Compare commits

...

67 Commits
b7902 ... b7969

Author SHA1 Message Date
ddh0
5999b50eb0 llama-quantize : cleanup --help output (#19317)
* cleanup `llama-quantize --help` output

some much needed TLC

* remove future argument

oops, spoiler

* cleanup of cleanup
2026-02-08 09:22:38 +02:00
Sigbjørn Skjæret
9a5f57795c ci : remove server job from webui and move slow test (#19424)
* remove server job from webui and move slow test

* use pip-install option
2026-02-08 01:20:00 +01:00
Georgi Gerganov
96441c955e ci : use -j param correctly when building with sanitizers (#19411)
* ci : use less jobs when building with sanitizers

* cont : fix nproc

* cont : fix the fix

* cont : simplify
2026-02-07 23:50:47 +01:00
Georgi Gerganov
8872ad2125 metal : consolidate bin kernels (#19390)
* metal : refactor bin kernels

* cont

* cont : fix cv
2026-02-07 10:35:56 +02:00
Georgi Gerganov
34ba7b5a2f metal : fix event synchronization in cpy_tensor_async (#19402) 2026-02-07 07:37:15 +02:00
forforever73
b83111815e model : support Step3.5-Flash (#19283)
* Support Step3.5-Flash

* fix: norm.weight + 1 (HF zero_centered=true)

* step35: simplify GGUF conversion + drop redundant rope KVs

* Address review feedback

* rename limits -> clamp

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rename swiglu limits -> swiglu clamp in LLM_KV

* avoid CI fail

* Apply suggestions from code review

* Apply suggestions from code review

* disabled KV shifting for LLM_ARCH_STEP35

* Apply suggestions from code review

* mistakenly removed cmath

* add model size && apply missed suggestion

* assert partial_rotary_factors

* fix CI errors:

* load freq_base_swa

---------

Co-authored-by: lvyichen <lvyichen@stepfun.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-06 21:06:14 +01:00
Alex Trotta
3228e77287 gguf-py : bump sentencepiece version (#19319)
* gguf-py: Bump sentencepiece version

There's a new version that's been out for a while that addresses the issues mentioned in https://github.com/ggml-org/llama.cpp/pull/14200. There's a long chain of reasons I would like this change, but the short version is that it allows people who use both `sentencepiece` and `gguf` to take advantage of these fixes. On conda-forge, currently, it locks the version (since there is no notion of optional dependencies).

Regardless, I don't think this should be too controversial.

* review feedback
2026-02-06 21:05:19 +01:00
Abhijit Ramesh
7fbd36c50c ggml-webgpu: JIT compile binary operators and handle binding overlaps (#19310)
* ggml webgpu: port binary operators to use pre-wgsl

* Add binary.wgsl: unified shader with conditionals for all 4 ops

* Add gen_binary_shaders.cpp: build tool for using pre_wgsl preprocessor

* Remove bin_op.tmpl.wgsl and binary.wgsl (Python template)

* Update CMake to generate binary operator shaders at build time

* ggml-webgpu: migrate binary ops to JIT compilation with overlap handling

* port binary operators from AOT to pre-wgsl JIT compilation

* add src1=dst overlap handling for binary ops

* use compile-time workgroup size defines instead of runtime overrides

* ggml-webgpu: complete overlap handling for binary ops

* add support for inplace & overlap case in binding setup

* restructure conditional logic to handle all overlap cases

* ensure all buffer bindings are correctly assigned for edge cases

* ggml-webgpu: remove unused binary overlap cases

Remove src0==src1 binary overlap case that never occurs in practice.

* keep INPLACE (src0==dst), OVERLAP (src1==dst), DEFAULT

* remove unused src0==src1 and all-same variant

* refactor wgsl to eliminate duplication
2026-02-06 10:33:30 -08:00
Nechama Krashinski
537eadb1b9 sycl: add F16 support for GGML_OP_CEIL (#19306)
* Fix SYCL CEIL operator

* sycl: implement GGML_OP_CEIL
2026-02-06 23:13:44 +08:00
Jeff Bolz
db6adb3c88 tests: reduce number of FA test permutations (#19381)
Only test non-F16 for head size 64 and 72 (one a multiple of QK, one not).
2026-02-06 08:50:30 -06:00
Georgi Gerganov
dfde5993ea common : add common_speculative_is_compat() (#19270)
* llama : add llama_memory_can_rm_suffix()

* Revert "llama : add llama_memory_can_rm_suffix()"

This reverts commit d30e59b62a.

* spec : check if the target context is compatible for spec decoding
2026-02-06 16:47:22 +02:00
Lasse Lauwerys
06bf3796f4 unicode : MSVC regex fix (#19340)
* Fix model loading regex error

* Change comments

* Use const_iterator and remove specializations

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2026-02-06 15:56:13 +02:00
ymcki
3688c4f504 Kimi-Linear support (backend agnostic + MLA KV cache) (#18755)
* kimi linear model implementation

* kimi linear convert_hf_to_gguf

* kimi linear constants.py tensor_mapping.py

* Kimi Linear ggml.h

* kimi linear ggml-cpu

* Kimi Linear ggml-cuda

* Kimi Linear ggml.c

* kimi linear src/llama

* remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning

* remove type mismatch warning

* read MoE params

* removed some hard coded code

* removed all hard code

* use DeepseekV2 tokenizer

* removed unnecessary internal methods called by the old set_vocab of KimiLinear

* rewrite get_vocab for KimiLinear. Removed all kda_scan code

* removed all traces of kda_scan

* reduce OP count by 1 due to removal of kda_scan

* Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache

* set n_embd_head_k/v to ensure kv cache works

* don't quantize conv1d of Kimi Linear

* Kimi Linear backend agnostic

* removed LOG_INFO

* naive chunking form implemented

* fixed some comments

* add Kimi-K2 specific tokens to be recognized as EOG

* build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682

* replaced Akk and Aqk with mul_mat and clamp

* no clamp version

* Moved Aqk computation out of the loop

* fixed typo and split wkv_b into wk_b and wv_b

* MLA KV cache support

* fix trailing spaces

* moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error

* fix trailing whitespace

* removed traling whitespaces in empty line + make sure indentation is multiple of 4

* try to make lint happy

* remove blank lines to make lint happy

* removed at least blank line containing white space

* fixed flake8 complaints locally

* return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement

* removed Kimi-Linear specific change that causes failure at server-windows

* removed private: from kimi_linear to make build checks happy

* removed unnecessary ggml_cont before ggml_reshape

* created static function causal_conv1d to abtract similar code for q/k/v

* merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py.

* reverted to original

* fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms.

* remove DT_B from constants.py. remove one comment line in llama-model.cpp

* new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight

* remove ssm_o_norm_b

* remove ssm_o_norm_b

* changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k

* removed all ggml_cont b4 ggml_reshape_4d

* Whitespace

* replaced all hparams.get with find_hparams

* added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp

* use is_mla to switch between different mem_hybrid types

* fixed logical errors in convert_hf_to_gguf.py pointed out by CISC

* removed if else for required parameters kv_lora_rank and qk_rope_head_dim

* add back ggml_cont for Vcur

* minor changes

* removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp

* f16 gguf cannot run without context length

* made a mistake of adding back n_ctx parsing

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-06 11:39:58 +01:00
Jeff Bolz
1946e46f4c vulkan: For coopmat2 FA, use fp16 accumulators for the final result (#19376)
The cpu and cuda backends use fp16 for the VKQ accumulator type, this change
does the same for vulkan. This helps particularly with large head sizes which
are very register-limited.

I tried this for the coopmat1 path and it slowed down a bit. I didn't try for
scalar.

I applied the softmax bias that the cuda backend uses to avoid overflow,
although I was not able to reproduce the original bug without it.
2026-02-06 09:15:13 +01:00
Jeff Bolz
f9bd518a6b vulkan: make FA mask/softcap enables spec constants (#19309)
* vulkan: make FA mask/softcap enables spec constants

* don't specialize for sinks

* bump timeout a little bit
2026-02-06 08:49:58 +01:00
Georgi Gerganov
7fcf1ef45d metal : skip loading all-zero mask (#19337)
* metal : skip loading all-zero mask

* cont : minor
2026-02-06 09:25:11 +02:00
Daniel Bevenius
e696cfc016 llama : rename llama-sampling to llama-sampler (#19363)
This commit addresses the TODO in llama-sampling.h to rename that header
and the implementation to llama-sampler.
2026-02-06 07:26:54 +01:00
Georgi Gerganov
3e21647666 cuda : cuda graphs now compare all node params (#19383) 2026-02-06 07:55:06 +02:00
Georgi Gerganov
22cae83218 metal : adaptive CPU/GPU interleave based on number of nodes (#19369) 2026-02-05 19:07:22 +02:00
Jeff Bolz
449ec2ab07 vulkan: Preprocess FA mask to detect all-neg-inf and all-zero. (#19281)
Write out a 2-bit code per block and avoid loading the mask when it
matches these two common cases.

Apply this optimization when the mask is relatively large (i.e. prompt
processing).
2026-02-05 09:26:38 -06:00
Georgi Gerganov
3795cc1e89 benches : update models + numbers (#19359)
* bench : update script

* benches : update numbers
2026-02-05 14:34:07 +02:00
Sigbjørn Skjæret
b828e18c75 docker : fix vulkan build (#19352) 2026-02-05 11:10:39 +01:00
Adrien Gallouët
a4ea7a188f vendor : update BoringSSL to 0.20260204.0 (#19333)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-05 09:53:35 +01:00
Georgi Gerganov
7a4f97d196 metal : add diag (#19330) 2026-02-05 10:08:45 +02:00
Oleksandr Kuvshynov
a498c75ad1 vulkan: fix GPU deduplication logic. (#19222)
* vulkan: fix GPU deduplication logic.

As reported in https://github.com/ggml-org/llama.cpp/issues/19221, the
(same uuid, same driver) logic is problematic for windows+intel igpu.

Let's just avoid filtering for MoltenVK which is apple-specific, and
keep the logic the  same as before 88d23ad5 - just dedup based on UUID.

Verified that MacOS + 4xVega still reports 4 GPUs with this version.

* vulkan: only skip dedup when both drivers are moltenVk
2026-02-05 09:06:59 +01:00
Jeff Bolz
3409ab842d vulkan: Set k_load_shmem to false when K is too large (#19301) 2026-02-05 08:48:33 +01:00
Jeff Bolz
c342c3b93d vulkan: fix non-contig rope (#19299) 2026-02-05 08:38:59 +01:00
will-lms
af252d0758 metal : add missing includes (#19348) 2026-02-05 08:05:09 +02:00
Sigbjørn Skjæret
11fb327bf3 vendor : add missing llama_add_compile_flags (#19322)
* add missing llama_add_compile_flags

* disable all warnings for ssl, crypto and fipsmodule
2026-02-05 02:27:38 +01:00
Aaron Teo
e6e934c5ea vendor: update cpp-httplib version (#19313)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2026-02-05 05:15:03 +08:00
Daniel Bevenius
b536eb0233 codeowners : add danbev for examples/debug (#19332)
* codeowners : add danbev for examples/debug

* Add @pwilkin to CODEOWNERS for debug

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-04 20:20:40 +01:00
Xuan-Son Nguyen
e0c93af2a0 debug: make common_debug_print_tensor readable (#19331)
* debug: make common_debug_print_tensor readable

* editorconfig
2026-02-04 17:55:31 +01:00
Georgi Gerganov
423bee462b ci : fix sanitize workflow to enable ggml sanitizers too (#19323) 2026-02-04 15:12:03 +02:00
Xuan-Son Nguyen
8abcc70a74 model: (qwen3next) correct vectorized key_gdiff calculation (#19324)
* model: (qwen3next) correct vectorized key_gdiff calculation

* move transpose to outside of loop
2026-02-04 13:09:58 +01:00
Georgi Gerganov
eaba92c3dc tests : add non-cont, inplace rope tests (#19296)
* tests : add non-cont, inplace rope tests

* cont : exercise dim 3

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>

* cont : more dim3 exercises

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2026-02-04 12:45:21 +02:00
Daniel Bevenius
6ab881b7c3 model-conversion : add tensor-info.py utility (#18954)
This commit adds a new python script that can be used to print tensors
information from a tensor in a safetensors model.

The motivation for this is that during model conversion work it can
sometimes be useful to verify the shape of tensors in the original
model. While it is possible to print the tensors when loading the model
this can be slow when working with larger models.
With this script it is possible to quickly query tensor shapes.

Example usage:
```console
(venv) $ ./scripts/utils/tensor-info.py --help
usage: tensor-info.py [-h] [-m MODEL_PATH] [-l] [tensor_name]

Print tensor information from a safetensors model

positional arguments:
  tensor_name           Name of the tensor to inspect

options:
  -h, --help            show this help message and exit
  -m MODEL_PATH, --model-path MODEL_PATH
                        Path to the model directory (default: MODEL_PATH environment variable)
  -l, --list            List unique tensor patterns in the model (layer numbers replaced with #)
```

Listing tensor names:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m -l
embed_tokens.weight
layers.#.input_layernorm.weight
layers.#.mlp.down_proj.weight
layers.#.mlp.gate_proj.weight
layers.#.mlp.up_proj.weight
layers.#.post_attention_layernorm.weight
layers.#.post_feedforward_layernorm.weight
layers.#.pre_feedforward_layernorm.weight
layers.#.self_attn.k_norm.weight
layers.#.self_attn.k_proj.weight
layers.#.self_attn.o_proj.weight
layers.#.self_attn.q_norm.weight
layers.#.self_attn.q_proj.weight
layers.#.self_attn.v_proj.weight
norm.weight
```

Printing a specific tensor's information:
```console
(venv) $ ./scripts/utils/tensor-info.py -m ~/work/ai/models/google/embeddinggemma-300m layers.0.input_layernorm.weight
Tensor: layers.0.input_layernorm.weight
File:   model.safetensors
Shape:  [768]
```
2026-02-04 10:40:53 +01:00
Georgi Gerganov
d838c22bb3 spec : fix the check-rate logic of ngram-simple (#19261)
* spec : fix the check-rate logic of ngram-simple

* cont : refactor + fix checks
2026-02-04 10:39:53 +02:00
Daniel Bevenius
25f40ca65f completion : simplify batch (embd) processing (#19286)
* completion : simplify batch (embd) processing

This commit simplifies the processing of embd by removing the for loop
that currently exists which uses params.n_batch as its increment. This
commit also removes the clamping of n_eval as the size of embd is always
at most the size of params.n_batch.

The motivation is to clarify the code as it is currently a little
confusing when looking at this for loop in isolation and thinking that
it can process multiple batches.

* add an assert to verify n_eval is not greater than n_batch
2026-02-04 05:43:28 +01:00
Kevin Pouget
015deb9048 ggml-virtgpu: make the code thread safe (#19204)
* ggml-virtgpu: regenerate_remoting.py: add the ability to deprecate a function

* ggml-virtgpu: deprecate buffer_type is_host remoting

not necessary

* ggml-virtgpu: stop using static vars as cache

The static init isn't thread safe.

* ggml-virtgpu: protect the use of the shared memory to transfer data

* ggml-virtgpu: make the remote calls thread-safe

* ggml-virtgpu: backend: don't continue if couldn't allocate the tensor memory

* ggml-virtgpu: add a cleanup function for consistency

* ggml-virtgpu: backend: don't crash if buft->iface.get_max_size is missing

* fix style and ordering

* Remove the static variable in apir_device_get_count

* ggml-virtgpu: improve the logging

* fix review minor formatting changes
2026-02-04 10:46:18 +08:00
Aman Gupta
2ceda3f662 ggml-cpu: use LUT for converting e8->f32 scales on x86 (#19288)
* ggml-cpu: use LUT for converting e8->f32 scales on x86

* add dispatch based on macro
2026-02-04 09:43:29 +08:00
Georgi Gerganov
44008ce8f9 metal : add solve_tri (#19302) 2026-02-03 23:43:14 +02:00
Georgi Gerganov
6a9bf2f788 ci : add sanitizer runs for server (#19291) 2026-02-03 22:41:20 +02:00
Georgi Gerganov
faa1bc26ee sampling : delegate input allocation to the scheduler (#19266)
* sampling : delegate input allocation to the scheduler

* graph : compute backend samplers only if needed
2026-02-03 22:16:16 +02:00
Ruben Ortlam
32b17abdb0 vulkan: disable coopmat1 fa on Nvidia Turing (#19290) 2026-02-03 17:37:32 +01:00
Aman Gupta
8bece2eb20 CUDA: use mmvq for mul-mat-id for small batch sizes (#18958)
* CUDA: use mmvq for mul-mat-id for small batch sizes

* add mmvq too

* Fix perf issue on ampere. Use mmvf mm-id only for non-nvidia GPUs

* templatize multi_token_path
2026-02-03 23:31:23 +08:00
Sigbjørn Skjæret
a6fd8ca1fe models : remove unnecessary cont in openelm (#19289) 2026-02-03 14:20:57 +01:00
Georgi Gerganov
c55bce4159 metal : minor cleanup (#19251) 2026-02-03 13:43:29 +02:00
Oliver Simons
1f1e57f2bf CUDA: Fix loop unrolling for BW in mul_mat_q_stream_k_fixup (#19053)
By providing stride_* variables as size_t (i.e., 64-bit) the compiler can
correctly unroll the [two for-loops](557515be1e/ggml/src/ggml-cuda/mmq.cuh (L3789-L3816))
on BW. This gives some perf for prefill/pp phase on BW, while not affecting
other SMs:

| GPU                                                     | Model                 | Test   |   t/s master |   t/s osimons/fix_bw_mmq_fixup_kernel |   Speedup |
|:--------------------------------------------------------|:----------------------|:-------|-------------:|--------------------------------------:|----------:|
| NVIDIA RTX 6000 Ada Generation                          | gpt-oss 20B MXFP4 MoE | pp8096 |      8404.05 |                               8375.79 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | llama 3B Q4_K_M       | pp8096 |     16148.93 |                              16019.60 |      0.99 |
| NVIDIA RTX 6000 Ada Generation                          | llama 8B Q4_0         | pp8096 |      8008.29 |                               7978.80 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B BF16    | pp8096 |      4263.16 |                               4248.53 |      1.00 |
| NVIDIA RTX 6000 Ada Generation                          | nemotron_h 9B Q4_K_M  | pp8096 |      5165.11 |                               5157.43 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | gpt-oss 20B MXFP4 MoE | pp8096 |     12582.80 |                              12758.37 |      1.01 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 3B Q4_K_M       | pp8096 |     16879.10 |                              17619.47 |      1.04 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | llama 8B Q4_0         | pp8096 |     10649.90 |                              10982.65 |      1.03 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B BF16    | pp8096 |      7717.73 |                               7716.22 |      1.00 |
| NVIDIA RTX PRO 6000 Blackwell Max-Q Workstation Edition | nemotron_h 9B Q4_K_M  | pp8096 |      7301.90 |                               7370.38 |      1.01 |
2026-02-03 11:33:14 +01:00
George
e9a859db3c ggml: added cleanups in ggml_quantize_free (#19278)
Add missing cleanup calls for IQ2_S, IQ1_M quantization types and IQ3XS with 512 blocks during quantization cleanup.
2026-02-03 08:43:39 +02:00
Gaurav Garg
41e3f02647 cuda : revert CUDA_SCALE_LAUNCH_QUEUES override until investigated (#19227)
Hangs were reported on Jetson Orin AGX if we set CUDA_SCALE_LAUNCH_QUEUES=4x. Reverting the previous PR (#19042) and updating the document to consider setting CUDA_SCALE_LAUNCH_QUEUES=4x for faster throughput on multi-GPU systems.
2026-02-03 08:41:02 +02:00
Alexey Dubrov
1efb5f7ae1 vocab: add Falcon-H1-Tiny-Coder FIM tokens (#19249) 2026-02-03 08:31:01 +02:00
Georgi Gerganov
aeb827a3cc spec : simplify time measurement using common_time_meas (#19262) 2026-02-03 08:20:15 +02:00
lhez
91ea44e89b opencl: refactor some ops, concat, repeat, tanh and scale (#19226)
* opencl: refactor concat

* opencl: refactor repeat

* opencl: refactor tanh

* opencl: enable fp16 for tanh

* opencl: refactor scale

* opencl: fix unused variables
2026-02-02 15:54:43 -08:00
Sid Mohan
0dfcd3b607 jinja : add missing 'in' test to template engine (#19004) (#19239)
* jinja : add missing 'in' test to template engine (#19004)

The jinja template parser was missing the 'in' test from
global_builtins(), causing templates using reject("in", ...),
select("in", ...), or 'x is in(y)' to fail with
"selectattr: unknown test 'in'".

This broke tool-calling for Qwen3-Coder and any other model
whose chat template uses the 'in' test.

Added test_is_in supporting array, string, and object containment
checks, mirroring the existing 'in' operator logic in runtime.cpp.

Includes test cases for all three containment types plus
reject/select filter usage.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

* reuse test_is_in in binary op

---------

Co-authored-by: Sid Mohan <sidmohan0@users.noreply.github.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2026-02-02 21:00:55 +01:00
Xuan-Son Nguyen
07a7412a3b mtmd: add min/max pixels gguf metadata (#19273) 2026-02-02 20:59:06 +01:00
Aman Gupta
9f682fb640 ggml-cpu: FA split across kv for faster TG (#19209)
* ggml-cpu: split across kv for faster TG

* simplify sinks application

* add ref impl
2026-02-03 01:19:55 +08:00
Matthieu Coudron
a3fa035822 server: print actual model name in 'model not found" error (#19117)
Experimenting with AI, my environment gets messy fast and it's not
always easy to know what model my software is trying to load. This helps
with troubleshooting.

before:

Error: {
  code = 400,
  message = "model not found",
  type = "invalid_request_error"
}

After:

Error: {
  code = 400,
  message = "model 'toto' not found",
  type = "invalid_request_error"
}
2026-02-02 16:55:27 +01:00
Aman Gupta
15818ac44c ci: add test-backend-ops test for CPU (#19268) 2026-02-02 22:40:28 +08:00
Neo Zhang
bf38346d13 Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. (#19246)
User can't build up the software for Nvidia & AMD GPU.
rm the oneMath since it is only used in NV and AMD code path.
2026-02-02 21:06:21 +08:00
Tamar
4d5e972673 sycl: implement GGML_OP_TOP_K (#19242) 2026-02-02 21:05:51 +08:00
Georgi Gerganov
6fdddb4987 metal : support virtual devices (#18919)
* metal : support virtual devices

* cont : manage buffer type context memory

* metal : add events

* cont : implement cpy_tensor_async
2026-02-02 14:29:44 +02:00
Daniel Bevenius
6156ae5111 model-conversion : add debug option to conversion script (#19265)
This commit adds a debug option to the model conversion script to enable
using the Python debugger (pdb) during model conversion.

The motivation for this is that I've found myself adding this a few
times now and it would be quicker to have this flag as an option and a
makefile target/recipe for it.
2026-02-02 11:29:57 +01:00
Johannes Gäßler
59377a6c87 ggml-backend: fix async set/get fallback sync (#19179) 2026-02-02 10:00:05 +01:00
Georgi Gerganov
1239267cc4 authors : update (#19263)
[no ci]
2026-02-02 08:51:25 +02:00
Christian Kastner
7a4ca3cbd9 docs : Minor cleanups (#19252)
* Update old URLs to github.com/ggml-org/

* Bump copyrights
2026-02-02 08:38:55 +02:00
Sascha Rogmann
b4d05a3d2f spec : various improvements ton ngram-map + docs (#19253)
* spec: ngram-map and reasoning chats

* spec: add t_begin and t_accept

* ngram-map : add internal hash map

* docs : update ngram-map, add ngram-mod

* docs : fix ngram-map-k

* docs : differences between implementations
2026-02-02 08:26:58 +02:00
Nikhil Jain
2dc3ce2166 Remove pipeline cache mutexes (#19195)
* Remove mutex for pipeline caches, since they are now per-thread.

* Add comment

* Run clang-format

* Cleanup

* Run CI again

* Run CI once more

* Run clang-format
2026-02-01 18:47:29 -08:00
180 changed files with 8325 additions and 3779 deletions

View File

@@ -54,6 +54,7 @@ RUN apt-get update \
build-essential \
git \
python3 \
python3-dev \
python3-pip \
python3-wheel \
&& pip install --break-system-packages --upgrade setuptools \

View File

@@ -293,7 +293,9 @@ jobs:
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Build (no OpenMP)
@@ -303,8 +305,10 @@ jobs:
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_SANITIZE_${{ matrix.sanitizer }}=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DGGML_OPENMP=OFF
cmake --build build --config ${{ matrix.build_type }} -j $(nproc)
- name: Test
@@ -466,7 +470,7 @@ jobs:
export GGML_VK_VISIBLE_DEVICES=0
export GGML_VK_DISABLE_F16=1
# This is using llvmpipe and runs slower than other backends
ctest -L main --verbose --timeout 4200
ctest -L main --verbose --timeout 4800
ubuntu-24-cmake-webgpu:
runs-on: ubuntu-24.04
@@ -1532,7 +1536,7 @@ jobs:
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) bash ./ci/run.sh ./tmp/results ./tmp/mnt
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf:
runs-on: ubuntu-22.04-arm
@@ -1558,7 +1562,7 @@ jobs:
- name: Test
id: ggml-ci
run: |
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
LLAMA_ARG_THREADS=$(nproc) GG_BUILD_HIGH_PERF=1 GG_BUILD_NO_SVE=1 GG_BUILD_NO_BF16=1 GG_BUILD_EXTRA_TESTS_0=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
ggml-ci-arm64-cpu-high-perf-sve:
runs-on: ubuntu-22.04-arm

View File

@@ -8,10 +8,6 @@ on:
description: 'Commit SHA1 to build'
required: false
type: string
slow_tests:
description: 'Run slow tests'
required: true
type: boolean
push:
branches:
- master
@@ -101,119 +97,3 @@ jobs:
if: ${{ always() && steps.playwright.conclusion == 'success' }}
run: npm run test:e2e
working-directory: tools/server/webui
server-build:
runs-on: ubuntu-latest
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
build_type: [RelWithDebInfo]
include:
- build_type: Release
sanitizer: ""
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
steps:
- name: Dependencies
id: depends
run: |
sudo apt-get update
sudo apt-get -y install \
build-essential \
xxd \
git \
cmake \
curl \
wget \
language-pack-en \
libssl-dev
- name: Clone
id: checkout
uses: actions/checkout@v6
with:
fetch-depth: 0
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
- name: Setup Node.js for WebUI
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "npm"
cache-dependency-path: "tools/server/webui/package-lock.json"
- name: Install WebUI dependencies
run: npm ci
working-directory: tools/server/webui
- name: Build WebUI
run: npm run build
working-directory: tools/server/webui
- name: Build (no OpenMP)
id: cmake_build_no_openmp
if: ${{ matrix.sanitizer == 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd tools/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd tools/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
SLOW_TESTS=1 ./tests.sh

View File

@@ -36,7 +36,7 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, UNDEFINED] # THREAD is broken
sanitizer: [ADDRESS, UNDEFINED] # THREAD is very slow
build_type: [RelWithDebInfo]
include:
- build_type: Release
@@ -45,7 +45,7 @@ jobs:
- build_type: Release
sanitizer: ""
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
fail-fast: false # While -DLLAMA_SANITIZE_THREAD=ON is broken
fail-fast: false
steps:
- name: Dependencies
@@ -72,28 +72,40 @@ jobs:
- name: Build
id: cmake_build
run: |
cmake -B build -DLLAMA_BUILD_BORINGSSL=ON -DGGML_SCHED_NO_REALLOC=ON
cmake --build build --config ${{ matrix.build_type }} -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
cmake -B build \
-DLLAMA_BUILD_BORINGSSL=ON \
-DGGML_SCHED_NO_REALLOC=ON \
-DGGML_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
-DGGML_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
-DGGML_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }} \
-DLLAMA_SANITIZE_ADDRESS=${{ matrix.sanitizer == 'ADDRESS' }} \
-DLLAMA_SANITIZE_THREAD=${{ matrix.sanitizer == 'THREAD' }} \
-DLLAMA_SANITIZE_UNDEFINED=${{ matrix.sanitizer == 'UNDEFINED' }}
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Python setup
id: setup_python
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) && matrix.build_type == 'Release' }}
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
run: |
cd tools/server/tests
export ${{ matrix.extra_args }}
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: |
cd tools/server/tests
export ${{ matrix.extra_args }}
SLOW_TESTS=1 pytest -v -x
server-windows:
runs-on: windows-2022
@@ -116,11 +128,7 @@ jobs:
uses: actions/setup-python@v6
with:
python-version: '3.11'
- name: Tests dependencies
id: test_dependencies
run: |
pip install -r tools/server/tests/requirements.txt
pip-install: -r tools/server/tests/requirements.txt
- name: Tests
id: server_integration_tests

1085
AUTHORS

File diff suppressed because it is too large Load Diff

View File

@@ -164,29 +164,6 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
include("cmake/license.cmake")
license_add_file("llama.cpp" "LICENSE")

View File

@@ -27,6 +27,7 @@
/examples/batched.swift/ @ggerganov
/examples/batched/ @ggerganov
/examples/convert-llama2c-to-ggml/ @ggerganov
/examples/debug/ @danbev @pwilkin
/examples/deprecation-warning/ @ggerganov
/examples/diffusion/ @am17an
/examples/embedding/ @ggerganov

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023-2024 The ggml authors
Copyright (c) 2023-2026 The ggml authors
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -8,7 +8,7 @@ g++ --version
g++ (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
nvidia-smi
Sun Nov 2 10:43:25 2025
Thu Feb 5 13:49:40 2026
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 580.95.05 Driver Version: 580.95.05 CUDA Version: 13.0 |
+-----------------------------------------+------------------------+----------------------+
@@ -17,7 +17,7 @@ Sun Nov 2 10:43:25 2025
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GB10 On | 0000000F:01:00.0 Off | N/A |
| N/A 35C P8 4W / N/A | Not Supported | 0% Default |
| N/A 47C P0 13W / N/A | Not Supported | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------+
```
@@ -29,46 +29,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.374 | 1369.01 | 0.383 | 83.64 | 0.757 | 719.01 |
| 512 | 32 | 2 | 1088 | 0.274 | 3741.35 | 0.659 | 97.14 | 0.933 | 1166.66 |
| 512 | 32 | 4 | 2176 | 0.526 | 3896.47 | 0.817 | 156.73 | 1.342 | 1621.08 |
| 512 | 32 | 8 | 4352 | 1.044 | 3925.10 | 0.987 | 259.44 | 2.030 | 2143.56 |
| 512 | 32 | 16 | 8704 | 2.076 | 3945.84 | 1.248 | 410.32 | 3.324 | 2618.60 |
| 512 | 32 | 32 | 17408 | 4.170 | 3929.28 | 1.630 | 628.40 | 5.799 | 3001.76 |
| 4096 | 32 | 1 | 4128 | 1.083 | 3782.66 | 0.394 | 81.21 | 1.477 | 2795.13 |
| 4096 | 32 | 2 | 8256 | 2.166 | 3782.72 | 0.725 | 88.28 | 2.891 | 2856.14 |
| 4096 | 32 | 4 | 16512 | 4.333 | 3780.88 | 0.896 | 142.82 | 5.230 | 3157.38 |
| 4096 | 32 | 8 | 33024 | 8.618 | 3802.14 | 1.155 | 221.69 | 9.773 | 3379.08 |
| 4096 | 32 | 16 | 66048 | 17.330 | 3781.73 | 1.598 | 320.34 | 18.928 | 3489.45 |
| 4096 | 32 | 32 | 132096 | 34.671 | 3780.48 | 2.336 | 438.35 | 37.007 | 3569.51 |
| 8192 | 32 | 1 | 8224 | 2.233 | 3668.56 | 0.438 | 72.98 | 2.671 | 3078.44 |
| 8192 | 32 | 2 | 16448 | 4.425 | 3702.95 | 0.756 | 84.66 | 5.181 | 3174.95 |
| 8192 | 32 | 4 | 32896 | 8.859 | 3698.64 | 0.967 | 132.38 | 9.826 | 3347.72 |
| 8192 | 32 | 8 | 65792 | 17.714 | 3699.57 | 1.277 | 200.52 | 18.991 | 3464.35 |
| 8192 | 32 | 16 | 131584 | 35.494 | 3692.84 | 1.841 | 278.12 | 37.335 | 3524.46 |
| 8192 | 32 | 32 | 263168 | 70.949 | 3694.82 | 2.798 | 365.99 | 73.747 | 3568.53 |
| 512 | 32 | 1 | 544 | 0.270 | 1895.57 | 0.399 | 80.13 | 0.669 | 812.60 |
| 512 | 32 | 2 | 1088 | 0.230 | 4451.23 | 0.583 | 109.71 | 0.813 | 1337.56 |
| 512 | 32 | 4 | 2176 | 0.437 | 4688.87 | 0.820 | 156.03 | 1.257 | 1730.91 |
| 512 | 32 | 8 | 4352 | 0.863 | 4744.23 | 0.942 | 271.79 | 1.805 | 2410.73 |
| 512 | 32 | 16 | 8704 | 1.725 | 4748.19 | 1.173 | 436.38 | 2.899 | 3002.85 |
| 512 | 32 | 32 | 17408 | 3.437 | 4767.38 | 1.503 | 681.49 | 4.939 | 3524.40 |
| 4096 | 32 | 1 | 4128 | 0.907 | 4513.91 | 0.407 | 78.54 | 1.315 | 3139.56 |
| 4096 | 32 | 2 | 8256 | 1.796 | 4560.42 | 0.625 | 102.37 | 2.422 | 3409.45 |
| 4096 | 32 | 4 | 16512 | 3.596 | 4555.66 | 0.888 | 144.11 | 4.485 | 3681.93 |
| 4096 | 32 | 8 | 33024 | 7.184 | 4561.44 | 1.098 | 233.11 | 8.282 | 3987.51 |
| 4096 | 32 | 16 | 66048 | 14.369 | 4560.82 | 1.503 | 340.74 | 15.872 | 4161.30 |
| 4096 | 32 | 32 | 132096 | 28.760 | 4557.52 | 2.162 | 473.59 | 30.922 | 4271.95 |
| 8192 | 32 | 1 | 8224 | 1.859 | 4405.59 | 0.430 | 74.36 | 2.290 | 3591.61 |
| 8192 | 32 | 2 | 16448 | 3.698 | 4430.02 | 0.656 | 97.59 | 4.354 | 3777.47 |
| 8192 | 32 | 4 | 32896 | 7.403 | 4426.10 | 0.957 | 133.82 | 8.360 | 3934.97 |
| 8192 | 32 | 8 | 65792 | 14.802 | 4427.63 | 1.222 | 209.44 | 16.024 | 4105.87 |
| 8192 | 32 | 16 | 131584 | 29.596 | 4428.67 | 1.741 | 294.13 | 31.337 | 4199.00 |
| 8192 | 32 | 32 | 263168 | 59.169 | 4430.42 | 2.619 | 390.92 | 61.789 | 4259.17 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 3714.25 ± 20.36 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 86.58 ± 0.43 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 3445.17 ± 17.85 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 81.72 ± 0.53 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 3218.78 ± 11.34 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.86 ± 0.64 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 2732.83 ± 7.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 71.57 ± 0.51 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 2119.75 ± 12.81 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 62.33 ± 0.24 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 4505.82 ± 12.90 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 83.43 ± 0.59 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 4158.34 ± 18.84 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 79.22 ± 0.60 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 3993.81 ± 17.55 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 75.22 ± 1.05 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 3449.98 ± 12.13 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.36 ± 0.37 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 2689.42 ± 18.89 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 61.65 ± 0.30 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/gpt-oss-120b-GGUF
@@ -77,46 +77,46 @@ Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.571 | 897.18 | 0.543 | 58.96 | 1.113 | 488.60 |
| 512 | 32 | 2 | 1088 | 0.593 | 1725.37 | 1.041 | 61.45 | 1.635 | 665.48 |
| 512 | 32 | 4 | 2176 | 1.043 | 1963.15 | 1.334 | 95.95 | 2.377 | 915.36 |
| 512 | 32 | 8 | 4352 | 2.099 | 1951.63 | 1.717 | 149.07 | 3.816 | 1140.45 |
| 512 | 32 | 16 | 8704 | 4.207 | 1947.12 | 2.311 | 221.56 | 6.518 | 1335.35 |
| 512 | 32 | 32 | 17408 | 8.422 | 1945.36 | 3.298 | 310.46 | 11.720 | 1485.27 |
| 4096 | 32 | 1 | 4128 | 2.138 | 1915.88 | 0.571 | 56.09 | 2.708 | 1524.12 |
| 4096 | 32 | 2 | 8256 | 4.266 | 1920.25 | 1.137 | 56.27 | 5.404 | 1527.90 |
| 4096 | 32 | 4 | 16512 | 8.564 | 1913.02 | 1.471 | 86.99 | 10.036 | 1645.29 |
| 4096 | 32 | 8 | 33024 | 17.092 | 1917.19 | 1.979 | 129.33 | 19.071 | 1731.63 |
| 4096 | 32 | 16 | 66048 | 34.211 | 1915.65 | 2.850 | 179.66 | 37.061 | 1782.15 |
| 4096 | 32 | 32 | 132096 | 68.394 | 1916.44 | 4.381 | 233.72 | 72.775 | 1815.13 |
| 8192 | 32 | 1 | 8224 | 4.349 | 1883.45 | 0.620 | 51.65 | 4.969 | 1655.04 |
| 8192 | 32 | 2 | 16448 | 8.674 | 1888.83 | 1.178 | 54.33 | 9.852 | 1669.48 |
| 8192 | 32 | 4 | 32896 | 17.351 | 1888.55 | 1.580 | 81.01 | 18.931 | 1737.68 |
| 8192 | 32 | 8 | 65792 | 34.743 | 1886.31 | 2.173 | 117.80 | 36.916 | 1782.20 |
| 8192 | 32 | 16 | 131584 | 69.413 | 1888.29 | 3.297 | 155.28 | 72.710 | 1809.70 |
| 8192 | 32 | 32 | 263168 | 138.903 | 1887.24 | 5.004 | 204.63 | 143.907 | 1828.73 |
| 512 | 32 | 1 | 544 | 0.445 | 1151.80 | 0.560 | 57.14 | 1.005 | 541.53 |
| 512 | 32 | 2 | 1088 | 0.472 | 2169.85 | 0.874 | 73.27 | 1.345 | 808.65 |
| 512 | 32 | 4 | 2176 | 0.826 | 2480.33 | 1.299 | 98.51 | 2.125 | 1023.94 |
| 512 | 32 | 8 | 4352 | 1.644 | 2491.67 | 1.608 | 159.18 | 3.252 | 1338.20 |
| 512 | 32 | 16 | 8704 | 3.292 | 2488.35 | 2.117 | 241.85 | 5.409 | 1609.13 |
| 512 | 32 | 32 | 17408 | 6.604 | 2481.07 | 2.898 | 353.31 | 9.502 | 1832.04 |
| 4096 | 32 | 1 | 4128 | 1.698 | 2412.65 | 0.580 | 55.21 | 2.277 | 1812.66 |
| 4096 | 32 | 2 | 8256 | 3.399 | 2409.88 | 0.934 | 68.53 | 4.333 | 1905.27 |
| 4096 | 32 | 4 | 16512 | 6.823 | 2401.21 | 1.411 | 90.72 | 8.234 | 2005.30 |
| 4096 | 32 | 8 | 33024 | 13.574 | 2413.97 | 1.841 | 139.07 | 15.415 | 2142.31 |
| 4096 | 32 | 16 | 66048 | 27.176 | 2411.52 | 2.609 | 196.26 | 29.785 | 2217.49 |
| 4096 | 32 | 32 | 132096 | 54.359 | 2411.23 | 3.905 | 262.20 | 58.264 | 2267.19 |
| 8192 | 32 | 1 | 8224 | 3.491 | 2346.81 | 0.613 | 52.23 | 4.103 | 2004.21 |
| 8192 | 32 | 2 | 16448 | 6.939 | 2361.03 | 0.981 | 65.21 | 7.921 | 2076.56 |
| 8192 | 32 | 4 | 32896 | 13.888 | 2359.40 | 1.511 | 84.71 | 15.399 | 2136.21 |
| 8192 | 32 | 8 | 65792 | 27.756 | 2361.18 | 2.034 | 125.86 | 29.790 | 2208.56 |
| 8192 | 32 | 16 | 131584 | 55.554 | 2359.34 | 3.021 | 169.49 | 58.575 | 2246.41 |
| 8192 | 32 | 32 | 263168 | 111.036 | 2360.89 | 4.537 | 225.72 | 115.573 | 2277.08 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 1919.36 ± 5.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 60.40 ± 0.30 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 1825.30 ± 6.37 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 56.94 ± 0.29 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1739.19 ± 6.00 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 52.51 ± 0.42 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1536.75 ± 4.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 49.33 ± 0.27 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1255.85 ± 3.26 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 42.99 ± 0.18 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2443.91 ± 7.47 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 58.72 ± 0.20 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2309.84 ± 3.63 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 55.67 ± 0.35 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2216.68 ± 10.16 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 52.87 ± 0.43 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1956.31 ± 6.39 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 49.45 ± 0.20 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1567.08 ± 11.79 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 42.76 ± 0.14 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
@@ -125,46 +125,46 @@ Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.398 | 1285.90 | 0.530 | 60.41 | 0.928 | 586.27 |
| 512 | 32 | 2 | 1088 | 0.386 | 2651.65 | 0.948 | 67.50 | 1.334 | 815.38 |
| 512 | 32 | 4 | 2176 | 0.666 | 3076.37 | 1.209 | 105.87 | 1.875 | 1160.71 |
| 512 | 32 | 8 | 4352 | 1.325 | 3091.39 | 1.610 | 158.98 | 2.935 | 1482.65 |
| 512 | 32 | 16 | 8704 | 2.664 | 3075.58 | 2.150 | 238.19 | 4.813 | 1808.39 |
| 512 | 32 | 32 | 17408 | 5.336 | 3070.31 | 2.904 | 352.59 | 8.240 | 2112.50 |
| 4096 | 32 | 1 | 4128 | 1.444 | 2836.81 | 0.581 | 55.09 | 2.025 | 2038.81 |
| 4096 | 32 | 2 | 8256 | 2.872 | 2852.14 | 1.084 | 59.06 | 3.956 | 2086.99 |
| 4096 | 32 | 4 | 16512 | 5.744 | 2852.32 | 1.440 | 88.90 | 7.184 | 2298.47 |
| 4096 | 32 | 8 | 33024 | 11.463 | 2858.68 | 2.068 | 123.78 | 13.531 | 2440.65 |
| 4096 | 32 | 16 | 66048 | 22.915 | 2859.95 | 3.018 | 169.67 | 25.933 | 2546.90 |
| 4096 | 32 | 32 | 132096 | 45.956 | 2852.10 | 4.609 | 222.18 | 50.565 | 2612.39 |
| 8192 | 32 | 1 | 8224 | 3.063 | 2674.72 | 0.693 | 46.20 | 3.755 | 2189.92 |
| 8192 | 32 | 2 | 16448 | 6.109 | 2681.87 | 1.214 | 52.71 | 7.323 | 2245.98 |
| 8192 | 32 | 4 | 32896 | 12.197 | 2686.63 | 1.682 | 76.11 | 13.878 | 2370.30 |
| 8192 | 32 | 8 | 65792 | 24.409 | 2684.94 | 2.556 | 100.17 | 26.965 | 2439.95 |
| 8192 | 32 | 16 | 131584 | 48.753 | 2688.50 | 3.994 | 128.20 | 52.747 | 2494.64 |
| 8192 | 32 | 32 | 263168 | 97.508 | 2688.42 | 6.528 | 156.86 | 104.037 | 2529.57 |
| 512 | 32 | 1 | 544 | 0.393 | 1303.73 | 0.548 | 58.36 | 0.941 | 578.10 |
| 512 | 32 | 2 | 1088 | 0.387 | 2648.68 | 0.910 | 70.35 | 1.296 | 839.27 |
| 512 | 32 | 4 | 2176 | 0.659 | 3107.63 | 1.302 | 98.33 | 1.961 | 1109.77 |
| 512 | 32 | 8 | 4352 | 1.322 | 3099.35 | 1.669 | 153.42 | 2.990 | 1455.43 |
| 512 | 32 | 16 | 8704 | 2.639 | 3104.63 | 2.212 | 231.44 | 4.851 | 1794.32 |
| 512 | 32 | 32 | 17408 | 5.284 | 3100.80 | 2.955 | 346.53 | 8.239 | 2112.93 |
| 4096 | 32 | 1 | 4128 | 1.417 | 2890.36 | 0.598 | 53.51 | 2.015 | 2048.45 |
| 4096 | 32 | 2 | 8256 | 2.829 | 2895.62 | 1.019 | 62.82 | 3.848 | 2145.60 |
| 4096 | 32 | 4 | 16512 | 5.656 | 2896.96 | 1.528 | 83.79 | 7.183 | 2298.71 |
| 4096 | 32 | 8 | 33024 | 11.338 | 2890.02 | 2.127 | 120.36 | 13.465 | 2452.53 |
| 4096 | 32 | 16 | 66048 | 22.709 | 2885.96 | 3.104 | 164.97 | 25.812 | 2558.79 |
| 4096 | 32 | 32 | 132096 | 45.301 | 2893.35 | 4.723 | 216.80 | 50.024 | 2640.63 |
| 8192 | 32 | 1 | 8224 | 3.022 | 2711.09 | 0.678 | 47.20 | 3.700 | 2222.89 |
| 8192 | 32 | 2 | 16448 | 6.039 | 2713.01 | 1.149 | 55.70 | 7.188 | 2288.21 |
| 8192 | 32 | 4 | 32896 | 12.050 | 2719.35 | 1.785 | 71.69 | 13.835 | 2377.67 |
| 8192 | 32 | 8 | 65792 | 24.113 | 2717.90 | 2.629 | 97.39 | 26.741 | 2460.31 |
| 8192 | 32 | 16 | 131584 | 48.178 | 2720.58 | 4.099 | 124.91 | 52.277 | 2517.06 |
| 8192 | 32 | 32 | 263168 | 96.401 | 2719.31 | 6.696 | 152.93 | 103.097 | 2552.63 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2925.55 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 62.80 ± 0.27 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2531.01 ± 6.79 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 55.86 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 2244.39 ± 5.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 45.95 ± 0.33 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1783.17 ± 3.68 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 39.07 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1241.90 ± 3.13 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 29.92 ± 0.06 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2986.97 ± 18.87 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 61.06 ± 0.23 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2633.45 ± 6.26 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 54.77 ± 0.28 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2354.14 ± 3.84 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 48.02 ± 0.40 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1908.86 ± 4.25 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 40.23 ± 0.10 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1348.17 ± 2.00 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 30.21 ± 0.04 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
@@ -173,46 +173,46 @@ Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.211 | 2421.57 | 1.055 | 30.33 | 1.266 | 429.57 |
| 512 | 32 | 2 | 1088 | 0.419 | 2441.34 | 1.130 | 56.65 | 1.549 | 702.32 |
| 512 | 32 | 4 | 2176 | 0.873 | 2345.54 | 1.174 | 108.99 | 2.048 | 1062.74 |
| 512 | 32 | 8 | 4352 | 1.727 | 2371.85 | 1.254 | 204.22 | 2.980 | 1460.19 |
| 512 | 32 | 16 | 8704 | 3.452 | 2373.22 | 1.492 | 343.16 | 4.944 | 1760.56 |
| 512 | 32 | 32 | 17408 | 6.916 | 2368.93 | 1.675 | 611.51 | 8.591 | 2026.36 |
| 4096 | 32 | 1 | 4128 | 1.799 | 2277.26 | 1.084 | 29.51 | 2.883 | 1431.91 |
| 4096 | 32 | 2 | 8256 | 3.577 | 2290.01 | 1.196 | 53.50 | 4.774 | 1729.51 |
| 4096 | 32 | 4 | 16512 | 7.172 | 2284.36 | 1.313 | 97.50 | 8.485 | 1946.00 |
| 4096 | 32 | 8 | 33024 | 14.341 | 2284.96 | 1.520 | 168.46 | 15.860 | 2082.18 |
| 4096 | 32 | 16 | 66048 | 28.675 | 2285.44 | 1.983 | 258.21 | 30.658 | 2154.33 |
| 4096 | 32 | 32 | 132096 | 57.354 | 2285.32 | 2.640 | 387.87 | 59.994 | 2201.82 |
| 8192 | 32 | 1 | 8224 | 3.701 | 2213.75 | 1.119 | 28.59 | 4.820 | 1706.34 |
| 8192 | 32 | 2 | 16448 | 7.410 | 2211.19 | 1.272 | 50.31 | 8.682 | 1894.56 |
| 8192 | 32 | 4 | 32896 | 14.802 | 2213.83 | 1.460 | 87.68 | 16.261 | 2022.96 |
| 8192 | 32 | 8 | 65792 | 29.609 | 2213.35 | 1.781 | 143.74 | 31.390 | 2095.93 |
| 8192 | 32 | 16 | 131584 | 59.229 | 2212.96 | 2.495 | 205.17 | 61.725 | 2131.79 |
| 8192 | 32 | 32 | 263168 | 118.449 | 2213.15 | 3.714 | 275.75 | 122.162 | 2154.25 |
| 512 | 32 | 1 | 544 | 0.212 | 2420.12 | 1.100 | 29.10 | 1.311 | 414.85 |
| 512 | 32 | 2 | 1088 | 0.428 | 2393.89 | 1.185 | 54.00 | 1.613 | 674.56 |
| 512 | 32 | 4 | 2176 | 0.894 | 2290.41 | 1.229 | 104.17 | 2.123 | 1025.02 |
| 512 | 32 | 8 | 4352 | 1.758 | 2330.36 | 1.319 | 194.15 | 3.076 | 1414.70 |
| 512 | 32 | 16 | 8704 | 3.508 | 2335.21 | 1.543 | 331.90 | 5.051 | 1723.33 |
| 512 | 32 | 32 | 17408 | 7.035 | 2328.93 | 1.738 | 589.21 | 8.773 | 1984.29 |
| 4096 | 32 | 1 | 4128 | 1.831 | 2237.25 | 1.125 | 28.44 | 2.956 | 1396.42 |
| 4096 | 32 | 2 | 8256 | 3.642 | 2249.48 | 1.253 | 51.07 | 4.895 | 1686.64 |
| 4096 | 32 | 4 | 16512 | 7.274 | 2252.26 | 1.380 | 92.72 | 8.655 | 1907.81 |
| 4096 | 32 | 8 | 33024 | 14.576 | 2248.09 | 1.617 | 158.29 | 16.193 | 2039.37 |
| 4096 | 32 | 16 | 66048 | 29.138 | 2249.17 | 2.081 | 246.01 | 31.219 | 2115.63 |
| 4096 | 32 | 32 | 132096 | 58.275 | 2249.19 | 2.814 | 363.87 | 61.089 | 2162.34 |
| 8192 | 32 | 1 | 8224 | 3.757 | 2180.26 | 1.184 | 27.03 | 4.941 | 1664.37 |
| 8192 | 32 | 2 | 16448 | 7.522 | 2178.05 | 1.341 | 47.73 | 8.863 | 1855.77 |
| 8192 | 32 | 4 | 32896 | 15.043 | 2178.25 | 1.548 | 82.69 | 16.591 | 1982.74 |
| 8192 | 32 | 8 | 65792 | 30.111 | 2176.49 | 1.937 | 132.13 | 32.048 | 2052.90 |
| 8192 | 32 | 16 | 131584 | 60.405 | 2169.90 | 2.706 | 189.21 | 63.111 | 2084.97 |
| 8192 | 32 | 32 | 263168 | 120.439 | 2176.58 | 3.993 | 256.46 | 124.432 | 2114.96 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 2272.74 ± 4.68 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 30.66 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 2107.80 ± 9.55 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 29.71 ± 0.05 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 1937.80 ± 6.75 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 28.86 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 1641.12 ± 1.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 27.24 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 1296.02 ± 2.67 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 23.78 ± 0.03 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 2250.28 ± 6.41 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 29.43 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 2100.19 ± 8.96 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 28.61 ± 0.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 2007.56 ± 4.16 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 27.38 ± 0.09 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 1779.11 ± 6.42 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 25.72 ± 0.03 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 1471.23 ± 1.71 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 22.51 ± 0.02 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/gemma-3-4b-it-qat-GGUF
@@ -221,44 +221,91 @@ Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.094 | 5434.73 | 0.394 | 81.21 | 0.488 | 1114.15 |
| 512 | 32 | 2 | 1088 | 0.168 | 6091.68 | 0.498 | 128.52 | 0.666 | 1633.41 |
| 512 | 32 | 4 | 2176 | 0.341 | 6010.68 | 0.542 | 236.37 | 0.882 | 2466.43 |
| 512 | 32 | 8 | 4352 | 0.665 | 6161.46 | 0.678 | 377.74 | 1.342 | 3241.72 |
| 512 | 32 | 16 | 8704 | 1.323 | 6193.19 | 0.902 | 567.41 | 2.225 | 3911.74 |
| 512 | 32 | 32 | 17408 | 2.642 | 6202.03 | 1.231 | 832.03 | 3.872 | 4495.36 |
| 4096 | 32 | 1 | 4128 | 0.701 | 5840.49 | 0.439 | 72.95 | 1.140 | 3621.23 |
| 4096 | 32 | 2 | 8256 | 1.387 | 5906.82 | 0.574 | 111.48 | 1.961 | 4210.12 |
| 4096 | 32 | 4 | 16512 | 2.758 | 5940.33 | 0.651 | 196.58 | 3.409 | 4843.33 |
| 4096 | 32 | 8 | 33024 | 5.491 | 5967.56 | 0.876 | 292.40 | 6.367 | 5187.12 |
| 4096 | 32 | 16 | 66048 | 10.978 | 5969.58 | 1.275 | 401.69 | 12.253 | 5390.38 |
| 4096 | 32 | 32 | 132096 | 21.944 | 5972.93 | 1.992 | 514.16 | 23.936 | 5518.73 |
| 8192 | 32 | 1 | 8224 | 1.402 | 5841.91 | 0.452 | 70.73 | 1.855 | 4434.12 |
| 8192 | 32 | 2 | 16448 | 2.793 | 5865.34 | 0.637 | 100.55 | 3.430 | 4795.51 |
| 8192 | 32 | 4 | 32896 | 5.564 | 5889.64 | 0.770 | 166.26 | 6.334 | 5193.95 |
| 8192 | 32 | 8 | 65792 | 11.114 | 5896.44 | 1.122 | 228.07 | 12.237 | 5376.51 |
| 8192 | 32 | 16 | 131584 | 22.210 | 5901.38 | 1.789 | 286.15 | 24.000 | 5482.74 |
| 8192 | 32 | 32 | 263168 | 44.382 | 5906.56 | 3.044 | 336.38 | 47.426 | 5549.02 |
| 512 | 32 | 1 | 544 | 0.092 | 5566.97 | 0.412 | 77.63 | 0.504 | 1078.95 |
| 512 | 32 | 2 | 1088 | 0.161 | 6345.67 | 0.522 | 122.70 | 0.683 | 1593.06 |
| 512 | 32 | 4 | 2176 | 0.325 | 6309.87 | 0.562 | 227.68 | 0.887 | 2453.87 |
| 512 | 32 | 8 | 4352 | 0.643 | 6374.42 | 0.685 | 373.67 | 1.328 | 3277.94 |
| 512 | 32 | 16 | 8704 | 1.277 | 6413.64 | 0.915 | 559.47 | 2.192 | 3970.01 |
| 512 | 32 | 32 | 17408 | 2.518 | 6506.57 | 1.249 | 819.61 | 3.767 | 4620.64 |
| 4096 | 32 | 1 | 4128 | 0.674 | 6079.68 | 0.453 | 70.60 | 1.127 | 3662.88 |
| 4096 | 32 | 2 | 8256 | 1.335 | 6137.82 | 0.627 | 102.03 | 1.962 | 4208.11 |
| 4096 | 32 | 4 | 16512 | 2.657 | 6167.35 | 0.749 | 170.92 | 3.405 | 4848.71 |
| 4096 | 32 | 8 | 33024 | 5.307 | 6173.91 | 0.974 | 262.89 | 6.281 | 5257.53 |
| 4096 | 32 | 16 | 66048 | 10.610 | 6176.96 | 1.379 | 371.42 | 11.988 | 5509.40 |
| 4096 | 32 | 32 | 132096 | 21.213 | 6178.89 | 2.122 | 482.50 | 23.335 | 5660.82 |
| 8192 | 32 | 1 | 8224 | 1.359 | 6027.34 | 0.467 | 68.52 | 1.826 | 4503.48 |
| 8192 | 32 | 2 | 16448 | 2.699 | 6069.68 | 0.653 | 98.03 | 3.352 | 4906.68 |
| 8192 | 32 | 4 | 32896 | 5.366 | 6106.74 | 0.818 | 156.55 | 6.184 | 5319.96 |
| 8192 | 32 | 8 | 65792 | 10.755 | 6093.50 | 1.174 | 218.04 | 11.929 | 5515.22 |
| 8192 | 32 | 16 | 131584 | 21.484 | 6100.82 | 1.829 | 279.90 | 23.314 | 5644.11 |
| 8192 | 32 | 32 | 263168 | 42.950 | 6103.40 | 3.058 | 334.91 | 46.008 | 5720.05 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | mmap | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 | 5810.04 ± 21.71 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 | 84.54 ± 0.18 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d4096 | 5288.04 ± 3.54 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d4096 | 78.82 ± 1.37 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d8192 | 4960.43 ± 16.64 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d8192 | 74.13 ± 0.30 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d16384 | 4495.92 ± 31.11 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d16384 | 72.37 ± 0.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | pp2048 @ d32768 | 3746.90 ± 40.01 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | tg32 @ d32768 | 63.02 ± 0.20 |
| model | size | params | backend | ngl | n_ubatch | fa | mmap | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | ---: | --: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 | 5948.74 ± 10.61 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 | 81.05 ± 0.20 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d4096 | 5652.69 ± 34.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d4096 | 76.37 ± 0.58 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d8192 | 5509.57 ± 40.69 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d8192 | 71.61 ± 0.80 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d16384 | 5340.86 ± 36.92 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d16384 | 70.89 ± 0.34 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | pp2048 @ d32768 | 5023.30 ± 13.52 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | CUDA | 99 | 2048 | 1 | 0 | 1 | tg32 @ d32768 | 62.28 ± 0.30 |
build: eeee367de (6989)
build: 11fb327bf (7941)
## ggml-org/GLM-4.7-Flash-GGUF
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 20, n_threads_batch = 20
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.433 | 1181.83 | 0.693 | 46.16 | 1.126 | 482.94 |
| 512 | 32 | 2 | 1088 | 0.439 | 2334.46 | 1.034 | 61.89 | 1.473 | 738.75 |
| 512 | 32 | 4 | 2176 | 0.772 | 2654.46 | 1.459 | 87.76 | 2.230 | 975.77 |
| 512 | 32 | 8 | 4352 | 1.541 | 2658.78 | 2.043 | 125.31 | 3.583 | 1214.47 |
| 512 | 32 | 16 | 8704 | 3.083 | 2656.91 | 2.675 | 191.42 | 5.758 | 1511.62 |
| 512 | 32 | 32 | 17408 | 6.159 | 2660.12 | 3.615 | 283.24 | 9.774 | 1780.98 |
| 4096 | 32 | 1 | 4128 | 1.915 | 2139.30 | 0.725 | 44.14 | 2.640 | 1563.83 |
| 4096 | 32 | 2 | 8256 | 3.834 | 2136.40 | 1.119 | 57.21 | 4.953 | 1666.81 |
| 4096 | 32 | 4 | 16512 | 7.636 | 2145.72 | 1.631 | 78.49 | 9.266 | 1781.93 |
| 4096 | 32 | 8 | 33024 | 15.295 | 2142.40 | 2.344 | 109.21 | 17.639 | 1872.20 |
| 4096 | 32 | 16 | 66048 | 30.573 | 2143.62 | 3.773 | 135.70 | 34.346 | 1923.04 |
| 4096 | 32 | 32 | 132096 | 61.282 | 2138.82 | 5.795 | 176.71 | 67.077 | 1969.31 |
| 8192 | 32 | 1 | 8224 | 4.510 | 1816.24 | 0.760 | 42.11 | 5.270 | 1560.44 |
| 8192 | 32 | 2 | 16448 | 9.036 | 1813.19 | 1.206 | 53.06 | 10.242 | 1605.91 |
| 8192 | 32 | 4 | 32896 | 18.070 | 1813.43 | 1.783 | 71.80 | 19.852 | 1657.03 |
| 8192 | 32 | 8 | 65792 | 36.125 | 1814.15 | 2.635 | 97.14 | 38.760 | 1697.41 |
| 8192 | 32 | 16 | 131584 | 72.367 | 1811.20 | 4.954 | 103.34 | 77.322 | 1701.77 |
| 8192 | 32 | 32 | 263168 | 144.501 | 1814.13 | 8.103 | 126.37 | 152.604 | 1724.51 |
- `llama-bench`
| model | size | params | backend | ngl | n_ubatch | fa | dio | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | --: | -------: | -: | --: | --------------: | -------------------: |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 | 2364.18 ± 11.43 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 | 48.68 ± 0.12 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d4096 | 1684.13 ± 1.24 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d4096 | 44.62 ± 0.22 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d8192 | 1314.68 ± 1.41 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d8192 | 42.59 ± 0.11 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d16384 | 914.05 ± 3.32 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d16384 | 38.72 ± 0.13 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | pp2048 @ d32768 | 567.20 ± 0.90 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | CUDA | 99 | 2048 | 1 | 1 | tg32 @ d32768 | 32.65 ± 0.09 |
build: 11fb327bf (7941)

View File

@@ -0,0 +1,298 @@
## System info
```bash
uname -a
Darwin gg-studio 25.2.0 Darwin Kernel Version 25.2.0: Tue Nov 18 21:07:05 PST 2025; root:xnu-12377.61.12~1/RELEASE_ARM64_T6020 arm64
g++ --version
Apple clang version 17.0.0 (clang-1700.3.19.1)
Target: arm64-apple-darwin25.2.0
```
## ggml-org/gpt-oss-20b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-20b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.215 | 2381.35 | 0.245 | 130.45 | 0.460 | 1181.81 |
| 512 | 32 | 2 | 1088 | 0.379 | 2701.43 | 0.382 | 167.56 | 0.761 | 1429.67 |
| 512 | 32 | 4 | 2176 | 0.721 | 2839.27 | 0.604 | 211.76 | 1.326 | 1641.32 |
| 512 | 32 | 8 | 4352 | 1.433 | 2858.30 | 1.033 | 247.75 | 2.466 | 1764.57 |
| 512 | 32 | 16 | 8704 | 2.853 | 2871.12 | 1.570 | 326.11 | 4.423 | 1967.77 |
| 512 | 32 | 32 | 17408 | 5.699 | 2874.95 | 1.910 | 536.15 | 7.609 | 2287.88 |
| 4096 | 32 | 1 | 4128 | 1.552 | 2638.56 | 0.334 | 95.72 | 1.887 | 2188.00 |
| 4096 | 32 | 2 | 8256 | 3.084 | 2655.88 | 0.404 | 158.54 | 3.488 | 2366.86 |
| 4096 | 32 | 4 | 16512 | 6.151 | 2663.78 | 0.652 | 196.39 | 6.802 | 2427.37 |
| 4096 | 32 | 8 | 33024 | 12.288 | 2666.77 | 1.135 | 225.47 | 13.423 | 2460.27 |
| 4096 | 32 | 16 | 66048 | 24.563 | 2668.12 | 1.762 | 290.55 | 26.325 | 2508.97 |
| 4096 | 32 | 32 | 132096 | 49.114 | 2668.73 | 2.398 | 426.94 | 51.512 | 2564.35 |
| 8192 | 32 | 1 | 8224 | 3.345 | 2448.78 | 0.275 | 116.46 | 3.620 | 2271.76 |
| 8192 | 32 | 2 | 16448 | 6.665 | 2458.11 | 0.425 | 150.71 | 7.090 | 2319.91 |
| 8192 | 32 | 4 | 32896 | 13.315 | 2460.92 | 0.691 | 185.21 | 14.006 | 2348.63 |
| 8192 | 32 | 8 | 65792 | 26.611 | 2462.73 | 1.212 | 211.16 | 27.823 | 2364.62 |
| 8192 | 32 | 16 | 131584 | 53.232 | 2462.27 | 1.919 | 266.83 | 55.151 | 2385.88 |
| 8192 | 32 | 32 | 263168 | 110.455 | 2373.30 | 2.752 | 372.03 | 113.208 | 2324.64 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2713.40 ± 3.56 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 129.97 ± 3.90 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2324.59 ± 3.01 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 123.38 ± 0.17 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1989.82 ± 30.11 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 117.39 ± 0.33 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1556.54 ± 6.22 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 109.75 ± 0.42 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 1122.63 ± 1.45 |
| gpt-oss 20B MXFP4 MoE | 11.27 GiB | 20.91 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 98.25 ± 0.08 |
build: b828e18c7 (7948)
## ggml-org/gpt-oss-120b-GGUF
Model: https://huggingface.co/ggml-org/gpt-oss-120b-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.426 | 1200.92 | 0.361 | 88.56 | 0.788 | 690.64 |
| 512 | 32 | 2 | 1088 | 0.683 | 1500.14 | 0.545 | 117.35 | 1.228 | 886.02 |
| 512 | 32 | 4 | 2176 | 1.204 | 1701.56 | 0.847 | 151.19 | 2.050 | 1061.34 |
| 512 | 32 | 8 | 4352 | 2.402 | 1705.20 | 1.455 | 176.00 | 3.857 | 1128.45 |
| 512 | 32 | 16 | 8704 | 4.802 | 1705.90 | 2.349 | 217.93 | 7.152 | 1217.08 |
| 512 | 32 | 32 | 17408 | 9.593 | 1707.85 | 3.665 | 279.42 | 13.258 | 1313.01 |
| 4096 | 32 | 1 | 4128 | 2.581 | 1587.08 | 0.390 | 82.12 | 2.970 | 1389.67 |
| 4096 | 32 | 2 | 8256 | 5.124 | 1598.79 | 0.589 | 108.62 | 5.713 | 1445.10 |
| 4096 | 32 | 4 | 16512 | 10.231 | 1601.47 | 0.928 | 137.98 | 11.158 | 1479.80 |
| 4096 | 32 | 8 | 33024 | 20.468 | 1600.94 | 1.606 | 159.38 | 22.074 | 1496.04 |
| 4096 | 32 | 16 | 66048 | 40.924 | 1601.42 | 2.639 | 193.99 | 43.563 | 1516.15 |
| 4096 | 32 | 32 | 132096 | 81.819 | 1601.98 | 4.466 | 229.29 | 86.284 | 1530.94 |
| 8192 | 32 | 1 | 8224 | 5.517 | 1484.74 | 0.409 | 78.16 | 5.927 | 1387.58 |
| 8192 | 32 | 2 | 16448 | 11.008 | 1488.43 | 0.622 | 102.92 | 11.629 | 1414.34 |
| 8192 | 32 | 4 | 32896 | 22.002 | 1489.29 | 0.987 | 129.66 | 22.990 | 1430.90 |
| 8192 | 32 | 8 | 65792 | 46.051 | 1423.11 | 1.858 | 137.79 | 47.909 | 1373.27 |
| 8192 | 32 | 16 | 131584 | 97.680 | 1341.85 | 2.872 | 178.28 | 100.552 | 1308.62 |
| 8192 | 32 | 32 | 263168 | 176.407 | 1486.02 | 5.048 | 202.85 | 181.455 | 1450.32 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1648.69 ± 1.80 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 85.60 ± 0.52 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1429.86 ± 1.01 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 82.03 ± 0.12 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1257.90 ± 1.81 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 78.23 ± 0.33 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 1013.49 ± 0.70 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 73.20 ± 0.28 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 721.11 ± 0.58 |
| gpt-oss 120B MXFP4 MoE | 59.02 GiB | 116.83 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 65.52 ± 0.10 |
build: b828e18c7 (7948)
## ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.243 | 2109.23 | 0.419 | 76.34 | 0.662 | 821.84 |
| 512 | 32 | 2 | 1088 | 0.406 | 2521.40 | 0.575 | 111.36 | 0.981 | 1109.27 |
| 512 | 32 | 4 | 2176 | 0.744 | 2751.65 | 0.841 | 152.22 | 1.585 | 1372.71 |
| 512 | 32 | 8 | 4352 | 1.479 | 2770.20 | 1.330 | 192.48 | 2.809 | 1549.53 |
| 512 | 32 | 16 | 8704 | 2.951 | 2776.20 | 2.572 | 199.05 | 5.523 | 1575.93 |
| 512 | 32 | 32 | 17408 | 5.899 | 2777.64 | 2.603 | 393.34 | 8.502 | 2047.54 |
| 4096 | 32 | 1 | 4128 | 1.901 | 2154.15 | 0.474 | 67.58 | 2.375 | 1738.14 |
| 4096 | 32 | 2 | 8256 | 3.788 | 2162.89 | 0.652 | 98.17 | 4.439 | 1859.69 |
| 4096 | 32 | 4 | 16512 | 7.564 | 2166.18 | 0.990 | 129.24 | 8.554 | 1930.34 |
| 4096 | 32 | 8 | 33024 | 15.121 | 2166.98 | 1.632 | 156.82 | 16.754 | 1971.12 |
| 4096 | 32 | 16 | 66048 | 30.241 | 2167.09 | 3.166 | 161.72 | 33.407 | 1977.04 |
| 4096 | 32 | 32 | 132096 | 60.474 | 2167.42 | 3.780 | 270.93 | 64.254 | 2055.86 |
| 8192 | 32 | 1 | 8224 | 4.733 | 1730.92 | 0.483 | 66.29 | 5.215 | 1576.85 |
| 8192 | 32 | 2 | 16448 | 9.459 | 1732.09 | 0.722 | 88.58 | 10.182 | 1615.46 |
| 8192 | 32 | 4 | 32896 | 18.912 | 1732.65 | 1.120 | 114.26 | 20.032 | 1642.14 |
| 8192 | 32 | 8 | 65792 | 37.797 | 1733.91 | 1.873 | 136.67 | 39.670 | 1658.49 |
| 8192 | 32 | 16 | 131584 | 84.133 | 1557.92 | 3.718 | 137.72 | 87.850 | 1497.82 |
| 8192 | 32 | 32 | 263168 | 157.550 | 1663.88 | 4.854 | 210.98 | 162.403 | 1620.46 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2453.11 ± 1.70 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 78.97 ± 0.46 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1569.46 ± 1.97 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 71.18 ± 0.37 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1145.51 ± 1.16 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 65.11 ± 0.36 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 741.04 ± 0.74 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 56.87 ± 0.14 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 431.31 ± 0.31 |
| qwen3moe 30B.A3B Q8_0 | 30.25 GiB | 30.53 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 45.26 ± 0.11 |
build: b828e18c7 (7948)
## ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
Model: https://huggingface.co/ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.339 | 1509.22 | 0.409 | 78.17 | 0.749 | 726.67 |
| 512 | 32 | 2 | 1088 | 0.646 | 1584.93 | 0.483 | 132.45 | 1.129 | 963.45 |
| 512 | 32 | 4 | 2176 | 1.258 | 1627.50 | 0.585 | 218.67 | 1.844 | 1180.21 |
| 512 | 32 | 8 | 4352 | 2.506 | 1634.41 | 1.005 | 254.83 | 3.511 | 1239.64 |
| 512 | 32 | 16 | 8704 | 5.007 | 1635.99 | 1.595 | 321.07 | 6.602 | 1318.38 |
| 512 | 32 | 32 | 17408 | 10.007 | 1637.19 | 1.676 | 611.12 | 11.683 | 1490.03 |
| 4096 | 32 | 1 | 4128 | 2.730 | 1500.46 | 0.431 | 74.31 | 3.160 | 1306.12 |
| 4096 | 32 | 2 | 8256 | 5.446 | 1504.33 | 0.524 | 122.04 | 5.970 | 1382.91 |
| 4096 | 32 | 4 | 16512 | 10.875 | 1506.59 | 0.662 | 193.45 | 11.537 | 1431.28 |
| 4096 | 32 | 8 | 33024 | 21.749 | 1506.61 | 1.158 | 221.11 | 22.907 | 1441.64 |
| 4096 | 32 | 16 | 66048 | 43.477 | 1507.36 | 1.901 | 269.32 | 45.378 | 1455.49 |
| 4096 | 32 | 32 | 132096 | 86.954 | 1507.37 | 2.325 | 440.42 | 89.279 | 1479.59 |
| 8192 | 32 | 1 | 8224 | 5.940 | 1379.21 | 0.449 | 71.20 | 6.389 | 1287.20 |
| 8192 | 32 | 2 | 16448 | 11.865 | 1380.84 | 0.559 | 114.59 | 12.424 | 1323.92 |
| 8192 | 32 | 4 | 32896 | 23.723 | 1381.25 | 0.728 | 175.80 | 24.452 | 1345.35 |
| 8192 | 32 | 8 | 65792 | 47.434 | 1381.63 | 1.279 | 200.09 | 48.713 | 1350.60 |
| 8192 | 32 | 16 | 131584 | 94.864 | 1381.69 | 2.198 | 232.97 | 97.061 | 1355.68 |
| 8192 | 32 | 32 | 263168 | 189.743 | 1381.57 | 3.052 | 335.50 | 192.795 | 1365.01 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1565.91 ± 0.86 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 79.68 ± 0.39 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 1317.41 ± 1.02 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 74.70 ± 0.04 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 1134.65 ± 0.76 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 71.31 ± 0.12 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 886.46 ± 0.78 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 65.93 ± 0.06 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 612.21 ± 0.30 |
| qwen2 7B Q8_0 | 7.54 GiB | 7.62 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 56.83 ± 0.02 |
build: b828e18c7 (7948)
## ggml-org/gemma-3-4b-it-qat-GGUF
Model: https://huggingface.co/ggml-org/gemma-3-4b-it-qat-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.186 | 2748.06 | 0.235 | 136.28 | 0.421 | 1291.78 |
| 512 | 32 | 2 | 1088 | 0.342 | 2990.95 | 0.312 | 204.99 | 0.655 | 1662.15 |
| 512 | 32 | 4 | 2176 | 0.662 | 3092.69 | 0.404 | 316.97 | 1.066 | 2041.21 |
| 512 | 32 | 8 | 4352 | 1.317 | 3110.41 | 0.579 | 441.80 | 1.896 | 2294.97 |
| 512 | 32 | 16 | 8704 | 2.625 | 3120.23 | 1.207 | 424.08 | 3.833 | 2270.93 |
| 512 | 32 | 32 | 17408 | 5.242 | 3125.34 | 1.299 | 788.23 | 6.541 | 2661.19 |
| 4096 | 32 | 1 | 4128 | 1.408 | 2909.90 | 0.296 | 108.07 | 1.704 | 2422.95 |
| 4096 | 32 | 2 | 8256 | 2.793 | 2933.40 | 0.325 | 197.00 | 3.118 | 2648.25 |
| 4096 | 32 | 4 | 16512 | 5.567 | 2943.22 | 0.440 | 291.07 | 6.006 | 2749.05 |
| 4096 | 32 | 8 | 33024 | 11.114 | 2948.23 | 0.640 | 400.26 | 11.754 | 2809.59 |
| 4096 | 32 | 16 | 66048 | 22.217 | 2949.76 | 1.327 | 385.83 | 23.544 | 2805.26 |
| 4096 | 32 | 32 | 132096 | 44.420 | 2950.77 | 1.553 | 659.30 | 45.973 | 2873.36 |
| 8192 | 32 | 1 | 8224 | 2.860 | 2864.58 | 0.250 | 127.90 | 3.110 | 2644.42 |
| 8192 | 32 | 2 | 16448 | 5.702 | 2873.63 | 0.335 | 191.07 | 6.036 | 2724.77 |
| 8192 | 32 | 4 | 32896 | 11.383 | 2878.69 | 0.456 | 280.72 | 11.839 | 2778.63 |
| 8192 | 32 | 8 | 65792 | 22.750 | 2880.75 | 0.671 | 381.48 | 23.421 | 2809.14 |
| 8192 | 32 | 16 | 131584 | 45.484 | 2881.74 | 1.406 | 364.04 | 46.890 | 2806.22 |
| 8192 | 32 | 32 | 263168 | 90.956 | 2882.10 | 1.793 | 570.98 | 92.749 | 2837.41 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 2923.59 ± 3.10 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 134.28 ± 1.29 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 2748.21 ± 3.05 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 133.11 ± 0.08 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 2641.45 ± 2.31 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 125.85 ± 0.35 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 2446.20 ± 2.94 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 125.00 ± 0.12 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 2129.18 ± 7.43 |
| gemma3 4B Q4_0 | 2.35 GiB | 3.88 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 113.14 ± 0.10 |
build: b828e18c7 (7948)
## ggml-org/GLM-4.7-Flash-GGUF
Model: https://huggingface.co/ggml-org/GLM-4.7-Flash-GGUF
- `llama-batched-bench`
main: n_kv_max = 270336, n_batch = 2048, n_ubatch = 2048, flash_attn = 1, is_pp_shared = 0, is_tg_separate = 0, n_gpu_layers = -1, n_threads = 16, n_threads_batch = 16
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
| 512 | 32 | 1 | 544 | 0.326 | 1568.69 | 0.522 | 61.28 | 0.849 | 641.09 |
| 512 | 32 | 2 | 1088 | 0.528 | 1939.42 | 0.744 | 86.07 | 1.272 | 855.63 |
| 512 | 32 | 4 | 2176 | 0.968 | 2114.85 | 1.105 | 115.85 | 2.073 | 1049.56 |
| 512 | 32 | 8 | 4352 | 1.928 | 2124.62 | 1.684 | 151.99 | 3.612 | 1204.82 |
| 512 | 32 | 16 | 8704 | 3.844 | 2131.34 | 3.141 | 162.99 | 6.985 | 1246.11 |
| 512 | 32 | 32 | 17408 | 7.683 | 2132.38 | 3.924 | 260.95 | 11.608 | 1499.71 |
| 4096 | 32 | 1 | 4128 | 3.280 | 1248.75 | 0.723 | 44.29 | 4.003 | 1031.33 |
| 4096 | 32 | 2 | 8256 | 6.545 | 1251.63 | 0.930 | 68.85 | 7.475 | 1104.53 |
| 4096 | 32 | 4 | 16512 | 13.080 | 1252.64 | 1.454 | 88.03 | 14.534 | 1136.12 |
| 4096 | 32 | 8 | 33024 | 26.154 | 1252.90 | 2.388 | 107.20 | 28.542 | 1157.04 |
| 4096 | 32 | 16 | 66048 | 52.297 | 1253.14 | 4.724 | 108.37 | 57.022 | 1158.30 |
| 4096 | 32 | 32 | 132096 | 104.578 | 1253.34 | 7.266 | 140.93 | 111.844 | 1181.08 |
| 8192 | 32 | 1 | 8224 | 9.623 | 851.31 | 0.767 | 41.72 | 10.390 | 791.54 |
| 8192 | 32 | 2 | 16448 | 20.916 | 783.32 | 1.148 | 55.74 | 22.064 | 745.45 |
| 8192 | 32 | 4 | 32896 | 43.509 | 753.14 | 1.833 | 69.82 | 45.342 | 725.51 |
| 8192 | 32 | 8 | 65792 | 79.621 | 823.10 | 3.180 | 80.50 | 82.801 | 794.58 |
| 8192 | 32 | 16 | 131584 | 153.770 | 852.39 | 6.502 | 78.74 | 160.272 | 821.00 |
| 8192 | 32 | 32 | 263168 | 307.539 | 852.39 | 10.839 | 94.48 | 318.378 | 826.59 |
- `llama-bench`
| model | size | params | backend | threads | n_ubatch | fa | test | t/s |
| ------------------------------ | ---------: | ---------: | ---------- | ------: | -------: | -: | --------------: | -------------------: |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 | 1629.33 ± 0.27 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 | 59.58 ± 0.13 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d4096 | 732.67 ± 0.42 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d4096 | 47.44 ± 0.15 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d8192 | 474.33 ± 0.33 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d8192 | 40.20 ± 0.20 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d16384 | 277.46 ± 0.09 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d16384 | 31.50 ± 0.93 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | pp2048 @ d32768 | 151.44 ± 0.05 |
| deepseek2 30B.A3B Q8_0 | 29.65 GiB | 29.94 B | MTL,BLAS | 16 | 2048 | 1 | tg32 @ d32768 | 21.81 ± 0.01 |
build: b828e18c7 (7948)

View File

@@ -635,6 +635,29 @@ function gg_check_build_requirements {
fi
}
function gg_run_test_backend_ops_cpu {
cd ${SRC}
cd build-ci-release
set -e
(time ./bin/test-backend-ops -b CPU ) 2>&1 | tee -a $OUT/${ci}-test-backend-ops-cpu.log
set +e
}
function gg_sum_test_backend_ops_cpu {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Runs test-backend-ops for CPU backend\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '```\n'
gg_printf '%s\n' "$(cat $OUT/${ci}-test-backend-ops-cpu.log)"
gg_printf '```\n'
gg_printf '\n'
}
## main
export LLAMA_LOG_PREFIX=1
@@ -663,6 +686,10 @@ ret=0
test $ret -eq 0 && gg_run ctest_debug
test $ret -eq 0 && gg_run ctest_release
if [ ! -z ${GG_BUILD_HIGH_PERF} ]; then
test $ret -eq 0 && gg_run test_backend_ops_cpu
fi
if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run embd_bge_small
test $ret -eq 0 && gg_run rerank_tiny

View File

@@ -32,4 +32,27 @@ function(llama_add_compile_flags)
set(CXX_FLAGS "" PARENT_SCOPE)
endif()
endif()
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
endfunction()

View File

@@ -45,6 +45,8 @@ static float common_ggml_get_float_value(const uint8_t * data,
return v;
}
#define INDENT " "
template <bool abort>
void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
GGML_ASSERT(n > 0);
@@ -60,41 +62,41 @@ void common_debug_print_tensor(uint8_t * data, ggml_type type, const int64_t * n
}
}
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
LOG_ERR(" [\n");
LOG(INDENT "[\n");
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
if (i2 == n && ne[2] > 2 * n) {
LOG_ERR(" ..., \n");
LOG(INDENT INDENT "..., \n");
i2 = ne[2] - n;
}
LOG_ERR(" [\n");
LOG(INDENT INDENT "[\n");
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
if (i1 == n && ne[1] > 2 * n) {
LOG_ERR(" ..., \n");
LOG(INDENT INDENT INDENT "..., \n");
i1 = ne[1] - n;
}
LOG_ERR(" [");
LOG(INDENT INDENT INDENT "[");
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
if (i0 == n && ne[0] > 2 * n) {
LOG_ERR("..., ");
LOG(" ..., ");
i0 = ne[0] - n;
}
const float v = common_ggml_get_float_value(data, type, nb, i0, i1, i2, i3);
LOG_ERR("%12.4f", v);
LOG("%12.4f", v);
if (i0 < ne[0] - 1) {
LOG_ERR(", ");
LOG(", ");
}
}
LOG_ERR("],\n");
LOG(" ],\n");
}
LOG_ERR(" ],\n");
LOG(INDENT INDENT "],\n");
}
LOG_ERR(" ]\n");
LOG_ERR(" sum = %f\n", sum);
LOG(INDENT "]\n");
LOG(INDENT "sum = %f\n", sum);
}
if constexpr (abort) {
if (std::isnan(sum)) {
LOG_ERR("encountered NaN - aborting\n");
LOG("encountered NaN - aborting\n");
exit(0);
}
}
@@ -137,9 +139,9 @@ template <bool abort_on_nan> bool common_debug_cb_eval(struct ggml_tensor * t, b
}
if (matches_filter) {
LOG_ERR("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
common_ggml_ne_string(t).c_str());
LOG("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s}\n", __func__, t->name, ggml_type_name(t->type),
ggml_op_desc(t), src0->name, common_ggml_ne_string(src0).c_str(), src1 ? src1_str : "",
common_ggml_ne_string(t).c_str());
}
const bool is_host = ggml_backend_buffer_is_host(t->buffer);

View File

@@ -144,6 +144,13 @@ value binary_expression::execute_impl(context & ctx) {
return false;
};
auto test_is_in = [&]() -> bool {
func_args args(ctx);
args.push_back(left_val);
args.push_back(right_val);
return global_builtins().at("test_is_in")(args)->as_bool();
};
// Handle undefined and null values
if (is_val<value_undefined>(left_val) || is_val<value_undefined>(right_val)) {
if (is_val<value_undefined>(right_val) && (op.value == "in" || op.value == "not in")) {
@@ -223,19 +230,11 @@ value binary_expression::execute_impl(context & ctx) {
return result;
}
} else if (is_val<value_array>(right_val)) {
auto & arr = right_val->as_array();
bool member = false;
for (const auto & item : arr) {
if (*left_val == *item) {
member = true;
break;
}
}
// case: 1 in [0, 1, 2]
bool member = test_is_in();
if (op.value == "in") {
JJ_DEBUG("Checking membership: %s in Array is %d", left_val->type().c_str(), member);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
JJ_DEBUG("Checking non-membership: %s not in Array is %d", left_val->type().c_str(), !member);
return mk_val<value_bool>(!member);
}
}
@@ -252,22 +251,23 @@ value binary_expression::execute_impl(context & ctx) {
// String membership
if (is_val<value_string>(left_val) && is_val<value_string>(right_val)) {
auto left_str = left_val->as_string().str();
auto right_str = right_val->as_string().str();
// case: "a" in "abc"
bool member = test_is_in();
if (op.value == "in") {
return mk_val<value_bool>(right_str.find(left_str) != std::string::npos);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
return mk_val<value_bool>(right_str.find(left_str) == std::string::npos);
return mk_val<value_bool>(!member);
}
}
// Value key in object
if (is_val<value_object>(right_val)) {
bool has_key = right_val->has_key(left_val);
// case: key in {key: value}
bool member = test_is_in();
if (op.value == "in") {
return mk_val<value_bool>(has_key);
return mk_val<value_bool>(member);
} else if (op.value == "not in") {
return mk_val<value_bool>(!has_key);
return mk_val<value_bool>(!member);
}
}

View File

@@ -393,6 +393,33 @@ const func_builtins & global_builtins() {
{"test_is_lt", test_compare_fn<value_compare_op::lt>},
{"test_is_lessthan", test_compare_fn<value_compare_op::lt>},
{"test_is_ne", test_compare_fn<value_compare_op::ne>},
{"test_is_in", [](const func_args & args) -> value {
args.ensure_count(2);
auto needle = args.get_pos(0);
auto haystack = args.get_pos(1);
if (is_val<value_undefined>(haystack)) {
return mk_val<value_bool>(false);
}
if (is_val<value_array>(haystack)) {
for (const auto & item : haystack->as_array()) {
if (*needle == *item) {
return mk_val<value_bool>(true);
}
}
return mk_val<value_bool>(false);
}
if (is_val<value_string>(haystack)) {
if (!is_val<value_string>(needle)) {
throw raised_exception("'in' test expects args[1] as string when args[0] is string, got args[1] as " + needle->type());
}
return mk_val<value_bool>(
haystack->as_string().str().find(needle->as_string().str()) != std::string::npos);
}
if (is_val<value_object>(haystack)) {
return mk_val<value_bool>(haystack->has_key(needle));
}
throw raised_exception("'in' test expects iterable as first argument, got " + haystack->type());
}},
{"test_is_test", [](const func_args & args) -> value {
args.ensure_vals<value_string>();
auto & builtins = global_builtins();

View File

@@ -7,6 +7,18 @@
#include <cstdio>
#include <sstream>
// prime number used for LCG hash function (32 bit), it is near (sqrt(5) - 1)/2 * 2^32.
#define LCG_FACTOR 2654435761UL
// Compute the LCG hash of a n-gram of size len at offset start.
static uint32_t common_ngram_map_hash(const llama_tokens & tokens, size_t start, size_t len) {
uint32_t hash = 0;
for (size_t i = 0; i < len; ++i) {
hash = hash * LCG_FACTOR + tokens[start + i];
}
return hash;
}
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
std::ostringstream oss;
@@ -35,21 +47,15 @@ static std::string common_tokens_to_str(const llama_tokens & inp, size_t start,
* @return Vector of draft tokens, empty if no matching pattern is found
*/
llama_tokens common_ngram_simple_draft(
common_ngram_simple_state & state,
const common_ngram_simple_config & config,
const llama_tokens & tokens, llama_token sampled) {
// Simple implementation of self-speculative decoding without a draft model.
//
const size_t cur_len = tokens.size();
// Only check every check_rate tokens to save compute
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
if (state.idx_last_check + state.config.check_rate > cur_len) {
llama_tokens draft_tokens;
return draft_tokens;
}
size_t n_draft_min = state.config.size_ngram; // size of n-gram to lookup in token history
size_t n_draft_max = state.config.size_mgram; // the m-gram following the found n-gram is used for draft
const size_t n_draft_min = config.size_ngram; // size of n-gram to lookup in token history
const size_t n_draft_max = config.size_mgram; // the m-gram following the found n-gram is used for draft
// vector for tokens we want to verify.
// return empty vector if there is no match.
@@ -68,9 +74,6 @@ llama_tokens common_ngram_simple_draft(
}
pattern.push_back(sampled); // add the last token to the pattern
// We do a search in the token history.
state.idx_last_check = cur_len;
size_t match_pos = 0; // we ignore position 0, position 0 == no match
// search backwards, but skip the current match (we are currently there)
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
@@ -115,6 +118,100 @@ llama_tokens common_ngram_simple_draft(
// maximum number of counted values of a ngram map value.
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
void common_ngram_map_begin(
common_ngram_map & map, const llama_tokens & tokens) {
size_t size_begin = tokens.size();
LOG_DBG("%s: begin, idx_last_draft=%zu, new begin=%zu, #keys=%zu\n", __func__,
map.idx_last_check, size_begin, map.keys.size());
size_t count_map_entries_upd = 0;
if (!map.key_map.empty() && size_begin < map.idx_last_check) {
if (map.show_key_map_stats) {
// Print statistics of hash map map_key.
size_t count_nonzero = 0;
uint32_t min_idx = UINT32_MAX;
uint32_t max_idx = 0;
for (size_t i = 0; i < map.key_map.size(); ++i) {
uint32_t key_idx = map.key_map[i];
if (key_idx != 0) {
++count_nonzero;
if (key_idx < min_idx) min_idx = key_idx;
if (key_idx > max_idx) max_idx = key_idx;
}
}
if (count_nonzero == 0) {
min_idx = 0;
}
LOG_INF("%s: key_map stats: entries=%zu, min_idx=%u, max_idx=%u, key_map_last_idx=%u\n",
__func__, count_nonzero, min_idx, max_idx, map.key_map_last_idx);
}
// Update the map from hash to key index (clear outdated entries).
for (size_t i = 0; i < map.key_map.size(); ++i) {
uint32_t key_idx = map.key_map[i];
if (key_idx >= map.size_last_begin) {
map.key_map[i] = 0;
count_map_entries_upd++;
}
}
map.key_map_last_idx = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
}
if (size_begin < map.idx_last_check && !map.keys.empty()) {
// The next token generation will start at index size_begin.
// The tokens between map.size_last_begin and size_begin are no longer valid.
//
// Refresh map: Remove all entries with index >= map.size_last_begin.
size_t count_keys = map.keys.size();
size_t count_keys_del = 0;
size_t count_values_del = 0;
for (int32_t i = map.keys.size() - 1; i >= 0; --i) {
common_ngram_map_key & key = map.keys[i];
if (key.key_idx >= map.size_last_begin) {
// Delete the key.
LOG_DBG("%s: delete key %d at index %zu (>= size_last_begin=%zu)\n", __func__, i, key.key_idx, map.size_last_begin);
map.keys.erase(map.keys.begin() + i);
count_keys_del++;
continue;
}
if (map.key_only) {
continue;
}
// Check the indices of the values.
for (int16_t j = COMMON_NGRAM_MAX_VALUES - 1; j >= 0; --j) {
common_ngram_map_value & value = key.values[j];
if (value.value_idx >= map.size_last_begin) {
// Delete the value.
count_values_del++;
// Move all values after this value to the left.
for (uint16_t k = j; k < COMMON_NGRAM_MAX_VALUES - 1; ++k) {
key.values[k] = key.values[k + 1];
}
// Clear the last value.
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_idx = 0;
key.values[COMMON_NGRAM_MAX_VALUES - 1].value_num = 0;
}
}
if (key.values[0].value_idx == 0) {
// No values left, delete the key.
LOG_DBG("%s: delete key %d at index %zu (no values left)\n", __func__, i, key.key_idx);
map.keys.erase(map.keys.begin() + i);
count_keys_del++;
}
}
LOG_INF("%s: refresh map: idx_last_draft=%zu, new begin=%zu, #keys_checked=%zu, #keys_del=%zu, #values_del=%zu, #hashes_upd=%zu\n", __func__,
map.idx_last_check, size_begin,
count_keys, count_keys_del, count_values_del, count_map_entries_upd);
}
map.idx_last_check = (map.size_last_begin > 0) ? map.size_last_begin - 1 : 0;
map.size_last_begin = size_begin;
}
void common_ngram_map_draft(common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft) {
@@ -129,6 +226,10 @@ void common_ngram_map_draft(common_ngram_map & map,
if (cur_len < static_cast<size_t>(2 * n + m)) {
return;
}
if (cur_len >= static_cast<size_t>(UINT32_MAX)) {
// key_map uses uint32_t instead of size_t.
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
}
// Only check every check_rate tokens to save compute
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
@@ -147,24 +248,92 @@ void common_ngram_map_draft(common_ngram_map & map,
// search for the key in the map
size_t match_pos = 0;
for (size_t j = cur_len - n - m - 1; j > 0; --j) {
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
if (map.size_last_begin > cur_len) {
GGML_ABORT("%s: map.size_last_begin > cur_len: %zu > %zu", __func__, map.size_last_begin, cur_len);
}
if (!map.key_map.empty()) {
// Search for the key in the map key_map from hash of ngrams to index of ngram.
uint32_t idx_hash = (common_ngram_map_hash(key_tokens, 0, n) % map.key_map.size());
uint32_t idx_key = map.key_map[idx_hash];
if (idx_key != 0 && idx_key < cur_len - n - m - 1) {
// Check if the key matches the key at idx_key (because of possible collisions).
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[idx_key + k] != key_tokens[k]) {
match = false;
break;
}
}
LOG_DBG("%s: key hash %x -> idx_key %d: match %d\n", __func__, idx_hash, idx_key, match ? 1 : 0);
if (match) {
match_pos = idx_key;
}
}
if (match) {
match_pos = j;
break;
}
if (match_pos == 0 && map.size_last_begin > (size_t) (n + m + 1)) {
// Search for the key in [1, map.size_last_begin - n - m -1], descending.
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
// Check if the key matches the key.
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
}
if (match_pos == 0) {
// In case of a reasoning chat, the part after size_last_begin may be deleted/reordered later.
//
// Search in [size_last_begin, cur_len - n - m - 1], descending.
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
}
if (match_pos > 0) {
LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
LOG_DBG("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
cur_len, n, m, key_tokens.size(), sampled, match_pos);
}
if (!map.key_map.empty()) {
// Add hashes of new ngrams in key_map.
//
// Use the same order as above.
if (map.size_last_begin > (size_t) (n + m + 1)) {
for (size_t j = map.size_last_begin - n - m - 1; j > map.key_map_last_idx; --j) {
// compute hash and store index of ngram at idx j in the map.
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
if (map.key_map[idx_hash] == 0) {
map.key_map[idx_hash] = j; // collisions may occur
}
}
}
for (size_t j = cur_len - n - m - 1; j > map.size_last_begin && j > map.key_map_last_idx; --j) {
// compute hash and store index of ngram at idx j in the map.
uint32_t idx_hash = (common_ngram_map_hash(inp, j, n) % map.key_map.size());
if (map.key_map[idx_hash] == 0) {
map.key_map[idx_hash] = j;
}
}
map.key_map_last_idx = std::max(static_cast<uint32_t>(cur_len - n - m - 1), map.key_map_last_idx);
}
if (match_pos == 0) {
return;
}
@@ -215,8 +384,8 @@ void common_ngram_map_draft(common_ngram_map & map,
draft.push_back(inp[match_pos + n + i]);
}
LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
key_offset, curr_key.key_num, draft.size());
LOG_DBG("%s: key_idx = %zu, key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
curr_key.key_idx, key_offset, curr_key.key_num, draft.size());
map.last_draft_created = false;
map.last_draft_key_idx = key_offset;
@@ -318,7 +487,7 @@ void common_ngram_map_draft(common_ngram_map & map,
}
}
if (sum_occur > 0 && max_occur < 3 * sum_occur) {
if (sum_occur > 0 && max_occur < 2 * sum_occur) {
// The most frequent value is not much more frequent than the other values.
// We do not use the draft.
return;

View File

@@ -9,6 +9,8 @@
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
//
// ref: https://github.com/ggml-org/llama.cpp/pull/18471
//
#include "llama.h"
#include "common.h"
@@ -25,23 +27,9 @@ struct common_ngram_simple_config {
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
};
// current state (and config) of n-gram simple.
struct common_ngram_simple_state {
common_ngram_simple_config config;
size_t idx_last_check = 0; // index of last check in context history (mutable)
common_ngram_simple_state(const common_ngram_simple_config & config)
: config(config) {}
};
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
// state: the ngram simple state to search in.
// inp: the tokens generated so far.
// sampled: the token that was just sampled.
// draft: vector to store the draft tokens, initially empty.
llama_tokens common_ngram_simple_draft(
common_ngram_simple_state & state,
const common_ngram_simple_config & config,
const llama_tokens & tokens, llama_token sampled);
@@ -51,10 +39,13 @@ llama_tokens common_ngram_simple_draft(
// maximum number of m-gram values stored for each key n-gram.
#define COMMON_NGRAM_MAX_VALUES 4
// number of entries in the (optional, size 0 to disable) map from ngram-hash to ngram-index.
#define COMMON_NGRAM_HASH_MAP_SIZE 262144
// statistics of a m-gram after a known n-gram
struct common_ngram_map_value {
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
};
@@ -74,23 +65,43 @@ struct common_ngram_map {
bool key_only; // true if only key n-grams are used, no values.
// first draft: vector only, no map.
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
uint16_t min_hits; // minimum number of key hits to consider a draft
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
uint16_t check_rate, uint16_t min_hits)
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
check_rate(check_rate), min_hits(min_hits) {}
check_rate(check_rate), min_hits(min_hits) {
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
}
// In reasoning chats the previous reasoning block will be removed from context history.
// A rebuild of the ngram map is needed after that.
size_t size_last_begin = 0; // number of tokens at previous start of generation
bool last_draft_created = false; // true if a draft was created at last call.
size_t last_draft_key_idx = 0; // index of last key used for draft generation.
size_t last_draft_key_idx = 0; // index of last key used for draft generation (0 = no draft)
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
size_t idx_last_check = 0; // index of last check in context history
// optional map "hash to ngram-index" for faster lookup of n-grams. map is empty if unused.
//
// uint32_t instead of size_t (size of current histories is << UINT32_MAX)
std::vector<uint32_t> key_map; // key_map[hash] = index of ngram in context window
uint32_t key_map_last_idx = 0; // index of the last ngram added to key_map
};
// Initialize the n-gram map with the given token history.
// map: the ngram map to initialize.
// tokens: the token history to base the map on.
void common_ngram_map_begin(
common_ngram_map & map,
const llama_tokens & tokens);
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
// map: the ngram map to search in.

View File

@@ -124,9 +124,9 @@ struct common_speculative_state {
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
// TODO: rename to t_draft_us
// TODO: add t_begin_us, t_accept_us
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
int64_t t_begin_us = 0; // total time spent in refresh of this implementation in microseconds.
int64_t t_draft_us = 0; // total time spent in generating drafts in this implementation in microseconds.
int64_t t_accept_us = 0; // total time spent in accumulation of this implementation in microseconds.
common_speculative_state(enum common_speculative_type type) : type(type) {}
@@ -463,12 +463,14 @@ struct common_speculative_state_eagle3 : public common_speculative_state {
// state of self-speculation (simple implementation, not ngram-map)
struct common_speculative_state_ngram_simple : public common_speculative_state {
common_ngram_simple_state state;
common_ngram_simple_config config;
uint16_t check_id = 0; // used to control the frequency of generating drafts
common_speculative_state_ngram_simple(
enum common_speculative_type type,
common_ngram_simple_state state)
: common_speculative_state(type), state(state) {}
common_ngram_simple_config config)
: common_speculative_state(type), config(config) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
@@ -479,7 +481,13 @@ struct common_speculative_state_ngram_simple : public common_speculative_state {
const llama_tokens & prompt_tgt,
llama_token id_last,
llama_tokens & result) override {
result = common_ngram_simple_draft(state, prompt_tgt, id_last);
++check_id;
if (check_id < config.check_rate) {
return;
}
check_id = 0;
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
GGML_UNUSED(params);
}
@@ -499,7 +507,7 @@ struct common_speculative_state_ngram_map_k : public common_speculative_state {
: common_speculative_state(type), map(std::move(map)) {}
void begin(const llama_tokens & prompt) override {
GGML_UNUSED(prompt);
common_ngram_map_begin(map, prompt);
}
void draft(
@@ -797,6 +805,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
return it->second;
}
bool common_speculative_is_compat(llama_context * ctx_tgt) {
auto * mem = llama_get_memory(ctx_tgt);
if (mem == nullptr) {
return false;
}
bool res = true;
llama_memory_clear(mem, true);
// eval 2 tokens to check if the context is compatible
std::vector<llama_token> tmp;
tmp.push_back(0);
tmp.push_back(0);
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
if (ret != 0) {
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
res = false;
goto done;
}
// try to remove the last tokens
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
res = false;
goto done;
}
done:
llama_memory_clear(mem, true);
llama_synchronize(ctx_tgt);
return res;
}
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(
@@ -889,14 +933,14 @@ common_speculative * common_speculative_init(
uint16_t mgram_size_value = ngram_map.size_value;
uint16_t check_rate = ngram_map.check_rate;
auto config_simple = common_ngram_simple_config{
auto config_simple = common_ngram_simple_config {
/* .size_ngram = */ ngram_size_key,
/* .size_mgram = */ mgram_size_value,
/* .check_rate = */ check_rate
};
auto state = std::make_unique<common_speculative_state_ngram_simple>(
/* .type = */ config.type,
/* .state = */ common_ngram_simple_state(config_simple)
/* .state = */ config_simple
);
impls.push_back(std::move(state));
break;
@@ -951,6 +995,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
}
for (auto & impl : spec->impls) {
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
impl->begin(prompt);
}
}
@@ -966,14 +1011,9 @@ llama_tokens common_speculative_draft(
for (auto & impl : spec->impls) {
{
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
impl->draft(params, prompt_tgt, id_last, result);
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
impl->drafts_call_count++;
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
}
if (!result.empty()) {
@@ -1001,12 +1041,15 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
GGML_ASSERT(impl);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
}
{
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
}
impl->accept(n_accepted);
impl->accept(n_accepted);
}
}
void common_speculative_print_stats(const common_speculative * spec) {
@@ -1018,13 +1061,14 @@ void common_speculative_print_stats(const common_speculative * spec) {
std::string str_perf;
if (impl->gen_perf) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
str_perf = ", dur = " + oss.str() + " ms";
oss << std::fixed << std::setprecision(3) << impl->t_begin_us / 1000.0 << ", ";
oss << std::fixed << std::setprecision(3) << impl->t_draft_us / 1000.0 << ", ";
oss << std::fixed << std::setprecision(3) << impl->t_accept_us / 1000.0;
str_perf = ", dur(b,g,a) = " + oss.str() + " ms";
} else {
str_perf = "";
}
// TODO: report time for begin() and accept()
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,

View File

@@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
// convert type to string
std::string common_speculative_type_to_str(enum common_speculative_type type);
// check if the llama_context is compatible for speculative decoding
// note: clears the memory of the context
bool common_speculative_is_compat(llama_context * ctx_tgt);
common_speculative * common_speculative_init(
common_params_speculative & params,
llama_context * ctx_tgt);

View File

@@ -586,6 +586,10 @@ class ModelBase:
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
# Kimi KDA conv weights should be F32
gguf.MODEL_TENSOR.SSM_CONV1D_Q,
gguf.MODEL_TENSOR.SSM_CONV1D_K,
gguf.MODEL_TENSOR.SSM_CONV1D_V,
)
)
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
@@ -903,10 +907,10 @@ class TextModel(ModelBase):
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
if (n_experts := self.hparams.get("num_local_experts")) is not None:
if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None:
self.gguf_writer.add_expert_count(n_experts)
logger.info(f"gguf: expert count = {n_experts}")
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
if (n_expert_groups := self.hparams.get("n_group")) is not None:
@@ -916,7 +920,7 @@ class TextModel(ModelBase):
self.gguf_writer.add_expert_group_used_count(n_group_used)
logger.info(f"gguf: expert groups used count = {n_group_used}")
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None:
if score_func == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
elif score_func == "softmax":
@@ -5013,6 +5017,221 @@ class CodeShellModel(TextModel):
self.gguf_writer.add_rope_scaling_factor(1.0)
@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM")
class KimiLinearModel(TextModel):
"""Kimi-Linear model with hybrid MLA+KDA architecture"""
model_arch = gguf.MODEL_ARCH.KIMI_LINEAR
_experts: list[dict[str, Tensor]] | None = None
def set_vocab(self):
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# override eos id in config.json with tiktoken eos id
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def set_gguf_parameters(self):
# note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group)
self.hparams["num_key_value_heads"] = 1
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
# KDA & MLA params
# Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv
linear_attn_config = self.hparams["linear_attn_config"]
# n_head == 0 for KDA layers, n_head > 0 for MLA layers
# full_attention_layers list will be used to distingush layer type
_num_kv_heads = list()
_full_attn_layers = linear_attn_config["full_attn_layers"]
for il in range(self.hparams["num_hidden_layers"]):
if il + 1 in _full_attn_layers:
_num_kv_heads.append(self.hparams["num_key_value_heads"])
else:
_num_kv_heads.append(0)
assert len(_num_kv_heads) == self.hparams["num_hidden_layers"]
self.gguf_writer.add_head_count_kv(_num_kv_heads)
if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None:
self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv)
if (kda_head_dim := linear_attn_config.get("head_dim")) is not None:
self.gguf_writer.add_kda_head_dim(kda_head_dim)
# MLA params - use add_* methods that handle arch substitution
# Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv)
if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None:
self.gguf_writer.add_q_lora_rank(q_lora_rank)
# To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA
kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)
self.gguf_writer.add_kv_lora_rank(kv_lora_rank)
# MLA head dimensions
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
# Rotation - use qk_rope_head_dim for Kimi
qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)
self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim)
self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim)
v_head_dim = self.hparams.get("v_head_dim")
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None:
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
elif qk_nope_head_dim is not None:
n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
# n_embd_head_v_mla = v_head_dim
if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None:
self.gguf_writer.add_value_length_mla(n_embd_head_v_mla)
elif v_head_dim is not None:
self.gguf_writer.add_value_length_mla(v_head_dim)
# moe_intermediate_size (1024 for Kimi)
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
# num_shared_experts (1 for Kimi)
self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"])
# first_k_dense_replace (1 for Kimi - first layer uses dense MLP)
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
# Routed scaling factor (expert_weights_scale = 2.446 for Kimi)
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}")
# Handle KDA conv1d weights
# HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest
# llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest
# GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
# Memory layouts match: both have conv_step (d_conv) changing fastest
if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")):
# HF shape: [d_inner, d_conv] e.g. [4096, 4]
# Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
if data_torch.ndim == 2:
d_inner, d_conv = data_torch.shape
# Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest)
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
elif data_torch.ndim == 3:
# Already 3D [d_inner, 1, d_conv] from unsqueeze
d_inner, _, d_conv = data_torch.shape
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
# Kimi specific bias
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# Handle A_log: iHF stores as [1, 1, num_heads, 1]
# llama.cpp expects ggml ne = [1, num_heads, 1, 1]
# GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1]
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
if name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
logger.info("Changed dt_bias to dt_proj.bias")
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False)
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
# w1: gate, w2: down, w3: up
for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP),
("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP),
("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
new_name = self.format_tensor_name(tname, bid)
yield from super().modify_tensors(data_torch, new_name, bid)
return
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
if name.endswith("kv_b_proj.weight"):
name_kb = name.replace("kv_b_proj", "k_b_proj")
name_vb = name.replace("kv_b_proj", "v_b_proj")
n_head_kv = self.hparams["num_key_value_heads"]
v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False)
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
logger.info("Split kv_b n_head_kv %d\n" % n_head_kv)
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
k_b = k_b.transpose(1, 2)
yield from super().modify_tensors(k_b, name_kb, bid)
yield from super().modify_tensors(v_b, name_vb, bid)
return
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("InternLM2ForCausalLM")
class InternLM2Model(TextModel):
model_arch = gguf.MODEL_ARCH.INTERNLM2
@@ -7693,6 +7912,135 @@ class MimoV2Model(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("Step3p5ForCausalLM")
class Step35Model(TextModel):
model_arch = gguf.MODEL_ARCH.STEP35
def set_gguf_parameters(self):
rope_theta = self.hparams.get("rope_theta")
if isinstance(rope_theta, list):
self.hparams["rope_theta"] = float(rope_theta[0])
self.hparams["local_rope_theta"] = float(rope_theta[1])
self.rope_parameters["rope_theta"] = self.hparams["rope_theta"]
self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]}
super().set_gguf_parameters()
layer_types = self.hparams.get("layer_types") or []
partial_rotary_factors = self.hparams.get("partial_rotary_factors") or []
attn_other = self.hparams.get("attention_other_setting") or {}
n_head_base = self.hparams["num_attention_heads"]
n_kv_base = self.hparams["num_attention_groups"]
n_head_swa = attn_other.get("num_attention_heads", n_head_base)
n_kv_swa = attn_other.get("num_attention_groups", n_kv_base)
layer_types = layer_types[: self.block_count]
partial_rotary_factors = partial_rotary_factors[: self.block_count]
assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors
head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types]
kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types]
swa_pat = [lt == "sliding_attention" for lt in layer_types]
self.gguf_writer.add_head_count(head_arr)
self.gguf_writer.add_head_count_kv(kv_arr)
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_sliding_window_pattern(swa_pat)
self.gguf_writer.add_value_length(self.hparams["head_dim"])
# MoE params
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"])
if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor)
if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_expert_weight)
# leading dense blocks
leading_dense = 0
moe_layers_enum = self.hparams.get("moe_layers_enum")
if isinstance(moe_layers_enum, str) and moe_layers_enum.strip():
moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(","))
if moe_layers:
leading_dense = max(0, moe_layers[0])
self.gguf_writer.add_leading_dense_block_count(leading_dense)
self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1)))
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
# Optional per-layer SwiGLU clamps.
if (limits := self.hparams.get("swiglu_limits")) is not None:
limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_exp(limits_f)
if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None:
limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# remove mtp layers
if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None:
il = int(m.group(1))
n_main = int(self.hparams.get("num_hidden_layers", self.block_count))
if il >= n_main:
return
if name.endswith("norm.weight"):
data_torch += 1.0
# Map router bias (expert selection bias) to a GGUF bias tensor
if name.endswith(".moe.router_bias"):
name += ".bias"
if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")):
data_torch = data_torch.squeeze().contiguous()
yield from super().modify_tensors(data_torch, name, bid)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3").
# llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS).
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
rope_type = rope_params.get("rope_type") or ""
if rope_type.lower() != "llama3":
return
# Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value.
rope_theta = self.hparams.get("rope_theta", 10000.0)
if isinstance(rope_theta, list):
rope_theta = rope_theta[0]
base = float(rope_theta)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = int(dim)
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = float(rope_params.get("factor", 8.0))
low_freq_factor = float(rope_params.get("low_freq_factor", 1.0))
high_freq_factor = float(rope_params.get("high_freq_factor", 4.0))
old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192)))
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
rope_factors: list[float] = []
for freq in freqs:
wavelen = 2 * math.pi / float(freq)
if wavelen < high_freq_wavelen:
rope_factors.append(1.0)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("PanguEmbeddedForCausalLM")
class PanguEmbeddedModel(TextModel):
model_arch = gguf.MODEL_ARCH.PANGU_EMBED

View File

@@ -22,12 +22,11 @@
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over Intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
### Llama.cpp + SYCL
The llama.cpp SYCL backend is primarily designed for **Intel GPUs**.
SYCL cross-platform capabilities enable support for Nvidia GPUs as well, with limited support for AMD.
SYCL cross-platform capabilities enable support for other vendor GPUs as well.
## Recommended Release
@@ -42,6 +41,9 @@ The following releases are verified and recommended:
## News
- 2026.02
- Remove support for Nvidia & AMD GPU, because the oneAPI plugin for Nvidia & AMD GPU is unavailable: download/installation channels are out of work. User can't build up the software for Nvidia & AMD GPU.
- 2025.11
- Support malloc memory on device more than 4GB.
@@ -111,8 +113,8 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
|-------------------------------|---------|---------------------------------------|
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
| Intel Arc B-Series | Support | Arc B580 |
| Intel Arc A-Series | Support | Arc A770, Arc A730M, Arc A750 |
| Intel Arc B-Series | Support | Arc B580 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake, Lunar Lake |
| Intel iGPU | Support | iGPU in 13700k, 13400, i5-1250P, i7-1260P, i7-1165G7 |
@@ -127,20 +129,7 @@ On older Intel GPUs, you may try [OpenCL](/docs/backend/OPENCL.md) although the
### Other Vendor GPU
**Verified devices**
| Nvidia GPU | Status | Verified Model |
|--------------------------|-----------|----------------|
| Ampere Series | Supported | A100, A4000 |
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
| AMD GPU | Status | Verified Model |
|--------------------------|--------------|----------------|
| Radeon Pro | Experimental | W6800 |
| Radeon RX | Experimental | 6700 XT |
Note: AMD GPU support is highly experimental and is incompatible with F16.
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
NA
## Docker
@@ -149,11 +138,11 @@ The docker build option is currently limited to *Intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
# Using FP32
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=OFF" --target light -f .devops/intel.Dockerfile .
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
@@ -212,14 +201,6 @@ Platform #0: Intel(R) OpenCL HD Graphics
`-- Device #0: Intel(R) Iris(R) Xe Graphics [0x9a49]
```
- **Nvidia GPU**
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
- **AMD GPU**
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
2. **Install Intel® oneAPI Base toolkit**
SYCL backend depends on:
@@ -248,23 +229,6 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
|2025.1|
|2024.1|
- **Adding support to Nvidia GPUs**
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -285,25 +249,6 @@ When targeting an intel GPU, the user should expect one or more devices among th
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) UHD Graphics 730 OpenCL 3.0 NEO [24.39.31294]
```
- **Nvidia GPU**
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
```
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
```
- **AMD GPU**
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
```
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
```
### II. Build llama.cpp
#### Intel GPU
@@ -332,47 +277,6 @@ It is possible to come across some precision issues when running tests that stem
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# build all binary
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
# Use FP32, FP16 is not supported
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# build all binary
cmake --build build --config Release -j -v
```
### III. Run the inference
#### Retrieve and prepare model
@@ -766,15 +670,15 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path. |
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_TARGET | INTEL *(default)* | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional | Set the SYCL device architecture. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. (1.) |
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| GGML_SYCL_GRAPH | OFF *(default)* \|ON *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| GGML_SYCL_DNN | ON *(default)* \|OFF *(Optional)* | Enable build with oneDNN. |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
1. FP16 is recommended for better prompt processing performance on quantized models. Performance is equivalent in text generation but set `GGML_SYCL_F16=OFF` if you are experiencing issues with FP16 builds.
1. FP32 or FP16 have different performance impact to LLM. Recommended to test them for better prompt processing performance on your models. You need to rebuild the code after change `GGML_SYCL_F16=OFF/ON`.
#### Runtime
@@ -782,7 +686,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features for Intel GPUs. (Recommended to 1 for intel devices older than Gen 10) |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because SYCL Graph is still on development, no better performance. |
| GGML_SYCL_DISABLE_DNN | 0 (default) or 1 | Disable running computations through oneDNN and always use oneMKL. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
| UR_L0_ENABLE_RELAXED_ALLOCATION_LIMITS | 0 (default) or 1 | Support malloc device memory more than 4GB.|

View File

@@ -252,9 +252,7 @@ CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.ggu
The environment variable [`CUDA_SCALE_LAUNCH_QUEUES`](https://docs.nvidia.com/cuda/cuda-programming-guide/05-appendices/environment-variables.html#cuda-scale-launch-queues) controls the size of CUDA's command buffer, which determines how many GPU operations can be queued before the CPU must wait for the GPU to catch up. A larger buffer reduces CPU-side stalls and allows more work to be queued on a GPU.
**Default behavior:** llama.cpp automatically sets `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
See PR [#19042](https://github.com/ggml-org/llama.cpp/pull/19042) for performance benchmarks and technical details.
Consider setting `CUDA_SCALE_LAUNCH_QUEUES=4x`, which increases the CUDA command buffer to 4 times its default size. This optimization is particularly beneficial for **Multi-GPU setups with pipeline parallelism**, where it significantly improves prompt processing throughput by allowing more operations to be enqueued across GPUs.
### Unified Memory

View File

@@ -9,7 +9,7 @@ Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch m
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-o-4](https://huggingface.co/openbmb/MiniCPM-o-4) PyTorch model
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -8,7 +8,7 @@ Download [MiniCPM-Llama3-V-2_5](https://huggingface.co/openbmb/MiniCPM-Llama3-V-
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,7 +8,7 @@ Download [MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) PyTorch m
### Build llama.cpp
Readme modification time: 20250206
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-V-4](https://huggingface.co/openbmb/MiniCPM-V-4) PyTorch model
### Build llama.cpp
Readme modification time: 20250731
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -8,11 +8,11 @@ Download [MiniCPM-V-4_5](https://huggingface.co/openbmb/MiniCPM-V-4_5) PyTorch m
### Build llama.cpp
Readme modification time: 20250826
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
If there are differences in usage, please refer to the official build [documentation](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
Clone llama.cpp:
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```

View File

@@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |
@@ -113,7 +113,7 @@ Legend:
| SWIGLU_OAI | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TANH | ❌ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | 🟡 | ✅ | ❌ | ❌ |
| TIMESTEP_EMBEDDING | ❌ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| TOP_K | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| TRI | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| TRUNC | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| UPSCALE | ❌ | 🟡 | ✅ | ✅ | 🟡 | 🟡 | 🟡 | 🟡 | ❌ | ❌ | ❌ |

View File

@@ -77,8 +77,8 @@
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@@ -161,8 +161,8 @@
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@@ -9677,168 +9677,168 @@
"SYCL0","ARGSORT","type=f32,ne=[2048,2,1,3],order=1","support","1","yes","SYCL"
"SYCL0","ARGSORT","type=f32,ne=[2049,2,1,3],order=1","support","1","yes","SYCL"
"SYCL0","ARGSORT","type=f32,ne=[2,8,8192,1],order=1","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[12,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[13,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[15,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[19,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[27,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[43,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[64,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[75,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[128,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[139,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[256,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[267,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[512,1,1,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[523,1,2,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,1,1,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1035,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,1,1,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2059,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4096,1,1,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[4107,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=500,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8192,1,1,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[8203,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9847,16 +9847,16 @@
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16395,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9865,16 +9865,16 @@
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32768,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[32779,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9883,16 +9883,16 @@
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65536,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[65547,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9901,16 +9901,16 @@
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131072,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[131083,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9919,16 +9919,16 @@
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262144,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[262155,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=100,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=500,ties=0","support","0","no","SYCL"
@@ -9937,51 +9937,51 @@
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=1023,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524288,1,1,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[524299,1,2,1],k=9999,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","0","no","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=1,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=2,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=3,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=7,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16,10,10,10],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[60,10,10,10],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1023,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1024,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[1025,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[16384,1,1,1],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2047,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2048,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","TOP_K","type=f32,ne=[2049,2,1,3],k=15,ties=0","support","1","yes","SYCL"
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=0","support","1","yes","SYCL"
"SYCL0","UPSCALE","type=f32,ne=[512,512,3,2],scale_factor=2,mode=nearest,transpose=1","support","1","yes","SYCL"
"SYCL0","UPSCALE","type=f32,ne=[2,5,7,11],ne_tgt=[5,7,11,13],mode=nearest","support","1","yes","SYCL"
Can't render this file because it is too large.

View File

@@ -6,7 +6,7 @@ llama.cpp supports speculative decoding, a technique that can significantly acce
## Implementations
The `llama-server` application supports several implementations of speculative decoding:
The `llama-server` application supports several implementations of speculative decoding. An implementation with draft model can be mixed with an implementation without draft model.
### Draft Model (`draft`)
@@ -32,12 +32,21 @@ An example to use this approach can be the rewriting of source code by a LLM.
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
```
llama-server [...] --spec-type ngram-simple --draft-max 64
```
#### n-gram Map Key (`ngram-map-k`)
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts.
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`, default is 1) before generating drafts.
The number of accepted tokens is stored for each used n-gram.
**Example:**
```
llama-server [...] --spec-type ngram-map-k --draft-max 64
```
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
@@ -45,17 +54,65 @@ This experimental implementation looks for the current n-gram of size n (called
The number of accepted tokens is stored for each used n-gram.
**Example:** Server options to be used if there are a lot of longer repetitions.
```bash
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2
```
llama-server [...] --spec-type ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2 --draft-max 64
```
### n-gram Mod (`ngram-mod`)
Add basic ngram hasher for speculative decoding:
- For each ngram, compute a hash using LCG
- For each computed hash, store the next token
- During speculation, iteratively compute the rolling hash of the last n tokens and pick the next token from the storage
Some characteristics:
- Lightweight (~16 MB)
- Constant memory and complexity
- Can generate variable draft lengths (i.e. m is not fixed)
Currently, a single hash pool is shared across all server slots, so different requests can benefit from each other.
**Sample usage:**
```
# notes:
# - small `n` are not recommended
# - MoEs require long drafts
# - dense models: can reduce `--draft-min` and `--draft-max`
llama-server ... --spec-type ngram-mod --spec-ngram-size-n 24 --draft-min 48 --draft-max 64
```
Applications:
- Iterating over a block of text/code (e.g. in llama.vim)
- Reasoning models (when they have to repeat their thinking in the final answer)
- Summarization
Example Video:
- See #19164
### Differences between ngram-simple, ngram-map and ngram-mod
- ngram-simple looks for a previous matching n-gram and inserts the following m-gram.
- ngram-map-k looks for a previous matching n-gram and inserts the following m-gram but uses an internal hash-map of n-grams in the current context window.
- ngram-mod uses a hash pool which is shared across all server slots. The hash pool is a map from n-gram hash to the next token (not the next m-gram as in ngram-map).
## Command-Line Options
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
```
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]
--draft, --draft-n, --draft-max N number of tokens to draft for speculative decoding (default: 16)
(env: LLAMA_ARG_DRAFT_MAX)
--draft-min, --draft-n-min N minimum number of draft tokens to use for speculative decoding
(default: 0)
(env: LLAMA_ARG_DRAFT_MIN)
[...]
--spec-type [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-mod]
type of speculative decoding to use when no draft model is provided
(default: none)
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
@@ -78,6 +135,7 @@ Specifies a type of speculative decoding without draft model.
| `ngram-simple` | Use simple n-gram pattern matching |
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
| `ngram-mod` | Use basic ngram hasher for speculative decoding with shared pool |
**Example:** Server-instance used to refactor source code.
```bash
@@ -112,9 +170,15 @@ statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tok
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
```
```
draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
```
- `#calls`: number of calls of this implementations
- `#gen drafts`: number of drafts generated by this implementation
- `#acc drafts`: number of drafts accepted (partially) by the main model
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
- `#acc tokens`: number of tokens accepted by the main model
- `dur(b,g,a): durations of begin (new prompt), generation and accumulation (process acceptance).

View File

@@ -1,7 +1,7 @@
# Migration notice for binary filenames
> [!IMPORTANT]
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggerganov/llama.cpp/pull/7809)
[2024 Jun 12] Binaries have been renamed w/ a `llama-` prefix. `main` is now `llama-cli`, `server` is `llama-server`, etc (https://github.com/ggml-org/llama.cpp/pull/7809)
This migration was important, but it is a breaking change that may not always be immediately obvious to users.

View File

@@ -28,7 +28,7 @@ int main(int argc, char** argv) {
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, " Please use '%s' instead.\n", replacement_filename.c_str());
fprintf(stdout, " See https://github.com/ggerganov/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, " See https://github.com/ggml-org/llama.cpp/tree/master/examples/deprecation-warning/README.md for more information.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;

View File

@@ -402,7 +402,7 @@ class SchemaConverter:
Transforms a regular expression pattern into a GBNF rule.
Input: https://json-schema.org/understanding-json-schema/reference/regular_expressions
Output: https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md
Output: https://github.com/ggml-org/llama.cpp/blob/master/grammars/README.md
Unsupported features: negative/positive lookaheads, greedy/non-greedy modifiers.

View File

@@ -33,11 +33,14 @@ DEVICE ?= auto
causal-convert-model-bf16: OUTTYPE=bf16
causal-convert-model-bf16: causal-convert-model
causal-convert-model-debug: DEBUG=--debug
causal-convert-model-debug: causal-convert-model
causal-convert-model:
$(call validate_model_path,causal-convert-model)
@MODEL_NAME="$(MODEL_NAME)" OUTTYPE="$(OUTTYPE)" MODEL_PATH="$(MODEL_PATH)" \
METADATA_OVERRIDE="$(METADATA_OVERRIDE)" \
./scripts/causal/convert-model.sh
./scripts/causal/convert-model.sh $(DEBUG)
causal-convert-mm-model-bf16: OUTTYPE=bf16
causal-convert-mm-model-bf16: MM_OUTTYPE=f16

View File

@@ -4,12 +4,17 @@ set -e
# Parse command line arguments
MMPROJ=""
DEBUG=""
while [[ $# -gt 0 ]]; do
case $1 in
--mmproj)
MMPROJ="--mmproj"
shift
;;
--debug)
DEBUG="1"
shift
;;
*)
shift
;;
@@ -28,7 +33,12 @@ echo "Data type: ${TYPE}"
echo "Converted model path:: ${CONVERTED_MODEL}"
echo "Metadata override: ${METADATA_OVERRIDE}"
CMD_ARGS=("python" "../../convert_hf_to_gguf.py" "--verbose")
if [[ -n "$DEBUG" ]]; then
CMD_ARGS=("python" "-m" "pdb")
else
CMD_ARGS=("python")
fi
CMD_ARGS+=("../../convert_hf_to_gguf.py" "--verbose")
CMD_ARGS+=("${MODEL_PATH}")
CMD_ARGS+=("--outfile" "${CONVERTED_MODEL}")
CMD_ARGS+=("--outtype" "${TYPE}")

View File

@@ -0,0 +1,159 @@
#!/usr/bin/env python3
import argparse
import json
import os
import re
import sys
from pathlib import Path
from typing import Optional
from safetensors import safe_open
MODEL_SAFETENSORS_FILE = "model.safetensors"
MODEL_SAFETENSORS_INDEX = "model.safetensors.index.json"
def get_weight_map(model_path: Path) -> Optional[dict[str, str]]:
index_file = model_path / MODEL_SAFETENSORS_INDEX
if index_file.exists():
with open(index_file, 'r') as f:
index = json.load(f)
return index.get("weight_map", {})
return None
def get_all_tensor_names(model_path: Path) -> list[str]:
weight_map = get_weight_map(model_path)
if weight_map is not None:
return list(weight_map.keys())
single_file = model_path / MODEL_SAFETENSORS_FILE
if single_file.exists():
try:
with safe_open(single_file, framework="pt", device="cpu") as f:
return list(f.keys())
except Exception as e:
print(f"Error reading {single_file}: {e}")
sys.exit(1)
print(f"Error: No safetensors files found in {model_path}")
sys.exit(1)
def find_tensor_file(model_path: Path, tensor_name: str) -> Optional[str]:
weight_map = get_weight_map(model_path)
if weight_map is not None:
return weight_map.get(tensor_name)
single_file = model_path / MODEL_SAFETENSORS_FILE
if single_file.exists():
return single_file.name
return None
def normalize_tensor_name(tensor_name: str) -> str:
normalized = re.sub(r'\.\d+\.', '.#.', tensor_name)
normalized = re.sub(r'\.\d+$', '.#', normalized)
return normalized
def list_all_tensors(model_path: Path, unique: bool = False):
tensor_names = get_all_tensor_names(model_path)
if unique:
seen = set()
for tensor_name in sorted(tensor_names):
normalized = normalize_tensor_name(tensor_name)
if normalized not in seen:
seen.add(normalized)
print(normalized)
else:
for tensor_name in sorted(tensor_names):
print(tensor_name)
def print_tensor_info(model_path: Path, tensor_name: str):
tensor_file = find_tensor_file(model_path, tensor_name)
if tensor_file is None:
print(f"Error: Could not find tensor '{tensor_name}' in model index")
print(f"Model path: {model_path}")
sys.exit(1)
file_path = model_path / tensor_file
try:
with safe_open(file_path, framework="pt", device="cpu") as f:
if tensor_name in f.keys():
tensor_slice = f.get_slice(tensor_name)
shape = tensor_slice.get_shape()
print(f"Tensor: {tensor_name}")
print(f"File: {tensor_file}")
print(f"Shape: {shape}")
else:
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
sys.exit(1)
except FileNotFoundError:
print(f"Error: The file '{file_path}' was not found.")
sys.exit(1)
except Exception as e:
print(f"An error occurred: {e}")
sys.exit(1)
def main():
parser = argparse.ArgumentParser(
description="Print tensor information from a safetensors model"
)
parser.add_argument(
"tensor_name",
nargs="?", # optional (if --list is used for example)
help="Name of the tensor to inspect"
)
parser.add_argument(
"-m", "--model-path",
type=Path,
help="Path to the model directory (default: MODEL_PATH environment variable)"
)
parser.add_argument(
"-l", "--list",
action="store_true",
help="List unique tensor patterns in the model (layer numbers replaced with #)"
)
args = parser.parse_args()
model_path = args.model_path
if model_path is None:
model_path_str = os.environ.get("MODEL_PATH")
if model_path_str is None:
print("Error: --model-path not provided and MODEL_PATH environment variable not set")
sys.exit(1)
model_path = Path(model_path_str)
if not model_path.exists():
print(f"Error: Model path does not exist: {model_path}")
sys.exit(1)
if not model_path.is_dir():
print(f"Error: Model path is not a directory: {model_path}")
sys.exit(1)
if args.list:
list_all_tensors(model_path, unique=True)
else:
if args.tensor_name is None:
print("Error: tensor_name is required when not using --list")
sys.exit(1)
print_tensor_info(model_path, args.tensor_name)
if __name__ == "__main__":
main()

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -19,6 +19,9 @@ extern "C" {
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
// use only reference implementations
bool use_ref;
};
// numa strategies
@@ -132,6 +135,8 @@ extern "C" {
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_BACKEND_API void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API void ggml_cpu_fp32_to_fp32(const float *, float *, int64_t);

View File

@@ -7,8 +7,6 @@
extern "C" {
#endif
#define GGML_REMOTING_FRONTEND_NAME "RemotingFrontend"
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_virtgpu_reg();
#ifdef __cplusplus

View File

@@ -6,7 +6,7 @@
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
// https://github.com/ggml-org/whisper.cpp/issues/40
//
// ## Overview
//

View File

@@ -258,6 +258,7 @@ void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor *
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
if (backend->iface.set_tensor_async == NULL) {
ggml_backend_synchronize(backend);
ggml_backend_tensor_set(tensor, data, offset, size);
} else {
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
@@ -271,6 +272,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
if (backend->iface.get_tensor_async == NULL) {
ggml_backend_synchronize(backend);
ggml_backend_tensor_get(tensor, data, offset, size);
} else {
backend->iface.get_tensor_async(backend, tensor, data, offset, size);

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/**
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -1,5 +1,5 @@
/*
* Copyright (c) 2023-2024 The ggml authors
* Copyright (c) 2023-2026 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to

View File

@@ -268,9 +268,9 @@ static inline __m256 quad_fp16_delta_float(const float x0, const float y0, const
_mm_set1_ps(GGML_CPU_FP16_TO_FP32(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
static inline __m256 quad_mx_delta_float(const int8_t x0, const float y0, const int8_t x1, const float y1) {
return _mm256_set_m128(_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
static inline __m256 quad_mx_delta_float(const uint8_t x0, const float y0, const uint8_t x1, const float y1) {
return _mm256_set_m128(_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x1) * GGML_CPU_FP16_TO_FP32(y1)),
_mm_set1_ps(GGML_CPU_E8M0_TO_FP32_HALF(x0) * GGML_CPU_FP16_TO_FP32(y0)));
}
#endif
#elif defined(__SSSE3__)
@@ -782,6 +782,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
__m256 accum1 = _mm256_setzero_ps();
__m256 accum2 = _mm256_setzero_ps();
for (; ib + 1 < nb; ib += 2) {
const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[ib + 0].qs);
const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[ib + 1].qs);
@@ -795,10 +796,10 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 0].e)),
_mm256_cvtepi32_ps(p_1), accum1);
accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_E8M0_TO_FP32_HALF(x[ib + 1].e)),
_mm256_cvtepi32_ps(p_2), accum2);
const __m256 scale0 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 0].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 0].e));
const __m256 scale1 = _mm256_set1_ps(GGML_CPU_FP16_TO_FP32(y[ib + 1].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib + 1].e));
accum1 = _mm256_fmadd_ps(scale0, _mm256_cvtepi32_ps(p_1), accum1);
accum2 = _mm256_fmadd_ps(scale1, _mm256_cvtepi32_ps(p_2), accum2);
}
sumf = hsum_float_8(_mm256_add_ps(accum1, accum2));
@@ -830,7 +831,7 @@ void ggml_vec_dot_mxfp4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const vo
#endif
for (; ib < nb; ++ib) {
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_E8M0_TO_FP32_HALF(x[ib].e);
const float d = GGML_CPU_FP16_TO_FP32(y[ib].d)*GGML_CPU_E8M0_TO_FP32_HALF(x[ib].e);
int sumi1 = 0;
int sumi2 = 0;
for (int j = 0; j < QK_MXFP4/2; ++j) {
@@ -3817,4 +3818,3 @@ void ggml_vec_dot_iq4_xs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const v
ggml_vec_dot_iq4_xs_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

View File

@@ -24,6 +24,9 @@ struct ggml_compute_params {
void * wdata;
struct ggml_threadpool * threadpool;
// use reference implementation
bool use_ref;
};

View File

@@ -5,7 +5,6 @@
#include "ggml-backend.h"
#include "traits.h"
#include "ggml-cpu-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include "quants.h"
#include "ggml-threading.h"
@@ -76,6 +75,9 @@
// precomputed f32 table for f16 (256 KB) (simd-mappings.h)
float ggml_table_f32_f16[1 << 16];
// precomputed f32 table for e8m0 half (1 KB) (simd-mappings.h)
float ggml_table_f32_e8m0_half[1 << 8];
#if defined(__ARM_ARCH)
struct ggml_arm_arch_features_type {
int sve_cnt;
@@ -2867,12 +2869,20 @@ struct ggml_cplan ggml_graph_plan(
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t neq2 = node->src[0]->ne[2]; // number of query heads
const int64_t DK = node->src[1]->ne[0];
const int64_t DV = node->src[2]->ne[0];
// Tiled flash attention scratch (tile sizes defined in common.h)
// Per-thread: Q_q + KQ + mask + VKQ32 + V32 + padding
cur = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
size_t prefill = sizeof(float)*(GGML_FA_TILE_Q*DK + 2*GGML_FA_TILE_Q*GGML_FA_TILE_KV + GGML_FA_TILE_Q*DV + GGML_FA_TILE_KV*DV)*n_tasks;
// Decode path: n_kv_chunks = n_tasks (one chunk per thread)
// Per-thread: VKQ accmulator (DV), partial M, partial S + intra-thread scratch for V, Q and VKQ
size_t n_chunks = n_tasks;
size_t decode = sizeof(float)*(neq2*n_chunks*(2+DV) + n_tasks*(DK + 2*DV));
cur += MAX(prefill, decode);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
@@ -2929,11 +2939,12 @@ static thread_ret_t ggml_graph_compute_thread(void * data) {
set_numa_thread_affinity(state->ith);
struct ggml_compute_params params = {
/*.ith =*/ state->ith,
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
/*.threadpool=*/ tp,
/*.ith =*/ state->ith,
/*.nth =*/ atomic_load_explicit(&tp->n_graph, memory_order_relaxed) & GGML_THREADPOOL_N_THREADS_MASK,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
/*.threadpool =*/ tp,
/*.use_ref =*/ cplan->use_ref,
};
GGML_PRINT_DEBUG("thread #%d compute-start cplan %p last-graph %d \n", state->ith, cplan, state->last_graph);
@@ -3673,6 +3684,11 @@ void ggml_cpu_init(void) {
ggml_table_gelu_quick_f16[i] = GGML_CPU_FP32_TO_FP16(ggml_gelu_quick_f32(f));
}
// initialize E8M0 half table (256 entries)
for (int i = 0; i < (1 << 8); ++i) {
ggml_table_f32_e8m0_half[i] = GGML_E8M0_TO_FP32_HALF(i);
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0);

View File

@@ -105,6 +105,8 @@ struct ggml_backend_cpu_context {
ggml_abort_callback abort_callback;
void * abort_callback_data;
bool use_ref; // use reference implementation
};
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
@@ -143,6 +145,7 @@ static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
cpu_plan->cplan.use_ref = cpu_ctx->use_ref;
return cpu_plan;
}
@@ -182,6 +185,7 @@ static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, s
cplan.abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
cplan.use_ref = cpu_ctx->use_ref;
return ggml_graph_compute(cgraph, &cplan);
}
@@ -223,6 +227,7 @@ ggml_backend_t ggml_backend_cpu_init(void) {
ctx->work_size = 0;
ctx->abort_callback = NULL;
ctx->abort_callback_data = NULL;
ctx->use_ref = false;
ggml_backend_t cpu_backend = new ggml_backend {
/* .guid = */ ggml_backend_cpu_guid(),
@@ -270,6 +275,13 @@ void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_
ctx->abort_callback_data = abort_callback_data;
}
void ggml_backend_cpu_set_use_ref(ggml_backend_t backend_cpu, bool use_ref) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->use_ref = use_ref;
}
// CPU backend - device
struct ggml_backend_cpu_device_context {
@@ -646,6 +658,9 @@ static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const ch
if (strcmp(name, "ggml_backend_cpu_is_numa") == 0) {
return (void *)ggml_is_numa;
}
if (strcmp(name, "ggml_backend_cpu_set_use_ref") == 0) {
return (void *)ggml_backend_cpu_set_use_ref;
}
// threadpool - TODO: move to ggml-base
if (strcmp(name, "ggml_threadpool_new") == 0) {

View File

@@ -8042,12 +8042,14 @@ void ggml_compute_forward_top_k(
}
}
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
const ggml_compute_params * params,
ggml_tensor * dst,
int ir0, int ir1) {
int ir0, int ir1,
int64_t ic_start, int64_t ic_end,
float * partials, int64_t partial_stride) {
const bool write_partials = (partials != nullptr);
const ggml_tensor * q = dst->src[0];
const ggml_tensor * k = dst->src[1];
const ggml_tensor * v = dst->src[2];
@@ -8124,7 +8126,6 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
int ith = params->ith;
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
@@ -8165,7 +8166,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
// loop over n_kv and n_head_kv
// ref: https://arxiv.org/pdf/2112.05682.pdf
for (int64_t ic = 0; ic < nek1; ++ic) {
for (int64_t ic = ic_start; ic < ic_end; ++ic) {
const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
if (mv == -INFINITY) {
continue;
@@ -8238,8 +8239,8 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
}
}
// sinks
if (sinks) {
// sinks - apply only on the first kv-chunk
if (sinks && ic_start == 0) {
const float s = ((float *)((char *) sinks->data))[h];
float ms = 1.0f;
@@ -8247,6 +8248,7 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
if (s > M) {
ms = expf(M - s);
M = s;
ggml_vec_scale_f32(DV, VKQ32, ms);
} else {
vs = expf(s - M);
@@ -8255,20 +8257,26 @@ static void ggml_compute_forward_flash_attn_ext_f16_one_chunk(
S = S*ms + vs;
}
// V /= S
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
if (write_partials) {
// Write M, S, VKQ to partials for later reduction
// partials layout: [M, S, VKQ[DV]] per query head
float * partial = partials + ir * partial_stride;
partial[0] = M;
partial[1] = S;
memcpy(partial + 2, VKQ32, DV * sizeof(float));
} else {
// V /= S
const float S_inv = S == 0.0f ? 0.0f : 1.0f/S;
ggml_vec_scale_f32(DV, VKQ32, S_inv);
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// original
//memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
// permute(0, 2, 1, 3)
memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
}
}
}
@@ -8546,6 +8554,78 @@ static void ggml_compute_forward_flash_attn_ext_tiled(
}
}
// Reduction function: combines partial results across KV chunks
// Partials layout in wdata: [n_q_heads][n_chunks][2 + DV]
static void ggml_flash_attn_ext_reduce_partials(
const ggml_compute_params * params,
ggml_tensor * dst,
const int64_t n_chunks,
const int64_t chunk_size) {
const ggml_tensor * q = dst->src[0];
const ggml_tensor * k = dst->src[1];
const ggml_tensor * v = dst->src[2];
const int64_t DK = k->ne[0];
const int64_t DV = v->ne[0];
const int64_t nek1 = k->ne[1];
const int64_t n_q_heads = q->ne[2];
const int ith = params->ith;
const int nth = params->nth;
const int64_t wdata_per_thread = DK + 2*DV + CACHE_LINE_SIZE_F32;
float * thread_wdata = (float *) params->wdata + ith * wdata_per_thread;
const int64_t partials_offset = nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
const int64_t partial_size = 2 + DV;
const float * partials_base = (const float *) params->wdata + partials_offset;
// Output layout
const int64_t ne1 = dst->ne[1];
const int64_t ne2 = dst->ne[2];
const size_t nb1 = dst->nb[1];
// Each thread reduces a subset of query heads
for (int64_t q_head = ith; q_head < n_q_heads; q_head += nth) {
float M_final = -INFINITY;
float S_final = 0.0f;
float * VKQ_final = thread_wdata;
memset(VKQ_final, 0, DV * sizeof(float));
// Combine partials from all chunks
for (int64_t chunk_idx = 0; chunk_idx < n_chunks; ++chunk_idx) {
const int64_t ic_start = chunk_idx * chunk_size;
if (ic_start >= nek1) continue;
const float * partial = partials_base + (q_head * n_chunks + chunk_idx) * partial_size;
const float M_chunk = partial[0];
const float S_chunk = partial[1];
const float * VKQ_chunk = partial + 2;
if (S_chunk == 0.0f) continue;
const float M_new = fmaxf(M_final, M_chunk);
const float scale_old = expf(M_final - M_new);
const float scale_new = expf(M_chunk - M_new);
for (int64_t d = 0; d < DV; ++d) {
VKQ_final[d] = VKQ_final[d] * scale_old + VKQ_chunk[d] * scale_new;
}
S_final = S_final * scale_old + S_chunk * scale_new;
M_final = M_new;
}
// Normalize and write to output
if (S_final != 0.0f) {
const float S_inv = 1.0f / S_final;
ggml_vec_scale_f32(DV, VKQ_final, S_inv);
}
// iq1=0, iq3=0 for decode
memcpy((char *) dst->data + (0*ne2*ne1 + q_head + 0*ne1)*nb1, VKQ_final, nb1);
}
}
static void ggml_compute_forward_flash_attn_ext_f16(
const ggml_compute_params * params,
ggml_tensor * dst) {
@@ -8567,6 +8647,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const int64_t DV = nev0;
const int64_t N = neq1;
GGML_ASSERT(ne0 == DV);
GGML_ASSERT(ne2 == N);
@@ -8587,60 +8668,92 @@ static void ggml_compute_forward_flash_attn_ext_f16(
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int64_t nr = neq1*neq2*neq3;
// rows per thread
const int ith = params->ith;
const int nth = params->nth;
// disable for NUMA
const bool disable_chunking = ggml_is_numa();
// When use_ref is set, force the vec-only reference implementation (no tiling, no KV-chunking)
const bool use_ref = params->use_ref;
// 4x chunks per thread
int nth_scaled = nth * 4;
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
if (nth == 1 || nchunk < nth || disable_chunking) {
nchunk = nth;
}
if (ith == 0) {
// Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
ggml_threadpool_chunk_set(params->threadpool, nth);
}
ggml_barrier(params->threadpool);
// The number of elements in each chunk
const int64_t dr = (nr + nchunk - 1) / nchunk;
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
const bool kv_is_f32_or_f16 = (k->type == GGML_TYPE_F32 || k->type == GGML_TYPE_F16);
const bool use_tiled = (q->type == GGML_TYPE_F32 &&
kv_is_f32_or_f16 &&
k->type == v->type &&
nek1 % KV_TILE_SZ == 0 &&
neq1 >= Q_TILE_SZ); // Only use tiled for batch >= tile size
const bool use_split_kv_path = !use_ref && (neq1 == 1 && neq3 == 1) && kv_is_f32_or_f16 && (k->type == v->type) && q->type == GGML_TYPE_F32 && nek1 >= 512;
// The first chunk comes from our thread_id, the rest will get auto-assigned.
int current_chunk = ith;
if (use_split_kv_path) {
const int64_t chunk_size = (nek1 + nth - 1) / nth;
while (current_chunk < nchunk) {
const int64_t ir0 = dr * current_chunk;
const int64_t ir1 = MIN(ir0 + dr, nr);
// Partials buffer layout: [q_head][kv_chunk][M, S, VKQ]
const int64_t partial_size = 2 + DV;
float * partials_base = (float *) params->wdata + nth * (DK + 2*DV + CACHE_LINE_SIZE_F32);
if (use_tiled) {
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
const int64_t ic_start = ith * chunk_size;
const int64_t ic_end = std::min(ic_start + chunk_size, nek1);
const int64_t partial_stride = nth * partial_size;
float * chunk_partials = partials_base + ith * partial_size;
if (ic_start < nek1) {
for (int64_t q_head = 0; q_head < neq2; q_head++) {
ggml_compute_forward_flash_attn_ext_f16_one_chunk(
params, dst, q_head, q_head + 1, ic_start, ic_end,
chunk_partials, partial_stride);
}
} else {
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1);
for (int64_t q_head = 0; q_head < neq2; q_head++) {
float * q_partials = chunk_partials + q_head * partial_stride;
q_partials[0] = -INFINITY; // M
q_partials[1] = 0.0f; // S
}
}
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
ggml_barrier(params->threadpool);
ggml_flash_attn_ext_reduce_partials(params, dst, nth, chunk_size);
} else {
// total rows in q
const int64_t nr = neq1*neq2*neq3;
// disable for NUMA
const bool disable_chunking = ggml_is_numa();
// 4x chunks per thread
int nth_scaled = nth * 4;
int64_t chunk_size = (nr + nth_scaled - 1) / nth_scaled;
int64_t nchunk = (nr + chunk_size - 1) / chunk_size;
if (nth == 1 || nchunk < nth || disable_chunking) {
nchunk = nth;
}
if (ith == 0) {
ggml_threadpool_chunk_set(params->threadpool, nth);
}
ggml_barrier(params->threadpool);
const int64_t dr = (nr + nchunk - 1) / nchunk;
static constexpr int64_t KV_TILE_SZ = ggml_fa_tile_config::KV;
static constexpr int64_t Q_TILE_SZ = ggml_fa_tile_config::Q;
const bool use_tiled = !use_ref &&
(q->type == GGML_TYPE_F32 &&
kv_is_f32_or_f16 &&
k->type == v->type &&
nek1 % KV_TILE_SZ == 0 &&
neq1 >= Q_TILE_SZ);
int current_chunk = ith;
while (current_chunk < nchunk) {
const int64_t ir0 = dr * current_chunk;
const int64_t ir1 = MIN(ir0 + dr, nr);
if (use_tiled) {
ggml_compute_forward_flash_attn_ext_tiled(params, dst, ir0, ir1);
} else {
ggml_compute_forward_flash_attn_ext_f16_one_chunk(params, dst, ir0, ir1, 0, nek1, nullptr, 0);
}
current_chunk = ggml_threadpool_chunk_add(params->threadpool, 1);
}
}
}

View File

@@ -116,6 +116,17 @@ extern "C" {
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
extern float ggml_table_f32_f16[1 << 16];
// precomputed f32 table for e8m0 half (1 KB)
// defined in ggml-cpu.c, initialized in ggml_cpu_init()
extern float ggml_table_f32_e8m0_half[1 << 8];
// Use lookup table for E8M0 on x86 (faster than bit manipulation)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
#define GGML_CPU_E8M0_TO_FP32_HALF(x) ggml_table_f32_e8m0_half[(uint8_t)(x)]
#else
#define GGML_CPU_E8M0_TO_FP32_HALF(x) GGML_E8M0_TO_FP32_HALF(x)
#endif
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_CPU_FP16_TO_FP32 and GGML_CPU_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.

View File

@@ -2279,13 +2279,19 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
if (ne2 == 1) {
static_assert(MMVQ_MAX_BATCH_SIZE == MMVF_MAX_BATCH_SIZE);
if (ne2 <= MMVQ_MAX_BATCH_SIZE) {
if (ggml_is_quantized(src0->type)) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
if (ne2 <= 4) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
return;
}
} else {
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
if (GGML_CUDA_CC_IS_AMD(cc)) {
ggml_cuda_mul_mat_vec_f(ctx, src0, src1, ids, dst);
return;
}
}
return;
}
if (ggml_cuda_should_use_mmq(src0->type, cc, ne12, /*n_experts=*/ne02)) {
@@ -2973,8 +2979,7 @@ static bool ggml_cuda_graph_node_properties_match(ggml_tensor * node, ggml_cuda_
}
}
if ((node->op == GGML_OP_SCALE || node->op == GGML_OP_GLU) &&
memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
if (memcmp(props->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
return false;
}
@@ -5049,16 +5054,6 @@ ggml_backend_reg_t ggml_backend_cuda_reg() {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
// Set CUDA_SCALE_LAUNCH_QUEUES before any CUDA API call to improve multi-GPU pipeline parallelism performance
// PR: https://github.com/ggml-org/llama.cpp/pull/19042
if (getenv("CUDA_SCALE_LAUNCH_QUEUES") == nullptr) {
#ifdef _WIN32
_putenv_s("CUDA_SCALE_LAUNCH_QUEUES", "4x");
#else
setenv("CUDA_SCALE_LAUNCH_QUEUES", "4x", 0); // don't overwrite if already set
#endif // _WIN32
}
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
const int min_batch_size = getenv("GGML_OP_OFFLOAD_MIN_BATCH") ? atoi(getenv("GGML_OP_OFFLOAD_MIN_BATCH")) : 32;

View File

@@ -3697,13 +3697,20 @@ static __global__ void mul_mat_q(
tile_x_max_i, tile_y_max_j, kb0_start, kb0_stop);
}
template <ggml_type type, int mmq_x, bool need_check>
static __global__ void mul_mat_q_stream_k_fixup(
const int32_t * ids_dst, const int32_t * expert_bounds, float * __restrict__ dst, const float * __restrict__ tmp_last_tile,
const int ncols_x, const int nrows_x, const int ncols_dst, const int stride_col_dst,
const int nchannels_y, const int stride_channel_dst, const int nsamples_y, const int stride_sample_dst,
const int ncols_max) {
static __global__ void mul_mat_q_stream_k_fixup(const int32_t * ids_dst,
const int32_t * expert_bounds,
float * __restrict__ dst,
const float * __restrict__ tmp_last_tile,
const int ncols_x,
const int nrows_x,
const int ncols_dst,
const size_t stride_col_dst,
const int nchannels_y,
const size_t stride_channel_dst,
const int nsamples_y,
const size_t stride_sample_dst,
const int ncols_max) {
constexpr int mmq_y = get_mmq_y_device();
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int ITER_K = get_iter_k(type);

View File

@@ -4,26 +4,48 @@
#include "mmvf.cuh"
#include "convert.cuh"
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false>
template <typename T, typename type_acc, int ncols_dst, int block_size, bool has_fusion = false, bool is_multi_token_id = false>
static __global__ void mul_mat_vec_f(
const T * __restrict__ x, const float * __restrict__ y, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const int ncols2, const int nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const int ncols2, const uint3 nchannels_y, const int stride_row, const int stride_col_y2, const int stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst) {
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const int ids_stride) {
const int row = blockIdx.x;
// for MUL_MAT_ID - blockIdx.y = n_expert_used, blockIdx.z = ncols_dst (tokens)
const int channel_dst = blockIdx.y;
const int channel_x = ids ? ids[channel_dst] : fastdiv((uint32_t) channel_dst, channel_ratio);
const int channel_y = ids ? channel_dst % nchannels_y : channel_dst;
const int sample_dst = blockIdx.z;
const int tid = threadIdx.x;
int token_idx;
int channel_x;
int channel_y;
int sample_dst;
if constexpr (is_multi_token_id) {
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
token_idx = blockIdx.z;
channel_x = ids[channel_dst + token_idx * ids_stride];
channel_y = fastmodulo(channel_dst, nchannels_y);
sample_dst = 0;
} else {
token_idx = ids ? blockIdx.z : 0;
channel_x = ids ? ids[blockIdx.y + token_idx * ids_stride] : fastdiv((uint32_t) channel_dst, channel_ratio);
channel_y = ids ? fastmodulo(blockIdx.y, nchannels_y) : channel_dst;
sample_dst = ids ? 0 : blockIdx.z;
}
const int sample_x = fastdiv((uint32_t) sample_dst, sample_ratio);
const int sample_y = sample_dst;
const int tid = threadIdx.x;
constexpr int warp_size = ggml_cuda_get_physical_warp_size();
x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
y += int64_t(sample_y) *stride_sample_y + channel_y *stride_channel_y;
dst += int64_t(sample_dst)*stride_sample_dst + channel_dst*stride_channel_dst;
if constexpr (is_multi_token_id) {
y += token_idx*stride_col_y2*2;
dst += token_idx*stride_col_dst;
}
bool use_gate = false;
bool use_bias = false;
@@ -56,8 +78,10 @@ static __global__ void mul_mat_vec_f(
if (use_gate) {
gate_x += int64_t(sample_x) *stride_sample_x + channel_x *stride_channel_x + row*stride_row;
}
const int channel_bias = ids ? channel_x : channel_dst;
if constexpr (has_fusion) {
const int channel_bias = ids ? channel_x : channel_dst;
if (use_bias) {
x_bias += int64_t(sample_dst)*stride_sample_dst + channel_bias*stride_channel_dst;
}
@@ -349,36 +373,36 @@ static __global__ void mul_mat_vec_f(
}
}
template<typename T, typename type_acc, int ncols_dst, int block_size>
template<typename T, typename type_acc, int ncols_dst, int block_size, bool is_multi_token_id = false>
static void mul_mat_vec_f_switch_fusion(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
const int64_t ncols, const uint3 nchannels_y,
const int64_t stride_row, const int64_t stride_col_y, const int64_t stride_col_dst,
const uint3 channel_ratio, const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const uint3 sample_ratio, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const cudaStream_t stream) {
const dim3 & block_dims, const dim3 & block_nums, const int nbytes_shared, const int ids_stride, const cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_f<T, type_acc, ncols_dst, block_size><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
mul_mat_vec_f<T, type_acc, ncols_dst, block_size, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, y, ids, fusion, dst, ncols, nchannels_y, stride_row, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
}
template <typename T, typename type_acc, int ncols_dst>
template <typename T, typename type_acc, int ncols_dst, bool is_multi_token_id = false>
void launch_mul_mat_vec_f_cuda(
const T * x, const float * y, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const int64_t ncols, const int64_t nrows,
@@ -386,12 +410,13 @@ void launch_mul_mat_vec_f_cuda(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
const int64_t nsamples_or_ntokens, const int64_t ids_stride, cudaStream_t stream) {
GGML_ASSERT(ncols % 2 == 0);
GGML_ASSERT(stride_row % 2 == 0);
GGML_ASSERT(stride_col_y % 2 == 0);
GGML_ASSERT(ids || nchannels_dst % nchannels_x == 0);
GGML_ASSERT( nsamples_dst % nsamples_x == 0);
const uint3 nchannels_y_fd = ids ? init_fastdiv_values(nchannels_y) : make_uint3(0, 0, 0);
const uint3 channel_ratio_fd = ids ? make_uint3(0, 0, 0) : init_fastdiv_values(nchannels_dst / nchannels_x);
const uint3 sample_ratio_fd = init_fastdiv_values(nsamples_dst / nsamples_x);
@@ -415,56 +440,56 @@ void launch_mul_mat_vec_f_cuda(
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
const int nbytes_shared = warp_size*sizeof(float) + (has_fusion ? warp_size*sizeof(float) : 0);
const dim3 block_nums(nrows, nchannels_dst, nsamples_dst);
const dim3 block_nums(nrows, nchannels_dst, nsamples_or_ntokens);
const dim3 block_dims(block_size_best, 1, 1);
switch (block_size_best) {
case 32: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 32, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 64: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 64, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 96: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 96, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 128: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 128, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 160: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 160, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 192: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 192, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 224: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 224, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
case 256: {
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256>
(x, y, ids, fusion, dst, ncols/2, nchannels_y, stride_row, stride_col_y/2, stride_col_dst,
mul_mat_vec_f_switch_fusion<T, type_acc, ncols_dst, 256, is_multi_token_id>
(x, y, ids, fusion, dst, ncols/2, nchannels_y_fd, stride_row, stride_col_y/2, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, stream);
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst, block_dims, block_nums, nbytes_shared, ids_stride, stream);
} break;
default: {
GGML_ABORT("fatal error");
@@ -480,55 +505,88 @@ static void mul_mat_vec_f_cuda_switch_ncols_dst(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
cudaStream_t stream) {
const int64_t ids_stride, cudaStream_t stream) {
const bool has_ids = ids != nullptr;
if (has_ids && ncols_dst > 1) {
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
constexpr int c_ncols_dst = 1;
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst, true>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
ncols_dst, ids_stride, stream);
return;
}
if (has_ids) {
// Single-token MUL_MAT_ID path
constexpr int c_ncols_dst = 1;
launch_mul_mat_vec_f_cuda<T, type_acc, c_ncols_dst>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
ncols_dst, ids_stride, stream);
return;
}
switch (ncols_dst) {
case 1:
launch_mul_mat_vec_f_cuda<T, type_acc, 1>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 2:
launch_mul_mat_vec_f_cuda<T, type_acc, 2>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 3:
launch_mul_mat_vec_f_cuda<T, type_acc, 3>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 4:
launch_mul_mat_vec_f_cuda<T, type_acc, 4>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 5:
launch_mul_mat_vec_f_cuda<T, type_acc, 5>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 6:
launch_mul_mat_vec_f_cuda<T, type_acc, 6>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 7:
launch_mul_mat_vec_f_cuda<T, type_acc, 7>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
case 8:
launch_mul_mat_vec_f_cuda<T, type_acc, 8>
(x, y, ids, fusion, dst, ncols, nrows, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst,
nsamples_dst, ids_stride, stream);
break;
default:
GGML_ABORT("fatal error");
@@ -544,21 +602,21 @@ static void mul_mat_vec_f_cuda(
const int64_t nchannels_x, const int64_t nchannels_y, const int64_t nchannels_dst,
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst, const int64_t nsamples_x,
const int64_t nsamples_dst, const int64_t stride_sample_x, const int64_t stride_sample_y, const int64_t stride_sample_dst,
enum ggml_prec prec, cudaStream_t stream) {
const int64_t ids_stride, enum ggml_prec prec, cudaStream_t stream) {
if constexpr(std::is_same_v<T, half>) {
if (prec == GGML_PREC_DEFAULT) {
mul_mat_vec_f_cuda_switch_ncols_dst<T, half>
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
return;
}
}
mul_mat_vec_f_cuda_switch_ncols_dst<T, float>
(x, y, ids, fusion, dst, ncols, nrows, ncols_dst, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y,
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
stride_channel_dst, nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
}
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
@@ -573,7 +631,7 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
const size_t ts_src1 = ggml_type_size(src1->type);
const size_t ts_dst = ggml_type_size(dst->type);
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
GGML_ASSERT(!ids || ne12 <= MMVF_MAX_BATCH_SIZE);
GGML_ASSERT(ne13 == ne3);
GGML_ASSERT( nb00 == ts_src0);
@@ -626,29 +684,31 @@ void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor
const int64_t ncols_dst = ids ? ne2 : ne1;
const int64_t nchannels_y = ids ? ne11 : ne12;
const int64_t nchannels_dst = ids ? ne1 : ne2;
const int64_t stride_col_dst = ids ? s2 : s1;
const int64_t stride_col_y = ids ? s12 : s11;
const int64_t stride_channel_dst = ids ? s1 : s2;
const int64_t stride_channel_y = ids ? s11 : s12;
GGML_ASSERT(!ids || ncols_dst == 1);
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
switch (src0->type) {
case GGML_TYPE_F32: {
const float * src0_d = (const float *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0->data;
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, s11, s1,
mul_mat_vec_f_cuda(src0_d, src1_d, ids_d, fusion_local, dst_d, ne00, ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, prec, ctx.stream());
ne03, ne3, s03, s13, s3, ids_stride, prec, ctx.stream());
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));
@@ -695,19 +755,19 @@ void ggml_cuda_op_mul_mat_vec_f(
const float * src0_d = (const float *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
} break;
case GGML_TYPE_F16: {
const half * src0_d = (const half *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
} break;
case GGML_TYPE_BF16: {
const nv_bfloat16 * src0_d = (const nv_bfloat16 *) src0_dd_i;
mul_mat_vec_f_cuda(src0_d, src1_ddf_i, nullptr, empty, dst_dd_i, ne00, row_diff, src1_ncols, stride_row, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, prec, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, 0, prec, stream);
} break;
default:
GGML_ABORT("unsupported type: %s", ggml_type_name(src0->type));

View File

@@ -1,5 +1,7 @@
#include "common.cuh"
#define MMVF_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVF kernels.
void ggml_cuda_mul_mat_vec_f(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst,
const ggml_cuda_mm_fusion_args_host * fusion = nullptr);

View File

@@ -137,15 +137,15 @@ static constexpr __host__ __device__ int calc_rows_per_block(int ncols_dst, int
return 1;
}
// tell the compiler to use as many registers as it wants, see nwarps definition below
template <ggml_type type, int ncols_dst, bool has_fusion>
template <ggml_type type, int ncols_dst, bool has_fusion, bool is_multi_token_id = false>
__launch_bounds__(calc_nwarps(ncols_dst, get_device_table_id())*ggml_cuda_get_physical_warp_size(), 1)
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, const int32_t * __restrict__ ids, const ggml_cuda_mm_fusion_args_device fusion, float * __restrict__ dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst) {
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
const uint32_t ids_stride) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
@@ -162,11 +162,25 @@ static __global__ void mul_mat_vec_q(
const int blocks_per_row_x = ncols_x / qk;
constexpr int blocks_per_iter = vdr * nwarps*warp_size / qi;
// The MUL_MAT_ID code path with ids != nullptr is only implemented for ncols_dst == 1.
const uint32_t channel_dst = blockIdx.y;
const uint32_t channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
const uint32_t channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
const uint32_t sample_dst = blockIdx.z;
uint32_t token_idx = 0;
uint32_t channel_x;
uint32_t channel_y;
uint32_t sample_dst;
if constexpr (is_multi_token_id) {
// Multi-token MUL_MAT_ID path, adding these in the normal path causes a perf regression for n_tokens=1 case
token_idx = blockIdx.z;
channel_x = ids[channel_dst + token_idx * ids_stride];
channel_y = fastmodulo(channel_dst, nchannels_y);
sample_dst = 0;
} else {
channel_x = ncols_dst == 1 && ids ? ids[channel_dst] : fastdiv(channel_dst, channel_ratio);
channel_y = ncols_dst == 1 && ids ? fastmodulo(channel_dst, nchannels_y) : channel_dst;
sample_dst = blockIdx.z;
}
const uint32_t sample_x = fastdiv(sample_dst, sample_ratio);
const uint32_t sample_y = sample_dst;
@@ -188,11 +202,11 @@ static __global__ void mul_mat_vec_q(
active_glu = fusion.glu_op;
}
const uint32_t channel_bias = ids ? channel_x : channel_dst;
float x_biases[ncols_dst] = { 0.0f };
float gate_biases[ncols_dst] = { 0.0f };
if constexpr (has_fusion) {
const uint32_t channel_bias = ids ? channel_x : channel_dst;
if (use_bias) {
x_bias = x_bias + sample_dst*stride_sample_dst + channel_bias*stride_channel_dst + row0;
// 1. Hide latency by prefetching bias and gate here
@@ -222,6 +236,9 @@ static __global__ void mul_mat_vec_q(
float tmp_gate[ncols_dst][rows_per_cuda_block] = {{0.0f}};
const block_q8_1 * y = ((const block_q8_1 *) vy) + sample_y*stride_sample_y + channel_y*stride_channel_y;
if constexpr (is_multi_token_id) {
y += token_idx*stride_col_y;
}
const int kbx_offset = sample_x*stride_sample_x + channel_x*stride_channel_x + row0*stride_row_x;
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
@@ -275,6 +292,10 @@ static __global__ void mul_mat_vec_q(
dst += sample_dst*stride_sample_dst + channel_dst*stride_channel_dst + row0;
if constexpr (is_multi_token_id) {
dst += token_idx*stride_col_dst;
}
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_dst; ++j) {
@@ -335,40 +356,41 @@ static __global__ void mul_mat_vec_q(
}
static std::pair<dim3, dim3> calc_launch_params(
const int ncols_dst, const int nrows_x, const int nchannels_y, const int nsamples_y,
const int ncols_dst, const int nrows_x, const int nchannels_dst, const int nsamples_or_ntokens,
const int warp_size, const mmvq_parameter_table_id table_id) {
const int64_t nblocks = (nrows_x + calc_rows_per_block(ncols_dst, table_id) - 1) / calc_rows_per_block(ncols_dst, table_id);
const dim3 block_nums(nblocks, nchannels_y, nsamples_y);
const dim3 block_nums(nblocks, nchannels_dst, nsamples_or_ntokens);
const dim3 block_dims(warp_size, calc_nwarps(ncols_dst, table_id), 1);
return {block_nums, block_dims};
}
template<ggml_type type, int c_ncols_dst>
template<ggml_type type, int c_ncols_dst, bool is_multi_token_id = false>
static void mul_mat_vec_q_switch_fusion(
const void * vx, const void * vy, const int32_t * ids, const ggml_cuda_mm_fusion_args_device fusion, float * dst,
const uint32_t ncols_x, const uint3 nchannels_y, const uint32_t stride_row_x, const uint32_t stride_col_y,
const uint32_t stride_col_dst, const uint3 channel_ratio, const uint32_t stride_channel_x,
const uint32_t stride_channel_y, const uint32_t stride_channel_dst, const uint3 sample_ratio,
const uint32_t stride_sample_x, const uint32_t stride_sample_y, const uint32_t stride_sample_dst,
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared, cudaStream_t stream) {
const dim3 & block_nums, const dim3 & block_dims, const int nbytes_shared,
const uint32_t ids_stride, cudaStream_t stream) {
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
if constexpr (c_ncols_dst == 1) {
if (has_fusion) {
mul_mat_vec_q<type, c_ncols_dst, true><<<block_nums, block_dims, nbytes_shared, stream>>>
mul_mat_vec_q<type, c_ncols_dst, true, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
return;
}
}
GGML_ASSERT(!has_fusion && "fusion only supported for ncols_dst=1");
mul_mat_vec_q<type, c_ncols_dst, false><<<block_nums, block_dims, nbytes_shared, stream>>>
mul_mat_vec_q<type, c_ncols_dst, false, is_multi_token_id><<<block_nums, block_dims, nbytes_shared, stream>>>
(vx, vy, ids, fusion, dst, ncols_x, nchannels_y, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst);
sample_ratio, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride);
}
template <ggml_type type>
@@ -379,7 +401,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
cudaStream_t stream) {
const int ids_stride, cudaStream_t stream) {
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
GGML_ASSERT(ncols_dst <= MMVQ_MAX_BATCH_SIZE);
@@ -393,8 +415,19 @@ static void mul_mat_vec_q_switch_ncols_dst(
const mmvq_parameter_table_id table_id = get_device_table_id(ggml_cuda_info().devices[device].cc);
const bool has_fusion = fusion.gate != nullptr || fusion.x_bias != nullptr || fusion.gate_bias != nullptr;
const bool has_ids = ids != nullptr;
if (has_ids && ncols_dst > 1) {
// Multi-token MUL_MAT_ID path only - single-token goes through regular path below
constexpr int c_ncols_dst = 1;
std::pair<dim3, dim3> dims = calc_launch_params(c_ncols_dst, nrows_x, nchannels_dst, ncols_dst, warp_size, table_id);
mul_mat_vec_q_switch_fusion<type, c_ncols_dst, true>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, ids_stride, stream);
return;
}
GGML_ASSERT(!ids || ncols_dst == 1);
switch (ncols_dst) {
case 1: {
constexpr int c_ncols_dst = 1;
@@ -402,7 +435,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 2: {
constexpr int c_ncols_dst = 2;
@@ -410,7 +443,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 3: {
constexpr int c_ncols_dst = 3;
@@ -418,7 +451,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 4: {
constexpr int c_ncols_dst = 4;
@@ -426,7 +459,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 5: {
constexpr int c_ncols_dst = 5;
@@ -434,7 +467,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 6: {
constexpr int c_ncols_dst = 6;
@@ -442,7 +475,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 7: {
constexpr int c_ncols_dst = 7;
@@ -450,7 +483,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
case 8: {
constexpr int c_ncols_dst = 8;
@@ -458,7 +491,7 @@ static void mul_mat_vec_q_switch_ncols_dst(
mul_mat_vec_q_switch_fusion<type, c_ncols_dst>(vx, vy, ids, fusion, dst, ncols_x, nchannels_y_fd, stride_row_x, stride_col_y, stride_col_dst,
channel_ratio_fd, stride_channel_x, stride_channel_y, stride_channel_dst,
sample_ratio_fd, stride_sample_x, stride_sample_y, stride_sample_dst,
dims.first, dims.second, 0, stream);
dims.first, dims.second, 0, ids_stride, stream);
} break;
default:
GGML_ABORT("fatal error");
@@ -474,127 +507,127 @@ static void mul_mat_vec_q_switch_type(
const int nchannels_x, const int nchannels_y, const int nchannels_dst,
const int stride_channel_x, const int stride_channel_y, const int stride_channel_dst,
const int nsamples_x, const int nsamples_dst, const int stride_sample_x, const int stride_sample_y, const int stride_sample_dst,
cudaStream_t stream) {
const int ids_stride, cudaStream_t stream) {
switch (type_x) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_0>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_1>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_0>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_1>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q8_0>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_MXFP4:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_MXFP4>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q2_K>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q3_K>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q4_K>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q5_K>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_Q6_K>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XXS>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_XS>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ2_S>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_XXS>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_S>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ1_M>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_NL>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ4_XS>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_q_switch_ncols_dst<GGML_TYPE_IQ3_S>
(vx, vy, ids, fusion, dst, ncols_x, nrows_x, ncols_dst, stride_row_x, stride_col_y, stride_col_dst,
nchannels_x, nchannels_y, nchannels_dst, stride_channel_x, stride_channel_y, stride_channel_dst,
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, stream);
nsamples_x, nsamples_dst, stride_sample_x, stride_sample_y, stride_sample_dst, ids_stride, stream);
break;
default:
GGML_ABORT("fatal error");
@@ -622,7 +655,7 @@ void ggml_cuda_mul_mat_vec_q(
GGML_ASSERT( nb0 == ts_dst);
GGML_ASSERT(!ids || ids->nb[0] == ggml_type_size(ids->type));
GGML_ASSERT(!ids || ne12 == 1); // Implementation is only correct for batch size 1.
GGML_ASSERT(!ids || ne12 <= MMVQ_MAX_BATCH_SIZE);
const float * src1_d = (const float *) src1->data;
const int32_t * ids_d = ids ? (const int32_t *) ids->data : nullptr;
@@ -693,11 +726,13 @@ void ggml_cuda_mul_mat_vec_q(
const int64_t stride_channel_dst = ids ? s1 : s2;
const int64_t stride_channel_y = ids ? s11 : s12;
const int64_t ids_stride = ids ? ids->nb[1] / ggml_type_size(ids->type) : 0;
mul_mat_vec_q_switch_type(
src0->data, src0->type, src1_q8_1.get(), ids_d, fusion_local, dst_d, ne00,
ne01, ncols_dst, s01, stride_col_y, stride_col_dst,
ne02, nchannels_y, nchannels_dst, s02, stride_channel_y, stride_channel_dst,
ne03, ne3, s03, s13, s3, stream);
ne03, ne3, s03, s13, s3, ids_stride, stream);
}
void ggml_cuda_op_mul_mat_vec_q(
@@ -726,7 +761,7 @@ void ggml_cuda_op_mul_mat_vec_q(
ggml_cuda_mm_fusion_args_device fusion_local{};
mul_mat_vec_q_switch_type(
src0_dd_i, src0->type, src1_ddq_i, nullptr, fusion_local, dst_dd_i, ne00, row_diff, src1_ncols, stride_row_x, stride_col_y, nrows_dst,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, stream);
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, stream);
GGML_UNUSED_VARS(src1, dst, src1_ddf_i, src1_ncols, src1_padded_row_size);
}

View File

@@ -71,7 +71,7 @@ else()
# disabling fast math is needed in order to pass tests/test-backend-ops
# note: adding -fno-inline fixes the tests when using MTL_SHADER_VALIDATION=1
# note: unfortunately, we have to call it default.metallib instead of ggml.metallib
# ref: https://github.com/ggerganov/whisper.cpp/issues/1720
# ref: https://github.com/ggml-org/whisper.cpp/issues/1720
# note: adding -g causes segmentation fault during compile
#set(XC_FLAGS -fno-fast-math -fno-inline -g)
set(XC_FLAGS -fno-fast-math -fno-inline)

View File

@@ -15,14 +15,22 @@ typedef struct ggml_metal * ggml_metal_t;
ggml_metal_t ggml_metal_init(ggml_metal_device_t dev);
void ggml_metal_free(ggml_metal_t ctx);
const char * ggml_metal_get_name(ggml_metal_t ctx);
void ggml_metal_synchronize(ggml_metal_t ctx);
void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
enum ggml_status ggml_metal_graph_compute (ggml_metal_t ctx, struct ggml_cgraph * gf);
void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf);
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev);
void ggml_metal_event_wait (ggml_metal_t ctx, ggml_metal_event_t ev);
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx);
void ggml_metal_set_n_cb (ggml_metal_t ctx, int n_cb);
void ggml_metal_set_abort_callback (ggml_metal_t ctx, ggml_abort_callback abort_callback, void * user_data);
bool ggml_metal_supports_family (ggml_metal_t ctx, int family);

View File

@@ -24,9 +24,13 @@ struct ggml_metal_command_buffer {
};
struct ggml_metal {
char name[128];
ggml_metal_device_t dev;
ggml_metal_library_t lib;
ggml_metal_event_t ev_cpy; // for async copies
dispatch_queue_t d_queue;
// additional, inference-time compiled pipelines
@@ -117,7 +121,11 @@ ggml_metal_t ggml_metal_init(ggml_metal_device_t dev) {
}
}
//const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
res->ev_cpy = ggml_metal_device_event_init(dev);
const struct ggml_metal_device_props * props_dev = ggml_metal_device_get_props(dev);
snprintf(res->name, sizeof(res->name), "%s", props_dev->name);
res->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
@@ -206,9 +214,15 @@ void ggml_metal_free(ggml_metal_t ctx) {
dispatch_release(ctx->d_queue);
ggml_metal_device_event_free(ctx->dev, ctx->ev_cpy);
free(ctx);
}
const char * ggml_metal_get_name(ggml_metal_t ctx) {
return ctx->name;
}
void ggml_metal_synchronize(ggml_metal_t ctx) {
// wait for any backend operations to finish
if (ctx->cmd_buf_last) {
@@ -273,8 +287,8 @@ void ggml_metal_set_tensor_async(ggml_metal_t ctx, struct ggml_tensor * tensor,
// wrap the source data into a Metal buffer
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_src = [device newBufferWithBytes:data
length:size
options:MTLResourceStorageModeShared];
length:size
options:MTLResourceStorageModeShared];
GGML_ASSERT(buf_src);
@@ -316,9 +330,9 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
@autoreleasepool {
id<MTLDevice> device = ggml_metal_device_get_obj(ctx->dev);
id<MTLBuffer> buf_dst = [device newBufferWithBytesNoCopy:data
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
length:size
options:MTLResourceStorageModeShared
deallocator:nil];
GGML_ASSERT(buf_dst);
@@ -356,9 +370,52 @@ void ggml_metal_get_tensor_async(ggml_metal_t ctx, const struct ggml_tensor * te
}
}
bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) {
@autoreleasepool {
struct ggml_metal_buffer_id bid_src = ggml_metal_get_buffer_id(src);
struct ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(dst);
if (bid_src.metal == nil || bid_dst.metal == nil) {
return false;
}
// queue the copy operation into the Metal context
// this will be queued at the end, after any currently ongoing GPU operations
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx_src->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
id<MTLBlitCommandEncoder> encoder = [cmd_buf blitCommandEncoder];
[encoder copyFromBuffer:bid_src.metal
sourceOffset:bid_src.offs
toBuffer:bid_dst.metal
destinationOffset:bid_dst.offs
size:ggml_nbytes(src)];
[encoder endEncoding];
ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src);
ggml_metal_event_encode_signal(ev_cpy, cmd_buf);
[cmd_buf commit];
// do not wait here for completion
//[cmd_buf waitUntilCompleted];
// instead, remember a reference to the command buffer and wait for it later if needed
[ctx_src->cmd_bufs_ext addObject:cmd_buf];
ctx_src->cmd_buf_last = cmd_buf;
[cmd_buf retain];
ggml_metal_event_wait(ctx_dst, ev_cpy);
return true;
}
}
enum ggml_status ggml_metal_graph_compute(ggml_metal_t ctx, struct ggml_cgraph * gf) {
// number of nodes encoded by the main thread (empirically determined)
const int n_main = 64;
const int n_main = MAX(64, 0.1*gf->n_nodes);
// number of threads in addition to the main thread
const int n_cb = ctx->n_cb;
@@ -530,6 +587,42 @@ void ggml_metal_graph_optimize(ggml_metal_t ctx, struct ggml_cgraph * gf) {
//printf("%s: graph optimize took %.3f ms\n", __func__, (ggml_time_us() - t_start) / 1000.0);
}
void ggml_metal_event_record(ggml_metal_t ctx, ggml_metal_event_t ev) {
@autoreleasepool {
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
ggml_metal_event_encode_signal(ev, cmd_buf);
[cmd_buf commit];
[ctx->cmd_bufs_ext addObject:cmd_buf];
ctx->cmd_buf_last = cmd_buf;
[cmd_buf retain];
}
}
void ggml_metal_event_wait(ggml_metal_t ctx, ggml_metal_event_t ev) {
@autoreleasepool {
id<MTLCommandQueue> queue = ggml_metal_device_get_queue(ctx->dev);
id<MTLCommandBuffer> cmd_buf = [queue commandBuffer];
ggml_metal_event_encode_wait(ev, cmd_buf);
[cmd_buf commit];
[ctx->cmd_bufs_ext addObject:cmd_buf];
ctx->cmd_buf_last = cmd_buf;
[cmd_buf retain];
}
}
ggml_metal_event_t ggml_metal_get_ev_cpy(ggml_metal_t ctx) {
return ctx->ev_cpy;
}
void ggml_metal_set_n_cb(ggml_metal_t ctx, int n_cb) {
if (ctx->n_cb != n_cb) {
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_COMMAND_BUFFERS);

View File

@@ -17,10 +17,12 @@ struct ggml_metal_device_deleter {
typedef std::unique_ptr<ggml_metal_device, ggml_metal_device_deleter> ggml_metal_device_ptr;
ggml_metal_device_t ggml_metal_device_get(void) {
static ggml_metal_device_ptr ctx { ggml_metal_device_init() };
ggml_metal_device_t ggml_metal_device_get(int device) {
static std::vector<ggml_metal_device_ptr> devs;
return ctx.get();
devs.emplace_back(ggml_metal_device_init(device));
return devs.back().get();
}
struct ggml_metal_pipelines {
@@ -174,6 +176,26 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows(ggml_me
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag(ggml_metal_library_t lib, const ggml_tensor * op) {
char base[256];
char name[256];
const int n = op->src[0]->ne[0];
snprintf(base, 256, "kernel_diag_%s", ggml_type_name(op->src[0]->type));
snprintf(name, 256, "%s_n=%d", base, n);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
}
res.nsg = 1;
res.smem = 0;
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat(ggml_metal_library_t lib, ggml_type tsrc) {
char base[256];
char name[256];
@@ -532,6 +554,36 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv(ggml_metal_
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri(ggml_metal_library_t lib, const ggml_tensor * op) {
char base[256];
char name[256];
const int nsg = 8;
const int n = op->src[1]->ne[1];
const int k = op->src[1]->ne[0];
snprintf(base, 256, "kernel_solve_tri_%s", ggml_type_name(op->src[0]->type));
snprintf(name, 256, "%s_nsg=%d_n=%d_k=%d", base, nsg, n, k);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, nsg, FC_SOLVE_TRI + 0);
ggml_metal_cv_set_int16(cv, n, FC_SOLVE_TRI + 1);
ggml_metal_cv_set_int16(cv, k, FC_SOLVE_TRI + 2);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
res.nsg = nsg;
res.smem = GGML_PAD(GGML_PAD(n, 32)*nsg*sizeof(float), 16);
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext(ggml_metal_library_t lib, ggml_type tsrc0, ggml_type tsrc1, int nsg, int nxpsg, int r1ptg) {
char base[256];
char name[256];
@@ -1340,34 +1392,78 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_flash_attn_ext_v
GGML_UNUSED(op);
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(
ggml_metal_library_t lib,
ggml_op op,
int32_t n_fuse,
bool row) {
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin(ggml_metal_library_t lib, const ggml_tensor * op, int32_t n_fuse) {
char base[256];
char name[256];
const char * op_str = "undefined";
switch (op) {
case GGML_OP_ADD: op_str = "add"; break;
case GGML_OP_SUB: op_str = "sub"; break;
case GGML_OP_MUL: op_str = "mul"; break;
case GGML_OP_DIV: op_str = "div"; break;
int op_num = -1;
switch (op->op) {
case GGML_OP_ADD: op_num = 0; break;
case GGML_OP_SUB: op_num = 1; break;
case GGML_OP_MUL: op_num = 2; break;
case GGML_OP_DIV: op_num = 3; break;
default: GGML_ABORT("fatal error");
};
if (row) {
snprintf(base, 256, "kernel_%s_row_c4_fuse_%d", op_str, n_fuse);
} else {
snprintf(base, 256, "kernel_%s_fuse_%d", op_str, n_fuse);
}
const char * t0_str = ggml_type_name(op->src[0]->type);
const char * t1_str = ggml_type_name(op->src[1]->type);
const char * t_str = ggml_type_name(op->type);
snprintf(name, 256, "%s", base);
const bool is_c4 = (op->src[0]->ne[0] % 4 == 0) && (op->src[1]->ne[0] % 4 == 0);
const bool is_rb = ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]) && (ggml_nrows(op->src[1]) == 1) && ggml_nelements(op) < 65536;
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s%s", t0_str, t1_str, t_str, is_c4 ? "_4" : "");
snprintf(name, 256, "%s_op=%d_nf=%d_rb=%d", base, op_num, n_fuse, is_rb);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
ggml_metal_cv_set_int16(cv, n_fuse, FC_BIN + 1);
ggml_metal_cv_set_bool (cv, is_rb, FC_BIN + 2);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
res.c4 = is_c4;
res.cnt = is_rb;
return res;
}
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one(ggml_metal_library_t lib, ggml_op op) {
char base[256];
char name[256];
int op_num = -1;
switch (op) {
case GGML_OP_ADD: op_num = 0; break;
case GGML_OP_SUB: op_num = 1; break;
case GGML_OP_MUL: op_num = 2; break;
case GGML_OP_DIV: op_num = 3; break;
default: GGML_ABORT("fatal error");
};
snprintf(base, 256, "kernel_bin_fuse_%s_%s_%s", "f32", "f32", "f32");
snprintf(name, 256, "%s_op=%d_nf=%d", base, op_num, 1);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
if (!res.pipeline) {
ggml_metal_cv_t cv = ggml_metal_cv_init();
ggml_metal_cv_set_int16(cv, op_num, FC_BIN + 0);
ggml_metal_cv_set_int16(cv, 1, FC_BIN + 1);
ggml_metal_cv_set_bool (cv, false, FC_BIN + 2);
res = ggml_metal_library_compile_pipeline(lib, base, name, cv);
ggml_metal_cv_free(cv);
}
return res;

View File

@@ -53,6 +53,9 @@ struct ggml_metal_pipeline_with_params {
int nr1;
size_t smem;
bool c4;
bool cnt;
};
int ggml_metal_pipeline_max_theads_per_threadgroup(struct ggml_metal_pipeline_with_params pipeline);
@@ -108,6 +111,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_1d
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_pool_2d (ggml_metal_library_t lib, const struct ggml_tensor * op, enum ggml_op_pool op_pool);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_get_rows (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_set_rows (ggml_metal_library_t lib, enum ggml_type tidx, enum ggml_type tdst);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_diag (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_repeat (ggml_metal_library_t lib, enum ggml_type tsrc);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_unary (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_glu (ggml_metal_library_t lib, const struct ggml_tensor * op);
@@ -121,6 +125,7 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_conv_batched (ggml_metal_library_t lib, const struct ggml_tensor * op, int ssm_conv_bs);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_ssm_scan (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_rwkv (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_solve_tri (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv_ext (ggml_metal_library_t lib, enum ggml_type tsrc0, enum ggml_type tsrc1, int nsg, int nxpsg, int r1ptg);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_mul_mv (ggml_metal_library_t lib, const struct ggml_tensor * op);
@@ -132,7 +137,8 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_argsort_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_top_k_merge (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, enum ggml_op op, int32_t n_fuse, bool row);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse );
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one (ggml_metal_library_t lib, enum ggml_op op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_group_norm (ggml_metal_library_t lib, const struct ggml_tensor * op);
struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_norm (ggml_metal_library_t lib, const struct ggml_tensor * op, int32_t n_fuse);
@@ -205,7 +211,9 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets);
//
struct ggml_metal_device_props {
int device;
char name[128];
char desc[128];
size_t max_buffer_size;
size_t max_working_set_size;
@@ -224,11 +232,15 @@ struct ggml_metal_device_props {
int op_offload_min_batch_size;
};
ggml_metal_device_t ggml_metal_device_init(void);
typedef struct ggml_metal_event * ggml_metal_event_t;
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
void ggml_metal_event_encode_wait (ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf);
ggml_metal_device_t ggml_metal_device_init(int device);
void ggml_metal_device_free(ggml_metal_device_t dev);
// return a singleton that is automatically destroyed when the program exits
ggml_metal_device_t ggml_metal_device_get(void);
ggml_metal_device_t ggml_metal_device_get(int device);
void * ggml_metal_device_get_obj (ggml_metal_device_t dev); // id<MTLDevice>
void * ggml_metal_device_get_queue(ggml_metal_device_t dev); // id<MTLCommandQueue>
@@ -240,6 +252,10 @@ void ggml_metal_device_rsets_rm (ggml_metal_device_t dev, ggml_metal_rset_t rset
void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev);
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev);
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev);
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev);
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total);
bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_tensor * op);

View File

@@ -24,9 +24,6 @@
static const NSInteger MTLGPUFamilyMetal3_GGML = 5001;
static const NSInteger MTLGPUFamilyMetal4_GGML = 5002;
// virtual address for GPU memory allocations
static atomic_uintptr_t g_addr_device = 0x000000400ULL;
#if !GGML_METAL_EMBED_LIBRARY
// Here to assist with NSBundle Path Hack
@interface GGMLMetalClass : NSObject
@@ -349,10 +346,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nsg =*/ 0,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
/*.c4 =*/ false,
/*.cnt =*/ false,
};
res.pipeline = ggml_metal_pipelines_get(lib->pipelines, name);
@@ -365,10 +364,12 @@ struct ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline(ggml_meta
struct ggml_metal_pipeline_with_params ggml_metal_library_compile_pipeline(ggml_metal_library_t lib, const char * base, const char * name, ggml_metal_cv_t cv) {
struct ggml_metal_pipeline_with_params res = {
/*.pipeline =*/ nil,
/*.nsg =*/ 0,
/*.nr0 =*/ 0,
/*.nr1 =*/ 0,
/*.nsg =*/ 0,
/*.smem =*/ 0,
/*.c4 =*/ false,
/*.cnt =*/ false,
};
[lib->lock lock];
@@ -523,6 +524,9 @@ struct ggml_metal_device {
ggml_metal_library_t library;
struct ggml_metal_device_props props;
// virtual address for GPU memory allocations
atomic_uintptr_t addr_virt;
};
//
@@ -618,7 +622,7 @@ void ggml_metal_rsets_free(ggml_metal_rsets_t rsets) {
free(rsets);
}
ggml_metal_device_t ggml_metal_device_init(void) {
ggml_metal_device_t ggml_metal_device_init(int device) {
ggml_metal_device_t dev = calloc(1, sizeof(struct ggml_metal_device));
assert(dev != NULL);
@@ -632,6 +636,9 @@ ggml_metal_device_t ggml_metal_device_init(void) {
GGML_LOG_ERROR("%s: error: failed to create command queue\n", __func__);
}
dev->addr_virt = 0x000000400ULL;
dev->props.device = device;
dev->props.has_simdgroup_reduction = [dev->mtl_device supportsFamily:MTLGPUFamilyApple7];
dev->props.has_simdgroup_reduction |= [dev->mtl_device supportsFamily:MTLGPUFamilyMetal3_GGML];
@@ -792,7 +799,8 @@ ggml_metal_device_t ggml_metal_device_init(void) {
dev->props.max_working_set_size = dev->mtl_device.maxBufferLength;
}
strncpy(dev->props.name, [[dev->mtl_device name] UTF8String], sizeof(dev->props.name) - 1);
snprintf(dev->props.name, sizeof(dev->props.name), "%s%d", "MTL", device);
snprintf(dev->props.desc, sizeof(dev->props.desc), "%s", [[dev->mtl_device name] UTF8String]);
dev->library = ggml_metal_library_init(dev);
if (!dev->library) {
@@ -922,6 +930,59 @@ void ggml_metal_device_rsets_keep_alive(ggml_metal_device_t dev) {
atomic_store_explicit(&dev->rsets->d_loop, 2*dev->rsets->keep_alive_s, memory_order_relaxed);
}
struct ggml_metal_event {
void * obj; // id<MTLEvent>
atomic_int value;
};
void ggml_metal_event_encode_signal(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
[cmd_buf encodeSignalEvent:event value:atomic_fetch_add_explicit(&ev->value, 1, memory_order_relaxed) + 1];
}
void ggml_metal_event_encode_wait(ggml_metal_event_t ev, ggml_metal_cmd_buf_t cmd_buf_raw) {
id<MTLEvent> event = (id<MTLEvent>)ev->obj;
id<MTLCommandBuffer> cmd_buf = (id<MTLCommandBuffer>) cmd_buf_raw;
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
}
ggml_metal_event_t ggml_metal_device_event_init(ggml_metal_device_t dev) {
id<MTLEvent> event = [dev->mtl_device newEvent];
ggml_metal_event_t ev = calloc(1, sizeof(struct ggml_metal_event));
ev->obj = (__bridge void *)event;
ev->value = 0;
return ev;
}
void ggml_metal_device_event_free(ggml_metal_device_t dev, ggml_metal_event_t ev) {
id<MTLEvent> event = ev->obj;
[event release];
free(ev);
GGML_UNUSED(dev);
}
void ggml_metal_device_event_synchronize(ggml_metal_device_t dev, ggml_metal_event_t ev) {
@autoreleasepool {
id<MTLEvent> event = ev->obj;
id<MTLCommandBuffer> cmd_buf = [dev->mtl_queue commandBuffer];
[cmd_buf encodeWaitForEvent:event value:atomic_load_explicit(&ev->value, memory_order_relaxed)];
[cmd_buf commit];
[cmd_buf waitUntilCompleted];
}
}
void ggml_metal_device_get_memory(ggml_metal_device_t dev, size_t * free, size_t * total) {
if (@available(macOS 10.12, iOS 16.0, *)) {
*total = dev->mtl_device.recommendedMaxWorkingSetSize;
@@ -997,7 +1058,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_ADD_ID:
return op->src[0]->type == GGML_TYPE_F32;
return ggml_is_contiguous_rows(op->src[0]) && ggml_is_contiguous_rows(op->src[1]) && op->src[0]->type == GGML_TYPE_F32;
case GGML_OP_ACC:
case GGML_OP_REPEAT:
case GGML_OP_SCALE:
@@ -1096,6 +1157,7 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_RWKV_WKV6:
case GGML_OP_RWKV_WKV7:
return true;
case GGML_OP_SOLVE_TRI:
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return has_simdgroup_reduction;
@@ -1177,6 +1239,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
return false;
};
}
case GGML_OP_DIAG:
return true;
case GGML_OP_OPT_STEP_ADAMW:
case GGML_OP_OPT_STEP_SGD:
return has_simdgroup_reduction;
@@ -1344,8 +1408,8 @@ ggml_metal_buffer_t ggml_metal_buffer_init(ggml_metal_device_t dev, size_t size,
res->all_data = ggml_metal_host_malloc(size_aligned);
res->is_shared = true;
} else {
// use virtual address from g_addr_device counter
res->all_data = (void *) atomic_fetch_add_explicit(&g_addr_device, size_aligned, memory_order_relaxed);
// use virtual address
res->all_data = (void *) atomic_fetch_add_explicit(&dev->addr_virt, size_aligned, memory_order_relaxed);
res->is_shared = false;
}
res->all_size = size_aligned;

View File

@@ -78,13 +78,15 @@
#define FC_MUL_MM 700
#define FC_ROPE 800
#define FC_SSM_CONV 900
#define FC_COUNT_EQUAL 1000
#define FC_SOLVE_TRI 1000
#define FC_COUNT_EQUAL 1100
#define FC_BIN 1200
// op-specific constants
#define OP_FLASH_ATTN_EXT_NQPTG 8
#define OP_FLASH_ATTN_EXT_NQPSG 8
#define OP_FLASH_ATTN_EXT_NCPSG 64
#define OP_FLASH_ATTN_EXT_VEC_NQPTG 1
#define OP_FLASH_ATTN_EXT_VEC_NQPSG 1
#define OP_FLASH_ATTN_EXT_VEC_NCPSG 32
// kernel argument structs
@@ -733,6 +735,33 @@ typedef struct {
uint64_t nb0;
} ggml_metal_kargs_ssm_scan;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne10;
int32_t ne11;
int32_t ne12;
int32_t ne13;
uint64_t nb10;
uint64_t nb11;
uint64_t nb12;
uint64_t nb13;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_solve_tri;
typedef struct {
int32_t ne00t;
int32_t ne00;
@@ -764,6 +793,25 @@ typedef struct {
uint64_t nb3;
} ggml_metal_kargs_set_rows;
typedef struct {
int32_t ne00;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
} ggml_metal_kargs_diag;
typedef struct {
int64_t ne00;
int64_t ne01;

View File

@@ -341,6 +341,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_rwkv(ctx, idx);
} break;
case GGML_OP_SOLVE_TRI:
{
n_fuse = ggml_metal_op_solve_tri(ctx, idx);
} break;
case GGML_OP_MUL_MAT:
{
n_fuse = ggml_metal_op_mul_mat(ctx, idx);
@@ -357,6 +361,10 @@ static int ggml_metal_op_encode_impl(ggml_metal_op_t ctx, int idx) {
{
n_fuse = ggml_metal_op_set_rows(ctx, idx);
} break;
case GGML_OP_DIAG:
{
n_fuse = ggml_metal_op_diag(ctx, idx);
} break;
case GGML_OP_L2_NORM:
{
n_fuse = ggml_metal_op_l2_norm(ctx, idx);
@@ -699,7 +707,7 @@ int ggml_metal_op_acc(ggml_metal_op_t ctx, int idx) {
/*.o1 =*/ { 0 },
};
auto pipeline = ggml_metal_library_get_pipeline_bin(lib, GGML_OP_ADD, 1, false);
auto pipeline = ggml_metal_library_get_pipeline_bin_one(lib, GGML_OP_ADD);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
@@ -1255,6 +1263,48 @@ int ggml_metal_op_set_rows(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_diag(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS(int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS(int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_kargs_diag args = {
/*.ne00 =*/ne00,
/*.ne01 =*/ne01,
/*.ne02 =*/ne02,
/*.ne03 =*/ne03,
/*.nb00 =*/nb00,
/*.nb01 =*/nb01,
/*.nb02 =*/nb02,
/*.nb03 =*/nb03,
/*.ne0 =*/ne0,
/*.ne1 =*/ne1,
/*.ne2 =*/ne2,
/*.ne3 =*/ne3,
/*.nb0 =*/nb0,
/*.nb1 =*/nb1,
/*.nb2 =*/nb2,
/*.nb3 =*/nb3,
};
auto pipeline = ggml_metal_library_get_pipeline_diag(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes(enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer(enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_dispatch_threadgroups(enc, ne1, ne2, ne3, 32, 1, 1);
return 1;
}
int ggml_metal_op_soft_max(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
@@ -1557,6 +1607,63 @@ int ggml_metal_op_rwkv(ggml_metal_op_t ctx, int idx) {
return 1;
}
int ggml_metal_op_solve_tri(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
ggml_metal_library_t lib = ctx->lib;
ggml_metal_encoder_t enc = ctx->enc;
GGML_TENSOR_LOCALS( int32_t, ne0, op->src[0], ne);
GGML_TENSOR_LOCALS(uint64_t, nb0, op->src[0], nb);
GGML_TENSOR_LOCALS( int32_t, ne1, op->src[1], ne);
GGML_TENSOR_LOCALS(uint64_t, nb1, op->src[1], nb);
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
ggml_metal_kargs_solve_tri args = {
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne10 =*/ ne10,
/*.ne11 =*/ ne11,
/*.ne12 =*/ ne12,
/*.ne13 =*/ ne13,
/*.nb10 =*/ nb10,
/*.nb11 =*/ nb11,
/*.nb12 =*/ nb12,
/*.nb13 =*/ nb13,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
};
auto pipeline = ggml_metal_library_get_pipeline_solve_tri(lib, op);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[1]), 2);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 3);
const int nsg = pipeline.nsg;
ggml_metal_encoder_set_threadgroup_memory_size(enc, pipeline.smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne10 + nsg - 1)/nsg, ne02, ne03, 32, nsg, 1);
return 1;
}
int ggml_metal_op_cpy(ggml_metal_op_t ctx, int idx) {
ggml_tensor * op = ctx->node(idx);
@@ -2295,7 +2402,7 @@ size_t ggml_metal_op_flash_attn_ext_extra_blk(const ggml_tensor * op) {
// return res;
//}
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPTG : OP_FLASH_ATTN_EXT_NQPTG;
const int nqptg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NQPSG : OP_FLASH_ATTN_EXT_NQPSG;
const int ncpsg = is_vec ? OP_FLASH_ATTN_EXT_VEC_NCPSG : OP_FLASH_ATTN_EXT_NCPSG;
const int64_t ne1 = (ne01 + nqptg - 1)/nqptg;
@@ -2411,7 +2518,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
if (!ggml_metal_op_flash_attn_ext_use_vec(op)) {
// half8x8 kernel
const int nqptg = OP_FLASH_ATTN_EXT_NQPTG; // queries per threadgroup
const int nqptg = OP_FLASH_ATTN_EXT_NQPSG; // queries per threadgroup
const int ncpsg = OP_FLASH_ATTN_EXT_NCPSG; // cache values per simdgroup
GGML_ASSERT(nqptg <= 32);
@@ -2578,9 +2685,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
#undef FATTN_SMEM
} else {
// half4x4 kernel
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPTG; // queries per threadgroup
const int nqptg = OP_FLASH_ATTN_EXT_VEC_NQPSG; // queries per threadgroup
const int ncpsg = OP_FLASH_ATTN_EXT_VEC_NCPSG; // cache values per simdgroup !! sync with kernel template arguments !!
const int nkpsg = 1*ncpsg;
const int nhptg = 1; // heads per threadgroup
GGML_ASSERT(nqptg <= 32);
GGML_ASSERT(nqptg % 1 == 0);
@@ -2632,6 +2739,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
ggml_metal_op_concurrency_reset(ctx);
}
// note: for simplicity assume the K is larger or equal than V
GGML_ASSERT(ne10 >= ne20);
// ne00 + 2*ncpsg*(nsg)
// for each query, we load it as f16 in shared memory (ne00)
// and store the soft_max values and the mask
@@ -2639,28 +2749,9 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
// ne20*(nsg)
// each simdgroup has a full f32 head vector in shared mem to accumulate results
//
#define FATTN_SMEM(nsg) (GGML_PAD((nqptg*(GGML_PAD(ne00, 128) + 4*ncpsg*(nsg)) + 2*GGML_PAD(ne20, 128)*(nsg))*(sizeof(float)/2), 16))
int64_t nsgmax = 2;
while (true) {
const size_t smem = FATTN_SMEM(nsgmax);
// avoid using more than half of the threadgroup memory - can cause slow downs especially for large head sizes
if (smem > props_dev->max_theadgroup_memory_size/2) {
break;
}
nsgmax *= 2;
}
nsgmax /= 2;
// simdgroups per threadgroup (a.k.a. warps)
//const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32)));
const int64_t nsgt = MAX(2, MIN(nsgmax, MIN((ne11 + nkpsg - 1)/(nkpsg), (int64_t) 1024/32)));
#define FATTN_SMEM(nsg) (GGML_PAD(((GGML_PAD(ne00, 128) + 4*ncpsg + 2*GGML_PAD(ne20, 128))*(nsg))*(sizeof(float)/2), 16))
int64_t nsg = 1;
while (nsg <= nsgt) {
nsg *= 2;
}
nsg /= 2;
// workgroups
// each workgroup handles nsg*nkpsg cache values
@@ -2673,7 +2764,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
} else {
nwg = 32;
nsg = 1;
while (2*nwg*nsg*nkpsg < ne11 && nsg < 4) {
while (2*nwg*nsg*ncpsg < ne11 && nsg < 4) {
nsg *= 2;
}
}
@@ -2739,7 +2830,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
} else {
// sanity checks
assert(ggml_metal_op_flash_attn_ext_extra_tmp(op) != 0);
@@ -2752,7 +2843,7 @@ int ggml_metal_op_flash_attn_ext(ggml_metal_op_t ctx, int idx) {
ggml_metal_encoder_set_buffer(enc, bid_tmp, 7);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, ne02, ne03*nwg, 32, nsg, 1);
ggml_metal_encoder_dispatch_threadgroups(enc, (ne01 + nqptg - 1)/nqptg, (ne02 + nhptg - 1)/nhptg, ne03*nwg, 32, nsg, 1);
// sync the 2 kernels
ggml_metal_op_concurrency_reset(ctx);
@@ -2804,8 +2895,6 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
GGML_ASSERT(ggml_is_contiguous_rows(op->src[1]));
bool bcast_row = false;
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_src1 = ggml_metal_get_buffer_id(op->src[1]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
@@ -2899,18 +2988,7 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
struct ggml_metal_pipeline_with_params pipeline;
if (ggml_nelements(op->src[1]) == ne10 && ggml_is_contiguous(op->src[1]) && ne00 % 4 == 0 && ne10 % 4 == 0) {
GGML_ASSERT(ggml_is_contiguous(op->src[0]));
// src1 is a row
GGML_ASSERT(ne11 == 1);
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, true);
bcast_row = true;
} else {
pipeline = ggml_metal_library_get_pipeline_bin(lib, op->op, n_fuse, false);
}
pipeline = ggml_metal_library_get_pipeline_bin(lib, op, n_fuse);
if (n_fuse > 1) {
bid_dst = ggml_metal_get_buffer_id(ctx->node(idx + n_fuse - 1));
@@ -2924,20 +3002,28 @@ int ggml_metal_op_bin(ggml_metal_op_t ctx, int idx) {
}
}
if (pipeline.c4) {
args.ne00 = ne00/4;
args.ne10 = ne10/4;
args.ne0 = ne0/4;
}
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_src1, 2);
ggml_metal_encoder_set_buffer (enc, bid_dst, 3);
if (bcast_row) {
const int64_t n = ggml_nelements(op)/4;
if (pipeline.cnt) {
const int n = pipeline.c4 ? ggml_nelements(op)/4 : ggml_nelements(op);
ggml_metal_encoder_dispatch_threadgroups(enc, n, 1, 1, 1, 1, 1);
} else {
int nth = 32;
const int nth_max = MIN(256, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
while (16*nth < ne0 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
int nth = 1;
while (2*nth < args.ne0 && nth < nth_max) {
nth *= 2;
}

View File

@@ -56,10 +56,12 @@ int ggml_metal_op_sum_rows (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_cumsum (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_get_rows (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_set_rows (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_diag (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_soft_max (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_ssm_conv (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_ssm_scan (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_rwkv (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_solve_tri (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_cpy (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pool_1d (ggml_metal_op_t ctx, int idx);
int ggml_metal_op_pool_2d (ggml_metal_op_t ctx, int idx);

View File

@@ -7,11 +7,15 @@
#include "ggml-metal-context.h"
#include "ggml-metal-ops.h"
// globals
#include <mutex>
#include <string>
// initialized in ggml_backend_metal_reg
static ggml_backend_reg g_ggml_metal_reg;
static ggml_backend_device g_ggml_metal_device;
#define GGML_METAL_NAME "MTL"
#define GGML_METAL_MAX_DEVICES 16
// number of Metal devices
// note: can be overriden with GGML_METAL_DEVICES env to simulate virtual devices
static int g_devices = 1;
////////////////////////////////////////////////////////////////////////////////
// backend interface
@@ -165,10 +169,28 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
/* .reset = */ NULL,
};
static bool ggml_backend_buffer_is_metal(ggml_backend_buffer_t buffer) {
return buffer->iface.free_buffer == ggml_backend_metal_buffer_shared_free_buffer ||
buffer->iface.free_buffer == ggml_backend_metal_buffer_private_free_buffer;
}
//
// buffer types
//
struct ggml_backend_metal_buffer_type {
int device;
std::string name;
};
struct ggml_backend_metal_buffer_type_deleter {
void operator()(ggml_backend_metal_buffer_type * ctx) const {
delete ctx;
}
};
typedef std::unique_ptr<ggml_backend_metal_buffer_type, ggml_backend_metal_buffer_type_deleter> ggml_backend_metal_buffer_type_ptr;
// common method for allocating shread or private Metal buffers
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size, bool shared) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)buft->device->context;
@@ -218,9 +240,9 @@ static size_t ggml_backend_metal_buffer_type_get_alloc_size(ggml_backend_buffer_
// default (shared) buffer type
static const char * ggml_backend_metal_buffer_type_shared_get_name(ggml_backend_buffer_type_t buft) {
return "Metal";
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
GGML_UNUSED(buft);
return ctx->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_shared_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@@ -249,29 +271,54 @@ static bool ggml_backend_metal_buffer_type_shared_is_host(ggml_backend_buffer_ty
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(void) {
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
},
/* .device = */ &g_ggml_metal_device,
/* .context = */ NULL,
};
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_shared(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
return &ggml_backend_buffer_type_metal;
static std::vector<ggml_backend_buffer_type> bufts;
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
static bool initialized = false;
if (!initialized) {
bufts.reserve(g_devices);
ctxs.reserve(g_devices);
for (int i = 0; i < g_devices; ++i) {
ggml_backend_metal_buffer_type * raw_ctx =
new ggml_backend_metal_buffer_type {
/* .device = */ i,
/* .name = */ GGML_METAL_NAME + std::to_string(i),
};
ctxs.emplace_back(raw_ctx);
ggml_backend_buffer_type buft = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_shared_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_shared_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_shared_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_shared_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_shared_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_shared_is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
/* .context = */ raw_ctx,
};
bufts.emplace_back(buft);
}
initialized = true;
}
return &bufts[device];
}
// default (private) buffer type
static const char * ggml_backend_metal_buffer_type_private_get_name(ggml_backend_buffer_type_t buft) {
return "Metal_Private";
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
GGML_UNUSED(buft);
return ctx->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_private_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@@ -300,29 +347,53 @@ static bool ggml_backend_metal_buffer_type_private_is_host(ggml_backend_buffer_t
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(void) {
static ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
},
/* .device = */ &g_ggml_metal_device,
/* .context = */ NULL,
};
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_private(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
return &ggml_backend_buffer_type_metal;
static std::vector<ggml_backend_buffer_type> bufts;
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
static bool initialized = false;
if (!initialized) {
bufts.reserve(g_devices);
ctxs.reserve(g_devices);
for (int i = 0; i < g_devices; ++i) {
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
/* .device = */ i,
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Private"
};
ctxs.emplace_back(raw_ctx);
ggml_backend_buffer_type buft = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_private_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_private_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_private_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_private_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_private_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_private_is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
/* .context = */ raw_ctx,
};
bufts.emplace_back(buft);
}
initialized = true;
}
return &bufts[device];
}
// mapped buffer type
static const char * ggml_backend_metal_buffer_type_mapped_get_name(ggml_backend_buffer_type_t buft) {
return "Metal_Mapped";
ggml_backend_metal_buffer_type * ctx = (ggml_backend_metal_buffer_type *)buft->context;
GGML_UNUSED(buft);
return ctx->name.c_str();
}
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_mapped_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
@@ -352,31 +423,55 @@ static bool ggml_backend_metal_buffer_type_mapped_is_host(ggml_backend_buffer_ty
GGML_UNUSED(buft);
}
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(void) {
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
static ggml_backend_buffer_type ggml_backend_buffer_type_mapped_metal = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
},
/* .device = */ &g_ggml_metal_device,
/* .context = */ NULL,
};
static ggml_backend_buffer_type_t ggml_backend_metal_buffer_type_mapped(int device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
return &ggml_backend_buffer_type_mapped_metal;
static std::vector<ggml_backend_buffer_type> bufts;
static std::vector<ggml_backend_metal_buffer_type_ptr> ctxs;
static bool initialized = false;
if (!initialized) {
bufts.reserve(g_devices);
ctxs.reserve(g_devices);
for (int i = 0; i < g_devices; ++i) {
ggml_backend_metal_buffer_type * raw_ctx = new ggml_backend_metal_buffer_type{
/* .device = */ i,
/* .name = */ GGML_METAL_NAME + std::to_string(i) + "_Mapped"
};
ctxs.emplace_back(raw_ctx);
// note: not obvious, but this buffer type still needs to implement .alloc_buffer:
// https://github.com/ggml-org/llama.cpp/pull/15832#discussion_r2333177099
ggml_backend_buffer_type buft = {
/* .iface = */ {
/* .get_name = */ ggml_backend_metal_buffer_type_mapped_get_name,
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_mapped_alloc_buffer,
/* .get_alignment = */ ggml_backend_metal_buffer_type_mapped_get_alignment,
/* .get_max_size = */ ggml_backend_metal_buffer_type_mapped_get_max_size,
/* .get_alloc_size = */ ggml_backend_metal_buffer_type_mapped_get_alloc_size,
/* .is_host = */ ggml_backend_metal_buffer_type_mapped_is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_metal_reg(), i),
/* .context = */ raw_ctx,
};
bufts.emplace_back(buft);
}
initialized = true;
}
return &bufts[device];
}
// backend
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
return "Metal";
ggml_metal_t ctx = (ggml_metal_t)backend->context;
GGML_UNUSED(backend);
return ggml_metal_get_name(ctx);
}
static void ggml_backend_metal_free(ggml_backend_t backend) {
@@ -409,12 +504,24 @@ static void ggml_backend_metal_get_tensor_async(ggml_backend_t backend, const gg
}
static bool ggml_backend_metal_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
return false;
if (!ggml_backend_is_metal(backend_src) || !ggml_backend_is_metal(backend_dst)) {
return false;
}
GGML_UNUSED(backend_src);
GGML_UNUSED(backend_dst);
GGML_UNUSED(src);
GGML_UNUSED(dst);
if (!ggml_backend_buffer_is_metal(src->buffer) || !ggml_backend_buffer_is_metal(dst->buffer)) {
return false;
}
ggml_metal_t ctx_src = (ggml_metal_t)backend_src->context;
ggml_metal_t ctx_dst = (ggml_metal_t)backend_dst->context;
//ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
//ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
//ggml_metal_buffer_t buf_ctx_src = (ggml_metal_buffer_t)buf_src->context;
//ggml_metal_buffer_t buf_ctx_dst = (ggml_metal_buffer_t)buf_dst->context;
return ggml_metal_cpy_tensor_async(ctx_src, ctx_dst, src, dst);
}
static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
@@ -423,6 +530,20 @@ static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend,
return ggml_metal_graph_compute(ctx, cgraph);
}
static void ggml_backend_metal_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_metal_t ctx = (ggml_metal_t)backend->context;
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
ggml_metal_event_record(ctx, ev);
}
static void ggml_backend_metal_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
ggml_metal_t ctx = (ggml_metal_t)backend->context;
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
ggml_metal_event_wait(ctx, ev);
}
static void ggml_backend_metal_graph_optimize(ggml_backend_t backend, ggml_cgraph * cgraph) {
ggml_metal_t ctx = (ggml_metal_t)backend->context;
@@ -435,7 +556,6 @@ static void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
ggml_metal_t ctx = (ggml_metal_t)backend->context;
ggml_metal_set_n_cb(ctx, n_cb);
}
static ggml_backend_i ggml_backend_metal_i = {
@@ -450,12 +570,8 @@ static ggml_backend_i ggml_backend_metal_i = {
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_metal_graph_compute,
// the events API is needed only for multi-GPU setups, so likely no need to implement it for Metal
// in any case, these docs seem relevant if we ever decide to implement it:
// https://developer.apple.com/documentation/metal/mtlcommandbuffer#Synchronizing-Passes-with-Events
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .event_record = */ ggml_backend_metal_event_record,
/* .event_wait = */ ggml_backend_metal_event_wait,
/* .graph_optimize = */ ggml_backend_metal_graph_optimize,
};
@@ -519,15 +635,17 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
// backend device
static const char * ggml_backend_metal_device_get_name(ggml_backend_dev_t dev) {
return "Metal";
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
GGML_UNUSED(dev);
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
return props_dev->name;
}
static const char * ggml_backend_metal_device_get_description(ggml_backend_dev_t dev) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
return ggml_metal_device_get_props(ctx_dev)->name;
return ggml_metal_device_get_props(ctx_dev)->desc;
}
static void ggml_backend_metal_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
@@ -550,14 +668,14 @@ static void ggml_backend_metal_device_get_props(ggml_backend_dev_t dev, ggml_bac
ggml_backend_metal_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ true,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
/* .async = */ true,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ true,
};
}
static ggml_backend_t ggml_backend_metal_device_init(ggml_backend_dev_t dev, const char * params) {
static ggml_backend_t ggml_backend_metal_device_init_backend(ggml_backend_dev_t dev, const char * params) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
ggml_metal_t ctx = ggml_metal_init(ctx_dev);
@@ -587,7 +705,7 @@ static ggml_backend_buffer_type_t ggml_backend_metal_device_get_buffer_type(ggml
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared() : ggml_backend_metal_buffer_type_private();
return props_dev->use_shared_buffers ? ggml_backend_metal_buffer_type_shared(props_dev->device) : ggml_backend_metal_buffer_type_private(props_dev->device);
}
static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
@@ -595,7 +713,9 @@ static ggml_backend_buffer_t ggml_backend_metal_device_buffer_mapped(ggml_backen
ggml_metal_buffer_t res = ggml_metal_buffer_map(ctx_dev, ptr, size, max_tensor_size);
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(), ggml_backend_metal_buffer_shared_i, res, size);
const ggml_metal_device_props * props_dev = ggml_metal_device_get_props(ctx_dev);
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type_mapped(props_dev->device), ggml_backend_metal_buffer_shared_i, res, size);
}
static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
@@ -606,9 +726,10 @@ static bool ggml_backend_metal_device_supports_op(ggml_backend_dev_t dev, const
static bool ggml_backend_metal_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return
buft->device == dev && (
buft->iface.get_name == ggml_backend_metal_buffer_type_shared_get_name ||
buft->iface.get_name == ggml_backend_metal_buffer_type_private_get_name ||
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name;
buft->iface.get_name == ggml_backend_metal_buffer_type_mapped_get_name);
GGML_UNUSED(dev);
}
@@ -632,45 +753,97 @@ static bool ggml_backend_metal_device_offload_op(ggml_backend_dev_t dev, const g
get_op_batch_size(op) >= ggml_metal_device_get_props(ctx_dev)->op_offload_min_batch_size;
}
static ggml_backend_event_t ggml_backend_metal_device_event_new(ggml_backend_dev_t dev) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
ggml_metal_event_t event = ggml_metal_device_event_init(ctx_dev);
GGML_ASSERT(event);
ggml_backend_event_t ev = new ggml_backend_event {
/* .device = */ dev,
/* .context = */ event,
};
return ev;
}
static void ggml_backend_metal_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
ggml_metal_event_t ev = (ggml_metal_event_t)event->context;
ggml_metal_device_event_free(ctx_dev, ev);
delete event;
}
static void ggml_backend_metal_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
ggml_metal_device_t ctx_dev = (ggml_metal_device_t)dev->context;
ggml_metal_event_t evt = (ggml_metal_event_t)event->context;
ggml_metal_device_event_synchronize(ctx_dev, evt);
}
static ggml_backend_device_i ggml_backend_metal_device_i = {
/* .get_name = */ ggml_backend_metal_device_get_name,
/* .get_description = */ ggml_backend_metal_device_get_description,
/* .get_memory = */ ggml_backend_metal_device_get_memory,
/* .get_type = */ ggml_backend_metal_device_get_type,
/* .get_props = */ ggml_backend_metal_device_get_props,
/* .init_backend = */ ggml_backend_metal_device_init,
/* .init_backend = */ ggml_backend_metal_device_init_backend,
/* .get_buffer_type = */ ggml_backend_metal_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_metal_device_buffer_mapped,
/* .supports_op = */ ggml_backend_metal_device_supports_op,
/* .supports_buft = */ ggml_backend_metal_device_supports_buft,
/* .offload_op = */ ggml_backend_metal_device_offload_op,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
/* .event_new = */ ggml_backend_metal_device_event_new,
/* .event_free = */ ggml_backend_metal_device_event_free,
/* .event_synchronize = */ ggml_backend_metal_device_event_synchronize,
};
// backend registry
struct ggml_backend_metal_reg {
std::vector<ggml_backend_dev_t> devices;
};
typedef struct ggml_backend_metal_reg * ggml_backend_metal_reg_t;
static ggml_backend_metal_reg_t ggml_backend_metal_reg_init(void) {
ggml_backend_metal_reg_t ctx = new struct ggml_backend_metal_reg;
return ctx;
}
static void ggml_backend_metal_reg_free(ggml_backend_metal_reg_t ctx) {
delete ctx;
}
struct ggml_backend_metal_reg_deleter {
void operator()(ggml_backend_metal_reg_t ctx) {
ggml_backend_metal_reg_free(ctx);
}
};
typedef std::unique_ptr<struct ggml_backend_metal_reg, ggml_backend_metal_reg_deleter> ggml_backend_metal_reg_ptr;
static const char * ggml_backend_metal_reg_get_name(ggml_backend_reg_t reg) {
return "Metal";
return GGML_METAL_NAME;
GGML_UNUSED(reg);
}
static size_t ggml_backend_metal_reg_device_count(ggml_backend_reg_t reg) {
return 1;
GGML_UNUSED(reg);
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
return ctx->devices.size();
}
static ggml_backend_dev_t ggml_backend_metal_reg_device_get(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
return &g_ggml_metal_device;
GGML_UNUSED(reg);
GGML_UNUSED(index);
ggml_backend_metal_reg_t ctx = (ggml_backend_metal_reg_t)reg->context;
GGML_ASSERT(index < ctx->devices.size());
return ctx->devices[index];
}
static ggml_backend_feature g_ggml_backend_metal_features[] = {
@@ -698,27 +871,67 @@ static void * ggml_backend_metal_get_proc_address(ggml_backend_reg_t reg, const
static ggml_backend_reg_i ggml_backend_metal_reg_i = {
/* .get_name = */ ggml_backend_metal_reg_get_name,
/* .device_count = */ ggml_backend_metal_reg_device_count,
/* .device_get = */ ggml_backend_metal_reg_device_get,
/* .get_device_count = */ ggml_backend_metal_reg_device_count,
/* .get_device = */ ggml_backend_metal_reg_device_get,
/* .get_proc_address = */ ggml_backend_metal_get_proc_address,
};
ggml_backend_reg_t ggml_backend_metal_reg(void) {
{
g_ggml_metal_reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_metal_reg_i,
/* .context = */ NULL,
};
static ggml_backend_dev_t ggml_backend_metal_device_init(ggml_backend_reg_t reg, int device) {
return new ggml_backend_device {
/* .iface = */ ggml_backend_metal_device_i,
/* .reg = */ reg,
/* .context = */ ggml_metal_device_get(device),
};
}
g_ggml_metal_device = {
/* .iface = */ ggml_backend_metal_device_i,
/* .reg = */ &g_ggml_metal_reg,
/* .context = */ ggml_metal_device_get(),
};
static void ggml_backend_metal_device_free(ggml_backend_dev_t dev) {
delete dev;
}
struct ggml_backend_device_deleter {
void operator()(ggml_backend_dev_t ctx) {
ggml_backend_metal_device_free(ctx);
}
};
typedef std::unique_ptr<ggml_backend_device, ggml_backend_device_deleter> ggml_backend_device_ptr;
ggml_backend_reg_t ggml_backend_metal_reg(void) {
static ggml_backend_reg reg;
static bool initialized = false;
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
const char * env = getenv("GGML_METAL_DEVICES");
if (env) {
g_devices = atoi(env);
}
static std::vector<ggml_backend_device_ptr> devs;
if (!initialized) {
static ggml_backend_metal_reg_ptr reg_ctx(ggml_backend_metal_reg_init());
for (int i = 0; i < g_devices; ++i) {
auto * dev = ggml_backend_metal_device_init(&reg, i);
devs.emplace_back(dev);
reg_ctx->devices.push_back(dev);
}
reg = {
/* .api_version = */ GGML_BACKEND_API_VERSION,
/* .iface = */ ggml_backend_metal_reg_i,
/* .context = */ reg_ctx.get(),
};
}
initialized = true;
}
return &g_ggml_metal_reg;
return &reg;
}
GGML_BACKEND_DL_IMPL(ggml_backend_metal_reg)

View File

@@ -895,11 +895,13 @@ enum ggml_sort_order {
GGML_SORT_ORDER_DESC,
};
// general-purpose kernel for addition, subtraction, multiplication and division of two tensors
// pros: works for non-contiguous tensors, supports broadcast across all dims
// cons: not very efficient
template <int F>
kernel void kernel_add_fuse_impl(
// OP: 0 - add, 1 - sub, 2 - mul, 3 - div
constant short FC_bin_op [[function_constant(FC_BIN + 0)]];
constant short FC_bin_f [[function_constant(FC_BIN + 1)]];
constant bool FC_bin_rb [[function_constant(FC_BIN + 2)]];
template <typename T0, typename T1, typename T>
kernel void kernel_bin_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
@@ -907,138 +909,152 @@ kernel void kernel_add_fuse_impl(
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
#define FC_OP FC_bin_op
#define FC_F FC_bin_f
#define FC_RB FC_bin_rb
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
if (FC_RB) {
// row broadcast
const uint i0 = tgpig.x;
const uint i1 = i0%args.ne10;
device const float * src0_ptr = (device const float *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device float * dst_ptr = (device float *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
device const T0 * src0_row = (device const T0 *) (src0);
device T * dst_row = (device T *) (dst);
device const float * src1_ptr[F];
for (short j = 0; j < F; ++j) {
src1_ptr[j] = (device const float *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
if (FC_F == 1) {
device const T1 * src1_row = (device const T1 *) (src1 + args.o1[0]);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
if (FC_OP == 0) {
dst_row[i0] = src0_row[i0] + src1_row[i1];
}
float res = src0_ptr[i0];
if (FC_OP == 1) {
dst_row[i0] = src0_row[i0] - src1_row[i1];
}
#pragma unroll
for (short j = 0; j < F; ++j) {
res += src1_ptr[j][i10];
}
if (FC_OP == 2) {
dst_row[i0] = src0_row[i0] * src1_row[i1];
}
dst_ptr[i0] = res;
}
}
if (FC_OP == 3) {
dst_row[i0] = src0_row[i0] / src1_row[i1];
}
} else {
T0 res = src0_row[i0];
typedef decltype(kernel_add_fuse_impl<2>) kernel_add_fuse_t;
if (FC_OP == 0) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res += ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
template [[host_name("kernel_add_fuse_1")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<1>;
template [[host_name("kernel_add_fuse_2")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<2>;
template [[host_name("kernel_add_fuse_3")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<3>;
template [[host_name("kernel_add_fuse_4")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<4>;
template [[host_name("kernel_add_fuse_5")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<5>;
template [[host_name("kernel_add_fuse_6")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<6>;
template [[host_name("kernel_add_fuse_7")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<7>;
template [[host_name("kernel_add_fuse_8")]] kernel kernel_add_fuse_t kernel_add_fuse_impl<8>;
if (FC_OP == 1) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res -= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
kernel void kernel_sub_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
if (FC_OP == 2) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res *= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
if (FC_OP == 3) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res /= ((device const T1 *) (src1 + args.o1[j]))[i1];
}
}
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) - *((device float *)(src1_ptr + i10*args.nb10));
}
}
kernel void kernel_mul_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
dst_row[i0] = res;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * *((device float *)(src1_ptr + i10*args.nb10));
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
if (i01 >= args.ne01) {
return;
}
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const T0 * src0_ptr = (device const T0 *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs);
device T * dst_ptr = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs);
if (FC_F == 1) {
device const T1 * src1_ptr = (device const T1 *) (src1 + args.o1[0] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
if (FC_OP == 0) {
dst_ptr[i0] = src0_ptr[i0] + src1_ptr[i10];
}
if (FC_OP == 1) {
dst_ptr[i0] = src0_ptr[i0] - src1_ptr[i10];
}
if (FC_OP == 2) {
dst_ptr[i0] = src0_ptr[i0] * src1_ptr[i10];
}
if (FC_OP == 3) {
dst_ptr[i0] = src0_ptr[i0] / src1_ptr[i10];
}
}
} else {
device const T1 * src1_ptr[8];
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
src1_ptr[j] = (device const T1 *) (src1 + args.o1[j] + i13*args.nb13 + i12*args.nb12 + i11*args.nb11);
}
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
T res = src0_ptr[i0];
if (FC_OP == 0) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res += src1_ptr[j][i10];
}
}
if (FC_OP == 1) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res -= src1_ptr[j][i10];
}
}
if (FC_OP == 2) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res *= src1_ptr[j][i10];
}
}
if (FC_OP == 3) {
FOR_UNROLL (short j = 0; j < FC_F; ++j) {
res /= src1_ptr[j][i10];
}
}
dst_ptr[i0] = res;
}
}
}
#undef FC_OP
#undef FC_F
#undef FC_RB
}
kernel void kernel_div_fuse_1(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
typedef decltype(kernel_bin_fuse_impl<float, float, float>) kernel_bin_fuse_t;
const int i13 = i03%args.ne13;
const int i12 = i02%args.ne12;
const int i11 = i01%args.ne11;
device const char * src0_ptr = src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01 + args.offs;
device const char * src1_ptr = src1 + i13*args.nb13 + i12*args.nb12 + i11*args.nb11 + args.o1[0];
device char * dst_ptr = dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1 + args.offs;
if (args.ne10 == 1) {
const float x = 1.0f / *((device float *)(src1_ptr));
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) * x;
}
} else {
for (int i0 = tpitg.x; i0 < args.ne0; i0 += ntg.x) {
const int i10 = i0%args.ne10;
*((device float *)(dst_ptr + i0*args.nb0)) = *((device float *)(src0_ptr + i0*args.nb00)) / *((device float *)(src1_ptr + i10*args.nb10));
}
}
}
template [[host_name("kernel_bin_fuse_f32_f32_f32")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float, float, float>;
template [[host_name("kernel_bin_fuse_f32_f32_f32_4")]] kernel kernel_bin_fuse_t kernel_bin_fuse_impl<float4, float4, float4>;
kernel void kernel_add_id(
constant ggml_metal_kargs_add_id & args,
@@ -1057,7 +1073,7 @@ kernel void kernel_add_id(
const size_t nb1 = args.ne0 * sizeof(float);
const size_t nb2 = args.ne1 * nb1;
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device float * dst_row = (device float *)((device char *)dst + i1*nb1 + i2*nb2);
device const float * src0_row = (device const float *)((device char *)src0 + i1*args.nb01 + i2*args.nb02);
device const float * src1_row = (device const float *)((device char *)src1 + i11*args.nb11);
@@ -1098,141 +1114,6 @@ template [[host_name("kernel_repeat_f16")]] kernel kernel_repeat_t kernel_repeat
template [[host_name("kernel_repeat_i32")]] kernel kernel_repeat_t kernel_repeat<int>;
template [[host_name("kernel_repeat_i16")]] kernel kernel_repeat_t kernel_repeat<short>;
// assumption: src1 is a row
// broadcast src1 into src0
template <short F>
kernel void kernel_add_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res += ((device const float4 *) (src1 + args.o1[j]))[i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_add_row_c4_fuse_impl<1>) kernel_add_row_c4_fuse_t;
template [[host_name("kernel_add_row_c4_fuse_1")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<1>;
template [[host_name("kernel_add_row_c4_fuse_2")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<2>;
template [[host_name("kernel_add_row_c4_fuse_3")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<3>;
template [[host_name("kernel_add_row_c4_fuse_4")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<4>;
template [[host_name("kernel_add_row_c4_fuse_5")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<5>;
template [[host_name("kernel_add_row_c4_fuse_6")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<6>;
template [[host_name("kernel_add_row_c4_fuse_7")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<7>;
template [[host_name("kernel_add_row_c4_fuse_8")]] kernel kernel_add_row_c4_fuse_t kernel_add_row_c4_fuse_impl<8>;
template <short F>
kernel void kernel_sub_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res -= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_sub_row_c4_fuse_impl<1>) kernel_sub_row_c4_fuse_t;
template [[host_name("kernel_sub_row_c4_fuse_1")]] kernel kernel_sub_row_c4_fuse_t kernel_sub_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_mul_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res *= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_mul_row_c4_fuse_impl<1>) kernel_mul_row_c4_fuse_t;
template [[host_name("kernel_mul_row_c4_fuse_1")]] kernel kernel_mul_row_c4_fuse_t kernel_mul_row_c4_fuse_impl<1>;
template <short F>
kernel void kernel_div_row_c4_fuse_impl(
constant ggml_metal_kargs_bin & args,
device const char * src0,
device const char * src1,
device char * dst,
uint tpig[[thread_position_in_grid]]) {
const uint nb = args.ne00/4;
const uint i = tpig % nb;
device const float4 * src0_row = (device const float4 *) (src0);
device float4 * dst_row = (device float4 *) (dst);
device const float4 * src1_row[F];
for (short j = 0; j < F; ++j) {
src1_row[j] = (device const float4 *) (src1 + args.o1[j]);
}
float4 res = src0_row[tpig];
#pragma unroll(F)
for (short j = 0; j < F; ++j) {
res /= src1_row[j][i];
}
dst_row[tpig] = res;
}
typedef decltype(kernel_div_row_c4_fuse_impl<1>) kernel_div_row_c4_fuse_t;
template [[host_name("kernel_div_row_c4_fuse_1")]] kernel kernel_div_row_c4_fuse_t kernel_div_row_c4_fuse_impl<1>;
kernel void kernel_scale_f32(
constant ggml_metal_kargs_scale & args,
device const float * src0,
@@ -2737,6 +2618,83 @@ kernel void kernel_rwkv_wkv7_f32(
}
}
constant short FC_solve_tri_nsg [[function_constant(FC_SOLVE_TRI + 0)]];
constant short FC_solve_tri_n [[function_constant(FC_SOLVE_TRI + 1)]];
constant short FC_solve_tri_k [[function_constant(FC_SOLVE_TRI + 2)]];
kernel void kernel_solve_tri_f32(
constant ggml_metal_kargs_solve_tri & args,
device const char * src0,
device const char * src1,
device char * dst,
threadgroup char * shmem [[threadgroup(0)]],
ushort3 tgpig[[threadgroup_position_in_grid]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
constexpr short NW = N_SIMDWIDTH;
const short NSG = FC_solve_tri_nsg;
const short N = FC_solve_tri_n;
const short K = FC_solve_tri_k;
const short NP = PAD2(N, NW);
const int32_t ne02 = args.ne02;
const int32_t ne03 = args.ne03;
const int32_t i03 = tgpig.z;
const int32_t i02 = tgpig.y;
const int32_t i01 = tgpig.x*NSG + sgitg;
threadgroup float * sh0 = (threadgroup float *) shmem;
device const float * src0_ptr = (device const float *)(src0 + i02 * args.nb02 + i03 * args.nb03) + sgitg*N;
device const float * src1_ptr = (device const float *)(src1 + i02 * args.nb12 + i03 * args.nb13) + i01;
device float * dst_ptr = (device float *)(dst + i02 * args.nb2 + i03 * args.nb3) + i01;
for (short rr = 0; rr < N; rr += NSG) {
threadgroup_barrier(mem_flags::mem_threadgroup);
{
threadgroup float * sh0_cur = sh0 + sgitg*NP;
for (short t = 0; t*NW < N; ++t) {
const short idx = t*NW + tiisg;
sh0_cur[idx] = src0_ptr[idx];
}
src0_ptr += NSG*N;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (i01 >= args.ne10) {
continue;
}
for (short ir = 0; ir < NSG && rr + ir < N; ++ir) {
const short r = rr + ir;
threadgroup float * sh0_cur = sh0 + ir*NP;
float sum = 0.0f;
for (short t = 0; t*NW < r; ++t) {
const short idx = t*NW + tiisg;
sum += sh0_cur[idx] * dst_ptr[idx*K] * (idx < r);
}
sum = simd_sum(sum);
if (tiisg == 0) {
const float diag = sh0_cur[r];
dst_ptr[r*K] = (src1_ptr[r*K] - sum) / diag;
}
}
}
}
kernel void kernel_argmax_f32(
constant ggml_metal_kargs_argmax & args,
device const char * src0,
@@ -5208,6 +5166,7 @@ constant int32_t FC_flash_attn_ext_blk_ncpsg [[function_constant(FC_FLASH_ATTN_E
// scan the blocks of the mask that are not masked
// 0 - masked (i.e. full of -INF, skip)
// 1 - not masked (i.e. at least one element of the mask is not -INF)
// 2 - all zero
kernel void kernel_flash_attn_ext_blk(
constant ggml_metal_kargs_flash_attn_ext_blk & args,
device const char * mask,
@@ -5229,27 +5188,29 @@ kernel void kernel_flash_attn_ext_blk(
device const half * mask_src = (device const half *) (mask + (i1*Q)*args.nb31 + i2*args.nb32 + i3*args.nb33) + i0*C + tiisg;
// fast route
if (res == 0) {
if (simd_max(*mask_src) > -MAXHALF/2) {
res = 1;
}
}
// detailed check of the elements of the block
if ((C > NW || Q > 1) && res == 0) {
half m = -MAXHALF;
half mmin = MAXHALF;
half mmax = -MAXHALF;
FOR_UNROLL (short j = 0; j < Q; ++j) {
FOR_UNROLL (short ii = 0; ii < C/NW; ++ii) {
m = max(m, mask_src[ii*NW]);
mmin = min(mmin, mask_src[ii*NW]);
mmax = max(mmax, mask_src[ii*NW]);
}
mask_src += args.nb31/2;
}
if (simd_max(m) > -MAXHALF/2) {
res = 1;
mmin = simd_min(mmin);
mmax = simd_max(mmax);
if (mmax > -MAXHALF) {
if (mmin == 0.0 && mmax == 0.0) {
res = 2;
} else {
res = 1;
}
}
}
@@ -5491,9 +5452,13 @@ void kernel_flash_attn_ext_impl(
ic = 0;
}
char blk_cur = 1;
// read the mask into shared mem
if (FC_flash_attn_ext_has_mask) {
if (blk[ic0] == 0) {
blk_cur = blk[ic0];
if (blk_cur == 0) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
pm2[jj] += NW;
}
@@ -5501,16 +5466,22 @@ void kernel_flash_attn_ext_impl(
continue;
}
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (blk_cur == 1) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
const short j = jj*NSG + sgitg;
if (FC_flash_attn_ext_bc_mask) {
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
} else {
sm2[j*SH + tiisg] = pm2[jj][tiisg];
if (FC_flash_attn_ext_bc_mask) {
sm2[j*SH + tiisg] = (iq1 + j) < args.ne31 ? pm2[jj][tiisg] : half2(-MAXHALF, -MAXHALF);
} else {
sm2[j*SH + tiisg] = pm2[jj][tiisg];
}
pm2[jj] += NW;
}
} else if (blk_cur == 2) {
FOR_UNROLL (short jj = 0; jj < NQ; ++jj) {
pm2[jj] += NW;
}
pm2[jj] += NW;
}
#if 0
@@ -5675,10 +5646,12 @@ void kernel_flash_attn_ext_impl(
}
// mqk = mqk + slope*mask
if (FC_flash_attn_ext_has_bias) {
s2 += s2_t(sm2[j*SH + tiisg])*slope;
} else {
s2 += s2_t(sm2[j*SH + tiisg]);
if (blk_cur != 2) {
if (FC_flash_attn_ext_has_bias) {
s2 += s2_t(sm2[j*SH + tiisg])*slope;
} else {
s2 += s2_t(sm2[j*SH + tiisg]);
}
}
M[jj] = simd_max(max(M[jj], max(s2[0], s2[1])));
@@ -5931,7 +5904,7 @@ template<
void (*deq_v)(device const vd4x4_t *, short, thread v4x4_t &),
short DK, // K head size
short DV, // V head size
short Q = OP_FLASH_ATTN_EXT_NQPTG, // queries per threadgroup
short Q = OP_FLASH_ATTN_EXT_NQPSG, // queries per threadgroup
short C = OP_FLASH_ATTN_EXT_NCPSG> // cache items per threadgroup
kernel void kernel_flash_attn_ext(
constant ggml_metal_kargs_flash_attn_ext & args,
@@ -6141,11 +6114,10 @@ template<
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
short DK, // K head size
short DV, // V head size
short NE, // head elements per thread
short Q, // queries per threadgroup
short C, // cache items per threadgroup
short NSG> // number of simd groups
void kernel_flash_attn_ext_vec_impl(
short NE = 4, // head elements per thread
short Q = OP_FLASH_ATTN_EXT_VEC_NQPSG, // queries per threadgroup
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
kernel void kernel_flash_attn_ext_vec(
constant ggml_metal_kargs_flash_attn_ext_vec & args,
device const char * q,
device const char * k,
@@ -6162,6 +6134,7 @@ void kernel_flash_attn_ext_vec_impl(
static_assert(DV % 32 == 0, "DV must be divisible by 32");
#define NWG (FC_flash_attn_ext_vec_nwg)
#define NSG (FC_flash_attn_ext_vec_nsg)
#define NS10 (FC_flash_attn_ext_vec_ns10)
#define NS20 (FC_flash_attn_ext_vec_ns20)
@@ -6190,12 +6163,12 @@ void kernel_flash_attn_ext_vec_impl(
const short T = PK + NSG*SH; // shared memory size per query in (half)
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + Q*PK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + Q*PK); // same as above but in s4_t
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + Q*PK); // scratch buffer for mask
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + Q*T); // scratch buffer for the results
//threadgroup q_t * sq = (threadgroup q_t *) (shmem_f16 + 0*PK); // holds the query data
threadgroup q4_t * sq4 = (threadgroup q4_t *) (shmem_f16 + 0*PK); // same as above but in q4_t
threadgroup s_t * ss = (threadgroup s_t *) (shmem_f16 + sgitg*SH + NSG*PK); // scratch buffer for attention
threadgroup s4_t * ss4 = (threadgroup s4_t *) (shmem_f16 + sgitg*SH + NSG*PK); // same as above but in s4_t
threadgroup half * sm = (threadgroup half *) (shmem_f16 + sgitg*SH + 2*C + NSG*PK); // scratch buffer for mask
threadgroup o4_t * so4 = (threadgroup o4_t *) (shmem_f16 + 2*sgitg*PV + NSG*PK + NSG*SH); // scratch buffer for the results
// store the result for all queries in shared memory (the O matrix from the paper)
so4 += tiisg;
@@ -6213,11 +6186,13 @@ void kernel_flash_attn_ext_vec_impl(
// load heads from Q to shared memory
device const float4 * q4 = (device const float4 *) ((device const char *) q);
for (short i = tiisg; i < PK4; i += NW) {
if (iq1 < args.ne01 && i < DK4) {
sq4[i] = (q4_t) q4[i];
} else {
sq4[i] = (q4_t) 0.0f;
if (iq1 < args.ne01) {
for (short i = tiisg; i < PK4; i += NW) {
if (i < DK4) {
sq4[i] = (q4_t) q4[i];
} else {
sq4[i] = (q4_t) 0.0f;
}
}
}
@@ -6295,7 +6270,7 @@ void kernel_flash_attn_ext_vec_impl(
}
// skip -INF blocks
if (simd_max(sm[tiisg]) == -INFINITY) {
if (simd_max(sm[tiisg]) <= -MAXHALF) {
continue;
}
@@ -6569,57 +6544,11 @@ void kernel_flash_attn_ext_vec_impl(
}
#undef NWG
#undef NSG
#undef NS10
#undef NS20
}
template<
typename q4_t, // query types in shared memory
typename k4_t, // key types in shared memory
typename v4_t, // value types in shared memory
typename qk_t, // Q*K types
typename s_t, // soft-max types
typename s4_t,
typename o4_t, // attention accumulation types
typename kd4_t, // key type in device memory
short nl_k,
void (*deq_k_t4)(device const kd4_t *, short, thread k4_t &),
typename vd4_t, // value type in device memory
short nl_v,
void (*deq_v_t4)(device const vd4_t *, short, thread v4_t &),
short DK, // K head size
short DV, // V head size
short NE = 4, // head elements per thread
short Q = OP_FLASH_ATTN_EXT_VEC_NQPTG, // queries per threadgroup
short C = OP_FLASH_ATTN_EXT_VEC_NCPSG> // cache items per threadgroup
kernel void kernel_flash_attn_ext_vec(
constant ggml_metal_kargs_flash_attn_ext_vec & args,
device const char * q,
device const char * k,
device const char * v,
device const char * mask,
device const char * sinks,
device const char * pad,
device char * dst,
threadgroup half * shmem_f16 [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
#define FWD_TMPL q4_t, k4_t, v4_t, qk_t, s_t, s4_t, o4_t, kd4_t, nl_k, deq_k_t4, vd4_t, nl_v, deq_v_t4, DK, DV, NE, Q, C
#define FWD_ARGS args, q, k, v, mask, sinks, pad, dst, shmem_f16, tgpig, tiisg, sgitg
switch (FC_flash_attn_ext_vec_nsg) {
// note: disabled cases to reduce library load time
case 1: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 1>(FWD_ARGS); break;
case 2: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 2>(FWD_ARGS); break;
case 4: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 4>(FWD_ARGS); break;
//case 8: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 8>(FWD_ARGS); break;
//case 16: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 16>(FWD_ARGS); break;
//case 32: kernel_flash_attn_ext_vec_impl<FWD_TMPL, 32>(FWD_ARGS); break;
}
#undef FWD_TMPL
#undef FWD_ARGS
}
// note: I think the s_t can be half instead of float, because the Q*K scaling is done before storing to shared mem
// in the other (non-vec) kernel, we need s_t to also be float because we scale during the soft_max
//
@@ -8782,6 +8711,26 @@ kernel void kernel_set_rows_f(
}
}
kernel void kernel_diag_f32(
constant ggml_metal_kargs_diag & args,
device const char * src0,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]]) {
constexpr short NW = N_SIMDWIDTH;
const int32_t i3 = tgpig.z;
const int32_t i2 = tgpig.y;
const int32_t i1 = tgpig.x;
device const float * src0_ptr = (device const float *)(src0 + i2*args.nb02 + i3*args.nb03);
device float * dst_ptr = (device float *)(dst + i1*args.nb01 + i2*args.nb2 + i3*args.nb3);
for (int i0 = tiitg; i0 < args.ne0; i0 += NW) {
dst_ptr[i0] = i0 == i1 ? src0_ptr[i0] : 0.0f;
}
}
constant bool FC_mul_mm_bc_inp [[function_constant(FC_MUL_MM + 0)]];
constant bool FC_mul_mm_bc_out [[function_constant(FC_MUL_MM + 1)]];

View File

@@ -453,7 +453,6 @@ struct ggml_backend_opencl_context {
cl_program program_rms_norm;
cl_program program_group_norm;
cl_program program_rope;
cl_program program_scale;
cl_program program_silu;
cl_program program_sigmoid;
cl_program program_softmax_f32;
@@ -462,11 +461,8 @@ struct ggml_backend_opencl_context {
cl_program program_softmax_4_f16;
cl_program program_argsort_f32_i32;
cl_program program_sum_rows_f32;
cl_program program_repeat;
cl_program program_pad;
cl_program program_tanh;
cl_program program_upscale;
cl_program program_concat;
cl_program program_conv_2d_f16;
cl_program program_conv_2d_f32;
cl_program program_conv_2d_f16_f32;
@@ -485,7 +481,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_div, kernel_div_row, kernel_div_f16, kernel_div_row_f16;
cl_kernel kernel_sub, kernel_sub_row, kernel_sub_f16, kernel_sub_row_f16;
cl_kernel kernel_add_id;
cl_kernel kernel_scale;
cl_kernel kernel_scale_f32, kernel_scale_f32_4;
cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
cl_kernel kernel_mean_f32;
@@ -544,18 +540,17 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_repeat;
cl_kernel kernel_repeat_f32;
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32_nd;
cl_kernel kernel_tanh_f16_nd;
cl_kernel kernel_tanh_f32, kernel_tanh_f32_4, kernel_tanh_f32_nc;
cl_kernel kernel_tanh_f16, kernel_tanh_f16_4, kernel_tanh_f16_nc;
cl_kernel kernel_expm1_f32_nd;
cl_kernel kernel_expm1_f16_nd;
cl_kernel kernel_softplus_f32_nd;
cl_kernel kernel_softplus_f16_nd;
cl_kernel kernel_upscale;
cl_kernel kernel_upscale_bilinear;
cl_kernel kernel_concat_f32_contiguous;
cl_kernel kernel_concat_f32_non_contiguous;
cl_kernel kernel_concat_f32;
cl_kernel kernel_conv_2d_f16;
cl_kernel kernel_conv_2d_f32;
cl_kernel kernel_conv_2d_f16_f32;
@@ -1483,10 +1478,12 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("scale.cl");
#endif
backend_ctx->program_scale =
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program_scale, "kernel_scale", &err), err));
CL_CHECK((backend_ctx->kernel_scale_f32 = clCreateKernel(prog, "kernel_scale_f32", &err), err));
CL_CHECK((backend_ctx->kernel_scale_f32_4 = clCreateKernel(prog, "kernel_scale_f32_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
@@ -1814,16 +1811,11 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("repeat.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_repeat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_repeat = clCreateKernel(backend_ctx->program_repeat, "kernel_repeat", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: repeat kernel source not found or empty. Repeat operations will not be available.\n");
backend_ctx->program_repeat = nullptr;
backend_ctx->kernel_repeat = nullptr;
}
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_repeat_f32 = clCreateKernel(prog, "kernel_repeat_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// pad
@@ -1856,18 +1848,16 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("tanh.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_tanh =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_tanh_f32_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f16_nd = clCreateKernel(backend_ctx->program_tanh, "kernel_tanh_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: tanh kernel source not found or empty. Tanh operation will not be available.\n");
backend_ctx->program_tanh = nullptr;
backend_ctx->kernel_tanh_f32_nd = nullptr;
backend_ctx->kernel_tanh_f16_nd = nullptr;
}
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_tanh_f32 = clCreateKernel(prog, "kernel_tanh_f32", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f32_4 = clCreateKernel(prog, "kernel_tanh_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f32_nc = clCreateKernel(prog, "kernel_tanh_f32_nc", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f16 = clCreateKernel(prog, "kernel_tanh_f16", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f16_4 = clCreateKernel(prog, "kernel_tanh_f16_4", &err), err));
CL_CHECK((backend_ctx->kernel_tanh_f16_nc = clCreateKernel(prog, "kernel_tanh_f16_nc", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// expm1
@@ -1959,22 +1949,13 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#include "concat.cl.h"
};
#else
const std::string kernel_src = read_file("concat.cl");
#endif
if (!kernel_src.empty()) {
backend_ctx->program_concat =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_concat_f32_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_contiguous", &err), err));
CL_CHECK((backend_ctx->kernel_concat_f32_non_contiguous = clCreateKernel(backend_ctx->program_concat, "kernel_concat_f32_non_contiguous", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: concat kernel source not found or empty. Concat operations will not be available.\n");
backend_ctx->program_concat = nullptr;
backend_ctx->kernel_concat_f32_contiguous = nullptr;
backend_ctx->kernel_concat_f32_non_contiguous = nullptr;
}
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_concat_f32 = clCreateKernel(prog, "kernel_concat_f32", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// timestep_embedding
@@ -3318,8 +3299,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_SIGMOID:
return ggml_is_contiguous(op->src[0]);
case GGML_UNARY_OP_TANH:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
case GGML_UNARY_OP_EXPM1:
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
@@ -3740,7 +3720,7 @@ static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buff
// Reuse extra of the parent tensor. The offset of this view tensor
// becomes `extra->offset + view_offs` and needs to be calculated when
// it is used. This changes is needed because of the change to
// ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
// ggml_alloc.c in https://github.com/ggml-org/llama.cpp/pull/7640.
// `buffer` passed in here will always be `tensor->buffer`. It is OK
// to allocate extras from the same buffer context for ordinary
// intermediate tensors. But for views into kv cache tensors, doing so
@@ -7029,79 +7009,87 @@ static void ggml_cl_tanh(ggml_backend_t backend, const ggml_tensor * src0, const
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_tanh_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_tanh_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_tanh");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0]; const int ne01 = src0->ne[1]; const int ne02 = src0->ne[2]; const int ne03 = src0->ne[3];
const cl_ulong nb00 = src0->nb[0]; const cl_ulong nb01 = src0->nb[1]; const cl_ulong nb02 = src0->nb[2]; const cl_ulong nb03 = src0->nb[3];
const int ne10 = dst->ne[0]; const int ne11 = dst->ne[1]; const int ne12 = dst->ne[2]; const int ne13 = dst->ne[3];
const cl_ulong nb10 = dst->nb[0]; const cl_ulong nb11 = dst->nb[1]; const cl_ulong nb12 = dst->nb[2]; const cl_ulong nb13 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
if (ggml_is_contiguous(src0)) {
// Handle contiguous input
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_tanh_f32_4;
} else {
kernel = backend_ctx->kernel_tanh_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_tanh_f32;
} else {
kernel = backend_ctx->kernel_tanh_f16;
}
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
} else {
// Handle non-contiguous input
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_tanh_f32_nc;
} else {
kernel = backend_ctx->kernel_tanh_f16_nc;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb3));
int nth = 64;
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
}
static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -7319,53 +7307,58 @@ static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, con
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
if (backend_ctx->kernel_repeat == nullptr) {
GGML_LOG_WARN("%s: repeat kernel not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra_src0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra_dst = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong off_src0 = extra_src0->offset + src0->view_offs;
cl_ulong off_dst = extra_dst->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const int src0_ne0 = src0->ne[0]; const int src0_ne1 = src0->ne[1]; const int src0_ne2 = src0->ne[2]; const int src0_ne3 = src0->ne[3];
const cl_ulong src0_nb0 = src0->nb[0]; const cl_ulong src0_nb1 = src0->nb[1]; const cl_ulong src0_nb2 = src0->nb[2]; const cl_ulong src0_nb3 = src0->nb[3];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const int dst_ne0 = dst->ne[0]; const int dst_ne1 = dst->ne[1]; const int dst_ne2 = dst->ne[2]; const int dst_ne3 = dst->ne[3];
const cl_ulong dst_nb0 = dst->nb[0]; const cl_ulong dst_nb1 = dst->nb[1]; const cl_ulong dst_nb2 = dst->nb[2]; const cl_ulong dst_nb3 = dst->nb[3];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int ne2 = dst->ne[2];
const int ne3 = dst->ne[3];
cl_kernel kernel = backend_ctx->kernel_repeat;
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra_src0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra_dst->data_device));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &src0_ne0));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &src0_ne1));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &src0_ne2));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &src0_ne3));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &src0_nb0));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &src0_nb1));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &src0_nb2));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &src0_nb3));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &dst_ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &dst_ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &dst_ne2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dst_ne3));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &dst_nb0));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &dst_nb1));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &dst_nb2));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &dst_nb3));
cl_kernel kernel = backend_ctx->kernel_repeat_f32;
size_t gws0 = dst_ne1 > 0 ? (size_t)dst_ne1 : 1;
size_t gws1 = dst_ne2 > 0 ? (size_t)dst_ne2 : 1;
size_t gws2 = dst_ne3 > 0 ? (size_t)dst_ne3 : 1;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = { gws0, gws1, gws2 };
int nth = 64;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3};
size_t local_work_size[] = {(size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_pad(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
@@ -7589,121 +7582,76 @@ static void ggml_cl_concat(ggml_backend_t backend, const ggml_tensor * src0, con
GGML_ASSERT(dst->type == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
if (backend_ctx->kernel_concat_f32_contiguous == nullptr || backend_ctx->kernel_concat_f32_non_contiguous == nullptr) {
GGML_LOG_WARN("%s: concat kernels not available, skipping OpenCL execution.\n", __func__);
return;
}
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
ggml_tensor_extra_cl * extra0_cl = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extra1_cl = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad_cl = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong off_src0 = extra0_cl->offset + src0->view_offs;
cl_ulong off_src1 = extra1_cl->offset + src1->view_offs;
cl_ulong off_dst = extrad_cl->offset + dst->view_offs;
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
const int ne02 = src0->ne[2];
const int ne03 = src0->ne[3];
const int32_t dim = ((const int32_t *) dst->op_params)[0];
const cl_ulong nb00 = src0->nb[0];
const cl_ulong nb01 = src0->nb[1];
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb10 = src1->nb[0];
const cl_ulong nb11 = src1->nb[1];
const cl_ulong nb12 = src1->nb[2];
const cl_ulong nb13 = src1->nb[3];
const int ne0 = dst->ne[0];
const int ne1 = dst->ne[1];
const int ne2 = dst->ne[2];
const int ne3 = dst->ne[3];
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
const cl_int dim = ((const int32_t *) dst->op_params)[0];
GGML_ASSERT(dim >= 0 && dim <= 3);
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) {
if (dim == 3) {
int nth = MIN(64, ne0);
size_t nbytes_src0 = ggml_nbytes(src0);
size_t nbytes_src1 = ggml_nbytes(src1);
cl_kernel kernel = backend_ctx->kernel_concat_f32;
CL_CHECK(clEnqueueCopyBuffer(queue, extra0_cl->data_device, extrad_cl->data_device,
off_src0, off_dst, nbytes_src0, 0, NULL, NULL));
CL_CHECK(clEnqueueCopyBuffer(queue, extra1_cl->data_device, extrad_cl->data_device,
off_src1, off_dst + nbytes_src0, nbytes_src1, 0, NULL, NULL));
} else {
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne0));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb3));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_int), &dim));
cl_kernel kernel = backend_ctx->kernel_concat_f32_contiguous;
size_t global_work_size[3];
size_t global_work_size[] = {(size_t)ne1*nth, (size_t)ne2, (size_t)ne3};
size_t local_work_size[] = {(size_t)nth, 1, 1};
for (int i3 = 0; i3 < dst->ne[3]; ++i3) {
cl_ulong current_off_src0 = off_src0 + (i3 * src0->nb[3]);
cl_ulong current_off_src1 = off_src1 + (i3 * src1->nb[3]);
cl_ulong current_off_dst = off_dst + (i3 * dst->nb[3]);
int d_ne00 = src0->ne[0]; int d_ne01 = src0->ne[1]; int d_ne02 = src0->ne[2];
int d_ne10 = src1->ne[0]; int d_ne11 = src1->ne[1]; int d_ne12 = src1->ne[2];
int d_ne0 = dst->ne[0]; int d_ne1 = dst->ne[1]; int d_ne2 = dst->ne[2];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &current_off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &current_off_src1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &current_off_dst));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &d_ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &d_ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &d_ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &d_ne10));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &d_ne11));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &d_ne12));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &d_ne0));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &d_ne1));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &d_ne2));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &dim));
global_work_size[0] = d_ne0;
global_work_size[1] = d_ne1;
global_work_size[2] = d_ne2;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, NULL, dst);
}
}
} else {
cl_kernel kernel = backend_ctx->kernel_concat_f32_non_contiguous;
cl_long ne00 = src0->ne[0], ne01 = src0->ne[1], ne02 = src0->ne[2], ne03 = src0->ne[3];
cl_ulong nb00 = src0->nb[0], nb01 = src0->nb[1], nb02 = src0->nb[2], nb03 = src0->nb[3];
cl_ulong nb10 = src1->nb[0], nb11 = src1->nb[1], nb12 = src1->nb[2], nb13 = src1->nb[3];
cl_long d_ne0 = dst->ne[0], d_ne1 = dst->ne[1], d_ne2 = dst->ne[2], d_ne3 = dst->ne[3];
cl_ulong d_nb0 = dst->nb[0], d_nb1 = dst->nb[1], d_nb2 = dst->nb[2], d_nb3 = dst->nb[3];
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &off_src0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &off_src1));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad_cl->data_device));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &off_dst));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &ne00));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &ne01));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &ne02));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &ne03));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb10));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb11));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb12));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb13));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_long), &d_ne0));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_long), &d_ne1));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_long), &d_ne2));
CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_long), &d_ne3));
CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &d_nb0));
CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &d_nb1));
CL_CHECK(clSetKernelArg(kernel, 24, sizeof(cl_ulong), &d_nb2));
CL_CHECK(clSetKernelArg(kernel, 25, sizeof(cl_ulong), &d_nb3));
CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &dim));
size_t global_work_size_nc[] = { d_ne1 > 0 ? (size_t)d_ne1 : 1,
d_ne2 > 0 ? (size_t)d_ne2 : 1,
d_ne3 > 0 ? (size_t)d_ne3 : 1 };
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size_nc, NULL, dst);
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
}
static void ggml_cl_timestep_embedding(ggml_backend_t backend, const ggml_tensor * src0, ggml_tensor * dst) {
@@ -8394,6 +8342,7 @@ static void ggml_cl_mul_mat_q8_0_f32_adreno(ggml_backend_t backend, const ggml_t
CL_CHECK(clReleaseMemObject(D_sub_buffer));
CL_CHECK(clReleaseMemObject(D_image1d));
#else
GGML_UNUSED(backend);
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
@@ -9913,7 +9862,16 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel = backend_ctx->kernel_scale;
cl_kernel kernel;
int n = ggml_nelements(dst);
if (n % 4 == 0) {
kernel = backend_ctx->kernel_scale_f32_4;
n /= 4;
} else {
kernel = backend_ctx->kernel_scale_f32;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
@@ -9922,8 +9880,6 @@ static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, cons
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &bias));
int n = ggml_nelements(dst)/4;
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};

View File

@@ -1,109 +1,51 @@
kernel void kernel_concat_f32_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
int d_ne00, int d_ne01, int d_ne02, // src0->ne[0..2] for the slice
int d_ne10, int d_ne11, int d_ne12, // src1->ne[0..2] for the slice (d_ne1X must match d_ne0X on non-concat axes)
int d_ne0, int d_ne1, int d_ne2, // dst->ne[0..2] for the slice
int dim
kernel void kernel_concat_f32(
global const char * src0,
ulong offset0,
global const char * src1,
ulong offset1,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3,
int dim
) {
global const float * src0 = (global const float*)((global char*)p_src0 + off_src0);
global const float * src1 = (global const float*)((global char*)p_src1 + off_src1);
global float * dst = (global float*)((global char*)p_dst + off_dst);
src0 = src0 + offset0;
src1 = src1 + offset1;
dst = dst + offsetd;
int i0 = get_global_id(0); // Index along dst's 0th dimension
int i1 = get_global_id(1); // Index along dst's 1st dimension
int i2 = get_global_id(2); // Index along dst's 2nd dimension
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (i0 >= d_ne0 || i1 >= d_ne1 || i2 >= d_ne2) {
return;
}
int o[4] = {0, 0, 0, 0};
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
ulong dst_idx = (ulong)i2 * d_ne0 * d_ne1 + (ulong)i1 * d_ne0 + i0;
ulong src_idx;
global const float * x;
if (dim == 0) {
if (i0 < d_ne00) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + (i0 - d_ne00);
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 1) {
if (i1 < d_ne01) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)i2 * d_ne10 * d_ne11 + (ulong)(i1 - d_ne01) * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
} else if (dim == 2) {
if (i2 < d_ne02) { // Data from src0
src_idx = (ulong)i2 * d_ne00 * d_ne01 + (ulong)i1 * d_ne00 + i0;
dst[dst_idx] = src0[src_idx];
} else { // Data from src1
src_idx = (ulong)(i2 - d_ne02) * d_ne10 * d_ne11 + (ulong)i1 * d_ne10 + i0;
dst[dst_idx] = src1[src_idx];
}
}
}
kernel void kernel_concat_f32_non_contiguous(
global const char * p_src0, ulong off_src0,
global const char * p_src1, ulong off_src1,
global char * p_dst, ulong off_dst,
long ne00, long ne01, long ne02, long ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
ulong nb10, ulong nb11, ulong nb12, ulong nb13, // Strides for src1
long d_ne0, long d_ne1, long d_ne2, long d_ne3,
ulong d_nb0, ulong d_nb1, ulong d_nb2, ulong d_nb3,
int dim
) {
global const char * src0_base = p_src0 + off_src0;
global const char * src1_base = p_src1 + off_src1;
global char * dst_base = p_dst + off_dst;
long current_i1 = get_global_id(0); // Index for dst_dim_1
long current_i2 = get_global_id(1); // Index for dst_dim_2
long current_i3 = get_global_id(2); // Index for dst_dim_3
if (current_i1 >= d_ne1 || current_i2 >= d_ne2 || current_i3 >= d_ne3) {
return;
}
global const float * x_val_ptr;
global float * y_val_ptr;
for (long current_i0 = 0; current_i0 < d_ne0; ++current_i0) {
bool use_src0;
long s_i0 = current_i0, s_i1 = current_i1, s_i2 = current_i2, s_i3 = current_i3;
if (dim == 0) {
use_src0 = (current_i0 < ne00);
if (!use_src0) { s_i0 = current_i0 - ne00; }
} else if (dim == 1) {
use_src0 = (current_i1 < ne01);
if (!use_src0) { s_i1 = current_i1 - ne01; }
} else if (dim == 2) {
use_src0 = (current_i2 < ne02);
if (!use_src0) { s_i2 = current_i2 - ne02; }
} else { // dim == 3
use_src0 = (current_i3 < ne03);
if (!use_src0) { s_i3 = current_i3 - ne03; }
}
if (use_src0) {
x_val_ptr = (global const float *)(src0_base + (ulong)s_i3*nb03 + (ulong)s_i2*nb02 + (ulong)s_i1*nb01 + (ulong)s_i0*nb00);
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (global const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
} else {
x_val_ptr = (global const float *)(src1_base + (ulong)s_i3*nb13 + (ulong)s_i2*nb12 + (ulong)s_i1*nb11 + (ulong)s_i0*nb10);
x = (global const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
}
y_val_ptr = (global float *)(dst_base + (ulong)current_i3*d_nb3 + (ulong)current_i2*d_nb2 + (ulong)current_i1*d_nb1 + (ulong)current_i0*d_nb0);
*y_val_ptr = *x_val_ptr;
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
*y = *x;
}
}

View File

@@ -1,39 +1,38 @@
kernel void kernel_repeat(
global const char * src0_data_in,
global char * dst_data_in,
ulong src0_offset,
ulong dst_offset,
int src0_ne0, int src0_ne1, int src0_ne2, int src0_ne3,
ulong src0_nb0, ulong src0_nb1, ulong src0_nb2, ulong src0_nb3,
int dst_ne0, int dst_ne1, int dst_ne2, int dst_ne3,
ulong dst_nb0, ulong dst_nb1, ulong dst_nb2, ulong dst_nb3
kernel void kernel_repeat_f32(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
global const char * src0_data = src0_data_in + src0_offset;
global char * dst_data = dst_data_in + dst_offset;
src0 = src0 + offset0;
dst = dst + offsetd;
const int d3 = get_global_id(2);
const int d2 = get_global_id(1);
const int d1 = get_global_id(0);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (d3 >= dst_ne3 || d2 >= dst_ne2 || d1 >= dst_ne1) {
return;
}
const int i03 = i3%ne03;
const int i02 = i2%ne02;
const int i01 = i1%ne01;
const int s3 = d3 % src0_ne3;
const int s2 = d2 % src0_ne2;
const int s1 = d1 % src0_ne1;
global const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
global char * dst_ptr = dst + i3*nb3 + i2*nb2 + i1*nb1;
const global char * p_src0_slice = src0_data + (ulong)s3*src0_nb3 + (ulong)s2*src0_nb2 + (ulong)s1*src0_nb1;
global char * p_dst_slice = dst_data + (ulong)d3*dst_nb3 + (ulong)d2*dst_nb2 + (ulong)d1*dst_nb1;
for (int d0 = 0; d0 < dst_ne0; ++d0) {
// Determine source index for dimension 0 based on tiling/broadcasting.
const int s0 = d0 % src0_ne0;
const global char * restrict current_src_el_ptr = p_src0_slice + (ulong)s0*src0_nb0;
global char * restrict current_dst_el_ptr = p_dst_slice + (ulong)d0*dst_nb0;
for (int k = 0; k < src0_nb0; ++k) {
current_dst_el_ptr[k] = current_src_el_ptr[k];
}
for (int i0 = get_local_id(0); i0 < ne0; i0 += get_local_size(0)) {
const int i00 = i0%ne00;
*((global float *)(dst_ptr + i0*nb0)) = *((global float *)(src0_ptr + i00*nb00));
}
}

View File

@@ -1,9 +1,19 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
//------------------------------------------------------------------------------
// scale
//------------------------------------------------------------------------------
kernel void kernel_scale(
kernel void kernel_scale_f32(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd,
float scale,
float bias
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
dst[get_global_id(0)] = src0[get_global_id(0)] * scale + bias;
}
kernel void kernel_scale_f32_4(
global float4 * src0,
ulong offset0,
global float4 * dst,

View File

@@ -1,63 +1,109 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#ifdef cl_intel_required_subgroup_size
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#endif
kernel void kernel_tanh_f32_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
kernel void kernel_tanh_f32(
global const float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
}
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
kernel void kernel_tanh_f32_4(
global const float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
*dst_val_ptr = tanh(*src_val_ptr);
}
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
}
kernel void kernel_tanh_f16(
global const half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
}
kernel void kernel_tanh_f16_4(
global const half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
dst[get_global_id(0)] = tanh(src0[get_global_id(0)]);
}
kernel void kernel_tanh_f32_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
dst = dst + offsetd;
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const float * x = (global const float *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
*y = tanh(*x);
}
}
kernel void kernel_tanh_f16_nd(
global void * p_src0_base, ulong off_src0_abs,
global void * p_dst_base, ulong off_dst_abs,
int ne00, int ne01, int ne02, int ne03,
ulong nb00, ulong nb01, ulong nb02, ulong nb03,
int ne10, int ne11, int ne12, int ne13,
ulong nb10, ulong nb11, ulong nb12, ulong nb13
kernel void kernel_tanh_f16_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
) {
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
src0 = src0 + offset0;
dst = dst + offsetd;
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const half * x = (global const half *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global half * y = (global half *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
*dst_val_ptr = tanh(*src_val_ptr);
}
*y = tanh(*x);
}
}

View File

@@ -1,7 +1,7 @@
message(STATUS "GGML_SYCL_TARGET=${GGML_SYCL_TARGET}")
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL)$")
message(FATAL_ERROR "GGML_SYCL_TARGET: Invalid target, the supported options are [INTEL]")
endif()
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
@@ -125,25 +125,22 @@ endif()
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_DNNL=${GGML_SYCL_DNNL})
if (GGML_SYCL_F16)
if (GGML_SYCL_TARGET STREQUAL "AMD")
message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
endif()
add_compile_definitions(GGML_SYCL_F16)
endif()
if (GGML_SYCL_TARGET STREQUAL "INTEL")
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
target_link_options(ggml-sycl PRIVATE -Xs -ze-intel-greater-than-4GB-buffer-required)
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
# INFO: Allowed Sub_group_sizes are not consistent through all
# hip targets. For example, 64 is used for certain models, but the backend
# does not support it.
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
# Link against Intel oneMKL
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
set(SYCL_COMPILER ON)
endif()
find_package(MKL REQUIRED)
target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
else()
# default for other target
message(FATAL_ERROR "GGML_SYCL_TARGET is not supported")
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
endif()
@@ -151,82 +148,6 @@ if (GGML_SYCL_GRAPH)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GRAPH)
endif()
# Link against Intel oneMKL or oneMath
if (GGML_SYCL_TARGET STREQUAL "INTEL")
# Intel devices use Intel oneMKL directly instead of oneMath to avoid the limitation of linking Intel oneMKL statically
# See https://github.com/uxlfoundation/oneMath/issues/654
if (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
set(SYCL_COMPILER ON)
endif()
find_package(MKL REQUIRED)
target_link_libraries(ggml-sycl PRIVATE MKL::MKL_SYCL::BLAS)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_USE_INTEL_ONEMKL)
else()
find_package(oneMath QUIET)
if (NOT oneMath_FOUND)
message(STATUS "oneMath not found: oneMath will be automatically downloaded")
# Use FetchContent to automatically pull and build oneMath
include(FetchContent)
set(BUILD_FUNCTIONAL_TESTS False)
set(BUILD_EXAMPLES False)
set(TARGET_DOMAINS blas)
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
set(ENABLE_MKLCPU_BACKEND False)
set(ENABLE_MKLGPU_BACKEND False)
set(ENABLE_CUBLAS_BACKEND True)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
set(ENABLE_MKLCPU_BACKEND False)
set(ENABLE_MKLGPU_BACKEND False)
set(ENABLE_ROCBLAS_BACKEND True)
# Ensure setting a string variable here is not overriden by oneMath CACHE variables
cmake_policy(SET CMP0126 NEW)
# Setting the device architecture is only needed and useful for AMD devices in oneMath
set(HIP_TARGETS ${GGML_SYCL_DEVICE_ARCH} CACHE STRING "oneMath HIP target" FORCE)
endif()
FetchContent_Declare(
ONEMATH
GIT_REPOSITORY https://github.com/uxlfoundation/oneMath.git
GIT_TAG 8efe85f5aaebb37f1d8c503b7af66315feabf142
)
FetchContent_MakeAvailable(ONEMATH)
# Create alias to match with find_package targets name
function(onemath_alias target)
if (TARGET ${target}_obj)
# Silence verbose warnings from external libraries
target_compile_options(${target}_obj PRIVATE -w)
endif()
if (TARGET ${target})
add_library(ONEMATH::${target} ALIAS ${target})
endif()
endfunction()
onemath_alias(onemath)
onemath_alias(onemath_blas_mklcpu)
onemath_alias(onemath_blas_mklgpu)
onemath_alias(onemath_blas_cublas)
onemath_alias(onemath_blas_rocblas)
endif()
# Below oneMath compile-time dispatching is used for better performance
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_cublas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=nvptx64-nvidia-cuda")
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_NVIDIA)
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
if (NOT GGML_SYCL_DEVICE_ARCH)
message(FATAL_ERROR "Can't enable SYCL hip backend, GGML_SYCL_DEVICE_ARCH has not been set.")
endif()
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath_blas_rocblas)
target_compile_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
target_link_options(ggml-sycl PRIVATE "-fsycl-targets=amdgcn-amd-amdhsa")
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_AMD)
else()
# Fallback to oneMath runtime dispatcher
target_link_libraries(ggml-sycl PRIVATE ONEMATH::onemath)
target_compile_definitions(ggml-sycl PRIVATE GGML_SYCL_GENERIC)
endif()
endif()
if (GGML_SYCL_DEVICE_ARCH)
target_compile_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})
target_link_options(ggml-sycl PRIVATE -Xsycl-target-backend --offload-arch=${GGML_SYCL_DEVICE_ARCH})

View File

@@ -15,17 +15,9 @@
#include <sycl/sycl.hpp>
#include <sycl/half_type.hpp>
#include <map>
#ifdef GGML_SYCL_USE_INTEL_ONEMKL
#include <oneapi/mkl.hpp>
// Allow to use the same namespace for Intel oneMKL and oneMath
namespace oneapi {
namespace math = mkl;
}
#else
#include <oneapi/math.hpp>
#endif
#include <map>
#include "ggml.h"
@@ -91,32 +83,13 @@ inline std::string get_device_backend_and_type(const sycl::device &device) {
}
template <typename Ts> struct matrix_info_t {
oneapi::math::transpose transpose_info[2];
oneapi::mkl::transpose transpose_info[2];
Ts value_info[2];
std::int64_t size_info[3];
std::int64_t ld_info[3];
std::int64_t groupsize_info;
};
inline auto get_onemath_backend(sycl::queue& queue)
#if defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
-> sycl::queue&
#endif
{
// If the backend is known at compile-time, use oneMath backend_selector to use
// compile-time dispatching and avoid the need to dlopen libraries. Otherwise
// fallback to runtime dispatching.
#if defined(GGML_SYCL_NVIDIA)
return oneapi::math::backend_selector<oneapi::math::backend::cublas>{ queue };
#elif defined(GGML_SYCL_AMD)
return oneapi::math::backend_selector<oneapi::math::backend::rocblas>{ queue };
#elif defined(GGML_SYCL_GENERIC) || defined(GGML_SYCL_USE_INTEL_ONEMKL)
return queue;
#else
static_assert(false, "Unsupported backend");
#endif
}
namespace dpct
{
typedef sycl::queue *queue_ptr;
@@ -1734,7 +1707,7 @@ namespace dpct
namespace detail
{
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
inline void gemm_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a, int lda, const void * b, int ldb,
const void * beta, void * c, int ldc) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
@@ -1742,7 +1715,7 @@ namespace dpct
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
oneapi::math::blas::column_major::gemm(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value, data_a,
oneapi::mkl::blas::column_major::gemm(q, a_trans, b_trans, m, n, k, alpha_value, data_a,
lda, data_b, ldb, beta_value, data_c, ldc);
}
@@ -1774,7 +1747,7 @@ namespace dpct
};
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b,
int ldb, const void * beta, void ** c, int ldc, int batch_size,
matrix_info_t<float> * matrix_info) {
@@ -1793,8 +1766,8 @@ namespace dpct
matrix_info->ld_info[2] = ldc;
matrix_info->groupsize_info = batch_size;
sycl::event e = oneapi::math::blas::column_major::gemm_batch(
get_onemath_backend(q), matrix_info->transpose_info, matrix_info->transpose_info + 1,
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
q, matrix_info->transpose_info, matrix_info->transpose_info + 1,
matrix_info->size_info, matrix_info->size_info + 1, matrix_info->size_info + 2,
reinterpret_cast<Ts *>(matrix_info->value_info), reinterpret_cast<const Ta **>(a), matrix_info->ld_info,
reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
@@ -1803,7 +1776,7 @@ namespace dpct
}
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans,
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
int m, int n, int k, const void * alpha, const void * a, int lda,
long long int stride_a, const void * b, int ldb, long long int stride_b,
const void * beta, void * c, int ldc, long long int stride_c, int batch_size) {
@@ -1812,7 +1785,7 @@ namespace dpct
auto data_a = get_memory<const Ta>(a);
auto data_b = get_memory<const Tb>(b);
auto data_c = get_memory<Tc>(c);
oneapi::math::blas::column_major::gemm_batch(get_onemath_backend(q), a_trans, b_trans, m, n, k, alpha_value,
oneapi::mkl::blas::column_major::gemm_batch(q, a_trans, b_trans, m, n, k, alpha_value,
data_a, lda, stride_a, data_b, ldb, stride_b, beta_value,
data_c, ldc, stride_c, batch_size);
}
@@ -2299,7 +2272,7 @@ namespace dpct
sycl::range<3>(x, y, 1), direction);
}
inline void gemm(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m, int n,
inline void gemm(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m, int n,
int k, const void * alpha, const void * a, library_data_t a_type, int lda, const void * b,
library_data_t b_type, int ldb, const void * beta, void * c, library_data_t c_type, int ldc,
library_data_t scaling_type) {
@@ -2366,7 +2339,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
@@ -2405,7 +2378,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
detail::gemm_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc);
break;
}
@@ -2447,7 +2420,7 @@ namespace dpct
/// \param [in] ldc Leading dimension of C.
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
/// \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda,
const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[],
library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type,
@@ -2485,7 +2458,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
@@ -2493,7 +2466,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
@@ -2569,7 +2542,7 @@ namespace dpct
/// \param [in] stride_c Stride between the different C matrices.
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
/// \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue & q, oneapi::math::transpose a_trans, oneapi::math::transpose b_trans, int m,
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a, library_data_t a_type, int lda,
long long int stride_a, const void * b, library_data_t b_type, int ldb,
long long int stride_b, const void * beta, void * c, library_data_t c_type, int ldc,
@@ -2642,7 +2615,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, oneapi::math::bfloat16, float>(
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
batch_size);
break;
@@ -2651,7 +2624,7 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::math::bfloat16, oneapi::math::bfloat16, float, float>(
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, stride_a, b, ldb, stride_b, beta, c, ldc, stride_c,
batch_size);
break;

View File

@@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_ceil(x);
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {

View File

@@ -1840,6 +1840,110 @@ static void argsort_f32_i32_sycl(const float *x, int *dst, const int ncols,
}
}
static void top_k_f32_sycl(
const float * src,
int32_t * dst_indices,
const int64_t ncols,
const int64_t nrows,
const int k,
dpct::queue_ptr main_stream
) {
const int block_size = 128;
const sycl::range<1> block_dims(block_size);
const sycl::range<1> grid_dims(nrows);
main_stream->submit([&](sycl::handler &cgh) {
sycl::local_accessor<float, 1> shared_vals(sycl::range<1>(block_size * k), cgh);
sycl::local_accessor<int, 1> shared_idx(sycl::range<1>(block_size * k), cgh);
cgh.parallel_for(
sycl::nd_range<1>(grid_dims * block_dims, block_dims),
[=](sycl::nd_item<1> item_ct1) {
const int row = item_ct1.get_group(0);
const int tid = item_ct1.get_local_id(0);
if (row >= nrows) return;
const float * src_row = src + row * ncols;
int32_t * dst_idx_row = dst_indices + row * k;
float local_vals[32];
int local_idx[32];
for (int i = 0; i < k; i++) {
local_vals[i] = -FLT_MAX;
local_idx[i] = -1;
}
for (int col = tid; col < ncols; col += block_size) {
float val = src_row[col];
if (val > local_vals[k-1]) {
int pos = k - 1;
while (pos > 0 && val > local_vals[pos - 1]) {
pos--;
}
for (int i = k - 1; i > pos; i--) {
local_vals[i] = local_vals[i - 1];
local_idx[i] = local_idx[i - 1];
}
local_vals[pos] = val;
local_idx[pos] = col;
}
}
for (int i = 0; i < k; i++) {
shared_vals[tid * k + i] = local_vals[i];
shared_idx[tid * k + i] = local_idx[i];
}
item_ct1.barrier(sycl::access::fence_space::local_space);
if (tid == 0) {
float final_vals[32];
int final_idx[32];
for (int i = 0; i < k; i++) {
final_vals[i] = -FLT_MAX;
final_idx[i] = -1;
}
for (int t = 0; t < block_size; t++) {
for (int i = 0; i < k; i++) {
float val = shared_vals[t * k + i];
int idx = shared_idx[t * k + i];
if (val > final_vals[k-1]) {
int pos = k - 1;
while (pos > 0 && val > final_vals[pos - 1]) {
pos--;
}
for (int j = k - 1; j > pos; j--) {
final_vals[j] = final_vals[j - 1];
final_idx[j] = final_idx[j - 1];
}
final_vals[pos] = val;
final_idx[pos] = idx;
}
}
}
for (int i = 0; i < k; i++) {
dst_idx_row[i] = final_idx[i];
}
if (k > 1) {
int32_t temp = dst_idx_row[0];
dst_idx_row[0] = dst_idx_row[1];
dst_idx_row[1] = temp;
}
}
});
});
}
static void argmax_f32_i32_sycl(const float *x, int *dst, const int ncols,
const int nrows, queue_ptr stream) {
const sycl::range<3> block_dims(1, 1, SYCL_ARGMAX_BLOCK_SIZE);
@@ -2063,8 +2167,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
*stream, oneapi::math::transpose::trans,
oneapi::math::transpose::nontrans, row_diff, src1_ncols, ne10,
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
&alpha_f16, src0_ptr, dpct::library_data_t::real_half, ne00,
src1_ptr, dpct::library_data_t::real_half, ne10, &beta_f16,
dst_f16.get(), dpct::library_data_t::real_half, ldc,
@@ -2107,8 +2211,8 @@ inline void ggml_sycl_op_mul_mat_sycl(
{
const float alpha = 1.0f;
const float beta = 0.0f;
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::math::blas::column_major::gemm(
get_onemath_backend(*stream), oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, row_diff,
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
*stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, row_diff,
src1_ncols, ne10, dpct::get_value(&alpha, *stream), src0_ddf_i, ne00, src1_ddf1_i, ne10,
dpct::get_value(&beta, *stream), dst_dd_i, ldc)));
}
@@ -2231,6 +2335,30 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, ggml_tensor *
main_stream, ctx.device);
}
static void ggml_sycl_op_top_k(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
GGML_ASSERT(src0);
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_contiguous(src0));
dpct::queue_ptr main_stream = ctx.stream();
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
const float * src0_dd = static_cast<const float *>(src0->data);
int32_t * dst_dd = static_cast<int32_t *>(dst->data);
const int k = dst->ne[0];
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
GGML_ASSERT(k > 0 && k <= 32);
GGML_ASSERT(k <= ncols);
top_k_f32_sycl(src0_dd, dst_dd, ncols, nrows, k, main_stream);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_I32);
@@ -3037,8 +3165,8 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
const int64_t smb = ne12 == 1 ? s13 : s12;
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::math::transpose::trans,
oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(*queue, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
src0_f16, dpct::library_data_t::real_half, nb01 / nb00, sma,
src1_f16, dpct::library_data_t::real_half, s11, smb, beta, dst_ddf,
mkl_data_type, ne0, ne1 * ne0, ne12 * ne13, mkl_compute_type)));
@@ -3062,7 +3190,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx, cons
});
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*queue, oneapi::math::transpose::trans, oneapi::math::transpose::nontrans, ne01, ne11, ne10, alpha,
*queue, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
(const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00,
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, s11, beta,
(void **) (ptrs_dst.get() + 0 * ne23), mkl_data_type, ne0, ne23, mkl_compute_type, matrix_info.get())));
@@ -3390,18 +3518,17 @@ static void ggml_sycl_mul_mat(ggml_backend_sycl_context & ctx, const ggml_tensor
// mmvq and mmq need the __dp4a instruction which is available for gen12+
// Workaround in https://github.com/ggerganov/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
// Workaround in https://github.com/ggml-org/llama.cpp/commit/95f84d5ce8b449a9b16009434aca800df504a02e
use_mul_mat_q = use_mul_mat_q && (src0->type != GGML_TYPE_IQ2_XXS);
#ifdef SYCL_USE_XMX
use_mul_mat_q = use_mul_mat_q && (src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
#endif // SYCL_USE_XMX
// mmvq path is faster in the CUDA backend.
if (!g_ggml_sycl_prioritize_dmmv && (ctx.stream()->get_backend() == sycl::backend::ext_oneapi_cuda
// Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization
// is enabled takes precedence over DMMV, the current if-else implementation
// requires disabling DMMV if both conditions are met
|| (should_reorder_tensor(ctx, dst) && ggml_sycl_supports_reorder_mmvq(src0->type)))) {
// Dispatch becomes obscure with the reorder, MMVQ when the reorder optimization
// is enabled takes precedence over DMMV, the current if-else implementation
// requires disabling DMMV if both conditions are met
if (!g_ggml_sycl_prioritize_dmmv && ((should_reorder_tensor(ctx, dst) &&
ggml_sycl_supports_reorder_mmvq(src0->type)))) {
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
}
@@ -4007,6 +4134,9 @@ static bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct gg
case GGML_OP_ARGSORT:
ggml_sycl_argsort(ctx, dst);
break;
case GGML_OP_TOP_K:
ggml_sycl_op_top_k(ctx, dst);
break;
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_sycl_op_timestep_embedding(ctx, dst);
break;
@@ -4058,16 +4188,6 @@ void ggml_backend_sycl_get_device_memory(int device, size_t *free,
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
ggml_sycl_set_device(device);
/*
DPCT1009:218: SYCL uses exceptions to report errors and does not use the
error codes. The original code was commented out and a warning string was
inserted. You need to rewrite this code.
*/
/*
DPCT1106:217: 'cudaMemGetInfo' was migrated with the Intel extensions for
device information which may not be supported by all compilers or runtimes.
You may need to adjust the code.
*/
SYCL_CHECK(CHECK_TRY_ERROR(
dpct::dev_mgr::instance().get_device(device).get_memory_info(*free, *total)));
}
@@ -4471,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_CEIL:
return true;
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
#if defined (GGML_SYCL_F16)
@@ -4710,6 +4830,15 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_ARGSORT:
return op->src[0]->ne[0] * sizeof(int) <=
ggml_sycl_info().devices[device].smpbo;
case GGML_OP_TOP_K: {
const ggml_tensor * src0 = op->src[0];
const int k = op->ne[0];
return src0 &&
op->type == GGML_TYPE_I32 &&
src0->type == GGML_TYPE_F32 &&
ggml_is_contiguous(src0) &&
k > 0 && k <= 32;
}
case GGML_OP_POOL_2D:
case GGML_OP_ACC:
return true;

View File

@@ -32,12 +32,12 @@ void ggml_sycl_op_out_prod(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
// Handle transposition of src1
const bool src1_T = ggml_is_transposed(src1);
const oneapi::math::transpose src1_op = src1_T ? oneapi::math::transpose::nontrans : oneapi::math::transpose::trans;
const oneapi::mkl::transpose src1_op = src1_T ? oneapi::mkl::transpose::nontrans : oneapi::mkl::transpose::trans;
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
try {
// Perform matrix multiplication using oneMath GEMM
oneapi::math::blas::column_major::gemm(get_onemath_backend(*stream), oneapi::math::transpose::nontrans, src1_op,
// Perform matrix multiplication using oneMKL GEMM
oneapi::mkl::blas::column_major::gemm(*stream, oneapi::mkl::transpose::nontrans, src1_op,
ne0, ne1, ne01, alpha, src0_d, ne00, src1_d, ldb, beta, dst_d, ne0);
}
catch (sycl::exception const& exc) {

View File

@@ -207,7 +207,6 @@ static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, cons
const int p = sector;
theta_base = pos[channel_x] * sycl::pow(theta_scale, (float) p);
} else {
// Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
const int p = sector - sections.v[0];
theta_base = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
}

View File

@@ -1,7 +1,7 @@
#include <sycl/sycl.hpp>
#include "wkv.hpp"
constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
constexpr int WKV_BLOCK_SIZE = 64;
// Helper function for the main kernel
template <int block_size>

View File

@@ -36,7 +36,7 @@ apir_rpc_tensor apir_serialize_tensor(const ggml_tensor * tensor) {
result.data = reinterpret_cast<uint64_t>(tensor->data);
if (tensor->data) {
if (!tensor->buffer) {
GGML_ABORT("tensor has data but not buffer");
GGML_ABORT("%s: tensor has data but not buffer", __func__);
}
// tensor->data is serialized as an offset to the buffer base address
result.data -= reinterpret_cast<uint64_t>(BUFFER_TO_GGML_CONTEXT(tensor->buffer)->base);

View File

@@ -27,7 +27,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v
const void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
if (!shmem_data) {
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
apir_decoder_set_fatal(dec);
return 1;
}
@@ -45,7 +45,7 @@ uint32_t backend_backend_graph_compute(apir_encoder * enc, apir_decoder * dec, v
if (dev->iface.supports_op(dev, op)) {
continue;
}
GGML_LOG_ERROR("Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op));
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Graph node %d (%s) not supported by the backend\n", idx, ggml_op_desc(op));
status = GGML_STATUS_ABORTED;
apir_encode_ggml_status(enc, &status);

View File

@@ -36,18 +36,22 @@ uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec
ggml_backend_buffer_type_t buft;
buft = apir_decode_ggml_buffer_type(dec);
size_t value = buft->iface.get_max_size(buft);
size_t value = SIZE_MAX;
if (buft->iface.get_max_size) {
value = buft->iface.get_max_size(buft);
}
apir_encode_size_t(enc, &value);
return 0;
}
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */
uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx) {
GGML_UNUSED(ctx);
ggml_backend_buffer_type_t buft;
buft = apir_decode_ggml_buffer_type(dec);
GGML_UNUSED(dec);
const bool is_host = false;
bool is_host = buft->iface.is_host(buft);
apir_encode_bool_t(enc, &is_host);
return 0;

View File

@@ -40,7 +40,7 @@ uint32_t backend_buffer_set_tensor(apir_encoder * enc, apir_decoder * dec, virgl
void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
if (!shmem_data) {
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
return 1;
}
@@ -71,7 +71,7 @@ uint32_t backend_buffer_get_tensor(apir_encoder * enc, apir_decoder * dec, virgl
void * shmem_data = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
if (!shmem_data) {
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
return 1;
}
@@ -121,7 +121,7 @@ uint32_t backend_buffer_free_buffer(apir_encoder * enc, apir_decoder * dec, virg
buffer = apir_decode_ggml_buffer(dec);
if (!apir_untrack_backend_buffer(buffer)) {
GGML_LOG_WARN("%s: unknown buffer %p\n", __func__, (void *) buffer);
GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: unknown buffer %p\n", __func__, (void *) buffer);
return 1;
}

View File

@@ -124,7 +124,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec,
void * shmem_ptr = ctx->iface->get_shmem_ptr(ctx->ctx_id, shmem_res_id);
if (!shmem_ptr) {
GGML_LOG_ERROR("Couldn't get the shmem addr from virgl\n");
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: Couldn't get the shmem addr from virgl\n", __func__);
apir_decoder_set_fatal(dec);
return 1;
}

View File

@@ -17,26 +17,26 @@ uint64_t timer_count = 0;
uint32_t backend_dispatch_initialize(void * ggml_backend_reg_fct_p) {
if (reg != NULL) {
GGML_LOG_WARN("%s: already initialized\n", __func__);
GGML_LOG_WARN(GGML_VIRTGPU_BCK "%s: already initialized\n", __func__);
return APIR_BACKEND_INITIALIZE_ALREADY_INITED;
}
ggml_backend_reg_t (*ggml_backend_reg_fct)(void) = (ggml_backend_reg_t (*)()) ggml_backend_reg_fct_p;
reg = ggml_backend_reg_fct();
if (reg == NULL) {
GGML_LOG_ERROR("%s: backend registration failed\n", __func__);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend registration failed\n", __func__);
return APIR_BACKEND_INITIALIZE_BACKEND_REG_FAILED;
}
if (!reg->iface.get_device_count(reg)) {
GGML_LOG_ERROR("%s: backend initialization failed: no device found\n", __func__);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device found\n", __func__);
return APIR_BACKEND_INITIALIZE_NO_DEVICE;
}
dev = reg->iface.get_device(reg, 0);
if (!dev) {
GGML_LOG_ERROR("%s: backend initialization failed: no device received\n", __func__);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK "%s: backend initialization failed: no device received\n", __func__);
return APIR_BACKEND_INITIALIZE_NO_DEVICE;
}

View File

@@ -16,6 +16,7 @@ uint32_t backend_device_buffer_from_ptr(apir_encoder * enc, apir_decoder * dec,
uint32_t backend_buffer_type_get_name(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
uint32_t backend_buffer_type_get_alignment(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
uint32_t backend_buffer_type_get_max_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST is deprecated. Keeping the handler for backward compatibility. */
uint32_t backend_buffer_type_is_host(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
uint32_t backend_buffer_type_alloc_buffer(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
uint32_t backend_buffer_type_get_alloc_size(apir_encoder * enc, apir_decoder * dec, virgl_apir_context * ctx);
@@ -62,7 +63,7 @@ static inline const char * backend_dispatch_command_name(ApirBackendCommandType
case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE:
return "backend_buffer_type_get_max_size";
case APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST:
return "backend_buffer_type_is_host";
return "backend_buffer_type_is_host (DEPRECATED)";
case APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER:
return "backend_buffer_type_alloc_buffer";
case APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE:
@@ -110,7 +111,7 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_NAME = */ backend_buffer_type_get_name,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALIGNMENT = */ backend_buffer_type_get_alignment,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_MAX_SIZE = */ backend_buffer_type_get_max_size,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_IS_HOST = */ backend_buffer_type_is_host /* DEPRECATED */,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_ALLOC_BUFFER = */ backend_buffer_type_alloc_buffer,
/* APIR_COMMAND_TYPE_BUFFER_TYPE_GET_ALLOC_SIZE = */ backend_buffer_type_get_alloc_size,

View File

@@ -11,6 +11,8 @@
#include "shared/apir_cs.h"
#include "shared/apir_cs_ggml.h"
#define GGML_VIRTGPU_BCK "ggml-virtgpu-backend: "
struct virgl_apir_context {
uint32_t ctx_id;
virgl_apir_callbacks * iface;

View File

@@ -35,14 +35,8 @@ void apir_backend_deinit(uint32_t virgl_ctx_id) {
buffer->iface.free_buffer(buffer);
}
if (dev) {
size_t free, total;
dev->iface.get_memory(dev, &free, &total);
GGML_LOG_INFO("%s: free memory: %ld MB\n", __func__, (size_t) free / 1024 / 1024);
}
if (backend_library_handle) {
GGML_LOG_INFO("%s: The GGML backend library was loaded. Unloading it.\n", __func__);
GGML_LOG_INFO(GGML_VIRTGPU_BCK "The GGML backend library was loaded. Unloading it.\n");
dlclose(backend_library_handle);
backend_library_handle = NULL;
}
@@ -65,7 +59,7 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
if (apir_logfile) {
ggml_log_set(log_to_file_callback, apir_logfile);
} else {
GGML_LOG_INFO("Could not open the log file at '%s'\n", apir_log_to_file);
GGML_LOG_INFO(GGML_VIRTGPU_BCK "Could not open the log file at '%s'\n", apir_log_to_file);
}
}
@@ -74,7 +68,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
const char * library_reg = virgl_library_reg ? virgl_library_reg : GGML_DEFAULT_BACKEND_REG;
if (!library_name) {
GGML_LOG_ERROR("cannot open the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
"%s: cannot open the GGML library: env var '%s' not defined\n",
__func__, APIR_LLAMA_CPP_GGML_LIBRARY_PATH_ENV);
return APIR_LOAD_LIBRARY_ENV_VAR_MISSING;
}
@@ -82,13 +79,16 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
backend_library_handle = dlopen(library_name, RTLD_LAZY);
if (!backend_library_handle) {
GGML_LOG_ERROR("cannot open the GGML library: %s\n", dlerror());
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
"%s: cannot open the GGML library: %s\n", __func__, dlerror());
return APIR_LOAD_LIBRARY_CANNOT_OPEN;
}
if (!library_reg) {
GGML_LOG_ERROR("cannot register the GGML library: env var '%s' not defined\n", APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
"%s: cannot register the GGML library: env var '%s' not defined\n",
__func__, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV);
return APIR_LOAD_LIBRARY_ENV_VAR_MISSING;
}
@@ -96,8 +96,10 @@ ApirLoadLibraryReturnCode apir_backend_initialize(uint32_t virgl_ctx_id, struct
void * ggml_backend_reg_fct = dlsym(backend_library_handle, library_reg);
dlsym_error = dlerror();
if (dlsym_error) {
GGML_LOG_ERROR("cannot find the GGML backend registration symbol '%s' (from %s): %s\n", library_reg,
APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
"%s: cannot find the GGML backend registration symbol '%s' (from %s): %s\n",
__func__, library_reg, APIR_LLAMA_CPP_GGML_LIBRARY_REG_ENV, dlsym_error);
return APIR_LOAD_LIBRARY_SYMBOL_MISSING;
}
@@ -134,7 +136,9 @@ uint32_t apir_backend_dispatcher(uint32_t virgl_ctx_id,
};
if (cmd_type >= APIR_BACKEND_DISPATCH_TABLE_COUNT) {
GGML_LOG_ERROR("Received an invalid dispatch index (%d >= %d)\n", cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT);
GGML_LOG_ERROR(GGML_VIRTGPU_BCK
"%s: Received an invalid dispatch index (%d >= %d)\n",
__func__, cmd_type, APIR_BACKEND_DISPATCH_TABLE_COUNT);
return APIR_BACKEND_FORWARD_INDEX_INVALID;
}

View File

@@ -86,7 +86,7 @@ static inline bool apir_decoder_peek_internal(apir_decoder * dec,
assert(val_size <= size);
if (unlikely(size > (size_t) (dec->end - dec->cur))) {
GGML_LOG_ERROR("reading too much from the decoder ...\n");
GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__);
apir_decoder_set_fatal(dec);
memset(val, 0, val_size);
return false;
@@ -103,7 +103,7 @@ static inline void apir_decoder_peek(apir_decoder * dec, size_t size, void * val
static inline const void * apir_decoder_use_inplace(apir_decoder * dec, size_t size) {
if (unlikely(size > (size_t) (dec->end - dec->cur))) {
GGML_LOG_ERROR("reading too much from the decoder ...\n");
GGML_LOG_ERROR("%s: reading too much from the decoder ...\n", __func__);
apir_decoder_set_fatal(dec);
return NULL;
}
@@ -221,7 +221,7 @@ static inline uint64_t apir_decode_array_size(apir_decoder * dec, uint64_t expec
uint64_t size;
apir_decode_uint64_t(dec, &size);
if (size != expected_size) {
GGML_LOG_ERROR("Couldn't decode array from the decoder\n");
GGML_LOG_ERROR("%s: Couldn't decode array from the decoder\n", __func__);
apir_decoder_set_fatal(dec);
size = 0;
}
@@ -322,7 +322,7 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t
if (size) {
val[size - 1] = '\0';
} else {
GGML_LOG_ERROR("Couldn't decode the blog array\n");
GGML_LOG_ERROR("%s: Couldn't decode the blog array\n", __func__);
apir_decoder_set_fatal(dec);
}
}
@@ -332,7 +332,8 @@ static inline void apir_decode_char_array(apir_decoder * dec, char * val, size_t
static inline void * apir_decoder_alloc_array(size_t size, size_t count) {
size_t alloc_size;
if (unlikely(__builtin_mul_overflow(size, count, &alloc_size))) {
GGML_LOG_ERROR("overflow in array allocation of %zu * %zu bytes\n", size, count);
GGML_LOG_ERROR("%s: overflow in array allocation of %zu * %zu bytes\n",
__func__, size, count);
return NULL;
}

View File

@@ -39,11 +39,17 @@ static inline void apir_encode_ggml_tensor(apir_encoder * enc, const ggml_tensor
static inline const ggml_tensor * apir_decode_ggml_tensor(apir_decoder * dec) {
const apir_rpc_tensor * apir_rpc_tensor = apir_decode_apir_rpc_tensor_inplace(dec);
if (!apir_rpc_tensor) {
return NULL;
}
ggml_init_params params{
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ggml_context * ctx = ggml_init(params);
const ggml_tensor * tensor = apir_deserialize_tensor(ctx, apir_rpc_tensor);
@@ -71,6 +77,10 @@ static inline ggml_backend_buffer_type_t apir_decode_ggml_buffer_type(apir_decod
return (ggml_backend_buffer_type_t) handle;
}
static inline void apir_encode_apir_buffer_type_host_handle(apir_encoder * enc, apir_buffer_type_host_handle_t handle) {
apir_encoder_write(enc, sizeof(handle), &handle, sizeof(handle));
}
static inline apir_buffer_type_host_handle_t apir_decode_apir_buffer_type_host_handle(apir_decoder * dec) {
apir_buffer_type_host_handle_t handle;
@@ -154,13 +164,13 @@ static inline void apir_encode_ggml_tensor_inline(apir_encoder * enc, const ggml
size_t tensor_size = sizeof(*tensor);
if (tensor->extra) {
GGML_ABORT("Cannot pass tensors with extra");
GGML_ABORT("%s: Cannot pass tensors with extra", __func__);
}
if (tensor->src[0] && tensor->buffer) {
static int first = 1;
if (first) {
GGML_LOG_WARN("Cannot pass tensors with src and buffer\n");
GGML_LOG_WARN("%s: Cannot pass tensors with src and buffer\n", __func__);
first = 0;
}
}

View File

@@ -6,7 +6,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml
ggml_backend_remoting_buffer_context * context = (ggml_backend_remoting_buffer_context *) malloc(sizeof(*context));
if (!context) {
GGML_ABORT("Couldn't allocate the buffer context ...");
GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the buffer context ...", __func__);
}
context->gpu = gpu;
@@ -20,7 +20,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml
context->base = context->apir_context.shmem.mmap_ptr;
context->is_from_ptr = true;
} else {
context->apir_context = apir_buffer_type_alloc_buffer(gpu, buft, size);
context->apir_context = apir_buffer_type_alloc_buffer(gpu, gpu->cached_buffer_type.host_handle, size);
context->is_from_ptr = false;
context->base = NULL;
}
@@ -34,36 +34,19 @@ static ggml_backend_buffer_t ggml_backend_remoting_buffer_type_alloc_buffer(ggml
static const char * ggml_backend_remoting_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
virtgpu * gpu = BUFT_TO_GPU(buft);
return apir_buffer_type_get_name(gpu, buft);
return gpu->cached_buffer_type.name;
}
static size_t ggml_backend_remoting_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
virtgpu * gpu = BUFT_TO_GPU(buft);
static size_t align = 0;
if (align == 0) {
align = apir_buffer_type_get_alignment(gpu, buft);
}
return align;
return gpu->cached_buffer_type.alignment;
}
static size_t ggml_backend_remoting_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
virtgpu * gpu = BUFT_TO_GPU(buft);
static size_t max_size = 0;
if (max_size == 0) {
max_size = apir_buffer_type_get_max_size(gpu, buft);
}
return max_size;
}
static bool ggml_backend_remoting_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
virtgpu * gpu = BUFT_TO_GPU(buft);
return apir_buffer_type_is_host(gpu, buft);
return gpu->cached_buffer_type.max_size;
}
static size_t ggml_backend_remoting_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft,
@@ -76,7 +59,7 @@ static size_t ggml_backend_remoting_buffer_type_get_alloc_size(ggml_backend_buff
return ggml_nbytes(tensor);
}
return apir_buffer_type_get_alloc_size(gpu, buft, tensor);
return apir_buffer_type_get_alloc_size(gpu, gpu->cached_buffer_type.host_handle, tensor);
}
const ggml_backend_buffer_type_i ggml_backend_remoting_buffer_type_interface = {

View File

@@ -3,32 +3,27 @@
static const char * ggml_backend_remoting_device_get_name(ggml_backend_dev_t dev) {
virtgpu * gpu = DEV_TO_GPU(dev);
return apir_device_get_name(gpu);
return gpu->cached_device_info.name;
}
static const char * ggml_backend_remoting_device_get_description(ggml_backend_dev_t dev) {
virtgpu * gpu = DEV_TO_GPU(dev);
return apir_device_get_description(gpu);
// Return the pre-cached description from the virtgpu structure
return gpu->cached_device_info.description;
}
static enum ggml_backend_dev_type ggml_backend_remoting_device_get_type(ggml_backend_dev_t dev) {
virtgpu * gpu = DEV_TO_GPU(dev);
static enum ggml_backend_dev_type type;
static bool has_type = false;
if (!has_type) {
has_type = true;
type = (enum ggml_backend_dev_type) apir_device_get_type(gpu);
}
return type;
return (enum ggml_backend_dev_type) gpu->cached_device_info.type;
}
static void ggml_backend_remoting_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
virtgpu * gpu = DEV_TO_GPU(dev);
return apir_device_get_memory(gpu, free, total);
*free = gpu->cached_device_info.memory_free;
*total = gpu->cached_device_info.memory_total;
}
static bool ggml_backend_remoting_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
@@ -77,13 +72,22 @@ static void ggml_backend_remoting_device_get_props(ggml_backend_dev_t dev, ggml_
ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_type(ggml_backend_dev_t dev) {
virtgpu * gpu = DEV_TO_GPU(dev);
apir_buffer_type_host_handle_t ctx = apir_device_get_buffer_type(gpu);
static std::atomic<bool> initialized = false;
static ggml_backend_buffer_type buft;
static ggml_backend_buffer_type buft{
/* .iface = */ ggml_backend_remoting_buffer_type_interface,
/* .device = */ dev,
/* .context = */ (void *) ctx,
};
if (!initialized) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
buft = {
/* .iface = */ ggml_backend_remoting_buffer_type_interface,
/* .device = */ dev,
/* .context = */ (void *) gpu->cached_buffer_type.host_handle,
};
initialized = true;
}
}
return &buft;
}
@@ -91,13 +95,22 @@ ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_type(ggml_bac
static ggml_backend_buffer_type_t ggml_backend_remoting_device_get_buffer_from_ptr_type(ggml_backend_dev_t dev) {
virtgpu * gpu = DEV_TO_GPU(dev);
apir_buffer_type_host_handle_t ctx = apir_device_get_buffer_type(gpu);
static std::atomic<bool> initialized = false;
static ggml_backend_buffer_type buft;
static ggml_backend_buffer_type buft{
/* .iface = */ ggml_backend_remoting_buffer_from_ptr_type_interface,
/* .device = */ dev,
/* .context = */ (void *) ctx,
};
if (!initialized) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (!initialized) {
buft = {
/* .iface = */ ggml_backend_remoting_buffer_from_ptr_type_interface,
/* .device = */ dev,
/* .context = */ (void *) gpu->cached_buffer_type.host_handle,
};
initialized = true;
}
}
return &buft;
}
@@ -110,7 +123,7 @@ static ggml_backend_buffer_t ggml_backend_remoting_device_buffer_from_ptr(ggml_b
ggml_backend_remoting_buffer_context * context = (ggml_backend_remoting_buffer_context *) malloc(sizeof(*context));
if (!context) {
GGML_ABORT("Couldn't allocate the buffer context ...");
GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the buffer context ...", __func__);
}
context->gpu = gpu;

View File

@@ -4,37 +4,70 @@
#include <iostream>
#include <mutex>
void ggml_virtgpu_cleanup(virtgpu * gpu);
static virtgpu * apir_initialize() {
static virtgpu * apir_gpu_instance = NULL;
static bool apir_initialized = false;
static virtgpu * gpu = NULL;
static std::atomic<bool> initialized = false;
if (initialized) {
// fast track
return gpu;
}
{
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (apir_initialized) {
return apir_gpu_instance;
if (initialized) {
// thread safe
return gpu;
}
apir_gpu_instance = create_virtgpu();
if (!apir_gpu_instance) {
GGML_ABORT("failed to initialize the virtgpu");
gpu = create_virtgpu();
if (!gpu) {
initialized = true;
return NULL;
}
apir_initialized = true;
// Pre-fetch and cache all device information, it will not change
gpu->cached_device_info.description = apir_device_get_description(gpu);
if (!gpu->cached_device_info.description) {
GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu device description", __func__);
}
gpu->cached_device_info.name = apir_device_get_name(gpu);
if (!gpu->cached_device_info.name) {
GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu device name", __func__);
}
gpu->cached_device_info.device_count = apir_device_get_count(gpu);
gpu->cached_device_info.type = apir_device_get_type(gpu);
apir_device_get_memory(gpu,
&gpu->cached_device_info.memory_free,
&gpu->cached_device_info.memory_total);
apir_buffer_type_host_handle_t buft_host_handle = apir_device_get_buffer_type(gpu);
gpu->cached_buffer_type.host_handle = buft_host_handle;
gpu->cached_buffer_type.name = apir_buffer_type_get_name(gpu, buft_host_handle);
if (!gpu->cached_buffer_type.name) {
GGML_ABORT(GGML_VIRTGPU "%s: failed to initialize the virtgpu buffer type name", __func__);
}
gpu->cached_buffer_type.alignment = apir_buffer_type_get_alignment(gpu, buft_host_handle);
gpu->cached_buffer_type.max_size = apir_buffer_type_get_max_size(gpu, buft_host_handle);
initialized = true;
}
return apir_gpu_instance;
return gpu;
}
static int ggml_backend_remoting_get_device_count() {
virtgpu * gpu = apir_initialize();
if (!gpu) {
GGML_LOG_WARN("apir_initialize failed\n");
return 0;
}
return apir_device_get_count(gpu);
return gpu->cached_device_info.device_count;
}
static size_t ggml_backend_remoting_reg_get_device_count(ggml_backend_reg_t reg) {
@@ -52,17 +85,21 @@ ggml_backend_dev_t ggml_backend_remoting_get_device(size_t device) {
static void ggml_backend_remoting_reg_init_devices(ggml_backend_reg_t reg) {
if (devices.size() > 0) {
GGML_LOG_INFO("%s: already initialized\n", __func__);
GGML_LOG_INFO(GGML_VIRTGPU "%s: already initialized\n", __func__);
return;
}
virtgpu * gpu = apir_initialize();
if (!gpu) {
GGML_LOG_ERROR("apir_initialize failed\n");
GGML_LOG_ERROR(GGML_VIRTGPU "%s: apir_initialize failed\n", __func__);
return;
}
static bool initialized = false;
static std::atomic<bool> initialized = false;
if (initialized) {
return; // fast track
}
{
static std::mutex mutex;
@@ -70,10 +107,10 @@ static void ggml_backend_remoting_reg_init_devices(ggml_backend_reg_t reg) {
if (!initialized) {
for (int i = 0; i < ggml_backend_remoting_get_device_count(); i++) {
ggml_backend_remoting_device_context * ctx = new ggml_backend_remoting_device_context;
char desc[256] = "API Remoting device";
char desc[256] = "ggml-virtgpu API Remoting device";
ctx->device = i;
ctx->name = GGML_REMOTING_FRONTEND_NAME + std::to_string(i);
ctx->name = GGML_VIRTGPU_NAME + std::to_string(i);
ctx->description = desc;
ctx->gpu = gpu;
@@ -98,7 +135,7 @@ static ggml_backend_dev_t ggml_backend_remoting_reg_get_device(ggml_backend_reg_
static const char * ggml_backend_remoting_reg_get_name(ggml_backend_reg_t reg) {
UNUSED(reg);
return GGML_REMOTING_FRONTEND_NAME;
return GGML_VIRTGPU_NAME;
}
static const ggml_backend_reg_i ggml_backend_remoting_reg_i = {
@@ -111,8 +148,7 @@ static const ggml_backend_reg_i ggml_backend_remoting_reg_i = {
ggml_backend_reg_t ggml_backend_virtgpu_reg() {
virtgpu * gpu = apir_initialize();
if (!gpu) {
GGML_LOG_ERROR("virtgpu_apir_initialize failed\n");
return NULL;
GGML_LOG_ERROR(GGML_VIRTGPU "%s: virtgpu_apir_initialize failed\n", __func__);
}
static ggml_backend_reg reg = {
@@ -129,9 +165,25 @@ ggml_backend_reg_t ggml_backend_virtgpu_reg() {
ggml_backend_remoting_reg_init_devices(&reg);
GGML_LOG_INFO("%s: initialized\n", __func__);
return &reg;
}
// public function, not exposed in the GGML interface at the moment
void ggml_virtgpu_cleanup(virtgpu * gpu) {
if (gpu->cached_device_info.name) {
free(gpu->cached_device_info.name);
gpu->cached_device_info.name = NULL;
}
if (gpu->cached_device_info.description) {
free(gpu->cached_device_info.description);
gpu->cached_device_info.description = NULL;
}
if (gpu->cached_buffer_type.name) {
free(gpu->cached_buffer_type.name);
gpu->cached_buffer_type.name = NULL;
}
mtx_destroy(&gpu->data_shmem_mutex);
}
GGML_BACKEND_DL_IMPL(ggml_backend_virtgpu_reg)

View File

@@ -8,6 +8,9 @@
#include <memory>
#include <string>
#define GGML_VIRTGPU_NAME "ggml-virtgpu"
#define GGML_VIRTGPU "ggml-virtgpu: "
// USE_ALWAYS_TRUE_SUPPORTS_OP: 1 is fast, 0 avoid micro-benchmark crashes
#define USE_ALWAYS_TRUE_SUPPORTS_OP 1
@@ -62,7 +65,7 @@ static inline apir_buffer_type_host_handle_t ggml_buffer_type_to_apir_handle(ggm
static inline apir_buffer_host_handle_t ggml_buffer_to_apir_handle(ggml_backend_buffer_t buffer) {
if (!buffer->context) {
GGML_ABORT("%s: no context available :/", __func__);
GGML_ABORT(GGML_VIRTGPU "%s: no context available :/", __func__);
}
return BUFFER_TO_HOST_HANDLE(buffer);
}

View File

@@ -24,10 +24,10 @@ functions:
frontend_return: "int"
get_name:
frontend_return: "const char *"
frontend_return: "char *"
get_description:
frontend_return: "const char *"
frontend_return: "char *"
get_type:
frontend_return: "uint32_t"
@@ -64,35 +64,33 @@ functions:
group_description: "buffer-type"
functions:
get_name:
frontend_return: "const char *"
frontend_return: "char *"
frontend_extra_params:
- "ggml_backend_buffer_type_t buft"
- "apir_buffer_type_host_handle_t host_handle"
get_alignment:
frontend_return: "size_t"
frontend_extra_params:
- "ggml_backend_buffer_type_t buft"
- "apir_buffer_type_host_handle_t host_handle"
get_max_size:
frontend_return: "size_t"
frontend_extra_params:
- "ggml_backend_buffer_type_t buft"
- "apir_buffer_type_host_handle_t host_handle"
is_host:
frontend_return: "bool"
frontend_extra_params:
- "ggml_backend_buffer_type_t buft"
deprecated: true
alloc_buffer:
frontend_return: "apir_buffer_context_t"
frontend_extra_params:
- "ggml_backend_buffer_type_t buffer_buft"
- "apir_buffer_type_host_handle_t host_handle"
- "size_t size"
get_alloc_size:
frontend_return: "size_t"
frontend_extra_params:
- "ggml_backend_buffer_type_t buft"
- "apir_buffer_type_host_handle_t host_handle"
- "const ggml_tensor *op"
buffer:

View File

@@ -116,7 +116,7 @@ class RemotingCodebaseGenerator:
'frontend_return': func_metadata.get('frontend_return', 'void'),
'frontend_extra_params': func_metadata.get('frontend_extra_params', []),
'group_description': group_description,
'newly_added': func_metadata.get('newly_added', False)
'deprecated': func_metadata.get('deprecated', False),
})
enum_value += 1
@@ -165,6 +165,9 @@ class RemotingCodebaseGenerator:
signature = "uint32_t"
params = "apir_encoder *enc, apir_decoder *dec, virgl_apir_context *ctx"
if func['deprecated']:
decl_lines.append(f"/* {func['enum_name']} is deprecated. Keeping the handler for backward compatibility. */")
decl_lines.append(f"{signature} {func['backend_function']}({params});")
# Switch cases
@@ -176,7 +179,9 @@ class RemotingCodebaseGenerator:
switch_lines.append(f" /* {func['group_description']} */")
current_group = func['group_name']
switch_lines.append(f" case {func['enum_name']}: return \"{func['backend_function']}\";")
deprecated = " (DEPRECATED)" if func['deprecated'] else ""
switch_lines.append(f" case {func['enum_name']}: return \"{func['backend_function']}{deprecated}\";")
# Dispatch table
table_lines = []
@@ -188,7 +193,8 @@ class RemotingCodebaseGenerator:
table_lines.append("")
current_group = func['group_name']
table_lines.append(f" /* {func['enum_name']} = */ {func['backend_function']},")
deprecated = " /* DEPRECATED */" if func['deprecated'] else ""
table_lines.append(f" /* {func['enum_name']} = */ {func['backend_function']}{deprecated},")
header_content = f'''\
#pragma once
@@ -225,6 +231,10 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC
decl_lines.append(f"/* {func['group_description']} */")
current_group = func['group_name']
if func['deprecated']:
decl_lines.append(f"/* {func['frontend_function']} is deprecated. */")
continue
# Build parameter list
params = [self.naming_patterns['frontend_base_param']]
params.extend(func['frontend_extra_params'])
@@ -287,7 +297,7 @@ static const backend_dispatch_t apir_backend_dispatch_table[APIR_BACKEND_DISPATC
generated_files = [apir_backend_path, backend_dispatched_path, virtgpu_forward_path]
if not self.clang_format_available:
logging.warning("\nclang-format not found in PATH. Generated files will not be formatted."
logging.warning("\nclang-format not found in PATH. Generated files will not be formatted.\n"
" Install clang-format to enable automatic code formatting.")
else:
logging.info("\n🎨 Formatting files with clang-format...")

View File

@@ -18,12 +18,17 @@ ggml_status apir_backend_graph_compute(virtgpu * gpu, ggml_cgraph * cgraph) {
virtgpu_shmem temp_shmem; // Local storage for large buffers
virtgpu_shmem * shmem = &temp_shmem;
bool using_shared_shmem = false;
if (cgraph_size <= gpu->data_shmem.mmap_size) {
// prefer the init-time allocated page, if large enough
// Lock mutex before using shared data_shmem buffer
if (mtx_lock(&gpu->data_shmem_mutex) != thrd_success) {
GGML_ABORT(GGML_VIRTGPU "%s: Failed to lock data_shmem mutex", __func__);
}
using_shared_shmem = true;
shmem = &gpu->data_shmem;
} else if (virtgpu_shmem_create(gpu, cgraph_size, shmem)) {
GGML_ABORT("Couldn't allocate the guest-host shared buffer");
GGML_ABORT(GGML_VIRTGPU "%s: Couldn't allocate the guest-host shared buffer", __func__);
}
apir_encode_virtgpu_shmem_res_id(encoder, shmem->res_id);
@@ -42,7 +47,10 @@ ggml_status apir_backend_graph_compute(virtgpu * gpu, ggml_cgraph * cgraph) {
remote_call_finish(gpu, encoder, decoder);
if (shmem != &gpu->data_shmem) {
// Unlock mutex before cleanup
if (using_shared_shmem) {
mtx_unlock(&gpu->data_shmem_mutex);
} else {
virtgpu_shmem_destroy(gpu, shmem);
}

Some files were not shown because too many files have changed in this diff Show More