Compare commits

...

10 Commits
b7955 ... b7965

Author SHA1 Message Date
Georgi Gerganov
34ba7b5a2f metal : fix event synchronization in cpy_tensor_async (#19402) 2026-02-07 07:37:15 +02:00
forforever73
b83111815e model : support Step3.5-Flash (#19283)
* Support Step3.5-Flash

* fix: norm.weight + 1 (HF zero_centered=true)

* step35: simplify GGUF conversion + drop redundant rope KVs

* Address review feedback

* rename limits -> clamp

* Apply suggestions from code review

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Apply suggestion from @CISC

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* rename swiglu limits -> swiglu clamp in LLM_KV

* avoid CI fail

* Apply suggestions from code review

* Apply suggestions from code review

* disabled KV shifting for LLM_ARCH_STEP35

* Apply suggestions from code review

* mistakenly removed cmath

* add model size && apply missed suggestion

* assert partial_rotary_factors

* fix CI errors:

* load freq_base_swa

---------

Co-authored-by: lvyichen <lvyichen@stepfun.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-06 21:06:14 +01:00
Alex Trotta
3228e77287 gguf-py : bump sentencepiece version (#19319)
* gguf-py: Bump sentencepiece version

There's a new version that's been out for a while that addresses the issues mentioned in https://github.com/ggml-org/llama.cpp/pull/14200. There's a long chain of reasons I would like this change, but the short version is that it allows people who use both `sentencepiece` and `gguf` to take advantage of these fixes. On conda-forge, currently, it locks the version (since there is no notion of optional dependencies).

Regardless, I don't think this should be too controversial.

* review feedback
2026-02-06 21:05:19 +01:00
Abhijit Ramesh
7fbd36c50c ggml-webgpu: JIT compile binary operators and handle binding overlaps (#19310)
* ggml webgpu: port binary operators to use pre-wgsl

* Add binary.wgsl: unified shader with conditionals for all 4 ops

* Add gen_binary_shaders.cpp: build tool for using pre_wgsl preprocessor

* Remove bin_op.tmpl.wgsl and binary.wgsl (Python template)

* Update CMake to generate binary operator shaders at build time

* ggml-webgpu: migrate binary ops to JIT compilation with overlap handling

* port binary operators from AOT to pre-wgsl JIT compilation

* add src1=dst overlap handling for binary ops

* use compile-time workgroup size defines instead of runtime overrides

* ggml-webgpu: complete overlap handling for binary ops

* add support for inplace & overlap case in binding setup

* restructure conditional logic to handle all overlap cases

* ensure all buffer bindings are correctly assigned for edge cases

* ggml-webgpu: remove unused binary overlap cases

Remove src0==src1 binary overlap case that never occurs in practice.

* keep INPLACE (src0==dst), OVERLAP (src1==dst), DEFAULT

* remove unused src0==src1 and all-same variant

* refactor wgsl to eliminate duplication
2026-02-06 10:33:30 -08:00
Nechama Krashinski
537eadb1b9 sycl: add F16 support for GGML_OP_CEIL (#19306)
* Fix SYCL CEIL operator

* sycl: implement GGML_OP_CEIL
2026-02-06 23:13:44 +08:00
Jeff Bolz
db6adb3c88 tests: reduce number of FA test permutations (#19381)
Only test non-F16 for head size 64 and 72 (one a multiple of QK, one not).
2026-02-06 08:50:30 -06:00
Georgi Gerganov
dfde5993ea common : add common_speculative_is_compat() (#19270)
* llama : add llama_memory_can_rm_suffix()

* Revert "llama : add llama_memory_can_rm_suffix()"

This reverts commit d30e59b62a.

* spec : check if the target context is compatible for spec decoding
2026-02-06 16:47:22 +02:00
Lasse Lauwerys
06bf3796f4 unicode : MSVC regex fix (#19340)
* Fix model loading regex error

* Change comments

* Use const_iterator and remove specializations

---------

Co-authored-by: Alde Rojas <hello@alde.dev>
2026-02-06 15:56:13 +02:00
ymcki
3688c4f504 Kimi-Linear support (backend agnostic + MLA KV cache) (#18755)
* kimi linear model implementation

* kimi linear convert_hf_to_gguf

* kimi linear constants.py tensor_mapping.py

* Kimi Linear ggml.h

* kimi linear ggml-cpu

* Kimi Linear ggml-cuda

* Kimi Linear ggml.c

* kimi linear src/llama

* remove "const int64_t n_seq_tokens = q->ne[2];" to get rid of unused variable warning

* remove type mismatch warning

* read MoE params

* removed some hard coded code

* removed all hard code

* use DeepseekV2 tokenizer

* removed unnecessary internal methods called by the old set_vocab of KimiLinear

* rewrite get_vocab for KimiLinear. Removed all kda_scan code

* removed all traces of kda_scan

* reduce OP count by 1 due to removal of kda_scan

* Move KIMI_LINEAR to llm_arch_is_hybrid to enable KV cache

* set n_embd_head_k/v to ensure kv cache works

* don't quantize conv1d of Kimi Linear

* Kimi Linear backend agnostic

* removed LOG_INFO

* naive chunking form implemented

* fixed some comments

* add Kimi-K2 specific tokens to be recognized as EOG

* build_kda_autoregressive is implemented to replace build_kda_recurrent for faster inference. sync'd to b7682

* replaced Akk and Aqk with mul_mat and clamp

* no clamp version

* Moved Aqk computation out of the loop

* fixed typo and split wkv_b into wk_b and wv_b

* MLA KV cache support

* fix trailing spaces

* moved const llama_model & model; around to follow qwen3next format and see if it cna pass the -Wunused-private-field error

* fix trailing whitespace

* removed traling whitespaces in empty line + make sure indentation is multiple of 4

* try to make lint happy

* remove blank lines to make lint happy

* removed at least blank line containing white space

* fixed flake8 complaints locally

* return ggml_tensor * pair in kda_autoregressive and kda_chunking as in ngxson's Qwen3Next improvement

* removed Kimi-Linear specific change that causes failure at server-windows

* removed private: from kimi_linear to make build checks happy

* removed unnecessary ggml_cont before ggml_reshape

* created static function causal_conv1d to abtract similar code for q/k/v

* merged dt_bias to SSM_DT. Do -exp(log_A) in convert_hf_to_gguf.py.

* reverted to original

* fixed find_hparam calls. Fixed e_score_correction_bias to use bias instead of weight. Removed all ssm_conv bias terms.

* remove DT_B from constants.py. remove one comment line in llama-model.cpp

* new class llm_graph_input_mem_hybrid_k to get around the new MLA change. switch the concat order of ggml_concat calls in kimi-linear.cpp to accommodate MLA changes. Removed support for exp_probs_b.weight

* remove ssm_o_norm_b

* remove ssm_o_norm_b

* changed hparams.kda_head_dim to hparams.n_embd_head_kda. added TODO comment for class llama_graph_mem_hybrid_k

* removed all ggml_cont b4 ggml_reshape_4d

* Whitespace

* replaced all hparams.get with find_hparams

* added new names for n_experts, n_experts_used and score_func in TextModel and removed their code in KimiLinear in convert_hf_to_gguf.py. Removed unnecessary ggml_cont and GGML_ASSERT in kimi-linear.cpp

* use is_mla to switch between different mem_hybrid types

* fixed logical errors in convert_hf_to_gguf.py pointed out by CISC

* removed if else for required parameters kv_lora_rank and qk_rope_head_dim

* add back ggml_cont for Vcur

* minor changes

* removed extra line in llama-vocab.cpp. Added back the comment in llama-graph.cpp

* f16 gguf cannot run without context length

* made a mistake of adding back n_ctx parsing

---------

Co-authored-by: Piotr Wilkin (ilintar) <piotr.wilkin@syndatis.com>
2026-02-06 11:39:58 +01:00
Jeff Bolz
1946e46f4c vulkan: For coopmat2 FA, use fp16 accumulators for the final result (#19376)
The cpu and cuda backends use fp16 for the VKQ accumulator type, this change
does the same for vulkan. This helps particularly with large head sizes which
are very register-limited.

I tried this for the coopmat1 path and it slowed down a bit. I didn't try for
scalar.

I applied the softmax bias that the cuda backend uses to avoid overflow,
although I was not able to reproduce the original bug without it.
2026-02-06 09:15:13 +01:00
41 changed files with 2440 additions and 457 deletions

View File

@@ -805,6 +805,42 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
return it->second;
}
bool common_speculative_is_compat(llama_context * ctx_tgt) {
auto * mem = llama_get_memory(ctx_tgt);
if (mem == nullptr) {
return false;
}
bool res = true;
llama_memory_clear(mem, true);
// eval 2 tokens to check if the context is compatible
std::vector<llama_token> tmp;
tmp.push_back(0);
tmp.push_back(0);
int ret = llama_decode(ctx_tgt, llama_batch_get_one(tmp.data(), tmp.size()));
if (ret != 0) {
LOG_ERR("%s: llama_decode() failed: %d\n", __func__, ret);
res = false;
goto done;
}
// try to remove the last tokens
if (!llama_memory_seq_rm(mem, 0, 1, -1)) {
LOG_WRN("%s: the target context does not support partial sequence removal\n", __func__);
res = false;
goto done;
}
done:
llama_memory_clear(mem, true);
llama_synchronize(ctx_tgt);
return res;
}
// initialization of the speculative decoding system
//
common_speculative * common_speculative_init(

View File

@@ -14,6 +14,10 @@ enum common_speculative_type common_speculative_type_from_name(const std::string
// convert type to string
std::string common_speculative_type_to_str(enum common_speculative_type type);
// check if the llama_context is compatible for speculative decoding
// note: clears the memory of the context
bool common_speculative_is_compat(llama_context * ctx_tgt);
common_speculative * common_speculative_init(
common_params_speculative & params,
llama_context * ctx_tgt);

View File

@@ -586,6 +586,10 @@ class ModelBase:
gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
# Kimi KDA conv weights should be F32
gguf.MODEL_TENSOR.SSM_CONV1D_Q,
gguf.MODEL_TENSOR.SSM_CONV1D_K,
gguf.MODEL_TENSOR.SSM_CONV1D_V,
)
)
or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
@@ -903,10 +907,10 @@ class TextModel(ModelBase):
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
if (n_experts := self.hparams.get("num_local_experts")) is not None:
if (n_experts := self.find_hparam(["num_local_experts", "num_experts"], optional=True)) is not None:
self.gguf_writer.add_expert_count(n_experts)
logger.info(f"gguf: expert count = {n_experts}")
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
if (n_experts_used := self.find_hparam(["num_experts_per_tok", "num_experts_per_token"], optional=True)) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
if (n_expert_groups := self.hparams.get("n_group")) is not None:
@@ -916,7 +920,7 @@ class TextModel(ModelBase):
self.gguf_writer.add_expert_group_used_count(n_group_used)
logger.info(f"gguf: expert groups used count = {n_group_used}")
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func", "moe_router_activation", "moe_router_activation_func"], optional=True)) is not None:
if score_func == "sigmoid":
self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
elif score_func == "softmax":
@@ -5013,6 +5017,221 @@ class CodeShellModel(TextModel):
self.gguf_writer.add_rope_scaling_factor(1.0)
@ModelBase.register("KimiLinearModel", "KimiLinearForCausalLM")
class KimiLinearModel(TextModel):
"""Kimi-Linear model with hybrid MLA+KDA architecture"""
model_arch = gguf.MODEL_ARCH.KIMI_LINEAR
_experts: list[dict[str, Tensor]] | None = None
def set_vocab(self):
try:
self._set_vocab_gpt2()
return
except Exception:
pass
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
tokpre = self.get_vocab_base_pre(tokenizer)
if tokpre == "kimi-k2":
# Build merges list using the approach similar to HunYuanMoE
merges = []
vocab = {}
mergeable_ranks = tokenizer.model._mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
if len(merged) == 2:
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# Build token list
vocab_size = self.hparams["vocab_size"]
special_tokens = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
tokens: list[str] = []
toktypes: list[int] = []
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.UNUSED)
else:
token = reverse_vocab[i]
tokens.append(token)
if i in special_tokens.values():
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_token_merges(merges)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
special_vocab.add_to_gguf(self.gguf_writer)
# override eos id in config.json with tiktoken eos id
self.gguf_writer.add_eos_token_id(tokenizer.eos_id)
else:
raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
def set_gguf_parameters(self):
# note: To enable MLA KV cache, attention needs to be converted into MQA (ie: GQA with 1 group)
self.hparams["num_key_value_heads"] = 1
super().set_gguf_parameters()
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
# KDA & MLA params
# Get ssm_d_conv from linear_attn_config.short_conv_kernel_size or ssm_d_conv
linear_attn_config = self.hparams["linear_attn_config"]
# n_head == 0 for KDA layers, n_head > 0 for MLA layers
# full_attention_layers list will be used to distingush layer type
_num_kv_heads = list()
_full_attn_layers = linear_attn_config["full_attn_layers"]
for il in range(self.hparams["num_hidden_layers"]):
if il + 1 in _full_attn_layers:
_num_kv_heads.append(self.hparams["num_key_value_heads"])
else:
_num_kv_heads.append(0)
assert len(_num_kv_heads) == self.hparams["num_hidden_layers"]
self.gguf_writer.add_head_count_kv(_num_kv_heads)
if (ssm_d_conv := linear_attn_config.get("short_conv_kernel_size")) is not None:
self.gguf_writer.add_ssm_conv_kernel(ssm_d_conv)
if (kda_head_dim := linear_attn_config.get("head_dim")) is not None:
self.gguf_writer.add_kda_head_dim(kda_head_dim)
# MLA params - use add_* methods that handle arch substitution
# Support both HuggingFace naming (q_lora_rank, kv_lora_rank) and internal naming (n_lora_q, n_lora_kv)
if (q_lora_rank := self.find_hparam(["q_lora_rank", "n_lora_q"], optional=True)) is not None:
self.gguf_writer.add_q_lora_rank(q_lora_rank)
# To enable MLA KV cache, MLA needs to be converted into MQA with larger heads, then decompresses to MHA
kv_lora_rank = self.find_hparam(["kv_lora_rank", "n_lora_kv"], optional=False)
self.gguf_writer.add_kv_lora_rank(kv_lora_rank)
# MLA head dimensions
# Support HuggingFace naming: qk_nope_head_dim, qk_rope_head_dim, v_head_dim
qk_nope_head_dim = self.hparams.get("qk_nope_head_dim")
# Rotation - use qk_rope_head_dim for Kimi
qk_rope_head_dim = self.find_hparam(["qk_rope_head_dim", "n_rot"], optional=False)
self.gguf_writer.add_rope_dimension_count(qk_rope_head_dim)
self.gguf_writer.add_key_length(kv_lora_rank + qk_rope_head_dim)
v_head_dim = self.hparams.get("v_head_dim")
# Calculate n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
if (n_embd_head_k_mla := self.find_hparam(["n_embd_head_k_mla"], optional=True)) is not None:
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
elif qk_nope_head_dim is not None:
n_embd_head_k_mla = qk_nope_head_dim + qk_rope_head_dim
self.gguf_writer.add_key_length_mla(n_embd_head_k_mla)
# n_embd_head_v_mla = v_head_dim
if (n_embd_head_v_mla := self.hparams.get("n_embd_head_v_mla")) is not None:
self.gguf_writer.add_value_length_mla(n_embd_head_v_mla)
elif v_head_dim is not None:
self.gguf_writer.add_value_length_mla(v_head_dim)
# moe_intermediate_size (1024 for Kimi)
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
# num_shared_experts (1 for Kimi)
self.gguf_writer.add_expert_shared_count(self.hparams["num_shared_experts"])
# first_k_dense_replace (1 for Kimi - first layer uses dense MLP)
self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
# Routed scaling factor (expert_weights_scale = 2.446 for Kimi)
self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
def prepare_tensors(self):
super().prepare_tensors()
if self._experts is not None:
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
logger.info(f"Processing {name}: shape before = {tuple(data_torch.shape)}")
# Handle KDA conv1d weights
# HuggingFace/vLLM stores as [d_inner, d_conv] (2D), memory layout: conv_step changes fastest
# llama.cpp expects ggml ne = [d_conv, 1, d_inner, 1], memory layout: ne[0]=d_conv changes fastest
# GGUF reverses numpy shape when writing, so numpy (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
# Memory layouts match: both have conv_step (d_conv) changing fastest
if name.endswith((".q_conv1d.weight", ".k_conv1d.weight", ".v_conv1d.weight")):
# HF shape: [d_inner, d_conv] e.g. [4096, 4]
# Target numpy shape: (1, d_inner, 1, d_conv) -> ggml ne = [d_conv, 1, d_inner, 1]
if data_torch.ndim == 2:
d_inner, d_conv = data_torch.shape
# Reshape to (1, d_inner, 1, d_conv) - memory layout preserved (d_conv fastest)
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
elif data_torch.ndim == 3:
# Already 3D [d_inner, 1, d_conv] from unsqueeze
d_inner, _, d_conv = data_torch.shape
data_torch = data_torch.reshape(1, d_inner, 1, d_conv)
logger.info(f"Reshaped conv1d weight {name}: [d_inner={d_inner}, 1, d_conv={d_conv}] -> numpy {tuple(data_torch.shape)} -> ggml ne=[{d_conv}, 1, {d_inner}, 1]")
# Kimi specific bias
if name.endswith("e_score_correction_bias"):
name = name.replace("e_score_correction_bias", "e_score_correction.bias")
# Handle A_log: iHF stores as [1, 1, num_heads, 1]
# llama.cpp expects ggml ne = [1, num_heads, 1, 1]
# GGUF reverses numpy shape: numpy (1, 1, num_heads, 1) -> ggml ne = [1, num_heads, 1, 1]
if name.endswith(".A_log"):
data_torch = -torch.exp(data_torch)
if name.endswith(".dt_bias"):
name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
logger.info("Changed dt_bias to dt_proj.bias")
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.find_hparam(["num_local_experts", "num_experts"], optional=False)
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
# merge the experts into a single 3d tensor
# w1: gate, w2: down, w3: up
for wid, tname in [("w1", gguf.MODEL_TENSOR.FFN_GATE_EXP),
("w2", gguf.MODEL_TENSOR.FFN_DOWN_EXP),
("w3", gguf.MODEL_TENSOR.FFN_UP_EXP)]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
new_name = self.format_tensor_name(tname, bid)
yield from super().modify_tensors(data_torch, new_name, bid)
return
# note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
if name.endswith("kv_b_proj.weight"):
name_kb = name.replace("kv_b_proj", "k_b_proj")
name_vb = name.replace("kv_b_proj", "v_b_proj")
n_head_kv = self.hparams["num_key_value_heads"]
v_head_dim = self.find_hparam(["n_embd_head_v_mla", "v_head_dim"], optional=False)
qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
logger.info("Split kv_b n_head_kv %d\n" % n_head_kv)
assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
k_b = k_b.transpose(1, 2)
yield from super().modify_tensors(k_b, name_kb, bid)
yield from super().modify_tensors(v_b, name_vb, bid)
return
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("InternLM2ForCausalLM")
class InternLM2Model(TextModel):
model_arch = gguf.MODEL_ARCH.INTERNLM2
@@ -7693,6 +7912,135 @@ class MimoV2Model(TextModel):
raise ValueError(f"Unprocessed experts: {experts}")
@ModelBase.register("Step3p5ForCausalLM")
class Step35Model(TextModel):
model_arch = gguf.MODEL_ARCH.STEP35
def set_gguf_parameters(self):
rope_theta = self.hparams.get("rope_theta")
if isinstance(rope_theta, list):
self.hparams["rope_theta"] = float(rope_theta[0])
self.hparams["local_rope_theta"] = float(rope_theta[1])
self.rope_parameters["rope_theta"] = self.hparams["rope_theta"]
self.rope_parameters["sliding_attention"] = {"rope_theta": self.hparams["local_rope_theta"]}
super().set_gguf_parameters()
layer_types = self.hparams.get("layer_types") or []
partial_rotary_factors = self.hparams.get("partial_rotary_factors") or []
attn_other = self.hparams.get("attention_other_setting") or {}
n_head_base = self.hparams["num_attention_heads"]
n_kv_base = self.hparams["num_attention_groups"]
n_head_swa = attn_other.get("num_attention_heads", n_head_base)
n_kv_swa = attn_other.get("num_attention_groups", n_kv_base)
layer_types = layer_types[: self.block_count]
partial_rotary_factors = partial_rotary_factors[: self.block_count]
assert [1.0 if lt == "sliding_attention" else 0.5 for lt in layer_types] == partial_rotary_factors
head_arr = [n_head_swa if lt == "sliding_attention" else n_head_base for lt in layer_types]
kv_arr = [n_kv_swa if lt == "sliding_attention" else n_kv_base for lt in layer_types]
swa_pat = [lt == "sliding_attention" for lt in layer_types]
self.gguf_writer.add_head_count(head_arr)
self.gguf_writer.add_head_count_kv(kv_arr)
self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
self.gguf_writer.add_sliding_window_pattern(swa_pat)
self.gguf_writer.add_value_length(self.hparams["head_dim"])
# MoE params
self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["share_expert_dim"])
if (moe_router_scaling_factor := self.hparams.get("moe_router_scaling_factor")) is not None:
self.gguf_writer.add_expert_weights_scale(moe_router_scaling_factor)
if (norm_expert_weight := self.hparams.get("norm_expert_weight")) is not None:
self.gguf_writer.add_expert_weights_norm(norm_expert_weight)
# leading dense blocks
leading_dense = 0
moe_layers_enum = self.hparams.get("moe_layers_enum")
if isinstance(moe_layers_enum, str) and moe_layers_enum.strip():
moe_layers = sorted(int(i) for i in moe_layers_enum.strip().split(","))
if moe_layers:
leading_dense = max(0, moe_layers[0])
self.gguf_writer.add_leading_dense_block_count(leading_dense)
self.gguf_writer.add_moe_every_n_layers(int(self.hparams.get("moe_every_n_layer", 1)))
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
# Optional per-layer SwiGLU clamps.
if (limits := self.hparams.get("swiglu_limits")) is not None:
limits_f = [0.0 if v is None else float(v) for v in limits[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_exp(limits_f)
if (limits_shared := self.hparams.get("swiglu_limits_shared")) is not None:
limits_shared_f = [0.0 if v is None else float(v) for v in limits_shared[: self.block_count]]
self.gguf_writer.add_swiglu_clamp_shexp(limits_shared_f)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
# remove mtp layers
if (m := re.match(r"model\.layers\.(\d+)\.", name)) is not None:
il = int(m.group(1))
n_main = int(self.hparams.get("num_hidden_layers", self.block_count))
if il >= n_main:
return
if name.endswith("norm.weight"):
data_torch += 1.0
# Map router bias (expert selection bias) to a GGUF bias tensor
if name.endswith(".moe.router_bias"):
name += ".bias"
if name.endswith((".self_attn.g_proj.weight", ".moe.gate.weight", ".moe.up_proj.weight", ".moe.gate_proj.weight", ".moe.down_proj.weight")):
data_torch = data_torch.squeeze().contiguous()
yield from super().modify_tensors(data_torch, name, bid)
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
# Step35 can optionally use Llama-3 style RoPE scaling (HF: rope_scaling.rope_type == "llama3").
# llama.cpp represents this via a single extra tensor: "rope_freqs.weight" (aka MODEL_TENSOR.ROPE_FREQS).
rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
rope_type = rope_params.get("rope_type") or ""
if rope_type.lower() != "llama3":
return
# Step35 configs can carry per-layer rope_theta as a list; for llama3 rope factors we use the base value.
rope_theta = self.hparams.get("rope_theta", 10000.0)
if isinstance(rope_theta, list):
rope_theta = rope_theta[0]
base = float(rope_theta)
if (dim := self.hparams.get("head_dim")) is None:
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = int(dim)
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = float(rope_params.get("factor", 8.0))
low_freq_factor = float(rope_params.get("low_freq_factor", 1.0))
high_freq_factor = float(rope_params.get("high_freq_factor", 4.0))
old_context_len = int(rope_params.get("original_max_position_embeddings", self.hparams.get("original_max_position_embeddings", 8192)))
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
rope_factors: list[float] = []
for freq in freqs:
wavelen = 2 * math.pi / float(freq)
if wavelen < high_freq_wavelen:
rope_factors.append(1.0)
elif wavelen > low_freq_wavelen:
rope_factors.append(factor)
else:
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1.0 / ((1.0 - smooth) / factor + smooth))
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
@ModelBase.register("PanguEmbeddedForCausalLM")
class PanguEmbeddedModel(TextModel):
model_arch = gguf.MODEL_ARCH.PANGU_EMBED

View File

@@ -22,7 +22,7 @@ Legend:
| ARANGE | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ❌ | ❌ | ❌ |
| ARGMAX | ❌ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ❌ | ❌ |
| ARGSORT | ❌ | ✅ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | 🟡 | 🟡 | ✅ | ❌ | ❌ |
| CEIL | ❌ | ❌ | ✅ | 🟡 | ❌ | ❌ | | 🟡 | ✅ | ❌ | ❌ |
| CLAMP | ❌ | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ✅ | ❌ | ❌ |
| CONCAT | ❌ | ✅ | ✅ | 🟡 | ✅ | 🟡 | ✅ | ✅ | ❌ | ❌ | ❌ |
| CONT | ❌ | 🟡 | ✅ | ✅ | ✅ | 🟡 | 🟡 | ✅ | 🟡 | ❌ | ❌ |

View File

@@ -77,8 +77,8 @@
"SYCL0","GELU_ERF","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f16,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f16,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f16,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
@@ -161,8 +161,8 @@
"SYCL0","GELU_ERF","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","FLOOR","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[128,2,2,2],v=1","support","1","yes","SYCL"
"SYCL0","CEIL","type=f32,ne_a=[5,7,11,13],v=1","support","1","yes","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
"SYCL0","ROUND","type=f32,ne_a=[5,7,11,13],v=1","support","0","no","SYCL"
"SYCL0","TRUNC","type=f32,ne_a=[128,2,2,2],v=1","support","0","no","SYCL"
Can't render this file because it is too large.

View File

@@ -394,7 +394,7 @@ bool ggml_metal_cpy_tensor_async(ggml_metal_t ctx_src, ggml_metal_t ctx_dst, con
[encoder endEncoding];
ggml_metal_event_t ev_cpy = ggml_metal_get_ev_cpy(ctx_src);
ggml_metal_event_record(ctx_src, ev_cpy);
ggml_metal_event_encode_signal(ev_cpy, cmd_buf);
[cmd_buf commit];

View File

@@ -836,16 +836,9 @@ static inline void ggml_sycl_op_floor(ggml_backend_sycl_context & ctx, ggml_tens
}
static inline void ggml_sycl_op_ceil(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
[](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
const int num_blocks = ceil_div(k_elements, 256);
stream->parallel_for(
sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
sycl::range<1>(256)),
[=](sycl::nd_item<1> item_ct1) {
unary_op_ceil_kernel(src, dst_ptr, k_elements, item_ct1);
});
});
ggml_sycl_detail::ggml_sycl_op_unary(ctx, dst, [](auto x) {
return op_ceil(x);
});
}
static inline void ggml_sycl_op_round(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {

View File

@@ -4591,9 +4591,9 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_SOFTPLUS:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_CEIL:
return true;
case GGML_UNARY_OP_FLOOR:
case GGML_UNARY_OP_CEIL:
case GGML_UNARY_OP_ROUND:
case GGML_UNARY_OP_TRUNC:
#if defined (GGML_SYCL_F16)

View File

@@ -240,3 +240,7 @@ void init_indices()
// and breaking the alignment detection.
m_stride = (p.gqa_ratio > 1) ? (p.gqa_ratio >> 16) : KV;
}
// Bias applied to softmax to stay in fp16 range.
// Based on ggml-cuda issue https://github.com/ggml-org/llama.cpp/issues/18606
const float FATTN_KQ_MAX_OFFSET = 3.0f*0.6931f;

View File

@@ -117,7 +117,7 @@ void main() {
Qf16 = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSK_pad, gl_MatrixUseA>(Q);
Qf16 *= float16_t(p.scale);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O = coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> L, M;
@@ -223,6 +223,8 @@ void main() {
coopMatReduceNV(rowmax, S, gl_CooperativeMatrixReduceRowNV, maxReduce);
rowmax += coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator>(FATTN_KQ_MAX_OFFSET);
coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, Bc, gl_MatrixUseAccumulator> Mold = M;
// M = max(rowmax, Mold)
@@ -265,11 +267,8 @@ void main() {
// resize eM by using smear/reduce
coopMatReduceNV(eMdiag, eM, gl_CooperativeMatrixReduceRowNV, smearReduce);
// multiply with fp16 accumulation, then add to O.
coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> PV = coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(0);
PV = coopMatMulAdd(P_A, V, PV);
O = eMdiag * O + coopmat<ACC_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(PV);
O *= coopmat<float16_t, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(eMdiag);
O = coopMatMulAdd(P_A, V, O);
}
// If there is split_k, then the split_k resolve shader does the final
@@ -311,7 +310,7 @@ void main() {
if (sink > Mr[i]) {
ms = exp(Mr[i] - sink);
O[i] *= ms;
O[i] *= float16_t(ms);
} else {
vs = exp(sink - Mr[i]);
}
@@ -325,15 +324,16 @@ void main() {
Ldiag[k] = (Ldiag[k] == 0.0) ? ACC_TYPE(0.0) : (ACC_TYPE(1.0) / Ldiag[k]);
}
O = Ldiag*O;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(Ldiag)*O_D;
#if defined(ACC_TYPE_MAX)
[[unroll]] for (uint i = 0; i < O.length(); ++i) { O[i] = clamp(O[i], -ACC_TYPE_MAX, ACC_TYPE_MAX); }
[[unroll]] for (uint i = 0; i < O_D.length(); ++i) { O_D[i] = clamp(O_D[i], D_TYPE(-ACC_TYPE_MAX), D_TYPE(ACC_TYPE_MAX)); }
#endif
uint32_t o_offset = gqa_iq1*p.ne1*HSV + iq3*p.ne2*p.ne1*HSV;
coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator> O_D = coopmat<D_TYPE, gl_ScopeWorkgroup, Br, HSV_pad, gl_MatrixUseAccumulator>(O);
if (p.gqa_ratio > 1) {
coopMatPerElementNV(O_D, O_D, perElemOpGqaStore, o_offset, iq2, N);
} else {

View File

@@ -465,4 +465,73 @@ inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_unary_shader(
return result;
}
/** Binary **/
struct ggml_webgpu_binary_pipeline_key {
int type;
int op;
bool inplace;
bool overlap;
bool operator==(const ggml_webgpu_binary_pipeline_key & other) const {
return type == other.type && op == other.op && inplace == other.inplace && overlap == other.overlap;
}
};
struct ggml_webgpu_binary_pipeline_key_hash {
size_t operator()(const ggml_webgpu_binary_pipeline_key & key) const {
size_t seed = 0;
ggml_webgpu_hash_combine(seed, key.type);
ggml_webgpu_hash_combine(seed, key.op);
ggml_webgpu_hash_combine(seed, key.inplace);
ggml_webgpu_hash_combine(seed, key.overlap);
return seed;
}
};
struct ggml_webgpu_binary_shader_lib_context {
ggml_webgpu_binary_pipeline_key key;
uint32_t max_wg_size;
};
inline ggml_webgpu_processed_shader ggml_webgpu_preprocess_binary_shader(
pre_wgsl::Preprocessor & preprocessor,
const char * shader_src,
const ggml_webgpu_binary_shader_lib_context & context) {
std::vector<std::string> defines;
std::string op_name = ggml_op_name((ggml_op) context.key.op);
std::string variant = op_name;
defines.push_back(std::string("OP_") + op_name);
switch (context.key.type) {
case GGML_TYPE_F32:
defines.push_back("TYPE_F32");
variant += "_f32";
break;
case GGML_TYPE_F16:
defines.push_back("TYPE_F16");
variant += "_f16";
break;
default:
GGML_ABORT("Unsupported type for binary shader");
}
if (context.key.inplace) {
defines.push_back("INPLACE");
variant += "_inplace";
} else if (context.key.overlap) {
defines.push_back("OVERLAP");
variant += "_overlap";
}
defines.push_back(std::string("WG_SIZE=") + std::to_string(context.max_wg_size));
ggml_webgpu_processed_shader result;
result.wgsl = preprocessor.preprocess(shader_src, defines);
result.variant = variant;
ggml_webgpu_generic_shader_decisions * decisions = new ggml_webgpu_generic_shader_decisions();
decisions->wg_size = context.max_wg_size;
result.decisions = decisions;
return result;
}
#endif // GGML_WEBGPU_SHADER_LIB_HPP

View File

@@ -348,13 +348,12 @@ struct webgpu_context_struct {
std::unordered_map<ggml_webgpu_set_rows_pipeline_key, webgpu_pipeline, ggml_webgpu_set_rows_pipeline_key_hash>
set_rows_pipelines;
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
std::unordered_map<ggml_webgpu_binary_pipeline_key, webgpu_pipeline, ggml_webgpu_binary_pipeline_key_hash>
binary_pipelines;
std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
@@ -823,6 +822,28 @@ static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) {
(ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b));
}
// Used to determine if two tensors share the same buffer and their byte ranges overlap,
static bool ggml_webgpu_tensor_overlap(ggml_tensor * a, ggml_tensor * b) {
return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) &&
ggml_webgpu_tensor_offset(a) < (ggml_webgpu_tensor_offset(b) + ggml_nbytes(b)) &&
ggml_webgpu_tensor_offset(b) < (ggml_webgpu_tensor_offset(a) + ggml_nbytes(a));
}
struct binary_overlap_flags {
bool inplace; // src0 == dst
bool overlap; // src1 == dst
};
static binary_overlap_flags ggml_webgpu_detect_binary_overlap(ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst) {
binary_overlap_flags flags = {};
flags.inplace = ggml_webgpu_tensor_equal(src0, dst);
flags.overlap = ggml_webgpu_tensor_overlap(src1, dst);
return flags;
}
static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
uint32_t ne = (uint32_t) ggml_nelements(dst);
@@ -1375,14 +1396,42 @@ static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * s
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
}
static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst,
webgpu_pipeline & pipeline,
bool inplace) {
static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
ggml_tensor * src0,
ggml_tensor * src1,
ggml_tensor * dst) {
binary_overlap_flags flags = ggml_webgpu_detect_binary_overlap(src0, src1, dst);
ggml_webgpu_binary_pipeline_key pipeline_key = {
.type = dst->type,
.op = dst->op,
.inplace = flags.inplace,
.overlap = flags.overlap,
};
ggml_webgpu_binary_shader_lib_context shader_lib_ctx = {
.key = pipeline_key, .max_wg_size = ctx->global_ctx->capabilities.limits.maxComputeInvocationsPerWorkgroup
};
webgpu_pipeline pipeline;
auto it = ctx->binary_pipelines.find(pipeline_key);
if (it != ctx->binary_pipelines.end()) {
pipeline = it->second;
} else {
ggml_webgpu_processed_shader processed =
ggml_webgpu_preprocess_binary_shader(ctx->p, wgsl_binary, shader_lib_ctx);
pipeline =
ggml_webgpu_create_pipeline(ctx->global_ctx->device, processed.wgsl.c_str(), processed.variant.c_str());
pipeline.context = processed.decisions;
ctx->binary_pipelines.emplace(pipeline_key, pipeline);
}
ggml_webgpu_generic_shader_decisions decisions =
*static_cast<ggml_webgpu_generic_shader_decisions *>(pipeline.context);
uint32_t ne = (uint32_t) ggml_nelements(dst);
std::vector<uint32_t> params = {
(uint32_t) ggml_nelements(dst),
ne,
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
(uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
@@ -1399,24 +1448,30 @@ static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
(uint32_t) src1->ne[3],
};
std::vector<wgpu::BindGroupEntry> entries = {
{ .binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0) },
{ .binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1) }
};
if (!inplace) {
std::vector<wgpu::BindGroupEntry> entries;
entries.push_back({
.binding = 0,
.buffer = ggml_webgpu_tensor_buf(src0),
.offset = ggml_webgpu_tensor_align_offset(ctx, src0),
.size = ggml_webgpu_tensor_binding_size(ctx, src0),
});
entries.push_back({
.binding = 1,
.buffer = ggml_webgpu_tensor_buf(src1),
.offset = ggml_webgpu_tensor_align_offset(ctx, src1),
.size = ggml_webgpu_tensor_binding_size(ctx, src1),
});
if (!flags.inplace && !flags.overlap) {
entries.push_back({ .binding = 2,
.buffer = ggml_webgpu_tensor_buf(dst),
.offset = ggml_webgpu_tensor_align_offset(ctx, dst),
.size = ggml_webgpu_tensor_binding_size(ctx, dst) });
}
uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
uint32_t wg_x = CEIL_DIV(ne, decisions.wg_size);
return ggml_backend_webgpu_build(ctx->global_ctx, ctx->param_buf_pool, pipeline, params, entries, wg_x);
}
@@ -2038,25 +2093,10 @@ static std::optional<webgpu_command> ggml_webgpu_encode_node(webgpu_context ctx,
return std::nullopt;
#endif
case GGML_OP_ADD:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipelines[node->type][inplace], inplace);
}
case GGML_OP_SUB:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipelines[node->type][inplace], inplace);
}
case GGML_OP_MUL:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipelines[node->type][inplace], inplace);
}
case GGML_OP_DIV:
{
int inplace = ggml_webgpu_tensor_equal(src0, node);
return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipelines[node->type][inplace], inplace);
}
return ggml_webgpu_binary_op(ctx, src0, src1, node);
case GGML_OP_RMS_NORM:
return ggml_webgpu_rms_norm(ctx, src0, node);
case GGML_OP_ROPE:
@@ -2665,58 +2705,6 @@ static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) {
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_cpy_f16_f16, "cpy_f16_f16", constants);
}
static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->add_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32, "add_f32", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16, "add_f16", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f32_inplace, "add_f32_inplace", constants);
webgpu_ctx->add_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_add_f16_inplace, "add_f16_inplace", constants);
}
static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->sub_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32, "sub_f32", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16, "sub_f16", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f32_inplace, "sub_f32_inplace", constants);
webgpu_ctx->sub_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_sub_f16_inplace, "sub_f16_inplace", constants);
}
static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->mul_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32, "mul_f32", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16, "mul_f16", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f32_inplace, "mul_f32_inplace", constants);
webgpu_ctx->mul_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_mul_f16_inplace, "mul_f16_inplace", constants);
}
static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
webgpu_ctx->div_pipelines[GGML_TYPE_F32][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32, "div_f32", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F16][0] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16, "div_f16", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F32][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f32_inplace, "div_f32_inplace", constants);
webgpu_ctx->div_pipelines[GGML_TYPE_F16][1] =
ggml_webgpu_create_pipeline(webgpu_ctx->global_ctx->device, wgsl_div_f16_inplace, "div_f16_inplace", constants);
}
static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) {
std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE);
@@ -3018,10 +3006,6 @@ static webgpu_context initialize_webgpu_context(ggml_backend_dev_t dev) {
ggml_webgpu_init_mul_mat_pipeline(webgpu_ctx);
ggml_webgpu_init_get_rows_pipeline(webgpu_ctx);
ggml_webgpu_init_cpy_pipeline(webgpu_ctx);
ggml_webgpu_init_add_pipeline(webgpu_ctx);
ggml_webgpu_init_sub_pipeline(webgpu_ctx);
ggml_webgpu_init_mul_pipeline(webgpu_ctx);
ggml_webgpu_init_div_pipeline(webgpu_ctx);
ggml_webgpu_init_rms_norm_pipeline(webgpu_ctx);
ggml_webgpu_init_rope_pipeline(webgpu_ctx);
ggml_webgpu_init_glu_pipeline(webgpu_ctx);

View File

@@ -1,188 +0,0 @@
#define(VARIANTS)
[
{
"SHADER_NAME": "add_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "+"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "add_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "+"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "add_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "+"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "add_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "+"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "mul_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "*"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "mul_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "*"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "mul_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "*"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "mul_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "*"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sub_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "-"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sub_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "-"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "sub_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "-"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "sub_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "-"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "div_f32",
"REPLS": {
"TYPE" : "f32",
"OP": "/"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "div_f16",
"REPLS": {
"TYPE" : "f16",
"OP": "/"
},
"DECLS": ["NOT_INPLACE"]
},
{
"SHADER_NAME": "div_f32_inplace",
"REPLS": {
"TYPE" : "f32",
"OP": "/"
},
"DECLS": ["INPLACE"]
},
{
"SHADER_NAME": "div_f16_inplace",
"REPLS": {
"TYPE" : "f16",
"OP": "/"
},
"DECLS": ["INPLACE"]
}
]
#end(VARIANTS)
#define(DECLS)
#decl(NOT_INPLACE)
fn update(dst_i: u32, src0_i: u32, src1_i: u32) {
dst[dst_i] = src0[src0_i] {{OP}} src1[src1_i];
}
@group(0) @binding(2)
var<storage, read_write> dst: array<{{TYPE}}>;
@group(0) @binding(3)
var<uniform> params: Params;
#enddecl(NOT_INPLACE)
#decl(INPLACE)
fn update(dst_i: u32, src0_i: u32, src1_i: u32) {
src0[dst_i] = src0[src0_i] {{OP}} src1[src1_i];
}
@group(0) @binding(2)
var<uniform> params: Params;
#enddecl(INPLACE)
#end(DECLS)
#define(SHADER)
enable f16;
#include "binary_head.tmpl"
@group(0) @binding(0)
var<storage, read_write> src0: array<{{TYPE}}>;
@group(0) @binding(1)
var<storage, read_write> src1: array<{{TYPE}}>;
DECLS
override wg_size: u32;
@compute @workgroup_size(wg_size)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x < params.ne) {
update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x));
}
}
#end(SHADER)

View File

@@ -0,0 +1,107 @@
enable f16;
struct Params {
ne: u32,
// offsets in elements
offset_src0: u32,
offset_src1: u32,
offset_dst: u32,
stride_src1_0: u32,
stride_src1_1: u32,
stride_src1_2: u32,
stride_src1_3: u32,
a_ne0: u32,
a_ne1: u32,
a_ne2: u32,
b_ne0: u32,
b_ne1: u32,
b_ne2: u32,
b_ne3: u32,
};
fn src1_index(_i: u32) -> u32 {
var i = _i;
let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0);
i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0);
let a_i2 = i / (params.a_ne1 * params.a_ne0);
i = i % (params.a_ne1 * params.a_ne0);
let a_i1 = i / params.a_ne0;
let a_i0 = i % params.a_ne0;
// handle repetition of b
// index loops back to the beginning and repeats after elements are exhausted = modulo
let b_i0 = a_i0 % params.b_ne0;
let b_i1 = a_i1 % params.b_ne1;
let b_i2 = a_i2 % params.b_ne2;
let b_i3 = a_i3 % params.b_ne3;
// compute index for position in b's flat array
return b_i0 * params.stride_src1_0 +
b_i1 * params.stride_src1_1 +
b_i2 * params.stride_src1_2 +
b_i3 * params.stride_src1_3;
}
#ifdef TYPE_F32
#define DataType f32
#endif
#ifdef TYPE_F16
#define DataType f16
#endif
@group(0) @binding(0)
var<storage, read_write> src0: array<DataType>;
@group(0) @binding(1)
var<storage, read_write> src1 : array<DataType>;
#ifdef INPLACE
@group(0) @binding(2)
var<uniform> params: Params;
#elif defined(OVERLAP)
@group(0) @binding(2)
var<uniform> params: Params;
#else
@group(0) @binding(2)
var<storage, read_write> dst: array<DataType>;
@group(0) @binding(3)
var<uniform> params: Params;
#endif
fn op(a: DataType, b: DataType) -> DataType {
#ifdef OP_ADD
return a + b;
#elif defined(OP_SUB)
return a - b;
#elif defined(OP_MUL)
return a * b;
#elif defined(OP_DIV)
return a / b;
#endif
}
fn update(dst_i: u32, src0_i: u32, src1_i: u32){
let result = op(src0[src0_i], src1[src1_i]);
#ifdef INPLACE
src0[dst_i] = result;
#elif defined(OVERLAP)
src1[dst_i] = result;
#else
dst[dst_i] = result;
#endif
}
@compute @workgroup_size(WG_SIZE)
fn main(@builtin(global_invocation_id) gid: vec3<u32>) {
if (gid.x < params.ne) {
update(params.offset_dst + gid.x, params.offset_src0 + gid.x, params.offset_src1 + src1_index(gid.x));
}
}

View File

@@ -1,45 +0,0 @@
struct Params {
ne: u32,
// offsets in elements
offset_src0: u32,
offset_src1: u32,
offset_dst: u32,
stride_src1_0: u32,
stride_src1_1: u32,
stride_src1_2: u32,
stride_src1_3: u32,
a_ne0: u32,
a_ne1: u32,
a_ne2: u32,
b_ne0: u32,
b_ne1: u32,
b_ne2: u32,
b_ne3: u32,
};
fn src1_index(_i: u32) -> u32 {
var i = _i;
let a_i3 = i / (params.a_ne2 * params.a_ne1 * params.a_ne0);
i = i % (params.a_ne2 * params.a_ne1 * params.a_ne0);
let a_i2 = i / (params.a_ne1 * params.a_ne0);
i = i % (params.a_ne1 * params.a_ne0);
let a_i1 = i / params.a_ne0;
let a_i0 = i % params.a_ne0;
// handle repetition of b
// index loops back to the beginning and repeats after elements are exhausted = modulo
let b_i0 = a_i0 % params.b_ne0;
let b_i1 = a_i1 % params.b_ne1;
let b_i2 = a_i2 % params.b_ne2;
let b_i3 = a_i3 % params.b_ne3;
// compute index for position in b's flat array
return b_i0 * params.stride_src1_0 +
b_i1 * params.stride_src1_1 +
b_i2 * params.stride_src1_2 +
b_i3 * params.stride_src1_3;
}

View File

@@ -146,6 +146,8 @@ class Keys:
ALTUP_ACTIVE_IDX = "{arch}.altup.active_idx"
ALTUP_NUM_INPUTS = "{arch}.altup.num_inputs"
EMBD_LENGTH_PER_LAYER_INP = "{arch}.embedding_length_per_layer_input"
SWIGLU_CLAMP_EXP = "{arch}.swiglu_clamp_exp"
SWIGLU_CLAMP_SHEXP = "{arch}.swiglu_clamp_shexp"
DENSE_FEAT_IN_SIZE = "{arch}.{dense}_feat_in"
DENSE_FEAT_OUT_SIZE = "{arch}.{dense}_feat_out"
@@ -179,20 +181,20 @@ class Keys:
TEMPERATURE_SCALE = "{arch}.attention.temperature_scale"
class Rope:
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
FREQ_BASE = "{arch}.rope.freq_base"
FREQ_BASE_SWA = "{arch}.rope.freq_base_swa"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor"
SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor"
SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast"
SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow"
DIMENSION_COUNT = "{arch}.rope.dimension_count"
DIMENSION_SECTIONS = "{arch}.rope.dimension_sections"
FREQ_BASE = "{arch}.rope.freq_base"
FREQ_BASE_SWA = "{arch}.rope.freq_base_swa"
SCALING_TYPE = "{arch}.rope.scaling.type"
SCALING_FACTOR = "{arch}.rope.scaling.factor"
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
SCALING_YARN_EXT_FACTOR = "{arch}.rope.scaling.yarn_ext_factor"
SCALING_YARN_ATTN_FACTOR = "{arch}.rope.scaling.yarn_attn_factor"
SCALING_YARN_BETA_FAST = "{arch}.rope.scaling.yarn_beta_fast"
SCALING_YARN_BETA_SLOW = "{arch}.rope.scaling.yarn_beta_slow"
class Split:
LLM_KV_SPLIT_NO = "split.no"
@@ -207,6 +209,9 @@ class Keys:
GROUP_COUNT = "{arch}.ssm.group_count"
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
class KDA:
HEAD_DIM = "{arch}.kda.head_dim"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
@@ -459,8 +464,10 @@ class MODEL_ARCH(IntEnum):
PANGU_EMBED = auto()
MISTRAL3 = auto()
MIMO2 = auto()
STEP35 = auto()
LLAMA_EMBED = auto()
MAINCODER = auto()
KIMI_LINEAR = auto()
class VISION_PROJECTOR_TYPE(IntEnum):
@@ -551,6 +558,14 @@ class MODEL_TENSOR(IntEnum):
SSM_NORM = auto()
SSM_OUT = auto()
SSM_BETA_ALPHA = auto() # qwen3next
SSM_CONV1D_Q = auto() # Kimi Linear
SSM_CONV1D_K = auto() # Kimi Linear
SSM_CONV1D_V = auto() # Kimi Linear
SSM_F_A = auto() # Kimi Linear
SSM_F_B = auto() # Kimi Linear
SSM_BETA = auto() # Kimi Linear
SSM_G_A = auto() # Kimi Linear
SSM_G_B = auto() # Kimi Linear
TIME_MIX_W0 = auto()
TIME_MIX_W1 = auto()
TIME_MIX_W2 = auto()
@@ -880,8 +895,10 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.PANGU_EMBED: "pangu-embedded",
MODEL_ARCH.MISTRAL3: "mistral3",
MODEL_ARCH.MIMO2: "mimo2",
MODEL_ARCH.STEP35: "step35",
MODEL_ARCH.LLAMA_EMBED: "llama-embed",
MODEL_ARCH.MAINCODER: "maincoder",
MODEL_ARCH.KIMI_LINEAR: "kimi-linear",
}
VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
@@ -969,6 +986,14 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.SSM_NORM: "blk.{bid}.ssm_norm",
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
MODEL_TENSOR.SSM_BETA_ALPHA: "blk.{bid}.ssm_ba",
MODEL_TENSOR.SSM_CONV1D_Q: "blk.{bid}.ssm_conv1d_q", # Kimi Linear
MODEL_TENSOR.SSM_CONV1D_K: "blk.{bid}.ssm_conv1d_k", # Kimi Linear
MODEL_TENSOR.SSM_CONV1D_V: "blk.{bid}.ssm_conv1d_v", # Kimi Linear
MODEL_TENSOR.SSM_F_A: "blk.{bid}.ssm_f_a", # Kimi Linear
MODEL_TENSOR.SSM_F_B: "blk.{bid}.ssm_f_b", # Kimi Linear
MODEL_TENSOR.SSM_BETA: "blk.{bid}.ssm_beta", # Kimi Linear
MODEL_TENSOR.SSM_G_A: "blk.{bid}.ssm_g_a", # Kimi Linear
MODEL_TENSOR.SSM_G_B: "blk.{bid}.ssm_g_b", # Kimi Linear
MODEL_TENSOR.TIME_MIX_W0: "blk.{bid}.time_mix_w0",
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
@@ -3343,6 +3368,32 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.STEP35: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_Q_NORM,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_K_NORM,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_GATE,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.LLAMA_EMBED: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
@@ -3379,6 +3430,47 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.KIMI_LINEAR: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_Q_A,
MODEL_TENSOR.ATTN_Q_B,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_K_B,
MODEL_TENSOR.ATTN_V_B,
MODEL_TENSOR.ATTN_Q_A_NORM,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.SSM_CONV1D_Q,
MODEL_TENSOR.SSM_CONV1D_K,
MODEL_TENSOR.SSM_CONV1D_V,
MODEL_TENSOR.SSM_F_A,
MODEL_TENSOR.SSM_F_B,
MODEL_TENSOR.SSM_BETA,
MODEL_TENSOR.SSM_A,
MODEL_TENSOR.SSM_G_A,
MODEL_TENSOR.SSM_G_B,
MODEL_TENSOR.SSM_DT,
MODEL_TENSOR.SSM_NORM,
MODEL_TENSOR.FFN_EXP_PROBS_B,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
# TODO
}
@@ -3691,12 +3783,12 @@ KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
# RoPE
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
# SSM
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
@@ -3706,6 +3798,9 @@ KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
KEY_SSM_GROUP_COUNT = Keys.SSM.GROUP_COUNT
KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
# KDA
KEY_KDA_HEAD_DIM = Keys.KDA.HEAD_DIM
# tokenization
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE

View File

@@ -824,6 +824,12 @@ class GGUFWriter:
def add_expert_gating_func(self, value: ExpertGatingFuncType) -> None:
self.add_uint32(Keys.LLM.EXPERT_GATING_FUNC.format(arch=self.arch), value.value)
def add_swiglu_clamp_exp(self, values: Sequence[float]) -> None:
self.add_array(Keys.LLM.SWIGLU_CLAMP_EXP.format(arch=self.arch), values)
def add_swiglu_clamp_shexp(self, values: Sequence[float]) -> None:
self.add_array(Keys.LLM.SWIGLU_CLAMP_SHEXP.format(arch=self.arch), values)
def add_expert_group_scale(self, value: float) -> None:
self.add_float32(Keys.LLM.EXPERT_GROUP_SCALE.format(arch=self.arch), value)
@@ -980,6 +986,9 @@ class GGUFWriter:
def add_ssm_dt_b_c_rms(self, value: bool) -> None:
self.add_bool(Keys.SSM.DT_B_C_RMS.format(arch=self.arch), value)
def add_kda_head_dim(self, value: int) -> None:
self.add_uint32(Keys.KDA.HEAD_DIM.format(arch=self.arch), value)
def add_tokenizer_model(self, model: str) -> None:
self.add_string(Keys.Tokenizer.MODEL, model)

View File

@@ -359,6 +359,7 @@ class TensorNameMap:
MODEL_TENSOR.ATTN_GATE: (
"model.layers.{bid}.self_attn.gate_proj", # afmoe
"model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate
),
# Feed-forward norm
@@ -423,6 +424,7 @@ class TensorNameMap:
"model.layers.{bid}.mlp.router.gate", # afmoe
"layers.{bid}.gate", # mistral-large
"backbone.layers.{bid}.mixer.gate", # nemotron-h-moe
"model.layers.{bid}.moe.gate", # step3.5
),
MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
@@ -438,6 +440,8 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
"backbone.layers.{bid}.mixer.gate.e_score_correction", # nemotron-h-moe
"model.layers.{bid}.mlp.e_score_correction", # exaone-moe
"model.layers.{bid}.block_sparse_moe.gate.e_score_correction", # kimi
"model.layers.{bid}.moe.router_bias", # step3.5 expert selection bias
),
# Feed-forward up
@@ -492,6 +496,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.experts.up_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
"model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
"model.layers.{bid}.moe.up_proj", # step3.5
),
MODEL_TENSOR.FFN_UP_SHEXP: (
@@ -502,6 +507,8 @@ class TensorNameMap:
"model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
"layers.{bid}.shared_experts.w3", # mistral-large
"backbone.layers.{bid}.mixer.shared_experts.up_proj", # nemotron-h-moe
"model.layers.{bid}.block_sparse_moe.shared_experts.up_proj", # kimi
"model.layers.{bid}.share_expert.up_proj", # step3.5
),
MODEL_TENSOR.FFN_UP_CHEXP: (
@@ -541,6 +548,7 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
"model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
"model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
"model.layers.{bid}.moe.gate_proj", # step3.5
),
MODEL_TENSOR.FFN_GATE_SHEXP: (
@@ -549,6 +557,8 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
"model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
"layers.{bid}.shared_experts.w1", # mistral-large
"model.layers.{bid}.block_sparse_moe.shared_experts.gate_proj", # kimi
"model.layers.{bid}.share_expert.gate_proj", # step3.5
),
MODEL_TENSOR.FFN_GATE_CHEXP: (
@@ -603,6 +613,7 @@ class TensorNameMap:
"model.layers.{bid}.feed_forward.experts.down_proj", # llama4
"encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
"model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
"model.layers.{bid}.moe.down_proj", # step3.5
),
MODEL_TENSOR.FFN_DOWN_SHEXP: (
@@ -613,6 +624,8 @@ class TensorNameMap:
"model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
"layers.{bid}.shared_experts.w2", # mistral-large
"backbone.layers.{bid}.mixer.shared_experts.down_proj", # nemotron-h-moe
"model.layers.{bid}.block_sparse_moe.shared_experts.down_proj", # kimi
"model.layers.{bid}.share_expert.down_proj", # step3.5
),
MODEL_TENSOR.FFN_DOWN_CHEXP: (
@@ -759,6 +772,7 @@ class TensorNameMap:
"model.layers.layers.{bid}.mixer.dt_proj", # plamo2
"model.layers.{bid}.linear_attn.dt_proj", # qwen3next
"backbone.layers.{bid}.mixer.dt", # nemotron-h-moe
"model.layers.{bid}.self_attn.dt_proj", # kimi
),
MODEL_TENSOR.SSM_DT_NORM: (
@@ -772,6 +786,7 @@ class TensorNameMap:
"model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
"model.layers.layers.{bid}.mixer.A_log", # plamo2
"model.layers.{bid}.linear_attn.A_log", # qwen3next
"model.layers.{bid}.self_attn.A_log", # kimi
),
MODEL_TENSOR.SSM_B_NORM: (
@@ -797,6 +812,7 @@ class TensorNameMap:
"model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
"model.layers.{bid}.linear_attn.norm", # qwen3next
"backbone.layers.{bid}.mixer.norm", # mamba2
"model.layers.{bid}.self_attn.o_norm", # kimi
),
MODEL_TENSOR.SSM_OUT: (
@@ -811,6 +827,31 @@ class TensorNameMap:
"model.layers.{bid}.linear_attn.in_proj_ba", # qwen3next
),
# Kimi Linear KDA (using SSM_ prefix for consistency)
MODEL_TENSOR.SSM_CONV1D_Q: (
"model.layers.{bid}.self_attn.q_conv1d",
),
MODEL_TENSOR.SSM_CONV1D_K: (
"model.layers.{bid}.self_attn.k_conv1d",
),
MODEL_TENSOR.SSM_CONV1D_V: (
"model.layers.{bid}.self_attn.v_conv1d",
),
MODEL_TENSOR.SSM_F_A: (
"model.layers.{bid}.self_attn.f_a_proj",
),
MODEL_TENSOR.SSM_F_B: (
"model.layers.{bid}.self_attn.f_b_proj",
),
MODEL_TENSOR.SSM_BETA: (
"model.layers.{bid}.self_attn.b_proj",
),
MODEL_TENSOR.SSM_G_A: (
"model.layers.{bid}.self_attn.g_a_proj",
),
MODEL_TENSOR.SSM_G_B: (
"model.layers.{bid}.self_attn.g_b_proj",
),
MODEL_TENSOR.TIME_MIX_W0: (
"model.layers.{bid}.attention.w0", # rwkv7
),

View File

@@ -23,7 +23,7 @@ numpy = ">=1.17"
tqdm = ">=4.27"
pyyaml = ">=5.1"
requests = ">=2.25"
sentencepiece = { version = ">=0.1.98,<=0.2.0", optional = true }
sentencepiece = { version = ">=0.1.98,<0.3.0", optional = true }
PySide6 = { version = "^6.9", python = ">=3.9,<3.14", optional = true }
[tool.poetry.dev-dependencies]

View File

@@ -17,7 +17,7 @@ classifiers = [
[tool.poetry.dependencies]
python = ">=3.9"
numpy = "^1.25.0"
sentencepiece = ">=0.1.98,<=0.2.0"
sentencepiece = ">=0.1.98,<0.3.0"
transformers = ">=4.35.2,<5.0.0"
protobuf = ">=4.21.0,<5.0.0"
gguf = { path = "./gguf-py" }

View File

@@ -1,5 +1,5 @@
numpy~=1.26.4
sentencepiece~=0.2.0
sentencepiece>=0.1.98,<0.3.0
transformers>=4.57.1,<5.0.0

View File

@@ -84,6 +84,7 @@ add_library(llama
models/internlm2.cpp
models/jais.cpp
models/jamba.cpp
models/kimi-linear.cpp
models/lfm2.cpp
models/llada-moe.cpp
models/llada.cpp
@@ -134,6 +135,7 @@ add_library(llama
models/stablelm.cpp
models/starcoder.cpp
models/starcoder2.cpp
models/step35-iswa.cpp
models/t5-dec.cpp
models/t5-enc.cpp
models/wavtokenizer-dec.cpp

View File

@@ -117,9 +117,11 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_RND1, "rnd1" },
{ LLM_ARCH_PANGU_EMBED, "pangu-embedded" },
{ LLM_ARCH_MISTRAL3, "mistral3" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_MIMO2, "mimo2" },
{ LLM_ARCH_STEP35, "step35" },
{ LLM_ARCH_LLAMA_EMBED, "llama-embed" },
{ LLM_ARCH_MAINCODER, "maincoder" },
{ LLM_ARCH_KIMI_LINEAR, "kimi-linear" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -161,6 +163,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
{ LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, "%s.expert_shared_feed_forward_length" },
{ LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH, "%s.expert_chunk_feed_forward_length" },
{ LLM_KV_SWIGLU_CLAMP_EXP, "%s.swiglu_clamp_exp" },
{ LLM_KV_SWIGLU_CLAMP_SHEXP, "%s.swiglu_clamp_shexp" },
{ LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
{ LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
{ LLM_KV_EXPERT_COUNT, "%s.expert_count" },
@@ -219,21 +223,21 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
{ LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" },
{ LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
{ LLM_KV_ROPE_FREQ_BASE_SWA, "%s.rope.freq_base_swa" },
{ LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
{ LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
{ LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
{ LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
{ LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
{ LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
{ LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
{ LLM_KV_ROPE_SCALING_YARN_EXT_FACTOR, "%s.rope.scaling.yarn_ext_factor" },
{ LLM_KV_ROPE_SCALING_YARN_ATTN_FACTOR, "%s.rope.scaling.yarn_attn_factor" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_FAST, "%s.rope.scaling.yarn_beta_fast" },
{ LLM_KV_ROPE_SCALING_YARN_BETA_SLOW, "%s.rope.scaling.yarn_beta_slow" },
{ LLM_KV_SPLIT_NO, "split.no" },
{ LLM_KV_SPLIT_COUNT, "split.count" },
@@ -246,6 +250,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_SSM_GROUP_COUNT, "%s.ssm.group_count" },
{ LLM_KV_SSM_DT_B_C_RMS, "%s.ssm.dt_b_c_rms" },
{ LLM_KV_KDA_HEAD_DIM, "%s.kda.head_dim" },
{ LLM_KV_WKV_HEAD_SIZE, "%s.wkv.head_size" },
{ LLM_KV_POSNET_EMBEDDING_LENGTH, "%s.posnet.embedding_length" },
@@ -371,6 +377,15 @@ static const std::map<llm_tensor, const char *> LLM_TENSOR_NAMES = {
{ LLM_TENSOR_SSM_DT_NORM, "blk.%d.ssm_dt_norm" },
{ LLM_TENSOR_SSM_B_NORM, "blk.%d.ssm_b_norm" },
{ LLM_TENSOR_SSM_C_NORM, "blk.%d.ssm_c_norm" },
{ LLM_TENSOR_SSM_CONV1D_Q, "blk.%d.ssm_conv1d_q" },
{ LLM_TENSOR_SSM_CONV1D_K, "blk.%d.ssm_conv1d_k" },
{ LLM_TENSOR_SSM_CONV1D_V, "blk.%d.ssm_conv1d_v" },
{ LLM_TENSOR_SSM_F_A, "blk.%d.ssm_f_a" },
{ LLM_TENSOR_SSM_F_B, "blk.%d.ssm_f_b" },
{ LLM_TENSOR_SSM_BETA, "blk.%d.ssm_beta" },
{ LLM_TENSOR_SSM_G_A, "blk.%d.ssm_g_a" },
{ LLM_TENSOR_SSM_G_B, "blk.%d.ssm_g_b" },
{ LLM_TENSOR_SSM_NORM, "blk.%d.ssm_norm" },
{ LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
{ LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
@@ -2267,6 +2282,35 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_STEP35:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ROPE_FACTORS_LONG,
LLM_TENSOR_ROPE_FACTORS_SHORT,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_Q_NORM,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_K_NORM,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_GATE,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_EXP_PROBS_B,
};
case LLM_ARCH_GPTJ:
case LLM_ARCH_UNKNOWN:
return {
@@ -2289,6 +2333,54 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
};
case LLM_ARCH_KIMI_LINEAR:
return {
LLM_TENSOR_TOKEN_EMBD,
LLM_TENSOR_OUTPUT_NORM,
LLM_TENSOR_OUTPUT,
LLM_TENSOR_ROPE_FREQS,
LLM_TENSOR_ATTN_NORM,
LLM_TENSOR_ATTN_Q,
LLM_TENSOR_ATTN_K,
LLM_TENSOR_ATTN_V,
LLM_TENSOR_ATTN_OUT,
LLM_TENSOR_FFN_NORM,
// Dense FFN (layer 0 only)
LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP,
// MoE FFN (layers 1+)
LLM_TENSOR_FFN_GATE_INP,
LLM_TENSOR_FFN_GATE_EXPS,
LLM_TENSOR_FFN_DOWN_EXPS,
LLM_TENSOR_FFN_UP_EXPS,
LLM_TENSOR_FFN_EXP_PROBS_B,
// Shared experts
LLM_TENSOR_FFN_GATE_SHEXP,
LLM_TENSOR_FFN_DOWN_SHEXP,
LLM_TENSOR_FFN_UP_SHEXP,
// KDA (using SSM_ enum prefix, keeping GGUF names for backward compat)
LLM_TENSOR_SSM_CONV1D_Q,
LLM_TENSOR_SSM_CONV1D_K,
LLM_TENSOR_SSM_CONV1D_V,
LLM_TENSOR_SSM_F_A,
LLM_TENSOR_SSM_F_B,
LLM_TENSOR_SSM_BETA,
LLM_TENSOR_SSM_A,
LLM_TENSOR_SSM_G_A,
LLM_TENSOR_SSM_G_B,
LLM_TENSOR_SSM_DT,
LLM_TENSOR_SSM_NORM,
// MLA
LLM_TENSOR_ATTN_Q_A,
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_KV_A_NORM,
};
default:
GGML_ABORT("unknown architecture for tensor mapping");
}
@@ -2392,6 +2484,15 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_SSM_C_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_D, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
// Kimi KDA - Conv tensors are 4D [d_conv, 1, d_inner, 1], reshaped to 2D at runtime
{LLM_TENSOR_SSM_CONV1D_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_CONV1D_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_SSM_F_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_F_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_BETA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_G_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_SSM_G_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_TIME_MIX_LERP_X, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_TIME_MIX_LN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_CHANNEL_MIX_LERP_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
@@ -2573,6 +2674,7 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_QWEN3NEXT:
case LLM_ARCH_KIMI_LINEAR:
return true;
default:
return false;

View File

@@ -122,8 +122,10 @@ enum llm_arch {
LLM_ARCH_PANGU_EMBED,
LLM_ARCH_MISTRAL3,
LLM_ARCH_MIMO2,
LLM_ARCH_STEP35,
LLM_ARCH_LLAMA_EMBED,
LLM_ARCH_MAINCODER,
LLM_ARCH_KIMI_LINEAR,
LLM_ARCH_UNKNOWN,
};
@@ -165,6 +167,8 @@ enum llm_kv {
LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH,
LLM_KV_EXPERT_CHUNK_FEED_FORWARD_LENGTH,
LLM_KV_SWIGLU_CLAMP_EXP,
LLM_KV_SWIGLU_CLAMP_SHEXP,
LLM_KV_USE_PARALLEL_RESIDUAL,
LLM_KV_TENSOR_DATA_LAYOUT,
LLM_KV_EXPERT_COUNT,
@@ -250,6 +254,8 @@ enum llm_kv {
LLM_KV_SSM_GROUP_COUNT,
LLM_KV_SSM_DT_B_C_RMS,
LLM_KV_KDA_HEAD_DIM,
LLM_KV_WKV_HEAD_SIZE,
LLM_KV_TOKENIZER_MODEL,
@@ -398,6 +404,15 @@ enum llm_tensor {
LLM_TENSOR_SSM_NORM,
LLM_TENSOR_SSM_OUT,
LLM_TENSOR_SSM_BETA_ALPHA, // qwen3next
// Kimi Linear KDA (using SSM_ prefix for consistency)
LLM_TENSOR_SSM_CONV1D_Q, // kimi: Q conv1d weight
LLM_TENSOR_SSM_CONV1D_K, // kimi: K conv1d weight
LLM_TENSOR_SSM_CONV1D_V, // kimi: V conv1d weight
LLM_TENSOR_SSM_F_A, // kimi: forget gate projection A
LLM_TENSOR_SSM_F_B, // kimi: forget gate projection B
LLM_TENSOR_SSM_BETA, // kimi: beta mixing coefficient
LLM_TENSOR_SSM_G_A, // kimi: output gate projection A
LLM_TENSOR_SSM_G_B, // kimi: output gate projection B
LLM_TENSOR_TIME_MIX_W0,
LLM_TENSOR_TIME_MIX_W1,
LLM_TENSOR_TIME_MIX_W2,

View File

@@ -2013,7 +2013,7 @@ void llama_context::output_reorder() {
//
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
if (model.arch == LLM_ARCH_QWEN3NEXT) {
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) {
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
}
uint32_t res = std::max<uint32_t>(1024u, 8u*model.n_tensors());

View File

@@ -13,6 +13,8 @@
#include <cassert>
#include <cmath>
#include <cstring>
#include <numeric>
#include <sstream>
#include <unordered_set>
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
@@ -533,6 +535,50 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) {
return res;
}
// TODO: Hybrid input classes are a bit redundant.
// Instead of creating a hybrid input, the graph can simply create 2 separate inputs.
// Refactoring is required in the future.
void llm_graph_input_mem_hybrid_k::set_input(const llama_ubatch * ubatch) {
mctx->get_attn()->set_input_k_idxs(inp_attn->self_k_idxs, ubatch);
mctx->get_attn()->set_input_kq_mask(inp_attn->self_kq_mask, ubatch, cparams.causal_attn);
const int64_t n_rs = mctx->get_recr()->get_n_rs();
if (inp_rs->s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(inp_rs->s_copy->buffer));
int32_t * data = (int32_t *) inp_rs->s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_rs; ++i) {
data[i] = mctx->get_recr()->s_copy(i);
}
}
}
bool llm_graph_input_mem_hybrid_k::can_reuse(const llm_graph_params & params) {
const auto * mctx = static_cast<const llama_memory_hybrid_context *>(params.mctx);
this->mctx = mctx;
bool res = true;
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
res &= inp_rs->s_copy_main->ne[0] == params.ubatch.n_seqs;
res &= inp_rs->s_copy_extra->ne[0] == mctx->get_recr()->get_n_rs() - params.ubatch.n_seqs;
res &= inp_rs->head == mctx->get_recr()->get_head();
res &= inp_rs->rs_z == mctx->get_recr()->get_rs_z();
return res;
}
void llm_graph_input_mem_hybrid_iswa::set_input(const llama_ubatch * ubatch) {
const auto * attn_ctx = mctx->get_attn();
@@ -970,6 +1016,26 @@ ggml_tensor * llm_graph_context::build_ffn(
switch (type_op) {
case LLM_FFN_SILU:
if (gate && type_gate == LLM_FFN_PAR) {
// Step35: HF clamps gate (after SiLU) and up before multiplication
if (arch == LLM_ARCH_STEP35 && il >= 0) {
const float limit = hparams.swiglu_clamp_shexp[il];
constexpr float eps = 1e-6f;
if (limit > eps) {
ggml_tensor * gate_act = ggml_silu(ctx0, cur);
cb(gate_act, "ffn_silu", il);
gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit);
cb(gate_act, "ffn_silu_clamped", il);
tmp = ggml_clamp(ctx0, tmp, -limit, limit);
cb(tmp, "ffn_up_clamped", il);
cur = ggml_mul(ctx0, gate_act, tmp);
cb(cur, "ffn_swiglu_limited", il);
type_gate = LLM_FFN_SEQ;
break;
}
}
cur = ggml_swiglu_split(ctx0, cur, tmp);
cb(cur, "ffn_swiglu", il);
type_gate = LLM_FFN_SEQ;
@@ -1272,6 +1338,25 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
switch (type_op) {
case LLM_FFN_SILU:
if (gate_exps) {
// Step35: per-layer clamp for routed experts
if (arch == LLM_ARCH_STEP35 && il >= 0) {
const float limit = hparams.swiglu_clamp_exp[il];
constexpr float eps = 1e-6f;
if (limit > eps) {
ggml_tensor * gate_act = ggml_silu(ctx0, cur);
cb(gate_act, "ffn_moe_silu", il);
gate_act = ggml_clamp(ctx0, gate_act, -INFINITY, limit);
cb(gate_act, "ffn_moe_silu_clamped", il);
up = ggml_clamp(ctx0, up, -limit, limit);
cb(up, "ffn_moe_up_clamped", il);
cur = ggml_mul(ctx0, gate_act, up);
cb(cur, "ffn_moe_swiglu_limited", il);
break;
}
}
cur = ggml_swiglu_split(ctx0, cur, up);
cb(cur, "ffn_moe_swiglu", il);
} else {
@@ -2268,6 +2353,17 @@ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
}
llm_graph_input_mem_hybrid_k * llm_graph_context::build_inp_mem_hybrid_k() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
auto inp_rs = build_rs_inp_impl (ctx0, ubatch, mctx_cur->get_recr());
auto inp_attn = build_attn_inp_k_impl(ctx0, ubatch, hparams, cparams, mctx_cur->get_attn());
auto inp = std::make_unique<llm_graph_input_mem_hybrid_k>(cparams, std::move(inp_attn), std::move(inp_rs), mctx_cur);
return (llm_graph_input_mem_hybrid_k *) res->add_input(std::move(inp));
}
llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa() const {
const auto * mctx_cur = static_cast<const llama_memory_hybrid_iswa_context *>(mctx);

View File

@@ -433,6 +433,34 @@ public:
const llama_memory_hybrid_context * mctx;
};
class llm_graph_input_mem_hybrid_k : public llm_graph_input_i {
public:
llm_graph_input_mem_hybrid_k(
const llama_cparams & cparams,
std::unique_ptr<llm_graph_input_attn_k> inp_attn,
std::unique_ptr<llm_graph_input_rs> inp_rs,
const llama_memory_hybrid_context * mctx) :
inp_attn(std::move(inp_attn)),
inp_rs(std::move(inp_rs)),
cparams(cparams),
mctx(mctx) { }
virtual ~llm_graph_input_mem_hybrid_k() = default;
void set_input(const llama_ubatch * ubatch) override;
bool can_reuse(const llm_graph_params & params) override;
std::unique_ptr<llm_graph_input_attn_k> inp_attn;
std::unique_ptr<llm_graph_input_rs> inp_rs;
llm_graph_input_attn_k * get_attn() const { return inp_attn.get(); }
llm_graph_input_rs * get_recr() const { return inp_rs.get(); }
const llama_cparams cparams;
const llama_memory_hybrid_context * mctx;
};
class llm_graph_input_mem_hybrid_iswa : public llm_graph_input_i {
public:
llm_graph_input_mem_hybrid_iswa(
@@ -960,6 +988,7 @@ struct llm_graph_context {
//
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
llm_graph_input_mem_hybrid_k * build_inp_mem_hybrid_k() const;
llm_graph_input_mem_hybrid_iswa * build_inp_mem_hybrid_iswa() const;

View File

@@ -139,6 +139,13 @@ uint32_t llama_hparams::n_embd_r() const {
return n_embd * (n_shortconv_l_cache - 1);
}
if (n_embd_head_kda != 0) {
// for Kimi KDA layers
// Conv state for Q, K, V: 3 * (d_conv - 1) * n_head * head_dim
const uint32_t d_inner = n_head() * n_embd_head_kda; // 32 * 128 = 4096
return 3 * (ssm_d_conv > 0 ? ssm_d_conv - 1 : 3) * d_inner;
}
// TODO: maybe support other convolution strides than 1
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
// Corresponds to Mamba's conv_states size
@@ -151,6 +158,13 @@ uint32_t llama_hparams::n_embd_s() const {
return n_embd * wkv_head_size;
}
if (n_embd_head_kda != 0) {
// for Kimi KDA layers
// Full recurrent state: head_dim * head_dim * n_head
// h tensor shape for delta attention: [head_dim, head_dim, n_head]
return n_embd_head_kda * n_embd_head_kda * n_head(); // 128 * 128 * 32 = 524288
}
// corresponds to Mamba's ssm_states size
return ssm_d_state * ssm_d_inner;
}

View File

@@ -137,6 +137,9 @@ struct llama_hparams {
uint32_t ssm_dt_rank = 0;
uint32_t ssm_n_group = 0;
// for Kimi Linear KDA
uint32_t n_embd_head_kda = 0;
// for hybrid state space models
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
@@ -203,6 +206,11 @@ struct llama_hparams {
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
// Step35: optional per-layer clamps for (Swi)GLU
std::array<float, LLAMA_MAX_LAYERS> swiglu_clamp_exp; // clamping for expert FFN
std::array<float, LLAMA_MAX_LAYERS> swiglu_clamp_shexp; // shared expert
// this value n_pattern means that every nth layer is dense (i.e. non-SWA)
// dense_first means whether the pattern is start with a dense layer
// note that if n_pattern == 0, all layers are SWA

View File

@@ -218,7 +218,9 @@ llama_memory_context_ptr llama_kv_cache_iswa::init_update(llama_context * lctx,
}
bool llama_kv_cache_iswa::get_can_shift() const {
return kv_base->get_size() == kv_swa->get_size();
return kv_base->get_can_shift() &&
kv_swa->get_can_shift() &&
kv_base->get_size() == kv_swa->get_size();
}
void llama_kv_cache_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {

View File

@@ -974,6 +974,10 @@ void llama_kv_cache::apply_ubatch(const slot_info & sinfo, const llama_ubatch &
}
bool llama_kv_cache::get_can_shift() const {
// Step35 uses per-layer RoPE dims; K-shift assumes a single global n_rot.
if (model.arch == LLM_ARCH_STEP35) {
return false;
}
return true;
}

View File

@@ -125,10 +125,12 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_21B_A3B: return "21B.A3B";
case LLM_TYPE_30B_A3B: return "30B.A3B";
case LLM_TYPE_31B_A3_5B: return "31B.A3.5B";
case LLM_TYPE_48B_A3B: return "48B.A3B";
case LLM_TYPE_80B_A3B: return "80B.A3B";
case LLM_TYPE_100B_A6B: return "100B.A6B";
case LLM_TYPE_102B_A12B: return "102B.A12B";
case LLM_TYPE_106B_A12B: return "106B.A12B";
case LLM_TYPE_196B_A11B: return "196B.A11B";
case LLM_TYPE_230B_A10B: return "230B.A10B";
case LLM_TYPE_235B_A22B: return "235B.A22B";
case LLM_TYPE_300B_A47B: return "300B.A47B";
@@ -559,6 +561,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
std::fill(hparams.xielu_alpha_p.begin(), hparams.xielu_alpha_p.end(), 0.0f);
std::fill(hparams.xielu_beta.begin(), hparams.xielu_beta.end(), 0.0f);
std::fill(hparams.xielu_eps.begin(), hparams.xielu_eps.end(), 0.0f);
std::fill(hparams.swiglu_clamp_exp.begin(), hparams.swiglu_clamp_exp.end(), 0.0f);
std::fill(hparams.swiglu_clamp_shexp.begin(), hparams.swiglu_clamp_shexp.end(), 0.0f);
ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
@@ -2450,6 +2454,66 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla_impl);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla_impl);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot);
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
ml.get_key(LLM_KV_KDA_HEAD_DIM, hparams.n_embd_head_kda);
// MLA qk_rope_head_dim (for reference)
// qk_rope_head_dim = 64, qk_nope_head_dim = 128, qk_head_dim = 192
// Mark KDA layers as recurrent using n_head_kv pattern (like Jamba)
// Set n_head_kv = 0 for KDA layers (recurrent), n_head_kv = n_head for MLA layers (attention)
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
hparams.recurrent_layer_arr[i] = hparams.n_head_kv(i) == 0; // KDA layers are recurrent
}
// MoE parameters - Kimi uses moe_intermediate_size = 1024
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func);
switch (hparams.n_layer) {
case 27: type = LLM_TYPE_48B_A3B; break; // Kimi-Linear-48B-A3B
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_STEP35:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
// MoE + SWA parameters
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale, false);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
// Step35 uses sigmoid gating by default (if not set in GGUF)
if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID;
}
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
ml.get_key(LLM_KV_ROPE_FREQ_BASE_SWA, hparams.rope_freq_base_train_swa);
ml.get_key_or_arr(LLM_KV_ATTENTION_SLIDING_WINDOW_PATTERN, hparams.swa_layers, hparams.n_layer);
ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_EXP, hparams.swiglu_clamp_exp, hparams.n_layer, false);
ml.get_key_or_arr(LLM_KV_SWIGLU_CLAMP_SHEXP, hparams.swiglu_clamp_shexp, hparams.n_layer, false);
switch (hparams.n_layer) {
case 45: type = LLM_TYPE_196B_A11B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
default: throw std::runtime_error("unsupported model architecture");
}
@@ -6752,6 +6816,141 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
}
} break;
case LLM_ARCH_KIMI_LINEAR:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
// Check for KDA specific tensors to determine layer type or if it's a mixed model
// Assuming KDA layer if KDA tensors are present
// KDA uses head_dim = 128 (from linear_attn_config.head_dim)
const int64_t n_embd_head_k_kda = hparams.n_embd_head_kda;
const int64_t n_embd_head_v_kda = hparams.n_embd_head_kda;
const int64_t ssm_d_conv = hparams.ssm_d_conv;
// Try loading KDA specific tensors (using SSM_ prefix)
// Conv1d weights: try 4D first, then 3D (quantization may remove trailing 1)
// 4D: [d_conv, 1, d_inner, 1], 3D: [d_conv, 1, d_inner]
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_q_conv) {
layer.ssm_q_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_Q, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, TENSOR_NOT_REQUIRED);
}
if (layer.ssm_q_conv) {
// KDA Layer - Conv1d weights may be 3D or 4D
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_k_conv) {
layer.ssm_k_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_K, "weight", i), {ssm_d_conv, 1, n_embd_head_k_kda * n_head}, 0);
}
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_v_conv) {
layer.ssm_v_conv = create_tensor(tn(LLM_TENSOR_SSM_CONV1D_V, "weight", i), {ssm_d_conv, 1, n_embd_head_v_kda * n_head}, 0);
}
// q, k, v projections
// Python: q_proj, k_proj, v_proj
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_head_k_kda * n_head}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_head_v_kda * n_head}, 0);
// KDA specific projections
// f_a_proj, f_b_proj
layer.ssm_f_a = create_tensor(tn(LLM_TENSOR_SSM_F_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0); // head_dim
layer.ssm_f_b = create_tensor(tn(LLM_TENSOR_SSM_F_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0); // projection_size
// b_proj (beta mixing coefficient)
layer.ssm_beta = create_tensor(tn(LLM_TENSOR_SSM_BETA, "weight", i), {n_embd, n_head}, 0);
// A_log - Shape in GGUF: [1, num_heads, 1, 1] (4D) or [1, num_heads] (2D after quantization) Note: -exp(A_log) is applied in convert_hf_to_gguf.py
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head, 1, 1}, TENSOR_NOT_REQUIRED);
if (!layer.ssm_a) {
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {1, n_head}, 0);
}
// dt_bias - shape [n_embd_head_k_kda * n_head] = [4096]
layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {n_embd_head_k_kda * n_head}, 0);
// g_a_proj, g_b_proj (output gate)
layer.ssm_g_a = create_tensor(tn(LLM_TENSOR_SSM_G_A, "weight", i), {n_embd, n_embd_head_k_kda}, 0);
layer.ssm_g_b = create_tensor(tn(LLM_TENSOR_SSM_G_B, "weight", i), {n_embd_head_k_kda, n_embd_head_k_kda * n_head}, 0);
// o_norm (reusing SSM_NORM)
layer.ssm_o_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), {n_embd_head_k_kda}, 0); // FusedRMSNormGated
// o_proj
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v_kda * n_head, n_embd}, 0);
} else {
// MLA Layer - use MLA-specific head dimensions
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, TENSOR_NOT_REQUIRED);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
if (layer.attn_q_a_norm) {
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
} else {
// Kimi MLA without Q compression: wq = [n_embd, n_head * n_embd_head_k_mla]
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
}
// Kimi: qk_rope_head_dim = 64 (actual RoPE dimension for MLA)
// Note: hparams.n_rot may be 72 (from conversion) but actual is 64
const int64_t qk_rope_head_dim = hparams.n_rot; // From config: qk_rope_head_dim
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + qk_rope_head_dim}, 0);
// Support Legacy GGUFs that don't split wkv_b (MLA KV cache disabled)
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_k_mla - qk_rope_head_dim + n_embd_head_v_mla)}, TENSOR_NOT_REQUIRED);
if (!layer.wkv_b) { // MLA KV cache enabled
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_k_mla - qk_rope_head_dim, kv_lora_rank, n_head}, 0);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
}
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
// MoE intermediate size (different from dense FFN)
const int64_t n_ff_exp = hparams.n_ff_exp;
// Kimi uses n_layer_dense_lead to determine which layers use dense FFN vs MoE
// first_k_dense_replace = 1 means layer 0 uses dense FFN, layers 1+ use MoE
if (i < (int) hparams.n_layer_dense_lead) {
// Dense FFN layer - use normal n_ff
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
} else {
// MoE layer - use n_ff_exp (1024) instead of n_ff (9216)
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
// Shared experts use moe_intermediate_size * num_shared_experts
// Kimi: shared_expert_intermediate_size = 1024 * 1 = 1024
// Tensors are 2D: [n_embd, n_ff_shexp] or [n_ff_shexp, n_embd]
const int64_t n_ff_shexp_actual = n_ff_exp * (hparams.n_expert_shared > 0 ? hparams.n_expert_shared : 1);
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp_actual, n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_shexp_actual}, TENSOR_NOT_REQUIRED);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, 0);
}
}
} break;
case LLM_ARCH_COGVLM:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -6940,6 +7139,72 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_STEP35:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
// STEP35 supports per-layer partial RoPE dims; rope factors are stored as a single shared tensor
// ("rope_freqs.weight") and ggml uses only the first (n_rot_l/2) entries per layer.
uint32_t n_rot_max = 0;
for (int i = 0; i < n_layer; ++i) {
n_rot_max = std::max(n_rot_max, hparams.n_rot);
}
if (n_rot_max == 0) {
n_rot_max = n_rot;
}
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
const uint32_t n_head_l = hparams.n_head(i);
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED);
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, TENSOR_NOT_REQUIRED);
// optional rope factors (llama3) / longrope tensors
if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
} else {
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot_max/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head_l}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_v * n_head_l, n_embd}, 0);
// head-wise attention gate (Step35 self_attn.g_proj)
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), {n_embd, n_head_l}, TENSOR_NOT_REQUIRED);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
// dense MLP (leading dense blocks)
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, TENSOR_NOT_REQUIRED);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
// MoE routed experts + selection bias (router_bias)
const int64_t n_ff_exp = hparams.n_ff_exp;
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, TENSOR_NOT_REQUIRED);
layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
// shared expert MLP
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, TENSOR_NOT_REQUIRED);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, TENSOR_NOT_REQUIRED);
}
} break;
case LLM_ARCH_MAINCODER:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -8086,6 +8351,14 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
{
llm = std::make_unique<llm_build_mimo2_iswa>(*this, params);
} break;
case LLM_ARCH_KIMI_LINEAR:
{
llm = std::make_unique<llm_build_kimi_linear>(*this, params);
} break;
case LLM_ARCH_STEP35:
{
llm = std::make_unique<llm_build_step35_iswa>(*this, params);
} break;
default:
GGML_ABORT("fatal error");
}
@@ -8235,6 +8508,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_WAVTOKENIZER_DEC:
case LLM_ARCH_NEMOTRON_H:
case LLM_ARCH_NEMOTRON_H_MOE:
case LLM_ARCH_KIMI_LINEAR:
return LLAMA_ROPE_TYPE_NONE;
// use what we call a normal RoPE, operating on pairs of consecutive head values
@@ -8330,6 +8604,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_AFMOE:
case LLM_ARCH_QWEN3NEXT:
case LLM_ARCH_MIMO2:
case LLM_ARCH_STEP35:
return LLAMA_ROPE_TYPE_NEOX;
case LLM_ARCH_QWEN2VL:

View File

@@ -118,10 +118,12 @@ enum llm_type {
LLM_TYPE_21B_A3B, // Ernie MoE small
LLM_TYPE_30B_A3B,
LLM_TYPE_31B_A3_5B,
LLM_TYPE_48B_A3B, // Kimi Linear
LLM_TYPE_80B_A3B, // Qwen3 Next
LLM_TYPE_100B_A6B,
LLM_TYPE_102B_A12B, // Solar-Open
LLM_TYPE_106B_A12B, // GLM-4.5-Air
LLM_TYPE_196B_A11B, // Step3.5-Flash
LLM_TYPE_230B_A10B, // Minimax M2
LLM_TYPE_235B_A22B,
LLM_TYPE_300B_A47B, // Ernie MoE big
@@ -411,6 +413,18 @@ struct llama_layer {
struct ggml_tensor * ffn_act_beta = nullptr;
struct ggml_tensor * ffn_act_eps = nullptr;
// Kimi Linear KDA (using ssm_ prefix for consistency)
// Note: ssm_dt_b already exists above (mamba bias), reused for Kimi dt_bias
struct ggml_tensor * ssm_q_conv = nullptr;
struct ggml_tensor * ssm_k_conv = nullptr;
struct ggml_tensor * ssm_v_conv = nullptr;
struct ggml_tensor * ssm_f_a = nullptr;
struct ggml_tensor * ssm_f_b = nullptr;
struct ggml_tensor * ssm_beta = nullptr;
struct ggml_tensor * ssm_g_a = nullptr;
struct ggml_tensor * ssm_g_b = nullptr;
struct ggml_tensor * ssm_o_norm = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;

View File

@@ -787,9 +787,9 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
// do not quantize Mamba's small yet 2D weights
// do not quantize Mamba /Kimi's small conv1d weights
// NOTE: can't use LLM_TN here because the layer number is not known
quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
quantize &= name.find("ssm_conv1d") == std::string::npos;
quantize &= name.find("shortconv.conv.weight") == std::string::npos;
// do not quantize RWKV's small yet 2D weights

View File

@@ -1752,26 +1752,33 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
// Kimi-K2 uses custom tokenization without traditional BPE merges
const bool is_kimi_k2 = (tokenizer_pre == "kimi-k2");
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
if (!is_kimi_k2) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
}
// Kimi-K2 doesn't need merges, skip
LLAMA_LOG_INFO("%s: Kimi-K2 tokenizer detected, skipping BPE merges\n", __func__);
} else {
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
for (int i = 0; i < n_merges; i++) {
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
//GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
bpe_ranks.emplace(std::make_pair(first, second), i);
std::string first;
std::string second;
const size_t pos = word.find(' ', 1);
if (pos != std::string::npos) {
first = word.substr(0, pos);
second = word.substr(pos + 1);
}
bpe_ranks.emplace(std::make_pair(first, second), i);
}
}
// default special tokens
@@ -2226,6 +2233,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|end_of_text|>" // granite
|| t.first == "<EOT>"
|| t.first == "_<EOT>"
|| t.first == "[EOT]" // Kimi-K2
|| t.first == "<end▁of▁sentence>" // DeepSeek
|| t.first == "<end_of_utterance>" // smoldocling
) {
@@ -2322,6 +2330,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<fim-pad>"
|| t.first == "<fim_pad>" // Granite
|| t.first == "<PAD>"
|| t.first == "[PAD]" // Kimi-K2
) {
special_fim_pad_id = t.second;
if ((attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
@@ -2424,6 +2433,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|eom_id|>"
|| t.first == "<EOT>"
|| t.first == "_<EOT>"
|| t.first == "[EOT]" // Kimi-K2
|| t.first == "[EOS]" // Kimi-K2
|| t.first == "<|end_of_text|>"
|| t.first == "<end_of_utterance>" // smoldocling
) {

772
src/models/kimi-linear.cpp Normal file
View File

@@ -0,0 +1,772 @@
#include "models.h"
#include "ggml.h"
#define CHUNK_SIZE 64
// Causal Conv1d function for Q,K,V
// When qkv is 0, it is Q, 1 is K, 2 is V
static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_tensor * conv_states_all, ggml_tensor * conv_state_all, int64_t qkv, ggml_tensor * x, ggml_tensor * proj_w, ggml_tensor * conv_w, int64_t d_conv, int64_t head_dim, int64_t n_head, int64_t n_seq_tokens, int64_t n_seqs, int64_t n_tokens, int64_t kv_head) {
const int64_t d_inner = head_dim * n_head;
const int64_t conv_state_size = (d_conv - 1) * d_inner;
const int64_t n_embd_r_total = 3 * conv_state_size; // Q + K + V
// conv_state_all is [n_embd_r_total, n_seqs], split into Q, K, V
// Each conv state is [(d_conv-1) * d_inner] per sequence, need to reshape to [d_conv-1, d_inner, n_seqs]
// Memory layout: for each seq, Q state is first conv_state_size elements, then K, then V
// conv_state_all has stride: nb[0] = element_size, nb[1] = n_embd_r_total * element_size
// View Q conv state: offset 0, size conv_state_size per seq
// conv_state_all is [n_embd_r_total, n_seqs] with memory layout:
// state[i + seq * n_embd_r_total] where i = conv_step + channel * (d_conv-1) + {0, conv_state_size, 2*conv_state_size} for Q/K/V
// We want [d_conv-1, d_inner, n_seqs] view:
// nb1 = (d_conv-1) * element_size (stride between channels)
// nb2 = n_embd_r_total * element_size (stride between seqs)
ggml_tensor * conv_state_x = ggml_view_3d(ctx0, conv_state_all, d_conv - 1, d_inner, n_seqs,
(d_conv - 1) * ggml_element_size(conv_state_all), // nb1: stride between channels
n_embd_r_total * ggml_element_size(conv_state_all), // nb2: stride between seqs
qkv * conv_state_size * ggml_element_size(conv_state_all));
// Causal Conv1d function for Q,K,V
// When qkv is 0, it is Q, 1 is K, 2 is V
// Step 1: Q, K, V projections -> [d_inner, n_tokens]
ggml_tensor * x_proj = ggml_mul_mat(ctx0, proj_w, x);
// Reshape input: {d_inner, n_tokens} -> {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * x_3d = ggml_reshape_3d(ctx0, x_proj, d_inner, n_seq_tokens, n_seqs);
// Concat Q conv state and current input: {d_conv-1 + n_seq_tokens, d_inner, n_seqs}
ggml_tensor * conv_x = ggml_concat(ctx0, conv_state_x, ggml_transpose(ctx0, x_3d), 0);
// Save last (d_conv-1) columns back to Q conv state
ggml_tensor * last_conv_x = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs,
conv_x->nb[1], conv_x->nb[2], n_seq_tokens * conv_x->nb[0]);
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, last_conv_x,
ggml_view_1d(ctx0, conv_states_all, conv_state_size * n_seqs,
(kv_head * n_embd_r_total + qkv * conv_state_size) * ggml_element_size(conv_states_all))));
// Reshape conv weight: GGUF [d_conv, 1, d_inner, 1] -> ggml_ssm_conv expects [d_conv, d_inner]
// GGUF stores as [d_conv, 1, d_inner, 1] with memory layout w[conv_step + channel * d_conv]
// vLLM stores as [d_inner, d_conv] with memory layout w[channel * d_conv + conv_step]
// ggml_ssm_conv computes: c[conv_step + channel * d_conv]
// GGUF layout: [d_conv, 1, d_inner] or [d_conv, 1, d_inner, 1] -> reshape to [d_conv, d_inner]
// Reshape conv weight from [d_conv, 1, d_inner, 1] to [d_conv, d_inner] for ggml_ssm_conv
ggml_tensor * conv_weight = ggml_reshape_2d(ctx0, conv_w, d_conv, d_inner);
// Apply conv1d
// ggml_ssm_conv output: {d_inner, n_seq_tokens, n_seqs}
ggml_tensor * Xcur = ggml_ssm_conv(ctx0, conv_x, conv_weight);
// Reshape to 2D for bias add: {d_inner, n_tokens}
Xcur = ggml_reshape_2d(ctx0, Xcur, d_inner, n_tokens);
Xcur = ggml_silu(ctx0, Xcur);
return ggml_reshape_4d(ctx0, Xcur, head_dim, n_head, n_seq_tokens, n_seqs);
}
llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
llm_graph_context_mamba(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
cb(inpL, "model.embed_tokens", -1);
// Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
// So we don't need inp_pos
auto * inp_kv = !hparams.is_mla() ? build_inp_mem_hybrid() : nullptr;
auto * inp_k = hparams.is_mla() ? build_inp_mem_hybrid_k() : nullptr;
auto * inp_rs = hparams.is_mla() ? inp_k->get_recr() : inp_kv->get_recr();
auto * inp_attn_kv = !hparams.is_mla() ? inp_kv->get_attn() : nullptr;
auto * inp_attn_k = hparams.is_mla() ? inp_k->get_attn() : nullptr;
// Output ids for selecting which tokens to output
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * chunked_causal_mask =
ggml_tri(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
GGML_TRI_TYPE_LOWER);
ggml_tensor * chunked_identity = ggml_diag(ctx0, ggml_fill_inplace(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
ggml_tensor * chunked_diag_mask = ggml_add(ctx0, chunked_causal_mask, chunked_identity);
ggml_build_forward_expand(gf, chunked_causal_mask);
ggml_build_forward_expand(gf, chunked_identity);
ggml_build_forward_expand(gf, chunked_diag_mask);
// Kimi dimension constants
const int64_t n_head = hparams.n_head();
const int64_t head_dim = hparams.n_embd_head_kda;
const int64_t d_conv = hparams.ssm_d_conv;
const int64_t d_inner = n_head * head_dim; // 32 * 128 = 4096
const int64_t n_seqs = ubatch.n_seqs;
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
// Verify batch consistency for recurrent layers
GGML_ASSERT(n_seqs != 0);
GGML_ASSERT(ubatch.equal_seqs());
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
// MLA params
const int64_t n_embd_head_k_mla = hparams.n_embd_head_k_mla();
const int64_t n_embd_head_v_mla = hparams.n_embd_head_v_mla();
const int64_t kv_lora_rank = hparams.n_lora_kv;
// qk_rope_head_dim = 64 (from Kimi config) which is hparams.n_rot
// Confirmed from tensor shape: wkv_a_mqa [2304, 576] = [n_embd, kv_lora_rank + qk_rope_head_dim]
const int64_t n_embd_head_qk_rope = hparams.n_rot; // config.qk_rope_head_dim
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope; // 192 - 64 = 128
// Attention scale for MLA
const float kq_scale_mla = 1.0f / sqrtf((float)n_embd_head_k_mla);
for (int il = 0; il < n_layer; ++il) {
const auto & layer = model.layers[il];
ggml_tensor * inpSA = inpL;
// Attention Norm
cur = build_norm(inpL, layer.attn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// Check layer type by checking which tensors exist
// KDA layers have ssm_a_log tensor, MLA layers have wkv_a_mqa tensor
bool is_kda = (layer.ssm_a != nullptr);
bool is_mla = (layer.wkv_a_mqa != nullptr);
if (is_kda) {
// === KDA Layer (Kimi Delta Attention) with Recurrent State ===
// Reference: vLLM kda.py
const auto * mctx_cur = inp_rs->mctx;
const auto kv_head = mctx_cur->get_head();
// Get conv states from r_l tensor (Q, K, V each have separate state)
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
cb(conv_states_all, "conv_states_all", il);
ggml_tensor * conv_state_all = build_rs(inp_rs, conv_states_all, hparams.n_embd_r(), n_seqs);
ggml_tensor * Qcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 0, cur, layer.wq, layer.ssm_q_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
ggml_tensor * Kcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 1, cur, layer.wk, layer.ssm_k_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
ggml_tensor * Vcur = causal_conv1d(gf, ctx0, conv_states_all, conv_state_all, 2, cur, layer.wv, layer.ssm_v_conv, d_conv, head_dim, n_head, n_seq_tokens, n_seqs, n_tokens, kv_head);
// g1 = -exp(A_log) * softplus(f_b(f_a(x)) + dt_bias)
ggml_tensor * f_a = ggml_mul_mat(ctx0, layer.ssm_f_a, cur);
ggml_tensor * g1 = ggml_mul_mat(ctx0, layer.ssm_f_b, f_a);
cb(g1, "g1 f_b(f_a(cur))", il);
g1 = ggml_add(ctx0, g1, layer.ssm_dt_b);
g1 = ggml_softplus(ctx0, g1);
g1 = ggml_reshape_3d(ctx0, g1, head_dim, n_head, n_tokens);
// A_log shape is [1, n_head] or [1, n_head, 1, 1], need to broadcast to [head_dim, n_head, n_tokens]. No need to -exp(a_log) because it was done in convert_hf_to_gguf.py
// Reshape to [1, n_head, 1] for broadcasting with g1 [head_dim, n_head, n_tokens]
ggml_tensor * A = ggml_reshape_3d(ctx0, layer.ssm_a, 1, n_head, 1);
g1 = ggml_mul(ctx0, g1, A);
cb(g1, "kda_g1", il);
// Compute beta (mixing coefficient)
ggml_tensor * beta = ggml_mul_mat(ctx0, layer.ssm_beta, cur);
beta = ggml_reshape_4d(ctx0, beta, n_head, 1, n_seq_tokens, n_seqs);
cb(beta, "kda_beta", il);
// Reshape for KDA recurrence
// {n_embd, n_tokens} -> {n_embd, n_seq_tokens, n_seqs}
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
g1 = ggml_reshape_4d(ctx0, g1, head_dim, n_head, n_seq_tokens, n_seqs);
// Get SSM state and compute KDA recurrence using ggml_kda_scan
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
ggml_tensor * state = build_rs(inp_rs, ssm_states_all, hparams.n_embd_s(), n_seqs);
state = ggml_reshape_4d(ctx0, state, head_dim, head_dim, n_head, n_seqs);
// Choose between build_kda_chunking and build_kda_recurrent based on n_tokens
std::pair<ggml_tensor *, ggml_tensor *> attn_out = n_seq_tokens == 1 ?
build_kda_autoregressive(Qcur, Kcur, Vcur, g1, beta, state, il) :
build_kda_chunking(Qcur, Kcur, Vcur, g1, beta, state, chunked_causal_mask, chunked_identity, chunked_diag_mask, il);
ggml_tensor * output = attn_out.first;
ggml_tensor * new_state = attn_out.second;
cb(output, "attn_output", il);
cb(new_state, "new_state", il);
// Update the recurrent states
ggml_build_forward_expand(gf,
ggml_cpy(ctx0, new_state,
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
// Output gating g2 = g_b(g_a(x))
ggml_tensor * cur_2d = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
ggml_tensor * g_a = ggml_mul_mat(ctx0, layer.ssm_g_a, cur_2d);
ggml_tensor * g2 = ggml_mul_mat(ctx0, layer.ssm_g_b, g_a);
cb(g2, "g2 g_b(g_a(cur_2d))", il);
g2 = ggml_reshape_3d(ctx0, g2, head_dim, n_head, n_seq_tokens * n_seqs);
// Apply o_norm with sigmoid gating
// Note: Kimi model uses sigmoid gating, not SiLU (despite FusedRMSNormGated default being swish)
// Formula: output = RMSNorm(x) * sigmoid(g)
ggml_tensor * attn_out_final = ggml_reshape_3d(ctx0, output, head_dim, n_head, n_seq_tokens * n_seqs);
ggml_tensor * normed = build_norm(attn_out_final, layer.ssm_o_norm, nullptr, LLM_NORM_RMS, il);
cb(normed, "kda_normed", il);
ggml_tensor * gate = ggml_sigmoid(ctx0, g2);
ggml_tensor * gated = ggml_mul(ctx0, normed, gate);
// Output projection
gated = ggml_cont_2d(ctx0, gated, d_inner, n_tokens);
cur = ggml_mul_mat(ctx0, layer.wo, gated);
cb(cur, "kda_out", il);
} else if (is_mla) {
// === MLA Layer (Multi-head Latent Attention) without KV Cache ===
// Reference: vLLM mla.py
// Step 1: Q projection and reshape
// vLLM Kimi: q = q_proj(hidden_states), then view as [n_tokens, n_head, qk_head_dim]
// Note: Kimi MLA does NOT use RoPE (rotary_emb=None in vLLM)
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.wq, cur);
// Step 2: KV compression
// kv_cmpr_pe = kv_a_proj_with_mqa(hidden_states) -> [kv_lora_rank + qk_rope_head_dim, n_tokens]
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, layer.wkv_a_mqa, cur);
// Split: kv_cmpr = kv_lora[:kv_lora_rank], k_pe = kv_lora[kv_lora_rank:]
ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe, kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope), 0);
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe, n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
// Note: Kimi MLA does NOT apply RoPE (rotary_emb=None in vLLM)
// k_pe is used directly without RoPE
// Normalize kv_c
kv_cmpr = build_norm(kv_cmpr, layer.attn_kv_a_norm, nullptr, LLM_NORM_RMS, il);
if (layer.wk_b && layer.wv_b) { // MLA KV cache enabled
// extract q_nope
ggml_tensor * q_nope =
ggml_view_3d(ctx0, Qcur, n_embd_head_qk_nope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, 0);
cb(q_nope, "q_nope", il);
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(
ctx0, Qcur, n_embd_head_qk_rope, n_head, n_tokens, ggml_row_size(Qcur->type, n_embd_head_k_mla),
ggml_row_size(Qcur->type, n_embd_head_k_mla) * n_head, ggml_row_size(Qcur->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, layer.wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
Qcur = ggml_concat(ctx0, q_nope_absorbed, q_pe, 0);
cb(Qcur, "Qcur", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, kv_cmpr, k_pe, 0);
cb(Kcur, "Kcur", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
cur = build_attn(inp_attn_k, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, layer.wv_b, kq_scale_mla, il);
cb(cur, "mla_out", il);
} else { // MLA KV cache disabled. Fall back to MHA KV cache.
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k_mla, n_head, n_tokens);
cb(Qcur, "mla_Q", il);
// KV decompression: kv = kv_b_proj(kv_c_normed)
ggml_tensor * kv = ggml_mul_mat(ctx0, layer.wkv_b, kv_cmpr);
const int64_t kv_per_head = n_embd_head_qk_nope + n_embd_head_v_mla;
// Split kv into k_nope and v
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, kv_per_head),
ggml_row_size(kv->type, kv_per_head * n_head), 0);
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv, n_embd_head_v_mla, n_head, n_tokens,
ggml_row_size(kv->type, kv_per_head),
ggml_row_size(kv->type, kv_per_head * n_head),
ggml_row_size(kv->type, n_embd_head_qk_nope));
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "mla_V", il);
// Concatenate k_nope + k_pe (broadcast k_pe to all heads)
// K = [k_nope, k_pe] where k_nope is [qk_nope_head_dim, n_head, n_tokens]
// and k_pe is [qk_rope_head_dim, 1, n_tokens] broadcast to all heads
// Need to broadcast k_pe from [qk_rope, 1, n_tokens] to [qk_rope, n_head, n_tokens]
ggml_tensor * k_pe_target = ggml_new_tensor_3d(ctx0, k_pe->type, n_embd_head_qk_rope, n_head, n_tokens);
ggml_tensor * k_pe_repeated = ggml_repeat(ctx0, k_pe, k_pe_target);
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe_repeated, k_nope, 0);
cb(Kcur, "mla_K", il);
// Direct softmax attention (with MHA KV cache)
// Use build_attn with inp_attn for proper mask handling
cur = build_attn(inp_attn_kv, layer.wo, NULL, Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale_mla, il);
cb(cur, "mla_out", il);
}
} else {
// Unknown layer type - this should not happen
GGML_ABORT("Kimi layer is neither KDA nor MLA - missing required tensors");
}
// On last layer, select only the output tokens
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
// Residual
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// FFN Norm
cur = build_norm(ffn_inp, layer.ffn_norm, NULL, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
if ((uint32_t) il < hparams.n_layer_dense_lead) {
// Dense FFN layer
cur = build_ffn(cur,
layer.ffn_up, NULL, NULL,
layer.ffn_gate, NULL, NULL,
layer.ffn_down, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE layer
// Kimi uses moe_renormalize=True and routed_scaling_factor (stored as expert_weights_scale) = 2.446
ggml_tensor * moe_out = build_moe_ffn(cur,
layer.ffn_gate_inp,
layer.ffn_up_exps,
layer.ffn_gate_exps,
layer.ffn_down_exps,
layer.ffn_exp_probs_b,
hparams.n_expert,
hparams.n_expert_used,
LLM_FFN_SILU, true,
true, hparams.expert_weights_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// Shared expert
{
ggml_tensor * ffn_shexp = build_ffn(cur,
layer.ffn_up_shexp, NULL, NULL,
layer.ffn_gate_shexp, NULL, NULL,
layer.ffn_down_shexp, NULL, NULL,
NULL, LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(ffn_shexp, "ffn_shexp", il);
cur = ggml_add(ctx0, moe_out, ffn_shexp);
cb(cur, "ffn_out", il);
}
}
// Residual
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
// Final Norm
cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
// Output
cur = ggml_mul_mat(ctx0, model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
/*
This is a ggml implementation of the naive_chunk_kda function of
https://github.com/fla-org/flash-linear-attention/blob/main/fla/ops/kda/naive.py
*/
std::pair<ggml_tensor *, ggml_tensor *> llm_build_kimi_linear::build_kda_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il) {
GGML_ASSERT(ggml_is_contiguous(state));
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(gk->ne[0] == S_v && gk->ne[1] == H_v && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
// TODO: can this ever be false?
const bool use_qk_l2norm = true;
if (use_qk_l2norm) {
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
}
const float scale = 1.0f / sqrtf(S_v);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(gk, "gk_in", il);
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
cb(q, "q_perm", il);
cb(k, "k_perm", il);
cb(v, "v_perm", il);
cb(beta, "beta_perm", il);
cb(gk, "gk_perm", il);
cb(state, "state_in", il);
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
// Do padding
const int64_t chunk_size = CHUNK_SIZE;
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
gk = ggml_pad(ctx0, gk, 0, pad, 0, 0);
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
cb(q, "q_pad", il);
cb(k, "k_pad", il);
cb(v, "v_pad", il);
cb(beta, "beta_pad", il);
cb(gk, "gk_pad", il);
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
cb(v_beta, "v_beta", il);
cb(k_beta, "k_beta", il);
const int64_t HB = H_k * n_seqs;
q = ggml_cont_4d(ctx0, q, S_k, chunk_size, n_chunks, HB);
k = ggml_cont_4d(ctx0, k, S_k, chunk_size, n_chunks, HB);
k_beta = ggml_cont_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, HB);
v = ggml_cont_4d(ctx0, v, S_v, chunk_size, n_chunks, HB);
v_beta = ggml_cont_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, HB);
gk = ggml_cont_4d(ctx0, gk, S_k, chunk_size, n_chunks, HB);
beta = ggml_cont_4d(ctx0, beta, 1, chunk_size, n_chunks, HB);
// switch for cumsum
gk = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk, 1, 0, 2, 3), chunk_size, S_k, n_chunks, HB);
cb(gk, "gk", il);
ggml_tensor * gk_cumsum = ggml_cumsum(ctx0, gk);
cb(gk_cumsum, "gk_cumsum", il);
/*
Compute Akk and Aqk loop together
Akk loop:
for i in range(BT):
k_i = k[..., i, :] # k_i [B,H,NT,S]
g_i = g[..., i:i+1, :] # g_i [B,H,NT,1,S]
A[..., i] = torch.einsum('... c d, ... d -> ... c', k * (g - g_i).exp(), k_i)
Aqk loop:
for j in range(BT):
k_j = k[:, :, i, j]
g_j = g[:, :, i, j:j+1, :]
A[..., j] = torch.einsum('... c d, ... d -> ... c', q_i * (g_i - g_j).exp(), k_j)
*/
const int64_t CHB = n_chunks * H_k * n_seqs;
ggml_tensor * gkcs_i = ggml_reshape_4d(ctx0, gk_cumsum, chunk_size, 1, S_k, CHB); // [chunk_size, 1, S_k, CHB]
ggml_tensor * gkcs_j = ggml_reshape_4d(ctx0, gkcs_i, 1, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB]
ggml_tensor * gkcs_j_bc = ggml_repeat_4d(ctx0, gkcs_j, chunk_size, chunk_size, S_k, CHB); // [1, chunk_size, S_k, CHB] -> [chunk_size, chunk_size, S_k, CHB]
// decay_mask [chunk_size,chunk_size,S_k,CHB]
ggml_tensor * decay_mask = ggml_sub(ctx0, gkcs_j_bc, gkcs_i);
cb(decay_mask, "decay_mask", il);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
cb(decay_mask, "decay_masked", il);
decay_mask = ggml_exp(ctx0, decay_mask);
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
// decay_mask [S_k,BT_j,BT_i,CHB] *Note* second and third chunk_sizes are switched
decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB);
ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, chunk_size, 1, CHB);
ggml_tensor * k_j = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB);
ggml_tensor * q_i = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB);
ggml_tensor * decay_k_i = ggml_mul(ctx0, decay_mask, k_i);
ggml_tensor * decay_q_i = ggml_mul(ctx0, decay_mask, q_i);
// decay_k_i [S.BT,BT,CHB] @ k_j [S,1,BT,CHB] = Akk [BT,1,BT,CHB]
ggml_tensor * Akk = ggml_mul_mat(ctx0, decay_k_i, k_j);
ggml_tensor * Aqk = ggml_mul_mat(ctx0, decay_q_i, k_j);
Akk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Akk, chunk_size, chunk_size, n_chunks, HB)));
Aqk = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, Aqk, chunk_size, chunk_size, n_chunks, HB)));
cb(Akk, "Akk", il);
cb(Aqk, "Aqk", il);
Akk = ggml_mul(ctx0, Akk, beta);
Akk = ggml_neg(ctx0, ggml_mul(ctx0, Akk, causal_mask));
cb(Akk, "attn_pre_solve", il);
Aqk = ggml_mul(ctx0, Aqk, diag_mask);
Aqk = ggml_scale(ctx0, Aqk, scale); // scale q
cb(Aqk, "Aqk_masked", il);
// for i in range(1, chunk_size):
// row = attn[..., i, :i].clone()
// sub = attn[..., :i, :i].clone()
// attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2)
// attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device)
//
// We reduce this to a linear triangular solve: AX = B, where B = attn, A = I - tril(A)
ggml_tensor * attn_lower = ggml_mul(ctx0, Akk, causal_mask);
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, Akk, true, true, false);
Akk = ggml_mul(ctx0, lin_solve, causal_mask);
Akk = ggml_add(ctx0, Akk, identity);
cb(Akk, "attn_solved", il);
// switch back for downstream
gk_cumsum = ggml_cont_4d(ctx0, ggml_permute(ctx0, gk_cumsum, 1, 0, 2, 3), S_k, chunk_size, n_chunks, HB);
ggml_tensor * gkexp = ggml_exp(ctx0, gk_cumsum);
cb(gk_cumsum, "gk_cumsum", il);
// u = (A*beta[..., None, :]) @ v aka U_[t]
ggml_tensor * vb = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), Akk);
ggml_tensor * kbeta_gkexp = ggml_mul(ctx0, k_beta, gkexp);
cb(kbeta_gkexp, "kbeta_gkexp", il);
ggml_tensor * k_cumdecay = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gkexp)), Akk);
cb(k_cumdecay, "k_cumdecay", il);
ggml_tensor * core_attn_out = nullptr;
ggml_tensor * new_state = ggml_dup(ctx0, state);
cb(new_state, "new_state", il);
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
// extract one chunk worth of data
auto chunkify = [=](ggml_tensor * t) {
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, t->ne[0], chunk_size, 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
};
auto chunkify_A = [=](ggml_tensor * t) {
return ggml_cont(ctx0, ggml_view_4d(ctx0, t, chunk_size, chunk_size, 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * chunk));
};
// k [S,BT,NT,H*B] => k_chunk [S,BT,1,H*B]
ggml_tensor * k_chunk = chunkify(k);
ggml_tensor * q_chunk = chunkify(q);
ggml_tensor * vb_chunk = chunkify(vb);
// gk_cumsum [S,BT,NT,H*B] => gk_cs_chunk [S,BT,1,H*B]
ggml_tensor * gk_cs_chunk = chunkify(gk_cumsum);
ggml_tensor * k_cumdecay_chunk = chunkify(k_cumdecay);
ggml_tensor * gkexp_chunk = ggml_exp(ctx0, gk_cs_chunk);
ggml_tensor * Aqk_chunk = chunkify_A(Aqk);
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
// new_state [S,S,1,H*B] k_cumdecay_chunk [S,BT,1,H*B]
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state or W_[t] @ S_[t]
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
// v_new = v_i - v_prime or U_[t] - W_[t]*S_[t]
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, vb_chunk, v_prime), v_prime);
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
// q_chunk [S,BT,1,H*B] gkexp_chunk [S,BT,1,H*B]
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
// or Gamma_[t]*Q_]t] @ S
ggml_tensor * q_gk_exp = ggml_mul(ctx0, q_chunk, gkexp_chunk);
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_gk_exp);
attn_inter = ggml_scale(ctx0, attn_inter, scale); // scale q
// v_new_t [S,BT,1,H*B] Aqk [BT,BT,1,H*B]
// core_attn_out[:, :, i] = attn_inter + attn @ v_new or A' @ (U_[t] - W_[t]*S_[t])
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, Aqk_chunk);
// o[:, :, i] = (q_i * g_i.exp()) @ S + A @ v_i
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
core_attn_out = core_attn_out == nullptr ? core_attn_out_chunk : ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 1);
ggml_tensor * gk_cum_last =
ggml_cont(ctx0, ggml_view_4d(ctx0, gk_cs_chunk, gk_cs_chunk->ne[0], 1, gk_cs_chunk->ne[2], gk_cs_chunk->ne[3],
gk_cs_chunk->nb[1], gk_cs_chunk->nb[2], gk_cs_chunk->nb[3],
gk_cs_chunk->nb[1] * (gk_cs_chunk->ne[1] - 1)));
ggml_tensor * gkexp_last = ggml_exp(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, gk_cum_last)));
ggml_tensor * gk_diff = ggml_neg(ctx0, ggml_sub(ctx0, gk_cs_chunk, gk_cum_last));
ggml_tensor * gk_diff_exp = ggml_exp(ctx0, gk_diff);
ggml_tensor * key_gkdiff = ggml_mul(ctx0, k_chunk, gk_diff_exp);
// rearrange((g_i[:,:,-1:] - g_i).exp()*k_i, 'b h c k -> b h k c') @ (U_[t] - W_[t] @ S)
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, key_gkdiff)));
new_state = ggml_add(ctx0,
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gkexp_last, gkexp_last->ne[0], gkexp_last->ne[1], H_v, n_seqs)),
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
}
core_attn_out = ggml_cont_4d(ctx0, core_attn_out, S_v, chunk_size * n_chunks, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(core_attn_out->type, S_v),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
output_tokens = ggml_cont(ctx0, output_tokens);
// permute back to (S_v, H_v, n_tokens, n_seqs)
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
output_tokens = ggml_cont(ctx0, output_tokens);
cb(new_state, "output_state", il);
return {output_tokens, new_state};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_kimi_linear::build_kda_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
int il) {
GGML_ASSERT(ggml_is_contiguous(v));
GGML_ASSERT(ggml_is_contiguous(gk));
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(v->ne[2] == n_tokens);
GGML_ASSERT(k->ne[2] == n_tokens);
GGML_ASSERT(gk->ne[0] == S_k && gk->ne[1] == H_k && gk->ne[2] == n_tokens && gk->ne[3] == n_seqs);
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_k && state->ne[2] == H_v && state->ne[3] == n_seqs);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
const float eps_norm = hparams.f_norm_rms_eps;
q = ggml_l2_norm(ctx0, q, eps_norm);
k = ggml_l2_norm(ctx0, k, eps_norm);
const float scale = 1.0f / sqrtf(S_v);
q = ggml_scale(ctx0, q, scale);
beta = ggml_sigmoid(ctx0, beta);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(beta, "beta_in", il);
cb(gk, "gk_in", il);
// g [H,1,B,1] g_t [1,H,B,1] => [1,1,H,B]
// gk [S,H,1,B] => [S,1,H,B] gk_t [1,S,H,B]
// beta [H,1,1,B] beta_t [1,H,1,B] => [1,1,H,B]
gk = ggml_reshape_4d(ctx0, gk, S_k, 1, H_k, n_seqs);
ggml_tensor * gk_t = ggml_cont(ctx0, ggml_transpose(ctx0, gk));
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
// Apply exponential to gk_t
gk_t = ggml_exp(ctx0, gk_t);
// Apply the gated delta rule for the single timestep
// last_recurrent_state = last_recurrent_state * gk_t
// S = S * g_i[..., None].exp()
state = ggml_mul(ctx0, state, gk_t);
ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
// state [S,S,H,B] k [S,1,H,B] k_state [S_v,1,H,B]
k = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs);
ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k);
// v_i - (k_i[..., None] * S).sum(-2)
v = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
ggml_tensor * v_diff = ggml_sub(ctx0, v, k_state);
// b_i[..., None] * k_i
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta_t);
// S = S + torch.einsum('b h k, b h v -> b h k v', b_i[..., None] * k_i, v_i - (k_i[..., None] * S).sum(-2))
// v_diff_t [1,S_v,H,B] k_beta_t [1,S_k,H,B] state [S_v,S_k,H,B]
state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta))));
q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs);
state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q);
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
cb(core_attn_out, "output_tokens", il);
cb(state, "new_state", il);
return {core_attn_out, state};
}

View File

@@ -288,6 +288,33 @@ struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_kimi_linear : public llm_graph_context_mamba {
llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
int il);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * gk,
ggml_tensor * beta,
ggml_tensor * state,
ggml_tensor * causal_mask,
ggml_tensor * identity,
ggml_tensor * diag_mask,
int il);
const llama_model & model;
};
struct llm_build_lfm2 : public llm_graph_context {
const llama_model & model;
@@ -556,6 +583,10 @@ struct llm_build_starcoder : public llm_graph_context {
llm_build_starcoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_step35_iswa : public llm_graph_context {
llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_t5_dec : public llm_graph_context {
llm_build_t5_dec(const llama_model & model, const llm_graph_params & params);
};

168
src/models/step35-iswa.cpp Normal file
View File

@@ -0,0 +1,168 @@
#include "models.h"
llm_build_step35_iswa::llm_build_step35_iswa(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params) {
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = build_inp_embd(model.tok_embd);
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_iswa();
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
const uint32_t n_head_l = hparams.n_head(il);
const uint32_t n_head_kv_l = hparams.n_head_kv(il);
const float freq_base_l = model.get_rope_freq_base(cparams, il);
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
cur = inpL;
// dump pre-attn RMSNorm input to pinpoint layer boundary issues
cb(cur, "attn_norm_in", il);
// self-attention
{
cur = build_norm(cur, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head_l, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv_l, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head_v, n_head_kv_l, n_tokens);
// Q/K per-head RMSNorm (Step35 q_norm / k_norm)
if (model.layers[il].attn_q_norm) {
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
cb(Qcur, "Qcur_normed", il);
}
if (model.layers[il].attn_k_norm) {
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
cb(Kcur, "Kcur_normed", il);
}
// RoPE (partial rotary factors per layer)
const bool is_swa = hparams.is_swa(il);
ggml_tensor * rope_factors = is_swa ? nullptr : model.get_rope_factors(cparams, il);
const int64_t n_rot_l = is_swa ? hparams.n_rot : (hparams.n_rot / 2);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot_l, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur_pos", il);
cb(Kcur, "Kcur_pos", il);
const float kq_scale = 1.0f / sqrtf(float(n_embd_head_k));
ggml_tensor * attn_out = build_attn(inp_attn,
nullptr, nullptr,
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
cb(attn_out, "attn_out", il);
// head-wise attention gate: sigmoid(g_proj(x)) in torch
if (model.layers[il].wqkv_gate) {
ggml_tensor * gate = build_lora_mm(model.layers[il].wqkv_gate, cur); // [n_head_l, n_tokens]
cb(gate, "attn_gate", il);
gate = ggml_sigmoid(ctx0, gate);
cb(gate, "attn_gate_sigmoid", il);
// reshape + broadcast to [n_embd_head_v, n_head_l, n_tokens]
ggml_tensor * attn_3d = ggml_reshape_3d(ctx0, attn_out, n_embd_head_v, n_head_l, n_tokens);
ggml_tensor * gate_3d = ggml_reshape_3d(ctx0, gate, 1, n_head_l, n_tokens);
cb(gate_3d, "attn_gate_3d", il);
attn_3d = ggml_mul(ctx0, attn_3d, gate_3d);
cb(attn_3d, "attn_gated_3d", il);
attn_out = ggml_reshape_2d(ctx0, attn_3d, n_embd_head_v * n_head_l, n_tokens);
cb(attn_out, "attn_gated", il);
}
// output projection
cur = build_lora_mm(model.layers[il].wo, attn_out);
cb(cur, "attn_proj", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp, model.layers[il].ffn_norm, nullptr, LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
// feed-forward
if (model.layers[il].ffn_gate_inp == nullptr) {
// dense MLP
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, nullptr,
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, nullptr,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, nullptr,
nullptr,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else {
// MoE routed experts
const bool norm_w = hparams.expert_weights_norm;
const float w_scale = hparams.expert_weights_scale;
const bool scale_w = w_scale != 0.0f;
ggml_tensor * moe_out = build_moe_ffn(cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
model.layers[il].ffn_exp_probs_b,
n_expert, n_expert_used,
LLM_FFN_SILU,
norm_w, scale_w, w_scale,
(llama_expert_gating_func_type) hparams.expert_gating_func,
il);
cb(moe_out, "ffn_moe_out", il);
// shared expert MLP (always added on MoE layers in Step35)
ggml_tensor * sh_out = build_ffn(cur,
model.layers[il].ffn_up_shexp, nullptr, nullptr,
model.layers[il].ffn_gate_shexp, nullptr, nullptr,
model.layers[il].ffn_down_shexp, nullptr, nullptr,
nullptr,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(sh_out, "ffn_shared_out", il);
cur = ggml_add(ctx0, moe_out, sh_out);
cb(cur, "ffn_out", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
inpL = cur;
}
cur = inpL;
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}

View File

@@ -497,49 +497,26 @@ static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string &
return bpe_offsets;
}
// use std::wregex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
std::wregex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
template <typename CharT>
static std::vector<size_t> unicode_regex_split_stl(const std::basic_string<CharT> & text, const std::basic_string<CharT> & regex, const std::vector<size_t> & offsets) {
using BidirIt = typename std::basic_string<CharT>::const_iterator;
#ifdef _MSC_VER
// Bypass bug in MSVC: https://github.com/ggml-org/llama.cpp/issues/17830
constexpr auto regex_flags = std::regex_constants::ECMAScript;
#else
constexpr auto regex_flags = std::regex_constants::optimize | std::regex_constants::nosubs;
#endif
std::basic_regex<CharT> expr(regex, regex_flags);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
std::wcregex_iterator end;
std::regex_iterator<BidirIt> it(text.begin() + start, text.begin() + start + offset, expr);
std::regex_iterator<BidirIt> end;
int64_t start_idx = 0;
while (it != end) {
std::wcmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// use std::regex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::regex expr(regex_expr, std::regex_constants::optimize | std::regex_constants::nosubs);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
std::cregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::cmatch match = *it;
std::match_results<BidirIt> match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}

View File

@@ -8231,6 +8231,7 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue;
for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
if (type_KV != GGML_TYPE_F16 && hsk != 64 && hsk != 72) continue;
test_cases.emplace_back(new test_flash_attn_ext(
hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV));
// run fewer test cases permuted

View File

@@ -740,6 +740,11 @@ private:
slots.clear();
const bool can_spec = common_speculative_is_compat(ctx);
if (!can_spec) {
SRV_WRN("%s", "speculative decoding not supported by this context\n");
}
// initialize slots
for (int i = 0; i < params_base.n_parallel; i++) {
server_slot slot;
@@ -752,7 +757,7 @@ private:
slot.prompt.tokens.has_mtmd = mctx != nullptr;
// try speculative decoding
{
if (can_spec) {
slot.spec = common_speculative_init(params_base.speculative, slot.ctx);
if (slot.spec) {
if (mctx) {