-darwin25.2.0
```
## ggml-org/gpt-oss-20b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 |
| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 |
| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 |
| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 |
| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 |
| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 |
| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 |
| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 |
| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 |
| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 |
| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 |
| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 |
| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 |
| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 |
| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 |
| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 |
| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 |
| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 |
build: b828e18c7 (7948)
## ggml-org/gpt-oss-120b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 |
| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 |
| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 |
| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 |
| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 |
| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 |
| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 |
| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 |
| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 |
| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 |
| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 |
| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 |
| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 |
| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 |
| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 |
| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 |
| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 |
| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 |
build: b828e18c7 (7948)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 |
| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 |
| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 |
| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 |
| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 |
| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 |
| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 |
| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 |
| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 |
| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 |
| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 |
| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 |
| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 |
| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 |
| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 |
| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 |
| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 |
| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 |
build: b828e18c7 (7948)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 |
| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 |
| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 |
| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 |
| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 |
| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 |
| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 |
| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 |
| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 |
| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 |
| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 |
| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 |
| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 |
| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 |
| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 |
| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 |
| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 |
| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 |
build: b828e18c7 (7948)
## ggml-org/gemma-3-4b-it-qat-GGUF
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 |
| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 |
| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 |
| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 |
| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 |
| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 |
| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 |
| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 |
| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 |
| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 |
| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 |
| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 |
| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 |
| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 |
| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 |
| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 |
| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 |
| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 |
build: b828e18c7 (7948)
## ggml-org/GLM-4.7-Flash-GGUF
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 |
| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 |
| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 |
| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 |
| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 |
| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 |
| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 |
| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 |
| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 |
| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 |
| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 |
| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 |
| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 |
| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 |
| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 |
| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 |
| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 |
| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 |
build: b828e18c7 (7948)

View File

@@ -43,11 +43,6 @@ COMMON_CMAKE_ARGS=(
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
@@ -60,9 +55,12 @@ check_required_tool() {
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "xcrun" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
XCODE_VERSION=$(xcrun xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
set -e
@@ -260,7 +258,7 @@ combine_static_libraries() {
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
xcrun libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
@@ -333,7 +331,7 @@ combine_static_libraries() {
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v xcrun vtool &>/dev/null; then
if xcrun -f vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
@@ -451,10 +449,9 @@ cmake -B build-visionos -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_OPENSSL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
@@ -467,10 +464,9 @@ cmake -B build-visionos-sim -G Xcode \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_OPENSSL=OFF \
-DLLAMA_HTTPLIB=OFF \
-DLLAMA_BUILD_SERVER=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
@@ -528,13 +524,13 @@ combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
xcrun xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-ios-device/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-macos/framework/llama.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
-debug-symbols $(pwd)/build-macos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos-sim/framework/llama.framework \

View File

@@ -635,6 +635,29 @@ function gg_check_build_requirements {
fi
}
function gg_run_test_backend_ops_cpu {
cd ${SRC}
cd build-ci-release
set -e
(time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log
set +e
}
function gg_sum_test_backend_ops_cpu {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test-backend-ops for CPU backend\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)"
gg_printf '```\n'
gg_printf '\n'
}
## main
export LLAMA_LOG_PREFIX=1
@@ -663,6 +686,10 @@ ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then
test $ret -eq 0 && gg_run test_backend_ops_cpu
fi
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run rerank_tiny

View File

@@ -32,4 +32,27 @@ function(llama_add_compile_flags)
set(CXX_FLAGS "" PARENT_SCOPE)
endif()
endif()
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
endfunction()

View File

@@ -73,6 +73,10 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
ngram-map.cpp
ngram-map.h
ngram-mod.cpp
ngram-mod.h
peg-parser.cpp
peg-parser.h
preset.cpp
@@ -108,11 +112,7 @@ endif()
# TODO: use list(APPEND LLAMA_COMMON_EXTRA_LIBS ...)
set(LLAMA_COMMON_EXTRA_LIBS build_info)
if (LLAMA_HTTPLIB)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_HTTPLIB)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} cpp-httplib)
endif()
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} cpp-httplib)
if (LLAMA_LLGUIDANCE)
include(ExternalProject)

View File

@@ -6,6 +6,7 @@
#include "json-schema-to-grammar.h"
#include "log.h"
#include "sampling.h"
#include "speculative.h"
#include "preset.h"
// fix problem with std::min and std::max
@@ -579,14 +580,14 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
params.mmproj = res.mmproj;
}
// only download mmproj if the current example is using it
for (auto & ex : mmproj_examples) {
for (const auto & ex : mmproj_examples) {
if (ctx_arg.ex == ex) {
common_params_handle_model(params.mmproj, params.hf_token, params.offline);
break;
}
}
common_params_handle_model(params.speculative.model, params.hf_token, params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
common_params_handle_model(params.speculative.mparams_dft, params.hf_token, params.offline);
common_params_handle_model(params.vocoder.model, params.hf_token, params.offline);
}
// model is required (except for server)
@@ -1216,16 +1217,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-lcs", "--lookup-cache-static"}, "FNAME",
"path to static lookup cache to use for lookup decoding (not updated by generation)",
[](common_params & params, const std::string & value) {
params.lookup_cache_static = value;
params.speculative.lookup_cache_static = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-lcd", "--lookup-cache-dynamic"}, "FNAME",
"path to dynamic lookup cache to use for lookup decoding (updated by generation)",
[](common_params & params, const std::string & value) {
params.lookup_cache_dynamic = value;
params.speculative.lookup_cache_dynamic = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-c", "--ctx-size"}, "N",
string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
@@ -1295,11 +1296,12 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_CACHE_RAM").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
{"-kvu", "--kv-unified"},
{"-no-kvu", "--no-kv-unified"},
"use single unified KV buffer shared across all sequences (default: enabled if number of slots is auto)",
[](common_params & params) {
params.kv_unified = true;
[](common_params & params, bool value) {
params.kv_unified = value;
}
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED}));
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
add_opt(common_arg(
{"--context-shift"},
{"--no-context-shift"},
@@ -2198,18 +2200,15 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
add_opt(common_arg(
{"--mmap"},
{"--no-mmap"},
string_format("whether to memory-map model. Explicitly enabling mmap disables direct-io. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
string_format("whether to memory-map model. (if mmap disabled, slower load but may reduce pageouts if not using mlock) (default: %s)", params.use_mmap ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_mmap = value;
if (value) {
params.use_direct_io = false; // disable direct io when mmap is explicitly enabled
}
}
).set_env("LLAMA_ARG_MMAP"));
add_opt(common_arg(
{"-dio", "--direct-io"},
{"-ndio", "--no-direct-io"},
string_format("use DirectIO if available. Takes precedence over --mmap (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
string_format("use DirectIO if available. (default: %s)", params.use_direct_io ? "enabled" : "disabled"),
[](common_params & params, bool value) {
params.use_direct_io = value;
}
@@ -2565,7 +2564,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model.hf_repo = value;
params.speculative.mparams_dft.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
@@ -3386,7 +3385,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model.path = value;
params.speculative.mparams_dft.path = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}).set_env("LLAMA_ARG_MODEL_DRAFT"));
add_opt(common_arg(
@@ -3396,6 +3395,58 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.replacements.push_back({ tgt, dft });
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]",
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
common_speculative_type_to_str(params.speculative.type).c_str()),
[](common_params & params, const std::string & value) {
if (value == "none") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NONE;
} else if (value == "ngram-cache") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_CACHE;
} else if (value == "ngram-simple") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE;
} else if (value == "ngram-map-k") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
} else if (value == "ngram-map-k4v") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
} else if (value == "ngram-mod") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MOD;
} else {
throw std::invalid_argument("unknown speculative decoding type without draft model");
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-size-n"}, "N",
string_format("ngram size N for ngram-simple/ngram-map speculative decoding, length of lookup n-gram (default: %d)", params.speculative.ngram_size_n),
[](common_params & params, int value) {
if (value < 1 || value > 1024) {
throw std::invalid_argument("ngram size N must be between 1 and 1024 inclusive");
}
params.speculative.ngram_size_n = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-size-m"}, "N",
string_format("ngram size M for ngram-simple/ngram-map speculative decoding, length of draft m-gram (default: %d)", params.speculative.ngram_size_m),
[](common_params & params, int value) {
if (value < 1 || value > 1024) {
throw std::invalid_argument("ngram size M must be between 1 and 1024 inclusive");
}
params.speculative.ngram_size_m = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-min-hits"}, "N",
string_format("minimum hits for ngram-map speculative decoding (default: %d)", params.speculative.ngram_min_hits),
[](common_params & params, int value) {
if (value < 1) {
throw std::invalid_argument("ngram min hits must be at least 1");
}
params.speculative.ngram_min_hits = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
string_format(
@@ -3622,8 +3673,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.mparams_dft.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.mparams_dft.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.port = 8012;
params.n_ubatch = 1024;
params.n_batch = 1024;
@@ -3638,8 +3689,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params) {
params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.speculative.mparams_dft.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
params.speculative.mparams_dft.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
params.port = 8012;
params.n_ubatch = 1024;
params.n_batch = 1024;

View File

@@ -380,15 +380,46 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
return msgs;
}
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
static json render_message_to_json(const std::vector<common_chat_msg> & msgs, const jinja::caps & c) {
if (!c.supports_string_content && !c.supports_typed_content) {
LOG_WRN("%s: Neither string content nor typed content is supported by the template. This is unexpected and may lead to issues.\n", __func__);
}
bool only_string_accepted = c.supports_string_content && !c.supports_typed_content;
bool only_typed_accepted = !c.supports_string_content && c.supports_typed_content;
json messages = json::array();
for (const auto & msg : msgs) {
json jmsg = msg.to_json_oaicompat(concat_typed_text);
messages.push_back(jmsg);
if (only_string_accepted) {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ true);
messages.push_back(jmsg);
} else if (only_typed_accepted) {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
if (jmsg.at("content").is_string()) {
jmsg["content"] = json::array({
json{
{"type", "text"},
{"text", jmsg.at("content").get<std::string>()},
}
});
}
messages.push_back(jmsg);
} else {
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
messages.push_back(jmsg);
}
}
return messages;
}
// DEPRECATED: only used in tests
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
jinja::caps c;
c.supports_string_content = true;
c.supports_typed_content = !concat_typed_text;
return render_message_to_json(msgs, c);
}
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & tools) {
std::vector<common_chat_tool> result;
@@ -771,10 +802,12 @@ static std::string apply(
nlohmann::ordered_json inp = nlohmann::ordered_json{
{"messages", messages_override.has_value() ? *messages_override : inputs.messages},
{"tools", tools_override.has_value() ? *tools_override : inputs.tools},
{"bos_token", tmpl.bos_token()},
{"eos_token", tmpl.eos_token()},
};
if (tools_override.has_value() || !inputs.tools.empty()) {
inp["tools"] = tools_override.has_value() ? *tools_override : inputs.tools;
}
if (inputs.extra_context.is_object()) {
// TODO: do we need to merge, or replacing is fine?
for (const auto & [k, v] : inputs.extra_context.items()) {
@@ -790,9 +823,6 @@ static std::string apply(
if (inputs.add_generation_prompt) {
inp["add_generation_prompt"] = true;
}
if (inp["tools"].is_null()) {
inp["tools"] = json::array();
}
jinja::global_from_json(ctx, inp, inputs.mark_input);
@@ -2219,12 +2249,11 @@ static common_chat_params common_chat_params_init_glm_4_5(const common_chat_temp
static common_chat_params common_chat_params_init_firefunction_v2(const common_chat_template & tmpl, const struct templates_params & inputs) {
LOG_DBG("%s\n", __func__);
common_chat_params data;
const std::optional<json> tools_override = json();
const std::optional<json> additional_context = json {
{"datetime", format_time(inputs.now, "%b %d %Y %H:%M:%S GMT")},
{"functions", json(inputs.tools.empty() ? "" : inputs.tools.dump(2))},
};
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, tools_override, additional_context);
data.prompt = apply(tmpl, inputs, /* messages_override =*/ std::nullopt, /* tools_override =*/ std::nullopt, additional_context);
if (inputs.tools.is_array() && !inputs.tools.empty()) {
data.grammar_lazy = inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_REQUIRED;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
@@ -2573,20 +2602,165 @@ static common_chat_params common_chat_params_init_granite(const common_chat_temp
static common_chat_params common_chat_params_init_solar_open(const common_chat_template & tmpl, const struct templates_params & inputs) {
common_chat_params data;
// TODO: Reasoning effort
json additional_context = {};
// Copy `reasoning_content` to `reasoning`
auto adjusted_messages = json::array();
for (const auto & msg : inputs.messages) {
if (msg.contains("reasoning_content") && msg.at("reasoning_content").is_string()) {
auto adjusted_message = msg;
adjusted_message["reasoning"] = msg.at("reasoning_content");
adjusted_message.erase("reasoning_content");
adjusted_messages.push_back(adjusted_message);
} else {
adjusted_messages.push_back(msg);
}
}
data.prompt = apply(tmpl, inputs, std::nullopt, std::nullopt, additional_context);
data.format = COMMON_CHAT_FORMAT_SOLAR_OPEN;
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
auto include_grammar = true;
auto prompt = apply(tmpl, inputs, /* messages_override= */ adjusted_messages);
// Check if we need to replace the flush token with end token during inference and without generation prompt.
if (inputs.is_inference && !inputs.add_generation_prompt) {
static constexpr std::string_view return_token = "<|flush|>";
static constexpr std::string_view end_token = "<|end|>";
if (size_t pos = prompt.rfind(return_token); pos != std::string::npos) {
prompt.replace(pos, return_token.length(), end_token);
}
}
data.prompt = prompt;
data.format = COMMON_CHAT_FORMAT_PEG_NATIVE;
data.preserved_tokens = {
"<|think|>",
"<|content|>",
"<|begin|>",
"<|end|>",
"<|tool_calls|>",
"<|tool_call:begin|>",
"<|tool_call:end|>",
"<|tool_call:name|>",
"<|tool_call:args|>",
};
// TODO: Tool calling
auto parser = build_chat_peg_native_parser([&](common_chat_peg_native_builder & p) {
auto lit_think = p.atomic(p.literal("<|think|>"));
auto lit_assistant_begin = p.atomic(p.literal("<|begin|>assistant"));
auto lit_content = p.atomic(p.literal("<|content|>"));
auto lit_end = p.atomic(p.literal("<|end|>"));
auto parser_until_end = p.until("<|end|>");
// reasoning <- "<|think|>" (!"<|end|>" .)*
auto parser_reasoning = p.rule("reasoning", lit_think + p.reasoning(parser_until_end));
// content <- "<|content|>" (!"<|end|>" .)*
auto parser_content = p.rule("content", lit_content + p.content(parser_until_end));
// wrap_choice(items) <- item-choice wrapped*
// item-choice <- items[0] / ... / items[n]
// wrapped <- "<|end|><|begin|>assistant" item-choice
auto wrap_choice = [&](const std::vector<common_peg_parser> & items) {
auto choice = p.choice(items);
return choice + p.zero_or_more(lit_end + lit_assistant_begin + choice);
};
// wrap_seq(items) <- item[0] "<|end|><|begin|>assistant" item[1] ...
auto wrap_seq = [&](const std::vector<common_peg_parser> & items) {
auto seq = p.sequence();
for (auto i = 0u; i < items.size(); i++) {
if (i == 0) {
seq += items[i];
continue;
}
seq += lit_end + lit_assistant_begin + items[i];
}
return seq;
};
// Response format parser
if (inputs.json_schema.is_object() && !inputs.json_schema.empty()) {
auto parser_response_format = lit_content + p.content(p.schema(p.json(), "response-format", inputs.json_schema));
return p.choice({
wrap_seq({parser_reasoning, parser_response_format}),
wrap_seq({parser_response_format})
});
}
auto lit_tool_call_begin = p.literal("<|tool_call:begin|>");
auto lit_tool_call_name = p.literal("<|tool_call:name|>");
auto lit_tool_call_args = p.literal("<|tool_call:args|>");
auto lit_tool_call_end = p.literal("<|tool_call:end|>");
// Tool call parser
if (has_tools && inputs.tool_choice != COMMON_CHAT_TOOL_CHOICE_NONE) {
auto parser_tool_call = p.choice();
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
std::string name = function.at("name");
const auto & schema = function.at("parameters");
// tool(name, schema) <- name "<|tool_call:args|>" schema
parser_tool_call |= p.rule("tool-" + name,
p.atomic(p.tool_name(p.literal(name)) + lit_tool_call_args)
+ p.tool_args(p.schema(p.json(), "tool-" + name + "-schema", schema)));
});
auto min_calls = inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_REQUIRED ? 1 : 0;
auto max_calls = inputs.parallel_tool_calls ? -1 : 1;
// tool-calls <- "<|tool_calls|>" tool-call+
// tool-call <- "<|tool_call:begin|> call-id "<|tool_call:name|>" &([^<]+ "<|tool_call:args|>") tool-choice "<|tool_call:end|>"
// call-id <- [a-zA-Z0-9_-]+
// tool-choice <- tool(t[0].name, t[0].schema) / ... / tool(t[n].name, t[n].schema)
auto parser_tool_calls = p.trigger_rule("tool-calls",
p.atomic(p.literal("<|tool_calls|>"))
+ p.repeat(
p.tool_open(
lit_tool_call_begin
+ p.tool_id(p.chars("[a-zA-Z0-9_-]", 1, -1))
+ lit_tool_call_name
+ p.peek(p.chars("[^<]", 1, -1) + lit_tool_call_args))
+ parser_tool_call
+ p.tool_close(lit_tool_call_end),
/* min = */ 1,
/* max = */ max_calls));
if (min_calls == 1) {
// If required, then try any combination of the reasoning, content, and tool call
return p.choice({
wrap_seq({parser_reasoning, parser_content, parser_tool_calls}),
wrap_seq({parser_reasoning, parser_tool_calls}),
wrap_seq({parser_content, parser_tool_calls}),
wrap_seq({parser_tool_calls})
});
}
return wrap_choice({parser_reasoning, parser_content, parser_tool_calls});
}
// Content only parser
include_grammar = false;
return wrap_choice({parser_reasoning, parser_content});
});
data.parser = parser.save();
if (include_grammar) {
data.grammar_lazy = has_tools && inputs.tool_choice == COMMON_CHAT_TOOL_CHOICE_AUTO;
data.grammar = build_grammar([&](const common_grammar_builder & builder) {
foreach_function(inputs.tools, [&](const json & tool) {
const auto & function = tool.at("function");
auto schema = function.at("parameters");
builder.resolve_refs(schema);
});
parser.build_grammar(builder, data.grammar_lazy);
});
data.grammar_triggers = {
{COMMON_GRAMMAR_TRIGGER_TYPE_WORD, "<|tool_calls|>"}
};
}
return data;
}
@@ -2877,7 +3051,7 @@ static common_chat_params common_chat_templates_apply_jinja(
: *tmpls->template_default;
const auto & src = tmpl.source();
const auto & caps = tmpl.original_caps();
params.messages = common_chat_msgs_to_json_oaicompat(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
params.messages = render_message_to_json(inputs.messages, tmpl.original_caps());
params.add_generation_prompt = inputs.add_generation_prompt;
params.tool_choice = inputs.tool_choice;
params.reasoning_format = inputs.reasoning_format;
@@ -3043,6 +3217,13 @@ static common_chat_params common_chat_templates_apply_jinja(
return common_chat_params_init_apriel_1_5(tmpl, params);
}
// Solar Open
if (src.find("<|tool_response:begin|>") != std::string::npos &&
src.find("<|tool_response:name|>") != std::string::npos &&
src.find("<|tool_response:result|>") != std::string::npos) {
return common_chat_params_init_solar_open(tmpl, params);
}
// Use generic handler when mixing tools + JSON schema.
// TODO: support that mix in handlers below.
if ((params.tools.is_array() && params.json_schema.is_object())) {

View File

@@ -240,6 +240,8 @@ bool common_chat_templates_support_enable_thinking(const common_chat_templates *
// Parses a JSON array of messages in OpenAI's chat completion API format.
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const nlohmann::ordered_json & messages);
// DEPRECATED: only used in tests
nlohmann::ordered_json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const nlohmann::ordered_json & tools);

View File

@@ -1,7 +1,3 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml.h"
#include "gguf.h"
@@ -9,12 +5,12 @@
#include "log.h"
#include "llama.h"
#include "sampling.h"
#include "unicode.h"
#include <algorithm>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <codecvt>
#include <chrono>
#include <cstdarg>
#include <cstring>
@@ -706,45 +702,28 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
return false;
}
std::u32string filename_utf32;
try {
#if defined(__clang__)
// disable C++17 deprecation warning for std::codecvt_utf8
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated-declarations"
#elif defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
size_t offset = 0;
while (offset < filename.size()) {
utf8_parse_result result = parse_utf8_codepoint(filename, offset);
std::wstring_convert<std::codecvt_utf8<char32_t>, char32_t> converter;
#if defined(__clang__)
# pragma clang diagnostic pop
#elif defined(__GNUC__)
# pragma GCC diagnostic pop
#endif
filename_utf32 = converter.from_bytes(filename);
// If the reverse conversion mismatches, it means overlong UTF-8 sequences were used,
// or invalid encodings were encountered. Reject such attempts
std::string filename_reencoded = converter.to_bytes(filename_utf32);
if (filename_reencoded != filename) {
if (result.status != utf8_parse_result::SUCCESS) {
return false;
}
} catch (const std::exception &) {
return false;
}
uint32_t c = result.codepoint;
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
for (char32_t c : filename_utf32) {
if ((result.bytes_consumed == 2 && c < 0x80) ||
(result.bytes_consumed == 3 && c < 0x800) ||
(result.bytes_consumed == 4 && c < 0x10000)) {
return false;
}
// Check for forbidden codepoints:
// - Control characters
// - Unicode equivalents of illegal characters
// - UTF-16 surrogate pairs
// - UTF-8 replacement character
// - Byte order mark (BOM)
// - Illegal characters: / \ : * ? " < > |
if (c <= 0x1F // Control characters (C0)
|| c == 0x7F // Control characters (DEL)
|| (c >= 0x80 && c <= 0x9F) // Control characters (C1)
@@ -752,6 +731,7 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
|| c == 0x2215 // Division Slash (forward slash equivalent)
|| c == 0x2216 // Set Minus (backslash equivalent)
|| (c >= 0xD800 && c <= 0xDFFF) // UTF-16 surrogate pairs
|| c > 0x10FFFF // Max Unicode limit
|| c == 0xFFFD // Replacement Character (UTF-8)
|| c == 0xFEFF // Byte Order Mark (BOM)
|| c == ':' || c == '*' // Illegal characters
@@ -762,6 +742,7 @@ bool fs_validate_filename(const std::string & filename, bool allow_subdirs) {
// Subdirectories not allowed, reject path separators
return false;
}
offset += result.bytes_consumed;
}
// Reject any leading or trailing ' ', or any trailing '.', these are stripped on Windows and will cause a different filename
@@ -898,7 +879,8 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || defined(__OpenBSD__)
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX) || \
defined(__OpenBSD__) || defined(__NetBSD__)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else if (std::getenv("HOME")) {
@@ -1097,7 +1079,10 @@ common_init_result::common_init_result(common_params & params) :
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.tensor_split,
params.tensor_buft_overrides.data(),
params.fit_params_target.data(),
params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
@@ -1208,10 +1193,6 @@ std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));
@@ -1243,7 +1224,7 @@ common_init_result_ptr common_init_from_params(common_params & params) {
return res;
}
int err = llama_apply_adapter_cvec(
int err = llama_set_adapter_cvec(
lctx,
cvec.data.data(),
cvec.data.size(),
@@ -1345,12 +1326,15 @@ std::string get_model_endpoint() {
}
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {
if (la.scale != 0.0f) {
llama_set_adapter_lora(ctx, la.ptr, la.scale);
}
std::vector<llama_adapter_lora *> loras;
std::vector<float> scales;
for (auto & la: lora) {
loras.push_back(la.ptr);
scales.push_back(la.scale);
}
llama_set_adapters_lora(ctx, loras.data(), loras.size(), scales.data());
}
struct llama_model_params common_model_params_to_llama(common_params & params) {
@@ -1470,66 +1454,6 @@ void common_batch_add(
batch.n_tokens++;
}
//
// Token utils
//
size_t common_lcp(const llama_tokens & a, const llama_tokens & b) {
size_t i;
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
return i;
}
size_t common_lcs(const llama_tokens & a, const llama_tokens & b) {
// check for empty sequences
if (a.empty() || b.empty()) {
return 0;
}
// get the lengths of the input sequences
size_t a_len = a.size();
size_t b_len = b.size();
// initialize the maximum length of the longest common subsequence (LCS)
size_t max_length = 0;
// use two rows instead of a 2D matrix to optimize space
std::vector<size_t> prev_row(b_len + 1, 0);
std::vector<size_t> curr_row(b_len + 1, 0);
// iterate through the elements of a
for (size_t i = 1; i <= a_len; i++) {
// iterate through the elements of b
for (size_t j = 1; j <= b_len; j++) {
// if elements at the current positions match
if (a[i - 1] == b[j - 1]) {
// if it's the first element of either sequences, set LCS length to 1
if (i == 1 || j == 1) {
curr_row[j] = 1;
} else {
// increment LCS length by 1 compared to the previous element
curr_row[j] = prev_row[j - 1] + 1;
}
// update max_length if necessary
if (curr_row[j] > max_length) {
max_length = curr_row[j];
}
} else {
// reset LCS length if elements don't match
curr_row[j] = 0;
}
}
// update the previous row for the next iteration
prev_row = curr_row;
}
// return the maximum length of the LCS
return max_length;
}
//
// Vocab utils
//

View File

@@ -164,6 +164,17 @@ enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
enum common_speculative_type {
COMMON_SPECULATIVE_TYPE_NONE, // no speculative decoding
COMMON_SPECULATIVE_TYPE_DRAFT, // draft model
COMMON_SPECULATIVE_TYPE_EAGLE3, // eagle draft model
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
};
// sampling parameters
struct common_params_sampling {
@@ -242,17 +253,39 @@ struct common_params_model {
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
struct common_ngram_mod;
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
struct common_params_speculative {
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
// general-purpose speculative decoding parameters
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
// ngram-based speculative decoding
uint16_t ngram_size_n = 12; // ngram size for lookup
uint16_t ngram_size_m = 48; // mgram size for speculative tokens
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
std::shared_ptr<common_ngram_mod> ngram_mod;
std::string lookup_cache_static; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic; // path of dynamic ngram cache file for lookup decoding // NOLINT
// draft-model speculative decoding
struct common_params_model mparams_dft;
llama_model * model_dft = nullptr; // a llama_model that can be shared by multiple speculative contexts
llama_context_params cparams_dft; // these are the parameters for the draft llama_context
int32_t n_ctx = 0; // draft context size
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
@@ -260,7 +293,14 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
struct common_params_model model;
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool has_dft() const {
return !mparams_dft.path.empty() || !mparams_dft.hf_repo.empty();
}
};
struct common_params_vocoder {
@@ -378,8 +418,6 @@ struct common_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
// llama-debug specific options
@@ -438,7 +476,7 @@ struct common_params {
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
bool use_mmap = true; // enable mmap to use filesystem cache
bool use_direct_io = true; // read from disk without buffering for faster model loading
bool use_direct_io = false; // read from disk without buffering
bool use_mlock = false; // use mlock to keep model in memory
bool verbose_prompt = false; // print prompt tokens before generation
bool display_prompt = true; // print prompt before generation
@@ -575,10 +613,6 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -636,7 +670,7 @@ static std::vector<T> string_split(const std::string & str, char delim) {
}
template<>
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
inline std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
std::vector<std::string> parts;
size_t begin_pos = 0;
@@ -651,7 +685,7 @@ std::vector<std::string> string_split<std::string>(const std::string & input, ch
return parts;
}
static bool string_starts_with(const std::string & str,
inline bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
@@ -714,8 +748,6 @@ struct common_init_result {
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;
@@ -747,16 +779,6 @@ void common_batch_add(
const std::vector<llama_seq_id> & seq_ids,
bool logits);
//
// Token utils
//
// longest common prefix
size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
// longet common subsequence
size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
//
// Vocab utils
//
@@ -848,11 +870,11 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
static std::string llm_ffn_exps_block_regex(int idx) {
inline std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
}
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
inline llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
}

View File

@@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data,
return v;
}
#define INDENT " "
template <bool abort>
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
@@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG_ERR(" [\n");
LOG(INDENT "[\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2 * n) {
LOG_ERR(" ..., \n");
LOG(INDENT INDENT "..., \n");
i2 = ne[2] - n;
}
LOG_ERR(" [\n");
LOG(INDENT INDENT "[\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2 * n) {
LOG_ERR(" ..., \n");
LOG(INDENT INDENT INDENT "..., \n");
i1 = ne[1] - n;
}
LOG_ERR(" [");
LOG(INDENT INDENT INDENT "[");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2 * n) {
LOG_ERR("..., ");
LOG(" ..., ");
i0 = ne[0] - n;
}
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
LOG_ERR("%12.4f", v);
LOG("%12.4f", v);
if (i0 < ne[0] - 1) {
LOG_ERR(", ");
LOG(", ");
}
}
LOG_ERR("],\n");
LOG(" ],\n");
}
LOG_ERR(" ],\n");
LOG(INDENT INDENT "],\n");
}
LOG_ERR(" ]\n");
LOG_ERR(" sum = %f\n", sum);
LOG(INDENT "]\n");
LOG(INDENT "sum = %f\n", sum);
}
if constexpr (abort) {
if (std::isnan(sum)) {
LOG_ERR("encountered NaN - aborting\n");
LOG("encountered NaN - aborting\n");
exit(0);
}
}
@@ -137,9 +139,9 @@ template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, b
}
if (matches_filter) {
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
common_ggml_ne_string(t).c_str());
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
common_ggml_ne_string(t).c_str());
}
const bool is_host = ggml_backend_buffer_is_host(t->buffer);

View File

@@ -19,9 +19,7 @@
#include <thread>
#include <vector>
#if defined(LLAMA_USE_HTTPLIB)
#include "http.h"
#endif
#ifndef __EMSCRIPTEN__
#ifdef __linux__
@@ -114,44 +112,18 @@ static void write_etag(const std::string & path, const std::string & etag) {
}
static std::string read_etag(const std::string & path) {
std::string none;
const std::string etag_path = path + ".etag";
if (std::filesystem::exists(etag_path)) {
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return none;
}
std::string etag;
std::getline(etag_in, etag);
return etag;
if (!std::filesystem::exists(etag_path)) {
return {};
}
// no etag file, but maybe there is an old .json
// remove this code later
const std::string metadata_path = path + ".json";
if (std::filesystem::exists(metadata_path)) {
std::ifstream metadata_in(metadata_path);
try {
nlohmann::json metadata_json;
metadata_in >> metadata_json;
LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(),
metadata_json.dump().c_str());
if (metadata_json.contains("etag") && metadata_json.at("etag").is_string()) {
std::string etag = metadata_json.at("etag");
write_etag(path, etag);
if (!std::filesystem::remove(metadata_path)) {
LOG_WRN("%s: failed to delete old .json metadata file: %s\n", __func__, metadata_path.c_str());
}
return etag;
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
}
std::ifstream etag_in(etag_path);
if (!etag_in) {
LOG_ERR("%s: could not open .etag file for reading: %s\n", __func__, etag_path.c_str());
return {};
}
return none;
std::string etag;
std::getline(etag_in, etag);
return etag;
}
static bool is_http_status_ok(int status) {
@@ -168,8 +140,6 @@ std::pair<std::string, std::string> common_download_split_repo_tag(const std::st
return {hf_repo, tag};
}
#if defined(LLAMA_USE_HTTPLIB)
class ProgressBar {
static inline std::mutex mutex;
static inline std::map<const ProgressBar *, int> lines;
@@ -305,7 +275,10 @@ static bool common_pull_file(httplib::Client & cli,
);
if (!res) {
LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1);
LOG_ERR("%s: download failed: %s (status: %d)\n",
__func__,
httplib::to_string(res.error()).c_str(),
res ? res->status : -1);
return false;
}
@@ -344,62 +317,64 @@ static int common_download_file_single_online(const std::string & url,
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
for (int i = 0; i < max_attempts; ++i) {
auto head = cli.Head(parts.path);
bool head_ok = head && head->status >= 200 && head->status < 300;
if (!head_ok) {
LOG_WRN("%s: HEAD invalid http status code received: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
LOG_INF("%s: Using cached file (HEAD failed): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
return head->status; // cannot use cached file, return raw status code
// TODO: maybe retry only on certain codes
}
std::string etag;
if (head_ok && head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
if (head_ok && head->has_header("Content-Length")) {
try {
total_size = std::stoull(head->get_header_value("Content-Length"));
} catch (const std::exception& e) {
LOG_WRN("%s: Invalid Content-Length in HEAD response: %s\n", __func__, e.what());
}
}
bool supports_ranges = false;
if (head_ok && head->has_header("Accept-Ranges")) {
supports_ranges = head->get_header_value("Accept-Ranges") != "none";
}
bool should_download_from_scratch = false;
if (!last_etag.empty() && !etag.empty() && last_etag != etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__,
last_etag.c_str(), etag.c_str());
should_download_from_scratch = true;
}
auto head = cli.Head(parts.path);
if (!head || head->status < 200 || head->status >= 300) {
LOG_WRN("%s: HEAD failed, status: %d\n", __func__, head ? head->status : -1);
if (file_exists) {
if (!should_download_from_scratch) {
LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return -1;
}
LOG_INF("%s: using cached file (HEAD failed): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
return head ? head->status : -1;
}
std::string etag;
if (head->has_header("ETag")) {
etag = head->get_header_value("ETag");
}
size_t total_size = 0;
if (head->has_header("Content-Length")) {
try {
total_size = std::stoull(head->get_header_value("Content-Length"));
} catch (const std::exception& e) {
LOG_WRN("%s: invalid Content-Length in HEAD response: %s\n", __func__, e.what());
}
}
bool supports_ranges = false;
if (head->has_header("Accept-Ranges")) {
supports_ranges = head->get_header_value("Accept-Ranges") != "none";
}
if (file_exists) {
if (etag.empty()) {
LOG_INF("%s: using cached file (no server etag): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
if (!last_etag.empty() && last_etag == etag) {
LOG_INF("%s: using cached file (same etag): %s\n", __func__, path.c_str());
return 304; // 304 Not Modified - fake cached response
}
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return -1;
}
}
const std::string path_temporary = path + ".downloadInProgress";
int delay = retry_delay_seconds;
for (int i = 0; i < max_attempts; ++i) {
if (i) {
LOG_WRN("%s: retrying after %d seconds...\n", __func__, delay);
std::this_thread::sleep_for(std::chrono::seconds(delay));
delay *= retry_delay_seconds;
}
const std::string path_temporary = path + ".downloadInProgress";
size_t existing_size = 0;
if (std::filesystem::exists(path_temporary)) {
if (supports_ranges && !should_download_from_scratch) {
if (supports_ranges) {
existing_size = std::filesystem::file_size(path_temporary);
} else if (remove(path_temporary.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path_temporary.c_str());
@@ -407,32 +382,23 @@ static int common_download_file_single_online(const std::string & url,
}
}
// start the download
LOG_INF("%s: trying to download model from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(), path_temporary.c_str(), etag.c_str());
const bool was_pull_successful = common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size);
if (!was_pull_successful) {
if (i + 1 < max_attempts) {
const int exponential_backoff_delay = std::pow(retry_delay_seconds, i) * 1000;
LOG_WRN("%s: retrying after %d milliseconds...\n", __func__, exponential_backoff_delay);
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
} else {
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
LOG_INF("%s: downloading from %s to %s (etag:%s)...\n",
__func__, common_http_show_masked_url(parts).c_str(),
path_temporary.c_str(), etag.c_str());
if (common_pull_file(cli, parts.path, path_temporary, supports_ranges, existing_size, total_size)) {
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return -1;
}
continue;
if (!etag.empty()) {
write_etag(path, etag);
}
return head->status;
}
if (std::rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return -1;
}
if (!etag.empty()) {
write_etag(path, etag);
}
return head->status; // TODO: use actual GET status?
}
LOG_ERR("%s: download failed after %d attempts\n", __func__, max_attempts);
return -1; // max attempts reached
}
@@ -798,30 +764,6 @@ std::string common_docker_resolve_model(const std::string & docker) {
}
}
#else
common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool, const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
bool common_download_model(const common_params_model &, const std::string &, bool, const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
std::string common_docker_resolve_model(const std::string &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
int common_download_file_single(const std::string &,
const std::string &,
const std::string &,
bool,
const common_header_list &) {
throw std::runtime_error("download functionality is not enabled in this build");
}
#endif // defined(LLAMA_USE_HTTPLIB)
std::vector<common_cached_model_info> common_list_cached_models() {
std::vector<common_cached_model_info> models;
const std::string cache_dir = fs_get_cache_directory();

View File

@@ -63,7 +63,8 @@ static void caps_print_stats(value & v, const std::string & path) {
std::map<std::string, bool> caps::to_map() const {
return {
{"requires_typed_content", requires_typed_content},
{"supports_string_content", supports_string_content},
{"supports_typed_content", supports_typed_content},
{"supports_tools", supports_tools},
{"supports_tool_calls", supports_tool_calls},
{"supports_parallel_tool_calls", supports_parallel_tool_calls},
@@ -89,7 +90,7 @@ caps caps_get(jinja::program & prog) {
return v->stats.ops.find(op_name) != v->stats.ops.end();
};
// case: typed content requirement
// case: typed content support
caps_try_execute(
prog,
[&]() {
@@ -105,12 +106,16 @@ caps caps_get(jinja::program & prog) {
// tools
return json{nullptr};
},
[&](bool, value & messages, value &) {
[&](bool success, value & messages, value &) {
auto & content = messages->at(0)->at("content");
caps_print_stats(content, "messages[0].content");
if (has_op(content, "selectattr") || has_op(content, "array_access")) {
// accessed as an array
result.requires_typed_content = true;
result.supports_typed_content = true;
}
if (!success) {
// failed to execute with content as string
result.supports_string_content = false;
}
}
);

View File

@@ -14,7 +14,9 @@ struct caps {
bool supports_parallel_tool_calls = true;
bool supports_preserve_reasoning = false; // support assistant message with reasoning_content
bool requires_typed_content = false; // default: use string content
// one of the 2 content capabilities must be true
bool supports_string_content = true;
bool supports_typed_content = false;
// for reporting on server
std::map<std::string, bool> to_map() const;

View File

@@ -144,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) {
return false;
};
auto test_is_in = [&]() -> bool {
func_args args(ctx);
args.push_back(left_val);
args.push_back(right_val);
return global_builtins().at("test_is_in")(args)->as_bool();
};
// Handle undefined and null values
if (is_val<value_undefined>(left_val) || is_val<value_undefined>(right_val)) {
if (is_val<value_undefined>(right_val) && (op.value == "in" || op.value == "not in")) {
@@ -223,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) {
return result;
}
} else if (is_val<value_array>(right_val)) {
auto & arr = right_val->as_array();
bool member = false;
for (const auto & item : arr) {
if (*left_val == *item) {
member = true;
break;
}
}
// case: 1 in [0, 1, 2]
bool member = test_is_in();
if (op.value == "in") {
JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member);
return mk_val<value_bool>(!member);
}
}
@@ -252,22 +251,23 @@ value binary_expression::execute_impl(context & ctx) {
// String membership
if (is_val<value_string>(left_val) && is_val<value_string>(right_val)) {
auto left_str = left_val->as_string().str();
auto right_str = right_val->as_string().str();
// case: "a" in "abc"
bool member = test_is_in();
if (op.value == "in") {
return mk_val<value_bool>(right_str.find(left_str) != std::string::npos);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
return mk_val<value_bool>(right_str.find(left_str) == std::string::npos);
return mk_val<value_bool>(!member);
}
}
// Value key in object
if (is_val<value_object>(right_val)) {
bool has_key = right_val->has_key(left_val);
// case: key in {key: value}
bool member = test_is_in();
if (op.value == "in") {
return mk_val<value_bool>(has_key);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
return mk_val<value_bool>(!has_key);
return mk_val<value_bool>(!member);
}
}
@@ -446,6 +446,12 @@ value for_statement::execute_impl(context & ctx) {
value iterable_val = iter_expr->execute(scope);
// mark the variable being iterated as used for stats
if (ctx.is_get_stats) {
iterable_val->stats.used = true;
iterable_val->stats.ops.insert("array_access");
}
if (iterable_val->is_undefined()) {
JJ_DEBUG("%s", "For loop iterable is undefined, skipping loop");
iterable_val = mk_val<value_array>();

View File

@@ -114,6 +114,18 @@ static T slice(const T & array, int64_t start, int64_t stop, int64_t step = 1) {
return result;
}
template<typename T>
static value empty_value_fn(const func_args &) {
if constexpr (std::is_same_v<T, value_int>) {
return mk_val<T>(0);
} else if constexpr (std::is_same_v<T, value_float>) {
return mk_val<T>(0.0);
} else if constexpr (std::is_same_v<T, value_bool>) {
return mk_val<T>(false);
} else {
return mk_val<T>();
}
}
template<typename T>
static value test_type_fn(const func_args & args) {
args.ensure_count(1);
@@ -128,6 +140,13 @@ static value test_type_fn(const func_args & args) {
JJ_DEBUG("test_type_fn: type=%s or %s result=%d", typeid(T).name(), typeid(U).name(), is_type ? 1 : 0);
return mk_val<value_bool>(is_type);
}
template<typename T, typename U, typename V>
static value test_type_fn(const func_args & args) {
args.ensure_count(1);
bool is_type = is_val<T>(args.get_pos(0)) || is_val<U>(args.get_pos(0)) || is_val<V>(args.get_pos(0));
JJ_DEBUG("test_type_fn: type=%s, %s or %s result=%d", typeid(T).name(), typeid(U).name(), typeid(V).name(), is_type ? 1 : 0);
return mk_val<value_bool>(is_type);
}
template<value_compare_op op>
static value test_compare_fn(const func_args & args) {
args.ensure_count(2, 2);
@@ -347,8 +366,8 @@ const func_builtins & global_builtins() {
{"test_is_integer", test_type_fn<value_int>},
{"test_is_float", test_type_fn<value_float>},
{"test_is_number", test_type_fn<value_int, value_float>},
{"test_is_iterable", test_type_fn<value_array, value_string>},
{"test_is_sequence", test_type_fn<value_array, value_string>},
{"test_is_iterable", test_type_fn<value_array, value_string, value_undefined>},
{"test_is_sequence", test_type_fn<value_array, value_string, value_undefined>},
{"test_is_mapping", test_type_fn<value_object>},
{"test_is_lower", [](const func_args & args) -> value {
args.ensure_vals<value_string>();
@@ -374,6 +393,33 @@ const func_builtins & global_builtins() {
{"test_is_lt", test_compare_fn<value_compare_op::lt>},
{"test_is_lessthan", test_compare_fn<value_compare_op::lt>},
{"test_is_ne", test_compare_fn<value_compare_op::ne>},
{"test_is_in", [](const func_args & args) -> value {
args.ensure_count(2);
auto needle = args.get_pos(0);
auto haystack = args.get_pos(1);
if (is_val<value_undefined>(haystack)) {
return mk_val<value_bool>(false);
}
if (is_val<value_array>(haystack)) {
for (const auto & item : haystack->as_array()) {
if (*needle == *item) {
return mk_val<value_bool>(true);
}
}
return mk_val<value_bool>(false);
}
if (is_val<value_string>(haystack)) {
if (!is_val<value_string>(needle)) {
throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type());
}
return mk_val<value_bool>(
haystack->as_string().str().find(needle->as_string().str()) != std::string::npos);
}
if (is_val<value_object>(haystack)) {
return mk_val<value_bool>(haystack->has_key(needle));
}
throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type());
}},
{"test_is_test", [](const func_args & args) -> value {
args.ensure_vals<value_string>();
auto & builtins = global_builtins();
@@ -1003,7 +1049,22 @@ const func_builtins & value_none_t::get_builtins() const {
static const func_builtins builtins = {
{"default", default_value},
{"tojson", tojson},
{"string", [](const func_args &) -> value { return mk_val<value_string>("None"); }}
{"string", [](const func_args &) -> value {
return mk_val<value_string>("None");
}},
{"safe", [](const func_args &) -> value {
return mk_val<value_string>("None");
}},
{"strip", [](const func_args &) -> value {
return mk_val<value_string>("None");
}},
{"items", empty_value_fn<value_array>},
{"map", empty_value_fn<value_array>},
{"reject", empty_value_fn<value_array>},
{"rejectattr", empty_value_fn<value_array>},
{"select", empty_value_fn<value_array>},
{"selectattr", empty_value_fn<value_array>},
{"unique", empty_value_fn<value_array>},
};
return builtins;
}
@@ -1012,10 +1073,33 @@ const func_builtins & value_none_t::get_builtins() const {
const func_builtins & value_undefined_t::get_builtins() const {
static const func_builtins builtins = {
{"default", default_value},
{"tojson", [](const func_args & args) -> value {
args.ensure_vals<value_undefined>();
return mk_val<value_string>("null");
}},
{"capitalize", empty_value_fn<value_string>},
{"first", empty_value_fn<value_undefined>},
{"items", empty_value_fn<value_array>},
{"join", empty_value_fn<value_string>},
{"last", empty_value_fn<value_undefined>},
{"length", empty_value_fn<value_int>},
{"list", empty_value_fn<value_array>},
{"lower", empty_value_fn<value_string>},
{"map", empty_value_fn<value_array>},
{"max", empty_value_fn<value_undefined>},
{"min", empty_value_fn<value_undefined>},
{"reject", empty_value_fn<value_array>},
{"rejectattr", empty_value_fn<value_array>},
{"replace", empty_value_fn<value_string>},
{"reverse", empty_value_fn<value_array>},
{"safe", empty_value_fn<value_string>},
{"select", empty_value_fn<value_array>},
{"selectattr", empty_value_fn<value_array>},
{"sort", empty_value_fn<value_array>},
{"string", empty_value_fn<value_string>},
{"strip", empty_value_fn<value_string>},
{"sum", empty_value_fn<value_int>},
{"title", empty_value_fn<value_string>},
{"truncate", empty_value_fn<value_string>},
{"unique", empty_value_fn<value_array>},
{"upper", empty_value_fn<value_string>},
{"wordcount", empty_value_fn<value_int>},
};
return builtins;
}

View File

@@ -12,6 +12,7 @@
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
namespace jinja {

View File

@@ -192,12 +192,12 @@ void common_ngram_cache_draft(
break;
}
LOG(" - draft candidate: token=%d\n", drafted_token);
LOG_DBG(" - draft candidate: token=%d\n", drafted_token);
draft.push_back(drafted_token);
}
}
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename) {
std::ofstream file_out(filename, std::ios::binary);
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
const common_ngram ngram = item.first;
@@ -217,10 +217,9 @@ void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & fil
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
}
}
}
common_ngram_cache common_ngram_cache_load(std::string & filename) {
common_ngram_cache common_ngram_cache_load(const std::string & filename) {
std::ifstream hashmap_file(filename, std::ios::binary);
if (!hashmap_file) {
throw std::ifstream::failure("Unable to open file " + filename);

View File

@@ -88,12 +88,12 @@ void common_ngram_cache_draft(
// Save an ngram cache to a file.
// ngram_cache: the ngram cache to save.
// filename: the path under which to save the ngram cache.
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename);
// Load an ngram cache saved with common_ngram_cache_save.
// filename: the path from which to load the ngram cache.
// returns: an ngram cache containing the information saved to filename.
common_ngram_cache common_ngram_cache_load(std::string & filename);
common_ngram_cache common_ngram_cache_load(const std::string & filename);
// Merge two ngram caches.
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.

530
common/ngram-map.cpp Normal file
View File

@@ -0,0 +1,530 @@
#include "common.h"
#include "log.h"
#include "ngram-map.h"
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <sstream>
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
#define LCG_FACTOR 2654435761UL
// Compute the LCG hash of a n-gram of size len at offset start.
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
uint32_t hash = 0;
for (size_t i = 0; i < len; ++i) {
hash = hash * LCG_FACTOR + tokens[start + i];
}
return hash;
}
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
std::ostringstream oss;
oss << '[';
for (size_t i = 0; i < length; ++i) {
if (i > 0) {
oss << ", ";
}
oss << inp[start + i];
}
oss << ']';
return oss.str();
}
// n-gram simple
//
/**
* Perform speculative generation using the model's own token history.
* Searches for a matching pattern in the token history and returns draft tokens.
*
* @param state Current state of this implementation
* @param tokens Token history to search in
* @param sampled Last sampled token
* @return Vector of draft tokens, empty if no matching pattern is found
*/
llama_tokens common_ngram_simple_draft(
const common_ngram_simple_config & config,
const llama_tokens & tokens, llama_token sampled) {
// Simple implementation of self-speculative decoding without a draft model.
//
const size_t cur_len = tokens.size();
const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history
const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft
// vector for tokens we want to verify.
// return empty vector if there is no match.
llama_tokens draft_tokens;
// We need at least n_draft_min + n_draft_max + 1 tokens.
if (cur_len <= static_cast<size_t>(n_draft_min + n_draft_max + 1)) {
return draft_tokens;
}
// pattern search
llama_tokens pattern;
pattern.reserve(n_draft_min);
for (size_t j = cur_len - n_draft_min + 1; j < cur_len; ++j) {
pattern.push_back(tokens[j]);
}
pattern.push_back(sampled); // add the last token to the pattern
size_t match_pos = 0; // we ignore position 0, position 0 == no match
// search backwards, but skip the current match (we are currently there)
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
bool match = true;
for (size_t k = 0; k < pattern.size(); ++k) {
if (tokens[j + k] != pattern[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
if (match_pos == 0) {
return draft_tokens;
}
const size_t copy_max = std::min(
n_draft_max,
cur_len - (match_pos + n_draft_min)
);
if (copy_max < n_draft_min) {
return draft_tokens;
}
LOG_DBG("%s: #tokens = %zu: found matching pattern at pos %zu, length %zu, draft length %zu\n",
__func__, cur_len,
match_pos, pattern.size(), copy_max);
draft_tokens.reserve(copy_max);
for (size_t j = 0; j < copy_max; ++j) {
draft_tokens.push_back(tokens[match_pos + n_draft_min + j]);
}
return draft_tokens;
}
// n-gram map
//
// maximum number of counted values of a ngram map value.
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
void common_ngram_map_begin(
common_ngram_map & map, const llama_tokens & tokens) {
size_t size_begin = tokens.size();
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
map.idx_last_check, size_begin, map.keys.size());
size_t count_map_entries_upd = 0;
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
if (map.show_key_map_stats) {
// Print statistics of hash map map_key.
size_t count_nonzero = 0;
uint32_t min_idx = UINT32_MAX;
uint32_t max_idx = 0;
for (size_t i = 0; i < map.key_map.size(); ++i) {
uint32_t key_idx = map.key_map[i];
if (key_idx != 0) {
++count_nonzero;
if (key_idx < min_idx) min_idx = key_idx;
if (key_idx > max_idx) max_idx = key_idx;
}
}
if (count_nonzero == 0) {
min_idx = 0;
}
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
}
// Update the map from hash to key index (clear outdated entries).
for (size_t i = 0; i < map.key_map.size(); ++i) {
uint32_t key_idx = map.key_map[i];
if (key_idx >= map.size_last_begin) {
map.key_map[i] = 0;
count_map_entries_upd++;
}
}
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
}
if (size_begin < map.idx_last_check && !map.keys.empty()) {
// The next token generation will start at index size_begin.
// The tokens between map.size_last_begin and size_begin are no longer valid.
//
// Refresh map: Remove all entries with index >= map.size_last_begin.
size_t count_keys = map.keys.size();
size_t count_keys_del = 0;
size_t count_values_del = 0;
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
common_ngram_map_key & key = map.keys[i];
if (key.key_idx >= map.size_last_begin) {
// Delete the key.
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
map.keys.erase(map.keys.begin() + i);
count_keys_del++;
continue;
}
if (map.key_only) {
continue;
}
// Check the indices of the values.
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
common_ngram_map_value & value = key.values[j];
if (value.value_idx >= map.size_last_begin) {
// Delete the value.
count_values_del++;
// Move all values after this value to the left.
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
key.values[k] = key.values[k + 1];
}
// Clear the last value.
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
}
}
if (key.values[0].value_idx == 0) {
// No values left, delete the key.
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
map.keys.erase(map.keys.begin() + i);
count_keys_del++;
}
}
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
map.idx_last_check, size_begin,
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
}
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
map.size_last_begin = size_begin;
}
void common_ngram_map_draft(common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft) {
// reset last key and value.
map.last_draft_created = false;
map.last_draft_key_idx = 0;
map.last_draft_value_idx = 0;
const size_t cur_len = inp.size();
const uint16_t n = map.size_key;
const uint16_t m = map.size_value;
if (cur_len < static_cast<size_t>(2 * n + m)) {
return;
}
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
// key_map uses uint32_t instead of size_t.
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
}
if (map.idx_last_check > cur_len) {
// Should not happen because of common_ngram_map_begin().
GGML_ABORT("%s: map.idx_last_check > cur_len: %zu > %zu", __func__, map.idx_last_check, cur_len);
}
map.idx_last_check = cur_len;
// search pattern, the key n-gram
std::vector<llama_token> key_tokens;
key_tokens.reserve(n);
for (size_t j = cur_len - n + 1; j < cur_len; ++j) {
key_tokens.push_back(inp[j]);
}
key_tokens.push_back(sampled);
// search for the key in the map
size_t match_pos = 0;
if (map.size_last_begin > cur_len) {
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
}
if (!map.key_map.empty()) {
// Search for the key in the map key_map from hash of ngrams to index of ngram.
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
uint32_t idx_key = map.key_map[idx_hash];
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
// Check if the key matches the key at idx_key (because of possible collisions).
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[idx_key + k] != key_tokens[k]) {
match = false;
break;
}
}
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
if (match) {
match_pos = idx_key;
}
}
}
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
// Check if the key matches the key.
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
}
if (match_pos == 0) {
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
//
// Search in [size_last_begin, cur_len - n - m - 1], descending.
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
}
if (match_pos > 0) {
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
cur_len, n, m, key_tokens.size(), sampled, match_pos);
}
if (!map.key_map.empty()) {
// Add hashes of new ngrams in key_map.
//
// Use the same order as above.
if (map.size_last_begin > (size_t) (n + m + 1)) {
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
// compute hash and store index of ngram at idx j in the map.
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
if (map.key_map[idx_hash] == 0) {
map.key_map[idx_hash] = j; // collisions may occur
}
}
}
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
// compute hash and store index of ngram at idx j in the map.
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
if (map.key_map[idx_hash] == 0) {
map.key_map[idx_hash] = j;
}
}
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
}
if (match_pos == 0) {
return;
}
// We have a match, now we look for the statistics of the key.
size_t key_offset = map.keys.size(); // offset in the map
// We iterate through the std::vector<common_ngram_map_key> map->keys.
for (size_t i = 0; i < map.keys.size(); ++i) {
bool match = true;
for (size_t j = 0; j < n; ++j) {
if (inp[map.keys[i].key_idx + j] != key_tokens[j]) {
match = false;
break;
}
}
if (match) {
key_offset = i;
break;
}
}
if (key_offset == map.keys.size()) {
// We create a new key-entry, it will get offset key_offset.
common_ngram_map_key new_key;
new_key.key_idx = match_pos;
new_key.stat_idx = 0;
new_key.key_num = 0;
for (int i = 0; i < COMMON_NGRAM_MAX_VALUES; ++i) {
new_key.values[i].value_num = 0;
new_key.values[i].n_accepted = m;
}
map.keys.push_back(new_key);
}
// our key n-gram:
common_ngram_map_key & curr_key = map.keys[key_offset];
// update number of key hits
curr_key.key_num = (uint16_t) std::min((int) map.keys[key_offset].key_num + 1,
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
if (map.key_only) {
// simple mode:
// Fill in the draft with the m tokens following the key.
// We work with value values[0] only.
int n_draft_tokens = std::min((int) m, (int) curr_key.values[0].n_accepted);
for (int i = 0; i < n_draft_tokens; ++i) {
draft.push_back(inp[match_pos + n + i]);
}
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
map.last_draft_created = false;
map.last_draft_key_idx = key_offset;
map.last_draft_value_idx = 0; // value 0 is used for simple mode
return;
}
if (curr_key.key_num < map.min_hits) {
// not enough hits to consider this a good draft
LOG_DBG("%s: key_offset = %zu, key_num = %d, min_hits = %d, no draft\n", __func__,
key_offset, curr_key.key_num, map.min_hits);
return;
}
// complex mode: examine the different m-grams after this key n-gram.
//
// determine all (max COMMON_NGRAM_MAX_VALUES) m-grams after the key n-gram.
for (size_t i = curr_key.stat_idx; i <= match_pos; ++i) {
// begins the key n-gram at index i?
bool match_key = true;
for (size_t k = 0; k < n; ++k) {
if (inp[i + k] != key_tokens[k]) {
match_key = false;
break;
}
}
if (!match_key) {
continue;
}
// Do we haven a existing value m-gram or a new one after the key at index i?
size_t idx_begin_value_key = i + n;
int idx_value = -1;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
size_t idx_begin_value_v = curr_key.values[v].value_idx;
if (idx_begin_value_v == 0) {
// We found an empty value slot => we found a new value m-gram after the key n-gram.
curr_key.values[v].value_idx = idx_begin_value_key;
curr_key.values[v].value_num = 0;
curr_key.values[v].n_accepted = m;
idx_value = v;
break;
}
bool match = true;
for (size_t j = 0; j < m; ++j) {
if (inp[idx_begin_value_key + j] != inp[idx_begin_value_v + j]) {
match = false;
break;
}
}
if (match) {
// We found an existing value m-gram after the key n-gram.
idx_value = v;
break;
}
}
if (idx_value >= 0) {
// We found a value m-gram of the key n-gram.
curr_key.values[idx_value].value_num = (uint16_t) std::min((int) curr_key.values[idx_value].value_num + 1,
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
}
}
// the statistics are updated up to match_pos.
curr_key.stat_idx = match_pos;
// Do we have a value we could use for the draft?
uint16_t max_occur = 0;
int slot_max = 0;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
uint16_t curr_occur = curr_key.values[v].value_num;
if (curr_occur > max_occur) {
max_occur = curr_occur;
slot_max = v;
}
}
// What is sum of the other occurrences?
uint32_t sum_occur = 0;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
if (v == slot_max) {
continue;
}
uint16_t curr_occur = curr_key.values[v].value_num;
sum_occur += curr_occur;
}
LOG_INF("%s: key_offset = %zu, max_occur = %d, sum_occur = %d, slot_max = %d [%zu/%d, %zu/%d, %zu/%d, %zu/%d]\n", __func__,
key_offset,
max_occur, sum_occur, slot_max,
curr_key.values[0].value_idx, curr_key.values[0].value_num,
curr_key.values[1].value_idx, curr_key.values[1].value_num,
curr_key.values[2].value_idx, curr_key.values[2].value_num,
curr_key.values[3].value_idx, curr_key.values[3].value_num
);
// Print the tokens of the four values (if idx != 0), use LOG_INF
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
if (curr_key.values[v].value_idx != 0) {
LOG_INF("%s: value[%d] = %s\n", __func__, v, common_tokens_to_str(inp, curr_key.values[v].value_idx, m).c_str());
}
}
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
// The most frequent value is not much more frequent than the other values.
// We do not use the draft.
return;
}
// We use the most frequent value values[slot_max] for the draft.
// Fill in the draft with the m tokens following the key.
int n_draft_tokens = std::min((int) m, (int) curr_key.values[slot_max].n_accepted);
for (int i = 0; i < n_draft_tokens; ++i) {
draft.push_back(inp[match_pos + n + i]);
}
LOG_INF("%s: key_offset = %zu, slot_max = %d, key_num = %d, draft.size = %zu\n", __func__,
key_offset, slot_max,
curr_key.key_num, draft.size());
map.last_draft_created = true;
map.last_draft_key_idx = key_offset;
map.last_draft_value_idx = slot_max; // value used for draft generation.
}
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
if (!map.last_draft_created) {
return;
}
// find the key and its chosen value.
const size_t key_idx = map.last_draft_key_idx;
const size_t val_idx = map.last_draft_value_idx;
// find key corresponding to key_idx.
common_ngram_map_key & curr_key = map.keys[key_idx];
// find value corresponding to val_idx.
struct common_ngram_map_value & curr_value = curr_key.values[val_idx]; // value used for draft generation.
// update the value statistics
LOG_INF("common_ngram_map_send_accepted: n_accepted = %d, prev value_num = %d\n",
n_accepted, curr_value.n_accepted);
curr_value.n_accepted = n_accepted;
}

115
common/ngram-map.h Normal file
View File

@@ -0,0 +1,115 @@
#pragma once
//
// common/ngram-map.h: structures used to manage a map from n-grams to a list of m-grams
//
// These structures are used to do a lookup of n-grams followed by m-grams in token history.
//
// There are two algorithms implemented:
// 1. ngram_simple: lookup of n-grams followed by m-grams in token history.
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
//
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
//
#include "llama.h"
#include "common.h"
#include <vector>
// n-gram simple
//
// config of n-gram simple.
struct common_ngram_simple_config {
uint16_t size_ngram; // size of n-grams to lookup in self-mode
uint16_t size_mgram; // size of m-grams to draft in self-mode
};
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
llama_tokens common_ngram_simple_draft(
const common_ngram_simple_config & config,
const llama_tokens & tokens, llama_token sampled);
// n-gram map
//
// maximum number of m-gram values stored for each key n-gram.
#define COMMON_NGRAM_MAX_VALUES 4
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
// statistics of a m-gram after a known n-gram
struct common_ngram_map_value {
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
uint16_t value_num = 0; // number of occurrences of this value m-gram after the key n-gram (0 in an unused values-slot)
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
};
// statistics of a n-gram
struct common_ngram_map_key {
size_t key_idx; // index of key n-gram in token-history
size_t stat_idx; // index of last token of stastistics computation (key_num, values)
uint16_t key_num; // number of occurrences of this key n-gram in token-history
common_ngram_map_value values[COMMON_NGRAM_MAX_VALUES]; // some known values after the key
};
// map from n-grams to following m-grams in token-history
struct common_ngram_map {
uint16_t size_key; // size of key n-grams
uint16_t size_value; // size of value m-grams
bool key_only; // true if only key n-grams are used, no values.
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
uint16_t min_hits; // minimum number of key hits to consider a draft
bool show_key_map_stats = false; // true, if statistics of the key_map should be printed.
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
uint16_t min_hits)
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
min_hits(min_hits) {
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
}
// In reasoning chats the previous reasoning block will be removed from context history.
// A rebuild of the ngram map is needed after that.
size_t size_last_begin = 0; // number of tokens at previous start of generation
bool last_draft_created = false; // true if a draft was created at last call.
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
size_t idx_last_check = 0; // index of last check in context history
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
//
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
};
// Initialize the n-gram map with the given token history.
// map: the ngram map to initialize.
// tokens: the token history to base the map on.
void common_ngram_map_begin(
common_ngram_map & map,
const llama_tokens & tokens);
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
// map: the ngram map to search in.
// inp: the tokens generated so far.
// sampled: the token that was just sampled.
// draft: vector to store the draft tokens, initially empty.
void common_ngram_map_draft(
common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft);
// Update the statistics of a value after a draft was processed.
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted);

60
common/ngram-mod.cpp Normal file
View File

@@ -0,0 +1,60 @@
#include "ngram-mod.h"
//
// common_ngram_mod
//
common_ngram_mod::common_ngram_mod(uint16_t n, size_t size) : n(n), used(0) {
entries.resize(size);
reset();
}
size_t common_ngram_mod::idx(const entry_t * tokens) const {
size_t res = 0;
for (size_t i = 0; i < n; ++i) {
res = res*6364136223846793005ULL + tokens[i];
}
res = res % entries.size();
return res;
}
void common_ngram_mod::add(const entry_t * tokens) {
const size_t i = idx(tokens);
if (entries[i] == EMPTY) {
used++;
}
entries[i] = tokens[n];
}
common_ngram_mod::entry_t common_ngram_mod::get(const entry_t * tokens) const {
const size_t i = idx(tokens);
return entries[i];
}
void common_ngram_mod::reset() {
std::fill(entries.begin(), entries.end(), EMPTY);
used = 0;
}
size_t common_ngram_mod::get_n() const {
return n;
}
size_t common_ngram_mod::get_used() const {
return used;
}
size_t common_ngram_mod::size() const {
return entries.size();
}
size_t common_ngram_mod::size_bytes() const {
return entries.size() * sizeof(entries[0]);
}

38
common/ngram-mod.h Normal file
View File

@@ -0,0 +1,38 @@
#pragma once
#include <cstdint>
#include <vector>
#include <cstddef>
//
// common_ngram_mod
// ref: https://github.com/ggml-org/llama.cpp/pull/19164
//
// basic n-gram hasher
struct common_ngram_mod {
using entry_t = int32_t;
static constexpr entry_t EMPTY = -1;
common_ngram_mod(uint16_t n, size_t size);
size_t idx(const entry_t * tokens) const;
void add(const entry_t * tokens);
entry_t get(const entry_t * tokens) const; // return -1 if not found
void reset();
size_t get_n() const;
size_t get_used() const;
size_t size() const;
size_t size_bytes() const;
private:
size_t n; // ngram size to hash
size_t used;
std::vector<entry_t> entries;
};

File diff suppressed because it is too large Load Diff

View File

@@ -5,31 +5,37 @@
struct common_speculative;
struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
// comma separated list of all types
std::string common_speculative_type_name_str();
float p_min = 0.75f; // min probability required to accept a token in the draft
};
// convert string to type
enum common_speculative_type common_speculative_type_from_name(const std::string & name);
struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft
);
// convert type to string
std::string common_speculative_type_to_str(enum common_speculative_type type);
void common_speculative_free(struct common_speculative * spec);
// check if the llama_context is compatible for speculative decoding
// note: clears the memory of the context
bool common_speculative_is_compat(llama_context * ctx_tgt);
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft);
common_speculative * common_speculative_init(
common_params_speculative & params,
llama_context * ctx_tgt);
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest);
void common_speculative_free(common_speculative * spec);
// optionally call once at the beginning of a new generation
void common_speculative_begin(common_speculative * spec, const llama_tokens & prompt);
// sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt,
llama_token id_last);
llama_tokens common_speculative_draft(
common_speculative * spec,
const common_params_speculative & params,
const llama_tokens & prompt,
llama_token id_last);
// informs the speculative decoder that n_accepted tokens were accepted by the target model
void common_speculative_accept(common_speculative * spec, uint16_t n_accepted);
// print statistics about the speculative decoding
void common_speculative_print_stats(const common_speculative * spec);

File diff suppressed because it is too large Load Diff

View File

@@ -99,6 +99,7 @@ models = [
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "tiny_aya", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereLabs/tiny-aya-base", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
@@ -148,6 +149,8 @@ models = [
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
{"name": "exaone-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B", },
{"name": "qwen35", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3.5-9B-Instruct", },
{"name": "joyai-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jdopensource/JoyAI-LLM-Flash", },
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -157,6 +160,7 @@ pre_computed_hashes = [
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.7-Flash", "chkhsh": "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
@@ -170,7 +174,6 @@ pre_computed_hashes = [
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
# jina-v2-de variants
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/aari1995/German_Semantic_V3", "chkhsh": "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.7-Flash", "chkhsh": "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267"},
]

View File

@@ -22,12 +22,11 @@
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
SYCL cross-platform capabilities enable support for other vendor GPUs as well.
## Recommended Release
@@ -35,13 +34,16 @@ The following releases are verified and recommended:
|Commit ID|Tag|Release|Verified Platform| Update date|
|-|-|-|-|-|
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |ArcB580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|24e86cae7219b0f3ede1d5abdf5bf3ad515cccb8|b5377 |[llama-b5377-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b5377/llama-b5377-bin-win-sycl-x64.zip) |Arc B580/Linux/oneAPI 2025.1<br>LNL Arc GPU/Windows 11/oneAPI 2025.1.1|2025-05-15|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc A770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
## News
- 2026.02
- Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU.
- 2025.11
- Support malloc memory on device more than 4GB.
@@ -51,7 +53,7 @@ The following releases are verified and recommended:
|-|-|-|-|
|PVC 1550|39|73|+87%|
|Flex 170|39|50|+28%|
|Arc770|42|55|+30%|
|Arc A770|42|55|+30%|
|MTL|13|16|+23%|
|ARL-H|14|17|+21%|
@@ -62,7 +64,7 @@ The following releases are verified and recommended:
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
- 2024.5
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc A770.
- Arch Linux is verified successfully.
- 2024.4
@@ -111,14 +113,15 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750, B580 |
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
| Intel Arc B-Series | Support | Arc B580 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
- **Memory**
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-completion`.
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
- **Execution Unit (EU)**
@@ -126,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
### Other Vendor GPU
**Verified devices**
| Nvidia GPU | Status | Verified Model |
|--------------------------|-----------|----------------|
| Ampere Series | Supported | A100, A4000 |
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
| AMD GPU | Status | Verified Model |
|--------------------------|--------------|----------------|
| Radeon Pro | Experimental | W6800 |
| Radeon RX | Experimental | 6700 XT |
Note: AMD GPU support is highly experimental and is incompatible with F16.
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
NA
## Docker
@@ -148,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
@@ -211,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
- **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
- **AMD GPU**
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
@@ -247,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -284,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
```
- **AMD GPU**
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
```
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
```
### II. Build llama.cpp
#### Intel GPU
@@ -331,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# build all binary
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
# Use FP32, FP16 is not supported
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# build all binary
cmake --build build --config Release -j -v
```
### III. Run the inference
#### Retrieve and prepare model
@@ -422,16 +327,12 @@ Choose one of following methods to run.
- Use device 0:
```sh
./examples/sycl/run-llama2.sh 0
# OR
./examples/sycl/run-llama3.sh 0
./examples/sycl/test.sh -mg 0
```
- Use multiple devices:
```sh
./examples/sycl/run-llama2.sh
# OR
./examples/sycl/run-llama3.sh
./examples/sycl/test.sh
```
2. Command line
@@ -454,13 +355,13 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer --mmap
```
*Notes:*
@@ -576,13 +477,13 @@ Or, use CMake presets to build:
```sh
cmake --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake --build build-x64-windows-sycl-release -j --target llama-completion
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
cmake --build build-x64-windows-sycl-release -j --target llama-cli
cmake --build build-x64-windows-sycl-release -j --target llama-completion
cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
cmake --build build-x64-windows-sycl-debug -j --target llama-completion
```
#### 3. Visual Studio
@@ -607,7 +508,7 @@ You can use Visual Studio to open the `llama.cpp` folder directly as a CMake pro
- For a minimal experimental setup, you can build only the inference executable using:
```Powershell
cmake --build build --config Release -j --target llama-cli
cmake --build build --config Release -j --target llama-completion
```
##### - Generating a Visual Studio Solution
@@ -713,13 +614,7 @@ Choose one of following methods to run.
1. Script
```
examples\sycl\win-run-llama-2.bat
```
or
```
examples\sycl\win-run-llama-3.bat
examples\sycl\win-test.bat
```
2. Command line
@@ -743,13 +638,13 @@ Examples:
- Use device 0:
```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
```
- Use multiple devices:
```
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer --mmap
```
@@ -775,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`.
#### Runtime
@@ -791,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|

180
docs/backend/VirtGPU.md Normal file
View File

@@ -0,0 +1,180 @@
# GGML-VirtGPU Backend
The GGML-VirtGPU backend enables GGML applications to run machine
learning computations on host hardware while the application itself
runs inside a virtual machine. It uses host-guest shared memory to
efficiently share data buffers between the two sides.
This backend relies on the virtio-gpu, and VirglRenderer API Remoting
(APIR) component. The backend is split into two libraries:
- a GGML implementation (the "remoting frontend"), running in the
guest and interacting with the virtgpu device
- a VirglRenderer APIR compatible library (the "remoting backend"),
running in the host and interacting with Virglrenderer and an actual
GGML device backend.
## OS support
| OS | Status | Backend | CI testing | Notes
| -------- | ----------------- | ----------- | ----------- | -----
| MacOS 14 | Supported | ggml-metal | X | Working when compiled on MacOS 14
| MacOS 15 | Supported | ggml-metal | X | Working when compiled on MacOS 14 or MacOS 15
| MacOS 26 | Not tested | | |
| Linux | Under development | ggml-vulkan | not working | Working locally, CI running into deadlocks
## Architecture Overview
The GGML-VirtGPU backend consists of three main components:
```mermaid
graph TD
%% Nodes
subgraph GuestVM ["Guest VM - Frontend"]
App([GGML Application<br/>llama.cpp, etc.])
direction TB
Interface[GGML Backend Interface]
Comm["GGML-VirtGPU<br/>(hypercalls + shared mem)"]
App --> Interface
Interface --> Comm
end
API[virtio-gpu / virglrenderer API]
subgraph HostSystem [Host System - Backend]
direction TB
Dispatcher[GGML-VirtGPU-Backend]
BackendLib[GGML Backend library<br/>Metal / Vulkan / CPU / ...]
Dispatcher --> BackendLib
end
%% Connections
Comm --> API
API --> HostSystem
```
### Key Components
1. **Guest-side Frontend** (`ggml-virtgpu/`): Implements the GGML backend interface and forwards operations to the host
2. **Host-side Backend** (`ggml-virtgpu/backend/`): Receives forwarded operations and executes them on actual hardware backends
3. **Communication Layer**: Uses virtio-gpu hypercalls and shared memory for efficient data transfer
## Features
- **Dynamic backend loading** on the host side (CPU, CUDA, Metal, etc.)
- **Zero-copy data transfer** via host-guest shared memory pages
## Communication Protocol
### Hypercalls and Shared Memory
The backend uses two primary communication mechanisms:
1. **Hypercalls (`DRM_IOCTL_VIRTGPU_EXECBUFFER`)**: Trigger remote execution from guest to host
2. **Shared Memory Pages**: Zero-copy data transfer for tensors and parameters
#### Shared Memory Layout
Each connection uses two shared memory buffers:
- **Data Buffer** (24 MiB): For command/response data and tensor transfers
- **Reply Buffer** (16 KiB): For command replies and status information
- **Data Buffers**: Dynamically allocated host-guest shared buffers
served as GGML buffers.
### APIR Protocol
The Virglrender API Remoting protocol defines three command types:
- `HANDSHAKE`: Protocol version negotiation and capability discovery
- `LOADLIBRARY`: Dynamic loading of backend libraries on the host
- `FORWARD`: API function call forwarding
### Binary Serialization
Commands and data are serialized using a custom binary protocol with:
- Fixed-size encoding for basic types
- Variable-length arrays with size prefixes
- Buffer bounds checking
- Error recovery mechanisms
## Supported Operations
### Device Operations
- Device enumeration and capability queries
- Memory information (total/free)
- Backend type detection
### Buffer Operations
- Buffer allocation and deallocation
- Tensor data transfer (host ↔ guest)
- Memory copying and clearing
### Computation Operations
- Graph execution forwarding
## Build Requirements
### Guest-side Dependencies
- `libdrm` for DRM/virtio-gpu communication
- C++20 compatible compiler
- CMake 3.14+
### Host-side Dependencies
- virglrenderer with APIR support (pending upstream review)
- Target backend libraries (libggml-metal, libggml-vulkan, etc.)
## Configuration
### Environment Variables
- `GGML_VIRTGPU_BACKEND_LIBRARY`: Path to the host-side backend library
- `GGML_VIRTGPU_DEBUG`: Enable debug logging
### Build Options
- `GGML_VIRTGPU`: Enable the VirtGPU backend (`ON` or `OFF`, default: `OFF`)
- `GGML_VIRTGPU_BACKEND`: Build the host-side backend component (`ON`, `OFF` or `ONLY`, default: `OFF`)
### System Requirements
- VM with virtio-gpu support
- VirglRenderer with APIR patches
- Compatible backend libraries on host
## Limitations
- **VM-specific**: Only works in virtual machines with virtio-gpu support
- **Host dependency**: Requires properly configured host-side backend
- **Latency**: Small overhead from VM escaping for each operation
* This work is pending upstream changes in the VirglRenderer
project.
* The backend can be tested with Virglrenderer compiled from source
using this PR:
https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590
* This work is pending changes in the VMM/hypervisor running the
virtual machine, which need to know how to route the newly
introduced APIR capset.
* The environment variable `VIRGL_ROUTE_VENUS_TO_APIR=1` allows
using the Venus capset, until the relevant hypervisors have been
patched. However, setting this flag breaks the Vulkan/Venus normal
behavior.
* The environment variable `GGML_REMOTING_USE_APIR_CAPSET` tells the
`ggml-virtgpu` backend to use the APIR capset. This will become
the default when the relevant hypervisors have been patched.
* This work focused on improving the performance of llama.cpp running
on MacOS containers, and is mainly tested on this platform. The
linux support (via `krun`) is in progress.
## See Also
- [Development and Testing](VirtGPU/development.md)
- [Backend configuration](VirtGPU/configuration.md)

View File

@@ -0,0 +1,174 @@
# GGML-VirtGPU Backend Configuration
This document describes the environment variables used by the ggml-virtgpu backend system, covering both the frontend (guest-side) and backend (host-side) components.
## Environment Variables Overview
The ggml-virtgpu backend uses environment variables for configuration across three main components:
- **Frontend (Guest)**: GGML applications running in VMs
- **Hypervisor**: Virglrenderer/APIR system
- **Backend (Host)**: Host-side GGML backend integration
## Frontend (Guest-side) Configuration
### GGML_REMOTING_USE_APIR_CAPSET
- **Location**: `ggml/src/ggml-virtgpu/virtgpu.cpp`
- **Type**: Boolean flag (presence-based)
- **Purpose**: Controls which virtio-gpu capability set to use for communication
- **Values**:
- Set (any value): Use the APIR capset (long-term setup)
- Unset: Use the Venus capset (easier for testing with an unmodified hypervisor)
- **Default**: Unset (Venus capset)
- **Usage**:
```bash
export GGML_REMOTING_USE_APIR_CAPSET=1 # Use APIR capset
# or leave unset for Venus capset
```
## Hypervisor (Virglrenderer/APIR) Configuration
These environment variables are used during the transition phase for
running with an unmodified hypervisor (not supporting the
VirglRenderer APIR component). They will be removed in the future, and
the hypervisor will instead configure VirglRenderer with the APIR
_Configuration Key_.
### VIRGL_APIR_BACKEND_LIBRARY
- **Location**: `virglrenderer/src/apir/apir-context.c`
- **Configuration Key**: `apir.load_library.path`
- **Type**: File path string
- **Purpose**: Path to the APIR backend library that virglrenderer should dynamically load
- **Required**: Yes
- **Example**:
```bash
export VIRGL_APIR_BACKEND_LIBRARY="/path/to/libggml-remotingbackend.so"
```
### VIRGL_ROUTE_VENUS_TO_APIR
- **Location**: `virglrenderer/src/apir/apir-renderer.h`
- **Type**: Boolean flag (presence-based)
- **Purpose**: Temporary workaround to route Venus capset calls to APIR during hypervisor transition period
- **Status**: will be removed once hypervisors support APIR natively
- **Warning**: Breaks normal Vulkan/Venus functionality
- **Usage**:
```bash
export VIRGL_ROUTE_VENUS_TO_APIR=1 # For testing with an unmodified hypervisor
```
### VIRGL_APIR_LOG_TO_FILE
- **Location**: `virglrenderer/src/apir/apir-renderer.c`
- **Environment Variable**: `VIRGL_APIR_LOG_TO_FILE`
- **Type**: File path string
- **Purpose**: Enable debug logging from the VirglRenderer APIR component to specified file
- **Required**: No (optional debugging)
- **Default**: Logging to `stderr`
- **Usage**:
```bash
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir-debug.log"
```
## Backend (Host-side) Configuration
These environment variables are used during the transition phase for
running with an unmodified hypervisor (not supporting the
VirglRenderer APIR component). They will be removed in the future, and
the hypervisor will instead configure VirglRenderer with the APIR
_Configuration Key_.
### APIR_LLAMA_CPP_GGML_LIBRARY_PATH
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
- **Configuration Key**: `ggml.library.path`
- **Type**: File path string
- **Purpose**: Path to the actual GGML backend library (Metal, CUDA, Vulkan, etc.)
- **Required**: **Yes** - backend initialization fails without this
- **Examples**:
```bash
# macOS with Metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
# Linux with CUDA backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-cuda.so"
# macOS or Linux with Vulkan backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-vulkan.so"
```
### APIR_LLAMA_CPP_GGML_LIBRARY_REG
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_REG`
- **Configuration Key**: `ggml.library.reg`
- **Type**: Function symbol name string
- **Purpose**: Name of the backend registration function to call after loading the library
- **Required**: No (defaults to `ggml_backend_init`)
- **Default**: `ggml_backend_init`
- **Examples**:
```bash
# Metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
# CUDA backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_cuda_reg"
# Vulkan backend
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_vulkan_reg"
# Generic fallback (default)
# export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_init"
```
### APIR_LLAMA_CPP_LOG_TO_FILE
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp:62`
- **Environment Variable**: `APIR_LLAMA_CPP_LOG_TO_FILE`
- **Type**: File path string
- **Purpose**: Enable debug logging from the GGML backend to specified file
- **Required**: No (optional debugging)
- **Usage**:
```bash
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml-backend-debug.log"
```
## Configuration Flow
The configuration system works as follows:
1. **Hypervisor Setup**: Virglrenderer loads the APIR backend library specified by `VIRGL_APIR_BACKEND_LIBRARY`
2. **Context Creation**: When an APIR context is created, it populates a configuration table with environment variables:
- `apir.load_library.path` ← `VIRGL_APIR_BACKEND_LIBRARY`
- `ggml.library.path` ← `APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
- `ggml.library.reg` ← `APIR_LLAMA_CPP_GGML_LIBRARY_REG`
- this step will eventually be performed by the hypervisor itself, with command-line arguments instead of environment variables.
3. **Backend Initialization**: The backend queries the configuration via callbacks:
- `virgl_cbs->get_config(ctx_id, "ggml.library.path")` returns the library path
- `virgl_cbs->get_config(ctx_id, "ggml.library.reg")` returns the registration function
4. **Library Loading**: The backend dynamically loads and initializes the specified GGML library
## Error Messages
Common error scenarios and their messages:
- **Missing library path**: `"cannot open the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_PATH' not defined"`
- **Missing registration function**: `"cannot register the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_REG' not defined"`
## Example Complete Configuration
Here's an example configuration for a macOS host with Metal backend:
```bash
# Hypervisor environment
export VIRGL_APIR_BACKEND_LIBRARY="/opt/llama.cpp/lib/libggml-virtgpu-backend.dylib"
# Backend configuration
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
# Optional logging
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir.log"
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml.log"
# Guest configuration
export GGML_REMOTING_USE_APIR_CAPSET=1
```

View File

@@ -0,0 +1,220 @@
# Development and Testing
## Development
### Code Generation
The backend uses code generation from YAML configuration:
```bash
# Regenerate protocol code
cd ggml-virtgpu/
python regenerate_remoting.py
```
### Adding New Operations
1. Add function definition to `ggmlremoting_functions.yaml`
2. Regenerate code with `regenerate_remoting.py`
3. Implement guest-side forwarding in `virtgpu-forward-*.cpp`
4. Implement host-side handling in `backend-dispatched-*.cpp`
## Testing
This document provides instructions for building and testing the GGML-VirtGPU backend on macOS with containers.
### Prerequisites
The testing setup requires:
- macOS host system
- Container runtime with `libkrun` provider (podman machine)
- Access to development patchset for VirglRenderer
### Required Patchsets
The backend requires patches that are currently under review:
- **Virglrenderer APIR upstream PR**: https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590 (for reference)
- **MacOS Virglrenderer (for krunkit)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-macos
- **Linux Virglrenderer (for krun)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-linux
### Build Instructions
#### 1. Build ggml-virtgpu-backend (Host-side, macOS)
```bash
# Build the backend that runs natively on macOS
mkdir llama.cpp
cd llama.cpp
git clone https://github.com/ggml-org/llama.cpp.git src
cd src
LLAMA_MAC_BUILD=$PWD/build/ggml-virtgpu-backend
cmake -S . -B $LLAMA_MAC_BUILD \
-DGGML_NATIVE=OFF \
-DLLAMA_CURL=ON \
-DGGML_REMOTINGBACKEND=ONLY \
-DGGML_METAL=ON
TARGETS="ggml-metal"
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $TARGETS
# Build additional tools for native benchmarking
EXTRA_TARGETS="llama-run llama-bench"
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $EXTRA_TARGETS
```
#### 2. Build virglrenderer (Host-side, macOS)
```bash
# Build virglrenderer with APIR support
mkdir virglrenderer
git clone https://gitlab.freedesktop.org/kpouget/virglrenderer -b main-macos src
cd src
VIRGL_BUILD_DIR=$PWD/build
# -Dvenus=true and VIRGL_ROUTE_VENUS_TO_APIR=1 route the APIR requests via the Venus backend, for easier testing without a patched hypervisor
meson setup $VIRGL_BUILD_DIR \
-Dvenus=true \
-Dapir=true
ninja -C $VIRGL_BUILD_DIR
```
#### 3. Build ggml-virtgpu (Guest-side, Linux)
Option A: Build from a script:
```bash
# Inside a Linux container
mkdir llama.cpp
git clone https://github.com/ggml-org/llama.cpp.git src
cd src
LLAMA_LINUX_BUILD=$PWD//build-virtgpu
cmake -S . -B $LLAMA_LINUX_BUILD \
-DGGML_VIRTGPU=ON
ninja -C $LLAMA_LINUX_BUILD
```
Option B: Build container image with frontend:
```bash
cat << EOF > remoting.containerfile
FROM quay.io/fedora/fedora:43
USER 0
WORKDIR /app/remoting
ARG LLAMA_CPP_REPO="https://github.com/ggml-org/llama.cpp.git"
ARG LLAMA_CPP_VERSION="master"
ARG LLAMA_CPP_CMAKE_FLAGS="-DGGML_VIRTGPU=ON"
ARG LLAMA_CPP_CMAKE_BUILD_FLAGS="--parallel 4"
RUN dnf install -y git cmake gcc gcc-c++ libcurl-devel libdrm-devel
RUN git clone "\${LLAMA_CPP_REPO}" src \\
&& git -C src fetch origin \${LLAMA_CPP_VERSION} \\
&& git -C src reset --hard FETCH_HEAD
RUN mkdir -p build \\
&& cd src \\
&& set -o pipefail \\
&& cmake -S . -B ../build \${LLAMA_CPP_CMAKE_FLAGS} \\
&& cmake --build ../build/ \${LLAMA_CPP_CMAKE_BUILD_FLAGS}
ENTRYPOINT ["/app/remoting/src/build/bin/llama-server"]
EOF
mkdir -p empty_dir
podman build -f remoting.containerfile ./empty_dir -t localhost/llama-cpp.virtgpu
```
### Environment Setup
#### Set krunkit Environment Variables
```bash
# Define the base directories (adapt these paths to your system)
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build
LLAMA_MAC_BUILD=$HOME/remoting/llama.cpp/build-backend
# For krunkit to load the custom virglrenderer library
export DYLD_LIBRARY_PATH=$VIRGL_BUILD_DIR/src
# For Virglrenderer to load the ggml-remotingbackend library
export VIRGL_APIR_BACKEND_LIBRARY="$LLAMA_MAC_BUILD/bin/libggml-virtgpu-backend.dylib"
# For llama.cpp remotingbackend to load the ggml-metal backend
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="$LLAMA_MAC_BUILD/bin/libggml-metal.dylib"
export APIR_LLAMA_CPP_GGML_LIBRARY_REG=ggml_backend_metal_reg
```
#### Launch Container Environment
```bash
# Set container provider to libkrun
export CONTAINERS_MACHINE_PROVIDER=libkrun
podman machine start
```
#### Verify Environment
Confirm that krunkit is using the correct virglrenderer library:
```bash
lsof -c krunkit | grep virglrenderer
# Expected output:
# krunkit 50574 user txt REG 1,14 2273912 10849442 ($VIRGL_BUILD_DIR/src)/libvirglrenderer.1.dylib
```
### Running Tests
#### Launch Test Container
```bash
# Optional model caching
mkdir -p models
PODMAN_CACHE_ARGS="-v models:/models --user root:root --cgroupns host --security-opt label=disable -w /models"
podman run $PODMAN_CACHE_ARGS -it --rm --device /dev/dri localhost/llama-cpp.virtgpu
```
#### Test llama.cpp in Container
```bash
# Run performance benchmark
/app/remoting/build/bin/llama-bench -m ./llama3.2
```
Expected output (performance may vary):
```
| model | size | params | backend | ngl | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | ------------: | -------------------: |
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | pp512 | 991.30 ± 0.66 |
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | tg128 | 85.71 ± 0.11 |
```
### Troubleshooting
#### SSH Environment Variable Issues
⚠️ **Warning**: Setting `DYLD_LIBRARY_PATH` from SSH doesn't work on macOS. Here is a workaround:
**Workaround 1: Replace system library**
```bash
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build # ⚠️ adapt to your system
BREW_VIRGL_DIR=/opt/homebrew/Cellar/virglrenderer/0.10.4d/lib
VIRGL_LIB=libvirglrenderer.1.dylib
cd $BREW_VIRGL_DIR
mv $VIRGL_LIB ${VIRGL_LIB}.orig
ln -s $VIRGL_BUILD_DIR/src/$VIRGL_LIB
```

View File

@@ -1,5 +1,5 @@
{
"version": 4,
"version": 5,
"configurePresets": [
{
"name": "arm64-android-snapdragon",
@@ -16,7 +16,9 @@
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
"PREBUILT_LIB_DIR": "android_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",
@@ -31,7 +33,15 @@
"name": "arm64-windows-snapdragon",
"inherits": [ "base", "arm64-windows-llvm" ],
"cacheVariables": {
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"CMAKE_C_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
"CMAKE_CXX_FLAGS": "-march=armv8.7a+fp16 -fvectorize -ffp-model=fast -flto -D_GNU_SOURCE",
"CMAKE_C_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_CXX_FLAGS_RELEASE": "-O3 -DNDEBUG",
"CMAKE_C_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_CXX_FLAGS_RELWITHDEBINFO": "-O3 -DNDEBUG -g",
"CMAKE_PREFIX_PATH": "$env{OPENCL_SDK_ROOT}",
"HEXAGON_SDK_ROOT": "$env{HEXAGON_SDK_ROOT}",
"HEXAGON_TOOLS_ROOT": "$env{HEXAGON_TOOLS_ROOT}",
"PREBUILT_LIB_DIR": "windows_aarch64",
"GGML_OPENMP": "OFF",
"GGML_LLAMAFILE": "OFF",

View File

@@ -1,6 +1,8 @@
# Snapdragon-based Android devices
# Snapdragon-based devices
## How to Build
## Setup
### Android
The easiest way to build llama.cpp for a Snapdragon-based Android device is using the toolchain Docker image (see github.com/snapdragon-toolchain).
This image includes Android NDK, OpenCL SDK, Hexagon SDK, CMake, etc.
@@ -12,11 +14,28 @@ This method works on Linux, macOS, and Windows. macOS and Windows users should i
[d]/> cd /workspace
```
The rest of the Android build process assumes that you're running inside the toolchain container.
Note: The rest of the **Android** build process assumes that you're running inside the toolchain container.
### Windows On Snapdragon
Native Windows 11 arm64 builds has the following tools dependencies:
- MS Visual Studio 2026 (Community Edition or Pro)
- MSVC arm64 standard and runtime libraries
- UCRT and Driver Kit
- LLVM core libraries and Clang compiler (winget)
- CMake, Git, Python (winget)
- Hexagon SDK Community Edition 6.4 or later (see windows.md)
- OpenCL SDK 2.3 or later (see windows.md)
Note: The rest of the **Windows** build process assumes that you're running natively in Powershell.
Adapt below build commands accordingly.
## How to Build
Let's build llama.cpp with CPU, OpenCL, and Hexagon backends via CMake presets:
```
[d]/workspace> cp docs/backend/hexagon/CMakeUserPresets.json .
[d]/workspace> cp docs/backend/snapdragon/CMakeUserPresets.json .
[d]/workspace> cmake --preset arm64-android-snapdragon-release -B build-snapdragon
Preset CMake variables:
@@ -49,24 +68,26 @@ Preset CMake variables:
To generate an installable "package" simply use cmake --install:
```
[d]/workspace> cmake --install build-snapdragon --prefix pkg-adb/llama.cpp
[d]/workspace> cmake --install build-snapdragon --prefix pkg-snapdragon/llama.cpp
-- Install configuration: "Release"
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-adb/llama.cpp/lib/libggml.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-cpu.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-opencl.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-hexagon.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v73.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v75.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v79.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml-htp-v81.so
-- Installing: /workspace/pkg-snapdragon/llama.cpp/lib/libggml.so
...
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-adb/llama.cpp/bin/llama-cli
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-bench
-- Installing: /workspace/pkg-snapdragon/llama.cpp/bin/llama-cli
...
```
## How to Install
### Android
For this step, your device needs to be configured for on-device development.
Please see https://developer.android.com/studio/debug/dev-options for details.
@@ -74,10 +95,10 @@ Once ADB is enabled, use `adb push` to install `pkg-snapdragon` on the device.
**Note that the toolchain Docker image doesn't have ADB and doesn't set up the ADB bridge. Please use native ADB on the host.**
```
~/src/llama.cpp$ adb push pkg-adb/llama.cpp /data/local/tmp/
pkg-adb/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-adb/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-adb/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
~/src/llama.cpp$ adb push pkg-snapdragon/llama.cpp /data/local/tmp/
pkg-snapdragon/llama.cpp/bin/: 67 files pushed, 0 skipped. 190.2 MB/s (919095042 bytes in 4.607s)
pkg-snapdragon/llama.cpp/include/: 19 files pushed, 0 skipped. 20.5 MB/s (255173 bytes in 0.012s)
pkg-snapdragon/llama.cpp/lib/: 16 files pushed, 0 skipped. 144.4 MB/s (43801382 bytes in 0.289s)
102 files pushed, 0 skipped. 186.9 MB/s (963151597 bytes in 4.914s)
```
@@ -92,6 +113,11 @@ At this point, you should also install some models:
Llama-3.2-1B-Instruct-Q4_0.gguf: 1 file pushed, 0 skipped. 38.3 MB/s (773025920 bytes in 19.250s)
```
### Windows
All artifacts are already installed in the `pkg-snapdragon` folder.
To run, adapt below instructions to use Powershell scrits in `scripts/snapdragon/windows`.
## How to Run
The easiest way to run llama.cpp cli tools is using provided wrapper scripts that properly set up all required environment variables.

View File

@@ -0,0 +1,161 @@
## Overview
The document covers procedures for installing the latest GPU and NPU drivers, and OpenCL and Hexagon SDKs.
In order to use Hexagon NPU on Snapdragon Windows devices the underlying HTP Ops libraries (e.g libggml-htp-v73.so)
must be included in the .cat file digitally signed with a trusted certificate.
This document covers details on how to generate personal certificate files (.pfx) and how to configure the system
to allow for test signatures (aka test-signing).
## Install the latest Adreno OpenCL SDK
Either use the trimmed down version (optimized for CI) from
https://github.com/snapdragon-toolchain/opencl-sdk/releases/download/v2.3.2/adreno-opencl-sdk-v2.3.2-arm64-wos.tar.xz
Or download the complete official version from
https://softwarecenter.qualcomm.com/catalog/item/Adreno_OpenCL_SDK?version=2.3.2
Unzip/untar the archive into
```
c:\Qualcomm\OpenCL_SDK\2.3.2
```
## Install the latest Hexagon SDK Community Edition
Either use the trimmed down version (optimized for CI) from
https://github.com/snapdragon-toolchain/hexagon-sdk/releases/download/v6.4.0.2/hexagon-sdk-v6.4.0.2-arm64-wos.tar.xz
Or download the complete official version from
https://softwarecenter.qualcomm.com/catalog/item/Hexagon_SDK?version=6.4.0.2
Unzip/untar the archive into
```
c:\Qualcomm\Hexagon_SDK\6.4.0.2
```
## Install the latest Adreno GPU driver
Download the driver from
https://softwarecenter.qualcomm.com/catalog/item/Windows_Graphics_Driver
After the automated installation and reboot please make sure that the GPU device shows up in the `Device Manager` (under 'Display Adapters`)
## Install the latest Qualcomm NPU driver
Download the driver from
https://softwarecenter.qualcomm.com/catalog/item/Qualcomm_HND
After the automated installation and reboot please make sure that the Hexagon NPU device shows up in the `Device Manager` (under `Neural Processors`).
If the device is not available you can try installing all components (`qcnspmcdm8380`, `qcnspmcdm8380_ext`) manually.
The components are extracted into
```
c:\QCDrivers\qcnspmcdm...
```
## Enable NPU driver test signatures
Please note that the following steps are required only for the Hexagon NPU.
Adreno GPU backend does not require test signatures.
### Enable testsigning
Use `bcdedit` to enable test-signing
```
> bcdedit /set TESTSIGNING ON
```
(Secure Boot may need to be disabled for this to work)
Make sure test-signing is enabled after reboot
```
> bcdedit /enum
...
testsigning Yes
...
```
For additional details see Microsoft guide at
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/the-testsigning-boot-configuration-option
### Create personal certificate
The tools required for this procedure are available as part of Windows SDK and Windows Driver Kit which should be
installed as part of the MS Visual Studio.
They are typically located at
```
c:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0
```
(replace 10.0.26100.0 with correct version).
To create personal self-signed certificate run the following commands (either from cmd or power-shell):
```
> cd c:\Users\MyUser
> mkdir Certs
> cd Certs
> makecert -r -pe -ss PrivateCertStore -n CN=GGML.HTP.v1 -eku 1.3.6.1.5.5.7.3.3 -sv ggml-htp-v1.pvk ggml-htp-v1.cer
> pvk2pfx.exe -pvk ggml-htp-v1.pvk -spc ggml-htp-v1.cer -pfx ggml-htp-v1.pfx
```
(replace `MyUser` with your username).
Add this certificate to `Trusted Root Certification Authorities` and `Trusted Publishers` stores.
This can be done using `certlm` Certificate Manager tool.
Right click on the certificate store, select `All Tasks -> Import` and follow the prompts to import the certificate from the
PFX file you created above.
For additional details see Microsoft guide at
https://learn.microsoft.com/en-us/windows-hardware/drivers/install/introduction-to-test-signing
Make sure to save the PFX file, you will need it for the build procedures.
Please note that the same certificate can be used for signing any number of builds.
## Build Hexagon backend with signed HTP ops libraries
The overall Hexagon backend build procedure for Windows on Snapdragon is the same as for other platforms.
However, additional settings are required for generating and signing HTP Ops libraries.
```
> $env:OPENCL_SDK_ROOT="C:\Qualcomm\OpenCL_SDK\2.3.2"
> $env:HEXAGON_SDK_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2"
> $env:HEXAGON_TOOLS_ROOT="C:\Qualcomm\Hexagon_SDK\6.4.0.2\tools\HEXAGON_Tools\19.0.04"
> $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx"
> $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64"
> cmake --preset arm64-windows-snapdragon-release -B build-wos
...
> cmake --install build-wos --prefix pkg-snapdragon
```
Once the build is complete HTP ops libraries will be installed like this
```
> dir pkg-snapdragon/lib
...
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v73.so
-a---- 1/22/2026 6:01 PM 191752 libggml-htp-v75.so
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v79.so
-a---- 1/22/2026 6:01 PM 187656 libggml-htp-v81.so
-a---- 1/22/2026 6:01 PM 4139 libggml-htp.cat
```
The .cat file, the signature and proper certicate installation can be verified with
```
> signtool.exe verify /v /pa .\pkg-snapdragon\lib\libggml-htp.cat
Verifying: .\pkg-snapdragon\lib\libggml-htp.cat
Signature Index: 0 (Primary Signature)
Hash of file (sha256): 9820C664DA59D5EAE31DBB664127FCDAEF59CDC31502496BC567544EC2F401CF
Signing Certificate Chain:
Issued to: GGML.HTP.v1
...
Successfully verified: .\pkg-snapdragon\lib\libggml-htp.cat
...
```

View File

@@ -242,10 +242,10 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
|------------|-------------|------|-------|
| FP32 | ✅ | ✅ | ❓ |
| FP16 | ✅ | ✅ | ❓ |
| BF16 | 🚫 | ✅ | ❓ |
| BF16 | | ✅ | ❓ |
| Q4_0 | ✅ | ❓ | ❓ |
| Q4_1 | ✅ | ❓ | ❓ |
| MXFP4 | 🚫 | ❓ | ❓ |
| MXFP4 | | ❓ | ❓ |
| Q5_0 | ✅ | ❓ | ❓ |
| Q5_1 | ✅ | ❓ | ❓ |
| Q8_0 | ✅ | ❓ | ❓ |
@@ -272,4 +272,4 @@ IBM VXE/VXE2 SIMD acceleration depends on the BLAS implementation. It is strongl
- 🚫 - acceleration unavailable, will still run using scalar implementation
- ❓ - acceleration unknown, please contribute if you can test it yourself
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Sep 7, 2025.
Last Updated by **Aaron Teo (aaron.teo1@ibm.com)** on Feb 15, 2026.

View File

@@ -252,9 +252,7 @@ CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.ggu
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details.
Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
### Unified Memory
@@ -495,6 +493,37 @@ Finally, after finishing your build, you should be able to do something like thi
# ggml_vulkan: Using Intel(R) Graphics (ADL GT2) | uma: 1 | fp16: 1 | warp size: 32
```
### For Mac users:
Generally, follow LunarG's [Getting Started with the MacOS Vulkan SDK](https://vulkan.lunarg.com/doc/sdk/latest/mac/getting_started.html) guide for installation and setup of the Vulkan SDK. There are two options of Vulkan drivers on macOS, both of which implement translation layers to map Vulkan to Metal. They can be hot-swapped by setting the `VK_ICD_FILENAMES` environment variable to point to the respective ICD JSON file.
Check the box for "KosmicKrisp" during the LunarG Vulkan SDK installation.
Set environment variable for the LunarG Vulkan SDK after installation (and optionally add to your shell profile for persistence):
```bash
source /path/to/vulkan-sdk/setup-env.sh
```
#### Using MoltenVK
MoltenVK is the default Vulkan driver installed with the LunarG Vulkan SDK on macOS, so you can use the above environment variable settings as is.
#### Using KosmicKrisp
Override the environment variable for KosmicKrisp:
```bash
export VK_ICD_FILENAMES=$VULKAN_SDK/share/vulkan/icd.d/libkosmickrisp_icd.json
export VK_DRIVER_FILES=$VULKAN_SDK/share/vulkan/icd.d/libkosmickrisp_icd.json
```
#### Build
This is the only step different from [above](#common-steps) instructions.
```bash
cmake -B build -DGGML_VULKAN=1 -DGGML_METAL=OFF
cmake --build build --config Release
```
## CANN
This provides NPU acceleration using the AI cores of your Ascend NPU. And [CANN](https://www.hiascend.com/en/software/cann) is a hierarchical APIs to help you to quickly build AI applications and service based on Ascend NPU.

View File

@@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
### Build llama.cpp
Readme modification time: 20250731
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m
### Build llama.cpp
Readme modification time: 20250826
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
@@ -97,7 +97,7 @@ Legend:
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
@@ -113,8 +113,8 @@ Legend:
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | ✅ | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | | ✅ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
| XIELU | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ |

File diff suppressed because it is too large Load Diff

183
docs/speculative.md Normal file
View File

@@ -0,0 +1,183 @@
# Speculative Decoding
llama.cpp supports speculative decoding, a technique that can significantly accelerate token generation by predicting multiple tokens ahead of the main model.
[Speculative decoding](https://en.wikipedia.org/wiki/Transformer_(deep_learning)#Speculative_decoding) leverages the fact that computing n tokens in a batch (as in prompt processing) is more efficient than computing n sequentially (as in response generation). By generating draft tokens quickly and then verifying them with the target model in a single batch, this approach can achieve substantial speedups when the draft predictions are frequently correct.
## Implementations
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
### Draft Model (`draft`)
A much smaller model (called the _draft model_) generates drafts.
A draft model is the most used approach in speculative decoding.
### n-gram Cache (`ngram-cache`)
An n-gram is a sequence of n tokens. The n-gram cache implementation maintains statistics about short n-gram sequences.
A draft is computed using probabilities derived from these statistics. External statistics can also be loaded from files for improved accuracy.
See:
- #5479, #6828, #6848
### n-gram Map (`ngram-simple`, `ngram-map-*`)
These implementations search the token history for patterns and use matching sequences as draft candidates.
They require no additional model but rely on patterns that have already appeared in the generated text.
An example to use this approach can be the rewriting of source code by a LLM.
#### n-gram Map (`ngram-simple`)
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
```
llama-server [...] --spec-type ngram-simple --draft-max 64
```
#### n-gram Map Key (`ngram-map-k`)
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
The number of accepted tokens is stored for each used n-gram.
**Example:**
```
llama-server [...] --spec-type ngram-map-k --draft-max 64
```
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
The number of accepted tokens is stored for each used n-gram.
**Example:** Server options to be used if there are a lot of longer repetitions.
```
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
```
### n-gram Mod (`ngram-mod`)
Add basic ngram hasher for speculative decoding:
- For each ngram, compute a hash using LCG
- For each computed hash, store the next token
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
Some characteristics:
- Lightweight (~16 MB)
- Constant memory and complexity
- Can generate variable draft lengths (i.e. m is not fixed)
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
**Sample usage:**
```
# notes:
# - small `n` are not recommended
# - MoEs require long drafts
# - dense models: can reduce `--draft-min` and `--draft-max`
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
```
Applications:
- Iterating over a block of text/code (e.g. in llama.vim)
- Reasoning models (when they have to repeat their thinking in the final answer)
- Summarization
Example Video:
- See #19164
### Differences between ngram-simple, ngram-map and ngram-mod
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
## Command-Line Options
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
```
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
(env: LLAMA_ARG_DRAFT_MAX)
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
(default: 0)
(env: LLAMA_ARG_DRAFT_MIN)
[...]
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
type of speculative decoding to use when no draft model is provided
(default: none)
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
of lookup n-gram (default: 12)
--spec-ngram-size-m N ngram size M for ngram-simple/ngram-map speculative decoding, length
of draft m-gram (default: 48)
--spec-ngram-min-hits N minimum hits for ngram-map speculative decoding (default: 1)
```
### `--spec-type TYPE`
Specifies a type of speculative decoding without draft model.
| Type | Description |
|------|-------------|
| `none` | No speculative decoding (default) |
| `ngram-cache` | Use n-gram cache lookup |
| `ngram-simple` | Use simple n-gram pattern matching |
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
**Example:** Server-instance used to refactor source code.
```bash
./llama-server [...] --spec-type ngram-simple
```
### `--spec-ngram-size-n N`
Sets the size N of the lookup n-gram for n-gram map based speculative decoding.
The n-gram size N determines how many tokens in a row to look back when searching for matching patterns.
### `--spec-ngram-size-m M`
Sets the size M of the draft m-gram for n-gram map based speculative decoding.
The m-gram size determines how many tokens to draft when a match is found.
Larger values can provide more speedup but may reduce acceptance rate.
### `--spec-ngram-min-hits H`
This option defines how often a key has to appear in the token history to be used as a draft (default is 1).
## Statistics
Each speculative decoding implementation prints statistics.
```
draft acceptance rate = 0.57576 ( 171 accepted / 297 generated)
statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tokens = 187, #acc tokens = 73
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
```
```
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
```
```
statistics ngram_map_k: #calls(b,g,a) = 6 1690 26, #gen drafts = 26, #acc drafts = 26, #gen tokens = 1248, #acc tokens = 968, dur(b,g,a) = 2.234, 1.427, 0.016 ms
```
- `#calls(b,g,a)`: number of calls of begin (new prompt), generation and accumulation of this implementations
- `#gen drafts`: number of drafts generated by this implementation
- `#acc drafts`: number of drafts accepted (partially) by the main model
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
- `#acc tokens`: number of tokens accepted by the main model
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).

View File

@@ -1,7 +1,7 @@
# Migration notice for binary filenames
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809)
This migration was important, but it is a breaking change that may not always be immediately obvious to users.

View File

@@ -28,7 +28,7 @@ int main(int argc, char** argv) {
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;

View File

@@ -402,7 +402,7 @@ class SchemaConverter:
Transforms a regular expression pattern into a GBNF rule.
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.

View File

@@ -50,6 +50,12 @@ int main(int argc, char ** argv) {
const int N = 5; // n-gram size
const int G = 15; // max verification n-grams
// lookahead requires W + G + 1 sequences for parallel Jacobi decoding
params.n_parallel = W + G + 1;
// unified KV cache is required for coupled sequences in batch splitting
params.kv_unified = true;
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
@@ -115,7 +121,7 @@ int main(int argc, char ** argv) {
// seq_id == 0 : the current input token
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
// seq_id [W + 1, W + G] : verification n-grams
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
llama_batch batch = llama_batch_init(llama_n_ctx(ctx), 0, W + G + 1);
// target model sampling context
struct common_sampler * smpl = common_sampler_init(model, params.sampling);

View File

@@ -32,9 +32,9 @@ int main(int argc, char ** argv){
common_ngram_cache ngram_cache;
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.speculative.lookup_cache_static.c_str());
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
common_ngram_cache_save(ngram_cache, params.speculative.lookup_cache_static);
return 0;
}

View File

@@ -46,18 +46,18 @@ int main(int argc, char ** argv){
{
const int64_t t_start_draft_us = ggml_time_us();
if (!params.lookup_cache_static.empty()) {
if (!params.speculative.lookup_cache_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
if (!params.speculative.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}

View File

@@ -51,18 +51,18 @@ int main(int argc, char ** argv){
const int64_t t_start_draft_us = ggml_time_us();
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
if (!params.lookup_cache_static.empty()) {
if (!params.speculative.lookup_cache_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
if (!params.speculative.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
@@ -106,7 +106,7 @@ int main(int argc, char ** argv){
std::vector<llama_token> draft;
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx), 0, 1);
const auto t_dec_start = ggml_time_us();
@@ -210,7 +210,7 @@ int main(int argc, char ** argv){
// Update dynamic ngram cache with context ngram cache and save it to disk:
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
common_ngram_cache_save(ngram_cache_dynamic, params.speculative.lookup_cache_dynamic);
LOG("\n\n");

View File

@@ -33,11 +33,14 @@ DEVICE ?= auto
causal-convert-model-bf16: OUTTYPE=bf16
causal-convert-model-bf16: causal-convert-model
causal-convert-model-debug: DEBUG=--debug
causal-convert-model-debug: causal-convert-model
causal-convert-model:
$(call validate_model_path,causal-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
./scripts/causal/convert-model.sh $(DEBUG)
causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16

View File

@@ -4,12 +4,17 @@ set -e
# Parse command line arguments
MMPROJ=""
DEBUG=""
while [[ $# -gt 0 ]]; do
case $1 in
--mmproj)
MMPROJ="--mmproj"
shift
;;
--debug)
DEBUG="1"
shift
;;
*)
shift
;;
@@ -28,7 +33,12 @@ echo "Data type: ${TYPE}"
echo "Converted model path:: ${CONVERTED_MODEL}"
echo "Metadata override: ${METADATA_OVERRIDE}"
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
if [[ -n "$DEBUG" ]]; then
CMD_ARGS=("python" "-m" "pdb")
else
CMD_ARGS=("python")
fi
CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose")
CMD_ARGS+=("${MODEL_PATH}")
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
CMD_ARGS+=("--outtype" "${TYPE}")

View File

@@ -0,0 +1,159 @@
#!/usr/bin/env python3
import argparse
import json
import os
import re
import sys
from pathlib import Path
from typing import Optional
from safetensors import safe_open
MODEL_SAFETENSORS_FILE = "model.safetensors"
MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json"
def get_weight_map(model_path: Path) -> Optional[dict[str, str]]:
index_file = model_path / MODEL_SAFETENSORS_INDEX
if index_file.exists():
with open(index_file, 'r') as f:
index = json.load(f)
return index.get("weight_map", {})
return None
def get_all_tensor_names(model_path: Path) -> list[str]:
weight_map = get_weight_map(model_path)
if weight_map is not None:
return list(weight_map.keys())
single_file = model_path / MODEL_SAFETENSORS_FILE
if single_file.exists():
try:
with safe_open(single_file, framework="pt", device="cpu") as f:
return list(f.keys())
except Exception as e:
print(f"Error reading {single_file}: {e}")
sys.exit(1)
print(f"Error: No safetensors files found in {model_path}")
sys.exit(1)
def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]:
weight_map = get_weight_map(model_path)
if weight_map is not None:
return weight_map.get(tensor_name)
single_file = model_path / MODEL_SAFETENSORS_FILE
if single_file.exists():
return single_file.name
return None
def normalize_tensor_name(tensor_name: str) -> str:
normalized = re.sub(r'\.\d+\.', '.#.', tensor_name)
normalized = re.sub(r'\.\d+$', '.#', normalized)
return normalized
def list_all_tensors(model_path: Path, unique: bool = False):
tensor_names = get_all_tensor_names(model_path)
if unique:
seen = set()
for tensor_name in sorted(tensor_names):
normalized = normalize_tensor_name(tensor_name)
if normalized not in seen:
seen.add(normalized)
print(normalized)
else:
for tensor_name in sorted(tensor_names):
print(tensor_name)
def print_tensor_info(model_path: Path, tensor_name: str):
tensor_file = find_tensor_file(model_path, tensor_name)
if tensor_file is None:
print(f"Error: Could not find tensor '{tensor_name}' in model index")
print(f"Model path: {model_path}")
sys.exit(1)
file_path = model_path / tensor_file
try:
with safe_open(file_path, framework="pt", device="cpu") as f:
if tensor_name in f.keys():
tensor_slice = f.get_slice(tensor_name)
shape = tensor_slice.get_shape()
print(f"Tensor: {tensor_name}")
print(f"File: {tensor_file}")
print(f"Shape: {shape}")
else:
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
sys.exit(1)
except FileNotFoundError:
print(f"Error: The file '{file_path}' was not found.")
sys.exit(1)
except Exception as e:
print(f"An error occurred: {e}")
sys.exit(1)
def main():
parser = argparse.ArgumentParser(
description="Print tensor information from a safetensors model"
)
parser.add_argument(
"tensor_name",
nargs="?", # optional (if --list is used for example)
help="Name of the tensor to inspect"
)
parser.add_argument(
"-m", "--model-path",
type=Path,
help="Path to the model directory (default: MODEL_PATH environment variable)"
)
parser.add_argument(
"-l", "--list",
action="store_true",
help="List unique tensor patterns in the model (layer numbers replaced with #)"
)
args = parser.parse_args()
model_path = args.model_path
if model_path is None:
model_path_str = os.environ.get("MODEL_PATH")
if model_path_str is None:
print("Error: --model-path not provided and MODEL_PATH environment variable not set")
sys.exit(1)
model_path = Path(model_path_str)
if not model_path.exists():
print(f"Error: Model path does not exist: {model_path}")
sys.exit(1)
if not model_path.is_dir():
print(f"Error: Model path is not a directory: {model_path}")
sys.exit(1)
if args.list:
list_all_tensors(model_path, unique=True)
else:
if args.tensor_name is None:
print("Error: tensor_name is required when not using --list")
sys.exit(1)
print_tensor_info(model_path, args.tensor_name)
if __name__ == "__main__":
main()

View File

@@ -24,7 +24,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.speculative.model.path.empty()) {
if (params.speculative.mparams_dft.path.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}
@@ -34,10 +34,8 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
llama_model * model_tgt = NULL;
//llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
// load the target model
auto llama_init_tgt = common_init_from_params(params);
@@ -48,26 +46,38 @@ int main(int argc, char ** argv) {
const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
// load the draft model
params.devices = params.speculative.devices;
params.model = params.speculative.model;
params.n_ctx = params.speculative.n_ctx;
params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
params.n_gpu_layers = params.speculative.n_gpu_layers;
llama_model_ptr model_dft;
if (params.speculative.cpuparams.n_threads > 0) {
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
}
// TODO: simplify this logic
{
const auto & params_spec = params.speculative;
params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
params.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
auto params_dft = params;
auto llama_init_dft = common_init_from_params(params);
params_dft.n_parallel = 1;
params_dft.n_ctx = params_spec.n_ctx;
params_dft.n_batch = llama_n_ctx_seq(ctx_tgt);
params_dft.devices = params_spec.devices;
params_dft.model = params_spec.mparams_dft;
params_dft.n_gpu_layers = params_spec.n_gpu_layers;
//model_dft = llama_init_dft->model();
ctx_dft = llama_init_dft->context();
if (params_spec.cpuparams.n_threads > 0) {
params_dft.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
params_dft.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
}
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
params_dft.tensor_buft_overrides = params.speculative.tensor_buft_overrides;
auto mparams_dft = common_model_params_to_llama(params_dft);
model_dft.reset(llama_model_load_from_file(params_dft.model.path.c_str(), mparams_dft));
if (model_dft == nullptr) {
LOG_ERR("failed to load draft model, '%s'\n", params_dft.model.path.c_str());
return 1;
}
params.speculative.model_dft = model_dft.get();
params.speculative.cparams_dft = common_context_params_to_llama(params_dft);
}
// Tokenize the prompt
@@ -92,12 +102,6 @@ int main(int argc, char ** argv) {
LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
}
// how many tokens to draft each time
int n_draft = params.speculative.n_max;
int n_draft_min = params.speculative.n_min;
float p_min = params.speculative.p_min;
int n_predict = 0;
int n_drafted = 0;
int n_accept = 0;
@@ -127,15 +131,11 @@ int main(int argc, char ** argv) {
int n_past = inp.size() - 1;
// init the speculator
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft;
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
params_spec.p_min = p_min;
const auto & params_spec = params.speculative;
struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
for (auto &pair : params.speculative.replacements) {
common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
}
struct common_speculative * spec = common_speculative_init(params.speculative, ctx_tgt);
common_speculative_begin(spec, prompt_tgt);
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
@@ -151,7 +151,7 @@ int main(int argc, char ** argv) {
// offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
// from a cache or lookup tables.
//
llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
llama_tokens draft = common_speculative_draft(spec, params_spec, prompt_tgt, id_last);
//LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
@@ -162,7 +162,7 @@ int main(int argc, char ** argv) {
// evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
{
// do not waste time on small drafts
if (draft.size() < (size_t) n_draft_min) {
if (draft.size() < (size_t) params_spec.n_min) {
draft.clear();
}
@@ -240,7 +240,7 @@ int main(int argc, char ** argv) {
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_INF("\n");
LOG_INF("n_draft = %d\n", n_draft);
LOG_INF("n_draft = %d\n", params_spec.n_max);
LOG_INF("n_predict = %d\n", n_predict);
LOG_INF("n_drafted = %d\n", n_drafted);
LOG_INF("n_accept = %d\n", n_accept);
@@ -249,8 +249,6 @@ int main(int argc, char ** argv) {
LOG_INF("\n");
LOG_INF("draft:\n\n");
llama_perf_context_print(ctx_dft);
LOG_INF("\n");
LOG_INF("target:\n\n");
common_perf_print(ctx_tgt, smpl);

View File

@@ -46,7 +46,7 @@ int main(int argc, char ** argv) {
common_init();
if (params.speculative.model.path.empty()) {
if (params.speculative.mparams_dft.path.empty()) {
LOG_ERR("%s: --model-draft is required\n", __func__);
return 1;
}
@@ -78,7 +78,7 @@ int main(int argc, char ** argv) {
// load the draft model
params.devices = params.speculative.devices;
params.model = params.speculative.model;
params.model = params.speculative.mparams_dft;
params.n_gpu_layers = params.speculative.n_gpu_layers;
if (params.speculative.cpuparams.n_threads > 0) {
params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;

View File

@@ -18,13 +18,14 @@ CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
LOAD_MODE='--mmap'
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "use $GGML_SYCL_DEVICE as main GPU"
#use signle GPU only
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none ${LOAD_MODE}
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} ${LOAD_MODE}
fi

View File

@@ -1,31 +0,0 @@
#!/usr/bin/env bash
# MIT license
# Copyright (C) 2025 Intel Corporation
# SPDX-License-Identifier: MIT
# If you want more control, DPC++ Allows selecting a specific device through the
# following environment variable
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
source /opt/intel/oneapi/setvars.sh
#export GGML_SYCL_DEBUG=1
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
CONTEXT=4096
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
if [ $# -gt 0 ]; then
GGML_SYCL_DEVICE=$1
echo "Using $GGML_SYCL_DEVICE as the main GPU"
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
else
#use multiple GPUs with same max compute units
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
fi

130
examples/sycl/test.sh Executable file
View File

@@ -0,0 +1,130 @@
#!/bin/bash
# MIT license
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: MIT
Help() {
cat << EOF
Usage: $(basename "$0") [OPTIONS]
This script processes files with specified options.
Options:
-h, --help Display this help message and exit.
-c, --context <value> Set context length. Bigger need more memory.
-p, --promote <value> Prompt to start generation with.
-m, --model <value> Full model file path.
-mg,--main-gpu <value> Set main GPU ID (0 - n) for single GPU mode.
-sm,--split-mode <value> How to split the model across multiple GPUs, one of:
- none: use one GPU only
- layer (default): split layers and KV across GPUs
- row: split rows across GPUs
-ngl,--n-gpu-layers <value> Max. number of layers to store in VRAM (default: -1)
-lv,--log-verbosity <value> Set the verbosity threshold. Messages with a higher verbosity will be
ignored. Values:
- 0: generic output
- 1: error
- 2: warning
- 3: info
- 4: debug
EOF
}
BIN_FILE=./build/bin/llama-completion
SEED=0
GPUS_SETTING=""
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
NGL=99
CONTEXT=4096
GGML_SYCL_DEVICE=-1
SPLIT_MODE=layer
LOG_VERBOSE=3
while [[ $# -gt 0 ]]; do
case "$1" in
-c|--context)
CONTEXT=$2
# Shift twice to consume both the option flag and its value
shift
shift
;;
-p|--promote)
# Option that is a simple flag (boolean)
INPUT_PROMPT="$2"
# Shift once to consume the option flag
shift
shift
;;
-m|--model)
MODEL_FILE="$2"
# Shift twice to consume both the option flag and its value
shift
shift
;;
-mg|--main-gpu)
GGML_SYCL_DEVICE=$2
SPLIT_MODE=none
# Shift twice to consume both the option flag and its value
shift
shift
;;
-sm|--split-mode)
SPLIT_MODE=$2
# Shift twice to consume both the option flag and its value
shift
shift
;;
-ngl|--n-gpu-layers)
NGL=$2
# Shift twice to consume both the option flag and its value
shift
shift
;;
-lv|--log-verbosity)
LOG_VERBOSE=$2
# Shift twice to consume both the option flag and its value
shift
shift
;;
-h|--help)
Help
exit 0
;;
*)
# Handle unknown options or stop processing options
echo "Invalid option: $1"
# Optional: exit script or shift to treat remaining as positional args
exit 1
;;
esac
done
source /opt/intel/oneapi/setvars.sh
#export GGML_SYCL_DEBUG=1
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
#support malloc device memory more than 4GB.
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
echo "UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=${UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS}"
if [ $GGML_SYCL_DEVICE -ne -1 ]; then
echo "Use $GGML_SYCL_DEVICE as main GPU"
#use signle GPU only
GPUS_SETTING="-mg $GGML_SYCL_DEVICE -sm ${SPLIT_MODE}"
export ONEAPI_DEVICE_SELECTOR="level_zero:${$GGML_SYCL_DEVICE}"
echo "ONEAPI_DEVICE_SELECTOR=${ONEAPI_DEVICE_SELECTOR}"
else
echo "Use all Intel GPUs, including iGPU & dGPU"
fi
echo "run cmd: ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap "
ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap

View File

@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0
set LOAD_MODE="--mmap"
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%

View File

@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
:: support malloc device memory more than 4GB.
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
.\build\bin\llama-completion.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -no-cnv -p %INPUT2% -n 400 -s 0 -e -ngl 99
set LOAD_MODE="--mmap"
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%

View File

@@ -1,10 +1,10 @@
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
cmake_minimum_required(VERSION 3.14...3.28) # for add_link_options and implicit target directories.
project("ggml" C CXX ASM)
### GGML Version
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 5)
set(GGML_VERSION_PATCH 7)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
@@ -228,6 +228,8 @@ option(GGML_WEBGPU_CPU_PROFILE "ggml: enable WebGPU profiling (CPU)
option(GGML_WEBGPU_GPU_PROFILE "ggml: enable WebGPU profiling (GPU)" OFF)
option(GGML_WEBGPU_JSPI "ggml: use JSPI for WebGPU" ON)
option(GGML_ZDNN "ggml: use zDNN" OFF)
option(GGML_VIRTGPU "ggml: use the VirtGPU/Virglrenderer API Remoting frontend" OFF)
option(GGML_VIRTGPU_BACKEND "ggml: build the VirtGPU/Virglrenderer API Remoting backend" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
@@ -320,6 +322,7 @@ set(GGML_PUBLIC_HEADERS
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-virtgpu.h
include/ggml-sycl.h
include/ggml-vulkan.h
include/ggml-webgpu.h

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -19,6 +19,9 @@ extern "C" {
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
// use only reference implementations
bool use_ref;
};
// numa strategies
@@ -132,6 +135,8 @@ extern "C" {
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);

View File

@@ -0,0 +1,14 @@
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg();
#ifdef __cplusplus
}
#endif

View File

@@ -6,7 +6,7 @@
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
// https://github.com/ggml-org/whisper.cpp/issues/40
//
// ## Overview
//
@@ -752,6 +752,7 @@ extern "C" {
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_view (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);

View File

@@ -222,6 +222,7 @@ if (GGML_SCHED_NO_REALLOC)
endif()
add_library(ggml
ggml-backend-dl.cpp
ggml-backend-reg.cpp)
add_library(ggml::ggml ALIAS ggml)
@@ -451,6 +452,7 @@ ggml_add_backend(HIP)
ggml_add_backend(METAL)
ggml_add_backend(MUSA)
ggml_add_backend(RPC)
ggml_add_backend(VirtGPU)
ggml_add_backend(SYCL)
ggml_add_backend(Vulkan)
ggml_add_backend(WebGPU)

View File

@@ -17,11 +17,6 @@
//#define AT_PRINTF(...) GGML_LOG_DEBUG(__VA_ARGS__)
#define AT_PRINTF(...)
static bool ggml_is_view(const struct ggml_tensor * t) {
return t->view_src != NULL;
}
// ops that return true for this function must not use restrict pointers for their backend implementations
bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
@@ -627,7 +622,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
GGML_ASSERT(buffer_id >= 0);
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_impl_is_view(node)) {
hn->allocated = true;
assert(hn->addr.offset == 0);
@@ -658,7 +653,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
if (p_hn->n_children == 1 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
if (ggml_impl_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
@@ -739,7 +734,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
// itself is never used and should not be considered a dependency
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
if (ggml_impl_is_view(node) && node->op != GGML_OP_NONE) {
struct ggml_tensor * view_src = node->view_src;
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
}
@@ -806,7 +801,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_is_view(parent)) {
if (ggml_impl_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
view_src_hn->n_views -= 1;

View File

@@ -0,0 +1,48 @@
#include "ggml-backend-dl.h"
#ifdef _WIN32
dl_handle * dl_load_library(const fs::path & path) {
// suppress error dialogs for missing DLLs
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
HMODULE handle = LoadLibraryW(path.wstring().c_str());
SetErrorMode(old_mode);
return handle;
}
void * dl_get_sym(dl_handle * handle, const char * name) {
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
void * p = (void *) GetProcAddress(handle, name);
SetErrorMode(old_mode);
return p;
}
const char * dl_error() {
return "";
}
#else
dl_handle * dl_load_library(const fs::path & path) {
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
void * dl_get_sym(dl_handle * handle, const char * name) {
return dlsym(handle, name);
}
const char * dl_error() {
const char *rslt = dlerror();
return rslt != nullptr ? rslt : "";
}
#endif

View File

@@ -0,0 +1,45 @@
#pragma once
#ifdef _WIN32
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
# endif
# include <windows.h>
# include <winevt.h>
#else
# include <dlfcn.h>
# include <unistd.h>
#endif
#include <filesystem>
namespace fs = std::filesystem;
#ifdef _WIN32
using dl_handle = std::remove_pointer_t<HMODULE>;
struct dl_handle_deleter {
void operator()(HMODULE handle) {
FreeLibrary(handle);
}
};
#else
using dl_handle = void;
struct dl_handle_deleter {
void operator()(void * handle) {
dlclose(handle);
}
};
#endif
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
dl_handle * dl_load_library(const fs::path & path);
void * dl_get_sym(dl_handle * handle, const char * name);
const char * dl_error();

View File

@@ -1,5 +1,6 @@
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
#include "ggml-backend-dl.h"
#include "ggml-impl.h"
#include <algorithm>
#include <cstring>
@@ -69,6 +70,10 @@
#include "ggml-rpc.h"
#endif
#ifdef GGML_USE_VIRTGPU_FRONTEND
#include "ggml-virtgpu.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
@@ -94,72 +99,6 @@ static std::string path_str(const fs::path & path) {
}
}
#ifdef _WIN32
using dl_handle = std::remove_pointer_t<HMODULE>;
struct dl_handle_deleter {
void operator()(HMODULE handle) {
FreeLibrary(handle);
}
};
static dl_handle * dl_load_library(const fs::path & path) {
// suppress error dialogs for missing DLLs
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
HMODULE handle = LoadLibraryW(path.wstring().c_str());
SetErrorMode(old_mode);
return handle;
}
static void * dl_get_sym(dl_handle * handle, const char * name) {
DWORD old_mode = SetErrorMode(SEM_FAILCRITICALERRORS);
SetErrorMode(old_mode | SEM_FAILCRITICALERRORS);
void * p = (void *) GetProcAddress(handle, name);
SetErrorMode(old_mode);
return p;
}
static const char * dl_error() {
return "";
}
#else
using dl_handle = void;
struct dl_handle_deleter {
void operator()(void * handle) {
dlclose(handle);
}
};
static void * dl_load_library(const fs::path & path) {
dl_handle * handle = dlopen(path.string().c_str(), RTLD_NOW | RTLD_LOCAL);
return handle;
}
static void * dl_get_sym(dl_handle * handle, const char * name) {
return dlsym(handle, name);
}
static const char * dl_error() {
const char *rslt = dlerror();
return rslt != nullptr ? rslt : "";
}
#endif
using dl_handle_ptr = std::unique_ptr<dl_handle, dl_handle_deleter>;
struct ggml_backend_reg_entry {
ggml_backend_reg_t reg;
dl_handle_ptr handle;
@@ -180,7 +119,12 @@ struct ggml_backend_registry {
register_backend(ggml_backend_sycl_reg());
#endif
#ifdef GGML_USE_VULKAN
// Add runtime disable check
if (getenv("GGML_DISABLE_VULKAN") == nullptr) {
register_backend(ggml_backend_vk_reg());
} else {
GGML_LOG_DEBUG("Vulkan backend disabled by GGML_DISABLE_VULKAN environment variable\n");
}
#endif
#ifdef GGML_USE_WEBGPU
register_backend(ggml_backend_webgpu_reg());
@@ -188,6 +132,10 @@ struct ggml_backend_registry {
#ifdef GGML_USE_ZDNN
register_backend(ggml_backend_zdnn_reg());
#endif
#ifdef GGML_USE_VIRTGPU_FRONTEND
register_backend(ggml_backend_virtgpu_reg());
#endif
#ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg());
#endif
@@ -523,9 +471,10 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
int best_score = 0;
fs::path best_path;
std::error_code ec;
for (const auto & search_path : search_paths) {
if (std::error_code ec; !fs::exists(search_path, ec)) {
if (!fs::exists(search_path, ec)) {
if (ec) {
GGML_LOG_DEBUG("%s: posix_stat(%s) failure, error-message: %s\n", __func__, path_str(search_path).c_str(), ec.message().c_str());
} else {
@@ -535,7 +484,7 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
}
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
if (entry.is_regular_file(ec)) {
auto filename = entry.path().filename();
auto ext = entry.path().extension();
if (filename.native().find(file_prefix) == 0 && ext == file_extension) {
@@ -604,6 +553,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("virtgpu", silent, dir_path);
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("hexagon", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);

View File

@@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (backend->iface.set_tensor_async == NULL) {
ggml_backend_synchronize(backend);
ggml_backend_tensor_set(tensor, data, offset, size);
} else {
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
@@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (backend->iface.get_tensor_async == NULL) {
ggml_backend_synchronize(backend);
ggml_backend_tensor_get(tensor, data, offset, size);
} else {
backend->iface.get_tensor_async(backend, tensor, data, offset, size);

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
@@ -3286,130 +3286,223 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context & ctx, ggml_tensor
}
/**
* @brief Performs expert-specific matrix multiplication (MoE) with
* quantized precision using the CANN backend.
* @brief Performs quantized matrix multiplication for Mixture of Experts (MoE)
* models using the CANN backend.
*
* This function executes a matrix multiplication operation tailored for
* Mixture of Experts (MoE) models, where the input tensor is multiplied
* with expert-specific quantized weight matrices. It leverages the CANN
* backend to perform efficient low-precision computations and stores the
* quantized result in the destination tensor `dst`.
* This function implements MUL_MAT_ID operation for quantized weight matrices
* (Q4_0 and Q8_0 formats). It selects expert-specific weight matrices based on
* the provided expert indices, and computes matrix multiplication using CANN's
* WeightQuantBatchMatmulV2 operator.
*
* Quantization techniques reduce memory footprint and improve performance
* by using lower-bit representations (e.g., int8) instead of floating-point.
* This function is designed to work with such formats and may incorporate
* optimizations like identity-based fast paths or routing masks for sparse
* expert selection.
* The function performs the following steps:
* 1. Converts input/output tensors to F16 format if necessary
* 2. Uses IndexSelect to extract expert-specific weights and scales based on indices
* 3. Performs quantized matrix multiplication for each expert using WeightQuantBatchMatmulV2
* 4. Converts output back to the target type if needed
*
* @param ctx The context for executing CANN backend operations.
* @param dst The destination tensor where the quantized MoE multiplication result
* will be stored.
* Tensor shapes:
* - dst: [M, K, N, 1] - output tensor
* - src0: [D, M, A, 1] - quantized weight matrices (Q4_0 or Q8_0)
* - src1: [D, B, N, 1] - input activations (B = K for per-expert input, or B = 1 for broadcast)
* - ids: [K, N] - expert indices for routing
*
* @note This function assumes quantized data types and is designed for
* MoE architectures with potential sparse expert routing.
* @param ctx The CANN backend context for operation execution.
* @param dst The destination tensor where the multiplication result will be stored.
*
* @note Only Q4_0 and Q8_0 quantization formats are supported.
* @note The function handles automatic type conversion to/from F16 as needed by the hardware.
*/
static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
// TODO: Use aclnnGroupedMatMul
//dst [M, K, N, 1]
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
ggml_tensor * ids = dst->src[2]; //ids [K, N]
// dst: [M, K, N, 1]
// src0: [D, M, A, 1] - quantized weights
// src1: [D, B, N, 1] - input activations, B = K or B = 1
// ids: [K, N] - expert indices
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
ggml_tensor * ids = dst->src[2];
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(src0->ne[3] == 1);
GGML_ASSERT(src1->ne[3] == 1);
GGML_ASSERT(dst->ne[3] == 1);
GGML_ASSERT(src1->ne[2] == ids->ne[1]);
// copy index from npu to cpu
int64_t n_as = ne02; // A
int64_t n_ids = ids->ne[0]; // K
const int64_t n_batches = ids->ne[1];
const int64_t n_select_experts = ids->ne[0];
const enum ggml_type type = src0->type;
std::vector<char> ids_host(ggml_nbytes(ids));
ACL_CHECK(aclrtMemcpyAsync(ids_host.data(), ggml_nbytes(ids), ids->data, ggml_nbytes(ids),
ACL_MEMCPY_DEVICE_TO_HOST, ctx.stream()));
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
const int32_t group_size = QK8_0; // Both Q4_0 and Q8_0 use group size of 32
GGML_ASSERT(group_size == QK4_0);
char * src0_original = (char *) src0->data;
char * src1_original = (char *) src1->data;
char * dst_original = (char *) dst->data;
// Calculate element size for quantized weights
const float weight_elem_size =
(type == GGML_TYPE_Q4_0) ? 0.5f :
(type == GGML_TYPE_Q8_0) ? 1.0f :
(GGML_ABORT("MUL_MAT_ID only supports Q4_0 and Q8_0"), 0.0f);
ggml_tensor src0_row = *src0;
ggml_tensor src1_row = *src1;
ggml_tensor dst_row = *dst;
// Calculate scale offset in memory
const size_t weight_size = src0->ne[0] * src0->ne[1] * src0->ne[2] * weight_elem_size;
const size_t scale_elem_size = sizeof(uint16_t);
char * scale_data = (char *) src0->data + weight_size;
const enum ggml_type type = dst->src[0]->type;
float weight_elem_size;
if (type == GGML_TYPE_Q4_0) {
weight_elem_size = float(sizeof(uint8_t)) / 2;
} else if (type == GGML_TYPE_Q8_0) {
weight_elem_size = float(sizeof(uint8_t));
} else {
GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
}
// Allocate buffers for selected expert weights and scales
const size_t selected_weight_size = src0->ne[0] * src0->ne[1] * n_select_experts * weight_elem_size;
ggml_cann_pool_alloc selected_weight_alloc(ctx.pool(), selected_weight_size);
void * selected_weight_buffer = selected_weight_alloc.get();
// src0_row [D, M, 1, 1] weight without permute
src0_row.ne[2] = 1;
src0_row.ne[3] = 1;
src0_row.nb[0] = weight_elem_size;
src0_row.nb[1] = weight_elem_size * ne00;
src0_row.nb[2] = weight_elem_size * ne00;
src0_row.nb[3] = weight_elem_size * ne00;
size_t weight_stride = ne00 * ne01 * weight_elem_size;
size_t weight_size = weight_stride * ne02 * ne03;
const size_t selected_scale_size = (src0->ne[0] / group_size) * src0->ne[1] * n_select_experts * scale_elem_size;
ggml_cann_pool_alloc selected_scale_alloc(ctx.pool(), selected_scale_size);
void * selected_scale_buffer = selected_scale_alloc.get();
// scale [D, M, 1, 1] -> scale && permute
size_t scale_elem_size = sizeof(uint16_t);
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
// Helper lambda to allocate and cast tensor to F16 if needed
constexpr size_t f16_elem_size = sizeof(uint16_t);
auto prepare_f16_buffer = [&](ggml_tensor * tensor, ggml_cann_pool_alloc & allocator,
bool need_cast = false) -> void * {
if (tensor->type == GGML_TYPE_F16) {
return tensor->data;
}
// src1_row [D, 1, 1, 1] -> input
src1_row.ne[1] = 1;
src1_row.ne[2] = 1;
src1_row.ne[3] = 1;
src1_row.nb[2] = nb11;
src1_row.nb[3] = nb11;
size_t total_size = f16_elem_size;
for (int i = 0; i < GGML_MAX_DIMS; i++) {
total_size *= tensor->ne[i];
}
void * buffer = allocator.alloc(total_size);
// dst_row [M, 1, 1, 1] -> out
dst_row.ne[1] = 1;
dst_row.ne[2] = 1;
dst_row.ne[3] = 1;
dst_row.nb[2] = nb1;
dst_row.nb[3] = nb1;
if (need_cast == false) {
return buffer;
}
//create weight for one row
ggml_cann_pool_alloc weight_allocator(ctx.pool());
void * weight_buffer = weight_allocator.alloc(nb02);
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
for (int64_t id = 0; id < n_ids; id++) {
// expert index
int32_t i02 = *(int32_t *) (ids_host.data() + iid1 * ids->nb[1] + id * ids->nb[0]);
GGML_ASSERT(i02 >= 0 && i02 < n_as);
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
for (int i = 0; i < GGML_MAX_DIMS; i++) {
ne[i] = tensor->ne[i];
if (i > 0) {
nb[i] = nb[i - 1] * ne[i - 1];
}
}
// If B = 1 (broadcast), always use 0; otherwise, use id.
int64_t i11 = (ne11 == 1 ? 0 : id);
int64_t i12 = iid1;
acl_tensor_ptr src_tensor = ggml_cann_create_tensor(tensor);
acl_tensor_ptr f16_tensor = ggml_cann_create_tensor(buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
aclnn_cast(ctx, src_tensor.get(), f16_tensor.get(), ACL_FLOAT16);
int64_t i1 = id;
int64_t i2 = i12;
return buffer;
};
void * src0_tmp_ptr = src0_original + i02 * weight_stride;
void * scale_tmp_ptr = src0_original + weight_size + i02 * scale_stride;
void * src1_tmp_ptr = src1_original + i11 * nb11 + i12 * nb12;
void * dst_tmp_ptr = dst_original + i1 * nb1 + i2 * nb2;
// Prepare input and output buffers
ggml_cann_pool_alloc input_alloc(ctx.pool());
void * input_buffer = prepare_f16_buffer(src1, input_alloc, true);
// mem cpy
ACL_CHECK(aclrtMemcpyAsync(weight_buffer, weight_stride, src0_tmp_ptr, weight_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
void * scale_buffer = (char *) weight_buffer + weight_stride;
ACL_CHECK(aclrtMemcpyAsync(scale_buffer, scale_stride, scale_tmp_ptr, scale_stride,
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
ggml_cann_pool_alloc output_alloc(ctx.pool());
void * output_buffer = prepare_f16_buffer(dst, output_alloc, false);
src0_row.data = weight_buffer;
src1_row.data = src1_tmp_ptr;
dst_row.data = dst_tmp_ptr;
dst_row.src[0] = &src0_row;
dst_row.src[1] = &src1_row;
// Process each batch
for (int64_t batch_idx = 0; batch_idx < n_batches; batch_idx++) {
// Create index tensor for current batch
const size_t index_offset = batch_idx * ids->nb[1];
acl_tensor_ptr batch_indices = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, index_offset);
ggml_cann_mul_mat(ctx, &dst_row);
// Select quantized weights using expert indices
// Q4_0 stores 2 values per byte, Q8_0 stores 1 value per byte
const int64_t weight_d = (type == GGML_TYPE_Q4_0) ? src0->ne[0] / 2 : src0->ne[0];
const int64_t weight_m = src0->ne[1];
const int64_t weight_n_experts = src0->ne[2];
int64_t weight_ne[3] = { weight_d, weight_m, weight_n_experts };
size_t weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t), weight_d * weight_m * sizeof(int8_t) };
acl_tensor_ptr all_weights =
ggml_cann_create_tensor(src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, 3);
int64_t selected_weight_ne[3] = { weight_d, weight_m, n_select_experts };
size_t selected_weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t),
weight_d * weight_m * sizeof(int8_t) };
acl_tensor_ptr selected_weights = ggml_cann_create_tensor(selected_weight_buffer, ACL_INT8, sizeof(int8_t),
selected_weight_ne, selected_weight_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_weights.get(), 0, batch_indices.get(), selected_weights.get());
// Select scales using the same expert indices
const int64_t scale_d = src0->ne[0] / group_size;
int64_t scale_ne[3] = { scale_d, weight_m, weight_n_experts };
size_t scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size, scale_d * weight_m * scale_elem_size };
acl_tensor_ptr all_scales =
ggml_cann_create_tensor(scale_data, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 3);
int64_t selected_scale_ne[3] = { scale_d, weight_m, n_select_experts };
size_t selected_scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size,
scale_d * weight_m * scale_elem_size };
acl_tensor_ptr selected_scales = ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size,
selected_scale_ne, selected_scale_nb, 3);
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_scales.get(), 0, batch_indices.get(), selected_scales.get());
// Process each expert for current batch
// IndexSelect output layout: [D, M, K] in contiguous format
// WeightQuantBatchMatmulV2 expects: [M, D] with row-major stride
for (int64_t expert_idx = 0; expert_idx < n_select_experts; expert_idx++) {
// Determine input offset: broadcast if src1->ne[1]==1, otherwise use per-expert input
const size_t input_offset =
(batch_idx * src1->ne[1] + (src1->ne[1] == 1 ? 0 : expert_idx)) * src1->ne[0] * f16_elem_size;
const size_t output_offset = (batch_idx * dst->ne[1] + expert_idx) * dst->ne[0] * f16_elem_size;
// Create weight view for current expert: [D, M, K] -> [M, D]
int64_t weight_view_ne[2] = { weight_m, src0->ne[0] };
float weight_view_nb[2] = { src0->ne[0] * weight_elem_size, weight_elem_size };
const size_t weight_view_offset = expert_idx * selected_weight_nb[2];
acl_tensor_ptr weight_view =
ggml_cann_create_tensor(selected_weight_buffer, ggml_cann_type_mapping(type), weight_elem_size,
weight_view_ne, weight_view_nb, 2, ACL_FORMAT_ND, weight_view_offset);
// Create scale view for current expert: [D, M, K] -> [M, D]
int64_t scale_view_ne[2] = { weight_m, scale_d };
size_t scale_view_nb[2] = { selected_scale_nb[1], selected_scale_nb[0] };
const size_t scale_view_offset = expert_idx * selected_scale_nb[2];
acl_tensor_ptr scale_view =
ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size, scale_view_ne,
scale_view_nb, 2, ACL_FORMAT_ND, scale_view_offset);
// Create input activation tensor [D, 1]
int64_t input_ne[2] = { src1->ne[0], 1 };
size_t input_nb[2] = { f16_elem_size, src1->ne[0] * f16_elem_size };
acl_tensor_ptr input_tensor = ggml_cann_create_tensor(input_buffer, ACL_FLOAT16, f16_elem_size, input_ne,
input_nb, 2, ACL_FORMAT_ND, input_offset);
// Create output tensor [M, 1]
int64_t output_ne[2] = { dst->ne[0], 1 };
size_t output_nb[2] = { f16_elem_size, dst->ne[0] * f16_elem_size };
acl_tensor_ptr output_tensor = ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, output_ne,
output_nb, 2, ACL_FORMAT_ND, output_offset);
// Perform quantized matrix multiplication
GGML_CANN_CALL_ACLNN_OP(ctx, WeightQuantBatchMatmulV2, input_tensor.get(), weight_view.get(),
scale_view.get(), nullptr, nullptr, nullptr, nullptr, group_size,
output_tensor.get());
}
}
return;
// Cast output back to original type if we used a temporary F16 buffer
if (dst->type != GGML_TYPE_F16) {
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
for (int i = 0; i < GGML_MAX_DIMS; i++) {
ne[i] = dst->ne[i];
if (i > 0) {
nb[i] = nb[i - 1] * ne[i - 1];
}
}
acl_tensor_ptr f16_output =
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
acl_tensor_ptr dst_tensor = ggml_cann_create_tensor(dst);
aclnn_cast(ctx, f16_output.get(), dst_tensor.get(), ggml_cann_type_mapping(dst->type));
}
}
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst) {

View File

@@ -1,5 +1,5 @@
/**
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
@@ -794,19 +794,44 @@ struct ggml_backend_cann_buffer_context {
~ggml_backend_cann_buffer_context() { ACL_CHECK(aclrtFree(dev_ptr)); }
};
// cann buffer type
/**
* @brief Check if a buffer is a CANN buffer.
*
* This function checks if a given buffer is a CANN buffer by comparing its
* `get_name` function pointer to `ggml_backend_cann_buffer_get_name`.
*
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
* @brief Structure representing context information for a specific backend
* buffer type.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft);
struct ggml_backend_cann_buffer_type_context {
int32_t device; /**< Device identifier associated with the buffer context. */
std::string name; /**< Name associated with the buffer context. */
};
static bool ggml_backend_buffer_is_cann(ggml_backend_buffer_t buffer) {
return ggml_backend_buft_is_cann(buffer->buft);
/**
* @brief Retrieves the name associated with a CANN buffer type.
*
* This function returns the descriptive name associated with the specified
* CANN buffer type context.
*
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
return buft_ctx->name.c_str();
}
/**
* @brief Checks if the backend buffer type is associated with the CANN backend.
*
* This function checks whether the provided backend buffer type is associated
* with the CANN backend based on the comparison of its name retrieval function
* pointer.
*
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the buffer type is associated with the CANN
* backend, otherwise false.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
@@ -1271,7 +1296,7 @@ static void ggml_backend_cann_buffer_get_tensor(ggml_backend_buffer_t buffer,
static bool ggml_backend_cann_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
const ggml_tensor * src,
ggml_tensor * dst) {
if (ggml_backend_buffer_is_cann(src->buffer)) {
if (ggml_backend_buft_is_cann(src->buffer->buft)) {
ggml_backend_cann_buffer_context * src_ctx = (ggml_backend_cann_buffer_context *) src->buffer->context;
ggml_backend_cann_buffer_context * dst_ctx = (ggml_backend_cann_buffer_context *) buffer->context;
@@ -1335,31 +1360,6 @@ static const ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
/* .reset = */ NULL,
};
// cann buffer type
/**
* @brief Structure representing context information for a specific backend
* buffer type.
*/
struct ggml_backend_cann_buffer_type_context {
int32_t device; /**< Device identifier associated with the buffer context. */
std::string name; /**< Name associated with the buffer context. */
};
/**
* @brief Retrieves the name associated with a CANN buffer type.
*
* This function returns the descriptive name associated with the specified
* CANN buffer type context.
*
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
return buft_ctx->name.c_str();
}
/**
* @brief Allocates a new CANN buffer of the specified type and size.
*
@@ -1997,7 +1997,7 @@ static bool ggml_backend_cann_cpy_tensor_async(ggml_backend_t backend_src,
GGML_ASSERT(!is_matmul_weight((const ggml_tensor *) src));
if (!ggml_backend_buffer_is_cann(src->buffer) || !ggml_backend_buffer_is_cann(dst->buffer)) {
if (!ggml_backend_buft_is_cann(src->buffer->buft) || !ggml_backend_buft_is_cann(dst->buffer->buft)) {
return false;
}
@@ -2523,21 +2523,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
GGML_UNUSED(dev);
}
/**
* @brief Checks if the backend buffer type is associated with the CANN backend.
*
* This function checks whether the provided backend buffer type is associated
* with the CANN backend based on the comparison of its name retrieval function
* pointer.
*
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the buffer type is associated with the CANN
* backend, otherwise false.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
* @brief Records an event on the CANN backend stream.
*

Some files were not shown because too many files have changed in this diff Show More