mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
89 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9a5f57795c | ||
|
|
96441c955e | ||
|
|
8872ad2125 | ||
|
|
34ba7b5a2f | ||
|
|
b83111815e | ||
|
|
3228e77287 | ||
|
|
7fbd36c50c | ||
|
|
537eadb1b9 | ||
|
|
db6adb3c88 | ||
|
|
dfde5993ea | ||
|
|
06bf3796f4 | ||
|
|
3688c4f504 | ||
|
|
1946e46f4c | ||
|
|
f9bd518a6b | ||
|
|
7fcf1ef45d | ||
|
|
e696cfc016 | ||
|
|
3e21647666 | ||
|
|
22cae83218 | ||
|
|
449ec2ab07 | ||
|
|
3795cc1e89 | ||
|
|
b828e18c75 | ||
|
|
a4ea7a188f | ||
|
|
7a4f97d196 | ||
|
|
a498c75ad1 | ||
|
|
3409ab842d | ||
|
|
c342c3b93d | ||
|
|
af252d0758 | ||
|
|
11fb327bf3 | ||
|
|
e6e934c5ea | ||
|
|
b536eb0233 | ||
|
|
e0c93af2a0 | ||
|
|
423bee462b | ||
|
|
8abcc70a74 | ||
|
|
eaba92c3dc | ||
|
|
6ab881b7c3 | ||
|
|
d838c22bb3 | ||
|
|
25f40ca65f | ||
|
|
015deb9048 | ||
|
|
2ceda3f662 | ||
|
|
44008ce8f9 | ||
|
|
6a9bf2f788 | ||
|
|
faa1bc26ee | ||
|
|
32b17abdb0 | ||
|
|
8bece2eb20 | ||
|
|
a6fd8ca1fe | ||
|
|
c55bce4159 | ||
|
|
1f1e57f2bf | ||
|
|
e9a859db3c | ||
|
|
41e3f02647 | ||
|
|
1efb5f7ae1 | ||
|
|
aeb827a3cc | ||
|
|
91ea44e89b | ||
|
|
0dfcd3b607 | ||
|
|
07a7412a3b | ||
|
|
9f682fb640 | ||
|
|
a3fa035822 | ||
|
|
15818ac44c | ||
|
|
bf38346d13 | ||
|
|
4d5e972673 | ||
|
|
6fdddb4987 | ||
|
|
6156ae5111 | ||
|
|
59377a6c87 | ||
|
|
1239267cc4 | ||
|
|
7a4ca3cbd9 | ||
|
|
b4d05a3d2f | ||
|
|
2dc3ce2166 | ||
|
|
3bc8d2cf23 | ||
|
|
8a98ba4582 | ||
|
|
2634ed207a | ||
|
|
41ea26144e | ||
|
|
89f10baad5 | ||
|
|
3dd95914d0 | ||
|
|
ec6c7421e4 | ||
|
|
1488339138 | ||
|
|
4927795810 | ||
|
|
971facc38e | ||
|
|
d9a2a4bcaa | ||
|
|
dfd6106c84 | ||
|
|
bbada8bfb9 | ||
|
|
13f3ebfae1 | ||
|
|
dabaa2e77a | ||
|
|
2e916f996a | ||
|
|
f3bc98890c | ||
|
|
c3b87cebff | ||
|
|
0562503154 | ||
|
|
83bcdf7217 | ||
|
|
b316895ff9 | ||
|
|
ecbf01d441 | ||
|
|
1025fd2c09 |
@@ -4,7 +4,7 @@
|
||||
# the module `{ pkgs ... }: { /* config */ }` implicitly uses
|
||||
# `_module.args.pkgs` (defined in this case by flake-parts).
|
||||
perSystem =
|
||||
{ system, ... }:
|
||||
{ lib, system, ... }:
|
||||
{
|
||||
_module.args = {
|
||||
# Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs
|
||||
@@ -33,7 +33,7 @@
|
||||
"CUDA EULA"
|
||||
"cuDNN EULA"
|
||||
]
|
||||
) (p.meta.licenses or [ p.meta.license ]);
|
||||
) (p.meta.licenses or (lib.toList p.meta.license));
|
||||
};
|
||||
# Ensure dependencies use ROCm consistently
|
||||
pkgsRocm = import inputs.nixpkgs {
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
llamaVersion,
|
||||
numpy,
|
||||
tqdm,
|
||||
requests,
|
||||
sentencepiece,
|
||||
pyyaml,
|
||||
poetry-core,
|
||||
@@ -20,6 +21,7 @@ buildPythonPackage {
|
||||
tqdm
|
||||
sentencepiece
|
||||
pyyaml
|
||||
requests
|
||||
];
|
||||
src = lib.cleanSource ../../gguf-py;
|
||||
pythonImportsCheck = [
|
||||
|
||||
@@ -7,13 +7,6 @@
|
||||
|
||||
let
|
||||
pythonPackages = python3.pkgs;
|
||||
buildPythonPackage = pythonPackages.buildPythonPackage;
|
||||
numpy = pythonPackages.numpy;
|
||||
tqdm = pythonPackages.tqdm;
|
||||
sentencepiece = pythonPackages.sentencepiece;
|
||||
pyyaml = pythonPackages.pyyaml;
|
||||
poetry-core = pythonPackages.poetry-core;
|
||||
pytestCheckHook = pythonPackages.pytestCheckHook;
|
||||
in
|
||||
|
||||
# We're using `makeScope` instead of just writing out an attrset
|
||||
@@ -23,17 +16,18 @@ in
|
||||
lib.makeScope newScope (self: {
|
||||
inherit llamaVersion;
|
||||
gguf-py = self.callPackage ./package-gguf-py.nix {
|
||||
inherit
|
||||
buildPythonPackage
|
||||
inherit (pythonPackages)
|
||||
numpy
|
||||
tqdm
|
||||
sentencepiece
|
||||
poetry-core
|
||||
pyyaml
|
||||
pytestCheckHook
|
||||
requests
|
||||
buildPythonPackage
|
||||
poetry-core
|
||||
;
|
||||
};
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit buildPythonPackage poetry-core; };
|
||||
python-scripts = self.callPackage ./python-scripts.nix { inherit (pythonPackages) buildPythonPackage poetry-core; };
|
||||
llama-cpp = self.callPackage ./package.nix { };
|
||||
docker = self.callPackage ./docker.nix { };
|
||||
docker-min = self.callPackage ./docker.nix { interactive = false; };
|
||||
|
||||
@@ -54,6 +54,7 @@ RUN apt-get update \
|
||||
build-essential \
|
||||
git \
|
||||
python3 \
|
||||
python3-dev \
|
||||
python3-pip \
|
||||
python3-wheel \
|
||||
&& pip install --break-system-packages --upgrade setuptools \
|
||||
|
||||
10
.github/workflows/build.yml
vendored
10
.github/workflows/build.yml
vendored
@@ -293,7 +293,9 @@ jobs:
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
@@ -303,8 +305,10 @@ jobs:
|
||||
cmake -B build \
|
||||
-DLLAMA_FATAL_WARNINGS=ON \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DGGML_OPENMP=OFF
|
||||
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
@@ -466,7 +470,7 @@ jobs:
|
||||
export GGML_VK_VISIBLE_DEVICES=0
|
||||
export GGML_VK_DISABLE_F16=1
|
||||
# This is using llvmpipe and runs slower than other backends
|
||||
ctest -L main --verbose --timeout 4200
|
||||
ctest -L main --verbose --timeout 4800
|
||||
|
||||
ubuntu-24-cmake-webgpu:
|
||||
runs-on: ubuntu-24.04
|
||||
@@ -1532,7 +1536,7 @@ jobs:
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
@@ -1558,7 +1562,7 @@ jobs:
|
||||
- name: Test
|
||||
id: ggml-ci
|
||||
run: |
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
ggml-ci-arm64-cpu-high-perf-sve:
|
||||
runs-on: ubuntu-22.04-arm
|
||||
|
||||
120
.github/workflows/server-webui.yml
vendored
120
.github/workflows/server-webui.yml
vendored
@@ -8,10 +8,6 @@ on:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
slow_tests:
|
||||
description: 'Run slow tests'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
@@ -101,119 +97,3 @@ jobs:
|
||||
if: ${{ always() && steps.playwright.conclusion == 'success' }}
|
||||
run: npm run test:e2e
|
||||
working-directory: tools/server/webui
|
||||
|
||||
server-build:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
|
||||
build_type: [RelWithDebInfo]
|
||||
include:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
|
||||
steps:
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install \
|
||||
build-essential \
|
||||
xxd \
|
||||
git \
|
||||
cmake \
|
||||
curl \
|
||||
wget \
|
||||
language-pack-en \
|
||||
libssl-dev
|
||||
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Python setup
|
||||
id: setup_python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Setup Node.js for WebUI
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "npm"
|
||||
cache-dependency-path: "tools/server/webui/package-lock.json"
|
||||
|
||||
- name: Install WebUI dependencies
|
||||
run: npm ci
|
||||
working-directory: tools/server/webui
|
||||
|
||||
- name: Build WebUI
|
||||
run: npm run build
|
||||
working-directory: tools/server/webui
|
||||
|
||||
- name: Build (no OpenMP)
|
||||
id: cmake_build_no_openmp
|
||||
if: ${{ matrix.sanitizer == 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
|
||||
-DGGML_OPENMP=OFF ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
|
||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Build (sanitizers)
|
||||
id: cmake_build
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
run: |
|
||||
cmake -B build \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_BUILD_SERVER=ON \
|
||||
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ matrix.sanitizer == '' }}
|
||||
env:
|
||||
GITHUB_ACTIONS: "true"
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
./tests.sh
|
||||
|
||||
- name: Tests (sanitizers)
|
||||
id: server_integration_tests_sanitizers
|
||||
if: ${{ matrix.sanitizer != '' }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
LLAMA_SANITIZE=1 ./tests.sh
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
SLOW_TESTS=1 ./tests.sh
|
||||
|
||||
38
.github/workflows/server.yml
vendored
38
.github/workflows/server.yml
vendored
@@ -36,7 +36,7 @@ jobs:
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
|
||||
sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow
|
||||
build_type: [RelWithDebInfo]
|
||||
include:
|
||||
- build_type: Release
|
||||
@@ -45,7 +45,7 @@ jobs:
|
||||
- build_type: Release
|
||||
sanitizer: ""
|
||||
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Dependencies
|
||||
@@ -72,28 +72,40 @@ jobs:
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
|
||||
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
|
||||
cmake -B build \
|
||||
-DLLAMA_BUILD_BORINGSSL=ON \
|
||||
-DGGML_SCHED_NO_REALLOC=ON \
|
||||
-DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \
|
||||
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
|
||||
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
|
||||
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
|
||||
|
||||
- name: Python setup
|
||||
id: setup_python
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
pip-install: -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
export ${{ matrix.extra_args }}
|
||||
pytest -v -x -m "not slow"
|
||||
|
||||
- name: Slow tests
|
||||
id: server_integration_tests_slow
|
||||
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
export ${{ matrix.extra_args }}
|
||||
SLOW_TESTS=1 pytest -v -x
|
||||
|
||||
server-windows:
|
||||
runs-on: windows-2022
|
||||
|
||||
@@ -116,11 +128,7 @@ jobs:
|
||||
uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Tests dependencies
|
||||
id: test_dependencies
|
||||
run: |
|
||||
pip install -r tools/server/tests/requirements.txt
|
||||
pip-install: -r tools/server/tests/requirements.txt
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
|
||||
@@ -164,29 +164,6 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
|
||||
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
|
||||
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
include("cmake/license.cmake")
|
||||
license_add_file("llama.cpp" "LICENSE")
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@
|
||||
/examples/batched.swift/ @ggerganov
|
||||
/examples/batched/ @ggerganov
|
||||
/examples/convert-llama2c-to-ggml/ @ggerganov
|
||||
/examples/debug/ @danbev @pwilkin
|
||||
/examples/deprecation-warning/ @ggerganov
|
||||
/examples/diffusion/ @am17an
|
||||
/examples/embedding/ @ggerganov
|
||||
|
||||
2
LICENSE
2
LICENSE
@@ -1,6 +1,6 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023-2024 The ggml authors
|
||||
Copyright (c) 2023-2026 The ggml authors
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
|
||||
@@ -213,6 +213,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
|
||||
- [LARS](https://github.com/abgulati/LARS) (AGPL)
|
||||
- [Llama Assistant](https://github.com/vietanhdev/llama-assistant) (GPL)
|
||||
- [LlamaLib](https://github.com/undreamai/LlamaLib) (Apache-2.0)
|
||||
- [LLMFarm](https://github.com/guinmoon/LLMFarm?tab=readme-ov-file) (MIT)
|
||||
- [LLMUnity](https://github.com/undreamai/LLMUnity) (MIT)
|
||||
- [LMStudio](https://lmstudio.ai/) (proprietary)
|
||||
|
||||
@@ -8,7 +8,7 @@ g++ --version
|
||||
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
|
||||
|
||||
nvidia-smi
|
||||
Sun Nov 2 10:43:25 2025
|
||||
Thu Feb 5 13:49:40 2026
|
||||
+-----------------------------------------------------------------------------------------+
|
||||
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
@@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025
|
||||
| | | MIG M. |
|
||||
|=========================================+========================+======================|
|
||||
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
|
||||
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
|
||||
| N/A 47C P0 13W / N/A | Not Supported | 0% Default |
|
||||
| | | N/A |
|
||||
+-----------------------------------------+------------------------+----------------------+
|
||||
```
|
||||
@@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
|
||||
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
|
||||
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
|
||||
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
|
||||
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
|
||||
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
|
||||
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
|
||||
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
|
||||
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
|
||||
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
|
||||
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
|
||||
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
|
||||
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
|
||||
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
|
||||
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
|
||||
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
|
||||
| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 |
|
||||
| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 |
|
||||
| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 |
|
||||
| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 |
|
||||
| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 |
|
||||
| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 |
|
||||
| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 |
|
||||
| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 |
|
||||
| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 |
|
||||
| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 |
|
||||
| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 |
|
||||
| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 |
|
||||
| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 |
|
||||
| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 |
|
||||
| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
@@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
|
||||
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
|
||||
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
|
||||
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
|
||||
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
|
||||
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
|
||||
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
|
||||
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
|
||||
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
|
||||
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
|
||||
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
|
||||
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
|
||||
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
|
||||
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
|
||||
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
|
||||
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
|
||||
| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 |
|
||||
| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 |
|
||||
| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 |
|
||||
| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 |
|
||||
| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 |
|
||||
| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 |
|
||||
| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 |
|
||||
| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 |
|
||||
| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 |
|
||||
| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 |
|
||||
| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 |
|
||||
| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 |
|
||||
| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 |
|
||||
| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
@@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
|
||||
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
|
||||
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
|
||||
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
|
||||
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
|
||||
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
|
||||
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
|
||||
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
|
||||
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
|
||||
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
|
||||
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
|
||||
| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 |
|
||||
| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 |
|
||||
| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 |
|
||||
| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 |
|
||||
| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 |
|
||||
| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 |
|
||||
| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 |
|
||||
| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 |
|
||||
| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 |
|
||||
| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 |
|
||||
| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
@@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
|
||||
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
|
||||
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
|
||||
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
|
||||
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
|
||||
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
|
||||
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
|
||||
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
|
||||
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
|
||||
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
|
||||
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
|
||||
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
|
||||
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
|
||||
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
|
||||
| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 |
|
||||
| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 |
|
||||
| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 |
|
||||
| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 |
|
||||
| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 |
|
||||
| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 |
|
||||
| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 |
|
||||
| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 |
|
||||
| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 |
|
||||
| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 |
|
||||
| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 |
|
||||
| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 |
|
||||
| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 |
|
||||
| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
@@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
|
||||
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
|
||||
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
|
||||
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
|
||||
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
|
||||
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
|
||||
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
|
||||
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
|
||||
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
|
||||
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
|
||||
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
|
||||
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
|
||||
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
|
||||
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
|
||||
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
|
||||
| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 |
|
||||
| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 |
|
||||
| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 |
|
||||
| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 |
|
||||
| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 |
|
||||
| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 |
|
||||
| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 |
|
||||
| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 |
|
||||
| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 |
|
||||
| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 |
|
||||
| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 |
|
||||
| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 |
|
||||
| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 |
|
||||
| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 |
|
||||
| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 |
|
||||
| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 |
|
||||
| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 |
|
||||
| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 |
|
||||
|
||||
build: eeee367de (6989)
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
## ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 |
|
||||
| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 |
|
||||
| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 |
|
||||
| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 |
|
||||
| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 |
|
||||
| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 |
|
||||
| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 |
|
||||
| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 |
|
||||
| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 |
|
||||
| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 |
|
||||
| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 |
|
||||
| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 |
|
||||
| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 |
|
||||
| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 |
|
||||
|
||||
build: 11fb327bf (7941)
|
||||
|
||||
298
benches/mac-m2-ultra/mac-m2-ultra.md
Normal file
298
benches/mac-m2-ultra/mac-m2-ultra.md
Normal file
@@ -0,0 +1,298 @@
|
||||
## System info
|
||||
|
||||
```bash
|
||||
uname -a
|
||||
Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64
|
||||
|
||||
g++ --version
|
||||
Apple clang version 17.0.0 (clang-1700.3.19.1)
|
||||
Target: arm64-apple-darwin25.2.0
|
||||
```
|
||||
|
||||
## ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 |
|
||||
| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 |
|
||||
| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 |
|
||||
| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 |
|
||||
| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 |
|
||||
| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 |
|
||||
| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 |
|
||||
| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 |
|
||||
| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 |
|
||||
| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 |
|
||||
| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 |
|
||||
| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 |
|
||||
| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 |
|
||||
| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 |
|
||||
| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 |
|
||||
| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 |
|
||||
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 |
|
||||
| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 |
|
||||
| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 |
|
||||
| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 |
|
||||
| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 |
|
||||
| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 |
|
||||
| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 |
|
||||
| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 |
|
||||
| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 |
|
||||
| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 |
|
||||
| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 |
|
||||
| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 |
|
||||
| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 |
|
||||
| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 |
|
||||
| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 |
|
||||
| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 |
|
||||
| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 |
|
||||
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 |
|
||||
| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 |
|
||||
| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 |
|
||||
| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 |
|
||||
| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 |
|
||||
| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 |
|
||||
| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 |
|
||||
| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 |
|
||||
| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 |
|
||||
| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 |
|
||||
| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 |
|
||||
| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 |
|
||||
| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 |
|
||||
| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 |
|
||||
| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 |
|
||||
| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 |
|
||||
| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 |
|
||||
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 |
|
||||
| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 |
|
||||
| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 |
|
||||
| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 |
|
||||
| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 |
|
||||
| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 |
|
||||
| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 |
|
||||
| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 |
|
||||
| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 |
|
||||
| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 |
|
||||
| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 |
|
||||
| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 |
|
||||
| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 |
|
||||
| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 |
|
||||
| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 |
|
||||
| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 |
|
||||
| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 |
|
||||
| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 |
|
||||
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 |
|
||||
| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 |
|
||||
| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 |
|
||||
| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 |
|
||||
| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 |
|
||||
| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 |
|
||||
| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 |
|
||||
| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 |
|
||||
| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 |
|
||||
| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 |
|
||||
| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 |
|
||||
| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 |
|
||||
| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 |
|
||||
| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 |
|
||||
| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 |
|
||||
| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 |
|
||||
| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 |
|
||||
| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 |
|
||||
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
|
||||
## ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
|
||||
|
||||
- `llama-batched-bench`
|
||||
|
||||
|
||||
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 |
|
||||
| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 |
|
||||
| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 |
|
||||
| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 |
|
||||
| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 |
|
||||
| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 |
|
||||
| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 |
|
||||
| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 |
|
||||
| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 |
|
||||
| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 |
|
||||
| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 |
|
||||
| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 |
|
||||
| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 |
|
||||
| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 |
|
||||
| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 |
|
||||
| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 |
|
||||
| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 |
|
||||
| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 |
|
||||
|
||||
|
||||
- `llama-bench`
|
||||
|
||||
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 |
|
||||
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 |
|
||||
|
||||
build: b828e18c7 (7948)
|
||||
27
ci/run.sh
27
ci/run.sh
@@ -635,6 +635,29 @@ function gg_check_build_requirements {
|
||||
fi
|
||||
}
|
||||
|
||||
function gg_run_test_backend_ops_cpu {
|
||||
cd ${SRC}
|
||||
|
||||
cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_test_backend_ops_cpu {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs test-backend-ops for CPU backend\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '\n'
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
export LLAMA_LOG_PREFIX=1
|
||||
@@ -663,6 +686,10 @@ ret=0
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run test_backend_ops_cpu
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
test $ret -eq 0 && gg_run embd_bge_small
|
||||
test $ret -eq 0 && gg_run rerank_tiny
|
||||
|
||||
@@ -32,4 +32,27 @@ function(llama_add_compile_flags)
|
||||
set(CXX_FLAGS "" PARENT_SCOPE)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
message(STATUS "Using -fsanitize=thread")
|
||||
|
||||
add_compile_options(-fsanitize=thread)
|
||||
link_libraries (-fsanitize=thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_ADDRESS)
|
||||
message(STATUS "Using -fsanitize=address")
|
||||
|
||||
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
|
||||
link_libraries (-fsanitize=address)
|
||||
endif()
|
||||
|
||||
if (LLAMA_SANITIZE_UNDEFINED)
|
||||
message(STATUS "Using -fsanitize=undefined")
|
||||
|
||||
add_compile_options(-fsanitize=undefined)
|
||||
link_libraries (-fsanitize=undefined)
|
||||
endif()
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
@@ -75,6 +75,8 @@ add_library(${TARGET} STATIC
|
||||
ngram-cache.h
|
||||
ngram-map.cpp
|
||||
ngram-map.h
|
||||
ngram-mod.cpp
|
||||
ngram-mod.h
|
||||
peg-parser.cpp
|
||||
peg-parser.h
|
||||
preset.cpp
|
||||
|
||||
@@ -3396,7 +3396,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]",
|
||||
{"--spec-type"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]",
|
||||
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
|
||||
common_speculative_type_to_str(params.speculative.type).c_str()),
|
||||
[](common_params & params, const std::string & value) {
|
||||
@@ -3410,6 +3410,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
|
||||
} else if (value == "ngram-map-k4v") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
|
||||
} else if (value == "ngram-mod") {
|
||||
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MOD;
|
||||
} else {
|
||||
throw std::invalid_argument("unknown speculative decoding type without draft model");
|
||||
}
|
||||
|
||||
@@ -171,6 +171,7 @@ enum common_speculative_type {
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
|
||||
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
|
||||
};
|
||||
@@ -252,6 +253,8 @@ struct common_params_model {
|
||||
std::string name = ""; // in format <user>/<model>[:<tag>] (tag is optional) // NOLINT
|
||||
};
|
||||
|
||||
struct common_ngram_mod;
|
||||
|
||||
struct common_params_speculative {
|
||||
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
|
||||
|
||||
@@ -269,6 +272,8 @@ struct common_params_speculative {
|
||||
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
|
||||
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
|
||||
|
||||
std::shared_ptr<common_ngram_mod> ngram_mod;
|
||||
|
||||
std::string lookup_cache_static; // path of static ngram cache file for lookup decoding // NOLINT
|
||||
std::string lookup_cache_dynamic; // path of dynamic ngram cache file for lookup decoding // NOLINT
|
||||
|
||||
|
||||
@@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data,
|
||||
return v;
|
||||
}
|
||||
|
||||
#define INDENT " "
|
||||
|
||||
template <bool abort>
|
||||
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
GGML_ASSERT(n > 0);
|
||||
@@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n
|
||||
}
|
||||
}
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT "[\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||
if (i2 == n && ne[2] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT "..., \n");
|
||||
i2 = ne[2] - n;
|
||||
}
|
||||
LOG_ERR(" [\n");
|
||||
LOG(INDENT INDENT "[\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||
if (i1 == n && ne[1] > 2 * n) {
|
||||
LOG_ERR(" ..., \n");
|
||||
LOG(INDENT INDENT INDENT "..., \n");
|
||||
i1 = ne[1] - n;
|
||||
}
|
||||
LOG_ERR(" [");
|
||||
LOG(INDENT INDENT INDENT "[");
|
||||
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||
if (i0 == n && ne[0] > 2 * n) {
|
||||
LOG_ERR("..., ");
|
||||
LOG(" ..., ");
|
||||
i0 = ne[0] - n;
|
||||
}
|
||||
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
|
||||
LOG_ERR("%12.4f", v);
|
||||
LOG("%12.4f", v);
|
||||
if (i0 < ne[0] - 1) {
|
||||
LOG_ERR(", ");
|
||||
LOG(", ");
|
||||
}
|
||||
}
|
||||
LOG_ERR("],\n");
|
||||
LOG(" ],\n");
|
||||
}
|
||||
LOG_ERR(" ],\n");
|
||||
LOG(INDENT INDENT "],\n");
|
||||
}
|
||||
LOG_ERR(" ]\n");
|
||||
LOG_ERR(" sum = %f\n", sum);
|
||||
LOG(INDENT "]\n");
|
||||
LOG(INDENT "sum = %f\n", sum);
|
||||
}
|
||||
|
||||
if constexpr (abort) {
|
||||
if (std::isnan(sum)) {
|
||||
LOG_ERR("encountered NaN - aborting\n");
|
||||
LOG("encountered NaN - aborting\n");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
@@ -137,9 +139,9 @@ template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, b
|
||||
}
|
||||
|
||||
if (matches_filter) {
|
||||
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
|
||||
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
|
||||
common_ggml_ne_string(t).c_str());
|
||||
}
|
||||
|
||||
const bool is_host = ggml_backend_buffer_is_host(t->buffer);
|
||||
|
||||
@@ -144,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
return false;
|
||||
};
|
||||
|
||||
auto test_is_in = [&]() -> bool {
|
||||
func_args args(ctx);
|
||||
args.push_back(left_val);
|
||||
args.push_back(right_val);
|
||||
return global_builtins().at("test_is_in")(args)->as_bool();
|
||||
};
|
||||
|
||||
// Handle undefined and null values
|
||||
if (is_val<value_undefined>(left_val) || is_val<value_undefined>(right_val)) {
|
||||
if (is_val<value_undefined>(right_val) && (op.value == "in" || op.value == "not in")) {
|
||||
@@ -223,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
return result;
|
||||
}
|
||||
} else if (is_val<value_array>(right_val)) {
|
||||
auto & arr = right_val->as_array();
|
||||
bool member = false;
|
||||
for (const auto & item : arr) {
|
||||
if (*left_val == *item) {
|
||||
member = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
// case: 1 in [0, 1, 2]
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
@@ -252,22 +251,23 @@ value binary_expression::execute_impl(context & ctx) {
|
||||
|
||||
// String membership
|
||||
if (is_val<value_string>(left_val) && is_val<value_string>(right_val)) {
|
||||
auto left_str = left_val->as_string().str();
|
||||
auto right_str = right_val->as_string().str();
|
||||
// case: "a" in "abc"
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) != std::string::npos);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(right_str.find(left_str) == std::string::npos);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
// Value key in object
|
||||
if (is_val<value_object>(right_val)) {
|
||||
bool has_key = right_val->has_key(left_val);
|
||||
// case: key in {key: value}
|
||||
bool member = test_is_in();
|
||||
if (op.value == "in") {
|
||||
return mk_val<value_bool>(has_key);
|
||||
return mk_val<value_bool>(member);
|
||||
} else if (op.value == "not in") {
|
||||
return mk_val<value_bool>(!has_key);
|
||||
return mk_val<value_bool>(!member);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -393,6 +393,33 @@ const func_builtins & global_builtins() {
|
||||
{"test_is_lt", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_lessthan", test_compare_fn<value_compare_op::lt>},
|
||||
{"test_is_ne", test_compare_fn<value_compare_op::ne>},
|
||||
{"test_is_in", [](const func_args & args) -> value {
|
||||
args.ensure_count(2);
|
||||
auto needle = args.get_pos(0);
|
||||
auto haystack = args.get_pos(1);
|
||||
if (is_val<value_undefined>(haystack)) {
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_array>(haystack)) {
|
||||
for (const auto & item : haystack->as_array()) {
|
||||
if (*needle == *item) {
|
||||
return mk_val<value_bool>(true);
|
||||
}
|
||||
}
|
||||
return mk_val<value_bool>(false);
|
||||
}
|
||||
if (is_val<value_string>(haystack)) {
|
||||
if (!is_val<value_string>(needle)) {
|
||||
throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type());
|
||||
}
|
||||
return mk_val<value_bool>(
|
||||
haystack->as_string().str().find(needle->as_string().str()) != std::string::npos);
|
||||
}
|
||||
if (is_val<value_object>(haystack)) {
|
||||
return mk_val<value_bool>(haystack->has_key(needle));
|
||||
}
|
||||
throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type());
|
||||
}},
|
||||
{"test_is_test", [](const func_args & args) -> value {
|
||||
args.ensure_vals<value_string>();
|
||||
auto & builtins = global_builtins();
|
||||
|
||||
@@ -12,6 +12,7 @@
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
|
||||
namespace jinja {
|
||||
|
||||
@@ -7,6 +7,33 @@
|
||||
#include <cstdio>
|
||||
#include <sstream>
|
||||
|
||||
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
|
||||
#define LCG_FACTOR 2654435761UL
|
||||
|
||||
// Compute the LCG hash of a n-gram of size len at offset start.
|
||||
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
|
||||
uint32_t hash = 0;
|
||||
for (size_t i = 0; i < len; ++i) {
|
||||
hash = hash * LCG_FACTOR + tokens[start + i];
|
||||
}
|
||||
return hash;
|
||||
}
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
oss << '[';
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (i > 0) {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << inp[start + i];
|
||||
}
|
||||
oss << ']';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
// n-gram simple
|
||||
//
|
||||
|
||||
@@ -20,21 +47,15 @@
|
||||
* @return Vector of draft tokens, empty if no matching pattern is found
|
||||
*/
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
common_ngram_simple_state & state,
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled) {
|
||||
|
||||
// Simple implementation of self-speculative decoding without a draft model.
|
||||
//
|
||||
const size_t cur_len = tokens.size();
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
if (state.idx_last_check + state.config.check_rate > cur_len) {
|
||||
llama_tokens draft_tokens;
|
||||
return draft_tokens;
|
||||
}
|
||||
|
||||
size_t n_draft_min = state.config.size_ngram; // size of n-gram to lookup in token history
|
||||
size_t n_draft_max = state.config.size_mgram; // the m-gram following the found n-gram is used for draft
|
||||
const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history
|
||||
const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft
|
||||
|
||||
// vector for tokens we want to verify.
|
||||
// return empty vector if there is no match.
|
||||
@@ -53,9 +74,6 @@ llama_tokens common_ngram_simple_draft(
|
||||
}
|
||||
pattern.push_back(sampled); // add the last token to the pattern
|
||||
|
||||
// We do a search in the token history.
|
||||
state.idx_last_check = cur_len;
|
||||
|
||||
size_t match_pos = 0; // we ignore position 0, position 0 == no match
|
||||
// search backwards, but skip the current match (we are currently there)
|
||||
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
|
||||
@@ -100,7 +118,99 @@ llama_tokens common_ngram_simple_draft(
|
||||
// maximum number of counted values of a ngram map value.
|
||||
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
|
||||
|
||||
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length);
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map, const llama_tokens & tokens) {
|
||||
size_t size_begin = tokens.size();
|
||||
|
||||
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin, map.keys.size());
|
||||
|
||||
size_t count_map_entries_upd = 0;
|
||||
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
|
||||
if (map.show_key_map_stats) {
|
||||
// Print statistics of hash map map_key.
|
||||
size_t count_nonzero = 0;
|
||||
uint32_t min_idx = UINT32_MAX;
|
||||
uint32_t max_idx = 0;
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx != 0) {
|
||||
++count_nonzero;
|
||||
if (key_idx < min_idx) min_idx = key_idx;
|
||||
if (key_idx > max_idx) max_idx = key_idx;
|
||||
}
|
||||
}
|
||||
if (count_nonzero == 0) {
|
||||
min_idx = 0;
|
||||
}
|
||||
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
|
||||
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
|
||||
}
|
||||
|
||||
// Update the map from hash to key index (clear outdated entries).
|
||||
for (size_t i = 0; i < map.key_map.size(); ++i) {
|
||||
uint32_t key_idx = map.key_map[i];
|
||||
if (key_idx >= map.size_last_begin) {
|
||||
map.key_map[i] = 0;
|
||||
count_map_entries_upd++;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
}
|
||||
|
||||
if (size_begin < map.idx_last_check && !map.keys.empty()) {
|
||||
// The next token generation will start at index size_begin.
|
||||
// The tokens between map.size_last_begin and size_begin are no longer valid.
|
||||
//
|
||||
// Refresh map: Remove all entries with index >= map.size_last_begin.
|
||||
size_t count_keys = map.keys.size();
|
||||
size_t count_keys_del = 0;
|
||||
size_t count_values_del = 0;
|
||||
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
|
||||
common_ngram_map_key & key = map.keys[i];
|
||||
if (key.key_idx >= map.size_last_begin) {
|
||||
// Delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
continue;
|
||||
}
|
||||
if (map.key_only) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Check the indices of the values.
|
||||
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
|
||||
common_ngram_map_value & value = key.values[j];
|
||||
if (value.value_idx >= map.size_last_begin) {
|
||||
// Delete the value.
|
||||
count_values_del++;
|
||||
|
||||
// Move all values after this value to the left.
|
||||
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
|
||||
key.values[k] = key.values[k + 1];
|
||||
}
|
||||
// Clear the last value.
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
|
||||
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
|
||||
}
|
||||
}
|
||||
if (key.values[0].value_idx == 0) {
|
||||
// No values left, delete the key.
|
||||
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
|
||||
map.keys.erase(map.keys.begin() + i);
|
||||
count_keys_del++;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
|
||||
map.idx_last_check, size_begin,
|
||||
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
|
||||
}
|
||||
|
||||
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
|
||||
map.size_last_begin = size_begin;
|
||||
}
|
||||
|
||||
void common_ngram_map_draft(common_ngram_map & map,
|
||||
const llama_tokens & inp, llama_token sampled,
|
||||
@@ -116,6 +226,10 @@ void common_ngram_map_draft(common_ngram_map & map,
|
||||
if (cur_len < static_cast<size_t>(2 * n + m)) {
|
||||
return;
|
||||
}
|
||||
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
|
||||
// key_map uses uint32_t instead of size_t.
|
||||
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
|
||||
}
|
||||
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
@@ -134,24 +248,92 @@ void common_ngram_map_draft(common_ngram_map & map,
|
||||
|
||||
// search for the key in the map
|
||||
size_t match_pos = 0;
|
||||
for (size_t j = cur_len - n - m - 1; j > 0; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
if (map.size_last_begin > cur_len) {
|
||||
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
|
||||
}
|
||||
if (!map.key_map.empty()) {
|
||||
// Search for the key in the map key_map from hash of ngrams to index of ngram.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
|
||||
uint32_t idx_key = map.key_map[idx_hash];
|
||||
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
|
||||
// Check if the key matches the key at idx_key (because of possible collisions).
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[idx_key + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
|
||||
if (match) {
|
||||
match_pos = idx_key;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// Check if the key matches the key.
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos == 0) {
|
||||
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
|
||||
//
|
||||
// Search in [size_last_begin, cur_len - n - m - 1], descending.
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
bool match = true;
|
||||
for (size_t k = 0; k < n; ++k) {
|
||||
if (inp[j + k] != key_tokens[k]) {
|
||||
match = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (match) {
|
||||
match_pos = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (match_pos > 0) {
|
||||
LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
|
||||
cur_len, n, m, key_tokens.size(), sampled, match_pos);
|
||||
}
|
||||
|
||||
if (!map.key_map.empty()) {
|
||||
// Add hashes of new ngrams in key_map.
|
||||
//
|
||||
// Use the same order as above.
|
||||
if (map.size_last_begin > (size_t) (n + m + 1)) {
|
||||
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j; // collisions may occur
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
|
||||
// compute hash and store index of ngram at idx j in the map.
|
||||
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
|
||||
if (map.key_map[idx_hash] == 0) {
|
||||
map.key_map[idx_hash] = j;
|
||||
}
|
||||
}
|
||||
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
|
||||
}
|
||||
|
||||
if (match_pos == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -202,8 +384,8 @@ void common_ngram_map_draft(common_ngram_map & map,
|
||||
draft.push_back(inp[match_pos + n + i]);
|
||||
}
|
||||
|
||||
LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
key_offset, curr_key.key_num, draft.size());
|
||||
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
|
||||
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
|
||||
|
||||
map.last_draft_created = false;
|
||||
map.last_draft_key_idx = key_offset;
|
||||
@@ -305,7 +487,7 @@ void common_ngram_map_draft(common_ngram_map & map,
|
||||
}
|
||||
}
|
||||
|
||||
if (sum_occur > 0 && max_occur < 3 * sum_occur) {
|
||||
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
|
||||
// The most frequent value is not much more frequent than the other values.
|
||||
// We do not use the draft.
|
||||
return;
|
||||
@@ -347,21 +529,3 @@ void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
|
||||
n_accepted, curr_value.n_accepted);
|
||||
curr_value.n_accepted = n_accepted;
|
||||
}
|
||||
|
||||
// Helper functions.
|
||||
//
|
||||
|
||||
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
|
||||
std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
|
||||
std::ostringstream oss;
|
||||
oss << '[';
|
||||
for (size_t i = 0; i < length; ++i) {
|
||||
if (i > 0) {
|
||||
oss << ", ";
|
||||
}
|
||||
oss << inp[start + i];
|
||||
}
|
||||
oss << ']';
|
||||
return oss.str();
|
||||
}
|
||||
|
||||
|
||||
@@ -9,8 +9,11 @@
|
||||
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
|
||||
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
|
||||
//
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
|
||||
//
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
@@ -24,23 +27,9 @@ struct common_ngram_simple_config {
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
};
|
||||
|
||||
// current state (and config) of n-gram simple.
|
||||
struct common_ngram_simple_state {
|
||||
common_ngram_simple_config config;
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history (mutable)
|
||||
|
||||
common_ngram_simple_state(const common_ngram_simple_config & config)
|
||||
: config(config) {}
|
||||
};
|
||||
|
||||
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// state: the ngram simple state to search in.
|
||||
// inp: the tokens generated so far.
|
||||
// sampled: the token that was just sampled.
|
||||
// draft: vector to store the draft tokens, initially empty.
|
||||
llama_tokens common_ngram_simple_draft(
|
||||
common_ngram_simple_state & state,
|
||||
const common_ngram_simple_config & config,
|
||||
const llama_tokens & tokens, llama_token sampled);
|
||||
|
||||
|
||||
@@ -50,10 +39,13 @@ llama_tokens common_ngram_simple_draft(
|
||||
// maximum number of m-gram values stored for each key n-gram.
|
||||
#define COMMON_NGRAM_MAX_VALUES 4
|
||||
|
||||
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
|
||||
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
|
||||
|
||||
// statistics of a m-gram after a known n-gram
|
||||
struct common_ngram_map_value {
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
|
||||
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
|
||||
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
|
||||
};
|
||||
|
||||
@@ -73,23 +65,43 @@ struct common_ngram_map {
|
||||
|
||||
bool key_only; // true if only key n-grams are used, no values.
|
||||
|
||||
// first draft: vector only, no map.
|
||||
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
uint16_t min_hits; // minimum number of key hits to consider a draft
|
||||
|
||||
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
|
||||
|
||||
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
|
||||
uint16_t check_rate, uint16_t min_hits)
|
||||
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
|
||||
check_rate(check_rate), min_hits(min_hits) {}
|
||||
check_rate(check_rate), min_hits(min_hits) {
|
||||
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
|
||||
}
|
||||
|
||||
// In reasoning chats the previous reasoning block will be removed from context history.
|
||||
// A rebuild of the ngram map is needed after that.
|
||||
|
||||
size_t size_last_begin = 0; // number of tokens at previous start of generation
|
||||
|
||||
bool last_draft_created = false; // true if a draft was created at last call.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation.
|
||||
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
|
||||
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
|
||||
|
||||
size_t idx_last_check = 0; // index of last check in context history
|
||||
|
||||
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
|
||||
//
|
||||
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
|
||||
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
|
||||
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
|
||||
};
|
||||
|
||||
// Initialize the n-gram map with the given token history.
|
||||
// map: the ngram map to initialize.
|
||||
// tokens: the token history to base the map on.
|
||||
void common_ngram_map_begin(
|
||||
common_ngram_map & map,
|
||||
const llama_tokens & tokens);
|
||||
|
||||
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
|
||||
// map: the ngram map to search in.
|
||||
|
||||
60
common/ngram-mod.cpp
Normal file
60
common/ngram-mod.cpp
Normal file
@@ -0,0 +1,60 @@
|
||||
#include "ngram-mod.h"
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
//
|
||||
|
||||
common_ngram_mod::common_ngram_mod(uint16_t n, size_t size) : n(n), used(0) {
|
||||
entries.resize(size);
|
||||
|
||||
reset();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::idx(const entry_t * tokens) const {
|
||||
size_t res = 0;
|
||||
|
||||
for (size_t i = 0; i < n; ++i) {
|
||||
res = res*6364136223846793005ULL + tokens[i];
|
||||
}
|
||||
|
||||
res = res % entries.size();
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void common_ngram_mod::add(const entry_t * tokens) {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
if (entries[i] == EMPTY) {
|
||||
used++;
|
||||
}
|
||||
|
||||
entries[i] = tokens[n];
|
||||
}
|
||||
|
||||
common_ngram_mod::entry_t common_ngram_mod::get(const entry_t * tokens) const {
|
||||
const size_t i = idx(tokens);
|
||||
|
||||
return entries[i];
|
||||
}
|
||||
|
||||
void common_ngram_mod::reset() {
|
||||
std::fill(entries.begin(), entries.end(), EMPTY);
|
||||
used = 0;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_n() const {
|
||||
return n;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::get_used() const {
|
||||
return used;
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size() const {
|
||||
return entries.size();
|
||||
}
|
||||
|
||||
size_t common_ngram_mod::size_bytes() const {
|
||||
return entries.size() * sizeof(entries[0]);
|
||||
}
|
||||
38
common/ngram-mod.h
Normal file
38
common/ngram-mod.h
Normal file
@@ -0,0 +1,38 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <cstddef>
|
||||
|
||||
//
|
||||
// common_ngram_mod
|
||||
// ref: https://github.com/ggml-org/llama.cpp/pull/19164
|
||||
//
|
||||
|
||||
// basic n-gram hasher
|
||||
struct common_ngram_mod {
|
||||
using entry_t = int32_t;
|
||||
|
||||
static constexpr entry_t EMPTY = -1;
|
||||
|
||||
common_ngram_mod(uint16_t n, size_t size);
|
||||
|
||||
size_t idx(const entry_t * tokens) const;
|
||||
void add(const entry_t * tokens);
|
||||
entry_t get(const entry_t * tokens) const; // return -1 if not found
|
||||
|
||||
void reset();
|
||||
|
||||
size_t get_n() const;
|
||||
size_t get_used() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t size_bytes() const;
|
||||
|
||||
private:
|
||||
size_t n; // ngram size to hash
|
||||
|
||||
size_t used;
|
||||
|
||||
std::vector<entry_t> entries;
|
||||
};
|
||||
@@ -6,6 +6,7 @@
|
||||
#include "log.h"
|
||||
#include "ngram-cache.h"
|
||||
#include "ngram-map.h"
|
||||
#include "ngram-mod.h"
|
||||
#include "sampling.h"
|
||||
|
||||
#include <algorithm>
|
||||
@@ -23,6 +24,7 @@ const std::vector<enum common_speculative_type> common_speculative_types = {
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_MOD,
|
||||
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
|
||||
};
|
||||
|
||||
@@ -33,6 +35,7 @@ const std::map<std::string, enum common_speculative_type> common_speculative_typ
|
||||
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
|
||||
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
|
||||
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
|
||||
{"ngram_mod", COMMON_SPECULATIVE_TYPE_NGRAM_MOD},
|
||||
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
|
||||
};
|
||||
|
||||
@@ -110,6 +113,8 @@ static bool common_speculative_are_compatible(
|
||||
struct common_speculative_state {
|
||||
const enum common_speculative_type type;
|
||||
|
||||
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
|
||||
// TODO: add n_call_begin, n_call_accept
|
||||
size_t drafts_call_count = 0; // number of times this implementation was called.
|
||||
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
|
||||
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
|
||||
@@ -119,7 +124,9 @@ struct common_speculative_state {
|
||||
// TODO: track performance of most recent calls
|
||||
const bool gen_perf = true; // whether to generate performance stats.
|
||||
|
||||
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
|
||||
int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds.
|
||||
int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds.
|
||||
int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds.
|
||||
|
||||
common_speculative_state(enum common_speculative_type type) : type(type) {}
|
||||
|
||||
@@ -456,12 +463,14 @@ struct common_speculative_state_eagle3 : public common_speculative_state {
|
||||
|
||||
// state of self-speculation (simple implementation, not ngram-map)
|
||||
struct common_speculative_state_ngram_simple : public common_speculative_state {
|
||||
common_ngram_simple_state state;
|
||||
common_ngram_simple_config config;
|
||||
|
||||
uint16_t check_id = 0; // used to control the frequency of generating drafts
|
||||
|
||||
common_speculative_state_ngram_simple(
|
||||
enum common_speculative_type type,
|
||||
common_ngram_simple_state state)
|
||||
: common_speculative_state(type), state(state) {}
|
||||
common_ngram_simple_config config)
|
||||
: common_speculative_state(type), config(config) {}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
GGML_UNUSED(prompt);
|
||||
@@ -472,7 +481,13 @@ struct common_speculative_state_ngram_simple : public common_speculative_state {
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last,
|
||||
llama_tokens & result) override {
|
||||
result = common_ngram_simple_draft(state, prompt_tgt, id_last);
|
||||
++check_id;
|
||||
if (check_id < config.check_rate) {
|
||||
return;
|
||||
}
|
||||
check_id = 0;
|
||||
|
||||
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
@@ -492,7 +507,7 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
|
||||
: common_speculative_state(type), map(std::move(map)) {}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
GGML_UNUSED(prompt);
|
||||
common_ngram_map_begin(map, prompt);
|
||||
}
|
||||
|
||||
void draft(
|
||||
@@ -509,6 +524,132 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
|
||||
}
|
||||
};
|
||||
|
||||
struct common_speculative_state_ngram_mod : public common_speculative_state {
|
||||
common_ngram_mod & mod;
|
||||
|
||||
// the last position in the prompt that was added to the ngram container
|
||||
size_t i_last = 0;
|
||||
|
||||
// length of the last drafted n‑gram (number of tokens returned by draft)
|
||||
size_t n_draft_last = 0;
|
||||
|
||||
// consecutive accept rounds with low acceptance fraction (< 0.5)
|
||||
int n_low = 0;
|
||||
|
||||
// enable trace logging if LLAMA_TRACE is set
|
||||
const bool verbose;
|
||||
|
||||
common_speculative_state_ngram_mod(enum common_speculative_type type, common_ngram_mod & mod)
|
||||
: common_speculative_state(type), mod(mod), verbose(std::getenv("LLAMA_TRACE") != nullptr) {
|
||||
static_assert(sizeof(llama_token) == sizeof(common_ngram_mod::entry_t));
|
||||
}
|
||||
|
||||
void begin(const llama_tokens & prompt) override {
|
||||
i_last = 0;
|
||||
|
||||
n_draft_last = 0;
|
||||
|
||||
const size_t n = mod.get_n();
|
||||
|
||||
if (prompt.size() < n) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < prompt.size() - n; ++i) {
|
||||
mod.add(prompt.data() + i);
|
||||
}
|
||||
|
||||
i_last = prompt.size() - n;
|
||||
|
||||
const double f = (double)mod.get_used() / (double)mod.size();
|
||||
LOG_INF("%s: ngram_mod occupancy = %zu/%zu (%.2f)\n", __func__, mod.get_used(), mod.size(), f);
|
||||
|
||||
constexpr double f_thold = 0.25;
|
||||
if (f > f_thold) {
|
||||
LOG_WRN("%s: ngram_mod occupancy %.2f exceeds threshold (%.2f) - resetting\n", __func__, f, f_thold);
|
||||
|
||||
mod.reset();
|
||||
}
|
||||
}
|
||||
|
||||
void draft(
|
||||
const common_params_speculative & params,
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last,
|
||||
llama_tokens & result) override {
|
||||
GGML_UNUSED(params);
|
||||
|
||||
n_draft_last = 0;
|
||||
|
||||
const size_t cur_len = prompt_tgt.size();
|
||||
if (cur_len < mod.get_n()) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t n = mod.get_n();
|
||||
|
||||
// add new ngrams in chunks
|
||||
if (i_last + 32 < cur_len) {
|
||||
for (size_t i = i_last; i < cur_len - n; ++i) {
|
||||
mod.add(prompt_tgt.data() + i);
|
||||
}
|
||||
|
||||
i_last = cur_len - n;
|
||||
}
|
||||
|
||||
result.resize(n + params.n_max);
|
||||
for (size_t i = 0; i < n - 1; ++i) {
|
||||
result[i] = prompt_tgt[cur_len - n + 1 + i];
|
||||
}
|
||||
result[n - 1] = id_last;
|
||||
|
||||
for (int i = 0; i < params.n_max; ++i) {
|
||||
const llama_token token = mod.get(result.data() + i);
|
||||
if (token == common_ngram_mod::EMPTY) {
|
||||
if (i < params.n_min) {
|
||||
result.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
result.resize(n + i);
|
||||
break;
|
||||
}
|
||||
result[n + i] = token;
|
||||
}
|
||||
|
||||
// only return the m tokens that were drafted
|
||||
for (size_t i = 0; n + i < result.size(); ++i) {
|
||||
result[i] = result[n + i];
|
||||
}
|
||||
result.resize(result.size() - n);
|
||||
|
||||
// store length of drafted n‑gram for later acceptance analysis
|
||||
n_draft_last = result.size();
|
||||
}
|
||||
|
||||
void accept(uint16_t n_accepted) override {
|
||||
if (verbose) {
|
||||
LOG_INF("%s: accepted %d tokens from %zu drafted tokens\n", __func__, n_accepted, n_draft_last);
|
||||
}
|
||||
|
||||
// compute acceptance fraction if we have a recorded draft length
|
||||
if (n_draft_last > 0) {
|
||||
const double f_acc = (double)n_accepted / (double)n_draft_last;
|
||||
if (f_acc < 0.5) {
|
||||
n_low++;
|
||||
if (n_low >= 3) {
|
||||
LOG_WRN("%s: low acceptance streak (%d) – resetting ngram_mod\n", __func__, n_low);
|
||||
|
||||
mod.reset();
|
||||
n_low = 0;
|
||||
}
|
||||
} else {
|
||||
n_low = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct common_speculative_state_ngram_cache : public common_speculative_state {
|
||||
uint16_t n_draft;
|
||||
bool save_dynamic;
|
||||
@@ -650,6 +791,7 @@ std::string common_speculative_type_to_str(enum common_speculative_type type) {
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: return "ngram_mod";
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
|
||||
default: return "unknown";
|
||||
}
|
||||
@@ -663,11 +805,47 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
||||
return it->second;
|
||||
}
|
||||
|
||||
bool common_speculative_is_compat(llama_context * ctx_tgt) {
|
||||
auto * mem = llama_get_memory(ctx_tgt);
|
||||
if (mem == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool res = true;
|
||||
|
||||
llama_memory_clear(mem, true);
|
||||
|
||||
// eval 2 tokens to check if the context is compatible
|
||||
std::vector<llama_token> tmp;
|
||||
tmp.push_back(0);
|
||||
tmp.push_back(0);
|
||||
|
||||
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
|
||||
if (ret != 0) {
|
||||
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
|
||||
res = false;
|
||||
goto done;
|
||||
}
|
||||
|
||||
// try to remove the last tokens
|
||||
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
|
||||
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
|
||||
res = false;
|
||||
goto done;
|
||||
}
|
||||
|
||||
done:
|
||||
llama_memory_clear(mem, true);
|
||||
llama_synchronize(ctx_tgt);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
// initialization of the speculative decoding system
|
||||
//
|
||||
common_speculative * common_speculative_init(
|
||||
const common_params_speculative & params,
|
||||
llama_context * ctx_tgt) {
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt) {
|
||||
llama_context * ctx_dft = nullptr;
|
||||
if (params.model_dft) {
|
||||
ctx_dft = llama_init_from_model(params.model_dft, params.cparams_dft);
|
||||
@@ -687,6 +865,7 @@ common_speculative * common_speculative_init(
|
||||
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
|
||||
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
|
||||
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
|
||||
bool has_ngram_mod = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MOD);
|
||||
|
||||
// In a more complex implementation we could use the same implementation but with different parameters.
|
||||
// This was initially used in PR-18471 but removed to simplify the code.
|
||||
@@ -701,6 +880,22 @@ common_speculative * common_speculative_init(
|
||||
// This implementation can guess tokens with high acceptance rate but is more expensive.
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
|
||||
}
|
||||
if (has_ngram_mod) {
|
||||
// shared instance for all speculative decoding contexts
|
||||
if (!params.ngram_mod) {
|
||||
params.ngram_mod = std::make_shared<common_ngram_mod>(params.ngram_size_n, 4*1024*1024);
|
||||
|
||||
LOG_INF("%s: initialized ngram_mod with n=%d, size=%zu (%.3f MB)\n", __func__,
|
||||
params.ngram_size_n, params.ngram_mod->size(),
|
||||
(float)(params.ngram_mod->size_bytes())/1024/1024);
|
||||
|
||||
if (params.ngram_size_n < 16) {
|
||||
LOG_WRN("%s: ngram_mod n=%d is too small - poor quality is possible, see: https://github.com/ggml-org/llama.cpp/pull/19164\n", __func__, params.ngram_size_n);
|
||||
}
|
||||
}
|
||||
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MOD, params));
|
||||
}
|
||||
if (has_ngram_cache) {
|
||||
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
|
||||
}
|
||||
@@ -738,14 +933,14 @@ common_speculative * common_speculative_init(
|
||||
uint16_t mgram_size_value = ngram_map.size_value;
|
||||
uint16_t check_rate = ngram_map.check_rate;
|
||||
|
||||
auto config_simple = common_ngram_simple_config{
|
||||
auto config_simple = common_ngram_simple_config {
|
||||
/* .size_ngram = */ ngram_size_key,
|
||||
/* .size_mgram = */ mgram_size_value,
|
||||
/* .check_rate = */ check_rate
|
||||
};
|
||||
auto state = std::make_unique<common_speculative_state_ngram_simple>(
|
||||
/* .type = */ config.type,
|
||||
/* .state = */ common_ngram_simple_state(config_simple)
|
||||
/* .state = */ config_simple
|
||||
);
|
||||
impls.push_back(std::move(state));
|
||||
break;
|
||||
@@ -758,6 +953,11 @@ common_speculative * common_speculative_init(
|
||||
));
|
||||
break;
|
||||
}
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_MOD: {
|
||||
GGML_ASSERT(config.params.ngram_mod);
|
||||
impls.push_back(std::make_unique<common_speculative_state_ngram_mod>(config.type, *config.params.ngram_mod));
|
||||
break;
|
||||
}
|
||||
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
|
||||
auto state = create_state_ngram_cache(
|
||||
params.lookup_cache_static, params.lookup_cache_dynamic, config);
|
||||
@@ -795,6 +995,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
|
||||
}
|
||||
|
||||
for (auto & impl : spec->impls) {
|
||||
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
|
||||
impl->begin(prompt);
|
||||
}
|
||||
}
|
||||
@@ -810,20 +1011,14 @@ llama_tokens common_speculative_draft(
|
||||
|
||||
for (auto & impl : spec->impls) {
|
||||
{
|
||||
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
|
||||
impl->draft(params, prompt_tgt, id_last, result);
|
||||
|
||||
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
|
||||
|
||||
impl->drafts_call_count++;
|
||||
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
|
||||
}
|
||||
|
||||
if (!result.empty()) {
|
||||
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
|
||||
common_speculative_type_to_str(impl.get()->type).c_str(),
|
||||
prompt_tgt.size(),
|
||||
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
|
||||
impl.get()->drafts_call_count, result.size());
|
||||
|
||||
spec->curr_impl = impl.get(); // set current implementation for stats
|
||||
@@ -846,12 +1041,15 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
|
||||
|
||||
GGML_ASSERT(impl);
|
||||
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
}
|
||||
{
|
||||
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
}
|
||||
|
||||
impl->accept(n_accepted);
|
||||
impl->accept(n_accepted);
|
||||
}
|
||||
}
|
||||
|
||||
void common_speculative_print_stats(const common_speculative * spec) {
|
||||
@@ -863,8 +1061,10 @@ void common_speculative_print_stats(const common_speculative * spec) {
|
||||
std::string str_perf;
|
||||
if (impl->gen_perf) {
|
||||
std::ostringstream oss;
|
||||
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
|
||||
str_perf = ", dur = " + oss.str() + " ms";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", ";
|
||||
oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0;
|
||||
str_perf = ", dur(b,g,a) = " + oss.str() + " ms";
|
||||
} else {
|
||||
str_perf = "";
|
||||
}
|
||||
|
||||
@@ -14,9 +14,13 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
|
||||
// convert type to string
|
||||
std::string common_speculative_type_to_str(enum common_speculative_type type);
|
||||
|
||||
// check if the llama_context is compatible for speculative decoding
|
||||
// note: clears the memory of the context
|
||||
bool common_speculative_is_compat(llama_context * ctx_tgt);
|
||||
|
||||
common_speculative * common_speculative_init(
|
||||
const common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
common_params_speculative & params,
|
||||
llama_context * ctx_tgt);
|
||||
|
||||
void common_speculative_free(common_speculative * spec);
|
||||
|
||||
|
||||
@@ -586,6 +586,10 @@ class ModelBase:
|
||||
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
|
||||
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
|
||||
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
|
||||
# Kimi KDA conv weights should be F32
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_Q,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_K,
|
||||
gguf.MODEL_TENSOR.SSM_CONV1D_V,
|
||||
)
|
||||
)
|
||||
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
|
||||
@@ -903,10 +907,10 @@ class TextModel(ModelBase):
|
||||
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
|
||||
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
|
||||
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
|
||||
if (n_experts := self.hparams.get("num_local_experts")) is not None:
|
||||
if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None:
|
||||
self.gguf_writer.add_expert_count(n_experts)
|
||||
logger.info(f"gguf: expert count = {n_experts}")
|
||||
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
|
||||
if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None:
|
||||
self.gguf_writer.add_expert_used_count(n_experts_used)
|
||||
logger.info(f"gguf: experts used count = {n_experts_used}")
|
||||
if (n_expert_groups := self.hparams.get("n_group")) is not None:
|
||||
@@ -916,7 +920,7 @@ class TextModel(ModelBase):
|
||||
self.gguf_writer.add_expert_group_used_count(n_group_used)
|
||||
logger.info(f"gguf: expert groups used count = {n_group_used}")
|
||||
|
||||
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
|
||||
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None:
|
||||
if score_func == "sigmoid":
|
||||
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
|
||||
elif score_func == "softmax":
|
||||
@@ -5013,6 +5017,221 @@ class CodeShellModel(TextModel):
|
||||
self.gguf_writer.add_rope_scaling_factor(1.0)
|
||||
|
||||
|
||||
@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM")
|
||||
class KimiLinearModel(TextModel):
|
||||
"""Kimi-Linear model with hybrid MLA+KDA architecture"""
|
||||
model_arch = gguf.MODEL_ARCH.KIMI_LINEAR
|
||||
|
||||
_experts: list[dict[str, Tensor]] | None = None
|
||||
|
||||
def set_vocab(self):
|
||||
try:
|
||||
self._set_vocab_gpt2()
|
||||
return
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
|
||||
tokpre = self.get_vocab_base_pre(tokenizer)
|
||||
|
||||
if tokpre == "kimi-k2":
|
||||
# Build merges list using the approach similar to HunYuanMoE
|
||||
merges = []
|
||||
vocab = {}
|
||||
mergeable_ranks = tokenizer.model._mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
if len(merged) == 2:
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
# Build token list
|
||||
vocab_size = self.hparams["vocab_size"]
|
||||
special_tokens = tokenizer.special_tokens
|
||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.UNUSED)
|
||||
else:
|
||||
token = reverse_vocab[i]
|
||||
tokens.append(token)
|
||||
if i in special_tokens.values():
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_tokenizer_pre(tokpre)
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_token_merges(merges)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
# override eos id in config.json with tiktoken eos id
|
||||
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
|
||||
else:
|
||||
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
# note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group)
|
||||
self.hparams["num_key_value_heads"] = 1
|
||||
|
||||
super().set_gguf_parameters()
|
||||
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
|
||||
|
||||
# KDA & MLA params
|
||||
# Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv
|
||||
linear_attn_config = self.hparams["linear_attn_config"]
|
||||
# n_head == 0 for KDA layers, n_head > 0 for MLA layers
|
||||
# full_attention_layers list will be used to distingush layer type
|
||||
_num_kv_heads = list()
|
||||
_full_attn_layers = linear_attn_config["full_attn_layers"]
|
||||
for il in range(self.hparams["num_hidden_layers"]):
|
||||
if il + 1 in _full_attn_layers:
|
||||
_num_kv_heads.append(self.hparams["num_key_value_heads"])
|
||||
else:
|
||||
_num_kv_heads.append(0)
|
||||
assert len(_num_kv_heads) == self.hparams["num_hidden_layers"]
|
||||
self.gguf_writer.add_head_count_kv(_num_kv_heads)
|
||||
|
||||
if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None:
|
||||
self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv)
|
||||
if (kda_head_dim := linear_attn_config.get("head_dim")) is not None:
|
||||
self.gguf_writer.add_kda_head_dim(kda_head_dim)
|
||||
|
||||
# MLA params - use add_* methods that handle arch substitution
|
||||
# Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv)
|
||||
if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None:
|
||||
self.gguf_writer.add_q_lora_rank(q_lora_rank)
|
||||
# To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA
|
||||
kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)
|
||||
self.gguf_writer.add_kv_lora_rank(kv_lora_rank)
|
||||
|
||||
# MLA head dimensions
|
||||
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
|
||||
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
|
||||
# Rotation - use qk_rope_head_dim for Kimi
|
||||
qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)
|
||||
self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim)
|
||||
self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim)
|
||||
v_head_dim = self.hparams.get("v_head_dim")
|
||||
|
||||
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
|
||||
if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None:
|
||||
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
|
||||
elif qk_nope_head_dim is not None:
|
||||
n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
|
||||
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
|
||||
|
||||
# n_embd_head_v_mla = v_head_dim
|
||||
if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None:
|
||||
self.gguf_writer.add_value_length_mla(n_embd_head_v_mla)
|
||||
elif v_head_dim is not None:
|
||||
self.gguf_writer.add_value_length_mla(v_head_dim)
|
||||
|
||||
# moe_intermediate_size (1024 for Kimi)
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
# num_shared_experts (1 for Kimi)
|
||||
self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"])
|
||||
# first_k_dense_replace (1 for Kimi - first layer uses dense MLP)
|
||||
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
|
||||
# Routed scaling factor (expert_weights_scale = 2.446 for Kimi)
|
||||
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
|
||||
|
||||
def prepare_tensors(self):
|
||||
super().prepare_tensors()
|
||||
if self._experts is not None:
|
||||
experts = [k for d in self._experts for k in d.keys()]
|
||||
if len(experts) > 0:
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}")
|
||||
|
||||
# Handle KDA conv1d weights
|
||||
# HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest
|
||||
# llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest
|
||||
# GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
|
||||
# Memory layouts match: both have conv_step (d_conv) changing fastest
|
||||
if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")):
|
||||
# HF shape: [d_inner, d_conv] e.g. [4096, 4]
|
||||
# Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
|
||||
if data_torch.ndim == 2:
|
||||
d_inner, d_conv = data_torch.shape
|
||||
# Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest)
|
||||
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
|
||||
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
|
||||
elif data_torch.ndim == 3:
|
||||
# Already 3D [d_inner, 1, d_conv] from unsqueeze
|
||||
d_inner, _, d_conv = data_torch.shape
|
||||
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
|
||||
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
|
||||
|
||||
# Kimi specific bias
|
||||
if name.endswith("e_score_correction_bias"):
|
||||
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
|
||||
|
||||
# Handle A_log: iHF stores as [1, 1, num_heads, 1]
|
||||
# llama.cpp expects ggml ne = [1, num_heads, 1, 1]
|
||||
# GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1]
|
||||
if name.endswith(".A_log"):
|
||||
data_torch = -torch.exp(data_torch)
|
||||
if name.endswith(".dt_bias"):
|
||||
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
|
||||
logger.info("Changed dt_bias to dt_proj.bias")
|
||||
|
||||
# process the experts separately
|
||||
if name.find("block_sparse_moe.experts") != -1:
|
||||
n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False)
|
||||
assert bid is not None
|
||||
|
||||
if self._experts is None:
|
||||
self._experts = [{} for _ in range(self.block_count)]
|
||||
|
||||
self._experts[bid][name] = data_torch
|
||||
|
||||
if len(self._experts[bid]) >= n_experts * 3:
|
||||
# merge the experts into a single 3d tensor
|
||||
# w1: gate, w2: down, w3: up
|
||||
for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP),
|
||||
("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP),
|
||||
("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]:
|
||||
datas: list[Tensor] = []
|
||||
for xid in range(n_experts):
|
||||
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
|
||||
datas.append(self._experts[bid][ename])
|
||||
del self._experts[bid][ename]
|
||||
data_torch = torch.stack(datas, dim=0)
|
||||
new_name = self.format_tensor_name(tname, bid)
|
||||
yield from super().modify_tensors(data_torch, new_name, bid)
|
||||
return
|
||||
|
||||
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
|
||||
if name.endswith("kv_b_proj.weight"):
|
||||
name_kb = name.replace("kv_b_proj", "k_b_proj")
|
||||
name_vb = name.replace("kv_b_proj", "v_b_proj")
|
||||
n_head_kv = self.hparams["num_key_value_heads"]
|
||||
v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False)
|
||||
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
|
||||
logger.info("Split kv_b n_head_kv %d\n" % n_head_kv)
|
||||
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
|
||||
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
|
||||
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
|
||||
k_b = k_b.transpose(1, 2)
|
||||
yield from super().modify_tensors(k_b, name_kb, bid)
|
||||
yield from super().modify_tensors(v_b, name_vb, bid)
|
||||
return
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("InternLM2ForCausalLM")
|
||||
class InternLM2Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.INTERNLM2
|
||||
@@ -7693,6 +7912,135 @@ class MimoV2Model(TextModel):
|
||||
raise ValueError(f"Unprocessed experts: {experts}")
|
||||
|
||||
|
||||
@ModelBase.register("Step3p5ForCausalLM")
|
||||
class Step35Model(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.STEP35
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
rope_theta = self.hparams.get("rope_theta")
|
||||
if isinstance(rope_theta, list):
|
||||
self.hparams["rope_theta"] = float(rope_theta[0])
|
||||
self.hparams["local_rope_theta"] = float(rope_theta[1])
|
||||
self.rope_parameters["rope_theta"] = self.hparams["rope_theta"]
|
||||
self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]}
|
||||
|
||||
super().set_gguf_parameters()
|
||||
|
||||
layer_types = self.hparams.get("layer_types") or []
|
||||
partial_rotary_factors = self.hparams.get("partial_rotary_factors") or []
|
||||
attn_other = self.hparams.get("attention_other_setting") or {}
|
||||
|
||||
n_head_base = self.hparams["num_attention_heads"]
|
||||
n_kv_base = self.hparams["num_attention_groups"]
|
||||
|
||||
n_head_swa = attn_other.get("num_attention_heads", n_head_base)
|
||||
n_kv_swa = attn_other.get("num_attention_groups", n_kv_base)
|
||||
|
||||
layer_types = layer_types[: self.block_count]
|
||||
partial_rotary_factors = partial_rotary_factors[: self.block_count]
|
||||
assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors
|
||||
head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types]
|
||||
kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types]
|
||||
swa_pat = [lt == "sliding_attention" for lt in layer_types]
|
||||
|
||||
self.gguf_writer.add_head_count(head_arr)
|
||||
self.gguf_writer.add_head_count_kv(kv_arr)
|
||||
|
||||
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
|
||||
self.gguf_writer.add_sliding_window_pattern(swa_pat)
|
||||
|
||||
self.gguf_writer.add_value_length(self.hparams["head_dim"])
|
||||
|
||||
# MoE params
|
||||
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
|
||||
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
|
||||
self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"])
|
||||
|
||||
if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None:
|
||||
self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor)
|
||||
if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None:
|
||||
self.gguf_writer.add_expert_weights_norm(norm_expert_weight)
|
||||
|
||||
# leading dense blocks
|
||||
leading_dense = 0
|
||||
moe_layers_enum = self.hparams.get("moe_layers_enum")
|
||||
if isinstance(moe_layers_enum, str) and moe_layers_enum.strip():
|
||||
moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(","))
|
||||
if moe_layers:
|
||||
leading_dense = max(0, moe_layers[0])
|
||||
self.gguf_writer.add_leading_dense_block_count(leading_dense)
|
||||
self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1)))
|
||||
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
|
||||
|
||||
# Optional per-layer SwiGLU clamps.
|
||||
if (limits := self.hparams.get("swiglu_limits")) is not None:
|
||||
limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]]
|
||||
self.gguf_writer.add_swiglu_clamp_exp(limits_f)
|
||||
if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None:
|
||||
limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]]
|
||||
self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f)
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
|
||||
# remove mtp layers
|
||||
if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None:
|
||||
il = int(m.group(1))
|
||||
n_main = int(self.hparams.get("num_hidden_layers", self.block_count))
|
||||
if il >= n_main:
|
||||
return
|
||||
if name.endswith("norm.weight"):
|
||||
data_torch += 1.0
|
||||
# Map router bias (expert selection bias) to a GGUF bias tensor
|
||||
if name.endswith(".moe.router_bias"):
|
||||
name += ".bias"
|
||||
|
||||
if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")):
|
||||
data_torch = data_torch.squeeze().contiguous()
|
||||
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
# Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3").
|
||||
# llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS).
|
||||
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
|
||||
rope_type = rope_params.get("rope_type") or ""
|
||||
if rope_type.lower() != "llama3":
|
||||
return
|
||||
|
||||
# Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value.
|
||||
rope_theta = self.hparams.get("rope_theta", 10000.0)
|
||||
if isinstance(rope_theta, list):
|
||||
rope_theta = rope_theta[0]
|
||||
base = float(rope_theta)
|
||||
if (dim := self.hparams.get("head_dim")) is None:
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = int(dim)
|
||||
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = float(rope_params.get("factor", 8.0))
|
||||
low_freq_factor = float(rope_params.get("low_freq_factor", 1.0))
|
||||
high_freq_factor = float(rope_params.get("high_freq_factor", 4.0))
|
||||
old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192)))
|
||||
|
||||
low_freq_wavelen = old_context_len / low_freq_factor
|
||||
high_freq_wavelen = old_context_len / high_freq_factor
|
||||
|
||||
rope_factors: list[float] = []
|
||||
for freq in freqs:
|
||||
wavelen = 2 * math.pi / float(freq)
|
||||
if wavelen < high_freq_wavelen:
|
||||
rope_factors.append(1.0)
|
||||
elif wavelen > low_freq_wavelen:
|
||||
rope_factors.append(factor)
|
||||
else:
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth))
|
||||
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
|
||||
|
||||
|
||||
@ModelBase.register("PanguEmbeddedForCausalLM")
|
||||
class PanguEmbeddedModel(TextModel):
|
||||
model_arch = gguf.MODEL_ARCH.PANGU_EMBED
|
||||
@@ -8806,6 +9154,7 @@ class GraniteMoeModel(GraniteModel):
|
||||
gate, up = data_torch.split(ffn_dim, dim=-2)
|
||||
yield from ModelBase.modify_tensors(self, gate, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), bid)
|
||||
yield from ModelBase.modify_tensors(self, up, self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), bid)
|
||||
return
|
||||
|
||||
has_experts = bool(self.hparams.get('num_local_experts'))
|
||||
|
||||
|
||||
@@ -22,12 +22,11 @@
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
|
||||
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
|
||||
SYCL cross-platform capabilities enable support for other vendor GPUs as well.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
@@ -42,6 +41,9 @@ The following releases are verified and recommended:
|
||||
|
||||
## News
|
||||
|
||||
- 2026.02
|
||||
- Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU.
|
||||
|
||||
- 2025.11
|
||||
- Support malloc memory on device more than 4GB.
|
||||
|
||||
@@ -111,15 +113,15 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
||||
|-------------------------------|---------|---------------------------------------|
|
||||
| Intel Data Center Max Series | Support | Max 1550, 1100 |
|
||||
| Intel Data Center Flex Series | Support | Flex 170 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
|
||||
| Intel Arc B-Series | Support | Arc B580 |
|
||||
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
|
||||
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
|
||||
|
||||
*Notes:*
|
||||
|
||||
- **Memory**
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-cli`.
|
||||
- The device memory is a limitation when running a large model. The loaded model size, *`llm_load_tensors: buffer_size`*, is displayed in the log when running `./bin/llama-completion`.
|
||||
- Please make sure the GPU shared memory from the host is large enough to account for the model's size. For e.g. the *llama-2-7b.Q4_0* requires at least 8.0GB for integrated GPU and 4.0GB for discrete GPU.
|
||||
|
||||
- **Execution Unit (EU)**
|
||||
@@ -127,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|
||||
|
||||
### Other Vendor GPU
|
||||
|
||||
**Verified devices**
|
||||
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|-----------|----------------|
|
||||
| Ampere Series | Supported | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
|
||||
|
||||
| AMD GPU | Status | Verified Model |
|
||||
|--------------------------|--------------|----------------|
|
||||
| Radeon Pro | Experimental | W6800 |
|
||||
| Radeon RX | Experimental | 6700 XT |
|
||||
|
||||
Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
NA
|
||||
|
||||
## Docker
|
||||
|
||||
@@ -149,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets.
|
||||
### Build image
|
||||
|
||||
```sh
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP32
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
|
||||
|
||||
# Using FP16
|
||||
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
|
||||
```
|
||||
|
||||
*Notes*:
|
||||
@@ -212,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
|
||||
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
||||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
SYCL backend depends on:
|
||||
@@ -248,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|
||||
|2025.1|
|
||||
|2024.1|
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
|
||||
|
||||
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneDNN.git
|
||||
cd oneDNN
|
||||
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build build-nvidia --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
|
||||
@@ -285,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
|
||||
|
||||
```
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
|
||||
```
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
```
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
|
||||
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
||||
#### Intel GPU
|
||||
@@ -332,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem
|
||||
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
|
||||
as `-cl-fp32-correctly-rounded-divide-sqrt`
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with Nvidia BLAS acceleration through SYCL
|
||||
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
|
||||
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# Option 2: Use FP16
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
It is possible to come across some precision issues when running tests that stem from using faster
|
||||
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
|
||||
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
|
||||
|
||||
```sh
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
|
||||
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
### III. Run the inference
|
||||
|
||||
#### Retrieve and prepare model
|
||||
@@ -423,16 +327,12 @@ Choose one of following methods to run.
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh 0
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh 0
|
||||
./examples/sycl/test.sh -mg 0
|
||||
```
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
./examples/sycl/run-llama2.sh
|
||||
# OR
|
||||
./examples/sycl/run-llama3.sh
|
||||
./examples/sycl/test.sh
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -455,13 +355,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```sh
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
*Notes:*
|
||||
@@ -577,13 +477,13 @@ Or, use CMake presets to build:
|
||||
|
||||
```sh
|
||||
cmake --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake -DGGML_SYCL_F16=ON --preset x64-windows-sycl-release
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-release -j --target llama-completion
|
||||
|
||||
cmake --preset x64-windows-sycl-debug
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
|
||||
cmake --build build-x64-windows-sycl-debug -j --target llama-completion
|
||||
```
|
||||
|
||||
#### 3. Visual Studio
|
||||
@@ -608,7 +508,7 @@ You can use Visual Studio to open the `llama.cpp` folder directly as a CMake pro
|
||||
- For a minimal experimental setup, you can build only the inference executable using:
|
||||
|
||||
```Powershell
|
||||
cmake --build build --config Release -j --target llama-cli
|
||||
cmake --build build --config Release -j --target llama-completion
|
||||
```
|
||||
|
||||
##### - Generating a Visual Studio Solution
|
||||
@@ -714,13 +614,7 @@ Choose one of following methods to run.
|
||||
1. Script
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-2.bat
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
examples\sycl\win-run-llama-3.bat
|
||||
examples\sycl\win-test.bat
|
||||
```
|
||||
|
||||
2. Command line
|
||||
@@ -744,13 +638,13 @@ Examples:
|
||||
- Use device 0:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm none -mg 0 --mmap
|
||||
```
|
||||
|
||||
- Use multiple devices:
|
||||
|
||||
```
|
||||
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer
|
||||
build\bin\llama-completion.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 99 -sm layer --mmap
|
||||
```
|
||||
|
||||
|
||||
@@ -776,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. |
|
||||
| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
|
||||
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
|
||||
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
|
||||
1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`.
|
||||
|
||||
#### Runtime
|
||||
|
||||
@@ -792,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
||||
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
|
||||
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
|
||||
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
|
||||
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. |
|
||||
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
|
||||
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
|
||||
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|
|
||||
|
||||
@@ -1,10 +1,5 @@
|
||||
{
|
||||
"version": 5,
|
||||
"cmakeMinimumRequired": {
|
||||
"major": 3,
|
||||
"minor": 28,
|
||||
"patch": 0
|
||||
},
|
||||
"configurePresets": [
|
||||
{
|
||||
"name": "arm64-android-snapdragon",
|
||||
|
||||
@@ -128,7 +128,7 @@ However, additional settings are required for generating and signing HTP Ops lib
|
||||
> $env:HEXAGON_HTP_CERT="c:\Users\MyUsers\Certs\ggml-htp-v1.pfx"
|
||||
> $env:WINDOWS_SDK_BIN="C:\Program Files (x86)\Windows Kits\10\bin\10.0.26100.0\arm64"
|
||||
|
||||
> cmake --preset arm64-windows-snapdragon -B build-wos
|
||||
> cmake --preset arm64-windows-snapdragon-release -B build-wos
|
||||
...
|
||||
> cmake --install build-wos --prefix pkg-snapdragon
|
||||
```
|
||||
|
||||
@@ -252,9 +252,7 @@ CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.ggu
|
||||
|
||||
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
|
||||
|
||||
**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details.
|
||||
Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
|
||||
|
||||
### Unified Memory
|
||||
|
||||
|
||||
@@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250206
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250731
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m
|
||||
### Build llama.cpp
|
||||
Readme modification time: 20250826
|
||||
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
|
||||
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
|
||||
|
||||
Clone llama.cpp:
|
||||
```bash
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp
|
||||
cd llama.cpp
|
||||
```
|
||||
|
||||
|
||||
@@ -22,7 +22,7 @@ Legend:
|
||||
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
|
||||
@@ -97,7 +97,7 @@ Legend:
|
||||
| SILU | ❌ | ✅ | ✅ | 🟡 | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SILU_BACK | ❌ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ |
|
||||
| SIN | ❌ | ✅ | ✅ | ✅ | 🟡 | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFTPLUS | ❌ | ❌ | ✅ | 🟡 | 🟡 | ❌ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX | ❌ | 🟡 | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |
|
||||
| SOFT_MAX_BACK | ❌ | ❌ | 🟡 | 🟡 | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ | ❌ |
|
||||
| SOLVE_TRI | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | ❌ | 🟡 | ❌ | ❌ | ❌ |
|
||||
@@ -113,7 +113,7 @@ Legend:
|
||||
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | ❌ | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
|
||||
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
|
||||
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |
|
||||
|
||||
@@ -29,8 +29,8 @@
|
||||
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
@@ -71,14 +71,14 @@
|
||||
"SYCL0","EXP","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
@@ -113,8 +113,8 @@
|
||||
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=0","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=0","support","1","yes","SYCL"
|
||||
@@ -155,14 +155,14 @@
|
||||
"SYCL0","EXP","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","EXPM1","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","SOFTPLUS","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
|
||||
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
|
||||
@@ -9677,168 +9677,168 @@
|
||||
"SYCL0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9847,16 +9847,16 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9865,16 +9865,16 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9883,16 +9883,16 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9901,16 +9901,16 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9919,16 +9919,16 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","SYCL"
|
||||
@@ -9937,51 +9937,51 @@
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","SYCL"
|
||||
"SYCL0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest","support","1","yes","SYCL"
|
||||
|
||||
|
Can't render this file because it is too large.
|
@@ -6,7 +6,7 @@ llama.cpp supports speculative decoding, a technique that can significantly acce
|
||||
|
||||
## Implementations
|
||||
|
||||
The `llama-server` application supports several implementations of speculative decoding:
|
||||
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
|
||||
|
||||
### Draft Model (`draft`)
|
||||
|
||||
@@ -32,12 +32,21 @@ An example to use this approach can be the rewriting of source code by a LLM.
|
||||
|
||||
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
|
||||
|
||||
```
|
||||
llama-server [...] --spec-type ngram-simple --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key (`ngram-map-k`)
|
||||
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts.
|
||||
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
|
||||
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:**
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k --draft-max 64
|
||||
```
|
||||
|
||||
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
|
||||
|
||||
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
|
||||
@@ -45,17 +54,65 @@ This experimental implementation looks for the current n-gram of size n (called
|
||||
The number of accepted tokens is stored for each used n-gram.
|
||||
|
||||
**Example:** Server options to be used if there are a lot of longer repetitions.
|
||||
```bash
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2
|
||||
```
|
||||
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
|
||||
```
|
||||
|
||||
### n-gram Mod (`ngram-mod`)
|
||||
|
||||
Add basic ngram hasher for speculative decoding:
|
||||
|
||||
- For each ngram, compute a hash using LCG
|
||||
- For each computed hash, store the next token
|
||||
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
|
||||
|
||||
Some characteristics:
|
||||
|
||||
- Lightweight (~16 MB)
|
||||
- Constant memory and complexity
|
||||
- Can generate variable draft lengths (i.e. m is not fixed)
|
||||
|
||||
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
|
||||
|
||||
**Sample usage:**
|
||||
|
||||
```
|
||||
# notes:
|
||||
# - small `n` are not recommended
|
||||
# - MoEs require long drafts
|
||||
# - dense models: can reduce `--draft-min` and `--draft-max`
|
||||
|
||||
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
|
||||
```
|
||||
|
||||
Applications:
|
||||
|
||||
- Iterating over a block of text/code (e.g. in llama.vim)
|
||||
- Reasoning models (when they have to repeat their thinking in the final answer)
|
||||
- Summarization
|
||||
|
||||
Example Video:
|
||||
|
||||
- See #19164
|
||||
|
||||
### Differences between ngram-simple, ngram-map and ngram-mod
|
||||
|
||||
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
|
||||
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
|
||||
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
|
||||
|
||||
## Command-Line Options
|
||||
|
||||
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
|
||||
|
||||
```
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]
|
||||
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
|
||||
(env: LLAMA_ARG_DRAFT_MAX)
|
||||
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
|
||||
(default: 0)
|
||||
(env: LLAMA_ARG_DRAFT_MIN)
|
||||
[...]
|
||||
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
|
||||
type of speculative decoding to use when no draft model is provided
|
||||
(default: none)
|
||||
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
|
||||
@@ -78,6 +135,7 @@ Specifies a type of speculative decoding without draft model.
|
||||
| `ngram-simple` | Use simple n-gram pattern matching |
|
||||
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
|
||||
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
|
||||
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
|
||||
|
||||
**Example:** Server-instance used to refactor source code.
|
||||
```bash
|
||||
@@ -112,9 +170,15 @@ statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tok
|
||||
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
|
||||
```
|
||||
|
||||
```
|
||||
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
|
||||
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
|
||||
```
|
||||
|
||||
- `#calls`: number of calls of this implementations
|
||||
- `#gen drafts`: number of drafts generated by this implementation
|
||||
- `#acc drafts`: number of drafts accepted (partially) by the main model
|
||||
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
|
||||
- `#acc tokens`: number of tokens accepted by the main model
|
||||
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).
|
||||
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
# Migration notice for binary filenames
|
||||
|
||||
> [!IMPORTANT]
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
|
||||
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809)
|
||||
|
||||
This migration was important, but it is a breaking change that may not always be immediately obvious to users.
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ int main(int argc, char** argv) {
|
||||
fprintf(stdout, "\n");
|
||||
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
|
||||
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
|
||||
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
|
||||
fprintf(stdout, "\n");
|
||||
|
||||
return EXIT_FAILURE;
|
||||
|
||||
@@ -402,7 +402,7 @@ class SchemaConverter:
|
||||
Transforms a regular expression pattern into a GBNF rule.
|
||||
|
||||
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
|
||||
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
|
||||
Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md
|
||||
|
||||
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.
|
||||
|
||||
|
||||
@@ -50,6 +50,12 @@ int main(int argc, char ** argv) {
|
||||
const int N = 5; // n-gram size
|
||||
const int G = 15; // max verification n-grams
|
||||
|
||||
// lookahead requires W + G + 1 sequences for parallel Jacobi decoding
|
||||
params.n_parallel = W + G + 1;
|
||||
|
||||
// unified KV cache is required for coupled sequences in batch splitting
|
||||
params.kv_unified = true;
|
||||
|
||||
// init llama.cpp
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
@@ -115,7 +121,7 @@ int main(int argc, char ** argv) {
|
||||
// seq_id == 0 : the current input token
|
||||
// seq_id [1, W] : tokens from the past N - 1 Jacobi iterations
|
||||
// seq_id [W + 1, W + G] : verification n-grams
|
||||
llama_batch batch = llama_batch_init(params.n_ctx, 0, W + G + 1);
|
||||
llama_batch batch = llama_batch_init(llama_n_ctx(ctx), 0, W + G + 1);
|
||||
|
||||
// target model sampling context
|
||||
struct common_sampler * smpl = common_sampler_init(model, params.sampling);
|
||||
|
||||
@@ -106,7 +106,7 @@ int main(int argc, char ** argv){
|
||||
|
||||
std::vector<llama_token> draft;
|
||||
|
||||
llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
|
||||
llama_batch batch_tgt = llama_batch_init(llama_n_ctx(ctx), 0, 1);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
|
||||
@@ -33,11 +33,14 @@ DEVICE ?= auto
|
||||
causal-convert-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-model-bf16: causal-convert-model
|
||||
|
||||
causal-convert-model-debug: DEBUG=--debug
|
||||
causal-convert-model-debug: causal-convert-model
|
||||
|
||||
causal-convert-model:
|
||||
$(call validate_model_path,causal-convert-model)
|
||||
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
|
||||
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
|
||||
./scripts/causal/convert-model.sh
|
||||
./scripts/causal/convert-model.sh $(DEBUG)
|
||||
|
||||
causal-convert-mm-model-bf16: OUTTYPE=bf16
|
||||
causal-convert-mm-model-bf16: MM_OUTTYPE=f16
|
||||
|
||||
@@ -4,12 +4,17 @@ set -e
|
||||
|
||||
# Parse command line arguments
|
||||
MMPROJ=""
|
||||
DEBUG=""
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case $1 in
|
||||
--mmproj)
|
||||
MMPROJ="--mmproj"
|
||||
shift
|
||||
;;
|
||||
--debug)
|
||||
DEBUG="1"
|
||||
shift
|
||||
;;
|
||||
*)
|
||||
shift
|
||||
;;
|
||||
@@ -28,7 +33,12 @@ echo "Data type: ${TYPE}"
|
||||
echo "Converted model path:: ${CONVERTED_MODEL}"
|
||||
echo "Metadata override: ${METADATA_OVERRIDE}"
|
||||
|
||||
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
|
||||
if [[ -n "$DEBUG" ]]; then
|
||||
CMD_ARGS=("python" "-m" "pdb")
|
||||
else
|
||||
CMD_ARGS=("python")
|
||||
fi
|
||||
CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose")
|
||||
CMD_ARGS+=("${MODEL_PATH}")
|
||||
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
|
||||
CMD_ARGS+=("--outtype" "${TYPE}")
|
||||
|
||||
159
examples/model-conversion/scripts/utils/tensor-info.py
Executable file
159
examples/model-conversion/scripts/utils/tensor-info.py
Executable file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
from safetensors import safe_open
|
||||
|
||||
|
||||
MODEL_SAFETENSORS_FILE = "model.safetensors"
|
||||
MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json"
|
||||
|
||||
|
||||
def get_weight_map(model_path: Path) -> Optional[dict[str, str]]:
|
||||
index_file = model_path / MODEL_SAFETENSORS_INDEX
|
||||
|
||||
if index_file.exists():
|
||||
with open(index_file, 'r') as f:
|
||||
index = json.load(f)
|
||||
return index.get("weight_map", {})
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def get_all_tensor_names(model_path: Path) -> list[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return list(weight_map.keys())
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
try:
|
||||
with safe_open(single_file, framework="pt", device="cpu") as f:
|
||||
return list(f.keys())
|
||||
except Exception as e:
|
||||
print(f"Error reading {single_file}: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
print(f"Error: No safetensors files found in {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]:
|
||||
weight_map = get_weight_map(model_path)
|
||||
|
||||
if weight_map is not None:
|
||||
return weight_map.get(tensor_name)
|
||||
|
||||
single_file = model_path / MODEL_SAFETENSORS_FILE
|
||||
if single_file.exists():
|
||||
return single_file.name
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def normalize_tensor_name(tensor_name: str) -> str:
|
||||
normalized = re.sub(r'\.\d+\.', '.#.', tensor_name)
|
||||
normalized = re.sub(r'\.\d+$', '.#', normalized)
|
||||
return normalized
|
||||
|
||||
|
||||
def list_all_tensors(model_path: Path, unique: bool = False):
|
||||
tensor_names = get_all_tensor_names(model_path)
|
||||
|
||||
if unique:
|
||||
seen = set()
|
||||
for tensor_name in sorted(tensor_names):
|
||||
normalized = normalize_tensor_name(tensor_name)
|
||||
if normalized not in seen:
|
||||
seen.add(normalized)
|
||||
print(normalized)
|
||||
else:
|
||||
for tensor_name in sorted(tensor_names):
|
||||
print(tensor_name)
|
||||
|
||||
|
||||
def print_tensor_info(model_path: Path, tensor_name: str):
|
||||
tensor_file = find_tensor_file(model_path, tensor_name)
|
||||
|
||||
if tensor_file is None:
|
||||
print(f"Error: Could not find tensor '{tensor_name}' in model index")
|
||||
print(f"Model path: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
file_path = model_path / tensor_file
|
||||
|
||||
try:
|
||||
with safe_open(file_path, framework="pt", device="cpu") as f:
|
||||
if tensor_name in f.keys():
|
||||
tensor_slice = f.get_slice(tensor_name)
|
||||
shape = tensor_slice.get_shape()
|
||||
print(f"Tensor: {tensor_name}")
|
||||
print(f"File: {tensor_file}")
|
||||
print(f"Shape: {shape}")
|
||||
else:
|
||||
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
|
||||
sys.exit(1)
|
||||
|
||||
except FileNotFoundError:
|
||||
print(f"Error: The file '{file_path}' was not found.")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Print tensor information from a safetensors model"
|
||||
)
|
||||
parser.add_argument(
|
||||
"tensor_name",
|
||||
nargs="?", # optional (if --list is used for example)
|
||||
help="Name of the tensor to inspect"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m", "--model-path",
|
||||
type=Path,
|
||||
help="Path to the model directory (default: MODEL_PATH environment variable)"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l", "--list",
|
||||
action="store_true",
|
||||
help="List unique tensor patterns in the model (layer numbers replaced with #)"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
model_path = args.model_path
|
||||
if model_path is None:
|
||||
model_path_str = os.environ.get("MODEL_PATH")
|
||||
if model_path_str is None:
|
||||
print("Error: --model-path not provided and MODEL_PATH environment variable not set")
|
||||
sys.exit(1)
|
||||
model_path = Path(model_path_str)
|
||||
|
||||
if not model_path.exists():
|
||||
print(f"Error: Model path does not exist: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if not model_path.is_dir():
|
||||
print(f"Error: Model path is not a directory: {model_path}")
|
||||
sys.exit(1)
|
||||
|
||||
if args.list:
|
||||
list_all_tensors(model_path, unique=True)
|
||||
else:
|
||||
if args.tensor_name is None:
|
||||
print("Error: tensor_name is required when not using --list")
|
||||
sys.exit(1)
|
||||
print_tensor_info(model_path, args.tensor_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -18,13 +18,14 @@ CONTEXT=4096
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
LOAD_MODE='--mmap'
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none ${LOAD_MODE}
|
||||
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} ${LOAD_MODE}
|
||||
fi
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2025 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
# If you want more control, DPC++ Allows selecting a specific device through the
|
||||
# following environment variable
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf
|
||||
NGL=99 # Layers offloaded to the GPU. If the device runs out of memory, reduce this value according to the model you are using.
|
||||
CONTEXT=4096
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
if [ $# -gt 0 ]; then
|
||||
GGML_SYCL_DEVICE=$1
|
||||
echo "Using $GGML_SYCL_DEVICE as the main GPU"
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT} -mg $GGML_SYCL_DEVICE -sm none
|
||||
else
|
||||
#use multiple GPUs with same max compute units
|
||||
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-completion -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s 0 -c ${CONTEXT}
|
||||
fi
|
||||
130
examples/sycl/test.sh
Executable file
130
examples/sycl/test.sh
Executable file
@@ -0,0 +1,130 @@
|
||||
#!/bin/bash
|
||||
|
||||
# MIT license
|
||||
# Copyright (C) 2024 Intel Corporation
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
Help() {
|
||||
cat << EOF
|
||||
Usage: $(basename "$0") [OPTIONS]
|
||||
|
||||
This script processes files with specified options.
|
||||
|
||||
Options:
|
||||
-h, --help Display this help message and exit.
|
||||
-c, --context <value> Set context length. Bigger need more memory.
|
||||
-p, --promote <value> Prompt to start generation with.
|
||||
-m, --model <value> Full model file path.
|
||||
-mg,--main-gpu <value> Set main GPU ID (0 - n) for single GPU mode.
|
||||
-sm,--split-mode <value> How to split the model across multiple GPUs, one of:
|
||||
- none: use one GPU only
|
||||
- layer (default): split layers and KV across GPUs
|
||||
- row: split rows across GPUs
|
||||
-ngl,--n-gpu-layers <value> Max. number of layers to store in VRAM (default: -1)
|
||||
-lv,--log-verbosity <value> Set the verbosity threshold. Messages with a higher verbosity will be
|
||||
ignored. Values:
|
||||
- 0: generic output
|
||||
- 1: error
|
||||
- 2: warning
|
||||
- 3: info
|
||||
- 4: debug
|
||||
|
||||
|
||||
EOF
|
||||
}
|
||||
|
||||
BIN_FILE=./build/bin/llama-completion
|
||||
SEED=0
|
||||
GPUS_SETTING=""
|
||||
|
||||
INPUT_PROMPT="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
MODEL_FILE=models/llama-2-7b.Q4_0.gguf
|
||||
NGL=99
|
||||
CONTEXT=4096
|
||||
GGML_SYCL_DEVICE=-1
|
||||
SPLIT_MODE=layer
|
||||
LOG_VERBOSE=3
|
||||
while [[ $# -gt 0 ]]; do
|
||||
case "$1" in
|
||||
-c|--context)
|
||||
CONTEXT=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-p|--promote)
|
||||
# Option that is a simple flag (boolean)
|
||||
INPUT_PROMPT="$2"
|
||||
# Shift once to consume the option flag
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-m|--model)
|
||||
MODEL_FILE="$2"
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-mg|--main-gpu)
|
||||
GGML_SYCL_DEVICE=$2
|
||||
SPLIT_MODE=none
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-sm|--split-mode)
|
||||
SPLIT_MODE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-ngl|--n-gpu-layers)
|
||||
NGL=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-lv|--log-verbosity)
|
||||
LOG_VERBOSE=$2
|
||||
# Shift twice to consume both the option flag and its value
|
||||
shift
|
||||
shift
|
||||
;;
|
||||
-h|--help)
|
||||
Help
|
||||
exit 0
|
||||
;;
|
||||
*)
|
||||
# Handle unknown options or stop processing options
|
||||
echo "Invalid option: $1"
|
||||
# Optional: exit script or shift to treat remaining as positional args
|
||||
exit 1
|
||||
;;
|
||||
esac
|
||||
done
|
||||
|
||||
|
||||
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
#export GGML_SYCL_DEBUG=1
|
||||
|
||||
#ZES_ENABLE_SYSMAN=1, Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory. Recommended to use when --split-mode = layer.
|
||||
|
||||
#support malloc device memory more than 4GB.
|
||||
export UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
echo "UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=${UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS}"
|
||||
|
||||
if [ $GGML_SYCL_DEVICE -ne -1 ]; then
|
||||
echo "Use $GGML_SYCL_DEVICE as main GPU"
|
||||
#use signle GPU only
|
||||
GPUS_SETTING="-mg $GGML_SYCL_DEVICE -sm ${SPLIT_MODE}"
|
||||
export ONEAPI_DEVICE_SELECTOR="level_zero:${$GGML_SYCL_DEVICE}"
|
||||
echo "ONEAPI_DEVICE_SELECTOR=${ONEAPI_DEVICE_SELECTOR}"
|
||||
else
|
||||
echo "Use all Intel GPUs, including iGPU & dGPU"
|
||||
fi
|
||||
|
||||
echo "run cmd: ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap "
|
||||
ZES_ENABLE_SYSMAN=1 ${BIN_FILE} -m ${MODEL_FILE} -no-cnv -p "${INPUT_PROMPT}" -n 400 -e -ngl ${NGL} -s ${SEED} -c ${CONTEXT} ${GPUS_SETTING} -lv ${LOG_VERBOSE} --mmap
|
||||
|
||||
@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
|
||||
@@ -7,5 +7,5 @@ set INPUT2="Building a website can be done in 10 simple steps:\nStep 1:"
|
||||
|
||||
:: support malloc device memory more than 4GB.
|
||||
set UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS=1
|
||||
|
||||
.\build\bin\llama-completion.exe -m models\Meta-Llama-3.1-8B-Instruct-Q4_K_M.gguf -no-cnv -p %INPUT2% -n 400 -s 0 -e -ngl 99
|
||||
set LOAD_MODE="--mmap"
|
||||
.\build\bin\llama-completion.exe -m models\llama-2-7b.Q4_0.gguf -no-cnv -p %INPUT2% -n 400 -e -ngl 99 -s 0 %LOAD_MODE%
|
||||
@@ -1,4 +1,4 @@
|
||||
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
|
||||
cmake_minimum_required(VERSION 3.14...3.28) # for add_link_options and implicit target directories.
|
||||
project("ggml" C CXX ASM)
|
||||
|
||||
### GGML Version
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -19,6 +19,9 @@ extern "C" {
|
||||
// abort ggml_graph_compute when true
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
// use only reference implementations
|
||||
bool use_ref;
|
||||
};
|
||||
|
||||
// numa strategies
|
||||
@@ -132,6 +135,8 @@ extern "C" {
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref);
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);
|
||||
|
||||
@@ -7,8 +7,6 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_REMOTING_FRONTEND_NAME "RemotingFrontend"
|
||||
|
||||
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg();
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
// This documentation is still a work in progress.
|
||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
||||
//
|
||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
||||
// https://github.com/ggml-org/whisper.cpp/issues/40
|
||||
//
|
||||
// ## Overview
|
||||
//
|
||||
|
||||
@@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
||||
|
||||
if (backend->iface.set_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_set(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
@@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
|
||||
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
||||
|
||||
if (backend->iface.get_tensor_async == NULL) {
|
||||
ggml_backend_synchronize(backend);
|
||||
ggml_backend_tensor_get(tensor, data, offset, size);
|
||||
} else {
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/**
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
* Copyright (c) 2023-2024 The ggml authors
|
||||
* Copyright (c) 2023-2026 The ggml authors
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to
|
||||
|
||||
@@ -268,9 +268,9 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
|
||||
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
}
|
||||
|
||||
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
|
||||
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
||||
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
static inline __m256 quad_mx_delta_float(const uint8_t x0, const float y0, const uint8_t x1, const float y1) {
|
||||
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
|
||||
_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
|
||||
}
|
||||
#endif
|
||||
#elif defined(__SSSE3__)
|
||||
@@ -782,6 +782,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
|
||||
__m256 accum1 = _mm256_setzero_ps();
|
||||
__m256 accum2 = _mm256_setzero_ps();
|
||||
|
||||
for (; ib + 1 < nb; ib += 2) {
|
||||
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
|
||||
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
|
||||
@@ -795,10 +796,10 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
|
||||
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
|
||||
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
|
||||
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
|
||||
_mm256_cvtepi32_ps(p_1), accum1);
|
||||
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
|
||||
_mm256_cvtepi32_ps(p_2), accum2);
|
||||
const __m256 scale0 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 0].e));
|
||||
const __m256 scale1 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 1].e));
|
||||
accum1 = _mm256_fmadd_ps(scale0, _mm256_cvtepi32_ps(p_1), accum1);
|
||||
accum2 = _mm256_fmadd_ps(scale1, _mm256_cvtepi32_ps(p_2), accum2);
|
||||
}
|
||||
|
||||
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
|
||||
@@ -830,7 +831,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
|
||||
|
||||
#endif
|
||||
for (; ib < nb; ++ib) {
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
|
||||
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib].e);
|
||||
int sumi1 = 0;
|
||||
int sumi2 = 0;
|
||||
for (int j = 0; j < QK_MXFP4/2; ++j) {
|
||||
@@ -3817,4 +3818,3 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
|
||||
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -24,6 +24,9 @@ struct ggml_compute_params {
|
||||
void * wdata;
|
||||
|
||||
struct ggml_threadpool * threadpool;
|
||||
|
||||
// use reference implementation
|
||||
bool use_ref;
|
||||
};
|
||||
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "traits.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "quants.h"
|
||||
#include "ggml-threading.h"
|
||||
@@ -76,6 +75,9 @@
|
||||
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// precomputed f32 table for e8m0 half (1 KB) (simd-mappings.h)
|
||||
float ggml_table_f32_e8m0_half[1 << 8];
|
||||
|
||||
#if defined(__ARM_ARCH)
|
||||
struct ggml_arm_arch_features_type {
|
||||
int sve_cnt;
|
||||
@@ -2867,12 +2869,20 @@ struct ggml_cplan ggml_graph_plan(
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_EXT:
|
||||
{
|
||||
const int64_t neq2 = node->src[0]->ne[2]; // number of query heads
|
||||
const int64_t DK = node->src[1]->ne[0];
|
||||
const int64_t DV = node->src[2]->ne[0];
|
||||
|
||||
// Tiled flash attention scratch (tile sizes defined in common.h)
|
||||
// Per-thread: Q_q + KQ + mask + VKQ32 + V32 + padding
|
||||
cur = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
|
||||
size_t prefill = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
|
||||
|
||||
// Decode path: n_kv_chunks = n_tasks (one chunk per thread)
|
||||
// Per-thread: VKQ accmulator (DV), partial M, partial S + intra-thread scratch for V, Q and VKQ
|
||||
size_t n_chunks = n_tasks;
|
||||
size_t decode = sizeof(float)*(neq2*n_chunks*(2+DV) + n_tasks*(DK + 2*DV));
|
||||
|
||||
cur += MAX(prefill, decode);
|
||||
} break;
|
||||
case GGML_OP_FLASH_ATTN_BACK:
|
||||
{
|
||||
@@ -2929,11 +2939,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
|
||||
set_numa_thread_affinity(state->ith);
|
||||
|
||||
struct ggml_compute_params params = {
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.threadpool=*/ tp,
|
||||
/*.ith =*/ state->ith,
|
||||
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
|
||||
/*.wsize =*/ cplan->work_size,
|
||||
/*.wdata =*/ cplan->work_data,
|
||||
/*.threadpool =*/ tp,
|
||||
/*.use_ref =*/ cplan->use_ref,
|
||||
};
|
||||
|
||||
GGML_PRINT_DEBUG("thread #%d compute-start cplan %p last-graph %d \n", state->ith, cplan, state->last_graph);
|
||||
@@ -3673,6 +3684,11 @@ void ggml_cpu_init(void) {
|
||||
ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
|
||||
}
|
||||
|
||||
// initialize E8M0 half table (256 entries)
|
||||
for (int i = 0; i < (1 << 8); ++i) {
|
||||
ggml_table_f32_e8m0_half[i] = GGML_E8M0_TO_FP32_HALF(i);
|
||||
}
|
||||
|
||||
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
|
||||
|
||||
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);
|
||||
|
||||
@@ -105,6 +105,8 @@ struct ggml_backend_cpu_context {
|
||||
|
||||
ggml_abort_callback abort_callback;
|
||||
void * abort_callback_data;
|
||||
|
||||
bool use_ref; // use reference implementation
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
|
||||
@@ -143,6 +145,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend
|
||||
|
||||
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cpu_plan->cplan.use_ref = cpu_ctx->use_ref;
|
||||
|
||||
return cpu_plan;
|
||||
}
|
||||
@@ -182,6 +185,7 @@ static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, s
|
||||
|
||||
cplan.abort_callback = cpu_ctx->abort_callback;
|
||||
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
|
||||
cplan.use_ref = cpu_ctx->use_ref;
|
||||
|
||||
return ggml_graph_compute(cgraph, &cplan);
|
||||
}
|
||||
@@ -223,6 +227,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
|
||||
ctx->work_size = 0;
|
||||
ctx->abort_callback = NULL;
|
||||
ctx->abort_callback_data = NULL;
|
||||
ctx->use_ref = false;
|
||||
|
||||
ggml_backend_t cpu_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cpu_guid(),
|
||||
@@ -270,6 +275,13 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_
|
||||
ctx->abort_callback_data = abort_callback_data;
|
||||
}
|
||||
|
||||
void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref) {
|
||||
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
|
||||
|
||||
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
|
||||
ctx->use_ref = use_ref;
|
||||
}
|
||||
|
||||
// CPU backend - device
|
||||
|
||||
struct ggml_backend_cpu_device_context {
|
||||
@@ -646,6 +658,9 @@ static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const ch
|
||||
if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) {
|
||||
return (void *)ggml_is_numa;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_cpu_set_use_ref") == 0) {
|
||||
return (void *)ggml_backend_cpu_set_use_ref;
|
||||
}
|
||||
|
||||
// threadpool - TODO: move to ggml-base
|
||||
if (strcmp(name, "ggml_threadpool_new") == 0) {
|
||||
|
||||
@@ -8042,12 +8042,14 @@ void ggml_compute_forward_top_k(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_flash_attn_ext
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
int ir0, int ir1) {
|
||||
int ir0, int ir1,
|
||||
int64_t ic_start, int64_t ic_end,
|
||||
float * partials, int64_t partial_stride) {
|
||||
|
||||
const bool write_partials = (partials != nullptr);
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
@@ -8124,7 +8126,6 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
|
||||
int ith = params->ith;
|
||||
|
||||
// loop over n_batch and n_head
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// q indices
|
||||
const int iq3 = ir/(neq2*neq1);
|
||||
@@ -8165,7 +8166,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
// loop over n_kv and n_head_kv
|
||||
// ref: https://arxiv.org/pdf/2112.05682.pdf
|
||||
|
||||
for (int64_t ic = 0; ic < nek1; ++ic) {
|
||||
for (int64_t ic = ic_start; ic < ic_end; ++ic) {
|
||||
const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
|
||||
if (mv == -INFINITY) {
|
||||
continue;
|
||||
@@ -8238,8 +8239,8 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
}
|
||||
}
|
||||
|
||||
// sinks
|
||||
if (sinks) {
|
||||
// sinks - apply only on the first kv-chunk
|
||||
if (sinks && ic_start == 0) {
|
||||
const float s = ((float *)((char *) sinks->data))[h];
|
||||
|
||||
float ms = 1.0f;
|
||||
@@ -8247,6 +8248,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
|
||||
if (s > M) {
|
||||
ms = expf(M - s);
|
||||
M = s;
|
||||
ggml_vec_scale_f32(DV, VKQ32, ms);
|
||||
} else {
|
||||
vs = expf(s - M);
|
||||
@@ -8255,20 +8257,26 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
S = S*ms + vs;
|
||||
}
|
||||
|
||||
// V /= S
|
||||
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
|
||||
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
||||
if (write_partials) {
|
||||
// Write M, S, VKQ to partials for later reduction
|
||||
// partials layout: [M, S, VKQ[DV]] per query head
|
||||
float * partial = partials + ir * partial_stride;
|
||||
partial[0] = M;
|
||||
partial[1] = S;
|
||||
memcpy(partial + 2, VKQ32, DV * sizeof(float));
|
||||
} else {
|
||||
// V /= S
|
||||
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
|
||||
ggml_vec_scale_f32(DV, VKQ32, S_inv);
|
||||
|
||||
// dst indices
|
||||
const int i1 = iq1;
|
||||
const int i2 = iq2;
|
||||
const int i3 = iq3;
|
||||
// dst indices
|
||||
const int i1 = iq1;
|
||||
const int i2 = iq2;
|
||||
const int i3 = iq3;
|
||||
|
||||
// original
|
||||
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
|
||||
|
||||
// permute(0, 2, 1, 3)
|
||||
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
||||
// permute(0, 2, 1, 3)
|
||||
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8546,6 +8554,78 @@ static void ggml_compute_forward_flash_attn_ext_tiled(
|
||||
}
|
||||
}
|
||||
|
||||
// Reduction function: combines partial results across KV chunks
|
||||
// Partials layout in wdata: [n_q_heads][n_chunks][2 + DV]
|
||||
static void ggml_flash_attn_ext_reduce_partials(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const int64_t n_chunks,
|
||||
const int64_t chunk_size) {
|
||||
|
||||
const ggml_tensor * q = dst->src[0];
|
||||
const ggml_tensor * k = dst->src[1];
|
||||
const ggml_tensor * v = dst->src[2];
|
||||
|
||||
const int64_t DK = k->ne[0];
|
||||
const int64_t DV = v->ne[0];
|
||||
const int64_t nek1 = k->ne[1];
|
||||
const int64_t n_q_heads = q->ne[2];
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t wdata_per_thread = DK + 2*DV + CACHE_LINE_SIZE_F32;
|
||||
float * thread_wdata = (float *) params->wdata + ith * wdata_per_thread;
|
||||
|
||||
const int64_t partials_offset = nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
|
||||
const int64_t partial_size = 2 + DV;
|
||||
const float * partials_base = (const float *) params->wdata + partials_offset;
|
||||
|
||||
// Output layout
|
||||
const int64_t ne1 = dst->ne[1];
|
||||
const int64_t ne2 = dst->ne[2];
|
||||
const size_t nb1 = dst->nb[1];
|
||||
|
||||
// Each thread reduces a subset of query heads
|
||||
for (int64_t q_head = ith; q_head < n_q_heads; q_head += nth) {
|
||||
float M_final = -INFINITY;
|
||||
float S_final = 0.0f;
|
||||
float * VKQ_final = thread_wdata;
|
||||
memset(VKQ_final, 0, DV * sizeof(float));
|
||||
|
||||
// Combine partials from all chunks
|
||||
for (int64_t chunk_idx = 0; chunk_idx < n_chunks; ++chunk_idx) {
|
||||
const int64_t ic_start = chunk_idx * chunk_size;
|
||||
if (ic_start >= nek1) continue;
|
||||
|
||||
const float * partial = partials_base + (q_head * n_chunks + chunk_idx) * partial_size;
|
||||
const float M_chunk = partial[0];
|
||||
const float S_chunk = partial[1];
|
||||
const float * VKQ_chunk = partial + 2;
|
||||
|
||||
if (S_chunk == 0.0f) continue;
|
||||
|
||||
const float M_new = fmaxf(M_final, M_chunk);
|
||||
const float scale_old = expf(M_final - M_new);
|
||||
const float scale_new = expf(M_chunk - M_new);
|
||||
|
||||
for (int64_t d = 0; d < DV; ++d) {
|
||||
VKQ_final[d] = VKQ_final[d] * scale_old + VKQ_chunk[d] * scale_new;
|
||||
}
|
||||
S_final = S_final * scale_old + S_chunk * scale_new;
|
||||
M_final = M_new;
|
||||
}
|
||||
|
||||
// Normalize and write to output
|
||||
if (S_final != 0.0f) {
|
||||
const float S_inv = 1.0f / S_final;
|
||||
ggml_vec_scale_f32(DV, VKQ_final, S_inv);
|
||||
}
|
||||
// iq1=0, iq3=0 for decode
|
||||
memcpy((char *) dst->data + (0*ne2*ne1 + q_head + 0*ne1)*nb1, VKQ_final, nb1);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst) {
|
||||
@@ -8567,6 +8647,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const int64_t DV = nev0;
|
||||
const int64_t N = neq1;
|
||||
|
||||
|
||||
GGML_ASSERT(ne0 == DV);
|
||||
GGML_ASSERT(ne2 == N);
|
||||
|
||||
@@ -8587,60 +8668,92 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
GGML_ASSERT(nb1 <= nb2);
|
||||
GGML_ASSERT(nb2 <= nb3);
|
||||
|
||||
// parallelize by q rows using ggml_vec_dot_f32
|
||||
|
||||
// total rows in q
|
||||
const int64_t nr = neq1*neq2*neq3;
|
||||
|
||||
// rows per thread
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
// When use_ref is set, force the vec-only reference implementation (no tiling, no KV-chunking)
|
||||
const bool use_ref = params->use_ref;
|
||||
|
||||
// 4x chunks per thread
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
// The number of elements in each chunk
|
||||
const int64_t dr = (nr + nchunk - 1) / nchunk;
|
||||
|
||||
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
|
||||
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
|
||||
const bool kv_is_f32_or_f16 = (k->type == GGML_TYPE_F32 || k->type == GGML_TYPE_F16);
|
||||
const bool use_tiled = (q->type == GGML_TYPE_F32 &&
|
||||
kv_is_f32_or_f16 &&
|
||||
k->type == v->type &&
|
||||
nek1 % KV_TILE_SZ == 0 &&
|
||||
neq1 >= Q_TILE_SZ); // Only use tiled for batch >= tile size
|
||||
const bool use_split_kv_path = !use_ref && (neq1 == 1 && neq3 == 1) && kv_is_f32_or_f16 && (k->type == v->type) && q->type == GGML_TYPE_F32 && nek1 >= 512;
|
||||
|
||||
// The first chunk comes from our thread_id, the rest will get auto-assigned.
|
||||
int current_chunk = ith;
|
||||
if (use_split_kv_path) {
|
||||
const int64_t chunk_size = (nek1 + nth - 1) / nth;
|
||||
|
||||
while (current_chunk < nchunk) {
|
||||
const int64_t ir0 = dr * current_chunk;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
// Partials buffer layout: [q_head][kv_chunk][M, S, VKQ]
|
||||
const int64_t partial_size = 2 + DV;
|
||||
float * partials_base = (float *) params->wdata + nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
|
||||
|
||||
if (use_tiled) {
|
||||
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
|
||||
const int64_t ic_start = ith * chunk_size;
|
||||
const int64_t ic_end = std::min(ic_start + chunk_size, nek1);
|
||||
|
||||
const int64_t partial_stride = nth * partial_size;
|
||||
float * chunk_partials = partials_base + ith * partial_size;
|
||||
|
||||
if (ic_start < nek1) {
|
||||
for (int64_t q_head = 0; q_head < neq2; q_head++) {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(
|
||||
params, dst, q_head, q_head + 1, ic_start, ic_end,
|
||||
chunk_partials, partial_stride);
|
||||
}
|
||||
} else {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1);
|
||||
for (int64_t q_head = 0; q_head < neq2; q_head++) {
|
||||
float * q_partials = chunk_partials + q_head * partial_stride;
|
||||
q_partials[0] = -INFINITY; // M
|
||||
q_partials[1] = 0.0f; // S
|
||||
}
|
||||
}
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
ggml_barrier(params->threadpool);
|
||||
ggml_flash_attn_ext_reduce_partials(params, dst, nth, chunk_size);
|
||||
} else {
|
||||
|
||||
// total rows in q
|
||||
const int64_t nr = neq1*neq2*neq3;
|
||||
|
||||
// disable for NUMA
|
||||
const bool disable_chunking = ggml_is_numa();
|
||||
|
||||
// 4x chunks per thread
|
||||
int nth_scaled = nth * 4;
|
||||
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
|
||||
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
|
||||
|
||||
if (nth == 1 || nchunk < nth || disable_chunking) {
|
||||
nchunk = nth;
|
||||
}
|
||||
|
||||
if (ith == 0) {
|
||||
ggml_threadpool_chunk_set(params->threadpool, nth);
|
||||
}
|
||||
|
||||
ggml_barrier(params->threadpool);
|
||||
|
||||
const int64_t dr = (nr + nchunk - 1) / nchunk;
|
||||
|
||||
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
|
||||
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
|
||||
const bool use_tiled = !use_ref &&
|
||||
(q->type == GGML_TYPE_F32 &&
|
||||
kv_is_f32_or_f16 &&
|
||||
k->type == v->type &&
|
||||
nek1 % KV_TILE_SZ == 0 &&
|
||||
neq1 >= Q_TILE_SZ);
|
||||
|
||||
int current_chunk = ith;
|
||||
|
||||
while (current_chunk < nchunk) {
|
||||
const int64_t ir0 = dr * current_chunk;
|
||||
const int64_t ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
if (use_tiled) {
|
||||
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
|
||||
} else {
|
||||
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1, 0, nek1, nullptr, 0);
|
||||
}
|
||||
|
||||
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -116,6 +116,17 @@ extern "C" {
|
||||
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
|
||||
extern float ggml_table_f32_f16[1 << 16];
|
||||
|
||||
// precomputed f32 table for e8m0 half (1 KB)
|
||||
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
|
||||
extern float ggml_table_f32_e8m0_half[1 << 8];
|
||||
|
||||
// Use lookup table for E8M0 on x86 (faster than bit manipulation)
|
||||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||||
#define GGML_CPU_E8M0_TO_FP32_HALF(x) ggml_table_f32_e8m0_half[(uint8_t)(x)]
|
||||
#else
|
||||
#define GGML_CPU_E8M0_TO_FP32_HALF(x) GGML_E8M0_TO_FP32_HALF(x)
|
||||
#endif
|
||||
|
||||
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
||||
// so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON.
|
||||
// This is also true for POWER9.
|
||||
|
||||
@@ -1124,6 +1124,7 @@ struct ggml_tensor_extra_gpu {
|
||||
struct ggml_cuda_graph_node_properties {
|
||||
void * node_data;
|
||||
ggml_op node_op;
|
||||
enum ggml_type node_type;
|
||||
int32_t flags;
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS];
|
||||
|
||||
@@ -2279,13 +2279,19 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
|
||||
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
if (ne2 == 1) {
|
||||
static_assert(MMVQ_MAX_BATCH_SIZE == MMVF_MAX_BATCH_SIZE);
|
||||
if (ne2 <= MMVQ_MAX_BATCH_SIZE) {
|
||||
if (ggml_is_quantized(src0->type)) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
if (ne2 <= 4) {
|
||||
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
|
||||
if (GGML_CUDA_CC_IS_AMD(cc)) {
|
||||
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
|
||||
return;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12, /*n_experts=*/ne02)) {
|
||||
@@ -2920,6 +2926,7 @@ static void ggml_cuda_graph_node_set_properties(ggml_cuda_graph_node_properties
|
||||
memset(props, 0, sizeof(ggml_cuda_graph_node_properties));
|
||||
props->node_data = node->data;
|
||||
props->node_op = node->op;
|
||||
props->node_type = node->type;
|
||||
props->flags = node->flags;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
props->ne[i] = node->ne[i];
|
||||
@@ -2944,6 +2951,10 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
|
||||
return false;
|
||||
}
|
||||
|
||||
if (node->type != props->node_type) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
if (node->ne[i] != props->ne[i]) {
|
||||
return false;
|
||||
@@ -2968,8 +2979,7 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
|
||||
}
|
||||
}
|
||||
|
||||
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
|
||||
memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
if (memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -3905,14 +3915,14 @@ static void ggml_cuda_graph_evaluate_and_capture(ggml_backend_cuda_context * cud
|
||||
// Launch graph
|
||||
CUDA_CHECK(cudaGraphLaunch(graph->instance, cuda_ctx->stream()));
|
||||
#else
|
||||
GGML_UNUSED(graph_key);
|
||||
graph_evaluated_or_captured = true;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
}
|
||||
|
||||
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
|
||||
|
||||
#ifdef USE_CUDA_GRAPH
|
||||
static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, const void * graph_key) {
|
||||
ggml_cuda_graph * graph = cuda_ctx->cuda_graph(graph_key);
|
||||
|
||||
if (graph->graph == nullptr) {
|
||||
@@ -3925,12 +3935,8 @@ static bool ggml_cuda_graph_set_enabled(ggml_backend_cuda_context * cuda_ctx, co
|
||||
}
|
||||
|
||||
return graph->is_enabled();
|
||||
#else
|
||||
GGML_UNUSED(cuda_ctx);
|
||||
GGML_UNUSED(graph_key);
|
||||
return false;
|
||||
#endif // USE_CUDA_GRAPH
|
||||
}
|
||||
#endif // USE_CUDA_GRAPH
|
||||
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
@@ -5048,16 +5054,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
// Set CUDA_SCALE_LAUNCH_QUEUES before any CUDA API call to improve multi-GPU pipeline parallelism performance
|
||||
// PR: https://github.com/ggml-org/llama.cpp/pull/19042
|
||||
if (getenv("CUDA_SCALE_LAUNCH_QUEUES") == nullptr) {
|
||||
#ifdef _WIN32
|
||||
_putenv_s("CUDA_SCALE_LAUNCH_QUEUES", "4x");
|
||||
#else
|
||||
setenv("CUDA_SCALE_LAUNCH_QUEUES", "4x", 0); // don't overwrite if already set
|
||||
#endif // _WIN32
|
||||
}
|
||||
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;
|
||||
|
||||
|
||||
@@ -3697,13 +3697,20 @@ static __global__ void mul_mat_q(
|
||||
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
|
||||
}
|
||||
|
||||
|
||||
template <ggml_type type, int mmq_x, bool need_check>
|
||||
static __global__ void mul_mat_q_stream_k_fixup(
|
||||
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
|
||||
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
static __global__ void mul_mat_q_stream_k_fixup(const int32_t * ids_dst,
|
||||
const int32_t * expert_bounds,
|
||||
float * __restrict__ dst,
|
||||
const float * __restrict__ tmp_last_tile,
|
||||
const int ncols_x,
|
||||
const int nrows_x,
|
||||
const int ncols_dst,
|
||||
const size_t stride_col_dst,
|
||||
const int nchannels_y,
|
||||
const size_t stride_channel_dst,
|
||||
const int nsamples_y,
|
||||
const size_t stride_sample_dst,
|
||||
const int ncols_max) {
|
||||
constexpr int mmq_y = get_mmq_y_device();
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int ITER_K = get_iter_k(type);
|
||||
|
||||
@@ -4,26 +4,48 @@
|
||||
#include "mmvf.cuh"
|
||||
#include "convert.cuh"
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
|
||||
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false, bool is_multi_token_id = false>
|
||||
static __global__ void mul_mat_vec_f(
|
||||
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
|
||||
const int ncols2, const uint3 nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const int ids_stride) {
|
||||
const int row = blockIdx.x;
|
||||
// for MUL_MAT_ID - blockIdx.y = n_expert_used, blockIdx.z = ncols_dst (tokens)
|
||||
const int channel_dst = blockIdx.y;
|
||||
const int channel_x = ids ? ids[channel_dst] : fastdiv((uint32_t) channel_dst, channel_ratio);
|
||||
const int channel_y = ids ? channel_dst % nchannels_y : channel_dst;
|
||||
const int sample_dst = blockIdx.z;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
int token_idx;
|
||||
int channel_x;
|
||||
int channel_y;
|
||||
int sample_dst;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
|
||||
token_idx = blockIdx.z;
|
||||
channel_x = ids[channel_dst + token_idx * ids_stride];
|
||||
channel_y = fastmodulo(channel_dst, nchannels_y);
|
||||
sample_dst = 0;
|
||||
} else {
|
||||
token_idx = ids ? blockIdx.z : 0;
|
||||
channel_x = ids ? ids[blockIdx.y + token_idx * ids_stride] : fastdiv((uint32_t) channel_dst, channel_ratio);
|
||||
channel_y = ids ? fastmodulo(blockIdx.y, nchannels_y) : channel_dst;
|
||||
sample_dst = ids ? 0 : blockIdx.z;
|
||||
}
|
||||
|
||||
const int sample_x = fastdiv((uint32_t) sample_dst, sample_ratio);
|
||||
const int sample_y = sample_dst;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
|
||||
|
||||
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
|
||||
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
|
||||
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
|
||||
if constexpr (is_multi_token_id) {
|
||||
y += token_idx*stride_col_y2*2;
|
||||
dst += token_idx*stride_col_dst;
|
||||
}
|
||||
|
||||
bool use_gate = false;
|
||||
bool use_bias = false;
|
||||
@@ -56,8 +78,10 @@ static __global__ void mul_mat_vec_f(
|
||||
if (use_gate) {
|
||||
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
|
||||
}
|
||||
|
||||
const int channel_bias = ids ? channel_x : channel_dst;
|
||||
|
||||
if constexpr (has_fusion) {
|
||||
const int channel_bias = ids ? channel_x : channel_dst;
|
||||
if (use_bias) {
|
||||
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
|
||||
}
|
||||
@@ -349,36 +373,36 @@ static __global__ void mul_mat_vec_f(
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size>
|
||||
template<typename T, typename type_acc, int ncols_dst, int block_size, bool is_multi_token_id = false>
|
||||
static void mul_mat_vec_f_switch_fusion(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
const int64_t ncols, const uint3 nchannels_y,
|
||||
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
|
||||
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
|
||||
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const int ids_stride, const cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename type_acc, int ncols_dst>
|
||||
template <typename T, typename type_acc, int ncols_dst, bool is_multi_token_id = false>
|
||||
void launch_mul_mat_vec_f_cuda(
|
||||
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const int64_t ncols, const int64_t nrows,
|
||||
@@ -386,12 +410,13 @@ void launch_mul_mat_vec_f_cuda(
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int64_t nsamples_or_ntokens, const int64_t ids_stride, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % 2 == 0);
|
||||
GGML_ASSERT(stride_row % 2 == 0);
|
||||
GGML_ASSERT(stride_col_y % 2 == 0);
|
||||
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
|
||||
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
|
||||
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
|
||||
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
|
||||
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
|
||||
|
||||
@@ -415,56 +440,56 @@ void launch_mul_mat_vec_f_cuda(
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
|
||||
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
|
||||
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
|
||||
const dim3 block_nums(nrows, nchannels_dst, nsamples_or_ntokens);
|
||||
const dim3 block_dims(block_size_best, 1, 1);
|
||||
switch (block_size_best) {
|
||||
case 32: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 64: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 96: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 128: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 160: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 192: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 224: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
case 256: {
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
|
||||
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256, is_multi_token_id>
|
||||
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
|
||||
} break;
|
||||
default: {
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -480,55 +505,88 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int64_t ids_stride, cudaStream_t stream) {
|
||||
|
||||
const bool has_ids = ids != nullptr;
|
||||
|
||||
if (has_ids && ncols_dst > 1) {
|
||||
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
|
||||
constexpr int c_ncols_dst = 1;
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst, true>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
ncols_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
if (has_ids) {
|
||||
// Single-token MUL_MAT_ID path
|
||||
constexpr int c_ncols_dst = 1;
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
ncols_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
switch (ncols_dst) {
|
||||
case 1:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 2:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 3:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 4:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 5:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 6:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 7:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
case 8:
|
||||
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
nsamples_dst, ids_stride, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -544,21 +602,21 @@ static void mul_mat_vec_f_cuda(
|
||||
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
|
||||
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
|
||||
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
|
||||
enum ggml_prec prec, cudaStream_t stream) {
|
||||
const int64_t ids_stride, enum ggml_prec prec, cudaStream_t stream) {
|
||||
|
||||
if constexpr(std::is_same_v<T, half>) {
|
||||
if (prec == GGML_PREC_DEFAULT) {
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
}
|
||||
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
|
||||
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
@@ -573,7 +631,7 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const size_t ts_src1 = ggml_type_size(src1->type);
|
||||
const size_t ts_dst = ggml_type_size(dst->type);
|
||||
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
GGML_ASSERT(!ids || ne12 <= MMVF_MAX_BATCH_SIZE);
|
||||
GGML_ASSERT(ne13 == ne3);
|
||||
|
||||
GGML_ASSERT( nb00 == ts_src0);
|
||||
@@ -626,29 +684,31 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
|
||||
const int64_t ncols_dst = ids ? ne2 : ne1;
|
||||
const int64_t nchannels_y = ids ? ne11 : ne12;
|
||||
const int64_t nchannels_dst = ids ? ne1 : ne2;
|
||||
const int64_t stride_col_dst = ids ? s2 : s1;
|
||||
const int64_t stride_col_y = ids ? s12 : s11;
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: {
|
||||
const float * src0_d = (const float *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
|
||||
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, prec, ctx.stream());
|
||||
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
@@ -695,19 +755,19 @@ void ggml_cuda_op_mul_mat_vec_f(
|
||||
const float * src0_d = (const float *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_F16: {
|
||||
const half * src0_d = (const half *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
case GGML_TYPE_BF16: {
|
||||
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
|
||||
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
#include "common.cuh"
|
||||
|
||||
#define MMVF_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVF kernels.
|
||||
|
||||
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
|
||||
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);
|
||||
|
||||
|
||||
@@ -137,15 +137,15 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
||||
template <ggml_type type, int ncols_dst, bool has_fusion>
|
||||
template <ggml_type type, int ncols_dst, bool has_fusion, bool is_multi_token_id = false>
|
||||
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
|
||||
static __global__ void mul_mat_vec_q(
|
||||
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
|
||||
const uint32_t ids_stride) {
|
||||
|
||||
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
||||
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
||||
@@ -162,11 +162,25 @@ static __global__ void mul_mat_vec_q(
|
||||
const int blocks_per_row_x = ncols_x / qk;
|
||||
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
|
||||
|
||||
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
|
||||
const uint32_t channel_dst = blockIdx.y;
|
||||
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
const uint32_t sample_dst = blockIdx.z;
|
||||
|
||||
uint32_t token_idx = 0;
|
||||
uint32_t channel_x;
|
||||
uint32_t channel_y;
|
||||
uint32_t sample_dst;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
|
||||
token_idx = blockIdx.z;
|
||||
channel_x = ids[channel_dst + token_idx * ids_stride];
|
||||
channel_y = fastmodulo(channel_dst, nchannels_y);
|
||||
sample_dst = 0;
|
||||
} else {
|
||||
channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
|
||||
channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
|
||||
sample_dst = blockIdx.z;
|
||||
}
|
||||
|
||||
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
|
||||
const uint32_t sample_y = sample_dst;
|
||||
|
||||
@@ -188,11 +202,11 @@ static __global__ void mul_mat_vec_q(
|
||||
active_glu = fusion.glu_op;
|
||||
}
|
||||
|
||||
const uint32_t channel_bias = ids ? channel_x : channel_dst;
|
||||
|
||||
float x_biases[ncols_dst] = { 0.0f };
|
||||
float gate_biases[ncols_dst] = { 0.0f };
|
||||
if constexpr (has_fusion) {
|
||||
const uint32_t channel_bias = ids ? channel_x : channel_dst;
|
||||
if (use_bias) {
|
||||
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
|
||||
// 1. Hide latency by prefetching bias and gate here
|
||||
@@ -222,6 +236,9 @@ static __global__ void mul_mat_vec_q(
|
||||
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
|
||||
|
||||
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
|
||||
if constexpr (is_multi_token_id) {
|
||||
y += token_idx*stride_col_y;
|
||||
}
|
||||
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
|
||||
|
||||
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
||||
@@ -275,6 +292,10 @@ static __global__ void mul_mat_vec_q(
|
||||
|
||||
dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst + row0;
|
||||
|
||||
if constexpr (is_multi_token_id) {
|
||||
dst += token_idx*stride_col_dst;
|
||||
}
|
||||
|
||||
// sum up partial sums and write back result
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ncols_dst; ++j) {
|
||||
@@ -335,40 +356,41 @@ static __global__ void mul_mat_vec_q(
|
||||
}
|
||||
|
||||
static std::pair<dim3, dim3> calc_launch_params(
|
||||
const int ncols_dst, const int nrows_x, const int nchannels_y, const int nsamples_y,
|
||||
const int ncols_dst, const int nrows_x, const int nchannels_dst, const int nsamples_or_ntokens,
|
||||
const int warp_size, const mmvq_parameter_table_id table_id) {
|
||||
const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_dst, table_id) - 1) / calc_rows_per_block(ncols_dst, table_id);
|
||||
const dim3 block_nums(nblocks, nchannels_y, nsamples_y);
|
||||
const dim3 block_nums(nblocks, nchannels_dst, nsamples_or_ntokens);
|
||||
const dim3 block_dims(warp_size, calc_nwarps(ncols_dst, table_id), 1);
|
||||
return {block_nums, block_dims};
|
||||
}
|
||||
|
||||
template<ggml_type type, int c_ncols_dst>
|
||||
template<ggml_type type, int c_ncols_dst, bool is_multi_token_id = false>
|
||||
static void mul_mat_vec_q_switch_fusion(
|
||||
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
|
||||
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
|
||||
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
|
||||
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
|
||||
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
|
||||
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared,
|
||||
const uint32_t ids_stride, cudaStream_t stream) {
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
if constexpr (c_ncols_dst == 1) {
|
||||
if (has_fusion) {
|
||||
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
mul_mat_vec_q<type, c_ncols_dst, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
|
||||
|
||||
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
mul_mat_vec_q<type, c_ncols_dst, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
|
||||
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
|
||||
}
|
||||
|
||||
template <ggml_type type>
|
||||
@@ -379,7 +401,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int ids_stride, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
||||
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
|
||||
@@ -393,8 +415,19 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
|
||||
|
||||
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
|
||||
const bool has_ids = ids != nullptr;
|
||||
|
||||
if (has_ids && ncols_dst > 1) {
|
||||
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
|
||||
constexpr int c_ncols_dst = 1;
|
||||
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, ncols_dst, warp_size, table_id);
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst, true>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(!ids || ncols_dst == 1);
|
||||
switch (ncols_dst) {
|
||||
case 1: {
|
||||
constexpr int c_ncols_dst = 1;
|
||||
@@ -402,7 +435,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 2: {
|
||||
constexpr int c_ncols_dst = 2;
|
||||
@@ -410,7 +443,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 3: {
|
||||
constexpr int c_ncols_dst = 3;
|
||||
@@ -418,7 +451,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 4: {
|
||||
constexpr int c_ncols_dst = 4;
|
||||
@@ -426,7 +459,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 5: {
|
||||
constexpr int c_ncols_dst = 5;
|
||||
@@ -434,7 +467,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 6: {
|
||||
constexpr int c_ncols_dst = 6;
|
||||
@@ -442,7 +475,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 7: {
|
||||
constexpr int c_ncols_dst = 7;
|
||||
@@ -450,7 +483,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
case 8: {
|
||||
constexpr int c_ncols_dst = 8;
|
||||
@@ -458,7 +491,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
|
||||
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
|
||||
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
|
||||
dims.first, dims.second, 0, stream);
|
||||
dims.first, dims.second, 0, ids_stride, stream);
|
||||
} break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -474,127 +507,127 @@ static void mul_mat_vec_q_switch_type(
|
||||
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
|
||||
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
|
||||
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
|
||||
cudaStream_t stream) {
|
||||
const int ids_stride, cudaStream_t stream) {
|
||||
switch (type_x) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_MXFP4:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ1_M:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
|
||||
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
|
||||
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
|
||||
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ABORT("fatal error");
|
||||
@@ -622,7 +655,7 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
GGML_ASSERT( nb0 == ts_dst);
|
||||
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
|
||||
|
||||
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
|
||||
GGML_ASSERT(!ids || ne12 <= MMVQ_MAX_BATCH_SIZE);
|
||||
|
||||
const float * src1_d = (const float *) src1->data;
|
||||
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
|
||||
@@ -693,11 +726,13 @@ void ggml_cuda_mul_mat_vec_q(
|
||||
const int64_t stride_channel_dst = ids ? s1 : s2;
|
||||
const int64_t stride_channel_y = ids ? s11 : s12;
|
||||
|
||||
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
|
||||
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
|
||||
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
|
||||
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
|
||||
ne03, ne3, s03, s13, s3, stream);
|
||||
ne03, ne3, s03, s13, s3, ids_stride, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
@@ -726,7 +761,7 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
ggml_cuda_mm_fusion_args_device fusion_local{};
|
||||
mul_mat_vec_q_switch_type(
|
||||
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, stream);
|
||||
|
||||
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);
|
||||
}
|
||||
|
||||
@@ -1,8 +1,20 @@
|
||||
file(TO_CMAKE_PATH "${HEXAGON_SDK_ROOT}" HEXAGON_SDK_ROOT)
|
||||
file(TO_CMAKE_PATH "${HEXAGON_TOOLS_ROOT}" HEXAGON_TOOLS_ROOT)
|
||||
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_SDK_ROOT}" OR NOT IS_DIRECTORY "${HEXAGON_TOOLS_ROOT}")
|
||||
message(FATAL_ERROR "Make sure HEXAGON_SDK_ROOT and HEXAGON_TOOLS_ROOT point to the correct Hexagon SDK installation.")
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_SDK_ROOT}")
|
||||
message(FATAL_ERROR "Make sure HEXAGON_SDK_ROOT point to the correct Hexagon SDK installation.")
|
||||
endif()
|
||||
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_TOOLS_ROOT}")
|
||||
message("Try to read HEXAGON_TOOLS_ROOT from hexagon_sdk.json")
|
||||
file(READ "${HEXAGON_SDK_ROOT}/hexagon_sdk.json" HEXAGON_SDK_CONFIG_PATH)
|
||||
string(JSON HEXAGON_TOOLS_PATH GET ${HEXAGON_SDK_CONFIG_PATH} "root" "tools" "info" 0 "path")
|
||||
message("Found HEXAGON_TOOLS_PATH: ${HEXAGON_TOOLS_PATH}")
|
||||
set(HEXAGON_TOOLS_ROOT "${HEXAGON_SDK_ROOT}/${HEXAGON_TOOLS_PATH}")
|
||||
file(TO_CMAKE_PATH "${HEXAGON_TOOLS_ROOT}" HEXAGON_TOOLS_ROOT)
|
||||
if (NOT IS_DIRECTORY "${HEXAGON_TOOLS_ROOT}")
|
||||
message(FATAL_ERROR "Make sure HEXAGON_TOOLS_ROOT point to the correct Hexagon SDK installation.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "hexagon: using ${HEXAGON_SDK_ROOT} and ${HEXAGON_TOOLS_ROOT} for building libggml-htp skels")
|
||||
|
||||
@@ -17,6 +17,12 @@
|
||||
#include "htp-msg.h"
|
||||
#include "htp-ops.h"
|
||||
|
||||
static inline HVX_Vector hvx_load_f32_to_f16(const HVX_Vector * restrict src, const HVX_Vector zero) {
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(src[0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(src[1], zero); // 32 elements
|
||||
return Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
}
|
||||
|
||||
// Dot product of FP32 and FP16 vectors, accumulating to float
|
||||
static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict y, const void * restrict x, unsigned int n, float s) {
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp32
|
||||
@@ -33,23 +39,19 @@ static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict
|
||||
#pragma unroll(4)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
|
||||
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x_hf = vx[i];
|
||||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y0_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+0], zero); // 32 elements
|
||||
HVX_Vector y1_qf = Q6_Vqf32_vsub_VsfVsf(vy[i*2+1], zero); // 32 elements
|
||||
HVX_Vector y_hf = Q6_Vh_vdeal_Vh(Q6_Vhf_equals_Wqf32(Q6_W_vcombine_VV(y1_qf, y0_qf)));
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x_hf = vx[i];
|
||||
@@ -62,13 +64,72 @@ static inline void hvx_dot_f32_f16_aa(float * restrict r, const void * restrict
|
||||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_f32(s));
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32(rsum));
|
||||
hvx_vec_store_u(r, 4, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
hvx_vec_store_u(r, 4, rsum);
|
||||
// Dot product of FP32 and FP16 vectors, accumulating to float
|
||||
static inline void hvx_dot_f32_f16_aa_rx2(float * restrict r,
|
||||
const void * restrict y,
|
||||
const void * restrict x0,
|
||||
const void * restrict x1,
|
||||
unsigned int n,
|
||||
float s) {
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp32
|
||||
const HVX_Vector * restrict vx0 = (const HVX_Vector * restrict) x0; // fp16
|
||||
const HVX_Vector * restrict vx1 = (const HVX_Vector * restrict) x1; // fp16
|
||||
|
||||
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
|
||||
uint32_t nloe = n % VLEN_FP16; // leftover elements
|
||||
|
||||
const HVX_Vector zero = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum0 = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum1 = Q6_V_vsplat_R(0);
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
#pragma unroll(2)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
// Load x (fp16)
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
// Load y (fp32) and convert into fp16
|
||||
HVX_Vector y_hf = hvx_load_f32_to_f16(&vy[i*2], zero);
|
||||
|
||||
// Load x (fp16)
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
// Zero-out unused elements
|
||||
// Note that we need to clear both x and y because they may contain NANs
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
|
||||
x0_hf = Q6_V_vand_QV(bmask, x0_hf);
|
||||
x1_hf = Q6_V_vand_QV(bmask, x1_hf);
|
||||
y_hf = Q6_V_vand_QV(bmask, y_hf);
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
HVX_Vector rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32x2(rsum0, rsum1));
|
||||
hvx_vec_store_u(r, 8, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
// Dot product of two F16 vectors, accumulating to float
|
||||
@@ -91,7 +152,7 @@ static inline void hvx_dot_f16_f16_aa(float * restrict r, const void * restrict
|
||||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
@@ -103,12 +164,62 @@ static inline void hvx_dot_f16_f16_aa(float * restrict r, const void * restrict
|
||||
|
||||
HVX_VectorPair xy_qf = Q6_Wqf32_vmpy_VhfVhf(x_hf, y_hf);
|
||||
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
rsum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)), rsum));
|
||||
}
|
||||
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(Q6_Vsf_equals_Vqf32(rsum), hvx_vec_splat_f32(s));
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
hvx_vec_store_u(r, 4, rsum);
|
||||
rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32(rsum));
|
||||
hvx_vec_store_u(r, 4, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
static inline void hvx_dot_f16_f16_aa_rx2(float * restrict r,
|
||||
const void * restrict y,
|
||||
const void * restrict x0,
|
||||
const void * restrict x1,
|
||||
unsigned int n,
|
||||
float s) {
|
||||
const HVX_Vector * restrict vx0 = (const HVX_Vector * restrict) x0; // fp16
|
||||
const HVX_Vector * restrict vx1 = (const HVX_Vector * restrict) x1; // fp16
|
||||
const HVX_Vector * restrict vy = (const HVX_Vector * restrict) y; // fp16
|
||||
|
||||
uint32_t nvec = n / VLEN_FP16; // num full fp16 hvx vectors
|
||||
uint32_t nloe = n % VLEN_FP16; // leftover elements
|
||||
|
||||
const HVX_Vector zero = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum0 = Q6_V_vsplat_R(0);
|
||||
HVX_Vector rsum1 = Q6_V_vsplat_R(0);
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
#pragma unroll(4)
|
||||
for (i = 0; i < nvec; i++) {
|
||||
HVX_Vector y_hf = vy[i];
|
||||
HVX_Vector x0_hf = vx0[i];
|
||||
HVX_Vector x1_hf = vx1[i];
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
if (nloe) {
|
||||
HVX_Vector y_hf = vy[i];
|
||||
|
||||
// Load x (fp16) and zero-out unused elements
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe * 2);
|
||||
HVX_Vector x0_hf = Q6_V_vand_QV(bmask, vx0[i]);
|
||||
HVX_Vector x1_hf = Q6_V_vand_QV(bmask, vx1[i]);
|
||||
|
||||
HVX_VectorPair xy0_qf = Q6_Wqf32_vmpy_VhfVhf(x0_hf, y_hf);
|
||||
HVX_VectorPair xy1_qf = Q6_Wqf32_vmpy_VhfVhf(x1_hf, y_hf);
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy0_qf), Q6_V_hi_W(xy0_qf)), rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)), rsum1));
|
||||
}
|
||||
|
||||
HVX_Vector rsum = Q6_Vqf32_vmpy_VsfVsf(hvx_vec_splat_f32(s), hvx_vec_reduce_sum_f32x2(rsum0, rsum1));
|
||||
hvx_vec_store_u(r, 8, Q6_Vsf_equals_Vqf32(rsum));
|
||||
}
|
||||
|
||||
// MAD: y (F32) += x (F16) * s (float)
|
||||
@@ -317,20 +428,22 @@ static void flash_attn_ext_f16_thread(struct htp_ops_context * octx, int ith, in
|
||||
// Inner loop processing the block from VTCM
|
||||
uint32_t ic = 0;
|
||||
|
||||
const bool is_q_fp32 = (q->type == HTP_TYPE_F32);
|
||||
|
||||
// Process in blocks of 32 (VLEN_FP32)
|
||||
static_assert(FLASH_ATTN_BLOCK_SIZE / VLEN_FP32 == 4, "FLASH_ATTN_BLOCK_SIZE changed, fix HVX_Vector_x4 usage");
|
||||
static_assert(FLASH_ATTN_BLOCK_SIZE / VLEN_FP32 <= 4, "FLASH_ATTN_BLOCK_SIZE changed, fix HVX_Vector_x4 usage");
|
||||
HVX_Vector_x4 scores_x4;
|
||||
HVX_Vector v_max = hvx_vec_splat_f32(-INFINITY);
|
||||
for (uint32_t iv = 0; ic + VLEN_FP32 <= current_block_size; ic += VLEN_FP32, ++iv) {
|
||||
// 1. Compute scores
|
||||
float __attribute__((aligned(VLEN))) scores_arr[FLASH_ATTN_BLOCK_SIZE];
|
||||
for (int j = 0; j < VLEN_FP32; ++j) {
|
||||
float __attribute__((aligned(VLEN))) scores_arr[VLEN_FP32];
|
||||
for (int j = 0; j < VLEN_FP32; j += 2) {
|
||||
const uint32_t cur_ic = ic + j;
|
||||
const uint8_t * k_ptr = k_base + cur_ic * size_k_row_padded;
|
||||
if (q->type == HTP_TYPE_F32) {
|
||||
hvx_dot_f32_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
|
||||
if (is_q_fp32) {
|
||||
hvx_dot_f32_f16_aa_rx2(&scores_arr[j], q_ptr_vtcm, k_ptr, k_ptr + size_k_row_padded, DK, scale);
|
||||
} else {
|
||||
hvx_dot_f16_f16_aa(&scores_arr[j], q_ptr_vtcm, k_ptr, DK, scale);
|
||||
hvx_dot_f16_f16_aa_rx2(&scores_arr[j], q_ptr_vtcm, k_ptr, k_ptr + size_k_row_padded, DK, scale);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -403,7 +516,7 @@ static void flash_attn_ext_f16_thread(struct htp_ops_context * octx, int ith, in
|
||||
float s_val;
|
||||
const uint8_t * k_ptr = k_base + ic * size_k_row_padded;
|
||||
|
||||
if (q->type == HTP_TYPE_F32) {
|
||||
if (is_q_fp32) {
|
||||
hvx_dot_f32_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
|
||||
} else {
|
||||
hvx_dot_f16_f16_aa(&s_val, q_ptr_vtcm, k_ptr, DK, scale);
|
||||
|
||||
@@ -28,19 +28,16 @@ static void hvx_vec_dump_f16(char * pref, HVX_Vector v) {
|
||||
}
|
||||
|
||||
static void hvx_vec_dump_f32_n(char * pref, HVX_Vector v, uint32_t n) {
|
||||
union {
|
||||
HVX_Vector v;
|
||||
float d[32];
|
||||
} u = { .v = v };
|
||||
HVX_VectorAlias u = { .v = v };
|
||||
|
||||
const uint32_t n0 = n / 16;
|
||||
const uint32_t n1 = n % 16;
|
||||
int i = 0;
|
||||
for (; i < n0; i++) {
|
||||
hex_dump_f32_line(pref, u.d + (16 * i), 16);
|
||||
hex_dump_f32_line(pref, u.fp32 + (16 * i), 16);
|
||||
}
|
||||
if (n1) {
|
||||
hex_dump_f32_line(pref, u.d + (16 * i), n1);
|
||||
hex_dump_f32_line(pref, u.fp32 + (16 * i), n1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -44,6 +44,45 @@ static inline HVX_Vector hvx_vec_reduce_sum_qf32(HVX_Vector in) {
|
||||
return hvx_vec_reduce_sum_n_qf32(in, 32);
|
||||
}
|
||||
|
||||
#if __HVX_ARCH__ > 75
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32x2(HVX_Vector in0, HVX_Vector in1) {
|
||||
HVX_VectorPair sump = Q6_W_vshuff_VVR(in1, in0, 4);
|
||||
HVX_Vector sum_sf = Q6_Vsf_vadd_VsfVsf(Q6_V_lo_W(sump), Q6_V_hi_W(sump));
|
||||
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 2));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 4));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 8));
|
||||
sum_sf = Q6_Vsf_vadd_VsfVsf(sum_sf, Q6_V_vror_VR(sum_sf, VLEN / 16));
|
||||
return sum_sf;
|
||||
}
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n) {
|
||||
unsigned int total = n * 4; // total vec nbytes
|
||||
unsigned int width = 4; // fp32 nbytes
|
||||
|
||||
HVX_Vector sum = in, sum_t;
|
||||
while (width < total) {
|
||||
sum_t = Q6_V_vror_VR(sum, width); // rotate right
|
||||
sum = Q6_Vsf_vadd_VsfVsf(sum, sum_t); // elementwise sum
|
||||
width = width << 1;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32x2(HVX_Vector in0, HVX_Vector in1) {
|
||||
HVX_VectorPair sump = Q6_W_vshuff_VVR(in1, in0, 4);
|
||||
HVX_Vector sum_qf = Q6_Vqf32_vadd_VsfVsf(Q6_V_lo_W(sump), Q6_V_hi_W(sump));
|
||||
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 2));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 4));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 8));
|
||||
sum_qf = Q6_Vqf32_vadd_Vqf32Vsf(sum_qf, Q6_V_vror_VR(Q6_Vsf_equals_Vqf32(sum_qf), VLEN / 16));
|
||||
return Q6_Vsf_equals_Vqf32(sum_qf);
|
||||
}
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n) {
|
||||
unsigned int total = n * 4; // total vec nbytes
|
||||
unsigned int width = 4; // fp32 nbytes
|
||||
@@ -57,6 +96,8 @@ static inline HVX_Vector hvx_vec_reduce_sum_n_f32(HVX_Vector in, unsigned int n)
|
||||
return sum;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
static inline HVX_Vector hvx_vec_reduce_sum_f32(HVX_Vector in) {
|
||||
return hvx_vec_reduce_sum_n_f32(in, 32);
|
||||
}
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
|
||||
#include "hex-dma.h"
|
||||
#include "hvx-utils.h"
|
||||
#include "hvx-dump.h"
|
||||
|
||||
#define GGML_COMMON_DECL_C
|
||||
#include "ggml-common.h"
|
||||
@@ -320,7 +321,7 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
@@ -344,7 +345,7 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
@@ -362,14 +363,14 @@ static void vec_dot_q4x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
// Zero out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
@@ -402,7 +403,7 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
||||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
HVX_Vector r1_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
@@ -432,8 +433,8 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
@@ -456,20 +457,18 @@ static void vec_dot_q4x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
@@ -493,7 +492,7 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
@@ -517,7 +516,7 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
@@ -535,14 +534,14 @@ static void vec_dot_q8x4x2_q8x4x2(const int n, float * restrict s, const void *
|
||||
// Zero out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
@@ -605,8 +604,8 @@ static void vec_dot_q8x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers, we still load full 4x4x2 block but zero out unused scales/blocks
|
||||
@@ -629,20 +628,18 @@ static void vec_dot_q8x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
||||
@@ -669,7 +666,7 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
||||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
@@ -708,7 +705,7 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Process leftovers
|
||||
@@ -741,14 +738,14 @@ static void vec_dot_mxfp4x4x2_q8x4x2(const int n,
|
||||
// Zero-out unused scales
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
}
|
||||
|
||||
// Reduce and convert into fp32
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r0_sum = hvx_vec_reduce_sum_f32(r0_sum);
|
||||
|
||||
hvx_vec_store_u(&s[0], 4, r0_sum);
|
||||
}
|
||||
@@ -781,13 +778,13 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
||||
const uint8_t * restrict y_q = ((const uint8_t *) vy + 0); // quants first
|
||||
const uint8_t * restrict y_d = ((const uint8_t *) vy + y_qrow_size); // then scales
|
||||
|
||||
// Row sum (qf32)
|
||||
// Row sum (sf)
|
||||
HVX_Vector r0_sum = Q6_V_vsplat_R(0);
|
||||
HVX_Vector r1_sum = Q6_V_vsplat_R(0);
|
||||
|
||||
// Multiply and accumulate into int32.
|
||||
// Compute combined scale (fp32).
|
||||
// Apply scale to acc and accumulate into the row sum (qf32).
|
||||
// Apply scale to acc and accumulate into the row sum (f32).
|
||||
|
||||
const uint32_t nb = n / qk; // num full blocks
|
||||
int32_t nloe = n % qk; // num leftover elemements (must be signed)
|
||||
@@ -829,8 +826,8 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Process leftovers
|
||||
@@ -867,24 +864,22 @@ static void vec_dot_mxfp4x4x2_q8x4x2_rx2(const int n,
|
||||
HVX_Vector r0_dd = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(r0_d, vy_d));
|
||||
HVX_Vector r1_dd = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(r1_d, vy_d));
|
||||
|
||||
// Zero-out unused scales
|
||||
// Zero-out unused values
|
||||
HVX_VectorPred bmask = Q6_Q_vsetq_R(nloe / 8);
|
||||
r0_dd = Q6_V_vand_QV(bmask, r0_dd);
|
||||
r1_dd = Q6_V_vand_QV(bmask, r1_dd);
|
||||
r0_ia = Q6_V_vand_QV(bmask, r0_ia);
|
||||
r1_ia = Q6_V_vand_QV(bmask, r1_ia);
|
||||
|
||||
HVX_Vector r0_fa = Q6_Vqf32_vmpy_VsfVsf(r0_ia, r0_dd);
|
||||
HVX_Vector r1_fa = Q6_Vqf32_vmpy_VsfVsf(r1_ia, r1_dd);
|
||||
|
||||
r0_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r0_sum, r0_fa);
|
||||
r1_sum = Q6_Vqf32_vadd_Vqf32Vqf32(r1_sum, r1_fa);
|
||||
r0_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r0_fa, r0_sum));
|
||||
r1_sum = Q6_Vsf_equals_Vqf32(Q6_Vqf32_vadd_Vqf32Vsf(r1_fa, r1_sum));
|
||||
}
|
||||
|
||||
// Convert into fp32 and reduce
|
||||
r0_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r0_sum));
|
||||
r1_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(r1_sum));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(r1_sum, r0_sum, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(r0_sum, r1_sum);
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_f16_f16_aa(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
@@ -913,7 +908,7 @@ static void vec_dot_f16_f16_aa(const int n, float * restrict s, const void * res
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
@@ -957,11 +952,8 @@ static void vec_dot_f16_f16_aa_rx2(const int n,
|
||||
rsum1 = Q6_Vqf32_vadd_Vqf32Vqf32(rsum1, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy1_qf), Q6_V_hi_W(xy1_qf)));
|
||||
}
|
||||
|
||||
rsum0 = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum0));
|
||||
rsum1 = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum1));
|
||||
HVX_VectorPair p0 = Q6_W_vshuff_VVR(rsum1, rsum0, 4);
|
||||
|
||||
hvx_vec_store_u(&s[0], 8, Q6_V_lo_W(p0));
|
||||
HVX_Vector rsum = hvx_vec_reduce_sum_f32x2(Q6_Vsf_equals_Vqf32(rsum0), Q6_Vsf_equals_Vqf32(rsum1));
|
||||
hvx_vec_store_u(&s[0], 8, rsum);
|
||||
}
|
||||
|
||||
static void vec_dot_f16_f16_uu(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
@@ -990,7 +982,7 @@ static void vec_dot_f16_f16_uu(const int n, float * restrict s, const void * res
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
@@ -1042,7 +1034,8 @@ static void vec_dot_f16_f32_uu(const int n, float * restrict s, const void * res
|
||||
rsum = Q6_Vqf32_vadd_Vqf32Vqf32(rsum, Q6_Vqf32_vadd_Vqf32Vqf32(Q6_V_lo_W(xy_qf), Q6_V_hi_W(xy_qf)));
|
||||
}
|
||||
|
||||
rsum = Q6_Vsf_equals_Vqf32(hvx_vec_reduce_sum_qf32(rsum));
|
||||
// Convert into fp32 and reduce
|
||||
rsum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(rsum));
|
||||
hvx_vec_store_u(&s[0], 4, rsum);
|
||||
}
|
||||
|
||||
|
||||
@@ -154,8 +154,8 @@ static void hvx_fast_softmax_f32(const uint8_t * restrict src,
|
||||
v_pad[i] = v3;
|
||||
}
|
||||
|
||||
v = hvx_vec_reduce_sum_qf32(sum_vec);
|
||||
sum_vec = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(v));
|
||||
v = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(sum_vec));
|
||||
sum_vec = hvx_vec_repl4(v);
|
||||
|
||||
HVX_VectorPred pos_sum = Q6_Q_vcmp_gt_VwVw(sum_vec, zero_v);
|
||||
HVX_Vector v4 = hvx_vec_inverse_f32(sum_vec);
|
||||
|
||||
@@ -57,8 +57,8 @@ static void hvx_fast_rms_norm_f32(const uint8_t * restrict src,
|
||||
sum_v = Q6_Vqf32_vadd_Vqf32Vqf32(sum_v, v2);
|
||||
}
|
||||
|
||||
HVX_Vector reduced_sum = hvx_vec_reduce_sum_qf32(sum_v);
|
||||
sum_v = hvx_vec_repl4(Q6_Vsf_equals_Vqf32(reduced_sum));
|
||||
HVX_Vector reduced_sum = hvx_vec_reduce_sum_f32(Q6_Vsf_equals_Vqf32(sum_v));
|
||||
sum_v = hvx_vec_repl4(reduced_sum);
|
||||
|
||||
HVX_Vector t_v = hvx_vec_splat_f32((float) num_elems);
|
||||
HVX_Vector denom_v = hvx_vec_inverse_f32(t_v);
|
||||
|
||||
@@ -71,7 +71,7 @@ else()
|
||||
# disabling fast math is needed in order to pass tests/test-backend-ops
|
||||
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
|
||||
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
|
||||
# ref: https://github.com/ggml-org/whisper.cpp/issues/1720
|
||||
# note: adding -g causes segmentation fault during compile
|
||||
#set(XC_FLAGS -fno-fast-math -fno-inline -g)
|
||||
set(XC_FLAGS -fno-fast-math -fno-inline)
|
||||
|
||||
@@ -15,14 +15,22 @@ typedef struct ggml_metal * ggml_metal_t;
|
||||
ggml_metal_t ggml_metal_init(ggml_metal_device_t dev);
|
||||
void ggml_metal_free(ggml_metal_t ctx);
|
||||
|
||||
const char * ggml_metal_get_name(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_synchronize(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
enum ggml_status ggml_metal_graph_compute (ggml_metal_t ctx, struct ggml_cgraph * gf);
|
||||
void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf);
|
||||
|
||||
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev);
|
||||
void ggml_metal_event_wait (ggml_metal_t ctx, ggml_metal_event_t ev);
|
||||
|
||||
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx);
|
||||
|
||||
void ggml_metal_set_n_cb (ggml_metal_t ctx, int n_cb);
|
||||
void ggml_metal_set_abort_callback (ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data);
|
||||
bool ggml_metal_supports_family (ggml_metal_t ctx, int family);
|
||||
|
||||
@@ -24,9 +24,13 @@ struct ggml_metal_command_buffer {
|
||||
};
|
||||
|
||||
struct ggml_metal {
|
||||
char name[128];
|
||||
|
||||
ggml_metal_device_t dev;
|
||||
ggml_metal_library_t lib;
|
||||
|
||||
ggml_metal_event_t ev_cpy; // for async copies
|
||||
|
||||
dispatch_queue_t d_queue;
|
||||
|
||||
// additional, inference-time compiled pipelines
|
||||
@@ -117,7 +121,11 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
|
||||
}
|
||||
}
|
||||
|
||||
//const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
|
||||
res->ev_cpy = ggml_metal_device_event_init(dev);
|
||||
|
||||
const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
|
||||
|
||||
snprintf(res->name, sizeof(res->name), "%s", props_dev->name);
|
||||
|
||||
res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
@@ -206,9 +214,15 @@ void ggml_metal_free(ggml_metal_t ctx) {
|
||||
|
||||
dispatch_release(ctx->d_queue);
|
||||
|
||||
ggml_metal_device_event_free(ctx->dev, ctx->ev_cpy);
|
||||
|
||||
free(ctx);
|
||||
}
|
||||
|
||||
const char * ggml_metal_get_name(ggml_metal_t ctx) {
|
||||
return ctx->name;
|
||||
}
|
||||
|
||||
void ggml_metal_synchronize(ggml_metal_t ctx) {
|
||||
// wait for any backend operations to finish
|
||||
if (ctx->cmd_buf_last) {
|
||||
@@ -273,8 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
|
||||
// wrap the source data into a Metal buffer
|
||||
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
|
||||
id<MTLBuffer> buf_src = [device newBufferWithBytes:data
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared];
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared];
|
||||
|
||||
GGML_ASSERT(buf_src);
|
||||
|
||||
@@ -316,9 +330,9 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
|
||||
@autoreleasepool {
|
||||
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
|
||||
id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
length:size
|
||||
options:MTLResourceStorageModeShared
|
||||
deallocator:nil];
|
||||
|
||||
GGML_ASSERT(buf_dst);
|
||||
|
||||
@@ -356,9 +370,52 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
|
||||
}
|
||||
}
|
||||
|
||||
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
@autoreleasepool {
|
||||
struct ggml_metal_buffer_id bid_src = ggml_metal_get_buffer_id(src);
|
||||
struct ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(dst);
|
||||
|
||||
if (bid_src.metal == nil || bid_dst.metal == nil) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// queue the copy operation into the Metal context
|
||||
// this will be queued at the end, after any currently ongoing GPU operations
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx_src->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
|
||||
|
||||
[encoder copyFromBuffer:bid_src.metal
|
||||
sourceOffset:bid_src.offs
|
||||
toBuffer:bid_dst.metal
|
||||
destinationOffset:bid_dst.offs
|
||||
size:ggml_nbytes(src)];
|
||||
|
||||
[encoder endEncoding];
|
||||
|
||||
ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src);
|
||||
ggml_metal_event_encode_signal(ev_cpy, cmd_buf);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
// do not wait here for completion
|
||||
//[cmd_buf waitUntilCompleted];
|
||||
|
||||
// instead, remember a reference to the command buffer and wait for it later if needed
|
||||
[ctx_src->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx_src->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
|
||||
ggml_metal_event_wait(ctx_dst, ev_cpy);
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) {
|
||||
// number of nodes encoded by the main thread (empirically determined)
|
||||
const int n_main = 64;
|
||||
const int n_main = MAX(64, 0.1*gf->n_nodes);
|
||||
|
||||
// number of threads in addition to the main thread
|
||||
const int n_cb = ctx->n_cb;
|
||||
@@ -530,6 +587,42 @@ void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf) {
|
||||
//printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0);
|
||||
}
|
||||
|
||||
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
|
||||
ggml_metal_event_encode_signal(ev, cmd_buf);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
[ctx->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_metal_event_wait(ggml_metal_t ctx, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
|
||||
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
|
||||
|
||||
ggml_metal_event_encode_wait(ev, cmd_buf);
|
||||
|
||||
[cmd_buf commit];
|
||||
|
||||
[ctx->cmd_bufs_ext addObject:cmd_buf];
|
||||
ctx->cmd_buf_last = cmd_buf;
|
||||
|
||||
[cmd_buf retain];
|
||||
}
|
||||
}
|
||||
|
||||
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx) {
|
||||
return ctx->ev_cpy;
|
||||
}
|
||||
|
||||
void ggml_metal_set_n_cb(ggml_metal_t ctx, int n_cb) {
|
||||
if (ctx->n_cb != n_cb) {
|
||||
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);
|
||||
|
||||
@@ -17,10 +17,12 @@ struct ggml_metal_device_deleter {
|
||||
|
||||
typedef std::unique_ptr<ggml_metal_device, ggml_metal_device_deleter> ggml_metal_device_ptr;
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_get(void) {
|
||||
static ggml_metal_device_ptr ctx { ggml_metal_device_init() };
|
||||
ggml_metal_device_t ggml_metal_device_get(int device) {
|
||||
static std::vector<ggml_metal_device_ptr> devs;
|
||||
|
||||
return ctx.get();
|
||||
devs.emplace_back(ggml_metal_device_init(device));
|
||||
|
||||
return devs.back().get();
|
||||
}
|
||||
|
||||
struct ggml_metal_pipelines {
|
||||
@@ -174,6 +176,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows(ggml_me
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
const int n = op->src[0]->ne[0];
|
||||
|
||||
snprintf(base, 256, "kernel_diag_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_n=%d", base, n);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
|
||||
}
|
||||
|
||||
res.nsg = 1;
|
||||
res.smem = 0;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
@@ -532,6 +554,36 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv(ggml_metal_
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
const int nsg = 8;
|
||||
const int n = op->src[1]->ne[1];
|
||||
const int k = op->src[1]->ne[0];
|
||||
|
||||
snprintf(base, 256, "kernel_solve_tri_%s", ggml_type_name(op->src[0]->type));
|
||||
snprintf(name, 256, "%s_nsg=%d_n=%d_k=%d", base, nsg, n, k);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, nsg, FC_SOLVE_TRI + 0);
|
||||
ggml_metal_cv_set_int16(cv, n, FC_SOLVE_TRI + 1);
|
||||
ggml_metal_cv_set_int16(cv, k, FC_SOLVE_TRI + 2);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
res.nsg = nsg;
|
||||
res.smem = GGML_PAD(GGML_PAD(n, 32)*nsg*sizeof(float), 16);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1, int nsg, int nxpsg, int r1ptg) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
@@ -1340,34 +1392,78 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_v
|
||||
GGML_UNUSED(op);
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(
|
||||
ggml_metal_library_t lib,
|
||||
ggml_op op,
|
||||
int32_t n_fuse,
|
||||
bool row) {
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(ggml_metal_library_t lib, const ggml_tensor * op, int32_t n_fuse) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
const char * op_str = "undefined";
|
||||
switch (op) {
|
||||
case GGML_OP_ADD: op_str = "add"; break;
|
||||
case GGML_OP_SUB: op_str = "sub"; break;
|
||||
case GGML_OP_MUL: op_str = "mul"; break;
|
||||
case GGML_OP_DIV: op_str = "div"; break;
|
||||
int op_num = -1;
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_ADD: op_num = 0; break;
|
||||
case GGML_OP_SUB: op_num = 1; break;
|
||||
case GGML_OP_MUL: op_num = 2; break;
|
||||
case GGML_OP_DIV: op_num = 3; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
|
||||
if (row) {
|
||||
snprintf(base, 256, "kernel_%s_row_c4_fuse_%d", op_str, n_fuse);
|
||||
} else {
|
||||
snprintf(base, 256, "kernel_%s_fuse_%d", op_str, n_fuse);
|
||||
}
|
||||
const char * t0_str = ggml_type_name(op->src[0]->type);
|
||||
const char * t1_str = ggml_type_name(op->src[1]->type);
|
||||
const char * t_str = ggml_type_name(op->type);
|
||||
|
||||
snprintf(name, 256, "%s", base);
|
||||
const bool is_c4 = (op->src[0]->ne[0] % 4 == 0) && (op->src[1]->ne[0] % 4 == 0);
|
||||
|
||||
const bool is_rb = ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && (ggml_nrows(op->src[1]) == 1) && ggml_nelements(op) < 65536;
|
||||
|
||||
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s%s", t0_str, t1_str, t_str, is_c4 ? "_4" : "");
|
||||
snprintf(name, 256, "%s_op=%d_nf=%d_rb=%d", base, op_num, n_fuse, is_rb);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
|
||||
ggml_metal_cv_set_int16(cv, n_fuse, FC_BIN + 1);
|
||||
ggml_metal_cv_set_bool (cv, is_rb, FC_BIN + 2);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
res.c4 = is_c4;
|
||||
res.cnt = is_rb;
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one(ggml_metal_library_t lib, ggml_op op) {
|
||||
char base[256];
|
||||
char name[256];
|
||||
|
||||
int op_num = -1;
|
||||
|
||||
switch (op) {
|
||||
case GGML_OP_ADD: op_num = 0; break;
|
||||
case GGML_OP_SUB: op_num = 1; break;
|
||||
case GGML_OP_MUL: op_num = 2; break;
|
||||
case GGML_OP_DIV: op_num = 3; break;
|
||||
default: GGML_ABORT("fatal error");
|
||||
};
|
||||
|
||||
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s", "f32", "f32", "f32");
|
||||
snprintf(name, 256, "%s_op=%d_nf=%d", base, op_num, 1);
|
||||
|
||||
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
|
||||
if (!res.pipeline) {
|
||||
ggml_metal_cv_t cv = ggml_metal_cv_init();
|
||||
|
||||
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
|
||||
ggml_metal_cv_set_int16(cv, 1, FC_BIN + 1);
|
||||
ggml_metal_cv_set_bool (cv, false, FC_BIN + 2);
|
||||
|
||||
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
|
||||
|
||||
ggml_metal_cv_free(cv);
|
||||
}
|
||||
|
||||
return res;
|
||||
|
||||
@@ -53,6 +53,9 @@ struct ggml_metal_pipeline_with_params {
|
||||
int nr1;
|
||||
|
||||
size_t smem;
|
||||
|
||||
bool c4;
|
||||
bool cnt;
|
||||
};
|
||||
|
||||
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline);
|
||||
@@ -108,6 +111,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_1d
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
@@ -121,6 +125,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv_batched (ggml_metal_library_t lib, const struct ggml_tensor * op, int ssm_conv_bs);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
@@ -132,7 +137,8 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse );
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one (ggml_metal_library_t lib, enum ggml_op op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
|
||||
@@ -205,7 +211,9 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets);
|
||||
//
|
||||
|
||||
struct ggml_metal_device_props {
|
||||
int device;
|
||||
char name[128];
|
||||
char desc[128];
|
||||
|
||||
size_t max_buffer_size;
|
||||
size_t max_working_set_size;
|
||||
@@ -224,11 +232,15 @@ struct ggml_metal_device_props {
|
||||
int op_offload_min_batch_size;
|
||||
};
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(void);
|
||||
typedef struct ggml_metal_event * ggml_metal_event_t;
|
||||
|
||||
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
|
||||
void ggml_metal_event_encode_wait (ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(int device);
|
||||
void ggml_metal_device_free(ggml_metal_device_t dev);
|
||||
|
||||
// return a singleton that is automatically destroyed when the program exits
|
||||
ggml_metal_device_t ggml_metal_device_get(void);
|
||||
ggml_metal_device_t ggml_metal_device_get(int device);
|
||||
|
||||
void * ggml_metal_device_get_obj (ggml_metal_device_t dev); // id<MTLDevice>
|
||||
void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQueue>
|
||||
@@ -240,6 +252,10 @@ void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset
|
||||
|
||||
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev);
|
||||
|
||||
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev);
|
||||
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev);
|
||||
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev);
|
||||
|
||||
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
|
||||
bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);
|
||||
|
||||
|
||||
@@ -24,9 +24,6 @@
|
||||
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
|
||||
static const NSInteger MTLGPUFamilyMetal4_GGML = 5002;
|
||||
|
||||
// virtual address for GPU memory allocations
|
||||
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
|
||||
|
||||
#if !GGML_METAL_EMBED_LIBRARY
|
||||
// Here to assist with NSBundle Path Hack
|
||||
@interface GGMLMetalClass : NSObject
|
||||
@@ -349,10 +346,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
|
||||
|
||||
struct ggml_metal_pipeline_with_params res = {
|
||||
/*.pipeline =*/ nil,
|
||||
/*.nsg =*/ 0,
|
||||
/*.nr0 =*/ 0,
|
||||
/*.nr1 =*/ 0,
|
||||
/*.nsg =*/ 0,
|
||||
/*.smem =*/ 0,
|
||||
/*.c4 =*/ false,
|
||||
/*.cnt =*/ false,
|
||||
};
|
||||
|
||||
res.pipeline = ggml_metal_pipelines_get(lib->pipelines, name);
|
||||
@@ -365,10 +364,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
|
||||
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
|
||||
struct ggml_metal_pipeline_with_params res = {
|
||||
/*.pipeline =*/ nil,
|
||||
/*.nsg =*/ 0,
|
||||
/*.nr0 =*/ 0,
|
||||
/*.nr1 =*/ 0,
|
||||
/*.nsg =*/ 0,
|
||||
/*.smem =*/ 0,
|
||||
/*.c4 =*/ false,
|
||||
/*.cnt =*/ false,
|
||||
};
|
||||
|
||||
[lib->lock lock];
|
||||
@@ -523,6 +524,9 @@ struct ggml_metal_device {
|
||||
ggml_metal_library_t library;
|
||||
|
||||
struct ggml_metal_device_props props;
|
||||
|
||||
// virtual address for GPU memory allocations
|
||||
atomic_uintptr_t addr_virt;
|
||||
};
|
||||
|
||||
//
|
||||
@@ -618,7 +622,7 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets) {
|
||||
free(rsets);
|
||||
}
|
||||
|
||||
ggml_metal_device_t ggml_metal_device_init(void) {
|
||||
ggml_metal_device_t ggml_metal_device_init(int device) {
|
||||
ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device));
|
||||
|
||||
assert(dev != NULL);
|
||||
@@ -632,6 +636,9 @@ ggml_metal_device_t ggml_metal_device_init(void) {
|
||||
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
|
||||
}
|
||||
|
||||
dev->addr_virt = 0x000000400ULL;
|
||||
|
||||
dev->props.device = device;
|
||||
dev->props.has_simdgroup_reduction = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
|
||||
dev->props.has_simdgroup_reduction |= [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
|
||||
|
||||
@@ -792,7 +799,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
|
||||
dev->props.max_working_set_size = dev->mtl_device.maxBufferLength;
|
||||
}
|
||||
|
||||
strncpy(dev->props.name, [[dev->mtl_device name] UTF8String], sizeof(dev->props.name) - 1);
|
||||
snprintf(dev->props.name, sizeof(dev->props.name), "%s%d", "MTL", device);
|
||||
snprintf(dev->props.desc, sizeof(dev->props.desc), "%s", [[dev->mtl_device name] UTF8String]);
|
||||
|
||||
dev->library = ggml_metal_library_init(dev);
|
||||
if (!dev->library) {
|
||||
@@ -922,6 +930,59 @@ void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev) {
|
||||
atomic_store_explicit(&dev->rsets->d_loop, 2*dev->rsets->keep_alive_s, memory_order_relaxed);
|
||||
}
|
||||
|
||||
struct ggml_metal_event {
|
||||
void * obj; // id<MTLEvent>
|
||||
|
||||
atomic_int value;
|
||||
};
|
||||
|
||||
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
|
||||
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
|
||||
|
||||
[cmd_buf encodeSignalEvent:event value:atomic_fetch_add_explicit(&ev->value, 1, memory_order_relaxed) + 1];
|
||||
}
|
||||
|
||||
void ggml_metal_event_encode_wait(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
|
||||
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
|
||||
|
||||
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
|
||||
}
|
||||
|
||||
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev) {
|
||||
id<MTLEvent> event = [dev->mtl_device newEvent];
|
||||
|
||||
ggml_metal_event_t ev = calloc(1, sizeof(struct ggml_metal_event));
|
||||
|
||||
ev->obj = (__bridge void *)event;
|
||||
ev->value = 0;
|
||||
|
||||
return ev;
|
||||
}
|
||||
|
||||
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev) {
|
||||
id<MTLEvent> event = ev->obj;
|
||||
[event release];
|
||||
|
||||
free(ev);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev) {
|
||||
@autoreleasepool {
|
||||
id<MTLEvent> event = ev->obj;
|
||||
|
||||
id<MTLCommandBuffer> cmd_buf = [dev->mtl_queue commandBuffer];
|
||||
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
|
||||
[cmd_buf commit];
|
||||
[cmd_buf waitUntilCompleted];
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) {
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
*total = dev->mtl_device.recommendedMaxWorkingSetSize;
|
||||
@@ -997,7 +1058,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_ADD_ID:
|
||||
return op->src[0]->type == GGML_TYPE_F32;
|
||||
return ggml_is_contiguous_rows(op->src[0]) && ggml_is_contiguous_rows(op->src[1]) && op->src[0]->type == GGML_TYPE_F32;
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_SCALE:
|
||||
@@ -1096,6 +1157,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
||||
case GGML_OP_RWKV_WKV6:
|
||||
case GGML_OP_RWKV_WKV7:
|
||||
return true;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return has_simdgroup_reduction;
|
||||
@@ -1177,6 +1239,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
|
||||
return false;
|
||||
};
|
||||
}
|
||||
case GGML_OP_DIAG:
|
||||
return true;
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
case GGML_OP_OPT_STEP_SGD:
|
||||
return has_simdgroup_reduction;
|
||||
@@ -1344,8 +1408,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
|
||||
res->all_data = ggml_metal_host_malloc(size_aligned);
|
||||
res->is_shared = true;
|
||||
} else {
|
||||
// use virtual address from g_addr_device counter
|
||||
res->all_data = (void *) atomic_fetch_add_explicit(&g_addr_device, size_aligned, memory_order_relaxed);
|
||||
// use virtual address
|
||||
res->all_data = (void *) atomic_fetch_add_explicit(&dev->addr_virt, size_aligned, memory_order_relaxed);
|
||||
res->is_shared = false;
|
||||
}
|
||||
res->all_size = size_aligned;
|
||||
|
||||
@@ -78,13 +78,15 @@
|
||||
#define FC_MUL_MM 700
|
||||
#define FC_ROPE 800
|
||||
#define FC_SSM_CONV 900
|
||||
#define FC_COUNT_EQUAL 1000
|
||||
#define FC_SOLVE_TRI 1000
|
||||
#define FC_COUNT_EQUAL 1100
|
||||
#define FC_BIN 1200
|
||||
|
||||
// op-specific constants
|
||||
#define OP_FLASH_ATTN_EXT_NQPTG 8
|
||||
#define OP_FLASH_ATTN_EXT_NQPSG 8
|
||||
#define OP_FLASH_ATTN_EXT_NCPSG 64
|
||||
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NQPTG 1
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NQPSG 1
|
||||
#define OP_FLASH_ATTN_EXT_VEC_NCPSG 32
|
||||
|
||||
// kernel argument structs
|
||||
@@ -733,6 +735,33 @@ typedef struct {
|
||||
uint64_t nb0;
|
||||
} ggml_metal_kargs_ssm_scan;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne10;
|
||||
int32_t ne11;
|
||||
int32_t ne12;
|
||||
int32_t ne13;
|
||||
uint64_t nb10;
|
||||
uint64_t nb11;
|
||||
uint64_t nb12;
|
||||
uint64_t nb13;
|
||||
int32_t ne0;
|
||||
int32_t ne1;
|
||||
int32_t ne2;
|
||||
int32_t ne3;
|
||||
uint64_t nb0;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_solve_tri;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00t;
|
||||
int32_t ne00;
|
||||
@@ -764,6 +793,25 @@ typedef struct {
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_set_rows;
|
||||
|
||||
typedef struct {
|
||||
int32_t ne00;
|
||||
int32_t ne01;
|
||||
int32_t ne02;
|
||||
int32_t ne03;
|
||||
uint64_t nb00;
|
||||
uint64_t nb01;
|
||||
uint64_t nb02;
|
||||
uint64_t nb03;
|
||||
int32_t ne0;
|
||||
int32_t ne1;
|
||||
int32_t ne2;
|
||||
int32_t ne3;
|
||||
uint64_t nb0;
|
||||
uint64_t nb1;
|
||||
uint64_t nb2;
|
||||
uint64_t nb3;
|
||||
} ggml_metal_kargs_diag;
|
||||
|
||||
typedef struct {
|
||||
int64_t ne00;
|
||||
int64_t ne01;
|
||||
|
||||
@@ -341,6 +341,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
||||
{
|
||||
n_fuse = ggml_metal_op_rwkv(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_SOLVE_TRI:
|
||||
{
|
||||
n_fuse = ggml_metal_op_solve_tri(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
n_fuse = ggml_metal_op_mul_mat(ctx, idx);
|
||||
@@ -357,6 +361,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
|
||||
{
|
||||
n_fuse = ggml_metal_op_set_rows(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_DIAG:
|
||||
{
|
||||
n_fuse = ggml_metal_op_diag(ctx, idx);
|
||||
} break;
|
||||
case GGML_OP_L2_NORM:
|
||||
{
|
||||
n_fuse = ggml_metal_op_l2_norm(ctx, idx);
|
||||
@@ -699,7 +707,7 @@ int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
|
||||
/*.o1 =*/ { 0 },
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
|
||||
auto pipeline = ggml_metal_library_get_pipeline_bin_one(lib, GGML_OP_ADD);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
@@ -1255,6 +1263,48 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_diag(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS(int32_t, ne, op, ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
|
||||
|
||||
ggml_metal_kargs_diag args = {
|
||||
/*.ne00 =*/ne00,
|
||||
/*.ne01 =*/ne01,
|
||||
/*.ne02 =*/ne02,
|
||||
/*.ne03 =*/ne03,
|
||||
/*.nb00 =*/nb00,
|
||||
/*.nb01 =*/nb01,
|
||||
/*.nb02 =*/nb02,
|
||||
/*.nb03 =*/nb03,
|
||||
/*.ne0 =*/ne0,
|
||||
/*.ne1 =*/ne1,
|
||||
/*.ne2 =*/ne2,
|
||||
/*.ne3 =*/ne3,
|
||||
/*.nb0 =*/nb0,
|
||||
/*.nb1 =*/nb1,
|
||||
/*.nb2 =*/nb2,
|
||||
/*.nb3 =*/nb3,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_diag(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 2);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, 32, 1, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
@@ -1557,6 +1607,63 @@ int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
ggml_metal_library_t lib = ctx->lib;
|
||||
ggml_metal_encoder_t enc = ctx->enc;
|
||||
|
||||
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
|
||||
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
|
||||
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
|
||||
|
||||
ggml_metal_kargs_solve_tri args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne01 =*/ ne01,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.ne03 =*/ ne03,
|
||||
/*.nb00 =*/ nb00,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.ne10 =*/ ne10,
|
||||
/*.ne11 =*/ ne11,
|
||||
/*.ne12 =*/ ne12,
|
||||
/*.ne13 =*/ ne13,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.nb13 =*/ nb13,
|
||||
/*.ne0 =*/ ne0,
|
||||
/*.ne1 =*/ ne1,
|
||||
/*.ne2 =*/ ne2,
|
||||
/*.ne3 =*/ ne3,
|
||||
/*.nb0 =*/ nb0,
|
||||
/*.nb1 =*/ nb1,
|
||||
/*.nb2 =*/ nb2,
|
||||
/*.nb3 =*/ nb3,
|
||||
};
|
||||
|
||||
auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op);
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
|
||||
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
|
||||
|
||||
const int nsg = pipeline.nsg;
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, pipeline.smem, 0);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne10 + nsg - 1)/nsg, ne02, ne03, 32, nsg, 1);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_tensor * op = ctx->node(idx);
|
||||
|
||||
@@ -2295,7 +2402,7 @@ size_t ggml_metal_op_flash_attn_ext_extra_blk(const ggml_tensor * op) {
|
||||
// return res;
|
||||
//}
|
||||
|
||||
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPTG : OP_FLASH_ATTN_EXT_NQPTG;
|
||||
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPSG : OP_FLASH_ATTN_EXT_NQPSG;
|
||||
const int ncpsg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NCPSG : OP_FLASH_ATTN_EXT_NCPSG;
|
||||
|
||||
const int64_t ne1 = (ne01 + nqptg - 1)/nqptg;
|
||||
@@ -2411,7 +2518,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
|
||||
if (!ggml_metal_op_flash_attn_ext_use_vec(op)) {
|
||||
// half8x8 kernel
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_NQPTG; // queries per threadgroup
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_NQPSG; // queries per threadgroup
|
||||
const int ncpsg = OP_FLASH_ATTN_EXT_NCPSG; // cache values per simdgroup
|
||||
|
||||
GGML_ASSERT(nqptg <= 32);
|
||||
@@ -2578,9 +2685,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
#undef FATTN_SMEM
|
||||
} else {
|
||||
// half4x4 kernel
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPTG; // queries per threadgroup
|
||||
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPSG; // queries per threadgroup
|
||||
const int ncpsg = OP_FLASH_ATTN_EXT_VEC_NCPSG; // cache values per simdgroup !! sync with kernel template arguments !!
|
||||
const int nkpsg = 1*ncpsg;
|
||||
const int nhptg = 1; // heads per threadgroup
|
||||
|
||||
GGML_ASSERT(nqptg <= 32);
|
||||
GGML_ASSERT(nqptg % 1 == 0);
|
||||
@@ -2632,6 +2739,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
}
|
||||
|
||||
// note: for simplicity assume the K is larger or equal than V
|
||||
GGML_ASSERT(ne10 >= ne20);
|
||||
|
||||
// ne00 + 2*ncpsg*(nsg)
|
||||
// for each query, we load it as f16 in shared memory (ne00)
|
||||
// and store the soft_max values and the mask
|
||||
@@ -2639,28 +2749,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
// ne20*(nsg)
|
||||
// each simdgroup has a full f32 head vector in shared mem to accumulate results
|
||||
//
|
||||
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16))
|
||||
|
||||
int64_t nsgmax = 2;
|
||||
while (true) {
|
||||
const size_t smem = FATTN_SMEM(nsgmax);
|
||||
// avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
|
||||
if (smem > props_dev->max_theadgroup_memory_size/2) {
|
||||
break;
|
||||
}
|
||||
nsgmax *= 2;
|
||||
}
|
||||
nsgmax /= 2;
|
||||
|
||||
// simdgroups per threadgroup (a.k.a. warps)
|
||||
//const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
|
||||
const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32)));
|
||||
#define FATTN_SMEM(nsg) (GGML_PAD(((GGML_PAD(ne00, 128) + 4*ncpsg + 2*GGML_PAD(ne20, 128))*(nsg))*(sizeof(float)/2), 16))
|
||||
|
||||
int64_t nsg = 1;
|
||||
while (nsg <= nsgt) {
|
||||
nsg *= 2;
|
||||
}
|
||||
nsg /= 2;
|
||||
|
||||
// workgroups
|
||||
// each workgroup handles nsg*nkpsg cache values
|
||||
@@ -2673,7 +2764,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
} else {
|
||||
nwg = 32;
|
||||
nsg = 1;
|
||||
while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) {
|
||||
while (2*nwg*nsg*ncpsg < ne11 && nsg < 4) {
|
||||
nsg *= 2;
|
||||
}
|
||||
}
|
||||
@@ -2739,7 +2830,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
|
||||
} else {
|
||||
// sanity checks
|
||||
assert(ggml_metal_op_flash_attn_ext_extra_tmp(op) != 0);
|
||||
@@ -2752,7 +2843,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
|
||||
ggml_metal_encoder_set_buffer(enc, bid_tmp, 7);
|
||||
|
||||
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
|
||||
|
||||
// sync the 2 kernels
|
||||
ggml_metal_op_concurrency_reset(ctx);
|
||||
@@ -2804,8 +2895,6 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
|
||||
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
|
||||
GGML_ASSERT(ggml_is_contiguous_rows(op->src[1]));
|
||||
|
||||
bool bcast_row = false;
|
||||
|
||||
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
|
||||
ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
|
||||
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
|
||||
@@ -2899,18 +2988,7 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
|
||||
|
||||
struct ggml_metal_pipeline_with_params pipeline;
|
||||
|
||||
if (ggml_nelements(op->src[1]) == ne10 && ggml_is_contiguous(op->src[1]) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
||||
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
|
||||
|
||||
// src1 is a row
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, true);
|
||||
|
||||
bcast_row = true;
|
||||
} else {
|
||||
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, false);
|
||||
}
|
||||
pipeline = ggml_metal_library_get_pipeline_bin(lib, op, n_fuse);
|
||||
|
||||
if (n_fuse > 1) {
|
||||
bid_dst = ggml_metal_get_buffer_id(ctx->node(idx + n_fuse - 1));
|
||||
@@ -2924,20 +3002,28 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
|
||||
}
|
||||
}
|
||||
|
||||
if (pipeline.c4) {
|
||||
args.ne00 = ne00/4;
|
||||
args.ne10 = ne10/4;
|
||||
args.ne0 = ne0/4;
|
||||
}
|
||||
|
||||
ggml_metal_encoder_set_pipeline(enc, pipeline);
|
||||
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_src1, 2);
|
||||
ggml_metal_encoder_set_buffer (enc, bid_dst, 3);
|
||||
|
||||
if (bcast_row) {
|
||||
const int64_t n = ggml_nelements(op)/4;
|
||||
if (pipeline.cnt) {
|
||||
const int n = pipeline.c4 ? ggml_nelements(op)/4 : ggml_nelements(op);
|
||||
|
||||
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
|
||||
} else {
|
||||
int nth = 32;
|
||||
const int nth_max = MIN(256, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
|
||||
|
||||
while (16*nth < ne0 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
|
||||
int nth = 1;
|
||||
|
||||
while (2*nth < args.ne0 && nth < nth_max) {
|
||||
nth *= 2;
|
||||
}
|
||||
|
||||
|
||||
@@ -56,10 +56,12 @@ int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_cumsum (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_diag (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx);
|
||||
int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);
|
||||
|
||||
@@ -7,11 +7,15 @@
|
||||
#include "ggml-metal-context.h"
|
||||
#include "ggml-metal-ops.h"
|
||||
|
||||
// globals
|
||||
#include <mutex>
|
||||
#include <string>
|
||||
|
||||
// initialized in ggml_backend_metal_reg
|
||||
static ggml_backend_reg g_ggml_metal_reg;
|
||||
static ggml_backend_device g_ggml_metal_device;
|
||||
#define GGML_METAL_NAME "MTL"
|
||||
#define GGML_METAL_MAX_DEVICES 16
|
||||
|
||||
// number of Metal devices
|
||||
// note: can be overriden with GGML_METAL_DEVICES env to simulate virtual devices
|
||||
static int g_devices = 1;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// backend interface
|
||||
@@ -165,10 +169,28 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static bool ggml_backend_buffer_is_metal(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.free_buffer == ggml_backend_metal_buffer_shared_free_buffer ||
|
||||
buffer->iface.free_buffer == ggml_backend_metal_buffer_private_free_buffer;
|
||||
}
|
||||
|
||||
//
|
||||
// buffer types
|
||||
//
|
||||
|
||||
struct ggml_backend_metal_buffer_type {
|
||||
int device;
|
||||
std::string name;
|
||||
};
|
||||
|
||||
struct ggml_backend_metal_buffer_type_deleter {
|
||||
void operator()(ggml_backend_metal_buffer_type * ctx) const {
|
||||
delete ctx;
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<ggml_backend_metal_buffer_type, ggml_backend_metal_buffer_type_deleter> ggml_backend_metal_buffer_type_ptr;
|
||||
|
||||
// common method for allocating shread or private Metal buffers
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
|
||||
@@ -218,9 +240,9 @@ static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_
|
||||
// default (shared) buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
@@ -249,29 +271,54 @@ static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_ty
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx =
|
||||
new ggml_backend_metal_buffer_type {
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i),
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// default (private) buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Private";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
@@ -300,29 +347,53 @@ static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_t
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) {
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Private"
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// mapped buffer type
|
||||
|
||||
static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal_Mapped";
|
||||
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
@@ -352,31 +423,55 @@ static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_ty
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) {
|
||||
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
|
||||
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
|
||||
static ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
|
||||
},
|
||||
/* .device = */ &g_ggml_metal_device,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
return &ggml_backend_buffer_type_mapped_metal;
|
||||
static std::vector<ggml_backend_buffer_type> bufts;
|
||||
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
|
||||
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
bufts.reserve(g_devices);
|
||||
ctxs.reserve(g_devices);
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
|
||||
/* .device = */ i,
|
||||
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Mapped"
|
||||
};
|
||||
ctxs.emplace_back(raw_ctx);
|
||||
|
||||
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
|
||||
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
|
||||
ggml_backend_buffer_type buft = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
|
||||
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
|
||||
/* .context = */ raw_ctx,
|
||||
};
|
||||
|
||||
bufts.emplace_back(buft);
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &bufts[device];
|
||||
}
|
||||
|
||||
// backend
|
||||
|
||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
return "Metal";
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
return ggml_metal_get_name(ctx);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
@@ -409,12 +504,24 @@ static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const gg
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
return false;
|
||||
if (!ggml_backend_is_metal(backend_src) || !ggml_backend_is_metal(backend_dst)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(backend_src);
|
||||
GGML_UNUSED(backend_dst);
|
||||
GGML_UNUSED(src);
|
||||
GGML_UNUSED(dst);
|
||||
if (!ggml_backend_buffer_is_metal(src->buffer) || !ggml_backend_buffer_is_metal(dst->buffer)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_metal_t ctx_src = (ggml_metal_t)backend_src->context;
|
||||
ggml_metal_t ctx_dst = (ggml_metal_t)backend_dst->context;
|
||||
|
||||
//ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
|
||||
//ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
||||
|
||||
//ggml_metal_buffer_t buf_ctx_src = (ggml_metal_buffer_t)buf_src->context;
|
||||
//ggml_metal_buffer_t buf_ctx_dst = (ggml_metal_buffer_t)buf_dst->context;
|
||||
|
||||
return ggml_metal_cpy_tensor_async(ctx_src, ctx_dst, src, dst);
|
||||
}
|
||||
|
||||
static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
@@ -423,6 +530,20 @@ static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend,
|
||||
return ggml_metal_graph_compute(ctx, cgraph);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_event_record(ctx, ev);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_event_wait(ctx, ev);
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
@@ -435,7 +556,6 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
||||
ggml_metal_t ctx = (ggml_metal_t)backend->context;
|
||||
|
||||
ggml_metal_set_n_cb(ctx, n_cb);
|
||||
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_metal_i = {
|
||||
@@ -450,12 +570,8 @@ static ggml_backend_i ggml_backend_metal_i = {
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
||||
|
||||
// the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal
|
||||
// in any case, these docs seem relevant if we ever decide to implement it:
|
||||
// https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_record = */ ggml_backend_metal_event_record,
|
||||
/* .event_wait = */ ggml_backend_metal_event_wait,
|
||||
/* .graph_optimize = */ ggml_backend_metal_graph_optimize,
|
||||
};
|
||||
|
||||
@@ -519,15 +635,17 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
||||
// backend device
|
||||
|
||||
static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
|
||||
return "Metal";
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return props_dev->name;
|
||||
}
|
||||
|
||||
static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
return ggml_metal_device_get_props(ctx_dev)->name;
|
||||
return ggml_metal_device_get_props(ctx_dev)->desc;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
@@ -550,14 +668,14 @@ static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, ggml_bac
|
||||
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
props->caps = {
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ false,
|
||||
/* .async = */ true,
|
||||
/* .host_buffer = */ false,
|
||||
/* .buffer_from_host_ptr = */ true,
|
||||
/* .events = */ true,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
static ggml_backend_t ggml_backend_metal_device_init_backend(ggml_backend_dev_t dev, const char * params) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_t ctx = ggml_metal_init(ctx_dev);
|
||||
@@ -587,7 +705,7 @@ static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml
|
||||
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private();
|
||||
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared(props_dev->device) : ggml_backend_metal_buffer_type_private(props_dev->device);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
@@ -595,7 +713,9 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backen
|
||||
|
||||
ggml_metal_buffer_t res = ggml_metal_buffer_map(ctx_dev, ptr, size, max_tensor_size);
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, res, size);
|
||||
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
|
||||
|
||||
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(props_dev->device), ggml_backend_metal_buffer_shared_i, res, size);
|
||||
}
|
||||
|
||||
static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
@@ -606,9 +726,10 @@ static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const
|
||||
|
||||
static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
return
|
||||
buft->device == dev && (
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name ||
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name;
|
||||
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name);
|
||||
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
@@ -632,45 +753,97 @@ static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const g
|
||||
get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size;
|
||||
}
|
||||
|
||||
static ggml_backend_event_t ggml_backend_metal_device_event_new(ggml_backend_dev_t dev) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t event = ggml_metal_device_event_init(ctx_dev);
|
||||
GGML_ASSERT(event);
|
||||
|
||||
ggml_backend_event_t ev = new ggml_backend_event {
|
||||
/* .device = */ dev,
|
||||
/* .context = */ event,
|
||||
};
|
||||
|
||||
return ev;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_device_event_free(ctx_dev, ev);
|
||||
|
||||
delete event;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
|
||||
|
||||
ggml_metal_event_t evt = (ggml_metal_event_t)event->context;
|
||||
|
||||
ggml_metal_device_event_synchronize(ctx_dev, evt);
|
||||
}
|
||||
|
||||
static ggml_backend_device_i ggml_backend_metal_device_i = {
|
||||
/* .get_name = */ ggml_backend_metal_device_get_name,
|
||||
/* .get_description = */ ggml_backend_metal_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_metal_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_metal_device_get_type,
|
||||
/* .get_props = */ ggml_backend_metal_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_metal_device_init,
|
||||
/* .init_backend = */ ggml_backend_metal_device_init_backend,
|
||||
/* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ NULL,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped,
|
||||
/* .supports_op = */ ggml_backend_metal_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_metal_device_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_metal_device_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
/* .event_new = */ ggml_backend_metal_device_event_new,
|
||||
/* .event_free = */ ggml_backend_metal_device_event_free,
|
||||
/* .event_synchronize = */ ggml_backend_metal_device_event_synchronize,
|
||||
};
|
||||
|
||||
// backend registry
|
||||
|
||||
struct ggml_backend_metal_reg {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
};
|
||||
|
||||
typedef struct ggml_backend_metal_reg * ggml_backend_metal_reg_t;
|
||||
|
||||
static ggml_backend_metal_reg_t ggml_backend_metal_reg_init(void) {
|
||||
ggml_backend_metal_reg_t ctx = new struct ggml_backend_metal_reg;
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
||||
static void ggml_backend_metal_reg_free(ggml_backend_metal_reg_t ctx) {
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
struct ggml_backend_metal_reg_deleter {
|
||||
void operator()(ggml_backend_metal_reg_t ctx) {
|
||||
ggml_backend_metal_reg_free(ctx);
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<struct ggml_backend_metal_reg, ggml_backend_metal_reg_deleter> ggml_backend_metal_reg_ptr;
|
||||
|
||||
static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
|
||||
return "Metal";
|
||||
return GGML_METAL_NAME;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
|
||||
return 1;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
|
||||
return ctx->devices.size();
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
|
||||
GGML_ASSERT(index == 0);
|
||||
|
||||
return &g_ggml_metal_device;
|
||||
|
||||
GGML_UNUSED(reg);
|
||||
GGML_UNUSED(index);
|
||||
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
|
||||
GGML_ASSERT(index < ctx->devices.size());
|
||||
return ctx->devices[index];
|
||||
}
|
||||
|
||||
static ggml_backend_feature g_ggml_backend_metal_features[] = {
|
||||
@@ -698,27 +871,67 @@ static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const
|
||||
|
||||
static ggml_backend_reg_i ggml_backend_metal_reg_i = {
|
||||
/* .get_name = */ ggml_backend_metal_reg_get_name,
|
||||
/* .device_count = */ ggml_backend_metal_reg_device_count,
|
||||
/* .device_get = */ ggml_backend_metal_reg_device_get,
|
||||
/* .get_device_count = */ ggml_backend_metal_reg_device_count,
|
||||
/* .get_device = */ ggml_backend_metal_reg_device_get,
|
||||
/* .get_proc_address = */ ggml_backend_metal_get_proc_address,
|
||||
};
|
||||
|
||||
ggml_backend_reg_t ggml_backend_metal_reg(void) {
|
||||
{
|
||||
g_ggml_metal_reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_metal_reg_i,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
static ggml_backend_dev_t ggml_backend_metal_device_init(ggml_backend_reg_t reg, int device) {
|
||||
return new ggml_backend_device {
|
||||
/* .iface = */ ggml_backend_metal_device_i,
|
||||
/* .reg = */ reg,
|
||||
/* .context = */ ggml_metal_device_get(device),
|
||||
};
|
||||
}
|
||||
|
||||
g_ggml_metal_device = {
|
||||
/* .iface = */ ggml_backend_metal_device_i,
|
||||
/* .reg = */ &g_ggml_metal_reg,
|
||||
/* .context = */ ggml_metal_device_get(),
|
||||
};
|
||||
static void ggml_backend_metal_device_free(ggml_backend_dev_t dev) {
|
||||
delete dev;
|
||||
}
|
||||
|
||||
struct ggml_backend_device_deleter {
|
||||
void operator()(ggml_backend_dev_t ctx) {
|
||||
ggml_backend_metal_device_free(ctx);
|
||||
}
|
||||
};
|
||||
|
||||
typedef std::unique_ptr<ggml_backend_device, ggml_backend_device_deleter> ggml_backend_device_ptr;
|
||||
|
||||
ggml_backend_reg_t ggml_backend_metal_reg(void) {
|
||||
static ggml_backend_reg reg;
|
||||
static bool initialized = false;
|
||||
|
||||
{
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
const char * env = getenv("GGML_METAL_DEVICES");
|
||||
if (env) {
|
||||
g_devices = atoi(env);
|
||||
}
|
||||
|
||||
static std::vector<ggml_backend_device_ptr> devs;
|
||||
|
||||
if (!initialized) {
|
||||
static ggml_backend_metal_reg_ptr reg_ctx(ggml_backend_metal_reg_init());
|
||||
|
||||
for (int i = 0; i < g_devices; ++i) {
|
||||
auto * dev = ggml_backend_metal_device_init(®, i);
|
||||
devs.emplace_back(dev);
|
||||
|
||||
reg_ctx->devices.push_back(dev);
|
||||
}
|
||||
|
||||
reg = {
|
||||
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
||||
/* .iface = */ ggml_backend_metal_reg_i,
|
||||
/* .context = */ reg_ctx.get(),
|
||||
};
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return &g_ggml_metal_reg;
|
||||
return ®
|
||||
}
|
||||
|
||||
GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)
|
||||
|
||||
@@ -895,11 +895,13 @@ enum ggml_sort_order {
|
||||
GGML_SORT_ORDER_DESC,
|
||||
};
|
||||
|
||||
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across all dims
|
||||
// cons: not very efficient
|
||||
template <int F>
|
||||
kernel void kernel_add_fuse_impl(
|
||||
// OP: 0 - add, 1 - sub, 2 - mul, 3 - div
|
||||
constant short FC_bin_op [[function_constant(FC_BIN + 0)]];
|
||||
constant short FC_bin_f [[function_constant(FC_BIN + 1)]];
|
||||
constant bool FC_bin_rb [[function_constant(FC_BIN + 2)]];
|
||||
|
||||
template <typename T0, typename T1, typename T>
|
||||
kernel void kernel_bin_fuse_impl(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
@@ -907,138 +909,152 @@ kernel void kernel_add_fuse_impl(
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const int i03 = tgpig.z;
|
||||
const int i02 = tgpig.y;
|
||||
const int i01 = tgpig.x;
|
||||
#define FC_OP FC_bin_op
|
||||
#define FC_F FC_bin_f
|
||||
#define FC_RB FC_bin_rb
|
||||
|
||||
const int i13 = i03%args.ne13;
|
||||
const int i12 = i02%args.ne12;
|
||||
const int i11 = i01%args.ne11;
|
||||
if (FC_RB) {
|
||||
// row broadcast
|
||||
const uint i0 = tgpig.x;
|
||||
const uint i1 = i0%args.ne10;
|
||||
|
||||
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
|
||||
device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
|
||||
device const T0 * src0_row = (device const T0 *) (src0);
|
||||
device T * dst_row = (device T *) (dst);
|
||||
|
||||
device const float * src1_ptr[F];
|
||||
for (short j = 0; j < F; ++j) {
|
||||
src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
|
||||
}
|
||||
if (FC_F == 1) {
|
||||
device const T1 * src1_row = (device const T1 *) (src1 + args.o1[0]);
|
||||
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
if (FC_OP == 0) {
|
||||
dst_row[i0] = src0_row[i0] + src1_row[i1];
|
||||
}
|
||||
|
||||
float res = src0_ptr[i0];
|
||||
if (FC_OP == 1) {
|
||||
dst_row[i0] = src0_row[i0] - src1_row[i1];
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (short j = 0; j < F; ++j) {
|
||||
res += src1_ptr[j][i10];
|
||||
}
|
||||
if (FC_OP == 2) {
|
||||
dst_row[i0] = src0_row[i0] * src1_row[i1];
|
||||
}
|
||||
|
||||
dst_ptr[i0] = res;
|
||||
}
|
||||
}
|
||||
if (FC_OP == 3) {
|
||||
dst_row[i0] = src0_row[i0] / src1_row[i1];
|
||||
}
|
||||
} else {
|
||||
T0 res = src0_row[i0];
|
||||
|
||||
typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t;
|
||||
if (FC_OP == 0) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res += ((device const T1 *) (src1 + args.o1[j]))[i1];
|
||||
}
|
||||
}
|
||||
|
||||
template [[host_name("kernel_add_fuse_1")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>;
|
||||
template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>;
|
||||
template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>;
|
||||
template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>;
|
||||
template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>;
|
||||
template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>;
|
||||
template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>;
|
||||
template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>;
|
||||
if (FC_OP == 1) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res -= ((device const T1 *) (src1 + args.o1[j]))[i1];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_sub_fuse_1(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const int i03 = tgpig.z;
|
||||
const int i02 = tgpig.y;
|
||||
const int i01 = tgpig.x;
|
||||
if (FC_OP == 2) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res *= ((device const T1 *) (src1 + args.o1[j]))[i1];
|
||||
}
|
||||
}
|
||||
|
||||
const int i13 = i03%args.ne13;
|
||||
const int i12 = i02%args.ne12;
|
||||
const int i11 = i01%args.ne11;
|
||||
if (FC_OP == 3) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res /= ((device const T1 *) (src1 + args.o1[j]))[i1];
|
||||
}
|
||||
}
|
||||
|
||||
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
|
||||
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
|
||||
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
|
||||
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) - *((device float *)(src1_ptr + i10*args.nb10));
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_fuse_1(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const int i03 = tgpig.z;
|
||||
const int i02 = tgpig.y;
|
||||
const int i01 = tgpig.x;
|
||||
|
||||
const int i13 = i03%args.ne13;
|
||||
const int i12 = i02%args.ne12;
|
||||
const int i11 = i01%args.ne11;
|
||||
|
||||
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
|
||||
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
|
||||
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
|
||||
|
||||
if (args.ne10 == 1) {
|
||||
const float x = *((device float *)(src1_ptr));
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
|
||||
dst_row[i0] = res;
|
||||
}
|
||||
} else {
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
|
||||
const int i03 = tgpig.z;
|
||||
const int i02 = tgpig.y;
|
||||
const int i01 = tgpig.x;
|
||||
|
||||
if (i01 >= args.ne01) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i13 = i03%args.ne13;
|
||||
const int i12 = i02%args.ne12;
|
||||
const int i11 = i01%args.ne11;
|
||||
|
||||
device const T0 * src0_ptr = (device const T0 *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
|
||||
device T * dst_ptr = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
|
||||
|
||||
if (FC_F == 1) {
|
||||
device const T1 * src1_ptr = (device const T1 *) (src1 + args.o1[0] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
|
||||
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
|
||||
if (FC_OP == 0) {
|
||||
dst_ptr[i0] = src0_ptr[i0] + src1_ptr[i10];
|
||||
}
|
||||
|
||||
if (FC_OP == 1) {
|
||||
dst_ptr[i0] = src0_ptr[i0] - src1_ptr[i10];
|
||||
}
|
||||
|
||||
if (FC_OP == 2) {
|
||||
dst_ptr[i0] = src0_ptr[i0] * src1_ptr[i10];
|
||||
}
|
||||
|
||||
if (FC_OP == 3) {
|
||||
dst_ptr[i0] = src0_ptr[i0] / src1_ptr[i10];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
device const T1 * src1_ptr[8];
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
src1_ptr[j] = (device const T1 *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
|
||||
}
|
||||
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
|
||||
T res = src0_ptr[i0];
|
||||
|
||||
if (FC_OP == 0) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res += src1_ptr[j][i10];
|
||||
}
|
||||
}
|
||||
|
||||
if (FC_OP == 1) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res -= src1_ptr[j][i10];
|
||||
}
|
||||
}
|
||||
|
||||
if (FC_OP == 2) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res *= src1_ptr[j][i10];
|
||||
}
|
||||
}
|
||||
|
||||
if (FC_OP == 3) {
|
||||
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
|
||||
res /= src1_ptr[j][i10];
|
||||
}
|
||||
}
|
||||
|
||||
dst_ptr[i0] = res;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#undef FC_OP
|
||||
#undef FC_F
|
||||
#undef FC_RB
|
||||
}
|
||||
|
||||
kernel void kernel_div_fuse_1(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort3 tpitg[[thread_position_in_threadgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
const int i03 = tgpig.z;
|
||||
const int i02 = tgpig.y;
|
||||
const int i01 = tgpig.x;
|
||||
typedef decltype(kernel_bin_fuse_impl<float, float, float>) kernel_bin_fuse_t;
|
||||
|
||||
const int i13 = i03%args.ne13;
|
||||
const int i12 = i02%args.ne12;
|
||||
const int i11 = i01%args.ne11;
|
||||
|
||||
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
|
||||
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
|
||||
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
|
||||
|
||||
if (args.ne10 == 1) {
|
||||
const float x = 1.0f / *((device float *)(src1_ptr));
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
|
||||
}
|
||||
} else {
|
||||
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
|
||||
const int i10 = i0%args.ne10;
|
||||
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
|
||||
}
|
||||
}
|
||||
}
|
||||
template [[host_name("kernel_bin_fuse_f32_f32_f32")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float, float, float>;
|
||||
template [[host_name("kernel_bin_fuse_f32_f32_f32_4")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float4, float4, float4>;
|
||||
|
||||
kernel void kernel_add_id(
|
||||
constant ggml_metal_kargs_add_id & args,
|
||||
@@ -1057,7 +1073,7 @@ kernel void kernel_add_id(
|
||||
const size_t nb1 = args.ne0 * sizeof(float);
|
||||
const size_t nb2 = args.ne1 * nb1;
|
||||
|
||||
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
|
||||
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
|
||||
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
|
||||
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
|
||||
|
||||
@@ -1098,141 +1114,6 @@ template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat
|
||||
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
|
||||
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
|
||||
|
||||
// assumption: src1 is a row
|
||||
// broadcast src1 into src0
|
||||
template <short F>
|
||||
kernel void kernel_add_row_c4_fuse_impl(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
const uint nb = args.ne00/4;
|
||||
const uint i = tpig % nb;
|
||||
|
||||
device const float4 * src0_row = (device const float4 *) (src0);
|
||||
device float4 * dst_row = (device float4 *) (dst);
|
||||
|
||||
float4 res = src0_row[tpig];
|
||||
|
||||
#pragma unroll(F)
|
||||
for (short j = 0; j < F; ++j) {
|
||||
res += ((device const float4 *) (src1 + args.o1[j]))[i];
|
||||
}
|
||||
|
||||
dst_row[tpig] = res;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t;
|
||||
|
||||
template [[host_name("kernel_add_row_c4_fuse_1")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>;
|
||||
template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>;
|
||||
|
||||
template <short F>
|
||||
kernel void kernel_sub_row_c4_fuse_impl(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
|
||||
const uint nb = args.ne00/4;
|
||||
const uint i = tpig % nb;
|
||||
|
||||
device const float4 * src0_row = (device const float4 *) (src0);
|
||||
device float4 * dst_row = (device float4 *) (dst);
|
||||
|
||||
device const float4 * src1_row[F];
|
||||
for (short j = 0; j < F; ++j) {
|
||||
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
|
||||
}
|
||||
|
||||
float4 res = src0_row[tpig];
|
||||
|
||||
#pragma unroll(F)
|
||||
for (short j = 0; j < F; ++j) {
|
||||
res -= src1_row[j][i];
|
||||
}
|
||||
|
||||
dst_row[tpig] = res;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t;
|
||||
|
||||
template [[host_name("kernel_sub_row_c4_fuse_1")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>;
|
||||
|
||||
template <short F>
|
||||
kernel void kernel_mul_row_c4_fuse_impl(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
|
||||
const uint nb = args.ne00/4;
|
||||
const uint i = tpig % nb;
|
||||
|
||||
device const float4 * src0_row = (device const float4 *) (src0);
|
||||
device float4 * dst_row = (device float4 *) (dst);
|
||||
|
||||
device const float4 * src1_row[F];
|
||||
for (short j = 0; j < F; ++j) {
|
||||
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
|
||||
}
|
||||
|
||||
float4 res = src0_row[tpig];
|
||||
|
||||
#pragma unroll(F)
|
||||
for (short j = 0; j < F; ++j) {
|
||||
res *= src1_row[j][i];
|
||||
}
|
||||
|
||||
dst_row[tpig] = res;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t;
|
||||
|
||||
template [[host_name("kernel_mul_row_c4_fuse_1")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>;
|
||||
|
||||
template <short F>
|
||||
kernel void kernel_div_row_c4_fuse_impl(
|
||||
constant ggml_metal_kargs_bin & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
|
||||
const uint nb = args.ne00/4;
|
||||
const uint i = tpig % nb;
|
||||
|
||||
device const float4 * src0_row = (device const float4 *) (src0);
|
||||
device float4 * dst_row = (device float4 *) (dst);
|
||||
|
||||
device const float4 * src1_row[F];
|
||||
for (short j = 0; j < F; ++j) {
|
||||
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
|
||||
}
|
||||
|
||||
float4 res = src0_row[tpig];
|
||||
|
||||
#pragma unroll(F)
|
||||
for (short j = 0; j < F; ++j) {
|
||||
res /= src1_row[j][i];
|
||||
}
|
||||
|
||||
dst_row[tpig] = res;
|
||||
}
|
||||
|
||||
typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t;
|
||||
|
||||
template [[host_name("kernel_div_row_c4_fuse_1")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
|
||||
|
||||
kernel void kernel_scale_f32(
|
||||
constant ggml_metal_kargs_scale & args,
|
||||
device const float * src0,
|
||||
@@ -2737,6 +2618,83 @@ kernel void kernel_rwkv_wkv7_f32(
|
||||
}
|
||||
}
|
||||
|
||||
constant short FC_solve_tri_nsg [[function_constant(FC_SOLVE_TRI + 0)]];
|
||||
constant short FC_solve_tri_n [[function_constant(FC_SOLVE_TRI + 1)]];
|
||||
constant short FC_solve_tri_k [[function_constant(FC_SOLVE_TRI + 2)]];
|
||||
|
||||
kernel void kernel_solve_tri_f32(
|
||||
constant ggml_metal_kargs_solve_tri & args,
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device char * dst,
|
||||
threadgroup char * shmem [[threadgroup(0)]],
|
||||
ushort3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort3 ntg[[threads_per_threadgroup]]) {
|
||||
constexpr short NW = N_SIMDWIDTH;
|
||||
|
||||
const short NSG = FC_solve_tri_nsg;
|
||||
const short N = FC_solve_tri_n;
|
||||
const short K = FC_solve_tri_k;
|
||||
const short NP = PAD2(N, NW);
|
||||
|
||||
const int32_t ne02 = args.ne02;
|
||||
const int32_t ne03 = args.ne03;
|
||||
|
||||
const int32_t i03 = tgpig.z;
|
||||
const int32_t i02 = tgpig.y;
|
||||
const int32_t i01 = tgpig.x*NSG + sgitg;
|
||||
|
||||
threadgroup float * sh0 = (threadgroup float *) shmem;
|
||||
|
||||
device const float * src0_ptr = (device const float *)(src0 + i02 * args.nb02 + i03 * args.nb03) + sgitg*N;
|
||||
device const float * src1_ptr = (device const float *)(src1 + i02 * args.nb12 + i03 * args.nb13) + i01;
|
||||
device float * dst_ptr = (device float *)(dst + i02 * args.nb2 + i03 * args.nb3) + i01;
|
||||
|
||||
for (short rr = 0; rr < N; rr += NSG) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
{
|
||||
threadgroup float * sh0_cur = sh0 + sgitg*NP;
|
||||
|
||||
for (short t = 0; t*NW < N; ++t) {
|
||||
const short idx = t*NW + tiisg;
|
||||
sh0_cur[idx] = src0_ptr[idx];
|
||||
}
|
||||
|
||||
src0_ptr += NSG*N;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
if (i01 >= args.ne10) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (short ir = 0; ir < NSG && rr + ir < N; ++ir) {
|
||||
const short r = rr + ir;
|
||||
|
||||
threadgroup float * sh0_cur = sh0 + ir*NP;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (short t = 0; t*NW < r; ++t) {
|
||||
const short idx = t*NW + tiisg;
|
||||
sum += sh0_cur[idx] * dst_ptr[idx*K] * (idx < r);
|
||||
}
|
||||
|
||||
sum = simd_sum(sum);
|
||||
|
||||
if (tiisg == 0) {
|
||||
const float diag = sh0_cur[r];
|
||||
|
||||
dst_ptr[r*K] = (src1_ptr[r*K] - sum) / diag;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_argmax_f32(
|
||||
constant ggml_metal_kargs_argmax & args,
|
||||
device const char * src0,
|
||||
@@ -5208,6 +5166,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E
|
||||
// scan the blocks of the mask that are not masked
|
||||
// 0 - masked (i.e. full of -INF, skip)
|
||||
// 1 - not masked (i.e. at least one element of the mask is not -INF)
|
||||
// 2 - all zero
|
||||
kernel void kernel_flash_attn_ext_blk(
|
||||
constant ggml_metal_kargs_flash_attn_ext_blk & args,
|
||||
device const char * mask,
|
||||
@@ -5229,27 +5188,29 @@ kernel void kernel_flash_attn_ext_blk(
|
||||
|
||||
device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg;
|
||||
|
||||
// fast route
|
||||
if (res == 0) {
|
||||
if (simd_max(*mask_src) > -MAXHALF/2) {
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// detailed check of the elements of the block
|
||||
if ((C > NW || Q > 1) && res == 0) {
|
||||
half m = -MAXHALF;
|
||||
half mmin = MAXHALF;
|
||||
half mmax = -MAXHALF;
|
||||
|
||||
FOR_UNROLL (short j = 0; j < Q; ++j) {
|
||||
FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) {
|
||||
m = max(m, mask_src[ii*NW]);
|
||||
mmin = min(mmin, mask_src[ii*NW]);
|
||||
mmax = max(mmax, mask_src[ii*NW]);
|
||||
}
|
||||
|
||||
mask_src += args.nb31/2;
|
||||
}
|
||||
|
||||
if (simd_max(m) > -MAXHALF/2) {
|
||||
res = 1;
|
||||
mmin = simd_min(mmin);
|
||||
mmax = simd_max(mmax);
|
||||
|
||||
if (mmax > -MAXHALF) {
|
||||
if (mmin == 0.0 && mmax == 0.0) {
|
||||
res = 2;
|
||||
} else {
|
||||
res = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5491,9 +5452,13 @@ void kernel_flash_attn_ext_impl(
|
||||
ic = 0;
|
||||
}
|
||||
|
||||
char blk_cur = 1;
|
||||
|
||||
// read the mask into shared mem
|
||||
if (FC_flash_attn_ext_has_mask) {
|
||||
if (blk[ic0] == 0) {
|
||||
blk_cur = blk[ic0];
|
||||
|
||||
if (blk_cur == 0) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
@@ -5501,16 +5466,22 @@ void kernel_flash_attn_ext_impl(
|
||||
continue;
|
||||
}
|
||||
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
const short j = jj*NSG + sgitg;
|
||||
if (blk_cur == 1) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
const short j = jj*NSG + sgitg;
|
||||
|
||||
if (FC_flash_attn_ext_bc_mask) {
|
||||
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
|
||||
} else {
|
||||
sm2[j*SH + tiisg] = pm2[jj][tiisg];
|
||||
if (FC_flash_attn_ext_bc_mask) {
|
||||
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
|
||||
} else {
|
||||
sm2[j*SH + tiisg] = pm2[jj][tiisg];
|
||||
}
|
||||
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
} else if (blk_cur == 2) {
|
||||
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
|
||||
pm2[jj] += NW;
|
||||
}
|
||||
|
||||
#if 0
|
||||
@@ -5675,10 +5646,12 @@ void kernel_flash_attn_ext_impl(
|
||||
}
|
||||
|
||||
// mqk = mqk + slope*mask
|
||||
if (FC_flash_attn_ext_has_bias) {
|
||||
s2 += s2_t(sm2[j*SH + tiisg])*slope;
|
||||
} else {
|
||||
s2 += s2_t(sm2[j*SH + tiisg]);
|
||||
if (blk_cur != 2) {
|
||||
if (FC_flash_attn_ext_has_bias) {
|
||||
s2 += s2_t(sm2[j*SH + tiisg])*slope;
|
||||
} else {
|
||||
s2 += s2_t(sm2[j*SH + tiisg]);
|
||||
}
|
||||
}
|
||||
|
||||
M[jj] = simd_max(max(M[jj], max(s2[0], s2[1])));
|
||||
@@ -5931,7 +5904,7 @@ template<
|
||||
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short Q = OP_FLASH_ATTN_EXT_NQPTG, // queries per threadgroup
|
||||
short Q = OP_FLASH_ATTN_EXT_NQPSG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext(
|
||||
constant ggml_metal_kargs_flash_attn_ext & args,
|
||||
@@ -6141,11 +6114,10 @@ template<
|
||||
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short NE, // head elements per thread
|
||||
short Q, // queries per threadgroup
|
||||
short C, // cache items per threadgroup
|
||||
short NSG> // number of simd groups
|
||||
void kernel_flash_attn_ext_vec_impl(
|
||||
short NE = 4, // head elements per thread
|
||||
short Q = OP_FLASH_ATTN_EXT_VEC_NQPSG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext_vec(
|
||||
constant ggml_metal_kargs_flash_attn_ext_vec & args,
|
||||
device const char * q,
|
||||
device const char * k,
|
||||
@@ -6162,6 +6134,7 @@ void kernel_flash_attn_ext_vec_impl(
|
||||
static_assert(DV % 32 == 0, "DV must be divisible by 32");
|
||||
|
||||
#define NWG (FC_flash_attn_ext_vec_nwg)
|
||||
#define NSG (FC_flash_attn_ext_vec_nsg)
|
||||
|
||||
#define NS10 (FC_flash_attn_ext_vec_ns10)
|
||||
#define NS20 (FC_flash_attn_ext_vec_ns20)
|
||||
@@ -6190,12 +6163,12 @@ void kernel_flash_attn_ext_vec_impl(
|
||||
|
||||
const short T = PK + NSG*SH; // shared memory size per query in (half)
|
||||
|
||||
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
|
||||
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
|
||||
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*PK); // scratch buffer for attention
|
||||
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*PK); // same as above but in s4_t
|
||||
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + Q*PK); // scratch buffer for mask
|
||||
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + Q*T); // scratch buffer for the results
|
||||
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
|
||||
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
|
||||
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + NSG*PK); // scratch buffer for attention
|
||||
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + NSG*PK); // same as above but in s4_t
|
||||
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + NSG*PK); // scratch buffer for mask
|
||||
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + NSG*PK + NSG*SH); // scratch buffer for the results
|
||||
|
||||
// store the result for all queries in shared memory (the O matrix from the paper)
|
||||
so4 += tiisg;
|
||||
@@ -6213,11 +6186,13 @@ void kernel_flash_attn_ext_vec_impl(
|
||||
// load heads from Q to shared memory
|
||||
device const float4 * q4 = (device const float4 *) ((device const char *) q);
|
||||
|
||||
for (short i = tiisg; i < PK4; i += NW) {
|
||||
if (iq1 < args.ne01 && i < DK4) {
|
||||
sq4[i] = (q4_t) q4[i];
|
||||
} else {
|
||||
sq4[i] = (q4_t) 0.0f;
|
||||
if (iq1 < args.ne01) {
|
||||
for (short i = tiisg; i < PK4; i += NW) {
|
||||
if (i < DK4) {
|
||||
sq4[i] = (q4_t) q4[i];
|
||||
} else {
|
||||
sq4[i] = (q4_t) 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -6295,7 +6270,7 @@ void kernel_flash_attn_ext_vec_impl(
|
||||
}
|
||||
|
||||
// skip -INF blocks
|
||||
if (simd_max(sm[tiisg]) == -INFINITY) {
|
||||
if (simd_max(sm[tiisg]) <= -MAXHALF) {
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -6569,57 +6544,11 @@ void kernel_flash_attn_ext_vec_impl(
|
||||
}
|
||||
|
||||
#undef NWG
|
||||
#undef NSG
|
||||
#undef NS10
|
||||
#undef NS20
|
||||
}
|
||||
|
||||
template<
|
||||
typename q4_t, // query types in shared memory
|
||||
typename k4_t, // key types in shared memory
|
||||
typename v4_t, // value types in shared memory
|
||||
typename qk_t, // Q*K types
|
||||
typename s_t, // soft-max types
|
||||
typename s4_t,
|
||||
typename o4_t, // attention accumulation types
|
||||
typename kd4_t, // key type in device memory
|
||||
short nl_k,
|
||||
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
|
||||
typename vd4_t, // value type in device memory
|
||||
short nl_v,
|
||||
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
|
||||
short DK, // K head size
|
||||
short DV, // V head size
|
||||
short NE = 4, // head elements per thread
|
||||
short Q = OP_FLASH_ATTN_EXT_VEC_NQPTG, // queries per threadgroup
|
||||
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
|
||||
kernel void kernel_flash_attn_ext_vec(
|
||||
constant ggml_metal_kargs_flash_attn_ext_vec & args,
|
||||
device const char * q,
|
||||
device const char * k,
|
||||
device const char * v,
|
||||
device const char * mask,
|
||||
device const char * sinks,
|
||||
device const char * pad,
|
||||
device char * dst,
|
||||
threadgroup half * shmem_f16 [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort tiisg[[thread_index_in_simdgroup]],
|
||||
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
#define FWD_TMPL q4_t, k4_t, v4_t, qk_t, s_t, s4_t, o4_t, kd4_t, nl_k, deq_k_t4, vd4_t, nl_v, deq_v_t4, DK, DV, NE, Q, C
|
||||
#define FWD_ARGS args, q, k, v, mask, sinks, pad, dst, shmem_f16, tgpig, tiisg, sgitg
|
||||
switch (FC_flash_attn_ext_vec_nsg) {
|
||||
// note: disabled cases to reduce library load time
|
||||
case 1: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 1>(FWD_ARGS); break;
|
||||
case 2: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 2>(FWD_ARGS); break;
|
||||
case 4: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 4>(FWD_ARGS); break;
|
||||
//case 8: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 8>(FWD_ARGS); break;
|
||||
//case 16: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 16>(FWD_ARGS); break;
|
||||
//case 32: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 32>(FWD_ARGS); break;
|
||||
}
|
||||
#undef FWD_TMPL
|
||||
#undef FWD_ARGS
|
||||
}
|
||||
|
||||
// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem
|
||||
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
|
||||
//
|
||||
@@ -8782,6 +8711,26 @@ kernel void kernel_set_rows_f(
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_f32(
|
||||
constant ggml_metal_kargs_diag & args,
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
ushort tiitg[[thread_index_in_threadgroup]]) {
|
||||
constexpr short NW = N_SIMDWIDTH;
|
||||
|
||||
const int32_t i3 = tgpig.z;
|
||||
const int32_t i2 = tgpig.y;
|
||||
const int32_t i1 = tgpig.x;
|
||||
|
||||
device const float * src0_ptr = (device const float *)(src0 + i2*args.nb02 + i3*args.nb03);
|
||||
device float * dst_ptr = (device float *)(dst + i1*args.nb01 + i2*args.nb2 + i3*args.nb3);
|
||||
|
||||
for (int i0 = tiitg; i0 < args.ne0; i0 += NW) {
|
||||
dst_ptr[i0] = i0 == i1 ? src0_ptr[i0] : 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
|
||||
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];
|
||||
|
||||
|
||||
@@ -101,6 +101,8 @@ set(GGML_OPENCL_KERNELS
|
||||
mul_mm_f32_f32_l4_lm
|
||||
mul_mm_f16_f32_l4_lm
|
||||
mul_mm_q8_0_f32_l4_lm
|
||||
mul_mm_q8_0_f32_8x4
|
||||
gemv_noshuffle_general_q8_0_f32
|
||||
mul
|
||||
norm
|
||||
relu
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user