mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-12 14:03:20 +02:00
Compare commits
10 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f0bfe54f55 | ||
|
|
52e38faf8c | ||
|
|
a0d585537c | ||
|
|
98e57ca422 | ||
|
|
262364e31d | ||
|
|
820ebfa6f4 | ||
|
|
292f6908cd | ||
|
|
81ddc60cb3 | ||
|
|
972f323e73 | ||
|
|
f5e7734ff2 |
73
.github/workflows/server-metal.yml
vendored
Normal file
73
.github/workflows/server-metal.yml
vendored
Normal file
@@ -0,0 +1,73 @@
|
||||
name: Server-Metal
|
||||
|
||||
on:
|
||||
workflow_dispatch: # allows manual triggering
|
||||
inputs:
|
||||
sha:
|
||||
description: 'Commit SHA1 to build'
|
||||
required: false
|
||||
type: string
|
||||
slow_tests:
|
||||
description: 'Run slow tests'
|
||||
required: true
|
||||
type: boolean
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/server-metal.yml', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', 'tools/server/**.*']
|
||||
|
||||
env:
|
||||
LLAMA_LOG_COLORS: 1
|
||||
LLAMA_LOG_PREFIX: 1
|
||||
LLAMA_LOG_TIMESTAMPS: 1
|
||||
LLAMA_LOG_VERBOSITY: 10
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.ref }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
server-metal:
|
||||
runs-on: [self-hosted, macOS, ARM64]
|
||||
|
||||
name: server-metal (${{ matrix.wf_name }})
|
||||
strategy:
|
||||
matrix:
|
||||
build_type: [Release]
|
||||
wf_name: ["GPUx1"]
|
||||
include:
|
||||
- build_type: Release
|
||||
extra_args: "LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
wf_name: "GPUx1, backend-sampling"
|
||||
- build_type: Release
|
||||
extra_args: "GGML_METAL_DEVICES=2"
|
||||
wf_name: "GPUx2"
|
||||
- build_type: Release
|
||||
extra_args: "GGML_METAL_DEVICES=2 LLAMA_ARG_BACKEND_SAMPLING=1"
|
||||
wf_name: "GPUx2, backend-sampling"
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v6
|
||||
with:
|
||||
fetch-depth: 0
|
||||
ref: ${{ github.event.inputs.sha || github.event.pull_request.head.sha || github.sha || github.head_ref || github.ref_name }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
cmake -B build -DGGML_SCHED_NO_REALLOC=ON
|
||||
cmake --build build --config ${{ matrix.build_type }} -j $(sysctl -n hw.logicalcpu) --target llama-server
|
||||
|
||||
- name: Tests
|
||||
id: server_integration_tests
|
||||
if: ${{ (!matrix.disabled_on_pr || !github.event.pull_request) }}
|
||||
run: |
|
||||
cd tools/server/tests
|
||||
python3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
export ${{ matrix.extra_args }}
|
||||
pytest -v -x -m "not slow"
|
||||
@@ -288,6 +288,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
|
||||
| [WebGPU [In Progress]](docs/build.md#webgpu) | All |
|
||||
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/tools/rpc) | All |
|
||||
| [Hexagon [In Progress]](docs/backend/hexagon/README.md) | Snapdragon |
|
||||
| [VirtGPU](docs/backend/VirtGPU.md) | VirtGPU APIR |
|
||||
|
||||
## Obtaining and quantizing models
|
||||
|
||||
|
||||
@@ -3437,16 +3437,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
|
||||
params.speculative.ngram_size_m = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-check-rate"}, "N",
|
||||
string_format("ngram check rate for ngram-simple/ngram-map speculative decoding (default: %d)", params.speculative.ngram_check_rate),
|
||||
[](common_params & params, int value) {
|
||||
if (value < 1) {
|
||||
throw std::invalid_argument("ngram check rate must be at least 1");
|
||||
}
|
||||
params.speculative.ngram_check_rate = value;
|
||||
}
|
||||
).set_examples({LLAMA_EXAMPLE_SERVER}));
|
||||
add_opt(common_arg(
|
||||
{"--spec-ngram-min-hits"}, "N",
|
||||
string_format("minimum hits for ngram-map speculative decoding (default: %d)", params.speculative.ngram_min_hits),
|
||||
|
||||
@@ -380,15 +380,46 @@ std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const json & messa
|
||||
return msgs;
|
||||
}
|
||||
|
||||
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
|
||||
static json render_message_to_json(const std::vector<common_chat_msg> & msgs, const jinja::caps & c) {
|
||||
if (!c.supports_string_content && !c.supports_typed_content) {
|
||||
LOG_WRN("%s: Neither string content nor typed content is supported by the template. This is unexpected and may lead to issues.\n", __func__);
|
||||
}
|
||||
|
||||
bool only_string_accepted = c.supports_string_content && !c.supports_typed_content;
|
||||
bool only_typed_accepted = !c.supports_string_content && c.supports_typed_content;
|
||||
|
||||
json messages = json::array();
|
||||
for (const auto & msg : msgs) {
|
||||
json jmsg = msg.to_json_oaicompat(concat_typed_text);
|
||||
messages.push_back(jmsg);
|
||||
if (only_string_accepted) {
|
||||
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ true);
|
||||
messages.push_back(jmsg);
|
||||
} else if (only_typed_accepted) {
|
||||
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
|
||||
if (jmsg.at("content").is_string()) {
|
||||
jmsg["content"] = json::array({
|
||||
json{
|
||||
{"type", "text"},
|
||||
{"text", jmsg.at("content").get<std::string>()},
|
||||
}
|
||||
});
|
||||
}
|
||||
messages.push_back(jmsg);
|
||||
} else {
|
||||
json jmsg = msg.to_json_oaicompat(/* concat_typed_text= */ false);
|
||||
messages.push_back(jmsg);
|
||||
}
|
||||
}
|
||||
return messages;
|
||||
}
|
||||
|
||||
// DEPRECATED: only used in tests
|
||||
json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text) {
|
||||
jinja::caps c;
|
||||
c.supports_string_content = true;
|
||||
c.supports_typed_content = !concat_typed_text;
|
||||
return render_message_to_json(msgs, c);
|
||||
}
|
||||
|
||||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const json & tools) {
|
||||
std::vector<common_chat_tool> result;
|
||||
|
||||
@@ -3020,7 +3051,7 @@ static common_chat_params common_chat_templates_apply_jinja(
|
||||
: *tmpls->template_default;
|
||||
const auto & src = tmpl.source();
|
||||
const auto & caps = tmpl.original_caps();
|
||||
params.messages = common_chat_msgs_to_json_oaicompat(inputs.messages, /* concat_text= */ !tmpl.original_caps().requires_typed_content);
|
||||
params.messages = render_message_to_json(inputs.messages, tmpl.original_caps());
|
||||
params.add_generation_prompt = inputs.add_generation_prompt;
|
||||
params.tool_choice = inputs.tool_choice;
|
||||
params.reasoning_format = inputs.reasoning_format;
|
||||
|
||||
@@ -240,6 +240,8 @@ bool common_chat_templates_support_enable_thinking(const common_chat_templates *
|
||||
|
||||
// Parses a JSON array of messages in OpenAI's chat completion API format.
|
||||
std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const nlohmann::ordered_json & messages);
|
||||
|
||||
// DEPRECATED: only used in tests
|
||||
nlohmann::ordered_json common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
|
||||
|
||||
std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const nlohmann::ordered_json & tools);
|
||||
|
||||
@@ -269,7 +269,6 @@ struct common_params_speculative {
|
||||
|
||||
uint16_t ngram_size_n = 12; // ngram size for lookup
|
||||
uint16_t ngram_size_m = 48; // mgram size for speculative tokens
|
||||
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
|
||||
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
|
||||
|
||||
std::shared_ptr<common_ngram_mod> ngram_mod;
|
||||
|
||||
@@ -63,7 +63,8 @@ static void caps_print_stats(value & v, const std::string & path) {
|
||||
|
||||
std::map<std::string, bool> caps::to_map() const {
|
||||
return {
|
||||
{"requires_typed_content", requires_typed_content},
|
||||
{"supports_string_content", supports_string_content},
|
||||
{"supports_typed_content", supports_typed_content},
|
||||
{"supports_tools", supports_tools},
|
||||
{"supports_tool_calls", supports_tool_calls},
|
||||
{"supports_parallel_tool_calls", supports_parallel_tool_calls},
|
||||
@@ -89,7 +90,7 @@ caps caps_get(jinja::program & prog) {
|
||||
return v->stats.ops.find(op_name) != v->stats.ops.end();
|
||||
};
|
||||
|
||||
// case: typed content requirement
|
||||
// case: typed content support
|
||||
caps_try_execute(
|
||||
prog,
|
||||
[&]() {
|
||||
@@ -105,12 +106,16 @@ caps caps_get(jinja::program & prog) {
|
||||
// tools
|
||||
return json{nullptr};
|
||||
},
|
||||
[&](bool, value & messages, value &) {
|
||||
[&](bool success, value & messages, value &) {
|
||||
auto & content = messages->at(0)->at("content");
|
||||
caps_print_stats(content, "messages[0].content");
|
||||
if (has_op(content, "selectattr") || has_op(content, "array_access")) {
|
||||
// accessed as an array
|
||||
result.requires_typed_content = true;
|
||||
result.supports_typed_content = true;
|
||||
}
|
||||
if (!success) {
|
||||
// failed to execute with content as string
|
||||
result.supports_string_content = false;
|
||||
}
|
||||
}
|
||||
);
|
||||
|
||||
@@ -14,7 +14,9 @@ struct caps {
|
||||
bool supports_parallel_tool_calls = true;
|
||||
bool supports_preserve_reasoning = false; // support assistant message with reasoning_content
|
||||
|
||||
bool requires_typed_content = false; // default: use string content
|
||||
// one of the 2 content capabilities must be true
|
||||
bool supports_string_content = true;
|
||||
bool supports_typed_content = false;
|
||||
|
||||
// for reporting on server
|
||||
std::map<std::string, bool> to_map() const;
|
||||
|
||||
@@ -446,6 +446,12 @@ value for_statement::execute_impl(context & ctx) {
|
||||
|
||||
value iterable_val = iter_expr->execute(scope);
|
||||
|
||||
// mark the variable being iterated as used for stats
|
||||
if (ctx.is_get_stats) {
|
||||
iterable_val->stats.used = true;
|
||||
iterable_val->stats.ops.insert("array_access");
|
||||
}
|
||||
|
||||
if (iterable_val->is_undefined()) {
|
||||
JJ_DEBUG("%s", "For loop iterable is undefined, skipping loop");
|
||||
iterable_val = mk_val<value_array>();
|
||||
|
||||
@@ -231,10 +231,9 @@ void common_ngram_map_draft(common_ngram_map & map,
|
||||
GGML_ABORT("%s: cur_len exceeds UINT32_MAX: %zu", __func__, cur_len);
|
||||
}
|
||||
|
||||
// Only check every check_rate tokens to save compute
|
||||
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
|
||||
if (map.idx_last_check + map.check_rate > cur_len) {
|
||||
return;
|
||||
if (map.idx_last_check > cur_len) {
|
||||
// Should not happen because of common_ngram_map_begin().
|
||||
GGML_ABORT("%s: map.idx_last_check > cur_len: %zu > %zu", __func__, map.idx_last_check, cur_len);
|
||||
}
|
||||
map.idx_last_check = cur_len;
|
||||
|
||||
|
||||
@@ -24,7 +24,6 @@
|
||||
struct common_ngram_simple_config {
|
||||
uint16_t size_ngram; // size of n-grams to lookup in self-mode
|
||||
uint16_t size_mgram; // size of m-grams to draft in self-mode
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
};
|
||||
|
||||
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
|
||||
@@ -66,15 +65,14 @@ struct common_ngram_map {
|
||||
bool key_only; // true if only key n-grams are used, no values.
|
||||
|
||||
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
|
||||
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
|
||||
uint16_t min_hits; // minimum number of key hits to consider a draft
|
||||
|
||||
bool show_key_map_stats = false; // true, if statitics of the key_map should be printed.
|
||||
bool show_key_map_stats = false; // true, if statistics of the key_map should be printed.
|
||||
|
||||
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
|
||||
uint16_t check_rate, uint16_t min_hits)
|
||||
uint16_t min_hits)
|
||||
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
|
||||
check_rate(check_rate), min_hits(min_hits) {
|
||||
min_hits(min_hits) {
|
||||
key_map.resize(COMMON_NGRAM_HASH_MAP_SIZE); // 2^18 hash entries, 0 entries if key_map shouldn't be used
|
||||
}
|
||||
|
||||
|
||||
@@ -113,13 +113,14 @@ static bool common_speculative_are_compatible(
|
||||
struct common_speculative_state {
|
||||
const enum common_speculative_type type;
|
||||
|
||||
// TODO: rename to n_call_draft, n_gen_drafts, n_acc_drafts, n_gen_tokens, n_acc_tokens
|
||||
// TODO: add n_call_begin, n_call_accept
|
||||
size_t drafts_call_count = 0; // number of times this implementation was called.
|
||||
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
|
||||
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
|
||||
size_t drafts_generated_tokens = 0; // number of tokens generated by this implementation.
|
||||
size_t drafts_accepted_tokens = 0; // number of tokens accepted by the target model.
|
||||
size_t n_call_begin = 0; // number of times this implementation was called for refresh.
|
||||
size_t n_call_draft = 0; // number of times this implementation was called for generation.
|
||||
size_t n_call_accept = 0; // number of times this implementation was called for accumulation.
|
||||
|
||||
size_t n_gen_drafts = 0; // number of times a draft or part was generated by this implementation.
|
||||
size_t n_acc_drafts = 0; // number of times a draft or part was accepted by the target model.
|
||||
size_t n_gen_tokens = 0; // number of tokens generated by this implementation.
|
||||
size_t n_acc_tokens = 0; // number of tokens accepted by the target model.
|
||||
|
||||
// TODO: track performance of most recent calls
|
||||
const bool gen_perf = true; // whether to generate performance stats.
|
||||
@@ -465,8 +466,6 @@ struct common_speculative_state_eagle3 : public common_speculative_state {
|
||||
struct common_speculative_state_ngram_simple : public common_speculative_state {
|
||||
common_ngram_simple_config config;
|
||||
|
||||
uint16_t check_id = 0; // used to control the frequency of generating drafts
|
||||
|
||||
common_speculative_state_ngram_simple(
|
||||
enum common_speculative_type type,
|
||||
common_ngram_simple_config config)
|
||||
@@ -481,11 +480,6 @@ struct common_speculative_state_ngram_simple : public common_speculative_state {
|
||||
const llama_tokens & prompt_tgt,
|
||||
llama_token id_last,
|
||||
llama_tokens & result) override {
|
||||
++check_id;
|
||||
if (check_id < config.check_rate) {
|
||||
return;
|
||||
}
|
||||
check_id = 0;
|
||||
|
||||
result = common_ngram_simple_draft(config, prompt_tgt, id_last);
|
||||
GGML_UNUSED(params);
|
||||
@@ -752,10 +746,9 @@ static common_ngram_map get_common_ngram_map(const common_speculative_config & c
|
||||
uint16_t size_key = config.params.ngram_size_n;
|
||||
uint16_t size_value = config.params.ngram_size_m;
|
||||
bool key_only = (config.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
|
||||
uint16_t check_rate = config.params.ngram_check_rate;
|
||||
uint16_t min_hits = config.params.ngram_min_hits;
|
||||
|
||||
return common_ngram_map(size_key, size_value, key_only, check_rate, min_hits);
|
||||
return common_ngram_map(size_key, size_value, key_only, min_hits);
|
||||
}
|
||||
|
||||
static common_speculative_state_ngram_cache create_state_ngram_cache(
|
||||
@@ -931,12 +924,10 @@ common_speculative * common_speculative_init(
|
||||
|
||||
uint16_t ngram_size_key = ngram_map.size_key;
|
||||
uint16_t mgram_size_value = ngram_map.size_value;
|
||||
uint16_t check_rate = ngram_map.check_rate;
|
||||
|
||||
auto config_simple = common_ngram_simple_config {
|
||||
/* .size_ngram = */ ngram_size_key,
|
||||
/* .size_mgram = */ mgram_size_value,
|
||||
/* .check_rate = */ check_rate
|
||||
/* .size_mgram = */ mgram_size_value
|
||||
};
|
||||
auto state = std::make_unique<common_speculative_state_ngram_simple>(
|
||||
/* .type = */ config.type,
|
||||
@@ -997,6 +988,7 @@ void common_speculative_begin(common_speculative * spec, const llama_tokens & pr
|
||||
for (auto & impl : spec->impls) {
|
||||
common_time_meas tm(impl->t_begin_us, !impl->gen_perf);
|
||||
impl->begin(prompt);
|
||||
impl->n_call_begin++;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1013,17 +1005,17 @@ llama_tokens common_speculative_draft(
|
||||
{
|
||||
common_time_meas tm(impl->t_draft_us, !impl->gen_perf);
|
||||
impl->draft(params, prompt_tgt, id_last, result);
|
||||
impl->drafts_call_count++;
|
||||
impl->n_call_draft++;
|
||||
}
|
||||
|
||||
if (!result.empty()) {
|
||||
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
|
||||
common_speculative_type_to_str(impl.get()->type).c_str(), prompt_tgt.size(),
|
||||
impl.get()->drafts_call_count, result.size());
|
||||
impl.get()->n_call_draft, result.size());
|
||||
|
||||
spec->curr_impl = impl.get(); // set current implementation for stats
|
||||
impl->drafts_generated_count++;
|
||||
impl->drafts_generated_tokens += result.size();
|
||||
impl->n_gen_drafts++;
|
||||
impl->n_gen_tokens += result.size();
|
||||
|
||||
break; // We have a draft, so break out of the loop and return it.
|
||||
}
|
||||
@@ -1044,11 +1036,12 @@ void common_speculative_accept(common_speculative * spec, uint16_t n_accepted) {
|
||||
{
|
||||
common_time_meas tm(impl->t_accept_us, !impl->gen_perf);
|
||||
if (n_accepted > 0) {
|
||||
impl->drafts_accepted_count++;
|
||||
impl->drafts_accepted_tokens += n_accepted;
|
||||
impl->n_acc_drafts++;
|
||||
impl->n_acc_tokens += n_accepted;
|
||||
}
|
||||
|
||||
impl->accept(n_accepted);
|
||||
impl->n_call_accept++;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1069,13 +1062,13 @@ void common_speculative_print_stats(const common_speculative * spec) {
|
||||
str_perf = "";
|
||||
}
|
||||
|
||||
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
|
||||
LOG_INF("statistics %s: #calls(b,g,a) = %zu %zu %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
|
||||
common_speculative_type_to_str(impl->type).c_str(),
|
||||
impl->drafts_call_count,
|
||||
impl->drafts_generated_count,
|
||||
impl->drafts_accepted_count,
|
||||
impl->drafts_generated_tokens,
|
||||
impl->drafts_accepted_tokens,
|
||||
impl->n_call_begin, impl->n_call_draft, impl->n_call_accept,
|
||||
impl->n_gen_drafts,
|
||||
impl->n_acc_drafts,
|
||||
impl->n_gen_tokens,
|
||||
impl->n_acc_tokens,
|
||||
str_perf.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4102,27 +4102,39 @@ class Qwen2MoeModel(TextModel):
|
||||
# process the experts separately
|
||||
name = name.replace("language_model.", "") # InternVL
|
||||
|
||||
# handle pre-packed expert tensors (e.g. Qwen3.5 MoE, Qwen3Next)
|
||||
# HF stores these using nn.Linear convention: [n_expert, out_features, in_features]
|
||||
# This matches the individual expert stacking path below (which stacks
|
||||
# per-expert [out, in] weights into [n_expert, out, in]), so no permute is needed.
|
||||
# handle aggregated expert tensors
|
||||
# GGUF stores dimensions reversed from PyTorch, so:
|
||||
# PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
|
||||
# Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
|
||||
# Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
|
||||
if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
|
||||
mapped = f"{name}.weight" if not name.endswith(".weight") else name
|
||||
# HF: [n_expert, n_embd, n_ff] → GGML: {n_ff, n_embd, n_expert} ✓
|
||||
yield from super().modify_tensors(data_torch, mapped, bid)
|
||||
# Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
|
||||
# Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
|
||||
# Need PyTorch: (128, 2048, 768) [reversed of GGML]
|
||||
# So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
|
||||
permuted = data_torch.permute(0, 2, 1).contiguous()
|
||||
yield from super().modify_tensors(permuted, mapped, bid)
|
||||
return
|
||||
|
||||
if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
|
||||
# HF: [n_expert, 2*n_ff, n_embd] → split on dim=1
|
||||
n_ff = data_torch.shape[1] // 2
|
||||
gate = data_torch[:, :n_ff, :].contiguous()
|
||||
up = data_torch[:, n_ff:, :].contiguous()
|
||||
# gate/up: [n_expert, n_ff, n_embd] → GGML: {n_embd, n_ff, n_expert} ✓
|
||||
base_name = name.removesuffix(".weight").removesuffix(".gate_up_proj")
|
||||
mapped_gate = f"{base_name}.gate_proj.weight"
|
||||
mapped_up = f"{base_name}.up_proj.weight"
|
||||
yield from super().modify_tensors(gate, mapped_gate, bid)
|
||||
yield from super().modify_tensors(up, mapped_up, bid)
|
||||
if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
|
||||
raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
|
||||
split_dim = data_torch.shape[-1] // 2
|
||||
gate = data_torch[..., :split_dim].contiguous()
|
||||
up = data_torch[..., split_dim:].contiguous()
|
||||
# Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
|
||||
# Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
|
||||
# Need PyTorch: (128, 768, 2048) [reversed of GGML]
|
||||
# So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
|
||||
base_name = name.removesuffix(".weight")
|
||||
base = base_name.rsplit('.', 1)[0]
|
||||
mapped_gate = f"{base}.gate_proj.weight"
|
||||
mapped_up = f"{base}.up_proj.weight"
|
||||
perm_gate = gate.permute(0, 2, 1).contiguous()
|
||||
perm_up = up.permute(0, 2, 1).contiguous()
|
||||
yield from super().modify_tensors(perm_gate, mapped_gate, bid)
|
||||
yield from super().modify_tensors(perm_up, mapped_up, bid)
|
||||
return
|
||||
|
||||
if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
|
||||
@@ -4332,40 +4344,6 @@ class Qwen3NextModel(Qwen2MoeModel):
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3_5ForCausalLM", "Qwen3_5TextForCausalLM")
|
||||
class Qwen3_5Model(Qwen3NextModel):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3_5
|
||||
|
||||
# Stores whichever of in_proj_a/in_proj_b is seen first, keyed by layer
|
||||
_pending_ba: dict[int | None, tuple[str, Tensor]] = {}
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
# Handle split in_proj_b + in_proj_a → concatenated SSM_BETA_ALPHA
|
||||
# safetensors sorts alphabetically so in_proj_a arrives before in_proj_b
|
||||
if "in_proj_a.weight" in name or "in_proj_b.weight" in name:
|
||||
which = "a" if "in_proj_a" in name else "b"
|
||||
if bid not in self._pending_ba:
|
||||
self._pending_ba[bid] = (which, data_torch)
|
||||
return
|
||||
prev_which, prev_tensor = self._pending_ba.pop(bid)
|
||||
assert prev_which != which, f"duplicate in_proj_{which} for layer {bid}"
|
||||
b_tensor = prev_tensor if prev_which == "b" else data_torch
|
||||
a_tensor = prev_tensor if prev_which == "a" else data_torch
|
||||
ba_combined = torch.cat([b_tensor, a_tensor], dim=0)
|
||||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.SSM_BETA_ALPHA, bid, ".weight"), ba_combined)
|
||||
return
|
||||
else:
|
||||
# Qwen3Next uses .qkvz tensor, so we use the super to get the other functionalities
|
||||
# (norm correction, A_log to A etc.) for free
|
||||
# Qwen2Moe already does the gate_up conversion properly, just use that
|
||||
yield from super().modify_tensors(data_torch, name, bid)
|
||||
|
||||
|
||||
@ModelBase.register("Qwen3_5MoeForCausalLM", "Qwen3_5MoeTextForCausalLM")
|
||||
class Qwen3_5MoeModel(Qwen3_5Model):
|
||||
model_arch = gguf.MODEL_ARCH.QWEN3_5_MOE
|
||||
|
||||
|
||||
@ModelBase.register("RND1")
|
||||
class RND1Model(Qwen2MoeModel):
|
||||
model_arch = gguf.MODEL_ARCH.RND1
|
||||
|
||||
180
docs/backend/VirtGPU.md
Normal file
180
docs/backend/VirtGPU.md
Normal file
@@ -0,0 +1,180 @@
|
||||
# GGML-VirtGPU Backend
|
||||
|
||||
The GGML-VirtGPU backend enables GGML applications to run machine
|
||||
learning computations on host hardware while the application itself
|
||||
runs inside a virtual machine. It uses host-guest shared memory to
|
||||
efficiently share data buffers between the two sides.
|
||||
|
||||
This backend relies on the virtio-gpu, and VirglRenderer API Remoting
|
||||
(APIR) component. The backend is split into two libraries:
|
||||
- a GGML implementation (the "remoting frontend"), running in the
|
||||
guest and interacting with the virtgpu device
|
||||
- a VirglRenderer APIR compatible library (the "remoting backend"),
|
||||
running in the host and interacting with Virglrenderer and an actual
|
||||
GGML device backend.
|
||||
|
||||
## OS support
|
||||
|
||||
| OS | Status | Backend | CI testing | Notes
|
||||
| -------- | ----------------- | ----------- | ----------- | -----
|
||||
| MacOS 14 | Supported | ggml-metal | X | Working when compiled on MacOS 14
|
||||
| MacOS 15 | Supported | ggml-metal | X | Working when compiled on MacOS 14 or MacOS 15
|
||||
| MacOS 26 | Not tested | | |
|
||||
| Linux | Under development | ggml-vulkan | not working | Working locally, CI running into deadlocks
|
||||
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
The GGML-VirtGPU backend consists of three main components:
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
%% Nodes
|
||||
|
||||
subgraph GuestVM ["Guest VM - Frontend"]
|
||||
App([GGML Application<br/>llama.cpp, etc.])
|
||||
|
||||
direction TB
|
||||
Interface[GGML Backend Interface]
|
||||
Comm["GGML-VirtGPU<br/>(hypercalls + shared mem)"]
|
||||
|
||||
App --> Interface
|
||||
Interface --> Comm
|
||||
end
|
||||
|
||||
API[virtio-gpu / virglrenderer API]
|
||||
|
||||
subgraph HostSystem [Host System - Backend]
|
||||
direction TB
|
||||
Dispatcher[GGML-VirtGPU-Backend]
|
||||
BackendLib[GGML Backend library<br/>Metal / Vulkan / CPU / ...]
|
||||
|
||||
Dispatcher --> BackendLib
|
||||
end
|
||||
|
||||
%% Connections
|
||||
Comm --> API
|
||||
API --> HostSystem
|
||||
```
|
||||
|
||||
### Key Components
|
||||
|
||||
1. **Guest-side Frontend** (`ggml-virtgpu/`): Implements the GGML backend interface and forwards operations to the host
|
||||
2. **Host-side Backend** (`ggml-virtgpu/backend/`): Receives forwarded operations and executes them on actual hardware backends
|
||||
3. **Communication Layer**: Uses virtio-gpu hypercalls and shared memory for efficient data transfer
|
||||
|
||||
## Features
|
||||
|
||||
- **Dynamic backend loading** on the host side (CPU, CUDA, Metal, etc.)
|
||||
- **Zero-copy data transfer** via host-guest shared memory pages
|
||||
|
||||
## Communication Protocol
|
||||
|
||||
### Hypercalls and Shared Memory
|
||||
|
||||
The backend uses two primary communication mechanisms:
|
||||
|
||||
1. **Hypercalls (`DRM_IOCTL_VIRTGPU_EXECBUFFER`)**: Trigger remote execution from guest to host
|
||||
2. **Shared Memory Pages**: Zero-copy data transfer for tensors and parameters
|
||||
|
||||
#### Shared Memory Layout
|
||||
|
||||
Each connection uses two shared memory buffers:
|
||||
|
||||
- **Data Buffer** (24 MiB): For command/response data and tensor transfers
|
||||
- **Reply Buffer** (16 KiB): For command replies and status information
|
||||
- **Data Buffers**: Dynamically allocated host-guest shared buffers
|
||||
served as GGML buffers.
|
||||
|
||||
### APIR Protocol
|
||||
|
||||
The Virglrender API Remoting protocol defines three command types:
|
||||
|
||||
- `HANDSHAKE`: Protocol version negotiation and capability discovery
|
||||
- `LOADLIBRARY`: Dynamic loading of backend libraries on the host
|
||||
- `FORWARD`: API function call forwarding
|
||||
|
||||
### Binary Serialization
|
||||
|
||||
Commands and data are serialized using a custom binary protocol with:
|
||||
|
||||
- Fixed-size encoding for basic types
|
||||
- Variable-length arrays with size prefixes
|
||||
- Buffer bounds checking
|
||||
- Error recovery mechanisms
|
||||
|
||||
## Supported Operations
|
||||
|
||||
### Device Operations
|
||||
- Device enumeration and capability queries
|
||||
- Memory information (total/free)
|
||||
- Backend type detection
|
||||
|
||||
### Buffer Operations
|
||||
- Buffer allocation and deallocation
|
||||
- Tensor data transfer (host ↔ guest)
|
||||
- Memory copying and clearing
|
||||
|
||||
### Computation Operations
|
||||
- Graph execution forwarding
|
||||
|
||||
## Build Requirements
|
||||
|
||||
### Guest-side Dependencies
|
||||
- `libdrm` for DRM/virtio-gpu communication
|
||||
- C++20 compatible compiler
|
||||
- CMake 3.14+
|
||||
|
||||
### Host-side Dependencies
|
||||
- virglrenderer with APIR support (pending upstream review)
|
||||
- Target backend libraries (libggml-metal, libggml-vulkan, etc.)
|
||||
|
||||
## Configuration
|
||||
|
||||
### Environment Variables
|
||||
|
||||
- `GGML_VIRTGPU_BACKEND_LIBRARY`: Path to the host-side backend library
|
||||
- `GGML_VIRTGPU_DEBUG`: Enable debug logging
|
||||
|
||||
### Build Options
|
||||
|
||||
- `GGML_VIRTGPU`: Enable the VirtGPU backend (`ON` or `OFF`, default: `OFF`)
|
||||
- `GGML_VIRTGPU_BACKEND`: Build the host-side backend component (`ON`, `OFF` or `ONLY`, default: `OFF`)
|
||||
|
||||
### System Requirements
|
||||
|
||||
- VM with virtio-gpu support
|
||||
- VirglRenderer with APIR patches
|
||||
- Compatible backend libraries on host
|
||||
|
||||
## Limitations
|
||||
|
||||
- **VM-specific**: Only works in virtual machines with virtio-gpu support
|
||||
- **Host dependency**: Requires properly configured host-side backend
|
||||
- **Latency**: Small overhead from VM escaping for each operation
|
||||
|
||||
|
||||
* This work is pending upstream changes in the VirglRenderer
|
||||
project.
|
||||
* The backend can be tested with Virglrenderer compiled from source
|
||||
using this PR:
|
||||
https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590
|
||||
* This work is pending changes in the VMM/hypervisor running the
|
||||
virtual machine, which need to know how to route the newly
|
||||
introduced APIR capset.
|
||||
* The environment variable `VIRGL_ROUTE_VENUS_TO_APIR=1` allows
|
||||
using the Venus capset, until the relevant hypervisors have been
|
||||
patched. However, setting this flag breaks the Vulkan/Venus normal
|
||||
behavior.
|
||||
* The environment variable `GGML_REMOTING_USE_APIR_CAPSET` tells the
|
||||
`ggml-virtgpu` backend to use the APIR capset. This will become
|
||||
the default when the relevant hypervisors have been patched.
|
||||
|
||||
* This work focused on improving the performance of llama.cpp running
|
||||
on MacOS containers, and is mainly tested on this platform. The
|
||||
linux support (via `krun`) is in progress.
|
||||
|
||||
## See Also
|
||||
|
||||
- [Development and Testing](VirtGPU/development.md)
|
||||
- [Backend configuration](VirtGPU/configuration.md)
|
||||
174
docs/backend/VirtGPU/configuration.md
Normal file
174
docs/backend/VirtGPU/configuration.md
Normal file
@@ -0,0 +1,174 @@
|
||||
# GGML-VirtGPU Backend Configuration
|
||||
|
||||
This document describes the environment variables used by the ggml-virtgpu backend system, covering both the frontend (guest-side) and backend (host-side) components.
|
||||
|
||||
## Environment Variables Overview
|
||||
|
||||
The ggml-virtgpu backend uses environment variables for configuration across three main components:
|
||||
- **Frontend (Guest)**: GGML applications running in VMs
|
||||
- **Hypervisor**: Virglrenderer/APIR system
|
||||
- **Backend (Host)**: Host-side GGML backend integration
|
||||
|
||||
## Frontend (Guest-side) Configuration
|
||||
|
||||
### GGML_REMOTING_USE_APIR_CAPSET
|
||||
- **Location**: `ggml/src/ggml-virtgpu/virtgpu.cpp`
|
||||
- **Type**: Boolean flag (presence-based)
|
||||
- **Purpose**: Controls which virtio-gpu capability set to use for communication
|
||||
- **Values**:
|
||||
- Set (any value): Use the APIR capset (long-term setup)
|
||||
- Unset: Use the Venus capset (easier for testing with an unmodified hypervisor)
|
||||
- **Default**: Unset (Venus capset)
|
||||
- **Usage**:
|
||||
```bash
|
||||
export GGML_REMOTING_USE_APIR_CAPSET=1 # Use APIR capset
|
||||
# or leave unset for Venus capset
|
||||
```
|
||||
|
||||
## Hypervisor (Virglrenderer/APIR) Configuration
|
||||
|
||||
These environment variables are used during the transition phase for
|
||||
running with an unmodified hypervisor (not supporting the
|
||||
VirglRenderer APIR component). They will be removed in the future, and
|
||||
the hypervisor will instead configure VirglRenderer with the APIR
|
||||
_Configuration Key_.
|
||||
|
||||
### VIRGL_APIR_BACKEND_LIBRARY
|
||||
- **Location**: `virglrenderer/src/apir/apir-context.c`
|
||||
- **Configuration Key**: `apir.load_library.path`
|
||||
- **Type**: File path string
|
||||
- **Purpose**: Path to the APIR backend library that virglrenderer should dynamically load
|
||||
- **Required**: Yes
|
||||
- **Example**:
|
||||
```bash
|
||||
export VIRGL_APIR_BACKEND_LIBRARY="/path/to/libggml-remotingbackend.so"
|
||||
```
|
||||
|
||||
### VIRGL_ROUTE_VENUS_TO_APIR
|
||||
- **Location**: `virglrenderer/src/apir/apir-renderer.h`
|
||||
- **Type**: Boolean flag (presence-based)
|
||||
- **Purpose**: Temporary workaround to route Venus capset calls to APIR during hypervisor transition period
|
||||
- **Status**: will be removed once hypervisors support APIR natively
|
||||
- **Warning**: Breaks normal Vulkan/Venus functionality
|
||||
- **Usage**:
|
||||
```bash
|
||||
export VIRGL_ROUTE_VENUS_TO_APIR=1 # For testing with an unmodified hypervisor
|
||||
```
|
||||
|
||||
### VIRGL_APIR_LOG_TO_FILE
|
||||
- **Location**: `virglrenderer/src/apir/apir-renderer.c`
|
||||
- **Environment Variable**: `VIRGL_APIR_LOG_TO_FILE`
|
||||
- **Type**: File path string
|
||||
- **Purpose**: Enable debug logging from the VirglRenderer APIR component to specified file
|
||||
- **Required**: No (optional debugging)
|
||||
- **Default**: Logging to `stderr`
|
||||
- **Usage**:
|
||||
```bash
|
||||
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir-debug.log"
|
||||
```
|
||||
|
||||
## Backend (Host-side) Configuration
|
||||
|
||||
These environment variables are used during the transition phase for
|
||||
running with an unmodified hypervisor (not supporting the
|
||||
VirglRenderer APIR component). They will be removed in the future, and
|
||||
the hypervisor will instead configure VirglRenderer with the APIR
|
||||
_Configuration Key_.
|
||||
|
||||
### APIR_LLAMA_CPP_GGML_LIBRARY_PATH
|
||||
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
|
||||
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
|
||||
- **Configuration Key**: `ggml.library.path`
|
||||
- **Type**: File path string
|
||||
- **Purpose**: Path to the actual GGML backend library (Metal, CUDA, Vulkan, etc.)
|
||||
- **Required**: **Yes** - backend initialization fails without this
|
||||
- **Examples**:
|
||||
```bash
|
||||
# macOS with Metal backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
|
||||
|
||||
# Linux with CUDA backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-cuda.so"
|
||||
|
||||
# macOS or Linux with Vulkan backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-vulkan.so"
|
||||
```
|
||||
|
||||
### APIR_LLAMA_CPP_GGML_LIBRARY_REG
|
||||
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp`
|
||||
- **Environment Variable**: `APIR_LLAMA_CPP_GGML_LIBRARY_REG`
|
||||
- **Configuration Key**: `ggml.library.reg`
|
||||
- **Type**: Function symbol name string
|
||||
- **Purpose**: Name of the backend registration function to call after loading the library
|
||||
- **Required**: No (defaults to `ggml_backend_init`)
|
||||
- **Default**: `ggml_backend_init`
|
||||
- **Examples**:
|
||||
```bash
|
||||
# Metal backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
|
||||
|
||||
# CUDA backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_cuda_reg"
|
||||
|
||||
# Vulkan backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_vulkan_reg"
|
||||
|
||||
# Generic fallback (default)
|
||||
# export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_init"
|
||||
```
|
||||
|
||||
### APIR_LLAMA_CPP_LOG_TO_FILE
|
||||
- **Location**: `ggml/src/ggml-virtgpu/backend/backend.cpp:62`
|
||||
- **Environment Variable**: `APIR_LLAMA_CPP_LOG_TO_FILE`
|
||||
- **Type**: File path string
|
||||
- **Purpose**: Enable debug logging from the GGML backend to specified file
|
||||
- **Required**: No (optional debugging)
|
||||
- **Usage**:
|
||||
```bash
|
||||
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml-backend-debug.log"
|
||||
```
|
||||
|
||||
## Configuration Flow
|
||||
|
||||
The configuration system works as follows:
|
||||
|
||||
1. **Hypervisor Setup**: Virglrenderer loads the APIR backend library specified by `VIRGL_APIR_BACKEND_LIBRARY`
|
||||
|
||||
2. **Context Creation**: When an APIR context is created, it populates a configuration table with environment variables:
|
||||
- `apir.load_library.path` ← `VIRGL_APIR_BACKEND_LIBRARY`
|
||||
- `ggml.library.path` ← `APIR_LLAMA_CPP_GGML_LIBRARY_PATH`
|
||||
- `ggml.library.reg` ← `APIR_LLAMA_CPP_GGML_LIBRARY_REG`
|
||||
- this step will eventually be performed by the hypervisor itself, with command-line arguments instead of environment variables.
|
||||
|
||||
3. **Backend Initialization**: The backend queries the configuration via callbacks:
|
||||
- `virgl_cbs->get_config(ctx_id, "ggml.library.path")` returns the library path
|
||||
- `virgl_cbs->get_config(ctx_id, "ggml.library.reg")` returns the registration function
|
||||
|
||||
4. **Library Loading**: The backend dynamically loads and initializes the specified GGML library
|
||||
|
||||
## Error Messages
|
||||
|
||||
Common error scenarios and their messages:
|
||||
|
||||
- **Missing library path**: `"cannot open the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_PATH' not defined"`
|
||||
- **Missing registration function**: `"cannot register the GGML library: env var 'APIR_LLAMA_CPP_GGML_LIBRARY_REG' not defined"`
|
||||
|
||||
## Example Complete Configuration
|
||||
|
||||
Here's an example configuration for a macOS host with Metal backend:
|
||||
|
||||
```bash
|
||||
# Hypervisor environment
|
||||
export VIRGL_APIR_BACKEND_LIBRARY="/opt/llama.cpp/lib/libggml-virtgpu-backend.dylib"
|
||||
|
||||
# Backend configuration
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="/opt/llama.cpp/lib/libggml-metal.dylib"
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_REG="ggml_backend_metal_reg"
|
||||
|
||||
# Optional logging
|
||||
export VIRGL_APIR_LOG_TO_FILE="/tmp/apir.log"
|
||||
export APIR_LLAMA_CPP_LOG_TO_FILE="/tmp/ggml.log"
|
||||
|
||||
# Guest configuration
|
||||
export GGML_REMOTING_USE_APIR_CAPSET=1
|
||||
```
|
||||
220
docs/backend/VirtGPU/development.md
Normal file
220
docs/backend/VirtGPU/development.md
Normal file
@@ -0,0 +1,220 @@
|
||||
# Development and Testing
|
||||
|
||||
## Development
|
||||
|
||||
### Code Generation
|
||||
|
||||
The backend uses code generation from YAML configuration:
|
||||
|
||||
```bash
|
||||
# Regenerate protocol code
|
||||
cd ggml-virtgpu/
|
||||
python regenerate_remoting.py
|
||||
```
|
||||
|
||||
### Adding New Operations
|
||||
|
||||
1. Add function definition to `ggmlremoting_functions.yaml`
|
||||
2. Regenerate code with `regenerate_remoting.py`
|
||||
3. Implement guest-side forwarding in `virtgpu-forward-*.cpp`
|
||||
4. Implement host-side handling in `backend-dispatched-*.cpp`
|
||||
|
||||
## Testing
|
||||
|
||||
This document provides instructions for building and testing the GGML-VirtGPU backend on macOS with containers.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
The testing setup requires:
|
||||
|
||||
- macOS host system
|
||||
- Container runtime with `libkrun` provider (podman machine)
|
||||
- Access to development patchset for VirglRenderer
|
||||
|
||||
### Required Patchsets
|
||||
|
||||
The backend requires patches that are currently under review:
|
||||
|
||||
- **Virglrenderer APIR upstream PR**: https://gitlab.freedesktop.org/virgl/virglrenderer/-/merge_requests/1590 (for reference)
|
||||
- **MacOS Virglrenderer (for krunkit)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-macos
|
||||
- **Linux Virglrenderer (for krun)**: https://gitlab.freedesktop.org/kpouget/virglrenderer/-/tree/main-linux
|
||||
|
||||
### Build Instructions
|
||||
|
||||
#### 1. Build ggml-virtgpu-backend (Host-side, macOS)
|
||||
|
||||
```bash
|
||||
# Build the backend that runs natively on macOS
|
||||
mkdir llama.cpp
|
||||
cd llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp.git src
|
||||
cd src
|
||||
|
||||
LLAMA_MAC_BUILD=$PWD/build/ggml-virtgpu-backend
|
||||
|
||||
cmake -S . -B $LLAMA_MAC_BUILD \
|
||||
-DGGML_NATIVE=OFF \
|
||||
-DLLAMA_CURL=ON \
|
||||
-DGGML_REMOTINGBACKEND=ONLY \
|
||||
-DGGML_METAL=ON
|
||||
|
||||
TARGETS="ggml-metal"
|
||||
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $TARGETS
|
||||
|
||||
# Build additional tools for native benchmarking
|
||||
EXTRA_TARGETS="llama-run llama-bench"
|
||||
cmake --build $LLAMA_MAC_BUILD --parallel 8 --target $EXTRA_TARGETS
|
||||
```
|
||||
|
||||
#### 2. Build virglrenderer (Host-side, macOS)
|
||||
|
||||
```bash
|
||||
# Build virglrenderer with APIR support
|
||||
mkdir virglrenderer
|
||||
git clone https://gitlab.freedesktop.org/kpouget/virglrenderer -b main-macos src
|
||||
cd src
|
||||
|
||||
VIRGL_BUILD_DIR=$PWD/build
|
||||
|
||||
# -Dvenus=true and VIRGL_ROUTE_VENUS_TO_APIR=1 route the APIR requests via the Venus backend, for easier testing without a patched hypervisor
|
||||
|
||||
meson setup $VIRGL_BUILD_DIR \
|
||||
-Dvenus=true \
|
||||
-Dapir=true
|
||||
|
||||
ninja -C $VIRGL_BUILD_DIR
|
||||
```
|
||||
|
||||
#### 3. Build ggml-virtgpu (Guest-side, Linux)
|
||||
|
||||
Option A: Build from a script:
|
||||
|
||||
```bash
|
||||
# Inside a Linux container
|
||||
mkdir llama.cpp
|
||||
git clone https://github.com/ggml-org/llama.cpp.git src
|
||||
cd src
|
||||
|
||||
LLAMA_LINUX_BUILD=$PWD//build-virtgpu
|
||||
|
||||
cmake -S . -B $LLAMA_LINUX_BUILD \
|
||||
-DGGML_VIRTGPU=ON
|
||||
|
||||
ninja -C $LLAMA_LINUX_BUILD
|
||||
```
|
||||
|
||||
Option B: Build container image with frontend:
|
||||
|
||||
```bash
|
||||
cat << EOF > remoting.containerfile
|
||||
FROM quay.io/fedora/fedora:43
|
||||
USER 0
|
||||
|
||||
WORKDIR /app/remoting
|
||||
|
||||
ARG LLAMA_CPP_REPO="https://github.com/ggml-org/llama.cpp.git"
|
||||
ARG LLAMA_CPP_VERSION="master"
|
||||
ARG LLAMA_CPP_CMAKE_FLAGS="-DGGML_VIRTGPU=ON"
|
||||
ARG LLAMA_CPP_CMAKE_BUILD_FLAGS="--parallel 4"
|
||||
|
||||
RUN dnf install -y git cmake gcc gcc-c++ libcurl-devel libdrm-devel
|
||||
|
||||
RUN git clone "\${LLAMA_CPP_REPO}" src \\
|
||||
&& git -C src fetch origin \${LLAMA_CPP_VERSION} \\
|
||||
&& git -C src reset --hard FETCH_HEAD
|
||||
|
||||
RUN mkdir -p build \\
|
||||
&& cd src \\
|
||||
&& set -o pipefail \\
|
||||
&& cmake -S . -B ../build \${LLAMA_CPP_CMAKE_FLAGS} \\
|
||||
&& cmake --build ../build/ \${LLAMA_CPP_CMAKE_BUILD_FLAGS}
|
||||
|
||||
ENTRYPOINT ["/app/remoting/src/build/bin/llama-server"]
|
||||
EOF
|
||||
|
||||
mkdir -p empty_dir
|
||||
podman build -f remoting.containerfile ./empty_dir -t localhost/llama-cpp.virtgpu
|
||||
```
|
||||
|
||||
### Environment Setup
|
||||
|
||||
#### Set krunkit Environment Variables
|
||||
|
||||
```bash
|
||||
# Define the base directories (adapt these paths to your system)
|
||||
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build
|
||||
LLAMA_MAC_BUILD=$HOME/remoting/llama.cpp/build-backend
|
||||
|
||||
# For krunkit to load the custom virglrenderer library
|
||||
export DYLD_LIBRARY_PATH=$VIRGL_BUILD_DIR/src
|
||||
|
||||
# For Virglrenderer to load the ggml-remotingbackend library
|
||||
export VIRGL_APIR_BACKEND_LIBRARY="$LLAMA_MAC_BUILD/bin/libggml-virtgpu-backend.dylib"
|
||||
|
||||
# For llama.cpp remotingbackend to load the ggml-metal backend
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_PATH="$LLAMA_MAC_BUILD/bin/libggml-metal.dylib"
|
||||
export APIR_LLAMA_CPP_GGML_LIBRARY_REG=ggml_backend_metal_reg
|
||||
```
|
||||
|
||||
#### Launch Container Environment
|
||||
|
||||
```bash
|
||||
# Set container provider to libkrun
|
||||
export CONTAINERS_MACHINE_PROVIDER=libkrun
|
||||
podman machine start
|
||||
```
|
||||
|
||||
#### Verify Environment
|
||||
|
||||
Confirm that krunkit is using the correct virglrenderer library:
|
||||
|
||||
```bash
|
||||
lsof -c krunkit | grep virglrenderer
|
||||
# Expected output:
|
||||
# krunkit 50574 user txt REG 1,14 2273912 10849442 ($VIRGL_BUILD_DIR/src)/libvirglrenderer.1.dylib
|
||||
```
|
||||
|
||||
### Running Tests
|
||||
|
||||
#### Launch Test Container
|
||||
|
||||
```bash
|
||||
# Optional model caching
|
||||
mkdir -p models
|
||||
PODMAN_CACHE_ARGS="-v models:/models --user root:root --cgroupns host --security-opt label=disable -w /models"
|
||||
|
||||
podman run $PODMAN_CACHE_ARGS -it --rm --device /dev/dri localhost/llama-cpp.virtgpu
|
||||
```
|
||||
|
||||
#### Test llama.cpp in Container
|
||||
|
||||
```bash
|
||||
|
||||
# Run performance benchmark
|
||||
/app/remoting/build/bin/llama-bench -m ./llama3.2
|
||||
```
|
||||
|
||||
Expected output (performance may vary):
|
||||
```
|
||||
| model | size | params | backend | ngl | test | t/s |
|
||||
| ------------------------------ | ---------: | ---------: | ---------- | --: | ------------: | -------------------: |
|
||||
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | pp512 | 991.30 ± 0.66 |
|
||||
| llama 3B Q4_K - Medium | 1.87 GiB | 3.21 B | ggml-virtgpu | 99 | tg128 | 85.71 ± 0.11 |
|
||||
```
|
||||
|
||||
### Troubleshooting
|
||||
|
||||
#### SSH Environment Variable Issues
|
||||
|
||||
⚠️ **Warning**: Setting `DYLD_LIBRARY_PATH` from SSH doesn't work on macOS. Here is a workaround:
|
||||
|
||||
**Workaround 1: Replace system library**
|
||||
```bash
|
||||
VIRGL_BUILD_DIR=$HOME/remoting/virglrenderer/build # ⚠️ adapt to your system
|
||||
BREW_VIRGL_DIR=/opt/homebrew/Cellar/virglrenderer/0.10.4d/lib
|
||||
VIRGL_LIB=libvirglrenderer.1.dylib
|
||||
|
||||
cd $BREW_VIRGL_DIR
|
||||
mv $VIRGL_LIB ${VIRGL_LIB}.orig
|
||||
ln -s $VIRGL_BUILD_DIR/src/$VIRGL_LIB
|
||||
```
|
||||
@@ -119,8 +119,6 @@ If a draft model is combined with a draftless decoding the draftless decoding ha
|
||||
of lookup n-gram (default: 12)
|
||||
--spec-ngram-size-m N ngram size M for ngram-simple/ngram-map speculative decoding, length
|
||||
of draft m-gram (default: 48)
|
||||
--spec-ngram-check-rate N ngram check rate for ngram-simple/ngram-map speculative decoding
|
||||
(default: 1)
|
||||
--spec-ngram-min-hits N minimum hits for ngram-map speculative decoding (default: 1)
|
||||
```
|
||||
|
||||
@@ -153,10 +151,6 @@ Sets the size M of the draft m-gram for n-gram map based speculative decoding.
|
||||
The m-gram size determines how many tokens to draft when a match is found.
|
||||
Larger values can provide more speedup but may reduce acceptance rate.
|
||||
|
||||
### `--spec-ngram-check-rate R`
|
||||
|
||||
This option aims at performance if the n-gram lookup in history is to costly. A lookup will be executed at every R tokens (default is 1, every token).
|
||||
|
||||
### `--spec-ngram-min-hits H`
|
||||
|
||||
This option defines how often a key has to appear in the token history to be used as a draft (default is 1).
|
||||
@@ -175,7 +169,12 @@ draft acceptance rate = 0.70312 ( 90 accepted / 128 generated)
|
||||
statistics ngram_mod: #calls = 810, #gen drafts = 15, #acc drafts = 15, #gen tokens = 960, #acc tokens = 730, dur(b,g,a) = 0.149, 0.347, 0.005 ms
|
||||
```
|
||||
|
||||
- `#calls`: number of calls of this implementations
|
||||
```
|
||||
statistics ngram_map_k: #calls(b,g,a) = 6 1690 26, #gen drafts = 26, #acc drafts = 26, #gen tokens = 1248, #acc tokens = 968, dur(b,g,a) = 2.234, 1.427, 0.016 ms
|
||||
```
|
||||
|
||||
|
||||
- `#calls(b,g,a)`: number of calls of begin (new prompt), generation and accumulation of this implementations
|
||||
- `#gen drafts`: number of drafts generated by this implementation
|
||||
- `#acc drafts`: number of drafts accepted (partially) by the main model
|
||||
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
|
||||
|
||||
@@ -3286,130 +3286,223 @@ static void ggml_cann_mul_mat_id_fp(ggml_backend_cann_context & ctx, ggml_tensor
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Performs expert-specific matrix multiplication (MoE) with
|
||||
* quantized precision using the CANN backend.
|
||||
* @brief Performs quantized matrix multiplication for Mixture of Experts (MoE)
|
||||
* models using the CANN backend.
|
||||
*
|
||||
* This function executes a matrix multiplication operation tailored for
|
||||
* Mixture of Experts (MoE) models, where the input tensor is multiplied
|
||||
* with expert-specific quantized weight matrices. It leverages the CANN
|
||||
* backend to perform efficient low-precision computations and stores the
|
||||
* quantized result in the destination tensor `dst`.
|
||||
* This function implements MUL_MAT_ID operation for quantized weight matrices
|
||||
* (Q4_0 and Q8_0 formats). It selects expert-specific weight matrices based on
|
||||
* the provided expert indices, and computes matrix multiplication using CANN's
|
||||
* WeightQuantBatchMatmulV2 operator.
|
||||
*
|
||||
* Quantization techniques reduce memory footprint and improve performance
|
||||
* by using lower-bit representations (e.g., int8) instead of floating-point.
|
||||
* This function is designed to work with such formats and may incorporate
|
||||
* optimizations like identity-based fast paths or routing masks for sparse
|
||||
* expert selection.
|
||||
* The function performs the following steps:
|
||||
* 1. Converts input/output tensors to F16 format if necessary
|
||||
* 2. Uses IndexSelect to extract expert-specific weights and scales based on indices
|
||||
* 3. Performs quantized matrix multiplication for each expert using WeightQuantBatchMatmulV2
|
||||
* 4. Converts output back to the target type if needed
|
||||
*
|
||||
* @param ctx The context for executing CANN backend operations.
|
||||
* @param dst The destination tensor where the quantized MoE multiplication result
|
||||
* will be stored.
|
||||
* Tensor shapes:
|
||||
* - dst: [M, K, N, 1] - output tensor
|
||||
* - src0: [D, M, A, 1] - quantized weight matrices (Q4_0 or Q8_0)
|
||||
* - src1: [D, B, N, 1] - input activations (B = K for per-expert input, or B = 1 for broadcast)
|
||||
* - ids: [K, N] - expert indices for routing
|
||||
*
|
||||
* @note This function assumes quantized data types and is designed for
|
||||
* MoE architectures with potential sparse expert routing.
|
||||
* @param ctx The CANN backend context for operation execution.
|
||||
* @param dst The destination tensor where the multiplication result will be stored.
|
||||
*
|
||||
* @note Only Q4_0 and Q8_0 quantization formats are supported.
|
||||
* @note The function handles automatic type conversion to/from F16 as needed by the hardware.
|
||||
*/
|
||||
static void ggml_cann_mul_mat_id_quant(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
// TODO: Use aclnnGroupedMatMul
|
||||
//dst [M, K, N, 1]
|
||||
ggml_tensor * src0 = dst->src[0]; //src0 [D, M, A, 1]
|
||||
ggml_tensor * src1 = dst->src[1]; //src1 [D, B, N, 1], B = K or B = 1
|
||||
ggml_tensor * ids = dst->src[2]; //ids [K, N]
|
||||
// dst: [M, K, N, 1]
|
||||
// src0: [D, M, A, 1] - quantized weights
|
||||
// src1: [D, B, N, 1] - input activations, B = K or B = 1
|
||||
// ids: [K, N] - expert indices
|
||||
ggml_tensor * src0 = dst->src[0];
|
||||
ggml_tensor * src1 = dst->src[1];
|
||||
ggml_tensor * ids = dst->src[2];
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
GGML_ASSERT(dst->ne[3] == 1);
|
||||
GGML_ASSERT(src1->ne[2] == ids->ne[1]);
|
||||
|
||||
// copy index from npu to cpu
|
||||
int64_t n_as = ne02; // A
|
||||
int64_t n_ids = ids->ne[0]; // K
|
||||
const int64_t n_batches = ids->ne[1];
|
||||
const int64_t n_select_experts = ids->ne[0];
|
||||
const enum ggml_type type = src0->type;
|
||||
|
||||
std::vector<char> ids_host(ggml_nbytes(ids));
|
||||
ACL_CHECK(aclrtMemcpyAsync(ids_host.data(), ggml_nbytes(ids), ids->data, ggml_nbytes(ids),
|
||||
ACL_MEMCPY_DEVICE_TO_HOST, ctx.stream()));
|
||||
ACL_CHECK(aclrtSynchronizeStream(ctx.stream()));
|
||||
const int32_t group_size = QK8_0; // Both Q4_0 and Q8_0 use group size of 32
|
||||
GGML_ASSERT(group_size == QK4_0);
|
||||
|
||||
char * src0_original = (char *) src0->data;
|
||||
char * src1_original = (char *) src1->data;
|
||||
char * dst_original = (char *) dst->data;
|
||||
// Calculate element size for quantized weights
|
||||
const float weight_elem_size =
|
||||
(type == GGML_TYPE_Q4_0) ? 0.5f :
|
||||
(type == GGML_TYPE_Q8_0) ? 1.0f :
|
||||
(GGML_ABORT("MUL_MAT_ID only supports Q4_0 and Q8_0"), 0.0f);
|
||||
|
||||
ggml_tensor src0_row = *src0;
|
||||
ggml_tensor src1_row = *src1;
|
||||
ggml_tensor dst_row = *dst;
|
||||
// Calculate scale offset in memory
|
||||
const size_t weight_size = src0->ne[0] * src0->ne[1] * src0->ne[2] * weight_elem_size;
|
||||
const size_t scale_elem_size = sizeof(uint16_t);
|
||||
char * scale_data = (char *) src0->data + weight_size;
|
||||
|
||||
const enum ggml_type type = dst->src[0]->type;
|
||||
float weight_elem_size;
|
||||
if (type == GGML_TYPE_Q4_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t)) / 2;
|
||||
} else if (type == GGML_TYPE_Q8_0) {
|
||||
weight_elem_size = float(sizeof(uint8_t));
|
||||
} else {
|
||||
GGML_ABORT("MUL_MAT_ID only support quant type Q4_0 and Q8_0 ");
|
||||
}
|
||||
// Allocate buffers for selected expert weights and scales
|
||||
const size_t selected_weight_size = src0->ne[0] * src0->ne[1] * n_select_experts * weight_elem_size;
|
||||
ggml_cann_pool_alloc selected_weight_alloc(ctx.pool(), selected_weight_size);
|
||||
void * selected_weight_buffer = selected_weight_alloc.get();
|
||||
|
||||
// src0_row [D, M, 1, 1] weight without permute
|
||||
src0_row.ne[2] = 1;
|
||||
src0_row.ne[3] = 1;
|
||||
src0_row.nb[0] = weight_elem_size;
|
||||
src0_row.nb[1] = weight_elem_size * ne00;
|
||||
src0_row.nb[2] = weight_elem_size * ne00;
|
||||
src0_row.nb[3] = weight_elem_size * ne00;
|
||||
size_t weight_stride = ne00 * ne01 * weight_elem_size;
|
||||
size_t weight_size = weight_stride * ne02 * ne03;
|
||||
const size_t selected_scale_size = (src0->ne[0] / group_size) * src0->ne[1] * n_select_experts * scale_elem_size;
|
||||
ggml_cann_pool_alloc selected_scale_alloc(ctx.pool(), selected_scale_size);
|
||||
void * selected_scale_buffer = selected_scale_alloc.get();
|
||||
|
||||
// scale [D, M, 1, 1] -> scale && permute
|
||||
size_t scale_elem_size = sizeof(uint16_t);
|
||||
size_t scale_stride = src0->ne[1] * src0->ne[0] / QK8_0 * scale_elem_size;
|
||||
// Helper lambda to allocate and cast tensor to F16 if needed
|
||||
constexpr size_t f16_elem_size = sizeof(uint16_t);
|
||||
auto prepare_f16_buffer = [&](ggml_tensor * tensor, ggml_cann_pool_alloc & allocator,
|
||||
bool need_cast = false) -> void * {
|
||||
if (tensor->type == GGML_TYPE_F16) {
|
||||
return tensor->data;
|
||||
}
|
||||
|
||||
// src1_row [D, 1, 1, 1] -> input
|
||||
src1_row.ne[1] = 1;
|
||||
src1_row.ne[2] = 1;
|
||||
src1_row.ne[3] = 1;
|
||||
src1_row.nb[2] = nb11;
|
||||
src1_row.nb[3] = nb11;
|
||||
size_t total_size = f16_elem_size;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
total_size *= tensor->ne[i];
|
||||
}
|
||||
void * buffer = allocator.alloc(total_size);
|
||||
|
||||
// dst_row [M, 1, 1, 1] -> out
|
||||
dst_row.ne[1] = 1;
|
||||
dst_row.ne[2] = 1;
|
||||
dst_row.ne[3] = 1;
|
||||
dst_row.nb[2] = nb1;
|
||||
dst_row.nb[3] = nb1;
|
||||
if (need_cast == false) {
|
||||
return buffer;
|
||||
}
|
||||
|
||||
//create weight for one row
|
||||
ggml_cann_pool_alloc weight_allocator(ctx.pool());
|
||||
void * weight_buffer = weight_allocator.alloc(nb02);
|
||||
for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
|
||||
for (int64_t id = 0; id < n_ids; id++) {
|
||||
// expert index
|
||||
int32_t i02 = *(int32_t *) (ids_host.data() + iid1 * ids->nb[1] + id * ids->nb[0]);
|
||||
GGML_ASSERT(i02 >= 0 && i02 < n_as);
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
ne[i] = tensor->ne[i];
|
||||
if (i > 0) {
|
||||
nb[i] = nb[i - 1] * ne[i - 1];
|
||||
}
|
||||
}
|
||||
|
||||
// If B = 1 (broadcast), always use 0; otherwise, use id.
|
||||
int64_t i11 = (ne11 == 1 ? 0 : id);
|
||||
int64_t i12 = iid1;
|
||||
acl_tensor_ptr src_tensor = ggml_cann_create_tensor(tensor);
|
||||
acl_tensor_ptr f16_tensor = ggml_cann_create_tensor(buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
|
||||
aclnn_cast(ctx, src_tensor.get(), f16_tensor.get(), ACL_FLOAT16);
|
||||
|
||||
int64_t i1 = id;
|
||||
int64_t i2 = i12;
|
||||
return buffer;
|
||||
};
|
||||
|
||||
void * src0_tmp_ptr = src0_original + i02 * weight_stride;
|
||||
void * scale_tmp_ptr = src0_original + weight_size + i02 * scale_stride;
|
||||
void * src1_tmp_ptr = src1_original + i11 * nb11 + i12 * nb12;
|
||||
void * dst_tmp_ptr = dst_original + i1 * nb1 + i2 * nb2;
|
||||
// Prepare input and output buffers
|
||||
ggml_cann_pool_alloc input_alloc(ctx.pool());
|
||||
void * input_buffer = prepare_f16_buffer(src1, input_alloc, true);
|
||||
|
||||
// mem cpy
|
||||
ACL_CHECK(aclrtMemcpyAsync(weight_buffer, weight_stride, src0_tmp_ptr, weight_stride,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
|
||||
void * scale_buffer = (char *) weight_buffer + weight_stride;
|
||||
ACL_CHECK(aclrtMemcpyAsync(scale_buffer, scale_stride, scale_tmp_ptr, scale_stride,
|
||||
ACL_MEMCPY_DEVICE_TO_DEVICE, ctx.stream()));
|
||||
ggml_cann_pool_alloc output_alloc(ctx.pool());
|
||||
void * output_buffer = prepare_f16_buffer(dst, output_alloc, false);
|
||||
|
||||
src0_row.data = weight_buffer;
|
||||
src1_row.data = src1_tmp_ptr;
|
||||
dst_row.data = dst_tmp_ptr;
|
||||
dst_row.src[0] = &src0_row;
|
||||
dst_row.src[1] = &src1_row;
|
||||
// Process each batch
|
||||
for (int64_t batch_idx = 0; batch_idx < n_batches; batch_idx++) {
|
||||
// Create index tensor for current batch
|
||||
const size_t index_offset = batch_idx * ids->nb[1];
|
||||
acl_tensor_ptr batch_indices = ggml_cann_create_tensor(ids, ids->ne, ids->nb, 1, ACL_FORMAT_ND, index_offset);
|
||||
|
||||
ggml_cann_mul_mat(ctx, &dst_row);
|
||||
// Select quantized weights using expert indices
|
||||
// Q4_0 stores 2 values per byte, Q8_0 stores 1 value per byte
|
||||
const int64_t weight_d = (type == GGML_TYPE_Q4_0) ? src0->ne[0] / 2 : src0->ne[0];
|
||||
const int64_t weight_m = src0->ne[1];
|
||||
const int64_t weight_n_experts = src0->ne[2];
|
||||
|
||||
int64_t weight_ne[3] = { weight_d, weight_m, weight_n_experts };
|
||||
size_t weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t), weight_d * weight_m * sizeof(int8_t) };
|
||||
|
||||
acl_tensor_ptr all_weights =
|
||||
ggml_cann_create_tensor(src0->data, ACL_INT8, sizeof(int8_t), weight_ne, weight_nb, 3);
|
||||
|
||||
int64_t selected_weight_ne[3] = { weight_d, weight_m, n_select_experts };
|
||||
size_t selected_weight_nb[3] = { sizeof(int8_t), weight_d * sizeof(int8_t),
|
||||
weight_d * weight_m * sizeof(int8_t) };
|
||||
|
||||
acl_tensor_ptr selected_weights = ggml_cann_create_tensor(selected_weight_buffer, ACL_INT8, sizeof(int8_t),
|
||||
selected_weight_ne, selected_weight_nb, 3);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_weights.get(), 0, batch_indices.get(), selected_weights.get());
|
||||
|
||||
// Select scales using the same expert indices
|
||||
const int64_t scale_d = src0->ne[0] / group_size;
|
||||
int64_t scale_ne[3] = { scale_d, weight_m, weight_n_experts };
|
||||
size_t scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size, scale_d * weight_m * scale_elem_size };
|
||||
|
||||
acl_tensor_ptr all_scales =
|
||||
ggml_cann_create_tensor(scale_data, ACL_FLOAT16, scale_elem_size, scale_ne, scale_nb, 3);
|
||||
|
||||
int64_t selected_scale_ne[3] = { scale_d, weight_m, n_select_experts };
|
||||
size_t selected_scale_nb[3] = { scale_elem_size, scale_d * scale_elem_size,
|
||||
scale_d * weight_m * scale_elem_size };
|
||||
|
||||
acl_tensor_ptr selected_scales = ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size,
|
||||
selected_scale_ne, selected_scale_nb, 3);
|
||||
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, IndexSelect, all_scales.get(), 0, batch_indices.get(), selected_scales.get());
|
||||
|
||||
// Process each expert for current batch
|
||||
// IndexSelect output layout: [D, M, K] in contiguous format
|
||||
// WeightQuantBatchMatmulV2 expects: [M, D] with row-major stride
|
||||
for (int64_t expert_idx = 0; expert_idx < n_select_experts; expert_idx++) {
|
||||
// Determine input offset: broadcast if src1->ne[1]==1, otherwise use per-expert input
|
||||
const size_t input_offset =
|
||||
(batch_idx * src1->ne[1] + (src1->ne[1] == 1 ? 0 : expert_idx)) * src1->ne[0] * f16_elem_size;
|
||||
const size_t output_offset = (batch_idx * dst->ne[1] + expert_idx) * dst->ne[0] * f16_elem_size;
|
||||
|
||||
// Create weight view for current expert: [D, M, K] -> [M, D]
|
||||
int64_t weight_view_ne[2] = { weight_m, src0->ne[0] };
|
||||
float weight_view_nb[2] = { src0->ne[0] * weight_elem_size, weight_elem_size };
|
||||
const size_t weight_view_offset = expert_idx * selected_weight_nb[2];
|
||||
|
||||
acl_tensor_ptr weight_view =
|
||||
ggml_cann_create_tensor(selected_weight_buffer, ggml_cann_type_mapping(type), weight_elem_size,
|
||||
weight_view_ne, weight_view_nb, 2, ACL_FORMAT_ND, weight_view_offset);
|
||||
|
||||
// Create scale view for current expert: [D, M, K] -> [M, D]
|
||||
int64_t scale_view_ne[2] = { weight_m, scale_d };
|
||||
size_t scale_view_nb[2] = { selected_scale_nb[1], selected_scale_nb[0] };
|
||||
const size_t scale_view_offset = expert_idx * selected_scale_nb[2];
|
||||
|
||||
acl_tensor_ptr scale_view =
|
||||
ggml_cann_create_tensor(selected_scale_buffer, ACL_FLOAT16, scale_elem_size, scale_view_ne,
|
||||
scale_view_nb, 2, ACL_FORMAT_ND, scale_view_offset);
|
||||
|
||||
// Create input activation tensor [D, 1]
|
||||
int64_t input_ne[2] = { src1->ne[0], 1 };
|
||||
size_t input_nb[2] = { f16_elem_size, src1->ne[0] * f16_elem_size };
|
||||
|
||||
acl_tensor_ptr input_tensor = ggml_cann_create_tensor(input_buffer, ACL_FLOAT16, f16_elem_size, input_ne,
|
||||
input_nb, 2, ACL_FORMAT_ND, input_offset);
|
||||
|
||||
// Create output tensor [M, 1]
|
||||
int64_t output_ne[2] = { dst->ne[0], 1 };
|
||||
size_t output_nb[2] = { f16_elem_size, dst->ne[0] * f16_elem_size };
|
||||
|
||||
acl_tensor_ptr output_tensor = ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, output_ne,
|
||||
output_nb, 2, ACL_FORMAT_ND, output_offset);
|
||||
|
||||
// Perform quantized matrix multiplication
|
||||
GGML_CANN_CALL_ACLNN_OP(ctx, WeightQuantBatchMatmulV2, input_tensor.get(), weight_view.get(),
|
||||
scale_view.get(), nullptr, nullptr, nullptr, nullptr, group_size,
|
||||
output_tensor.get());
|
||||
}
|
||||
}
|
||||
return;
|
||||
|
||||
// Cast output back to original type if we used a temporary F16 buffer
|
||||
if (dst->type != GGML_TYPE_F16) {
|
||||
int64_t ne[GGML_MAX_DIMS];
|
||||
size_t nb[GGML_MAX_DIMS] = { f16_elem_size };
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
ne[i] = dst->ne[i];
|
||||
if (i > 0) {
|
||||
nb[i] = nb[i - 1] * ne[i - 1];
|
||||
}
|
||||
}
|
||||
|
||||
acl_tensor_ptr f16_output =
|
||||
ggml_cann_create_tensor(output_buffer, ACL_FLOAT16, f16_elem_size, ne, nb, GGML_MAX_DIMS);
|
||||
acl_tensor_ptr dst_tensor = ggml_cann_create_tensor(dst);
|
||||
|
||||
aclnn_cast(ctx, f16_output.get(), dst_tensor.get(), ggml_cann_type_mapping(dst->type));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_cann_mul_mat_id(ggml_backend_cann_context & ctx, ggml_tensor * dst) {
|
||||
|
||||
@@ -794,19 +794,44 @@ struct ggml_backend_cann_buffer_context {
|
||||
~ggml_backend_cann_buffer_context() { ACL_CHECK(aclrtFree(dev_ptr)); }
|
||||
};
|
||||
|
||||
// cann buffer type
|
||||
/**
|
||||
* @brief Check if a buffer is a CANN buffer.
|
||||
*
|
||||
* This function checks if a given buffer is a CANN buffer by comparing its
|
||||
* `get_name` function pointer to `ggml_backend_cann_buffer_get_name`.
|
||||
*
|
||||
* @param buffer The buffer to check.
|
||||
* @return true if the buffer is a CANN buffer, false otherwise.
|
||||
* @brief Structure representing context information for a specific backend
|
||||
* buffer type.
|
||||
*/
|
||||
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft);
|
||||
struct ggml_backend_cann_buffer_type_context {
|
||||
int32_t device; /**< Device identifier associated with the buffer context. */
|
||||
std::string name; /**< Name associated with the buffer context. */
|
||||
};
|
||||
|
||||
static bool ggml_backend_buffer_is_cann(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_buft_is_cann(buffer->buft);
|
||||
/**
|
||||
* @brief Retrieves the name associated with a CANN buffer type.
|
||||
*
|
||||
* This function returns the descriptive name associated with the specified
|
||||
* CANN buffer type context.
|
||||
*
|
||||
* @param buft Pointer to the buffer type context.
|
||||
* @return Const pointer to the C-style string containing the name.
|
||||
*/
|
||||
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
|
||||
|
||||
return buft_ctx->name.c_str();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks if the backend buffer type is associated with the CANN backend.
|
||||
*
|
||||
* This function checks whether the provided backend buffer type is associated
|
||||
* with the CANN backend based on the comparison of its name retrieval function
|
||||
* pointer.
|
||||
*
|
||||
* @param buft Pointer to the backend buffer type to check.
|
||||
* @return bool Returns true if the buffer type is associated with the CANN
|
||||
* backend, otherwise false.
|
||||
*/
|
||||
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -1271,7 +1296,7 @@ static void ggml_backend_cann_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
||||
static bool ggml_backend_cann_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
|
||||
const ggml_tensor * src,
|
||||
ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_cann(src->buffer)) {
|
||||
if (ggml_backend_buft_is_cann(src->buffer->buft)) {
|
||||
ggml_backend_cann_buffer_context * src_ctx = (ggml_backend_cann_buffer_context *) src->buffer->context;
|
||||
ggml_backend_cann_buffer_context * dst_ctx = (ggml_backend_cann_buffer_context *) buffer->context;
|
||||
|
||||
@@ -1335,31 +1360,6 @@ static const ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
// cann buffer type
|
||||
/**
|
||||
* @brief Structure representing context information for a specific backend
|
||||
* buffer type.
|
||||
*/
|
||||
struct ggml_backend_cann_buffer_type_context {
|
||||
int32_t device; /**< Device identifier associated with the buffer context. */
|
||||
std::string name; /**< Name associated with the buffer context. */
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Retrieves the name associated with a CANN buffer type.
|
||||
*
|
||||
* This function returns the descriptive name associated with the specified
|
||||
* CANN buffer type context.
|
||||
*
|
||||
* @param buft Pointer to the buffer type context.
|
||||
* @return Const pointer to the C-style string containing the name.
|
||||
*/
|
||||
static const char * ggml_backend_cann_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_cann_buffer_type_context * buft_ctx = (ggml_backend_cann_buffer_type_context *) buft->context;
|
||||
|
||||
return buft_ctx->name.c_str();
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Allocates a new CANN buffer of the specified type and size.
|
||||
*
|
||||
@@ -1997,7 +1997,7 @@ static bool ggml_backend_cann_cpy_tensor_async(ggml_backend_t backend_src,
|
||||
|
||||
GGML_ASSERT(!is_matmul_weight((const ggml_tensor *) src));
|
||||
|
||||
if (!ggml_backend_buffer_is_cann(src->buffer) || !ggml_backend_buffer_is_cann(dst->buffer)) {
|
||||
if (!ggml_backend_buft_is_cann(src->buffer->buft) || !ggml_backend_buft_is_cann(dst->buffer->buft)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -2523,21 +2523,6 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev, const ggml_ten
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks if the backend buffer type is associated with the CANN backend.
|
||||
*
|
||||
* This function checks whether the provided backend buffer type is associated
|
||||
* with the CANN backend based on the comparison of its name retrieval function
|
||||
* pointer.
|
||||
*
|
||||
* @param buft Pointer to the backend buffer type to check.
|
||||
* @return bool Returns true if the buffer type is associated with the CANN
|
||||
* backend, otherwise false.
|
||||
*/
|
||||
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Records an event on the CANN backend stream.
|
||||
*
|
||||
|
||||
@@ -7629,8 +7629,7 @@ static void ggml_compute_forward_pad_f32(
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
GGML_ASSERT( dst->nb[0] == sizeof(float));
|
||||
assert(dst->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
@@ -4834,8 +4834,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_MEAN:
|
||||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_PAD:
|
||||
return ggml_is_contiguous(op->src[0]);
|
||||
case GGML_OP_PAD:
|
||||
return true;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD_REFLECT_1D:
|
||||
case GGML_OP_ARANGE:
|
||||
|
||||
@@ -7,7 +7,7 @@ __device__ __forceinline__ int64_t wrap_around(int64_t coord, int64_t size) {
|
||||
return (coord + size) % size;
|
||||
}
|
||||
|
||||
static __global__ void pad_f32(const float * src, float * dst,
|
||||
static __global__ void pad_f32(const float * src, size_t s00, size_t s01, size_t s02, size_t s03, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3,
|
||||
@@ -34,11 +34,8 @@ static __global__ void pad_f32(const float * src, float * dst,
|
||||
const int64_t i01 = i1 - lp1;
|
||||
const int64_t i02 = i2 - lp2;
|
||||
const int64_t i03 = i3 - lp3;
|
||||
const int64_t ne02 = ne2 - lp2 - rp2;
|
||||
const int64_t ne01 = ne1 - lp1 - rp1;
|
||||
const int64_t ne00 = ne0 - lp0 - rp0;
|
||||
|
||||
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) + i02 * (ne00 * ne01) + i01 * ne00 + i00;
|
||||
const int64_t src_idx = i03 * s03 + i02 * s02 + i01 * s01 + i00 * s00;
|
||||
|
||||
dst[dst_idx] = src[src_idx];
|
||||
} else {
|
||||
@@ -57,21 +54,21 @@ static __global__ void pad_f32(const float * src, float * dst,
|
||||
const int64_t i02 = wrap_around(i2 - lp2, ne02);
|
||||
const int64_t i03 = wrap_around(i3 - lp3, ne03);
|
||||
|
||||
const int64_t src_idx = i03 * (ne00 * ne01 * ne02) + i02 * (ne00 * ne01) + i01 * ne00 + i00;
|
||||
const int64_t src_idx = i03 * s03 + i02 * s02 + i01 * s01 + i00 * s00;
|
||||
|
||||
dst[dst_idx] = src[src_idx];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void pad_f32_cuda(const float * src, float * dst,
|
||||
static void pad_f32_cuda(const float * src, size_t s00, size_t s01, size_t s02, size_t s03, float * dst,
|
||||
const int lp0, const int rp0, const int lp1, const int rp1,
|
||||
const int lp2, const int rp2, const int lp3, const int rp3,
|
||||
const int ne0, const int ne1, const int ne2, const int ne3,
|
||||
const bool circular, cudaStream_t stream) {
|
||||
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
|
||||
dim3 gridDim(num_blocks, ne1, ne2 * ne3);
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, dst,
|
||||
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(src, s00, s01, s02, s03, dst,
|
||||
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
|
||||
ne0, ne1, ne2, ne3, circular);
|
||||
}
|
||||
@@ -82,9 +79,10 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
float * dst_d = (float *) dst->data;
|
||||
cudaStream_t stream = ctx.stream();
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
|
||||
const int32_t lp0 = ((const int32_t *) (dst->op_params))[0];
|
||||
const int32_t rp0 = ((const int32_t *) (dst->op_params))[1];
|
||||
@@ -96,7 +94,12 @@ void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const int32_t rp3 = ((const int32_t *) (dst->op_params))[7];
|
||||
const int32_t circular = ((const int32_t *) (dst->op_params))[8];
|
||||
|
||||
pad_f32_cuda(src0_d, dst_d,
|
||||
const size_t s00 = nb00 / ggml_type_size(src0->type);
|
||||
const size_t s01 = nb01 / ggml_type_size(src0->type);
|
||||
const size_t s02 = nb02 / ggml_type_size(src0->type);
|
||||
const size_t s03 = nb03 / ggml_type_size(src0->type);
|
||||
|
||||
pad_f32_cuda(src0_d, s00, s01, s02, s03, dst_d,
|
||||
lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3,
|
||||
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
|
||||
(bool) circular, stream);
|
||||
|
||||
@@ -382,8 +382,6 @@ class MODEL_ARCH(IntEnum):
|
||||
QWEN3 = auto()
|
||||
QWEN3MOE = auto()
|
||||
QWEN3NEXT = auto()
|
||||
QWEN3_5 = auto()
|
||||
QWEN3_5_MOE = auto()
|
||||
QWEN3VL = auto()
|
||||
QWEN3VLMOE = auto()
|
||||
PHI2 = auto()
|
||||
@@ -814,8 +812,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.QWEN3: "qwen3",
|
||||
MODEL_ARCH.QWEN3MOE: "qwen3moe",
|
||||
MODEL_ARCH.QWEN3NEXT: "qwen3next",
|
||||
MODEL_ARCH.QWEN3_5: "qwen3_5",
|
||||
MODEL_ARCH.QWEN3_5_MOE: "qwen3_5moe",
|
||||
MODEL_ARCH.QWEN3VL: "qwen3vl",
|
||||
MODEL_ARCH.QWEN3VLMOE: "qwen3vlmoe",
|
||||
MODEL_ARCH.PHI2: "phi2",
|
||||
@@ -1788,61 +1784,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.SSM_BETA_ALPHA,
|
||||
MODEL_TENSOR.SSM_OUT
|
||||
],
|
||||
MODEL_ARCH.QWEN3_5: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_GATE,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_BETA_ALPHA,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.QWEN3_5_MOE: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_POST_NORM,
|
||||
MODEL_TENSOR.ATTN_GATE,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
|
||||
MODEL_TENSOR.FFN_UP_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
||||
MODEL_TENSOR.FFN_GATE_SHEXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.SSM_A,
|
||||
MODEL_TENSOR.SSM_CONV1D,
|
||||
MODEL_TENSOR.SSM_DT,
|
||||
MODEL_TENSOR.SSM_NORM,
|
||||
MODEL_TENSOR.SSM_IN,
|
||||
MODEL_TENSOR.SSM_BETA_ALPHA,
|
||||
MODEL_TENSOR.SSM_OUT,
|
||||
],
|
||||
MODEL_ARCH.QWEN3VL: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
|
||||
@@ -228,7 +228,6 @@ class TensorNameMap:
|
||||
"transformer_encoder.{bid}.qkv", # neobert
|
||||
"layers.{bid}.attn.Wqkv", # modern-bert
|
||||
"model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
|
||||
"model.layers.{bid}.linear_attn.in_proj_qkv", # qwen3.5
|
||||
),
|
||||
|
||||
# Attention query
|
||||
@@ -359,9 +358,8 @@ class TensorNameMap:
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_GATE: (
|
||||
"model.layers.{bid}.self_attn.gate_proj", # afmoe
|
||||
"model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate
|
||||
"model.layers.{bid}.linear_attn.in_proj_z", # qwen3.5
|
||||
"model.layers.{bid}.self_attn.gate_proj", # afmoe
|
||||
"model.layers.{bid}.self_attn.g_proj", # step3.5 head-wise attention gate
|
||||
),
|
||||
|
||||
# Feed-forward norm
|
||||
|
||||
@@ -57,7 +57,6 @@ add_library(llama
|
||||
models/deci.cpp
|
||||
models/deepseek.cpp
|
||||
models/deepseek2.cpp
|
||||
models/delta.cpp
|
||||
models/dots1.cpp
|
||||
models/dream.cpp
|
||||
models/ernie4-5-moe.cpp
|
||||
@@ -123,8 +122,6 @@ add_library(llama
|
||||
models/qwen3vl-moe.cpp
|
||||
models/qwen3moe.cpp
|
||||
models/qwen3next.cpp
|
||||
models/qwen3-5.cpp
|
||||
models/qwen3-5moe.cpp
|
||||
models/refact.cpp
|
||||
models/rnd1.cpp
|
||||
models/rwkv6-base.cpp
|
||||
|
||||
@@ -35,8 +35,6 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_QWEN3, "qwen3" },
|
||||
{ LLM_ARCH_QWEN3MOE, "qwen3moe" },
|
||||
{ LLM_ARCH_QWEN3NEXT, "qwen3next" },
|
||||
{ LLM_ARCH_QWEN3_5, "qwen3_5" },
|
||||
{ LLM_ARCH_QWEN3_5_MOE, "qwen3_5moe" },
|
||||
{ LLM_ARCH_QWEN3VL, "qwen3vl" },
|
||||
{ LLM_ARCH_QWEN3VLMOE, "qwen3vlmoe" },
|
||||
{ LLM_ARCH_PHI2, "phi2" },
|
||||
@@ -987,63 +985,6 @@ static std::set<llm_tensor> llm_get_tensor_names(llm_arch arch) {
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_GATE,
|
||||
LLM_TENSOR_FFN_DOWN,
|
||||
LLM_TENSOR_FFN_UP,
|
||||
LLM_TENSOR_SSM_A_NOSCAN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_BETA_ALPHA,
|
||||
LLM_TENSOR_SSM_IN,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
return {
|
||||
LLM_TENSOR_TOKEN_EMBD,
|
||||
LLM_TENSOR_OUTPUT_NORM,
|
||||
LLM_TENSOR_OUTPUT,
|
||||
LLM_TENSOR_ATTN_NORM,
|
||||
LLM_TENSOR_ATTN_POST_NORM,
|
||||
LLM_TENSOR_ATTN_Q,
|
||||
LLM_TENSOR_ATTN_Q_NORM,
|
||||
LLM_TENSOR_ATTN_K,
|
||||
LLM_TENSOR_ATTN_K_NORM,
|
||||
LLM_TENSOR_ATTN_V,
|
||||
LLM_TENSOR_ATTN_OUT,
|
||||
LLM_TENSOR_ATTN_QKV,
|
||||
LLM_TENSOR_ATTN_GATE,
|
||||
LLM_TENSOR_FFN_GATE_INP,
|
||||
LLM_TENSOR_FFN_GATE_EXPS,
|
||||
LLM_TENSOR_FFN_DOWN_EXPS,
|
||||
LLM_TENSOR_FFN_UP_EXPS,
|
||||
LLM_TENSOR_FFN_GATE_INP_SHEXP,
|
||||
LLM_TENSOR_FFN_GATE_SHEXP,
|
||||
LLM_TENSOR_FFN_DOWN_SHEXP,
|
||||
LLM_TENSOR_FFN_UP_SHEXP,
|
||||
LLM_TENSOR_SSM_A_NOSCAN,
|
||||
LLM_TENSOR_SSM_CONV1D,
|
||||
LLM_TENSOR_SSM_DT,
|
||||
LLM_TENSOR_SSM_BETA_ALPHA,
|
||||
LLM_TENSOR_SSM_IN,
|
||||
LLM_TENSOR_SSM_NORM,
|
||||
LLM_TENSOR_SSM_OUT,
|
||||
};
|
||||
case LLM_ARCH_QWEN3VL:
|
||||
case LLM_ARCH_CHAMELEON:
|
||||
case LLM_ARCH_HUNYUAN_DENSE:
|
||||
@@ -2733,8 +2674,6 @@ bool llm_arch_is_hybrid(const llm_arch & arch) {
|
||||
case LLM_ARCH_NEMOTRON_H:
|
||||
case LLM_ARCH_NEMOTRON_H_MOE:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
case LLM_ARCH_KIMI_LINEAR:
|
||||
return true;
|
||||
default:
|
||||
|
||||
@@ -39,8 +39,6 @@ enum llm_arch {
|
||||
LLM_ARCH_QWEN3,
|
||||
LLM_ARCH_QWEN3MOE,
|
||||
LLM_ARCH_QWEN3NEXT,
|
||||
LLM_ARCH_QWEN3_5,
|
||||
LLM_ARCH_QWEN3_5_MOE,
|
||||
LLM_ARCH_QWEN3VL,
|
||||
LLM_ARCH_QWEN3VLMOE,
|
||||
LLM_ARCH_PHI2,
|
||||
|
||||
@@ -2013,7 +2013,7 @@ void llama_context::output_reorder() {
|
||||
//
|
||||
|
||||
uint32_t llama_context::graph_max_nodes(uint32_t n_tokens) const {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_QWEN3_5 || model.arch == LLM_ARCH_QWEN3_5_MOE || model.arch == LLM_ARCH_KIMI_LINEAR) {
|
||||
if (model.arch == LLM_ARCH_QWEN3NEXT || model.arch == LLM_ARCH_KIMI_LINEAR) {
|
||||
return std::max<uint32_t>(n_tokens * 40, 32u * model.n_tensors());
|
||||
}
|
||||
uint32_t res = std::max<uint32_t>(1024u, 8u*model.n_tensors());
|
||||
|
||||
@@ -2412,25 +2412,6 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
||||
default: type = LLM_TYPE_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
{
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
|
||||
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
// Load linear attention (gated delta net) parameters
|
||||
ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
|
||||
ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
|
||||
ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
|
||||
ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
|
||||
ml.get_key(LLM_KV_SSM_GROUP_COUNT, hparams.ssm_n_group);
|
||||
|
||||
// Mark recurrent layers (linear attention layers)
|
||||
for (uint32_t i = 0; i < hparams.n_layer; ++i) {
|
||||
hparams.recurrent_layer_arr[i] = ((i + 1) % 4 != 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -7113,129 +7094,6 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
|
||||
// Shared experts
|
||||
layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
|
||||
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
|
||||
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { hparams.n_ff_shexp, n_embd }, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
// Calculate dimensions from hyperparameters
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t head_v_dim = hparams.ssm_d_state;
|
||||
const int64_t n_k_heads = hparams.ssm_n_group;
|
||||
const int64_t n_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t key_dim = head_k_dim * n_k_heads;
|
||||
const int64_t value_dim = head_v_dim * n_v_heads;
|
||||
const int64_t conv_dim = key_dim * 2 + value_dim;
|
||||
|
||||
const int64_t ba_dim = n_v_heads * 2;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
if (!hparams.is_recurrent(i)) {
|
||||
// Full attention layers
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
} else {
|
||||
// Linear attention (gated delta net) specific tensors
|
||||
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, key_dim * 2 + value_dim * 2 }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, key_dim * 2 + value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), { n_embd, value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
|
||||
}
|
||||
|
||||
// Dense FFN for all layers
|
||||
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
|
||||
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
|
||||
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
{
|
||||
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
|
||||
|
||||
// output
|
||||
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
|
||||
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, TENSOR_NOT_REQUIRED);
|
||||
|
||||
if (output == NULL) {
|
||||
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
|
||||
|
||||
// Calculate dimensions from hyperparameters
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t head_v_dim = hparams.ssm_d_state;
|
||||
const int64_t n_k_heads = hparams.ssm_n_group;
|
||||
const int64_t n_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t key_dim = head_k_dim * n_k_heads;
|
||||
const int64_t value_dim = head_v_dim * n_v_heads;
|
||||
const int64_t conv_dim = key_dim * 2 + value_dim;
|
||||
|
||||
const int64_t ba_dim = n_v_heads * 2;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = layers[i];
|
||||
|
||||
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
|
||||
layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), { n_embd }, 0);
|
||||
|
||||
if (!hparams.is_recurrent(i)) {
|
||||
// Full attention layers
|
||||
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd_head_k * n_head * 2 }, 0);
|
||||
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_k_gqa }, 0);
|
||||
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_v_gqa }, 0);
|
||||
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd_head_k * n_head, n_embd }, 0);
|
||||
|
||||
layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), { n_embd_head_k }, 0);
|
||||
} else {
|
||||
// Linear attention (gated delta net) specific tensors
|
||||
layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), { n_embd, key_dim * 2 + value_dim * 2 }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, key_dim * 2 + value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.wqkv_gate = create_tensor(tn(LLM_TENSOR_ATTN_GATE, "weight", i), { n_embd, value_dim }, TENSOR_NOT_REQUIRED);
|
||||
layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), { hparams.ssm_d_conv, conv_dim }, 0);
|
||||
layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A_NOSCAN, i), { hparams.ssm_dt_rank }, 0);
|
||||
layer.ssm_beta_alpha = create_tensor(tn(LLM_TENSOR_SSM_BETA_ALPHA, "weight", i), { n_embd, ba_dim }, 0);
|
||||
layer.ssm_norm = create_tensor(tn(LLM_TENSOR_SSM_NORM, "weight", i), { head_v_dim }, 0);
|
||||
layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), { value_dim, n_embd }, 0);
|
||||
}
|
||||
|
||||
// MoE FFN
|
||||
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
|
||||
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, 0);
|
||||
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, 0);
|
||||
|
||||
// Shared experts
|
||||
layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), { n_embd }, 0);
|
||||
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, hparams.n_ff_shexp }, 0);
|
||||
@@ -7687,8 +7545,6 @@ void llama_model::print_info() const {
|
||||
arch == LLM_ARCH_PLAMO2 ||
|
||||
arch == LLM_ARCH_GRANITE_HYBRID ||
|
||||
arch == LLM_ARCH_QWEN3NEXT ||
|
||||
arch == LLM_ARCH_QWEN3_5 ||
|
||||
arch == LLM_ARCH_QWEN3_5_MOE ||
|
||||
arch == LLM_ARCH_NEMOTRON_H ||
|
||||
arch == LLM_ARCH_NEMOTRON_H_MOE) {
|
||||
LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
|
||||
@@ -8487,14 +8343,6 @@ ggml_cgraph * llama_model::build_graph(const llm_graph_params & params) const {
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen3next>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen3_5>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_qwen3_5_moe>(*this, params);
|
||||
} break;
|
||||
case LLM_ARCH_MISTRAL3:
|
||||
{
|
||||
llm = std::make_unique<llm_build_mistral3>(*this, params);
|
||||
@@ -8755,8 +8603,6 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
|
||||
case LLM_ARCH_PANGU_EMBED:
|
||||
case LLM_ARCH_AFMOE:
|
||||
case LLM_ARCH_QWEN3NEXT:
|
||||
case LLM_ARCH_QWEN3_5:
|
||||
case LLM_ARCH_QWEN3_5_MOE:
|
||||
case LLM_ARCH_MIMO2:
|
||||
case LLM_ARCH_STEP35:
|
||||
return LLAMA_ROPE_TYPE_NEOX;
|
||||
|
||||
@@ -1,618 +0,0 @@
|
||||
#include "models.h"
|
||||
#include "ggml.h"
|
||||
#include <cmath>
|
||||
#include <utility>
|
||||
#include <cassert>
|
||||
|
||||
llm_graph_context_delta::llm_graph_context_delta(const llm_graph_params & params) : llm_graph_context_mamba(params) {}
|
||||
|
||||
/**
|
||||
* Unified Delta Net implementation supporting both GDA and KDA modes.
|
||||
*
|
||||
* GDA (Gated Delta Attention): g has shape [H, T, B] in GGML (PyTorch: [B, T, H])
|
||||
* - Per-head gating, broadcasts over K dimension
|
||||
*
|
||||
* KDA (Key-wise Delta Attention): g has shape [K, H, T, B] in GGML (PyTorch: [B, T, H, K])
|
||||
* - Per-key gating
|
||||
*
|
||||
* The mode is auto-detected based on g's dimensionality.
|
||||
*
|
||||
* Tensor dimension convention:
|
||||
* GGML: ne[0] is innermost (fastest varying), ne[3] is outermost
|
||||
* PyTorch: dim 0 is outermost, dim -1 is innermost
|
||||
* So GGML [A, B, C, D] corresponds to PyTorch [D, C, B, A]
|
||||
*/
|
||||
|
||||
// Helper to get a slice along dimension 2 (n_chunks dimension)
|
||||
static ggml_tensor * get_slice_2d(ggml_context * ctx, ggml_tensor * t, int64_t chunk) {
|
||||
return ggml_view_4d(ctx, t,
|
||||
t->ne[0], t->ne[1], 1, t->ne[3],
|
||||
t->nb[1], t->nb[2], t->nb[3],
|
||||
chunk * t->nb[2]);
|
||||
}
|
||||
|
||||
/**
|
||||
* Unified chunked Delta Net implementation.
|
||||
*
|
||||
* Input tensor format matches qwen3next conventions:
|
||||
* @param q Query tensor [S_k, H_k, n_tokens, n_seqs]
|
||||
* @param k Key tensor [S_k, H_k, n_tokens, n_seqs]
|
||||
* @param v Value tensor [S_v, H_v, n_tokens, n_seqs]
|
||||
* @param g Gate tensor:
|
||||
* GDA: [H_v, n_tokens, n_seqs]
|
||||
* KDA: [S_k, H_v, n_tokens, n_seqs]
|
||||
* @param beta Beta tensor [H_v, 1, n_tokens, n_seqs]
|
||||
* @param state State tensor [S_v, S_v * H_v, 1, n_seqs]
|
||||
* @param causal_mask Lower triangular mask [chunk_size, chunk_size]
|
||||
* @param identity Identity matrix [chunk_size, chunk_size]
|
||||
* @param diag_mask Diagonal mask [chunk_size, chunk_size]
|
||||
* @param il Layer index (for debugging callbacks)
|
||||
* @param chunk_size Chunk size for chunked processing
|
||||
* @param eps_norm Epsilon for L2 normalization
|
||||
*
|
||||
* @return Pair of (output_tokens, new_state)
|
||||
*/
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_graph_context_delta::build_delta_net_unified_chunking(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state_reshaped,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il,
|
||||
int64_t chunk_size,
|
||||
float eps_norm) {
|
||||
|
||||
// Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention)
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
// Detect KDA vs GDA based on g's shape
|
||||
// GDA: g has shape [H_v, n_tokens, n_seqs]
|
||||
// KDA: g has shape [S_k, H_v, n_tokens, n_seqs] (4D with ne[0]=S_k)
|
||||
const bool is_kda = (g->ne[0] == S_k && g->ne[1] == H_v);
|
||||
|
||||
// Validate tensor shapes
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(state_reshaped->ne[0] == S_v && state_reshaped->ne[1] == S_v && state_reshaped->ne[2] == H_v && state_reshaped->ne[3] == n_seqs);
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(H_k == H_v);
|
||||
|
||||
if (is_kda) {
|
||||
// KDA: g shape [S_k, H_v, n_tokens, n_seqs]
|
||||
GGML_ASSERT(g->ne[0] == S_k && g->ne[1] == H_v && g->ne[2] == n_tokens && g->ne[3] == n_seqs);
|
||||
} else {
|
||||
// GDA: g shape [H_v, n_tokens, n_seqs]
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
}
|
||||
|
||||
// L2 normalize q and k
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf((float)S_v);
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
// Permute tensors to working format [S, n_tokens, H, n_seqs]
|
||||
// Input: [S, H, n_tokens, n_seqs] -> permute(0, 2, 1, 3) -> [S, n_tokens, H, n_seqs]
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
|
||||
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
if (is_kda) {
|
||||
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 0, 2, 1, 3), S_k, n_tokens, H_k, n_seqs);
|
||||
} else {
|
||||
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
||||
}
|
||||
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
||||
|
||||
cb(q, "q_perm", il);
|
||||
cb(k, "k_perm", il);
|
||||
cb(v, "v_perm", il);
|
||||
cb(beta, "beta_perm", il);
|
||||
cb(g, "g_perm", il);
|
||||
cb(state_reshaped, "state_in", il);
|
||||
|
||||
// Padding for chunk processing
|
||||
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
||||
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
||||
|
||||
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
||||
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
||||
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
||||
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
||||
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
||||
|
||||
|
||||
cb(q, "q_pad", il);
|
||||
cb(k, "k_pad", il);
|
||||
cb(v, "v_pad", il);
|
||||
cb(beta, "beta_pad", il);
|
||||
cb(g, "g_pad", il);
|
||||
|
||||
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
||||
|
||||
cb(v_beta, "v_beta", il);
|
||||
cb(k_beta, "k_beta", il);
|
||||
|
||||
// Reshape to chunks
|
||||
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
||||
|
||||
// Reshape g for chunks
|
||||
ggml_tensor * g_cumsum;
|
||||
ggml_tensor * g_cumsum_t;
|
||||
if (is_kda) {
|
||||
// KDA: g [S_k, n_tokens+pad, H_k, n_seqs] -> [S_k, chunk_size, n_chunks, H_k * n_seqs]
|
||||
g = ggml_reshape_4d(ctx0, g, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
// Cumsum along chunk_size dimension (ne[1])
|
||||
// GGML cumsum operates on ne[0], so we need to transpose, cumsum, transpose back
|
||||
g = ggml_cont(ctx0, ggml_transpose(ctx0, g)); // [chunk_size, S_k, n_chunks, H_k * n_seqs]
|
||||
g_cumsum_t = ggml_cumsum(ctx0, g);
|
||||
g_cumsum = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum_t)); // [S_k, chunk_size, n_chunks, H_k * n_seqs]
|
||||
} else {
|
||||
// GDA: g [n_tokens+pad, 1, H_k, n_seqs] -> [chunk_size, 1, n_chunks, H_k * n_seqs]
|
||||
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
||||
g_cumsum = ggml_cumsum(ctx0, g);
|
||||
g_cumsum_t = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_k * n_seqs);
|
||||
}
|
||||
|
||||
cb(g_cumsum, "g_cumsum", il);
|
||||
|
||||
// Build attention matrix A for the WY representation solve
|
||||
// For GDA: A[j,i] = sum_k(k[j,k] * exp(g[j] - g[i]) * k[i,k]) = (k @ k^T) * exp(g[j] - g[i])
|
||||
// For KDA: A[j,i] = sum_k(k_beta[j,k] * exp(g[j,k] - g[i,k]) * k[i,k])
|
||||
// KDA uses decay mask with S_k packed into batch to compute exp(g[j,k] - g[i,k]) per-key
|
||||
|
||||
ggml_tensor * k_decay;
|
||||
ggml_tensor * decay_mask = nullptr;
|
||||
ggml_tensor * g_exp_pos = nullptr;
|
||||
|
||||
if (is_kda) {
|
||||
// KDA: Use decay mask with S_k in leading dimension for efficient mul_mat reduction
|
||||
// A[j,i] = sum_k(k_beta[j,k] * exp(g[j,k] - g[i,k]) * k[i,k])
|
||||
// By putting S_k in dim 0, mul_mat implicitly sums over it
|
||||
|
||||
const int64_t CHB = n_chunks * H_k * n_seqs;
|
||||
|
||||
// g_cumsum_t is [chunk_size, S_k, n_chunks, H_k * n_seqs]
|
||||
// Reshape to [chunk_size, S_k, CHB] then build decay mask
|
||||
ggml_tensor * gcs = ggml_reshape_3d(ctx0, g_cumsum_t, chunk_size, S_k, CHB);
|
||||
ggml_tensor * gcs_i = ggml_reshape_4d(ctx0, gcs, chunk_size, 1, S_k, CHB);
|
||||
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, gcs, 1, chunk_size, S_k, CHB);
|
||||
|
||||
// Build decay mask: [chunk_size, chunk_size, S_k, CHB]
|
||||
ggml_tensor * gcs_j_bc = ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, S_k, CHB);
|
||||
decay_mask = ggml_sub(ctx0, gcs_j_bc, gcs_i);
|
||||
|
||||
cb(decay_mask, "decay_mask_kda", il);
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
|
||||
// Permute to [S_k, chunk_size_j, chunk_size_i, CHB] for mul_mat reduction over S_k
|
||||
decay_mask = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB);
|
||||
|
||||
// Reshape k and k_beta for broadcasting with decay_mask
|
||||
// k_i: indexed at position i (dim 2 of decay_mask)
|
||||
// k_beta_j: indexed at position j (dim 1 of decay_mask)
|
||||
ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB);
|
||||
ggml_tensor * k_beta_j = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, 1, CHB);
|
||||
|
||||
// decay_k_beta_j[s,j,i,b] = decay[s,j,i,b] * k_beta[s,j,b]
|
||||
ggml_tensor * decay_k_beta_j = ggml_mul(ctx0, decay_mask, k_beta_j);
|
||||
|
||||
// mul_mat sums over S_k: result[j,1,i,CHB] = sum_s decay_k_beta_j[s,j,i,b] * k_i[s,1,i,b]
|
||||
k_decay = ggml_mul_mat(ctx0, decay_k_beta_j, k_i);
|
||||
k_decay = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, k_decay, chunk_size, chunk_size, n_chunks, H_k * n_seqs)));
|
||||
|
||||
// g_exp_pos is still needed for later (kbeta_gexp, etc.)
|
||||
g_exp_pos = ggml_exp(ctx0, g_cumsum);
|
||||
} else {
|
||||
// GDA: Use decay mask approach (g broadcasts over K dimension)
|
||||
// g_cumsum [chunk_size, 1, n_chunks, H_v * n_seqs]
|
||||
ggml_tensor * gcs_i = g_cumsum;
|
||||
ggml_tensor * gcs_j = g_cumsum_t;
|
||||
g_exp_pos = ggml_exp(ctx0, g_cumsum_t);
|
||||
ggml_tensor * gcs_j_broadcast = ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
||||
decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
||||
|
||||
cb(decay_mask, "decay_mask", il);
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
|
||||
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
||||
k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
||||
}
|
||||
|
||||
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
||||
|
||||
cb(attn, "attn_pre_solve", il);
|
||||
|
||||
// Solve triangular system: (I + L) @ X = I, where L is strictly lower triangular
|
||||
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
||||
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
||||
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
||||
attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
||||
attn = ggml_add(ctx0, attn, identity);
|
||||
|
||||
cb(attn, "attn_solved", il);
|
||||
|
||||
// Compute u = A @ v and w = A @ (g.exp() * k)
|
||||
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
||||
|
||||
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, g_exp_pos);
|
||||
cb(kbeta_gexp, "kbeta_gexp", il);
|
||||
|
||||
ggml_tensor * k_cumdecay = ggml_cont(ctx0, ggml_transpose(ctx0,
|
||||
ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
||||
cb(k_cumdecay, "k_cumdecay", il);
|
||||
|
||||
// Attention scores q @ k^T with decay
|
||||
// For GDA: attn_kq[j,i] = sum_k(q[j,k] * exp(g[j] - g[i]) * k[i,k])
|
||||
// For KDA: attn_kq[j,i] = sum_k(q[j,k] * exp(g[j,k] - g[i,k]) * k[i,k])
|
||||
ggml_tensor * attn_kq;
|
||||
if (is_kda) {
|
||||
// KDA: Same approach as k_decay - use decay_mask with S_k in leading dim
|
||||
const int64_t CHB = n_chunks * H_k * n_seqs;
|
||||
|
||||
// Rebuild decay mask (same structure as k_decay)
|
||||
ggml_tensor * gcs = ggml_reshape_3d(ctx0, g_cumsum_t, chunk_size, S_k, CHB);
|
||||
ggml_tensor * gcs_i = ggml_reshape_4d(ctx0, gcs, chunk_size, 1, S_k, CHB);
|
||||
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, gcs, 1, chunk_size, S_k, CHB);
|
||||
ggml_tensor * gcs_j_bc = ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, S_k, CHB);
|
||||
ggml_tensor * decay_mask_kq = ggml_sub(ctx0, gcs_j_bc, gcs_i);
|
||||
|
||||
decay_mask_kq = ggml_mul(ctx0, decay_mask_kq, diag_mask);
|
||||
decay_mask_kq = ggml_exp(ctx0, decay_mask_kq);
|
||||
decay_mask_kq = ggml_mul(ctx0, decay_mask_kq, diag_mask);
|
||||
|
||||
// Permute to [S_k, chunk_size_j, chunk_size_i, CHB]
|
||||
decay_mask_kq = ggml_cont_4d(ctx0, ggml_permute(ctx0, decay_mask_kq, 2, 1, 0, 3), S_k, chunk_size, chunk_size, CHB);
|
||||
|
||||
// q_j: indexed at position j, k_i: indexed at position i
|
||||
ggml_tensor * q_j = ggml_reshape_4d(ctx0, q, S_k, chunk_size, 1, CHB);
|
||||
ggml_tensor * k_i = ggml_reshape_4d(ctx0, k, S_k, 1, chunk_size, CHB);
|
||||
|
||||
// decay_q_j[s,j,i,b] = decay[s,j,i,b] * q[s,j,b]
|
||||
ggml_tensor * decay_q_j = ggml_mul(ctx0, decay_mask_kq, q_j);
|
||||
|
||||
// mul_mat sums over S_k
|
||||
attn_kq = ggml_mul_mat(ctx0, decay_q_j, k_i);
|
||||
attn_kq = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_4d(ctx0, attn_kq, chunk_size, chunk_size, n_chunks, H_k * n_seqs)));
|
||||
} else {
|
||||
// GDA: Use decay mask
|
||||
attn_kq = ggml_mul_mat(ctx0, k, q);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
|
||||
}
|
||||
cb(attn_kq, "attn_kq", il);
|
||||
|
||||
// Compute g_last and g_diff for state updates
|
||||
ggml_tensor * g_last;
|
||||
ggml_tensor * g_diff_exp;
|
||||
ggml_tensor * g_last_exp;
|
||||
|
||||
if (is_kda) {
|
||||
// KDA: g_cumsum [S_k, chunk_size, n_chunks, H_k * n_seqs]
|
||||
// Get last element along chunk_size dimension (ne[1])
|
||||
g_last = ggml_view_4d(ctx0, g_cumsum,
|
||||
g_cumsum->ne[0], 1, g_cumsum->ne[2], g_cumsum->ne[3],
|
||||
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
|
||||
(g_cumsum->ne[1] - 1) * g_cumsum->nb[1]);
|
||||
g_last = ggml_cont(ctx0, g_last);
|
||||
g_last_exp = ggml_exp(ctx0, g_last);
|
||||
|
||||
// g_diff = g_last - g_cumsum
|
||||
ggml_tensor * g_last_broadcast = ggml_repeat_4d(ctx0, g_last,
|
||||
g_cumsum->ne[0], g_cumsum->ne[1], g_cumsum->ne[2], g_cumsum->ne[3]);
|
||||
ggml_tensor * g_diff = ggml_sub(ctx0, g_last_broadcast, g_cumsum);
|
||||
g_diff_exp = ggml_exp(ctx0, g_diff);
|
||||
} else {
|
||||
// GDA: g_cumsum [chunk_size, 1, n_chunks, H_k * n_seqs]
|
||||
g_last = ggml_view_4d(ctx0, g_cumsum,
|
||||
1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
|
||||
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
|
||||
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
|
||||
g_last = ggml_cont(ctx0, g_last);
|
||||
g_last_exp = ggml_exp(ctx0, g_last);
|
||||
|
||||
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
|
||||
g_diff_exp = ggml_exp(ctx0, g_diff);
|
||||
}
|
||||
|
||||
cb(g_last, "g_last", il);
|
||||
cb(g_last_exp, "g_last_exp", il);
|
||||
|
||||
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp);
|
||||
cb(key_gdiff, "key_gdiff", il);
|
||||
|
||||
// Process chunks
|
||||
ggml_tensor * new_state = state_reshaped;
|
||||
ggml_tensor * core_attn_out = nullptr;
|
||||
|
||||
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
||||
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk);
|
||||
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk);
|
||||
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk);
|
||||
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
|
||||
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, g_exp_pos, chunk);
|
||||
|
||||
cb(attn_chunk, "attn_chunk", il);
|
||||
|
||||
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3),
|
||||
S_v, S_v, 1, H_v * n_seqs);
|
||||
|
||||
// v_prime = k_cumdecay @ state
|
||||
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
||||
cb(v_prime, "v_prime_chunk", il);
|
||||
|
||||
// v_new = v - v_prime
|
||||
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
||||
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
||||
cb(v_new, "v_new_chunk", il);
|
||||
|
||||
// attn_inter = (q * g.exp()) @ state
|
||||
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
||||
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
||||
cb(attn_inter, "attn_inter_chunk", il);
|
||||
|
||||
// output = attn_inter + attn @ v_new
|
||||
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
|
||||
cb(v_attn, "v_attn_chunk", il);
|
||||
|
||||
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
||||
cb(core_attn_out_chunk, "core_attn_out_chunk", il);
|
||||
|
||||
core_attn_out = core_attn_out == nullptr
|
||||
? core_attn_out_chunk
|
||||
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
|
||||
|
||||
// State update: state = state * g_last_exp + key_gdiff^T @ v_new
|
||||
ggml_tensor * k_gdiff = ggml_cont(ctx0, get_slice_2d(ctx0, key_gdiff, chunk));
|
||||
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, ggml_cont(ctx0, ggml_transpose(ctx0, k_gdiff)));
|
||||
|
||||
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
|
||||
|
||||
if (is_kda) {
|
||||
// KDA: g_last_exp [S_k, 1, n_chunks, H_k * n_seqs]
|
||||
// State: [S_v, S_v, H_v, n_seqs]
|
||||
// Need to reshape g_last_exp to broadcast correctly over V dimension only
|
||||
gexp_last_chunk = ggml_reshape_4d(ctx0, gexp_last_chunk,
|
||||
1, gexp_last_chunk->ne[0], H_v, n_seqs); // [1, S_k, H_v, n_seqs]
|
||||
// Transpose to [S_k, 1, H_v, n_seqs] then broadcast
|
||||
gexp_last_chunk = ggml_cont(ctx0, ggml_permute(ctx0, gexp_last_chunk, 1, 0, 2, 3));
|
||||
} else {
|
||||
// GDA: g_last_exp [1, 1, n_chunks, H_k * n_seqs]
|
||||
// Broadcasts over both K and V dimensions
|
||||
gexp_last_chunk = ggml_reshape_4d(ctx0, gexp_last_chunk,
|
||||
gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs);
|
||||
}
|
||||
|
||||
new_state = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, new_state, gexp_last_chunk),
|
||||
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
||||
}
|
||||
|
||||
// Truncate padding and permute back
|
||||
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
|
||||
S_v, n_tokens, H_v, n_seqs,
|
||||
ggml_row_size(core_attn_out->type, S_v),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
|
||||
cb(output_tokens, "output_tokens", il);
|
||||
|
||||
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
|
||||
return {output_tokens, new_state};
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Unified autoregressive Delta Net implementation (single token processing).
|
||||
*
|
||||
* This implementation uses matrix multiplication instead of elementwise operations + summation,
|
||||
* which is more efficient and mathematically equivalent. See inline comments for equivalences.
|
||||
*
|
||||
* Input tensor format matches qwen3next conventions:
|
||||
* @param q Query tensor [S_k, H_k, 1, n_seqs]
|
||||
* @param k Key tensor [S_k, H_k, 1, n_seqs]
|
||||
* @param v Value tensor [S_v, H_v, 1, n_seqs]
|
||||
* @param g Gate tensor:
|
||||
* GDA: [H_v, 1, n_seqs]
|
||||
* KDA: [S_k, H_v, 1, n_seqs]
|
||||
* @param beta Beta tensor [H_v, 1, 1, n_seqs]
|
||||
* @param state State tensor [S_v, S_v * H_v, 1, n_seqs]
|
||||
* @param il Layer index (for debugging callbacks)
|
||||
* @param eps_norm Epsilon for L2 normalization
|
||||
*
|
||||
* @return Pair of (output_tokens, new_state)
|
||||
*/
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_graph_context_delta::build_delta_net_unified_autoregressive(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il,
|
||||
float eps_norm) {
|
||||
|
||||
// Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention)
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(n_tokens == 1); // Autoregressive mode is for single token
|
||||
|
||||
// Detect KDA vs GDA based on g's shape
|
||||
// GDA: g has shape [H_v, 1, n_seqs] or [H_v, n_tokens, n_seqs]
|
||||
// KDA: g has shape [S_k, H_v, 1, n_seqs] or [S_k, H_v, n_tokens, n_seqs]
|
||||
const bool is_kda = (g->ne[0] == S_k && g->ne[1] == H_v);
|
||||
|
||||
// Validate shapes
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v && state->ne[2] == H_v && state->ne[3] == n_seqs);
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(H_k == H_v);
|
||||
|
||||
if (is_kda) {
|
||||
GGML_ASSERT(g->ne[0] == S_k && g->ne[1] == H_v);
|
||||
} else {
|
||||
GGML_ASSERT(g->ne[0] == H_v);
|
||||
}
|
||||
|
||||
// L2 normalize q and k
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf((float)S_v);
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
// Reshape g and beta for broadcasting
|
||||
ggml_tensor * g_t;
|
||||
ggml_tensor * beta_t;
|
||||
|
||||
if (is_kda) {
|
||||
// KDA: g [S_k, H_v, 1, n_seqs] -> [S_k, 1, H_k, n_seqs]
|
||||
// For state multiplication, need [1, S_k, H_v, n_seqs] to broadcast over V only
|
||||
g_t = ggml_reshape_4d(ctx0, g, S_k, 1, H_k, n_seqs);
|
||||
} else {
|
||||
// GDA: g [H_v, 1, n_seqs] -> [1, 1, H_k, n_seqs]
|
||||
// For state multiplication, broadcasts over both K and V
|
||||
g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
|
||||
}
|
||||
|
||||
beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
|
||||
|
||||
// Apply exponential to g_t
|
||||
g_t = ggml_exp(ctx0, g_t);
|
||||
|
||||
// State decay: state = state * exp(g)
|
||||
if (is_kda) {
|
||||
// KDA: g_t [S_k, 1, H_k, n_seqs], state [S_v, S_v, H_v, n_seqs]
|
||||
// Need to broadcast g_t over V dimension (ne[0] of state)
|
||||
// Permute g_t to [1, S_k, H_k, n_seqs] for correct broadcasting
|
||||
ggml_tensor * g_broadcast = ggml_cont(ctx0, ggml_permute(ctx0, g_t, 1, 0, 2, 3));
|
||||
state = ggml_mul(ctx0, state, g_broadcast);
|
||||
} else {
|
||||
// GDA: g_t [1, 1, H_k, n_seqs] broadcasts over both dimensions
|
||||
state = ggml_mul(ctx0, state, g_t);
|
||||
}
|
||||
|
||||
// Equivalence to previous version:
|
||||
// Previous: kv_mem = sum_k(state * k) using elementwise mult + sum_rows
|
||||
// Current: k_state = state_t @ k_t using matrix multiplication
|
||||
// These are equivalent because: sum_k(A * B) = A @ B when dimensions align
|
||||
ggml_tensor * state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
|
||||
ggml_tensor * k_t = ggml_reshape_4d(ctx0, k, S_k, 1, H_k, n_seqs);
|
||||
ggml_tensor * k_state = ggml_mul_mat(ctx0, state_t, k_t);
|
||||
|
||||
// v_diff = v - k_state (equivalent to v - kv_mem in previous version)
|
||||
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
|
||||
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, k_state);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k_t, beta_t);
|
||||
|
||||
// Equivalence to previous version:
|
||||
// Previous: state += k.unsqueeze(-1) * delta where delta = (v - kv_mem) * beta
|
||||
// Current: state += v_diff^T @ k_beta^T using matrix multiplication
|
||||
// These are equivalent because: outer_product(k, v_diff * beta) = v_diff^T @ k^T
|
||||
state = ggml_add(ctx0, state, ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_diff)), ggml_cont(ctx0, ggml_transpose(ctx0, k_beta))));
|
||||
|
||||
// Equivalence to previous version:
|
||||
// Previous: core_attn_out = sum_k(state * q) using elementwise mult + sum_rows
|
||||
// Current: core_attn_out = state_t @ q using matrix multiplication
|
||||
// These are equivalent because: sum_k(A * B) = A @ B when dimensions align
|
||||
q = ggml_reshape_4d(ctx0, q, S_k, 1, H_k, n_seqs);
|
||||
state_t = ggml_cont(ctx0, ggml_transpose(ctx0, state));
|
||||
ggml_tensor * core_attn_out = ggml_mul_mat(ctx0, state_t, q);
|
||||
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
|
||||
cb(core_attn_out, "output_tokens", il);
|
||||
cb(state, "new_state", il);
|
||||
|
||||
return {core_attn_out, state};
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Main entry point that dispatches to chunked or autoregressive based on n_tokens.
|
||||
*
|
||||
* Input tensor format matches qwen3next conventions:
|
||||
* @param q Query tensor [S_k, H_k, n_tokens, n_seqs]
|
||||
* @param k Key tensor [S_k, H_k, n_tokens, n_seqs]
|
||||
* @param v Value tensor [S_v, H_v, n_tokens, n_seqs]
|
||||
* @param g Gate tensor (GDA: [H_v, n_tokens, n_seqs], KDA: [S_k, H_v, n_tokens, n_seqs])
|
||||
* @param beta Beta tensor [H_v, 1, n_tokens, n_seqs]
|
||||
* @param state State tensor [S_v, S_v * H_v, 1, n_seqs]
|
||||
*/
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_graph_context_delta::build_delta_net_unified(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il,
|
||||
int64_t chunk_size,
|
||||
float eps_norm) {
|
||||
|
||||
// Input format: [S, H, n_tokens, n_seqs] (matching qwen3next convention)
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
|
||||
if (n_tokens == 1) {
|
||||
return build_delta_net_unified_autoregressive(
|
||||
ctx0, q, k, v, g, beta, state, il, eps_norm);
|
||||
}
|
||||
return build_delta_net_unified_chunking(
|
||||
ctx0, q, k, v, g, beta, state, causal_mask, identity, diag_mask,
|
||||
il, chunk_size, eps_norm);
|
||||
}
|
||||
@@ -1,4 +1,5 @@
|
||||
#include "models.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#define CHUNK_SIZE 64
|
||||
|
||||
|
||||
@@ -17,53 +17,6 @@ struct llm_graph_context_mamba : public llm_graph_context {
|
||||
|
||||
};
|
||||
|
||||
struct llm_graph_context_delta : public llm_graph_context_mamba {
|
||||
llm_graph_context_delta(const llm_graph_params & params);
|
||||
|
||||
virtual ~llm_graph_context_delta() = default;
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_unified_chunking(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il,
|
||||
int64_t chunk_size,
|
||||
float eps_norm);
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_unified_autoregressive(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il,
|
||||
float eps_norm);
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_unified(
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il,
|
||||
int64_t chunk_size,
|
||||
float eps_norm);
|
||||
};
|
||||
|
||||
// Base class for RWKV-related models
|
||||
struct llm_build_rwkv6_base : public llm_graph_context {
|
||||
const llama_model & model;
|
||||
@@ -523,7 +476,7 @@ struct llm_build_qwen3vl : public llm_graph_context {
|
||||
struct llm_build_qwen3vlmoe : public llm_graph_context {
|
||||
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
struct llm_build_qwen3next : public llm_graph_context_delta {
|
||||
struct llm_build_qwen3next : public llm_graph_context_mamba {
|
||||
llm_build_qwen3next(const llama_model & model, const llm_graph_params & params);
|
||||
private:
|
||||
ggml_tensor * build_layer_attn(
|
||||
@@ -581,59 +534,6 @@ private:
|
||||
const llama_model & model;
|
||||
};
|
||||
|
||||
struct llm_build_qwen3_5 : public llm_graph_context_delta {
|
||||
llm_build_qwen3_5(const llama_model & model, const llm_graph_params & params);
|
||||
|
||||
protected:
|
||||
// Tag type for subclass constructors that need to call build_graph() themselves
|
||||
// (to ensure virtual dispatch works correctly)
|
||||
struct defer_graph_build_t {};
|
||||
|
||||
llm_build_qwen3_5(const llama_model & model, const llm_graph_params & params, defer_graph_build_t);
|
||||
|
||||
void build_graph();
|
||||
|
||||
virtual ggml_tensor * build_layer_ffn(
|
||||
ggml_tensor * cur,
|
||||
int il);
|
||||
|
||||
const llama_model & model;
|
||||
|
||||
private:
|
||||
ggml_tensor * build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp_attn,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il);
|
||||
|
||||
ggml_tensor * build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer);
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il);
|
||||
};
|
||||
|
||||
struct llm_build_qwen3_5_moe : public llm_build_qwen3_5 {
|
||||
llm_build_qwen3_5_moe(const llama_model & model, const llm_graph_params & params);
|
||||
|
||||
protected:
|
||||
ggml_tensor * build_layer_ffn(
|
||||
ggml_tensor * cur,
|
||||
int il) override;
|
||||
};
|
||||
|
||||
struct llm_build_qwen : public llm_graph_context {
|
||||
llm_build_qwen(const llama_model & model, const llm_graph_params & params);
|
||||
};
|
||||
|
||||
@@ -1,421 +0,0 @@
|
||||
#include "models.h"
|
||||
|
||||
#define CHUNK_SIZE 64
|
||||
|
||||
llm_build_qwen3_5::llm_build_qwen3_5(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context_delta(params), model(model) {
|
||||
build_graph();
|
||||
}
|
||||
|
||||
// virtual call in constructor fix
|
||||
llm_build_qwen3_5::llm_build_qwen3_5(const llama_model & model, const llm_graph_params & params, defer_graph_build_t /*tag*/) :
|
||||
llm_graph_context_delta(params), model(model) {
|
||||
}
|
||||
|
||||
void llm_build_qwen3_5::build_graph() {
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
cb(inpL, "model.embed_tokens", -1);
|
||||
|
||||
auto * inp = build_inp_mem_hybrid();
|
||||
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
|
||||
ggml_tensor * causal_mask =
|
||||
ggml_tri(ctx0, ggml_fill(ctx0, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, CHUNK_SIZE, CHUNK_SIZE), 1.0f),
|
||||
GGML_TRI_TYPE_LOWER);
|
||||
|
||||
ggml_tensor * identity = ggml_diag(ctx0, ggml_fill(ctx0, ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, CHUNK_SIZE), 1.0f));
|
||||
ggml_tensor * diag_mask = ggml_add(ctx0, causal_mask, identity);
|
||||
|
||||
ggml_build_forward_expand(gf, causal_mask);
|
||||
ggml_build_forward_expand(gf, identity);
|
||||
ggml_build_forward_expand(gf, diag_mask);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
if (hparams.is_recurrent(il)) {
|
||||
cur = build_layer_attn_linear(inp->get_recr(), cur, causal_mask, identity, diag_mask, il);
|
||||
} else {
|
||||
cur = build_layer_attn(inp->get_attn(), cur, inp_pos, il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1 && inp_out_ids) {
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, inpSA);
|
||||
cb(cur, "attn_residual", il);
|
||||
|
||||
ggml_tensor * ffn_residual = cur;
|
||||
|
||||
ggml_tensor * attn_post_norm = build_norm(cur, model.layers[il].attn_post_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(attn_post_norm, "attn_post_norm", il);
|
||||
|
||||
cur = build_layer_ffn(attn_post_norm, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_residual);
|
||||
cb(cur, "post_ffn", il);
|
||||
|
||||
inpL = cur;
|
||||
}
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur, model.output_norm, nullptr, LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3_5::build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
ggml_tensor * gate,
|
||||
int layer) {
|
||||
ggml_tensor * normalized = build_norm(input, weights, nullptr, LLM_NORM_RMS, layer);
|
||||
ggml_tensor * gated_silu = ggml_silu(ctx0, gate);
|
||||
|
||||
return ggml_mul(ctx0, normalized, gated_silu);
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3_5::build_layer_attn(
|
||||
llm_graph_input_attn_kv * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * inp_pos,
|
||||
int il) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
ggml_tensor * Qcur_full = build_lora_mm(model.layers[il].wq, cur); // [ (n_embd_head * 2) * n_head, n_tokens ]
|
||||
cb(Qcur_full, "Qcur_full", il);
|
||||
|
||||
ggml_tensor * Qcur = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head, 0);
|
||||
cb(Qcur, "Qcur_reshaped", il);
|
||||
|
||||
Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
ggml_tensor * gate = ggml_view_3d(ctx0, Qcur_full, n_embd_head, n_head, n_tokens,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2,
|
||||
ggml_element_size(Qcur_full) * n_embd_head * 2 * n_head,
|
||||
ggml_element_size(Qcur_full) * n_embd_head);
|
||||
gate = ggml_cont_2d(ctx0, gate, n_embd_head * n_head, n_tokens);
|
||||
cb(gate, "gate_reshaped", il);
|
||||
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, nullptr,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base,
|
||||
freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f / sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
cur = build_attn(inp,
|
||||
nullptr, nullptr,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_pregate", il);
|
||||
|
||||
ggml_tensor * gate_sigmoid = ggml_sigmoid(ctx0, gate);
|
||||
cb(gate_sigmoid, "gate_sigmoid", il);
|
||||
|
||||
cur = ggml_mul(ctx0, cur, gate_sigmoid);
|
||||
cb(cur, "attn_gated", il);
|
||||
|
||||
cur = build_lora_mm(model.layers[il].wo, cur);
|
||||
cb(cur, "attn_output", il);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3_5::build_qkvz(
|
||||
ggml_tensor * input,
|
||||
int il) {
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t num_k_heads = hparams.ssm_n_group;
|
||||
const int64_t num_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t head_v_dim = d_inner / num_v_heads;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
if (model.layers[il].wqkv) {
|
||||
ggml_tensor * qkv_mixed = build_lora_mm(model.layers[il].wqkv, input);
|
||||
qkv_mixed = ggml_reshape_3d(ctx0, qkv_mixed, qkv_mixed->ne[0], n_seq_tokens, n_seqs);
|
||||
cb(qkv_mixed, "linear_attn_qkv_mixed", il);
|
||||
|
||||
ggml_tensor * z = build_lora_mm(model.layers[il].wqkv_gate, input);
|
||||
cb(z, "z", il);
|
||||
|
||||
return { qkv_mixed, z };
|
||||
|
||||
}
|
||||
// legacy path for combined in_proj_qkvz
|
||||
ggml_tensor * mixed_qkvz = build_lora_mm(model.layers[il].ssm_in, input);
|
||||
cb(mixed_qkvz, "linear_attn_mixed_qkvz", il);
|
||||
|
||||
int64_t qkvz_new_dim = 2 * head_k_dim + 2 * head_v_dim * (num_v_heads / num_k_heads);
|
||||
ggml_tensor * mixed_qkvz_reshaped = ggml_reshape_4d(ctx0, mixed_qkvz, qkvz_new_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
int64_t split_sizes_qkvz[4] = {
|
||||
head_k_dim,
|
||||
head_k_dim,
|
||||
head_v_dim * num_v_heads / num_k_heads,
|
||||
head_v_dim * num_v_heads / num_k_heads
|
||||
};
|
||||
|
||||
ggml_tensor * query =
|
||||
ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[0], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3], 0);
|
||||
cb(query, "q", il);
|
||||
|
||||
ggml_tensor * key = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[1], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
||||
split_sizes_qkvz[0] * ggml_element_size(mixed_qkvz_reshaped));
|
||||
cb(key, "k", il);
|
||||
|
||||
ggml_tensor * value =
|
||||
ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[2], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
||||
(split_sizes_qkvz[0] + split_sizes_qkvz[1]) * ggml_element_size(mixed_qkvz_reshaped));
|
||||
cb(value, "v", il);
|
||||
|
||||
ggml_tensor * z = ggml_view_4d(ctx0, mixed_qkvz_reshaped, split_sizes_qkvz[3], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_qkvz_reshaped->nb[1], mixed_qkvz_reshaped->nb[2], mixed_qkvz_reshaped->nb[3],
|
||||
(split_sizes_qkvz[0] + split_sizes_qkvz[1] + split_sizes_qkvz[2]) * ggml_element_size(mixed_qkvz_reshaped));
|
||||
z = ggml_cont(ctx0, z);
|
||||
cb(z, "z", il);
|
||||
|
||||
ggml_tensor * query_flat = ggml_reshape_3d(ctx0, query, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
|
||||
cb(query_flat, "query_flat", il);
|
||||
|
||||
ggml_tensor * key_flat = ggml_reshape_3d(ctx0, key, head_k_dim * num_k_heads, n_seq_tokens, n_seqs);
|
||||
cb(key_flat, "key_flat", il);
|
||||
|
||||
ggml_tensor * value_flat = ggml_reshape_3d(ctx0, value, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(value_flat, "value_flat", il);
|
||||
|
||||
ggml_tensor * qkv_mixed = ggml_concat(ctx0, query_flat, key_flat, 0);
|
||||
qkv_mixed = ggml_concat(ctx0, qkv_mixed, value_flat, 0);
|
||||
cb(qkv_mixed, "qkv_mixed", il);
|
||||
|
||||
return { qkv_mixed, z };
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3_5::build_layer_attn_linear(
|
||||
llm_graph_input_rs * inp,
|
||||
ggml_tensor * cur,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const auto * mctx_cur = inp->mctx;
|
||||
|
||||
const int64_t d_inner = hparams.ssm_d_inner;
|
||||
const int64_t n_seqs = ubatch.n_seqs;
|
||||
const int64_t head_k_dim = hparams.ssm_d_state;
|
||||
const int64_t num_k_heads = hparams.ssm_n_group;
|
||||
const int64_t num_v_heads = hparams.ssm_dt_rank;
|
||||
const int64_t head_v_dim = d_inner / num_v_heads;
|
||||
const int64_t n_seq_tokens = ubatch.n_seq_tokens;
|
||||
|
||||
const auto kv_head = mctx_cur->get_head();
|
||||
|
||||
GGML_ASSERT(n_seqs != 0);
|
||||
GGML_ASSERT(ubatch.equal_seqs());
|
||||
GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
|
||||
|
||||
auto qkvz = build_qkvz(cur, il);
|
||||
ggml_tensor * qkv_mixed = qkvz.first;
|
||||
ggml_tensor * z = qkvz.second;
|
||||
|
||||
ggml_tensor * mixed_ba = build_lora_mm(model.layers[il].ssm_beta_alpha, cur);
|
||||
cb(mixed_ba, "linear_attn_mixed_ba", il);
|
||||
|
||||
int64_t ba_new_dim = 2 * num_v_heads / num_k_heads;
|
||||
ggml_tensor * mixed_ba_reshaped = ggml_reshape_4d(ctx0, mixed_ba, ba_new_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
int64_t split_sizes_ba[2] = {
|
||||
num_v_heads / num_k_heads,
|
||||
num_v_heads / num_k_heads
|
||||
};
|
||||
|
||||
ggml_tensor * b = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[0], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3], 0);
|
||||
cb(b, "b", il);
|
||||
|
||||
ggml_tensor * a = ggml_view_4d(ctx0, mixed_ba_reshaped, split_sizes_ba[1], num_k_heads, n_seq_tokens, n_seqs,
|
||||
mixed_ba_reshaped->nb[1], mixed_ba_reshaped->nb[2], mixed_ba_reshaped->nb[3],
|
||||
split_sizes_ba[0] * ggml_element_size(mixed_ba_reshaped));
|
||||
cb(a, "a", il);
|
||||
|
||||
ggml_tensor * beta = ggml_cont_4d(ctx0, b, num_v_heads, 1, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * alpha = ggml_cont_3d(ctx0, a, num_v_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * alpha_biased = ggml_add(ctx0, alpha, model.layers[il].ssm_dt);
|
||||
ggml_tensor * alpha_softplus = ggml_softplus(ctx0, alpha_biased);
|
||||
cb(alpha_softplus, "a_softplus", il);
|
||||
ggml_tensor * gate = ggml_mul(ctx0, alpha_softplus, model.layers[il].ssm_a);
|
||||
cb(gate, "gate", il);
|
||||
|
||||
ggml_tensor * conv_states_all = mctx_cur->get_r_l(il);
|
||||
ggml_tensor * ssm_states_all = mctx_cur->get_s_l(il);
|
||||
|
||||
ggml_tensor * conv_states = build_rs(inp, conv_states_all, hparams.n_embd_r(), n_seqs);
|
||||
cb(conv_states, "conv_states", il);
|
||||
|
||||
ggml_tensor * conv_kernel = model.layers[il].ssm_conv1d;
|
||||
const int64_t conv_kernel_size = conv_kernel->ne[0];
|
||||
const int64_t conv_channels = d_inner + 2 * hparams.ssm_n_group * hparams.ssm_d_state;
|
||||
conv_states = ggml_reshape_3d(ctx0, conv_states, conv_kernel_size - 1, conv_channels, n_seqs);
|
||||
cb(conv_states, "conv_states_reshaped", il);
|
||||
|
||||
qkv_mixed = ggml_permute(ctx0, qkv_mixed, 1, 0, 2, 3);
|
||||
cb(qkv_mixed, "qkv_mixed_permuted", il);
|
||||
|
||||
ggml_tensor * conv_input = ggml_concat(ctx0, conv_states, qkv_mixed, 0);
|
||||
cb(conv_input, "conv_input", il);
|
||||
|
||||
ggml_tensor * last_conv_states =
|
||||
ggml_view_3d(ctx0, conv_input, conv_kernel_size - 1, conv_channels, n_seqs, conv_input->nb[1],
|
||||
conv_input->nb[2], (conv_input->ne[0] - conv_states->ne[0]) * ggml_element_size(conv_input));
|
||||
cb(last_conv_states, "last_conv_states", il);
|
||||
|
||||
ggml_tensor * state_update_target =
|
||||
ggml_view_1d(ctx0, conv_states_all, (conv_kernel_size - 1) * conv_channels * n_seqs,
|
||||
kv_head * (conv_kernel_size - 1) * conv_channels * ggml_element_size(conv_states_all));
|
||||
cb(state_update_target, "state_update_target", il);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(ctx0, last_conv_states, state_update_target));
|
||||
cb(conv_states_all, "conv_states_updated", il);
|
||||
|
||||
ggml_tensor * conv_output_proper = ggml_ssm_conv(ctx0, conv_input, conv_kernel);
|
||||
cb(conv_output_proper, "conv_output_raw", il);
|
||||
|
||||
ggml_tensor * conv_output_silu = ggml_silu(ctx0, conv_output_proper);
|
||||
cb(conv_output_silu, "conv_output_silu", il);
|
||||
|
||||
ggml_tensor * conv_qkv_mix = conv_output_silu;
|
||||
|
||||
int64_t qkv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads;
|
||||
int64_t nb1_qkv = ggml_row_size(conv_qkv_mix->type, qkv_dim);
|
||||
|
||||
ggml_tensor * q_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv, 0);
|
||||
cb(q_conv, "q_conv", il);
|
||||
ggml_tensor * k_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_k_dim * num_k_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(k_conv, "k_conv", il);
|
||||
ggml_tensor * v_conv =
|
||||
ggml_view_2d(ctx0, conv_qkv_mix, head_v_dim * num_v_heads, n_seq_tokens * n_seqs, nb1_qkv,
|
||||
2 * head_k_dim * num_k_heads * ggml_element_size(conv_qkv_mix));
|
||||
cb(v_conv, "v_conv", il);
|
||||
|
||||
q_conv = ggml_cont_4d(ctx0, q_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_cont_4d(ctx0, k_conv, head_k_dim, num_k_heads, n_seq_tokens, n_seqs);
|
||||
v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
||||
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim, num_v_heads, n_seqs);
|
||||
cb(state, "state_predelta", il);
|
||||
|
||||
if (num_k_heads != num_v_heads) {
|
||||
GGML_ASSERT(num_v_heads % num_k_heads == 0);
|
||||
int64_t repeat_factor = num_v_heads / num_k_heads;
|
||||
|
||||
ggml_tensor * q_reshaped = ggml_reshape_3d(ctx0, q_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
||||
ggml_tensor * k_reshaped = ggml_reshape_3d(ctx0, k_conv, head_k_dim, 1, num_k_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * q_repeated =
|
||||
ggml_repeat_4d(ctx0, q_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
|
||||
ggml_tensor * k_repeated =
|
||||
ggml_repeat_4d(ctx0, k_reshaped, head_k_dim, repeat_factor, num_k_heads * n_seq_tokens * n_seqs, 1);
|
||||
|
||||
q_conv = ggml_reshape_4d(ctx0, q_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
|
||||
k_conv = ggml_reshape_4d(ctx0, k_repeated, head_k_dim, num_k_heads * repeat_factor, n_seq_tokens, n_seqs);
|
||||
}
|
||||
|
||||
cb(q_conv, "q_conv_predelta", il);
|
||||
cb(k_conv, "k_conv_predelta", il);
|
||||
cb(v_conv, "v_conv_predelta", il);
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> attn_out = build_delta_net_unified(ctx0, q_conv, k_conv, v_conv,
|
||||
gate, beta, state, causal_mask, identity, diag_mask,
|
||||
il, CHUNK_SIZE, hparams.f_norm_rms_eps);
|
||||
|
||||
ggml_tensor * output = attn_out.first;
|
||||
ggml_tensor * new_state = attn_out.second;
|
||||
cb(output, "attn_output", il);
|
||||
cb(new_state, "new_state", il);
|
||||
|
||||
ggml_build_forward_expand(gf,
|
||||
ggml_cpy(ctx0, new_state,
|
||||
ggml_view_1d(ctx0, ssm_states_all, hparams.n_embd_s() * n_seqs,
|
||||
kv_head * hparams.n_embd_s() * ggml_element_size(ssm_states_all))));
|
||||
|
||||
ggml_tensor * attn_out_2d_final = ggml_reshape_2d(ctx0, output, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * z_2d = ggml_reshape_2d(ctx0, z, head_v_dim, num_v_heads * n_seq_tokens * n_seqs);
|
||||
|
||||
ggml_tensor * attn_out_norm = build_norm_gated(attn_out_2d_final, model.layers[il].ssm_norm, z_2d, il);
|
||||
|
||||
ggml_tensor * final_output = ggml_reshape_3d(ctx0, attn_out_norm, head_v_dim * num_v_heads, n_seq_tokens, n_seqs);
|
||||
cb(final_output, "final_output", il);
|
||||
|
||||
cur = build_lora_mm(model.layers[il].ssm_out, final_output);
|
||||
cb(cur, "linear_attn_out", il);
|
||||
|
||||
cur = ggml_cont_2d(ctx0, cur, n_embd, n_seq_tokens * n_seqs);
|
||||
return cur;
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3_5::build_layer_ffn(ggml_tensor * cur, const int il) {
|
||||
// Qwen3.5 Dense always uses dense FFN
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, NULL, NULL,
|
||||
model.layers[il].ffn_gate, NULL, NULL,
|
||||
model.layers[il].ffn_down, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
return cur;
|
||||
}
|
||||
@@ -1,52 +0,0 @@
|
||||
#include "models.h"
|
||||
|
||||
llm_build_qwen3_5_moe::llm_build_qwen3_5_moe(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_build_qwen3_5(model, params, defer_graph_build_t{}) {
|
||||
build_graph();
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3_5_moe::build_layer_ffn(ggml_tensor * cur, const int il) {
|
||||
// Check if this is an MoE layer
|
||||
if (model.layers[il].ffn_gate_inp != nullptr) {
|
||||
// MoE branch
|
||||
ggml_tensor * moe_out =
|
||||
build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp, model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps, model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used, LLM_FFN_SILU,
|
||||
true, false, 0.0, LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
|
||||
cb(moe_out, "ffn_moe_out", il);
|
||||
|
||||
// Add shared experts if present
|
||||
if (model.layers[il].ffn_up_shexp != nullptr) {
|
||||
ggml_tensor * ffn_shexp =
|
||||
build_ffn(cur,
|
||||
model.layers[il].ffn_up_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_gate_shexp, NULL, NULL,
|
||||
model.layers[il].ffn_down_shexp, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(ffn_shexp, "ffn_shexp", il);
|
||||
|
||||
// Apply shared expert gating (sigmoid)
|
||||
ggml_tensor * shared_gate = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
|
||||
cb(shared_gate, "shared_expert_gate", il);
|
||||
|
||||
shared_gate = ggml_sigmoid(ctx0, shared_gate);
|
||||
cb(shared_gate, "shared_expert_gate_sigmoid", il);
|
||||
|
||||
ffn_shexp = ggml_mul(ctx0, ffn_shexp, shared_gate);
|
||||
cb(ffn_shexp, "ffn_shexp_gated", il);
|
||||
|
||||
cur = ggml_add(ctx0, moe_out, ffn_shexp);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
cur = moe_out;
|
||||
}
|
||||
} else {
|
||||
// Dense FFN branch (fallback)
|
||||
cur = llm_build_qwen3_5::build_layer_ffn(cur, il);
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
@@ -1,9 +1,10 @@
|
||||
#include "ggml.h"
|
||||
#include "models.h"
|
||||
|
||||
#define CHUNK_SIZE 64
|
||||
|
||||
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
|
||||
llm_graph_context_delta(params), model(model) {
|
||||
llm_graph_context_mamba(params), model(model) {
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
@@ -85,6 +86,362 @@ llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_gr
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
|
||||
// utility to get one slice from the third dimension
|
||||
// input dim: [x, y, c, b]
|
||||
// output dim: [x, y, 1, b]
|
||||
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
|
||||
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
|
||||
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_chunking(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
ggml_tensor * causal_mask,
|
||||
ggml_tensor * identity,
|
||||
ggml_tensor * diag_mask,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
q = ggml_cont_4d(ctx0, ggml_permute(ctx0, q, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
k = ggml_cont_4d(ctx0, ggml_permute(ctx0, k, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
v = ggml_cont_4d(ctx0, ggml_permute(ctx0, v, 0, 2, 1, 3), S_v, n_tokens, H_v, n_seqs);
|
||||
g = ggml_cont_4d(ctx0, ggml_permute(ctx0, g, 2, 0, 3, 1), n_tokens, 1, H_k, n_seqs);
|
||||
|
||||
beta = ggml_cont(ctx0, ggml_permute(ctx0, beta, 2, 0, 1, 3));
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
cb(q, "q_perm", il);
|
||||
cb(k, "k_perm", il);
|
||||
cb(v, "v_perm", il);
|
||||
cb(beta, "beta_perm", il);
|
||||
cb(g, "g_perm", il);
|
||||
cb(state, "state_in", il);
|
||||
|
||||
GGML_ASSERT(q->ne[1] == n_tokens && q->ne[0] == S_k && q->ne[2] == H_k && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[1] == n_tokens && k->ne[0] == S_k && k->ne[2] == H_k && k->ne[3] == n_seqs);
|
||||
GGML_ASSERT(v->ne[1] == n_tokens && v->ne[0] == S_v && v->ne[2] == H_k && v->ne[3] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[1] == n_tokens && beta->ne[2] == H_k && beta->ne[0] == 1 && beta->ne[3] == n_seqs);
|
||||
|
||||
// Do padding
|
||||
const int64_t chunk_size = CHUNK_SIZE;
|
||||
|
||||
const int64_t pad = (chunk_size - n_tokens % chunk_size) % chunk_size;
|
||||
const int64_t n_chunks = (n_tokens + pad) / chunk_size;
|
||||
|
||||
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
|
||||
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
|
||||
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
|
||||
g = ggml_pad(ctx0, g, pad, 0, 0, 0);
|
||||
beta = ggml_pad(ctx0, beta, 0, pad, 0, 0);
|
||||
|
||||
cb(q, "q_pad", il);
|
||||
cb(k, "k_pad", il);
|
||||
cb(v, "v_pad", il);
|
||||
cb(beta, "beta_pad", il);
|
||||
cb(g, "g_pad", il);
|
||||
|
||||
ggml_tensor * v_beta = ggml_mul(ctx0, v, beta);
|
||||
ggml_tensor * k_beta = ggml_mul(ctx0, k, beta);
|
||||
|
||||
cb(v_beta, "v_beta", il);
|
||||
cb(k_beta, "k_beta", il);
|
||||
|
||||
q = ggml_reshape_4d(ctx0, q, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k = ggml_reshape_4d(ctx0, k, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
k_beta = ggml_reshape_4d(ctx0, k_beta, S_k, chunk_size, n_chunks, H_k * n_seqs);
|
||||
v = ggml_reshape_4d(ctx0, v, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
v_beta = ggml_reshape_4d(ctx0, v_beta, S_v, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
g = ggml_reshape_4d(ctx0, g, chunk_size, 1, n_chunks, H_k * n_seqs);
|
||||
beta = ggml_reshape_4d(ctx0, beta, 1, chunk_size, n_chunks, H_k * n_seqs);
|
||||
|
||||
ggml_tensor * g_cumsum = ggml_cumsum(ctx0, g);
|
||||
cb(g_cumsum, "g_cumsum", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * gcs_i = g_cumsum; // ggml_reshape_4d(ctx0, g_cumsum, chunk_size, 1, n_chunks, H_v * n_seqs);
|
||||
ggml_tensor * gcs_j = ggml_reshape_4d(ctx0, g_cumsum, 1, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * gcs_j_broadcast =
|
||||
ggml_repeat_4d(ctx0, gcs_j, chunk_size, chunk_size, n_chunks, H_v * n_seqs);
|
||||
|
||||
ggml_tensor * decay_mask = ggml_sub(ctx0, gcs_j_broadcast, gcs_i);
|
||||
cb(decay_mask, "decay_mask", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
decay_mask = ggml_exp(ctx0, decay_mask);
|
||||
decay_mask = ggml_mul(ctx0, decay_mask, diag_mask);
|
||||
|
||||
ggml_tensor * kmulkbeta = ggml_mul_mat(ctx0, k, k_beta);
|
||||
|
||||
ggml_tensor * k_decay = ggml_mul(ctx0, kmulkbeta, decay_mask);
|
||||
ggml_tensor * attn = ggml_neg(ctx0, ggml_mul(ctx0, k_decay, causal_mask));
|
||||
cb(attn, "attn_pre_solve", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_lower = ggml_mul(ctx0, attn, causal_mask);
|
||||
ggml_tensor * lhs = ggml_sub(ctx0, ggml_repeat(ctx0, identity, attn_lower), attn_lower);
|
||||
|
||||
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
|
||||
attn = ggml_mul(ctx0, lin_solve, causal_mask);
|
||||
attn = ggml_add(ctx0, attn, identity);
|
||||
cb(attn, "attn_solved", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_beta)), attn);
|
||||
|
||||
ggml_tensor * g_cumsum_t = ggml_cont(ctx0, ggml_transpose(ctx0, g_cumsum));
|
||||
ggml_tensor * gexp = ggml_exp(ctx0, g_cumsum_t);
|
||||
|
||||
ggml_tensor * kbeta_gexp = ggml_mul(ctx0, k_beta, gexp);
|
||||
cb(kbeta_gexp, "kbeta_gexp", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * k_cumdecay =
|
||||
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_mul_mat(ctx0, attn, ggml_cont(ctx0, ggml_transpose(ctx0, kbeta_gexp)))));
|
||||
cb(k_cumdecay, "k_cumdecay", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * attn_kq = ggml_mul_mat(ctx0, k, q);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, decay_mask);
|
||||
attn_kq = ggml_mul(ctx0, attn_kq, diag_mask);
|
||||
cb(attn_kq, "attn_kq", il); // shape: (chunk_size, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
|
||||
// vectorized calculation of key_gdiff
|
||||
// improved from the chunked version:
|
||||
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
|
||||
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
|
||||
// key_gdiff = key * g_diff.unsqueeze(-1)
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
|
||||
// get last element in g_cumsum along chunk_size dimension (ne0)
|
||||
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
|
||||
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cumsum, 1, 1, g_cumsum->ne[2], g_cumsum->ne[3],
|
||||
g_cumsum->nb[1], g_cumsum->nb[2], g_cumsum->nb[3],
|
||||
(g_cumsum->ne[0] - 1) * ggml_element_size(g_cumsum));
|
||||
g_last = ggml_cont(ctx0, g_last);
|
||||
cb(g_last, "g_last", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
|
||||
cb(g_last_exp, "g_last_exp", il); // shape: (1, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cumsum, g_last));
|
||||
cb(g_diff, "g_diff", il); // shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
|
||||
ggml_tensor * g_diff_exp_t = ggml_reshape_4d(ctx0, g_diff_exp,
|
||||
1, chunk_size, n_chunks, g_diff_exp->ne[3]);
|
||||
|
||||
ggml_tensor * key_gdiff = ggml_mul(ctx0, k, g_diff_exp_t);
|
||||
cb(key_gdiff, "key_gdiff", il); // shape: (S_k, chunk_size, n_chunks, H_v * n_seqs)
|
||||
|
||||
ggml_tensor * key_gdiff_t = ggml_cont(ctx0, ggml_transpose(ctx0, key_gdiff));
|
||||
cb(key_gdiff_t, "key_gdiff_t", il); // shape: (chunk_size, S_k, n_chunks, H_v * n_seqs)
|
||||
|
||||
|
||||
// state to be updated per chunk
|
||||
ggml_tensor * new_state = state; // ggml_dup(ctx0, state);
|
||||
cb(new_state, "new_state", il); // shape: (S_v, S_v, H_v, n_seqs)
|
||||
|
||||
// shape after loop of chunks: (S_v, chunk_size, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * core_attn_out = nullptr;
|
||||
|
||||
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
|
||||
// shape: (S_k, chunk_size, 1, H_k * n_seqs)
|
||||
ggml_tensor * q_chunk = get_slice_2d(ctx0, q, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * v_chunk = get_slice_2d(ctx0, v, chunk); // (no cont), next op: ggml_repeat
|
||||
|
||||
// shape: (chunk_size, 1, n_chunks, H_v * n_seqs)
|
||||
ggml_tensor * gexp_chunk = get_slice_2d(ctx0, gexp, chunk); // (no cont), next op: ggml_mul
|
||||
|
||||
// shape: (chunk_size, 1, H_v * n_seqs)
|
||||
ggml_tensor * k_cumdecay_chunk = get_slice_2d(ctx0, k_cumdecay, chunk); // (no cont), next op: ggml_mul_mat
|
||||
|
||||
// attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
|
||||
// replaced by precomputed attn_kq
|
||||
ggml_tensor * attn_chunk = get_slice_2d(ctx0, attn_kq, chunk);
|
||||
cb(attn_chunk, "attn_chunk", il);
|
||||
|
||||
ggml_tensor * state_t = ggml_cont_4d(ctx0, ggml_permute(ctx0, new_state, 1, 0, 2, 3), S_v, S_v, 1, H_v * n_seqs);
|
||||
|
||||
// v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
|
||||
ggml_tensor * v_prime = ggml_mul_mat(ctx0, state_t, k_cumdecay_chunk);
|
||||
cb(v_prime, "v_prime_chunk", il); // shape: (S_v, 1, H_v * n_seqs)
|
||||
|
||||
// v_new = v_i - v_prime
|
||||
ggml_tensor * v_new = ggml_sub(ctx0, ggml_repeat(ctx0, v_chunk, v_prime), v_prime);
|
||||
ggml_tensor * v_new_t = ggml_cont(ctx0, ggml_transpose(ctx0, v_new));
|
||||
cb(v_new, "v_new_chunk", il);
|
||||
|
||||
// attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
|
||||
ggml_tensor * q_g_exp = ggml_mul(ctx0, q_chunk, gexp_chunk);
|
||||
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, state_t, q_g_exp);
|
||||
cb(attn_inter, "attn_inter_chunk", il);
|
||||
|
||||
// core_attn_out[:, :, i] = attn_inter + attn @ v_new
|
||||
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_new_t, attn_chunk);
|
||||
cb(v_attn, "v_attn_chunk", il);
|
||||
|
||||
ggml_tensor * core_attn_out_chunk = ggml_add(ctx0, attn_inter, v_attn);
|
||||
cb(core_attn_out_chunk, "core_attn_out_chunk", il); // shape: (S_v, chunk_size, 1, H_v * n_seqs)
|
||||
|
||||
core_attn_out = core_attn_out == nullptr
|
||||
? core_attn_out_chunk
|
||||
: ggml_concat(ctx0, core_attn_out, core_attn_out_chunk, 2);
|
||||
|
||||
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
|
||||
ggml_tensor * k_gdiff_t = get_slice_2d(ctx0, key_gdiff_t, chunk);
|
||||
//ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, k_gdiff, v_new); // this is slower on metal, why?
|
||||
ggml_tensor * kgdmulvnew = ggml_mul_mat(ctx0, v_new_t, k_gdiff_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
|
||||
ggml_tensor * gexp_last_chunk = ggml_cont(ctx0, get_slice_2d(ctx0, g_last_exp, chunk));
|
||||
new_state = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, new_state, ggml_reshape_4d(ctx0, gexp_last_chunk, gexp_last_chunk->ne[0], gexp_last_chunk->ne[1], H_v, n_seqs)),
|
||||
ggml_reshape_4d(ctx0, kgdmulvnew, kgdmulvnew->ne[0], kgdmulvnew->ne[1], H_v, n_seqs));
|
||||
}
|
||||
|
||||
// truncate padded tokens
|
||||
ggml_tensor * output_tokens = ggml_view_4d(ctx0, core_attn_out,
|
||||
S_v, n_tokens, H_v, n_seqs,
|
||||
ggml_row_size(core_attn_out->type, S_v),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks),
|
||||
ggml_row_size(core_attn_out->type, S_v * chunk_size * n_chunks * H_v), 0);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
cb(output_tokens, "output_tokens", il);
|
||||
|
||||
// permute back to (S_v, H_v, n_tokens, n_seqs)
|
||||
output_tokens = ggml_permute(ctx0, output_tokens, 0, 2, 1, 3);
|
||||
output_tokens = ggml_cont(ctx0, output_tokens);
|
||||
|
||||
return {output_tokens, new_state};
|
||||
}
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_autoregressive(
|
||||
ggml_tensor * q,
|
||||
ggml_tensor * k,
|
||||
ggml_tensor * v,
|
||||
ggml_tensor * g,
|
||||
ggml_tensor * beta,
|
||||
ggml_tensor * state,
|
||||
int il) {
|
||||
const int64_t S_k = q->ne[0];
|
||||
const int64_t H_k = q->ne[1];
|
||||
const int64_t n_tokens = q->ne[2];
|
||||
const int64_t n_seqs = q->ne[3];
|
||||
|
||||
const int64_t S_v = v->ne[0];
|
||||
const int64_t H_v = v->ne[1];
|
||||
|
||||
GGML_ASSERT(n_tokens == 1); // This function is optimized for single token processing
|
||||
GGML_ASSERT(v->ne[2] == n_tokens);
|
||||
GGML_ASSERT(k->ne[2] == n_tokens);
|
||||
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
|
||||
GGML_ASSERT(beta->ne[0] == H_v && beta->ne[2] == n_tokens && beta->ne[3] == n_seqs);
|
||||
GGML_ASSERT(state->ne[0] == S_v && state->ne[1] == S_v * H_v && state->ne[2] == 1 && state->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
|
||||
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
|
||||
|
||||
GGML_ASSERT(H_k == H_v); // we did a repeat to make sure this is the case
|
||||
|
||||
const float eps_norm = hparams.f_norm_rms_eps;
|
||||
|
||||
q = ggml_l2_norm(ctx0, q, eps_norm);
|
||||
k = ggml_l2_norm(ctx0, k, eps_norm);
|
||||
|
||||
const float scale = 1.0f / sqrtf(S_v);
|
||||
|
||||
q = ggml_scale(ctx0, q, scale);
|
||||
beta = ggml_sigmoid(ctx0, beta);
|
||||
|
||||
cb(q, "q_in", il);
|
||||
cb(k, "k_in", il);
|
||||
cb(v, "v_in", il);
|
||||
cb(beta, "beta_in", il);
|
||||
cb(g, "g_in", il);
|
||||
|
||||
state = ggml_reshape_4d(ctx0, state, S_v, S_v, H_v, n_seqs);
|
||||
|
||||
ggml_tensor * g_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, g), 1, 1, H_k, n_seqs);
|
||||
ggml_tensor * beta_t = ggml_reshape_4d(ctx0, ggml_transpose(ctx0, beta), 1, 1, H_k, n_seqs);
|
||||
|
||||
// Apply exponential to g_t
|
||||
g_t = ggml_exp(ctx0, g_t);
|
||||
|
||||
// Apply the gated delta rule for the single timestep
|
||||
// last_recurrent_state = last_recurrent_state * g_t
|
||||
state = ggml_mul(ctx0, state, g_t);
|
||||
|
||||
// kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * k_t_unsqueezed = ggml_reshape_4d(ctx0, k, 1, S_v, H_v, n_seqs);
|
||||
ggml_tensor * kv_mem = ggml_mul(ctx0, state, k_t_unsqueezed);
|
||||
// we need to sum over dim=-2, so we transpose, sum, then transpose again
|
||||
kv_mem = ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, kv_mem))));
|
||||
|
||||
// v_t = v.unsqueeze(2) (we insert the singleton dimension after n_seqs and H_v)
|
||||
ggml_tensor * v_t = ggml_reshape_4d(ctx0, v, S_v, 1, H_v, n_seqs);
|
||||
// delta = (v_t - kv_mem) * beta_t
|
||||
ggml_tensor * v_diff = ggml_sub(ctx0, v_t, kv_mem); // both should be [S_v, 1, H_v, n_seqs]
|
||||
ggml_tensor * delta = ggml_mul(ctx0, v_diff, beta_t);
|
||||
|
||||
// last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta
|
||||
ggml_tensor * k_t_delta = ggml_mul(ctx0, ggml_repeat_4d(ctx0, k_t_unsqueezed, S_v, S_v, H_v, n_seqs), delta);
|
||||
state = ggml_add(ctx0, state, k_t_delta);
|
||||
|
||||
// Compute the attention output
|
||||
// core_attn_out = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
|
||||
ggml_tensor * q_t_unsqueezed = ggml_reshape_4d(ctx0, q, 1, S_v, H_v, n_seqs); // unsqueeze q_t
|
||||
ggml_tensor * state_q = ggml_mul(ctx0, state, q_t_unsqueezed);
|
||||
// again, since it's over dim = -2, transpose, sum, transpose back
|
||||
ggml_tensor * core_attn_out =
|
||||
ggml_transpose(ctx0, ggml_sum_rows(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, state_q))));
|
||||
|
||||
// core_attn_out should be [S_v, 1, H_v, n_seqs] after this
|
||||
cb(core_attn_out, "output_tokens", il);
|
||||
cb(state, "new_state", il);
|
||||
|
||||
return {core_attn_out, state};
|
||||
}
|
||||
|
||||
ggml_tensor * llm_build_qwen3next::build_norm_gated(
|
||||
ggml_tensor * input,
|
||||
ggml_tensor * weights,
|
||||
@@ -395,7 +752,7 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
||||
v_conv = ggml_cont_4d(ctx0, v_conv, head_v_dim, num_v_heads, n_seq_tokens, n_seqs);
|
||||
|
||||
ggml_tensor * state = build_rs(inp, ssm_states_all, hparams.n_embd_s(), n_seqs);
|
||||
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim, num_v_heads, n_seqs);
|
||||
state = ggml_reshape_4d(ctx0, state, head_v_dim, head_v_dim * num_v_heads, 1, n_seqs);
|
||||
cb(state, "state_predelta", il);
|
||||
|
||||
// if head keys and value keys are different, repeat to force tensors into matching shapes
|
||||
@@ -424,10 +781,13 @@ ggml_tensor * llm_build_qwen3next::build_layer_attn_linear(
|
||||
cb(k_conv, "k_conv_predelta", il);
|
||||
cb(v_conv, "v_conv_predelta", il);
|
||||
|
||||
std::pair<ggml_tensor *, ggml_tensor *> attn_out = build_delta_net_unified(ctx0, q_conv, k_conv, v_conv,
|
||||
gate, beta, state, causal_mask, identity, diag_mask,
|
||||
il, CHUNK_SIZE, hparams.f_norm_rms_eps);
|
||||
|
||||
// Choose between build_delta_net_chunking, build_delta_net_recurrent, and build_delta_net_autoregressive based on n_tokens
|
||||
std::pair<ggml_tensor *, ggml_tensor *> attn_out; // pair of (output, new_state)
|
||||
if (n_seq_tokens == 1) {
|
||||
attn_out = build_delta_net_autoregressive(q_conv, k_conv, v_conv, gate, beta, state, il);
|
||||
} else {
|
||||
attn_out = build_delta_net_chunking(q_conv, k_conv, v_conv, gate, beta, state, causal_mask, identity, diag_mask, il);
|
||||
}
|
||||
ggml_tensor * output = attn_out.first;
|
||||
ggml_tensor * new_state = attn_out.second;
|
||||
cb(output, "attn_output", il);
|
||||
|
||||
@@ -5894,33 +5894,36 @@ struct test_pad_ext : public test_case {
|
||||
const int rp2;
|
||||
const int lp3;
|
||||
const int rp3;
|
||||
const bool v;
|
||||
const int tfrm; // 0 - none, 1 - non-cont, 2 - perm
|
||||
const bool circular;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v, circular);
|
||||
return VARS_TO_STR12(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, tfrm, circular);
|
||||
}
|
||||
|
||||
test_pad_ext(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {512, 512, 3, 1},
|
||||
int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1,
|
||||
int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1,
|
||||
bool v = false, bool circular = false)
|
||||
int tfrm = 0, bool circular = false)
|
||||
: type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3),
|
||||
v(v), circular(circular) {}
|
||||
tfrm(tfrm), circular(circular) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_set_name(a, "a");
|
||||
|
||||
if (v) {
|
||||
if (tfrm == 1) {
|
||||
a = ggml_view_4d(ctx, a, (a->ne[0] + 1) / 2, (a->ne[1] + 1) / 2, (a->ne[2] + 1) / 2, (a->ne[3] + 1) / 2, a->nb[1], a->nb[2], a->nb[3], 0);
|
||||
ggml_set_name(a, "view of a");
|
||||
} else if (tfrm == 2) {
|
||||
a = ggml_permute(ctx, a, 2, 1, 0, 3);
|
||||
ggml_set_name(a, "permuted a");
|
||||
}
|
||||
|
||||
ggml_tensor * out = circular
|
||||
? ggml_pad_ext_circular(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3)
|
||||
: ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
|
||||
: ggml_pad_ext (ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3);
|
||||
ggml_set_name(out, "out");
|
||||
|
||||
return out;
|
||||
@@ -8198,10 +8201,10 @@ static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
|
||||
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 200, 64, 4, 4 }));
|
||||
test_cases.emplace_back(new test_solve_tri(GGML_TYPE_F32, { 64, 64, 4, 4 }, { 384, 64, 4, 4 }));
|
||||
|
||||
for (bool v : {false, true}) {
|
||||
for (int tfrm : {0, 1, 2}) {
|
||||
for (bool circular : {false, true}) {
|
||||
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v, circular));
|
||||
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v, circular));
|
||||
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, tfrm, circular));
|
||||
test_cases.emplace_back(new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, tfrm, circular));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <cstdlib>
|
||||
@@ -1116,9 +1117,8 @@ struct clip_model_loader {
|
||||
case PROJECTOR_TYPE_LFM2:
|
||||
{
|
||||
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
|
||||
// ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
|
||||
// config above specifies number of tokens after downsampling, while here it is before, relax lowerbound to 64
|
||||
hparams.set_limit_image_tokens(64, 1024);
|
||||
// ref: https://huggingface.co/LiquidAI/LFM2.5-VL-1.6B/blob/main/processor_config.json
|
||||
hparams.set_limit_image_tokens(64, 256);
|
||||
} break;
|
||||
case PROJECTOR_TYPE_PIXTRAL:
|
||||
case PROJECTOR_TYPE_LIGHTONOCR:
|
||||
@@ -2807,6 +2807,119 @@ private:
|
||||
}
|
||||
};
|
||||
|
||||
// ref: https://github.com/huggingface/transformers/blob/v5.1.0/src/transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py
|
||||
// some of the logic is similar to llava_uhd, but with different hyperparameters and some logic is unique (e.g. grid layout)
|
||||
struct lfm2_vl_image_processor {
|
||||
// ref: https://huggingface.co/LiquidAI/LFM2.5-VL-1.6B/blob/main/processor_config.json
|
||||
static constexpr int min_tiles = 2;
|
||||
static constexpr int max_tiles = 10;
|
||||
static constexpr float max_pixels_tolerance = 2.0f;
|
||||
static constexpr int tile_size = 512;
|
||||
|
||||
static llava_uhd::slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
|
||||
llava_uhd::slice_instructions inst;
|
||||
const auto & params = ctx->model.hparams;
|
||||
const int align_size = params.patch_size * params.n_merge;
|
||||
|
||||
inst.interpolation_overview = img_tool::RESIZE_ALGO_BILINEAR;
|
||||
inst.interpolation_refined = img_tool::RESIZE_ALGO_BILINEAR;
|
||||
inst.overview_size = img_tool::calc_size_preserved_ratio(original_size, align_size, params.image_min_pixels, params.image_max_pixels);
|
||||
|
||||
// tile if either dimension exceeds tile_size with tolerance
|
||||
const bool needs_tiling = original_size.width > tile_size * max_pixels_tolerance || original_size.height > tile_size * max_pixels_tolerance;
|
||||
|
||||
if (!needs_tiling) {
|
||||
inst.refined_size = clip_image_size{0, 0};
|
||||
inst.grid_size = clip_image_size{0, 0};
|
||||
return inst;
|
||||
}
|
||||
|
||||
const clip_image_size grid = get_grid_layout(original_size.height, original_size.width);
|
||||
|
||||
inst.grid_size = grid;
|
||||
inst.refined_size = clip_image_size{tile_size * grid.width, tile_size * grid.height};
|
||||
|
||||
LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
|
||||
__func__,
|
||||
original_size.width, original_size.height,
|
||||
inst.overview_size.width, inst.overview_size.height,
|
||||
inst.refined_size.width, inst.refined_size.height,
|
||||
grid.width, grid.height);
|
||||
|
||||
for (int row = 0; row < grid.height; row++) {
|
||||
for (int col = 0; col < grid.width; col++) {
|
||||
llava_uhd::slice_coordinates slice;
|
||||
slice.x = col * tile_size;
|
||||
slice.y = row * tile_size;
|
||||
slice.size = clip_image_size{tile_size, tile_size};
|
||||
inst.slices.push_back(slice);
|
||||
LOG_DBG("%s: slice %d: x=%d, y=%d, size=%d x %d\n",
|
||||
__func__, (int)inst.slices.size() - 1,
|
||||
slice.x, slice.y, slice.size.width, slice.size.height);
|
||||
}
|
||||
}
|
||||
|
||||
return inst;
|
||||
}
|
||||
|
||||
private:
|
||||
static clip_image_size find_closest_aspect_ratio(
|
||||
float aspect_ratio,
|
||||
const std::vector<clip_image_size> & target_ratios,
|
||||
int width, int height) {
|
||||
float best_ratio_diff = std::numeric_limits<float>::max();
|
||||
clip_image_size best_ratio = {1, 1};
|
||||
const float area = static_cast<float>(width * height);
|
||||
|
||||
for (const auto & ratio : target_ratios) {
|
||||
const float target_aspect_ratio = static_cast<float>(ratio.width) / ratio.height;
|
||||
const float ratio_diff = std::abs(aspect_ratio - target_aspect_ratio);
|
||||
if (ratio_diff < best_ratio_diff) {
|
||||
best_ratio_diff = ratio_diff;
|
||||
best_ratio = ratio;
|
||||
} else if (ratio_diff == best_ratio_diff) {
|
||||
const float target_area = static_cast<float>(tile_size * tile_size * ratio.width * ratio.height);
|
||||
if (area > 0.5f * target_area) {
|
||||
best_ratio = ratio;
|
||||
}
|
||||
}
|
||||
}
|
||||
return best_ratio;
|
||||
}
|
||||
|
||||
static std::vector<clip_image_size> get_target_ratios() {
|
||||
std::vector<clip_image_size> ratios;
|
||||
for (int n = min_tiles; n <= max_tiles; n++) {
|
||||
for (int w = 1; w <= n; w++) {
|
||||
for (int h = 1; h <= n; h++) {
|
||||
if (w * h >= min_tiles && w * h <= max_tiles) {
|
||||
bool found = false;
|
||||
for (const auto & r : ratios) {
|
||||
if (r.width == w && r.height == h) {
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found) {
|
||||
ratios.push_back({w, h});
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
std::sort(ratios.begin(), ratios.end(), [](const clip_image_size & a, const clip_image_size & b) {
|
||||
return a.width * a.height < b.width * b.height;
|
||||
});
|
||||
return ratios;
|
||||
}
|
||||
|
||||
static clip_image_size get_grid_layout(int height, int width) {
|
||||
const float aspect_ratio = static_cast<float>(width) / height;
|
||||
const auto ratios = get_target_ratios();
|
||||
return find_closest_aspect_ratio(aspect_ratio, ratios, width, height);
|
||||
}
|
||||
};
|
||||
|
||||
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
|
||||
// res_imgs memory is being allocated here, previous allocations will be freed if found
|
||||
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
|
||||
@@ -3021,6 +3134,20 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_LFM2:
|
||||
{
|
||||
auto const inst = lfm2_vl_image_processor::get_slice_instructions(ctx, original_size);
|
||||
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
|
||||
|
||||
for (size_t i = 0; i < imgs.size(); ++i) {
|
||||
clip_image_f32_ptr res(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
|
||||
res_imgs->entries.push_back(std::move(res));
|
||||
}
|
||||
|
||||
res_imgs->grid_x = inst.grid_size.width;
|
||||
res_imgs->grid_y = inst.grid_size.height;
|
||||
} break;
|
||||
|
||||
case PROJECTOR_TYPE_KIMIVL:
|
||||
{
|
||||
GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
|
||||
@@ -3032,8 +3159,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
|
||||
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
|
||||
|
||||
clip_image_u8 resized_img;
|
||||
const bool pad = (ctx->proj_type() != PROJECTOR_TYPE_LFM2);
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, pad, pad_color);
|
||||
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
|
||||
clip_image_f32_ptr res(clip_image_f32_init());
|
||||
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
|
||||
res_imgs->entries.push_back(std::move(res));
|
||||
|
||||
@@ -85,6 +85,7 @@ enum mtmd_slice_tmpl {
|
||||
MTMD_SLICE_TMPL_MINICPMV_2_6,
|
||||
MTMD_SLICE_TMPL_LLAMA4,
|
||||
MTMD_SLICE_TMPL_IDEFICS3,
|
||||
MTMD_SLICE_TMPL_LFM2,
|
||||
};
|
||||
|
||||
const char * mtmd_default_marker() {
|
||||
@@ -307,9 +308,19 @@ struct mtmd_context {
|
||||
img_end = "<|im_end|>";
|
||||
|
||||
} else if (proj == PROJECTOR_TYPE_LFM2) {
|
||||
img_beg = "<|image_start|>";
|
||||
img_end = "<|image_end|>";
|
||||
|
||||
// multi-tile:
|
||||
// <|image_start|>
|
||||
// <|img_row_1_col_1|> (tile) <|img_row_1_col_2|> (tile) ...
|
||||
// <|img_thumbnail|> (thumbnail)
|
||||
// <|image_end|>
|
||||
// single-tile:
|
||||
// <|image_start|> (image) <|image_end|>
|
||||
img_beg = "<|image_start|>";
|
||||
img_end = "<|image_end|>";
|
||||
slice_tmpl = MTMD_SLICE_TMPL_LFM2;
|
||||
sli_img_start_tmpl = "<|img_row_%d_col_%d|>";
|
||||
tok_ov_img_start = {lookup_token("<|img_thumbnail|>")};
|
||||
ov_img_first = false;
|
||||
} else if (proj == PROJECTOR_TYPE_GLM4V) {
|
||||
img_beg = "<|begin_of_image|>";
|
||||
img_end = "<|end_of_image|>";
|
||||
@@ -562,11 +573,13 @@ struct mtmd_tokenizer {
|
||||
}
|
||||
|
||||
// handle llava-uhd style preprocessing
|
||||
const bool has_tiling_grid = batch_f32.grid_x > 0 && batch_f32.grid_y > 0;
|
||||
if (
|
||||
ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5
|
||||
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6
|
||||
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_LLAMA4
|
||||
|| ctx->slice_tmpl == MTMD_SLICE_TMPL_IDEFICS3
|
||||
|| (ctx->slice_tmpl == MTMD_SLICE_TMPL_LFM2 && has_tiling_grid)
|
||||
) {
|
||||
const int n_col = batch_f32.grid_x;
|
||||
const int n_row = batch_f32.grid_y;
|
||||
|
||||
@@ -3584,6 +3584,8 @@ void server_routes::init_routes() {
|
||||
auto res = create_response();
|
||||
std::vector<raw_buffer> files;
|
||||
json body = convert_responses_to_chatcmpl(json::parse(req.body));
|
||||
SRV_DBG("%s\n", "Request converted: OpenAI Responses -> OpenAI Chat Completions");
|
||||
SRV_DBG("converted request: %s\n", body.dump().c_str());
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
meta->chat_params,
|
||||
@@ -3600,6 +3602,8 @@ void server_routes::init_routes() {
|
||||
auto res = create_response();
|
||||
std::vector<raw_buffer> files;
|
||||
json body = convert_anthropic_to_oai(json::parse(req.body));
|
||||
SRV_DBG("%s\n", "Request converted: Anthropic -> OpenAI Chat Completions");
|
||||
SRV_DBG("converted request: %s\n", body.dump().c_str());
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
meta->chat_params,
|
||||
@@ -3616,6 +3620,8 @@ void server_routes::init_routes() {
|
||||
auto res = create_response();
|
||||
std::vector<raw_buffer> files;
|
||||
json body = convert_anthropic_to_oai(json::parse(req.body));
|
||||
SRV_DBG("%s\n", "Request converted: Anthropic -> OpenAI Chat Completions");
|
||||
SRV_DBG("converted request: %s\n", body.dump().c_str());
|
||||
json body_parsed = oaicompat_chat_params_parse(
|
||||
body,
|
||||
meta->chat_params,
|
||||
|
||||
@@ -80,7 +80,6 @@ json task_params::to_json(bool only_metrics) const {
|
||||
{"speculative.type", common_speculative_type_to_str(speculative.type)},
|
||||
{"speculative.ngram_size_n", speculative.ngram_size_n},
|
||||
{"speculative.ngram_size_m", speculative.ngram_size_m},
|
||||
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
|
||||
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
|
||||
{"timings_per_token", timings_per_token},
|
||||
{"post_sampling_probs", post_sampling_probs},
|
||||
@@ -144,7 +143,6 @@ json task_params::to_json(bool only_metrics) const {
|
||||
{"speculative.type", common_speculative_type_to_str(speculative.type)},
|
||||
{"speculative.ngram_size_n", speculative.ngram_size_n},
|
||||
{"speculative.ngram_size_m", speculative.ngram_size_m},
|
||||
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
|
||||
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
|
||||
{"timings_per_token", timings_per_token},
|
||||
{"post_sampling_probs", post_sampling_probs},
|
||||
@@ -257,12 +255,10 @@ task_params server_task::params_from_json_cmpl(
|
||||
|
||||
params.speculative.ngram_size_n = json_value(data, "speculative.ngram_size_n", defaults.speculative.ngram_size_n);
|
||||
params.speculative.ngram_size_m = json_value(data, "speculative.ngram_size_m", defaults.speculative.ngram_size_m);
|
||||
params.speculative.ngram_check_rate = json_value(data, "speculative.ngram_c_rate", defaults.speculative.ngram_check_rate);
|
||||
params.speculative.ngram_min_hits = json_value(data, "speculative.ngram_m_hits", defaults.speculative.ngram_min_hits);
|
||||
|
||||
params.speculative.ngram_size_n = std::max(std::min(1, (int) params.speculative.ngram_size_n), 1024);
|
||||
params.speculative.ngram_size_m = std::max(std::min(1, (int) params.speculative.ngram_size_m), 1024);
|
||||
params.speculative.ngram_check_rate = std::max(std::min(1, (int) params.speculative.ngram_check_rate), 1024);
|
||||
params.speculative.ngram_min_hits = std::max(std::min(1, (int) params.speculative.ngram_min_hits), 1024);
|
||||
|
||||
// Use OpenAI API logprobs only if n_probs wasn't provided
|
||||
|
||||
Reference in New Issue
Block a user