Compare commits

...

22 Commits

Author SHA1 Message Date
Georgi Gerganov
5da56dc1d8 args : add -kvu to llama-parallel 2026-02-12 21:50:01 +02:00
Georgi Gerganov
f8feadb20f metal : fix build 2026-02-12 21:49:52 +02:00
Johannes Gäßler
b12a56351d Merge pull request #4 from gaugarg-nv/minor_fixes
Fix the seg fault without NCCL
2026-02-12 14:19:13 +01:00
Johannes Gäßler
9bb9d78368 Apply suggestion from @JohannesGaessler 2026-02-12 14:18:49 +01:00
Gaurav Garg
10385e8fb8 Fix the seg fault without NCCL 2026-02-12 18:29:01 +05:30
Johannes Gäßler
3fdd0b7a6e 2d tensor set/get support 2026-02-11 19:56:35 +01:00
Johannes Gäßler
76d9439276 move allocation workaround out of ggml-alloc.c 2026-02-11 15:31:48 +01:00
Johannes Gäßler
4dc3d10e80 Remove shfl and AllReduce from backend interface 2026-02-11 14:51:37 +01:00
Carl Philipp Klemm
29c5327d01 GGML: HIP: add RCCL support 2026-02-11 14:51:33 +01:00
Johannes Gäßler
8de41b5b40 NCCL support 2026-02-11 14:12:33 +01:00
Johannes Gäßler
c531444411 fix output pattern 2026-02-11 14:12:33 +01:00
Johannes Gäßler
c925563499 re-use buffers + ggml contexts 2026-02-11 14:12:33 +01:00
Johannes Gäßler
02325685ae unconditional peer access 2026-02-11 14:12:33 +01:00
Johannes Gäßler
2ffa49decc add support for 4/8 GPUs 2026-02-11 14:12:33 +01:00
Johannes Gäßler
4b8aa26650 partial Vulkan fix 2026-02-11 14:12:33 +01:00
Johannes Gäßler
ab69c58aaa support for GPT-OSS, Qwen 3 MoE 2026-02-11 14:12:33 +01:00
Johannes Gäßler
a0d9dd20ee ggml: backend-agnostic tensor parallelism 2026-02-11 14:12:33 +01:00
Georgi Gerganov
9ab072ebbe metal : extend l2_norm support for non-cont src0 (#19502) 2026-02-11 14:53:19 +02:00
Johannes Gäßler
ada90bf2ba docs: ban AI for issues and discussions [no CI] (#19512) 2026-02-11 12:49:40 +01:00
Adrien Gallouët
0c1f39a9ae common : improve download error reporting (#19491)
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
2026-02-11 09:27:55 +01:00
Max Krasnyansky
73cd5e1b97 hexagon: Add ARGSORT, DIV, SQR, SQRT, SUM_ROWS, GEGLU (#19406)
* hexagon: add ARGSORT op

Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>

* hexagon: argsort reject tensors with huge rows for now

* Adding support for DIV,SQR,SQRT,SUM_ROWS ops in hexagon backend

* hexagon : Add GEGLU op

* hexagon: fix editor config check

* hexagon: rewrite and optimize binary ops ADD/SUB/MUL/DIV/ADD_ID to use DMA

---------

Co-authored-by: Yarden Tal <yardent@qti.qualcomm.com>
Co-authored-by: Manohara Hosakoppa Krishnamurthy <mhosakop@qti.qualcomm.com>
2026-02-10 23:21:12 -08:00
thecaptain789
8ee538ce73 llama : correct typos 'occured' and 'occurences' (#19414)
Co-authored-by: thecaptain789 <thecaptain789@users.noreply.github.com>
2026-02-11 07:05:31 +01:00
61 changed files with 4017 additions and 621 deletions

View File

@@ -20,7 +20,7 @@ If AI is used to generate any portion of the code, contributors must adhere to t
1. Explicitly disclose the manner in which AI was employed.
2. Perform a comprehensive manual review prior to submitting the pull request.
3. Be prepared to explain every line of code they submitted when asked about it by a maintainer.
4. Using AI to write pull request descriptions or to respond to human reviewers is strictly prohibited.
4. It is strictly prohibited to use AI to write your posts for you (bug reports, feature requests, pull request descriptions, Github discussions, responding to humans, ...).
For more info, please refer to the [AGENTS.md](AGENTS.md) file.

View File

@@ -1301,7 +1301,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, bool value) {
params.kv_unified = value;
}
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH}));
).set_env("LLAMA_ARG_KV_UNIFIED").set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_BATCHED, LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
add_opt(common_arg(
{"--context-shift"},
{"--no-context-shift"},
@@ -2331,19 +2331,21 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
).set_env("LLAMA_ARG_N_GPU_LAYERS"));
add_opt(common_arg(
{"-sm", "--split-mode"}, "{none,layer,row}",
{"-sm", "--split-mode"}, "{none,layer,row,tensor}",
"how to split the model across multiple GPUs, one of:\n"
"- none: use one GPU only\n"
"- layer (default): split layers and KV across GPUs\n"
"- row: split rows across GPUs",
"- layer (default): split layers and KV across GPUs (pipelined)\n"
"- row: split weight across GPUs by rows (parallelized)\n"
"- tensor: split weights and KV across GPUs (parallelized)",
[](common_params & params, const std::string & value) {
std::string arg_next = value;
if (arg_next == "none") {
if (value == "none") {
params.split_mode = LLAMA_SPLIT_MODE_NONE;
} else if (arg_next == "layer") {
} else if (value == "layer") {
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
} else if (arg_next == "row") {
} else if (value == "row") {
params.split_mode = LLAMA_SPLIT_MODE_ROW;
} else if (value == "tensor") {
params.split_mode = LLAMA_SPLIT_MODE_TENSOR;
} else {
throw std::invalid_argument("invalid value");
}

View File

@@ -305,7 +305,10 @@ static bool common_pull_file(httplib::Client & cli,
);
if (!res) {
LOG_ERR("%s: error during download. Status: %d\n", __func__, res ? res->status : -1);
LOG_ERR("%s: download failed: %s (status: %d)\n",
__func__,
httplib::to_string(res.error()).c_str(),
res ? res->status : -1);
return false;
}

View File

@@ -461,7 +461,7 @@ void common_ngram_map_draft(common_ngram_map & map,
slot_max = v;
}
}
// What is sum of the other occurences?
// What is sum of the other occurrences?
uint32_t sum_occur = 0;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
if (v == slot_max) {

View File

@@ -44,7 +44,7 @@ llama_tokens common_ngram_simple_draft(
// statistics of a m-gram after a known n-gram
struct common_ngram_map_value {
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
uint16_t value_num = 0; // number of occurrences of this value m-gram after the key n-gram (0 in an unused values-slot)
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
};
@@ -53,7 +53,7 @@ struct common_ngram_map_key {
size_t key_idx; // index of key n-gram in token-history
size_t stat_idx; // index of last token of stastistics computation (key_num, values)
uint16_t key_num; // number of occurences of this key n-gram in token-history
uint16_t key_num; // number of occurrences of this key n-gram in token-history
common_ngram_map_value values[COMMON_NGRAM_MAX_VALUES]; // some known values after the key
};

View File

@@ -7,6 +7,8 @@ set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 5)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)
if(GIT_EXE)
# Get current git commit hash
@@ -203,12 +205,14 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
option(GGML_CUDA_FA "ggml: compile ggml FlashAttention CUDA kernels" ON)
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_CUDA_NCCL "ggml: use NVIDIA Collective Comm. Library" ON)
set (GGML_CUDA_COMPRESSION_MODE "size" CACHE STRING
"ggml: cuda link binary compression mode; requires cuda 12.8+")
set_property(CACHE GGML_CUDA_COMPRESSION_MODE PROPERTY STRINGS "none;speed;balance;size")
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_GRAPHS "ggml: use HIP graph, experimental, slow" OFF)
option(GGML_HIP_RCCL "ggml: use ROCm Collective Comm. Library" OFF)
option(GGML_HIP_NO_VMM "ggml: do not try to use HIP VMM" ON)
option(GGML_HIP_ROCWMMA_FATTN "ggml: enable rocWMMA for FlashAttention" OFF)
option(GGML_HIP_MMQ_MFMA "ggml: enable MFMA MMA for CDNA in MMQ" ON)

36
ggml/cmake/FindNCCL.cmake Normal file
View File

@@ -0,0 +1,36 @@
# cmake/FindNCCL.cmake
# NVIDIA does not distribute CMake files with NCCl, therefore use this file to find it instead.
find_path(NCCL_INCLUDE_DIR
NAMES nccl.h
HINTS ${NCCL_ROOT} $ENV{NCCL_ROOT} $ENV{CUDA_HOME} /usr/local/cuda
PATH_SUFFIXES include
)
find_library(NCCL_LIBRARY
NAMES nccl
HINTS ${NCCL_ROOT} $ENV{NCCL_ROOT} $ENV{CUDA_HOME} /usr/local/cuda
PATH_SUFFIXES lib lib64
)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL
DEFAULT_MSG
NCCL_LIBRARY NCCL_INCLUDE_DIR
)
if(NCCL_FOUND)
set(NCCL_LIBRARIES ${NCCL_LIBRARY})
set(NCCL_INCLUDE_DIRS ${NCCL_INCLUDE_DIR})
if(NOT TARGET NCCL::NCCL)
add_library(NCCL::NCCL UNKNOWN IMPORTED)
set_target_properties(NCCL::NCCL PROPERTIES
IMPORTED_LOCATION "${NCCL_LIBRARY}"
INTERFACE_INCLUDE_DIRECTORIES "${NCCL_INCLUDE_DIR}"
)
endif()
endif()
mark_as_advanced(NCCL_INCLUDE_DIR NCCL_LIBRARY)

View File

@@ -68,7 +68,7 @@ extern "C" {
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
// tensor copy between different backends
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
GGML_API void ggml_backend_tensor_copy(const struct ggml_tensor * src, struct ggml_tensor * dst);
//
// Backend (stream)
@@ -83,13 +83,17 @@ extern "C" {
GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend);
GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend);
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set_async (ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async (ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set_2d_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
GGML_API void ggml_backend_tensor_get_2d_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
// "offset" refers to the offset in tensor->data for setting/getting data
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set ( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get (const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_set_2d( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
GGML_API void ggml_backend_tensor_get_2d(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
@@ -109,7 +113,7 @@ extern "C" {
// the copy is performed after all the currently queued operations in backend_src
// backend_dst will wait for the copy to complete before performing other operations
// automatic fallback to sync copy if async is not supported
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
@@ -135,7 +139,9 @@ extern "C" {
// integrated GPU device using host memory
GGML_BACKEND_DEVICE_TYPE_IGPU,
// accelerator devices intended to be used together with the CPU backend (e.g. BLAS or AMX)
GGML_BACKEND_DEVICE_TYPE_ACCEL
GGML_BACKEND_DEVICE_TYPE_ACCEL,
// "meta" device wrapping multiple other devices for tensor parallelism
GGML_BACKEND_DEVICE_TYPE_META,
};
// functionality supported by the device
@@ -196,7 +202,9 @@ extern "C" {
// Common functions that may be obtained using ggml_backend_reg_get_proc_address
// Split buffer type for tensor parallelism
// AllReduce operation for tensor parallelism (meta backend)
typedef bool (*ggml_backend_allreduce_tensor_t)(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends);
// Split buffer type for tensor parallelism (old)
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(int main_device, const float * tensor_split);
// Set the number of threads for the backend
typedef void (*ggml_backend_set_n_threads_t)(ggml_backend_t backend, int n_threads);
@@ -211,6 +219,55 @@ extern "C" {
};
typedef struct ggml_backend_feature * (*ggml_backend_get_features_t)(ggml_backend_reg_t reg);
//
// Meta backend
//
enum ggml_backend_meta_split_state {
// tensor split by tensor dimensions:
GGML_BACKEND_SPLIT_STATE_BY_NE0 = 0,
GGML_BACKEND_SPLIT_STATE_BY_NE1 = 1,
GGML_BACKEND_SPLIT_STATE_BY_NE2 = 2,
GGML_BACKEND_SPLIT_STATE_BY_NE3 = 3,
GGML_BACKEND_SPLIT_STATE_MIRRORED = 10, // all values on all backends
GGML_BACKEND_SPLIT_STATE_PARTIAL = 11, // each backend has a partial sum
// for internal bookkeeping only:
GGML_BACKEND_SPLIT_STATE_NONE = 98,
GGML_BACKEND_SPLIT_STATE_UNKNOWN = 99,
};
// function to assign split states for statically allocated tensors, compute tensor split states will be assigned to be compatible:
typedef enum ggml_backend_meta_split_state (*ggml_backend_meta_get_split_state_t)(const struct ggml_tensor * tensor, void * userdata);
GGML_API bool ggml_backend_dev_is_meta(ggml_backend_dev_t dev);
GGML_API size_t ggml_backend_meta_dev_n_devs(ggml_backend_dev_t meta_dev);
GGML_API ggml_backend_dev_t ggml_backend_meta_dev_simple_dev(ggml_backend_dev_t meta_dev, size_t index);
// create a new meta device from "simple" devices, meta buffer type/buffer/backend is then derived from this:
GGML_API ggml_backend_dev_t ggml_backend_meta_device(
ggml_backend_dev_t * devs, size_t n_devs, ggml_backend_meta_get_split_state_t get_split_state, void * get_split_state_ud);
GGML_API bool ggml_backend_buft_is_meta(ggml_backend_buffer_type_t buft);
GGML_API size_t ggml_backend_meta_buft_n_bufts(ggml_backend_buffer_type_t meta_buft);
GGML_API ggml_backend_buffer_type_t ggml_backend_meta_buft_simple_buft(ggml_backend_buffer_type_t meta_buft, size_t index);
GGML_API bool ggml_backend_buffer_is_meta(ggml_backend_buffer_t buf);
GGML_API size_t ggml_backend_meta_buffer_n_bufs(ggml_backend_buffer_t meta_buf);
GGML_API ggml_backend_buffer_t ggml_backend_meta_buffer_simple_buffer(ggml_backend_buffer_t meta_buf, size_t index);
GGML_API struct ggml_tensor * ggml_backend_meta_buffer_simple_tensor(const struct ggml_tensor * tensor, size_t index);
GGML_API bool ggml_backend_is_meta(ggml_backend_t backend);
GGML_API size_t ggml_backend_meta_n_backends(ggml_backend_t meta_backend);
GGML_API ggml_backend_t ggml_backend_meta_simple_backend(ggml_backend_t meta_backend, size_t index);
GGML_API enum ggml_backend_meta_split_state ggml_backend_meta_get_split_state(const struct ggml_tensor * tensor, bool assume_sync);
// temporary workaround to statically allocate tensors from a context in a deduplicated way:
GGML_API struct ggml_backend_buffer * ggml_backend_meta_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft);
//
// Backend registry
//

View File

@@ -27,6 +27,9 @@ GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// conduct allreduce operation between devices
GGML_BACKEND_API bool ggml_backend_cuda_allreduce_tensor(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);

View File

@@ -200,6 +200,7 @@ add_library(ggml-base
ggml.cpp
ggml-alloc.c
ggml-backend.cpp
ggml-backend-meta.cpp
ggml-opt.cpp
ggml-threading.cpp
ggml-threading.h

View File

@@ -2,7 +2,9 @@
// ggml-backend internal header
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
@@ -49,6 +51,10 @@ extern "C" {
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// (optional) 2d data copies
void (*set_tensor_2d)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
void (*get_tensor_2d)(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
// (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
// clear the entire buffer
@@ -90,8 +96,10 @@ extern "C" {
void (*free)(ggml_backend_t backend);
// (optional) asynchronous tensor data access
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*set_tensor_async) (ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
void (*get_tensor_async) (ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
void (*set_tensor_2d_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
void (*get_tensor_2d_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data);
bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
// (optional) complete all pending operations (required if the backend supports async operations)

File diff suppressed because it is too large Load Diff

View File

@@ -123,7 +123,7 @@ size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
GGML_ASSERT(buffer);
// get_base is optional if the buffer is zero-sized
if (buffer->size == 0) {
if (!ggml_backend_buffer_is_meta(buffer) && buffer->size == 0) {
return NULL;
}
@@ -279,15 +279,57 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
}
}
void ggml_backend_tensor_set_2d_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size,
size_t n_copies, size_t stride_tensor, size_t stride_data) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
if (n_copies <= 1 || backend->iface.set_tensor_2d_async == NULL) {
for (size_t i = 0; i < n_copies; i++) {
ggml_backend_tensor_set_async(backend, tensor, (const char *) data + i*stride_data, offset + i*stride_tensor, size);
}
return;
}
if (size == 0) {
return;
}
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + (n_copies-1)*stride_tensor + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
backend->iface.set_tensor_2d_async(backend, tensor, data, offset, size, n_copies, stride_tensor, stride_data);
}
void ggml_backend_tensor_get_2d_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size,
size_t n_copies, size_t stride_tensor, size_t stride_data) {
GGML_ASSERT(backend);
GGML_ASSERT(tensor);
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
if (n_copies <= 1 || backend->iface.set_tensor_2d_async == NULL) {
for (size_t i = 0; i < n_copies; i++) {
ggml_backend_tensor_get_async(backend, tensor, (char *) data + i*stride_data, offset + i*stride_tensor, size);
}
return;
}
if (size == 0) {
return;
}
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + (n_copies-1)*stride_tensor + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
backend->iface.get_tensor_2d_async(backend, tensor, data, offset, size, n_copies, stride_tensor, stride_data);
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
if (size == 0) {
return;
}
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
@@ -297,18 +339,62 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
if (size == 0) {
return;
}
GGML_ASSERT(buf != NULL && "tensor buffer not set");
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
void ggml_backend_tensor_set_2d(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size,
size_t n_copies, size_t stride_tensor, size_t stride_data) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
if (n_copies <= 1 || buf->iface.set_tensor_2d == NULL) {
for (size_t i = 0; i < n_copies; i++) {
ggml_backend_tensor_set(tensor, (const char *) data + i*stride_data, offset + i*stride_tensor, size);
}
return;
}
if (size == 0) {
return;
}
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + (n_copies-1)*stride_tensor + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
buf->iface.set_tensor_2d(buf, tensor, data, offset, size, n_copies, stride_tensor, stride_data);
}
void ggml_backend_tensor_get_2d(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size,
size_t n_copies, size_t stride_tensor, size_t stride_data) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf != NULL && "tensor buffer not set");
if (n_copies <= 1 || buf->iface.set_tensor_2d == NULL) {
for (size_t i = 0; i < n_copies; i++) {
ggml_backend_tensor_get(tensor, (char *) data + i*stride_data, offset + i*stride_tensor, size);
}
return;
}
if (size == 0) {
return;
}
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
GGML_ASSERT(offset + (n_copies-1)*stride_tensor + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
buf->iface.get_tensor_2d(buf, tensor, data, offset, size, n_copies, stride_tensor, stride_data);
}
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
@@ -388,7 +474,7 @@ ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend) {
// backend copy
void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
void ggml_backend_tensor_copy(const struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
@@ -402,7 +488,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
} else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
#endif
#endif // NDEBUG
size_t nbytes = ggml_nbytes(src);
void * data = malloc(nbytes);
ggml_backend_tensor_get(src, data, 0, nbytes);
@@ -411,7 +497,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
}
}
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
if (src == dst) {
@@ -500,6 +586,7 @@ enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device) {
}
void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props) {
GGML_ASSERT(device);
memset(props, 0, sizeof(*props));
device->iface.get_props(device, props);
}
@@ -610,6 +697,8 @@ static const struct ggml_backend_buffer_i ggml_backend_multi_buffer_i = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ NULL,
/* .get_tensor = */ NULL,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_multi_buffer_clear,
/* .reset = */ NULL,
@@ -1899,8 +1988,9 @@ enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct
GGML_ASSERT(tensor->data == NULL);
GGML_ASSERT(tensor->view_src == NULL);
GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
(char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
GGML_ASSERT(ggml_backend_buffer_is_meta(buffer) ||
(char *) addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
(char *) ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
tensor->buffer = buffer;
tensor->data = addr;
@@ -2174,6 +2264,8 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_i = {
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,
@@ -2186,6 +2278,8 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cpu_buffer_clear,
/* .reset = */ NULL,

View File

@@ -260,6 +260,8 @@ static struct ggml_backend_i blas_backend_i = {
/* .get_name = */ ggml_backend_blas_get_name,
/* .free = */ ggml_backend_blas_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,

View File

@@ -1355,6 +1355,8 @@ static const ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_cann_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cann_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_cann_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cann_buffer_clear,
/* .reset = */ NULL,
@@ -2567,6 +2569,8 @@ static const ggml_backend_i ggml_backend_cann_interface = {
/* .free = */ ggml_backend_cann_free,
/* .set_tensor_async = */ ggml_backend_cann_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cann_get_tensor_async,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ ggml_backend_cann_cpy_tensor_async,
/* .synchronize = */ ggml_backend_cann_synchronize,
/* .graph_plan_create = */ NULL,

View File

@@ -195,6 +195,8 @@ static const struct ggml_backend_i ggml_backend_cpu_i = {
/* .free = */ ggml_backend_cpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,

View File

@@ -182,6 +182,16 @@ if (CUDAToolkit_FOUND)
target_link_libraries(ggml-cuda PRIVATE CUDA::cuda_driver)
endif()
if (GGML_CUDA_NCCL)
find_package(NCCL)
if (NCCL_FOUND)
add_compile_definitions(GGML_USE_NCCL)
target_link_libraries(ggml-cuda PRIVATE NCCL::NCCL)
else()
message(STATUS "Warning: NCCL not found, performance for multiple CUDA GPUs will be suboptimal")
endif()
endif()
set(CUDA_CXX_FLAGS "")
set(CUDA_FLAGS -use_fast_math -extended-lambda)

View File

@@ -186,6 +186,10 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
#define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
#ifdef GGML_USE_NCCL
#define NCCL_CHECK(err) CUDA_CHECK_GEN(err, ncclSuccess, ncclGetErrorString)
#endif // GGML_USE_NCCL
#if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
static const char * cu_get_error_str(CUresult err) {
const char * err_str;
@@ -1050,6 +1054,10 @@ struct ggml_cuda_device_info {
cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
#ifdef GGML_USE_NCCL
ncclComm_t comms[GGML_CUDA_MAX_DEVICES];
#endif // GGML_USE_NCCL
};
const ggml_cuda_device_info & ggml_cuda_info();

View File

@@ -309,6 +309,28 @@ static ggml_cuda_device_info ggml_cuda_init() {
// configure logging to stdout
// CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
for (int id = 0; id < info.device_count; ++id) {
ggml_cuda_set_device(id);
for (int id_other = 0; id_other < info.device_count; ++id_other) {
if (id == id_other) {
continue;
}
int can_access_peer;
CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
if (can_access_peer) {
CUDA_CHECK(cudaDeviceEnablePeerAccess(id_other, 0));
}
}
}
#ifdef GGML_USE_NCCL
int dev_ids[GGML_CUDA_MAX_DEVICES];
for (int id = 0; id < info.device_count; ++id) {
dev_ids[id] = id;
}
NCCL_CHECK(ncclCommInitAll(info.comms, info.device_count, dev_ids));
#endif // GGML_USE_NCCL
return info;
}
@@ -617,26 +639,46 @@ static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer
}
static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *) buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
CUDA_CHECK(cudaMemsetAsync((char *) tensor->data + offset, value, size, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *) buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaMemcpyAsync((char *) tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *) buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *) tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static void ggml_backend_cuda_buffer_set_tensor_2d(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data,
size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *) buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpy2DAsync(
(char *) tensor->data + offset, stride_tensor, data, stride_data, size, n_copies, cudaMemcpyHostToDevice, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
static void ggml_backend_cuda_buffer_get_tensor_2d(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data,
size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
ggml_cuda_set_device(ctx->device);
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaMemcpy2DAsync(
data, stride_data, (const char *) tensor->data + offset, stride_tensor, size, n_copies, cudaMemcpyDeviceToHost, cudaStreamPerThread));
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
}
@@ -676,6 +718,8 @@ static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
/* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
/* .set_tensor_2d = */ ggml_backend_cuda_buffer_set_tensor_2d,
/* .get_tensor_2d = */ ggml_backend_cuda_buffer_get_tensor_2d,
/* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cuda_buffer_clear,
/* .reset = */ NULL,
@@ -988,6 +1032,8 @@ static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_cuda_split_buffer_clear,
/* .reset = */ NULL,
@@ -1064,6 +1110,37 @@ static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_inte
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
};
bool ggml_backend_cuda_allreduce_tensor(ggml_backend_t * backends, struct ggml_tensor ** tensors, size_t n_backends) {
#ifdef GGML_USE_NCCL
const ggml_cuda_device_info info = ggml_cuda_info();
const size_t ne = ggml_nelements(tensors[0]);
NCCL_CHECK(ncclGroupStart());
for (size_t i = 0; i < n_backends; ++i) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backends[i]->context;
NCCL_CHECK(ncclAllReduce(tensors[i]->data, tensors[i]->data, ne, ncclFloat, ncclSum, info.comms[cuda_ctx->device], cuda_ctx->stream()));
}
NCCL_CHECK(ncclGroupEnd());
return true;
#else
// If NCCL is installed it is used by default for optimal performance.
// However, NVIDIA does not distribute NCCL with CUDA so users may be unwittingly missing this package.
// RCCL is disabled by default, users are explicitly opting in.
// Therefore print no warning for RCCL.
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
static bool warning_printed = false;
if (!warning_printed) {
GGML_LOG_WARN("%s: NVIDIA Collective Communications Library (NCCL) is unavailable, multi GPU performance will be suboptimal\n", __func__);
warning_printed = true;
}
GGML_UNUSED_VARS(backends, tensors, n_backends);
return false;
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
#endif // GGML_USE_NCCL
}
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
@@ -1371,64 +1448,6 @@ static void ggml_cuda_op_mul_mat_cublas(
GGML_UNUSED_VARS(dst, src1_ddq_i, src1_padded_row_size);
}
static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
static bool peer_access_enabled = false;
const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
if (peer_access_enabled == enable_peer_access) {
return;
}
#ifdef NDEBUG
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
ggml_cuda_set_device(id);
CUDA_CHECK(cudaDeviceSynchronize());
}
for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
ggml_cuda_set_device(id);
for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
if (id == id_other) {
continue;
}
if (id != main_device && id_other != main_device) {
continue;
}
int can_access_peer;
CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
if (can_access_peer) {
if (enable_peer_access) {
cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
if (err != cudaErrorPeerAccessAlreadyEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
(void)cudaGetLastError();
}
} else {
cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
if (err != cudaErrorPeerAccessNotEnabled) {
CUDA_CHECK(err);
} else {
// reset the error
(void)cudaGetLastError();
}
}
}
}
}
ggml_cuda_set_device(main_device);
#endif // NDEBUG
peer_access_enabled = enable_peer_access;
GGML_UNUSED(main_device);
}
static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {
@@ -2420,11 +2439,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
// why is this here instead of mul_mat?
if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) {
ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
}
switch (dst->op) {
case GGML_OP_ARGMAX:
ggml_cuda_argmax(ctx, dst);
@@ -2779,21 +2793,43 @@ static void ggml_backend_cuda_free(ggml_backend_t backend) {
}
static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
CUDA_CHECK(cudaMemcpyAsync((char *) tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
CUDA_CHECK(cudaMemcpyAsync(data, (const char *) tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
static void ggml_backend_cuda_set_tensor_2d_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data,
size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpy2DAsync(
(char *) tensor->data + offset, stride_tensor, data, stride_data, size, n_copies, cudaMemcpyHostToDevice, cuda_ctx->stream()));
}
static void ggml_backend_cuda_get_tensor_2d_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data,
size_t offset, size_t size, size_t n_copies, size_t stride_tensor, size_t stride_data) {
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
CUDA_CHECK(cudaMemcpy2DAsync(
data, stride_data, (const char *) tensor->data + offset, stride_tensor, size, n_copies, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
}
static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
@@ -2804,21 +2840,21 @@ static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_
return false;
}
if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
if (!ggml_backend_buffer_is_cuda(buf_src) || !ggml_backend_buffer_is_cuda(buf_dst)) {
return false;
}
// device -> device copy
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *) backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *) backend_dst->context;
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *) buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *) buf_dst->context;
if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n", __func__);
#endif
#endif // NDEBUG
return false;
}
@@ -2831,7 +2867,7 @@ static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_
return false;
#else
CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
#endif
#endif // GGML_CUDA_NO_PEER_COPY
}
// record event on src stream after the copy
@@ -4250,6 +4286,8 @@ static const ggml_backend_i ggml_backend_cuda_interface = {
/* .free = */ ggml_backend_cuda_free,
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
/* .get_tensor_2d_async = */ ggml_backend_cuda_set_tensor_2d_async,
/* .set_tensor_2d_async = */ ggml_backend_cuda_get_tensor_2d_async,
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
/* .synchronize = */ ggml_backend_cuda_synchronize,
/* .graph_plan_create = */ NULL,
@@ -5024,6 +5062,9 @@ static ggml_backend_feature * ggml_backend_cuda_get_features(ggml_backend_reg_t
static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
GGML_UNUSED(reg);
if (strcmp(name, "ggml_backend_allreduce_tensor") == 0) {
return (void *)ggml_backend_cuda_allreduce_tensor;
}
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
return (void *)ggml_backend_cuda_split_buffer_type;
}

View File

@@ -6,6 +6,10 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#ifdef GGML_USE_NCCL
#include <nccl.h>
#endif // GGML_USE_NCCL
#if CUDART_VERSION >= 12050
#include <cuda_fp8.h>
#endif // CUDART_VERSION >= 12050

View File

@@ -10,6 +10,11 @@
#include <rocwmma/rocwmma-version.hpp>
#endif // defined(GGML_HIP_ROCWMMA_FATTN)
#ifdef GGML_USE_NCCL
#include <rccl/rccl.h>
#endif // GGML_USE_NCCL
#define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
#define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
#define CUBLAS_OP_N HIPBLAS_OP_N
@@ -28,6 +33,7 @@
#define CU_MEM_LOCATION_TYPE_DEVICE hipMemLocationTypeDevice
#define CU_MEM_ACCESS_FLAGS_PROT_READWRITE hipMemAccessFlagsProtReadWrite
#define CU_CHECK(fn) {hipError_t err = fn; if(err != hipSuccess) { GGML_ABORT("HipVMM Failure: %s\n", hipGetErrorString(err)); }}
#define NCCL_CHECK(fn) {ncclResult_t err = fn; if(err != ncclSuccess) { GGML_ABORT("RCCL Failure RCCL returned: %i\n", err); }}
#define __shfl_sync(mask, var, laneMask, width) __shfl(var, laneMask, width)
#define __shfl_up_sync(mask, var, laneMask, width) __shfl_up(var, laneMask, width)
#define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)

View File

@@ -1455,6 +1455,8 @@ static ggml_backend_buffer_i ggml_backend_hexagon_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_hexagon_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_hexagon_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_hexagon_buffer_cpy_tensor,
/* .clear = */ ggml_backend_hexagon_buffer_clear,
/* .reset = */ NULL,
@@ -1935,11 +1937,6 @@ static bool ggml_hexagon_supported_binary(const struct ggml_hexagon_session * se
return false;
}
// TODO: add support for non-contigiuos tensors
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(src1) || !ggml_is_contiguous(dst)) {
return false;
}
return true;
}
@@ -1991,6 +1988,25 @@ static bool ggml_hexagon_supported_unary(const struct ggml_hexagon_session * ses
return true;
}
static bool ggml_hexagon_supported_sum_rows(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
const struct ggml_tensor * dst = op;
if (!hex_supported_src0_type(src0->type)) {
return false;
}
if (!hex_supported_dst_type(dst->type)) {
return false;
}
// TODO: add support for non-contigiuos tensors
if (!ggml_is_contiguous(src0) || !ggml_is_contiguous(dst)) {
return false;
}
return true;
}
static bool ggml_hexagon_supported_activations(const struct ggml_hexagon_session * sess,
const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0];
@@ -2111,6 +2127,26 @@ static bool ggml_hexagon_supported_get_rows(const struct ggml_hexagon_session *
return true;
}
static bool ggml_hexagon_supported_argsort(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const struct ggml_tensor * src0 = op->src[0]; // values
const struct ggml_tensor * dst = op; // indices
if (src0->type != GGML_TYPE_F32) {
return false;
}
if (dst->type != GGML_TYPE_I32) {
return false;
}
if (src0->ne[0] > (16*1024)) {
// reject tensors with huge rows for now
return false;
}
return true;
}
static bool ggml_hexagon_supported_rope(const struct ggml_hexagon_session * sess, const struct ggml_tensor * op) {
const int32_t * op_params = &op->op_params[0];
@@ -2278,6 +2314,9 @@ static inline size_t init_binary_req(htp_general_req * req, dspqueue_buffer * bu
case GGML_OP_SUB:
req->op = HTP_OP_SUB;
break;
case GGML_OP_DIV:
req->op = HTP_OP_DIV;
break;
default:
GGML_ABORT("ggml-hex: binary : unsupported op: %d\n", t->op);
break;
@@ -2316,6 +2355,17 @@ static inline size_t init_get_rows_req(htp_general_req * req, dspqueue_buffer *
return n_bufs;
}
static inline size_t init_argsort_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
req->op = HTP_OP_ARGSORT;
memcpy(&req->op_params, &t->op_params, sizeof(t->op_params));
size_t n_bufs = 0;
n_bufs += htp_req_buff_init(&req->src0, &bufs[n_bufs], t->src[0], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->dst, &bufs[n_bufs], t, DSPQBUF_TYPE_DSP_WRITE_CPU_READ);
return n_bufs;
}
template <bool _is_src0_constant>
static inline size_t init_binary_id_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
switch (t->op) {
@@ -2370,6 +2420,16 @@ static inline size_t init_unary_req(htp_general_req * req, dspqueue_buffer * buf
supported = true;
break;
case GGML_OP_SQR:
req->op = HTP_OP_SQR;
supported = true;
break;
case GGML_OP_SQRT:
req->op = HTP_OP_SQRT;
supported = true;
break;
case GGML_OP_UNARY:
if (ggml_get_unary_op(t) == GGML_UNARY_OP_SILU) {
req->op = HTP_OP_UNARY_SILU;
@@ -2387,6 +2447,9 @@ static inline size_t init_unary_req(htp_general_req * req, dspqueue_buffer * buf
} else if (ggml_get_glu_op(t) == GGML_GLU_OP_SWIGLU_OAI) {
req->op = HTP_OP_GLU_SWIGLU_OAI;
supported = true;
} else if (ggml_get_glu_op(t) == GGML_GLU_OP_GEGLU) {
req->op = HTP_OP_GLU_GEGLU;
supported = true;
}
break;
@@ -2411,6 +2474,17 @@ static inline size_t init_unary_req(htp_general_req * req, dspqueue_buffer * buf
return n_bufs;
}
static inline size_t init_sum_rows_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
memcpy(&req->op_params, &t->op_params, sizeof(t->op_params));
req->op = HTP_OP_SUM_ROWS;
size_t n_bufs = 0;
n_bufs += htp_req_buff_init(&req->src0, &bufs[n_bufs], t->src[0], DSPQBUF_TYPE_CPU_WRITE_DSP_READ);
n_bufs += htp_req_buff_init(&req->dst, &bufs[n_bufs], t, DSPQBUF_TYPE_DSP_WRITE_CPU_READ);
return n_bufs;
}
static inline size_t init_rope_req(htp_general_req * req, dspqueue_buffer * bufs, const ggml_tensor * t) {
memcpy(&req->op_params, &t->op_params, sizeof(t->op_params));
req->op = HTP_OP_ROPE;
@@ -2519,6 +2593,7 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_DIV:
ggml_hexagon_dispatch_op<init_binary_req<false>>(sess, node, flags);
break;
case GGML_OP_ADD_ID:
@@ -2528,6 +2603,13 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
case GGML_OP_SCALE:
ggml_hexagon_dispatch_op<init_unary_req>(sess, node, flags);
break;
case GGML_OP_SQR:
case GGML_OP_SQRT:
ggml_hexagon_dispatch_op<init_unary_req>(sess, node, flags);
break;
case GGML_OP_SUM_ROWS:
ggml_hexagon_dispatch_op<init_sum_rows_req>(sess, node, flags);
break;
case GGML_OP_UNARY:
if ((ggml_get_unary_op(node) == GGML_UNARY_OP_SILU) ||
(ggml_get_unary_op(node) == GGML_UNARY_OP_GELU)) {
@@ -2536,7 +2618,8 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
break;
case GGML_OP_GLU:
if ((ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU) ||
(ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU_OAI)) {
(ggml_get_glu_op(node) == GGML_GLU_OP_SWIGLU_OAI) ||
(ggml_get_glu_op(node) == GGML_GLU_OP_GEGLU)) {
ggml_hexagon_dispatch_op<init_unary_req>(sess, node, flags);
}
break;
@@ -2564,6 +2647,10 @@ static ggml_status ggml_backend_hexagon_graph_compute(ggml_backend_t backend, gg
ggml_hexagon_dispatch_op<init_cpy_req>(sess, node, flags);
break;
case GGML_OP_ARGSORT:
ggml_hexagon_dispatch_op<init_argsort_req>(sess, node, flags);
break;
default:
GGML_ABORT("\nggml-hex: graph-compute %s is not supported\n", ggml_op_desc(node));
}
@@ -2756,6 +2843,8 @@ static struct ggml_backend_i hexagon_backend_i = {
/* .free = */ ggml_backend_hexagon_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ ggml_backend_hexagon_synchronize,
/* .graph_plan_create = */ NULL,
@@ -2916,6 +3005,7 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
case GGML_OP_MUL:
case GGML_OP_ADD:
case GGML_OP_SUB:
case GGML_OP_DIV:
supp = ggml_hexagon_supported_binary(sess, op);
break;
@@ -2928,6 +3018,15 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
supp = ggml_hexagon_supported_unary(sess, op);
break;
case GGML_OP_SQR:
case GGML_OP_SQRT:
supp = ggml_hexagon_supported_unary(sess, op);
break;
case GGML_OP_SUM_ROWS:
supp = ggml_hexagon_supported_sum_rows(sess, op);
break;
case GGML_OP_SOFT_MAX:
supp = ggml_hexagon_supported_softmax(sess, op);
break;
@@ -2943,7 +3042,7 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
case GGML_OP_GLU:
{
const auto glu_op = ggml_get_glu_op(op);
if ((glu_op == GGML_GLU_OP_SWIGLU) || (glu_op == GGML_GLU_OP_SWIGLU_OAI)) {
if ((glu_op == GGML_GLU_OP_SWIGLU) || (glu_op == GGML_GLU_OP_SWIGLU_OAI) || (glu_op == GGML_GLU_OP_GEGLU)) {
supp = ggml_hexagon_supported_activations(sess, op);
}
break;
@@ -2968,6 +3067,10 @@ static bool ggml_backend_hexagon_device_supports_op(ggml_backend_dev_t dev, cons
supp = ggml_hexagon_supported_cpy(sess, op);
break;
case GGML_OP_ARGSORT:
supp = ggml_hexagon_supported_argsort(sess, op);
break;
default:
break;
}

View File

@@ -6,6 +6,7 @@ include(${HEXAGON_SDK_ROOT}/build/cmake/hexagon_fun.cmake)
include_directories(
${HEXAGON_SDK_ROOT}/incs
${HEXAGON_SDK_ROOT}/incs/stddef
${CMAKE_CURRENT_SOURCE_DIR}/../../../include
${CMAKE_CURRENT_SOURCE_DIR}/../..
${CMAKE_CURRENT_SOURCE_DIR}/..
${CMAKE_CURRENT_SOURCE_DIR}
@@ -21,6 +22,7 @@ add_library(${HTP_LIB} SHARED
matmul-ops.c
binary-ops.c
unary-ops.c
sum-rows-ops.c
softmax-ops.c
act-ops.c
rope-ops.c
@@ -28,6 +30,7 @@ add_library(${HTP_LIB} SHARED
set-rows-ops.c
get-rows-ops.c
cpy-ops.c
argsort-ops.c
)
target_compile_definitions(${HTP_LIB} PRIVATE

View File

@@ -410,7 +410,7 @@ static void unary_gelu_f32_per_thread(const struct htp_tensor * src0,
// gelu = x * sigmoid(1.702 * x) // current implementation
hvx_mul_scalar_f32((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, (float) 1.702, ne0);
hvx_sigmoid_f32_aa((uint8_t *) dst_spad_ptr, (const uint8_t *) dst_spad_ptr, ne0);
hvx_mul_f32_aa((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr, ne0);
hvx_mul_f32_aaa((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr, ne0);
}
dma_queue_push_vtcm_to_ddr(dma_queue,
@@ -516,7 +516,7 @@ static void unary_silu_f32_per_thread(const struct htp_tensor * src0,
// silu = x * sigmoid(x)
hvx_sigmoid_f32_aa((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, ne0);
hvx_mul_f32_aa((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr, ne0);
hvx_mul_f32_aaa((uint8_t *) dst_spad_ptr, (const uint8_t *) src0_spad_ptr, (const uint8_t *) dst_spad_ptr, ne0);
}
dma_queue_push_vtcm_to_ddr(dma_queue,
@@ -541,6 +541,143 @@ static void unary_silu_f32_per_thread(const struct htp_tensor * src0,
ne03, src0_start_row, src0_end_row, ne0, ne1, ne2, ne3, (unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static const float GELU_COEF_A = 0.044715f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
static void glu_geglu_f32_per_thread(const struct htp_tensor * src0,
const struct htp_tensor * src1,
struct htp_tensor * dst,
const int32_t * op_params,
struct htp_spad * src0_spad,
struct htp_spad * src1_spad,
struct htp_spad * dst_spad,
uint32_t nth,
uint32_t ith,
uint32_t src0_nrows_per_thread,
dma_queue * dma_queue) {
htp_act_preamble3;
size_t src0_row_size = nb01;
size_t src1_row_size = nb11;
size_t dst_row_size = nb1;
uint64_t t1, t2;
t1 = HAP_perf_get_qtimer_count();
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return;
}
const uint8_t * restrict data_src0 = (const uint8_t *) src0->data;
const uint8_t * restrict data_src1 = (const uint8_t *) src1->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
const bool src1_valid = src1->ne[0];
const int nc = (src1_valid) ? ne00 : ne00 / 2;
if (!src1_valid) {
const int32_t swapped = op_params[1];
data_src1 = data_src0;
src1_row_size = src0_row_size;
const size_t nc_in_bytes = nc * SIZEOF_FP32;
data_src0 += swapped ? nc_in_bytes : 0;
data_src1 += swapped ? 0 : nc_in_bytes;
}
const size_t src0_row_size_aligned = hex_round_up(src0_row_size, VLEN);
const size_t src1_row_size_aligned = hex_round_up(src1_row_size, VLEN);
const size_t dst_row_size_aligned = hex_round_up(dst_row_size, VLEN);
uint8_t * restrict src0_spad_data = src0_spad->data + (ith * src0_spad->size_per_thread);
uint8_t * restrict src1_spad_data = src1_spad->data + (ith * src1_spad->size_per_thread);
uint8_t * restrict dst_spad_data = dst_spad->data + (ith * dst_spad->size_per_thread);
// While given src0_spad->size_per_thread, divide it to two ping-pong buffer for src0
size_t src0_spad_half_size = src0_spad->size_per_thread / 2;
size_t src1_spad_half_size = src1_spad->size_per_thread / 2;
size_t dst_spad_half_size = dst_spad->size_per_thread / 2;
const int BLOCK = src0_spad_half_size / src0_row_size_aligned; // How many rows can we process in one block
if (BLOCK == 0) {
FARF(ERROR,
"geglu-f32 : current VTCM reservation %zu is too small for even 1 row per thread, needed at least %zu\n",
src0_spad->size_per_thread, src0_row_size_aligned);
return;
}
// See discussion: https://github.com/ggml-org/llama.cpp/pull/18151#issuecomment-3678235379
for (uint32_t ir = src0_start_row, spad_idx = 0; ir < src0_end_row && spad_idx < 2; ir += BLOCK, spad_idx++) {
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
// Dummy DMA transation for sequencing (interleaving dst,src,dst,...)
dma_queue_push_vtcm_to_ddr(dma_queue,
dma_make_ptr(data_dst, dst_spad_data + (spad_idx * dst_spad_half_size)),
dst_row_size, dst_row_size_aligned, 0);
dma_queue_push_ddr_to_vtcm(dma_queue,
dma_make_ptr(src0_spad_data + (spad_idx * src0_spad_half_size), data_src0 + (ir * src0_row_size)),
src0_row_size_aligned, src0_row_size, block_size);
dma_queue_push_ddr_to_vtcm(dma_queue,
dma_make_ptr(src1_spad_data + (spad_idx * src1_spad_half_size), data_src1 + (ir * src1_row_size)),
src1_row_size_aligned, src1_row_size, block_size);
}
for (uint32_t ir = src0_start_row; ir < src0_end_row; ir += BLOCK) {
const uint32_t block_size = MIN(BLOCK, src0_end_row - ir);
float * dst_spad = (float *) dma_queue_pop(dma_queue).src;
float * src0_spad = (float *) dma_queue_pop(dma_queue).dst;
float * src1_spad = (float *) dma_queue_pop(dma_queue).dst;
for (uint32_t ib = 0; ib < block_size; ib++) {
const uint8_t * src0_spad_ptr = (const uint8_t *)(src0_spad + ib * (src0_row_size_aligned / sizeof(float)));
const uint8_t * src1_spad_ptr = (const uint8_t *)(src1_spad + ib * (src1_row_size_aligned / sizeof(float)));
uint8_t * dst_spad_ptr = (uint8_t *)(dst_spad + ib * (dst_row_size_aligned / sizeof(float)));
// geglu tanh implementation
// geglu(x, g) = gelu(x) * g
// gelu(x) = 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)))
hvx_mul_f32_aaa(dst_spad_ptr, src0_spad_ptr, src0_spad_ptr, nc); // res = x*x
hvx_mul_scalar_f32_aa(dst_spad_ptr, (const uint8_t *)dst_spad_ptr, GELU_COEF_A, nc); // res = res * GELU_COEF_A
hvx_add_scalar_f32_aa(dst_spad_ptr, (const uint8_t *)dst_spad_ptr, 1.0f, nc); // res = res + 1.0f
hvx_mul_f32_aaa(dst_spad_ptr, src0_spad_ptr, (const uint8_t *)dst_spad_ptr, nc); // res = res * x
hvx_mul_scalar_f32_aa(dst_spad_ptr, (const uint8_t*)dst_spad_ptr, SQRT_2_OVER_PI, nc); // res = result * SQRT_2_OVER_PI
hvx_tanh_f32_aa((uint8_t *) dst_spad_ptr, (const uint8_t *) dst_spad_ptr, nc); // res = tanh(res)
hvx_add_scalar_f32_aa(dst_spad_ptr, (const uint8_t*)dst_spad_ptr, 1.0f, nc); // res = res + 1.0f
hvx_mul_f32_aaa(dst_spad_ptr, src0_spad_ptr, (const uint8_t *)dst_spad_ptr, nc); // res = res * x
hvx_mul_scalar_f32_aa(dst_spad_ptr, (const uint8_t *)dst_spad_ptr, 0.5f, nc); // res = res + 0.5f
hvx_mul_f32_aaa(dst_spad_ptr, (const uint8_t *)dst_spad_ptr, src1_spad_ptr, nc); // res = res * g
}
dma_queue_push_vtcm_to_ddr(dma_queue, dma_make_ptr(data_dst + (ir * dst_row_size), dst_spad), dst_row_size,
dst_row_size_aligned, block_size);
// prefetch N+2 loop iteration if any
const uint32_t pref_block = (ir + BLOCK * 2);
if (pref_block < src0_end_row) {
const uint32_t pref_block_size = MIN(BLOCK, src0_end_row - pref_block);
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src0_spad, data_src0 + (pref_block * src0_row_size)),
src0_row_size_aligned, src0_row_size, pref_block_size);
dma_queue_push_ddr_to_vtcm(dma_queue, dma_make_ptr(src1_spad, data_src1 + (pref_block * src1_row_size)),
src1_row_size_aligned, src1_row_size, pref_block_size);
}
}
dma_queue_flush(dma_queue);
t2 = HAP_perf_get_qtimer_count();
FARF(HIGH, "geglu-f32 %d/%d: %ux%ux%ux%u (%u:%u) x %ux%ux%ux%u -> %ux%ux%ux%u usec %u\n", ith, nth,
ne00, ne01, ne02, ne03, src0_start_row, src0_end_row, ne10, ne11, ne12, ne13, ne0, ne1, ne2, ne3,
(unsigned) HAP_perf_qtimer_count_to_us(t2 - t1));
}
static void unary_silu_f32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
unary_silu_f32_per_thread(&octx->src0, &octx->dst, octx->op_params, &octx->src0_spad, &octx->dst_spad, n, i,
@@ -559,6 +696,12 @@ static void glu_swiglu_oai_f32(unsigned int n, unsigned int i, void * data) {
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread, octx->ctx->dma[i]);
}
static void glu_geglu_f32(unsigned int n, unsigned int i, void * data) {
struct htp_ops_context * octx = (struct htp_ops_context *) data;
glu_geglu_f32_per_thread(&octx->src0, &octx->src1, &octx->dst, octx->op_params, &octx->src0_spad,
&octx->src1_spad, &octx->dst_spad, n, i, octx->src0_nrows_per_thread, octx->ctx->dma[i]);
}
static int execute_op_activations_f32(struct htp_ops_context * octx) {
int err = HTP_STATUS_OK;
@@ -593,6 +736,11 @@ static int execute_op_activations_f32(struct htp_ops_context * octx) {
act_op_func = unary_gelu_f32;
op_type = "gelu-f32";
break;
case HTP_OP_GLU_GEGLU:
act_op_func = glu_geglu_f32;
op_type = "geglu-f32";
break;
default:
FARF(ERROR, "Unsupported activations Op %u\n", octx->op);
return HTP_STATUS_NO_SUPPORT;

View File

@@ -0,0 +1,281 @@
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <HAP_farf.h>
#include <HAP_perf.h>
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
#include "hvx-utils.h"
#include "hex-dma.h"
#include "htp-ctx.h"
#include "htp-msg.h"
#include "htp-ops.h"
#ifndef MIN
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#endif
struct htp_argsort_context {
struct htp_ops_context * octx;
uint32_t nrows_per_thread;
};
static inline bool all_greater_f32(HVX_Vector x, HVX_Vector y)
{
const HVX_Vector one = Q6_V_vsplat_R(1);
const HVX_Vector zero = Q6_V_vzero();
HVX_VectorPred pred = Q6_Q_vcmp_gt_VsfVsf(x, y);
HVX_Vector matches = Q6_V_vmux_QVV(pred, one, zero);
HVX_Vector sum = hvx_vec_reduce_sum_i32(matches);
return hvx_vec_get_i32(sum) == 32;
}
// Sorts values and mirrors swaps to indices.
static void quicksort_values_indices_asc(float * values, int32_t * indices, int left, int right) {
if (left >= right) return;
int pivot_idx = (left + right) / 2;
float pivot = values[pivot_idx];
int i = left;
int j = right;
HVX_Vector pivot_vec = hvx_vec_splat_f32(pivot);
while (i <= j) {
// Vectorized scan for i
while (i <= j) {
// Check if we have at least one full vector
if (i + 32 <= j) {
HVX_Vector vals_vec = *(HVX_UVector *)(values + i);
if (all_greater_f32(pivot_vec, vals_vec)) {
// If all elements are < pivot, we can skip this whole block
i += 32;
continue;
}
}
// Scalar fallback / cleanup
if (values[i] < pivot) {
i++;
} else {
break;
}
}
// Vectorized scan for j
while (i <= j) {
if (j - 32 >= i) {
// Load 32 elements ending at j.
// Since we want `values[j] > pivot`, let's load from j-31 to j.
HVX_Vector vals_vec = *(HVX_UVector *)(values + j - 31);
if (all_greater_f32(vals_vec, pivot_vec)) {
j -= 32;
continue;
}
}
if (values[j] > pivot) {
j--;
} else {
break;
}
}
if (i <= j) {
float tmp_val = values[i];
values[i] = values[j];
values[j] = tmp_val;
int32_t tmp_idx = indices[i];
indices[i] = indices[j];
indices[j] = tmp_idx;
i++;
j--;
}
}
if (left < j) quicksort_values_indices_asc(values, indices, left, j);
if (i < right) quicksort_values_indices_asc(values, indices, i, right);
}
static void quicksort_values_indices_desc(float * values, int32_t * indices, int left, int right) {
if (left >= right) return;
int pivot_idx = (left + right) / 2;
float pivot = values[pivot_idx];
int i = left;
int j = right;
HVX_Vector pivot_vec = hvx_vec_splat_f32(pivot);
while (i <= j) {
// Vectorized scan for i (values[i] > pivot)
while (i <= j) {
if (i + 32 <= j) {
HVX_Vector vals_vec = *(HVX_UVector *)(values + i);
if (all_greater_f32(vals_vec, pivot_vec)) {
i += 32;
continue;
}
}
if (values[i] > pivot) {
i++;
} else {
break;
}
}
// Vectorized scan for j (values[j] < pivot)
while (i <= j) {
if (j - 32 >= i) {
HVX_Vector vals_vec = *(HVX_UVector *)(values + j - 31);
if (all_greater_f32(pivot_vec, vals_vec)) {
j -= 32;
continue;
}
}
if (values[j] < pivot) {
j--;
} else {
break;
}
}
if (i <= j) {
float tmp_val = values[i];
values[i] = values[j];
values[j] = tmp_val;
int32_t tmp_idx = indices[i];
indices[i] = indices[j];
indices[j] = tmp_idx;
i++;
j--;
}
}
if (left < j) quicksort_values_indices_desc(values, indices, left, j);
if (i < right) quicksort_values_indices_desc(values, indices, i, right);
}
static void htp_argsort_f32(unsigned int n, unsigned int i, void * data) {
struct htp_argsort_context * actx = (struct htp_argsort_context *)data;
struct htp_ops_context * octx = actx->octx;
// Unpack context
const struct htp_tensor * src0 = &octx->src0;
const struct htp_tensor * dst = &octx->dst;
// Scratchpad memory
uint8_t * spad = octx->src0_spad.data + octx->src0_spad.size_per_thread * i;
// Dimensions
uint32_t ne00 = src0->ne[0];
uint32_t ne01 = src0->ne[1];
uint32_t ne02 = src0->ne[2];
uint32_t ne03 = src0->ne[3];
uint32_t nb01 = src0->nb[1];
//uint32_t nb02 = src0->nb[2];
//uint32_t nb03 = src0->nb[3];
uint32_t nb1 = dst->nb[1];
//uint32_t nb2 = dst->nb[2];
//uint32_t nb3 = dst->nb[3];
// Sort order
enum ggml_sort_order order = (enum ggml_sort_order) octx->op_params[0];
// Rows to process
uint32_t total_rows = ne01 * ne02 * ne03;
uint32_t rows_per_thread = actx->nrows_per_thread;
uint32_t start_row = rows_per_thread * i;
uint32_t end_row = MIN(start_row + rows_per_thread, total_rows);
// Scratchpad layout:
// We need space for one row of float data (values) and one row of int32 indices.
// values: ne00 * sizeof(float)
// indices: ne00 * sizeof(int32_t)
// Padded to 128 bytes.
size_t values_size = hex_round_up(ne00 * sizeof(float), 128);
float * values_buf = (float *) spad;
int32_t * indices_buf = (int32_t *) (spad + values_size);
for (uint32_t r = start_row; r < end_row; r++) {
uint32_t src_offset = r * nb01;
uint32_t dst_offset = r * nb1;
uint8_t * src_ptr = (uint8_t *) src0->data + src_offset;
uint8_t * dst_ptr = (uint8_t *) dst->data + dst_offset;
hex_l2fetch(src_ptr, ne00 * sizeof(float), ne00 * sizeof(float), 1);
hvx_copy_f32_au((uint8_t*)values_buf, src_ptr, ne00);
// Initialize indices
for (uint32_t j = 0; j < ne00; j++) {
indices_buf[j] = j;
}
// Sort values and mirror swaps to indices
if (order == GGML_SORT_ORDER_ASC) {
quicksort_values_indices_asc(values_buf, indices_buf, 0, ne00 - 1);
} else {
quicksort_values_indices_desc(values_buf, indices_buf, 0, ne00 - 1);
}
// Copy indices back to DDR
hvx_copy_f32_ua(dst_ptr, (const uint8_t *) indices_buf, ne00);
}
}
int op_argsort(struct htp_ops_context * octx) {
// Check supported types
if (octx->src0.type != HTP_TYPE_F32) {
return HTP_STATUS_NO_SUPPORT;
}
// Allocate scratchpad
// We need 1 row of float + 1 row of int32 per thread.
uint32_t ne00 = octx->src0.ne[0];
size_t values_size = hex_round_up(ne00 * sizeof(float), 128);
size_t indices_size = hex_round_up(ne00 * sizeof(int32_t), 128);
size_t spad_per_thread = values_size + indices_size;
// Make sure we round up to 256 for alignment requirements
spad_per_thread = hex_round_up(spad_per_thread, 256);
size_t total_spad_size = spad_per_thread * octx->n_threads;
if (octx->ctx->vtcm_size < total_spad_size) {
FARF(ERROR, "argsort: VTCM size too small. Needed %zu, have %zu", total_spad_size, octx->ctx->vtcm_size);
return HTP_STATUS_VTCM_TOO_SMALL;
}
octx->src0_spad.data = octx->ctx->vtcm_base;
octx->src0_spad.size = total_spad_size;
octx->src0_spad.size_per_thread = spad_per_thread;
FARF(HIGH, "argsort: %ux%ux%ux%u -> %ux%ux%ux%u (0x%x, 0x%x)",
octx->src0.ne[0], octx->src0.ne[1], octx->src0.ne[2], octx->src0.ne[3],
octx->dst.ne[0], octx->dst.ne[1], octx->dst.ne[2], octx->dst.ne[3],
octx->src0.data, octx->dst.data);
uint32_t total_rows = octx->src0.ne[1] * octx->src0.ne[2] * octx->src0.ne[3];
uint32_t n_jobs = MIN(total_rows, octx->n_threads);
struct htp_argsort_context actx;
actx.octx = octx;
actx.nrows_per_thread = (total_rows + n_jobs - 1) / n_jobs;
// Run jobs
worker_pool_run_func(octx->ctx->worker_pool, htp_argsort_f32, &actx, n_jobs);
return HTP_STATUS_OK;
}

File diff suppressed because it is too large Load Diff

View File

@@ -42,32 +42,36 @@ enum htp_data_type {
HTP_TYPE_COUNT
};
// These values are manually translated over to HTP
// !!!! DO NOT ALTER THE ORDER OF THE FIRST FOUR ENUMS !!!!
// Do not reorder first 4 (used as an index)
enum htp_op {
HTP_OP_MUL = 0,
HTP_OP_ADD = 1,
HTP_OP_SUB = 2,
HTP_OP_DIV = 3,
HTP_OP_MUL_MAT = 4,
HTP_OP_MUL_MAT_ID = 5,
HTP_OP_RMS_NORM = 6,
HTP_OP_UNARY_SILU = 7,
HTP_OP_UNARY_GELU = 8,
HTP_OP_GLU_SWIGLU = 9,
HTP_OP_GLU_SWIGLU_OAI = 10,
HTP_OP_SOFTMAX = 11,
HTP_OP_ADD_ID = 12,
HTP_OP_ROPE = 13,
HTP_OP_FLASH_ATTN_EXT = 14,
HTP_OP_SET_ROWS = 15,
HTP_OP_SCALE = 16,
HTP_OP_GET_ROWS = 17,
HTP_OP_CPY = 18,
HTP_OP_MUL = 0,
HTP_OP_ADD = 1,
HTP_OP_SUB = 2,
HTP_OP_DIV = 3,
HTP_OP_MUL_MAT,
HTP_OP_MUL_MAT_ID,
HTP_OP_RMS_NORM,
HTP_OP_UNARY_SILU,
HTP_OP_UNARY_GELU,
HTP_OP_GLU_SWIGLU,
HTP_OP_GLU_SWIGLU_OAI,
HTP_OP_GLU_GEGLU,
HTP_OP_SOFTMAX,
HTP_OP_ADD_ID,
HTP_OP_ROPE,
HTP_OP_FLASH_ATTN_EXT,
HTP_OP_SET_ROWS,
HTP_OP_GET_ROWS,
HTP_OP_SCALE,
HTP_OP_CPY,
HTP_OP_ARGSORT,
HTP_OP_SQR,
HTP_OP_SQRT,
HTP_OP_SUM_ROWS,
INVALID
};
static inline size_t htp_type_block_size(uint32_t t) {
static inline size_t htp_t_block_size(uint32_t t) {
switch (t) {
case HTP_TYPE_F32:
return 1;
@@ -103,22 +107,6 @@ static inline size_t htp_type_nbytes(uint32_t t) {
return 0;
}
static const char * htp_type_name(uint32_t t) {
switch (t) {
case HTP_TYPE_F32:
return "fp32";
case HTP_TYPE_F16:
return "fp16";
case HTP_TYPE_Q4_0:
return "q4_0";
case HTP_TYPE_Q8_0:
return "q8_0";
case HTP_TYPE_MXFP4:
return "mxfp4";
}
return 0;
}
// Internal types
#define QK_Q4_0x4x2 256 // 4x Q4_0 blocks packed with next 4x Q4_0 blocks (size in bytes 128)
#define QK_Q8_0x4x2 256 // 4x Q8_0 blocks concat with next 4x Q8_0 blocks

View File

@@ -90,6 +90,7 @@ int op_matmul(struct htp_ops_context * octx);
int op_matmul_id(struct htp_ops_context * octx);
int op_binary(struct htp_ops_context * octx);
int op_unary(struct htp_ops_context * octx);
int op_sum_rows(struct htp_ops_context * octx);
int op_activations(struct htp_ops_context * octx);
int op_softmax(struct htp_ops_context * octx);
int op_add_id(struct htp_ops_context * octx);
@@ -98,5 +99,6 @@ int op_flash_attn_ext(struct htp_ops_context * octx);
int op_set_rows(struct htp_ops_context * octx);
int op_get_rows(struct htp_ops_context * octx);
int op_cpy(struct htp_ops_context * octx);
int op_argsort(struct htp_ops_context * octx);
#endif /* HTP_OPS_H */

View File

@@ -46,127 +46,76 @@
#define HVX_OP_MUL(a, b) Q6_Vsf_vmpy_VsfVsf(a, b)
#endif
// ADD variants
// Generic macro to define alignment permutations for an op
#define DEFINE_HVX_BINARY_OP_VARIANTS(OP_NAME, OP_MACRO) \
static inline void OP_NAME##_aaa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) dst % 128 == 0); \
assert((uintptr_t) src0 % 128 == 0); \
assert((uintptr_t) src1 % 128 == 0); \
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_Vector, hvx_vec_store_a, OP_MACRO); \
} \
static inline void OP_NAME##_aau(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) dst % 128 == 0); \
assert((uintptr_t) src0 % 128 == 0); \
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_UVector, hvx_vec_store_a, OP_MACRO); \
} \
static inline void OP_NAME##_aua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) dst % 128 == 0); \
assert((uintptr_t) src1 % 128 == 0); \
hvx_arith_loop_body(HVX_Vector, HVX_UVector, HVX_Vector, hvx_vec_store_a, OP_MACRO); \
} \
static inline void OP_NAME##_auu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) dst % 128 == 0); \
hvx_arith_loop_body(HVX_Vector, HVX_UVector, HVX_UVector, hvx_vec_store_a, OP_MACRO); \
} \
static inline void OP_NAME##_uaa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) src0 % 128 == 0); \
assert((uintptr_t) src1 % 128 == 0); \
hvx_arith_loop_body(HVX_UVector, HVX_Vector, HVX_Vector, hvx_vec_store_u, OP_MACRO); \
} \
static inline void OP_NAME##_uau(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) src0 % 128 == 0); \
hvx_arith_loop_body(HVX_UVector, HVX_Vector, HVX_UVector, hvx_vec_store_u, OP_MACRO); \
} \
static inline void OP_NAME##_uua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
assert((uintptr_t) src1 % 128 == 0); \
hvx_arith_loop_body(HVX_UVector, HVX_UVector, HVX_Vector, hvx_vec_store_u, OP_MACRO); \
} \
static inline void OP_NAME##_uuu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) { \
hvx_arith_loop_body(HVX_UVector, HVX_UVector, HVX_UVector, hvx_vec_store_u, OP_MACRO); \
} \
static inline void hvx_add_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_Vector, hvx_vec_store_a, HVX_OP_ADD);
DEFINE_HVX_BINARY_OP_VARIANTS(hvx_add_f32, HVX_OP_ADD)
DEFINE_HVX_BINARY_OP_VARIANTS(hvx_sub_f32, HVX_OP_SUB)
DEFINE_HVX_BINARY_OP_VARIANTS(hvx_mul_f32, HVX_OP_MUL)
// Dispatcher logic
#define HVX_BINARY_DISPATCHER(OP_NAME) \
static inline void OP_NAME(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint32_t num_elems) { \
if (hex_is_aligned((void *) dst, 128)) { \
if (hex_is_aligned((void *) src0, 128)) { \
if (hex_is_aligned((void *) src1, 128)) OP_NAME##_aaa(dst, src0, src1, num_elems); \
else OP_NAME##_aau(dst, src0, src1, num_elems); \
} else { \
if (hex_is_aligned((void *) src1, 128)) OP_NAME##_aua(dst, src0, src1, num_elems); \
else OP_NAME##_auu(dst, src0, src1, num_elems); \
} \
} else { \
if (hex_is_aligned((void *) src0, 128)) { \
if (hex_is_aligned((void *) src1, 128)) OP_NAME##_uaa(dst, src0, src1, num_elems); \
else OP_NAME##_uau(dst, src0, src1, num_elems); \
} else { \
if (hex_is_aligned((void *) src1, 128)) OP_NAME##_uua(dst, src0, src1, num_elems); \
else OP_NAME##_uuu(dst, src0, src1, num_elems); \
} \
} \
}
static inline void hvx_add_f32_au(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_UVector, hvx_vec_store_a, HVX_OP_ADD);
}
static inline void hvx_add_f32_ua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_UVector, HVX_Vector, HVX_Vector, hvx_vec_store_u, HVX_OP_ADD);
}
static inline void hvx_add_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
hvx_arith_loop_body(HVX_UVector, HVX_UVector, HVX_UVector, hvx_vec_store_u, HVX_OP_ADD);
}
// SUB variants
static inline void hvx_sub_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_Vector, hvx_vec_store_a, HVX_OP_SUB);
}
static inline void hvx_sub_f32_au(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_UVector, hvx_vec_store_a, HVX_OP_SUB);
}
static inline void hvx_sub_f32_ua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_UVector, HVX_Vector, HVX_Vector, hvx_vec_store_u, HVX_OP_SUB);
}
static inline void hvx_sub_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
hvx_arith_loop_body(HVX_UVector, HVX_UVector, HVX_UVector, hvx_vec_store_u, HVX_OP_SUB);
}
// MUL variants
static inline void hvx_mul_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_Vector, hvx_vec_store_a, HVX_OP_MUL);
}
static inline void hvx_mul_f32_au(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
hvx_arith_loop_body(HVX_Vector, HVX_Vector, HVX_UVector, hvx_vec_store_a, HVX_OP_MUL);
}
static inline void hvx_mul_f32_ua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((unsigned long) src0 % 128 == 0);
assert((unsigned long) src1 % 128 == 0);
hvx_arith_loop_body(HVX_UVector, HVX_Vector, HVX_Vector, hvx_vec_store_u, HVX_OP_MUL);
}
static inline void hvx_mul_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
hvx_arith_loop_body(HVX_UVector, HVX_UVector, HVX_UVector, hvx_vec_store_u, HVX_OP_MUL);
}
// Dispatchers
static inline void hvx_add_f32(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint32_t num_elems) {
if (hex_is_aligned((void *) dst, 128) && hex_is_aligned((void *) src0, 128)) {
if (hex_is_aligned((void *) src1, 128)) {
hvx_add_f32_aa(dst, src0, src1, num_elems);
} else {
hvx_add_f32_au(dst, src0, src1, num_elems);
}
} else if (hex_is_aligned((void *) src0, 128) && hex_is_aligned((void *) src1, 128)) {
hvx_add_f32_ua(dst, src0, src1, num_elems);
} else {
hvx_add_f32_uu(dst, src0, src1, num_elems);
}
}
static inline void hvx_sub_f32(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint32_t num_elems) {
if (hex_is_aligned((void *) dst, 128) && hex_is_aligned((void *) src0, 128)) {
if (hex_is_aligned((void *) src1, 128)) {
hvx_sub_f32_aa(dst, src0, src1, num_elems);
} else {
hvx_sub_f32_au(dst, src0, src1, num_elems);
}
} else if (hex_is_aligned((void *) src0, 128) && hex_is_aligned((void *) src1, 128)) {
hvx_sub_f32_ua(dst, src0, src1, num_elems);
} else {
hvx_sub_f32_uu(dst, src0, src1, num_elems);
}
}
static inline void hvx_mul_f32(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint32_t num_elems) {
if (hex_is_aligned((void *) dst, 128) && hex_is_aligned((void *) src0, 128)) {
if (hex_is_aligned((void *) src1, 128)) {
hvx_mul_f32_aa(dst, src0, src1, num_elems);
} else {
hvx_mul_f32_au(dst, src0, src1, num_elems);
}
} else if (hex_is_aligned((void *) src0, 128) && hex_is_aligned((void *) src1, 128)) {
hvx_mul_f32_ua(dst, src0, src1, num_elems);
} else {
hvx_mul_f32_uu(dst, src0, src1, num_elems);
}
}
HVX_BINARY_DISPATCHER(hvx_add_f32)
HVX_BINARY_DISPATCHER(hvx_sub_f32)
HVX_BINARY_DISPATCHER(hvx_mul_f32)
// Mul-Mul Optimized
static inline void hvx_mul_mul_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint8_t * restrict src2, const uint32_t num_elems) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src0 % 128 == 0);
@@ -443,6 +392,68 @@ static inline void hvx_clamp_scalar_f32(uint8_t * restrict dst, const uint8_t *
}
}
//
// Square
//
#define hvx_sqr_loop_body(dst_type, src_type, vec_store) \
do { \
dst_type * restrict vdst = (dst_type *) dst; \
src_type * restrict vsrc = (src_type *) src; \
\
const uint32_t elem_size = sizeof(float); \
const uint32_t epv = 128 / elem_size; \
const uint32_t nvec = n / epv; \
const uint32_t nloe = n % epv; \
\
uint32_t i = 0; \
\
_Pragma("unroll(4)") \
for (; i < nvec; i++) { \
vdst[i] = HVX_OP_MUL(vsrc[i], vsrc[i]); \
} \
if (nloe) { \
HVX_Vector v = HVX_OP_MUL(vsrc[i], vsrc[i]); \
vec_store((void *) &vdst[i], nloe * elem_size, v); \
} \
} while(0)
static inline void hvx_sqr_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
hvx_sqr_loop_body(HVX_Vector, HVX_Vector, hvx_vec_store_a);
}
static inline void hvx_sqr_f32_au(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
hvx_sqr_loop_body(HVX_Vector, HVX_Vector, hvx_vec_store_a);
}
static inline void hvx_sqr_f32_ua(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) src % 128 == 0);
hvx_sqr_loop_body(HVX_UVector, HVX_Vector, hvx_vec_store_u);
}
static inline void hvx_sqr_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
hvx_sqr_loop_body(HVX_UVector, HVX_UVector, hvx_vec_store_u);
}
static inline void hvx_sqr_f32(uint8_t * restrict dst, const uint8_t * restrict src, const uint32_t num_elems) {
if (hex_is_aligned((void *) dst, 128)) {
if (hex_is_aligned((void *) src, 128)) {
hvx_sqr_f32_aa(dst, src, num_elems);
} else {
hvx_sqr_f32_au(dst, src, num_elems);
}
} else {
if (hex_is_aligned((void *) src, 128)) {
hvx_sqr_f32_ua(dst, src, num_elems);
} else {
hvx_sqr_f32_uu(dst, src, num_elems);
}
}
}
#undef HVX_OP_ADD
#undef HVX_OP_SUB
#undef HVX_OP_MUL
@@ -453,5 +464,7 @@ static inline void hvx_clamp_scalar_f32(uint8_t * restrict dst, const uint8_t *
#undef hvx_scalar_loop_body
#undef HVX_OP_MIN_SCALAR
#undef HVX_OP_CLAMP_SCALAR
#undef DEFINE_HVX_BINARY_OP_VARIANTS
#undef HVX_BINARY_DISPATCHER
#endif // HVX_ARITH_H

View File

@@ -66,6 +66,12 @@ static inline float hvx_vec_get_f32(HVX_Vector v) {
return x;
}
static inline int32_t hvx_vec_get_i32(HVX_Vector v) {
int32_t __attribute__((aligned(128))) x;
hvx_vec_store_a(&x, 4, v);
return x;
}
static inline HVX_Vector hvx_vec_abs_f16(HVX_Vector v) {
// abs by clearing the fp16 sign bit
HVX_Vector mask = Q6_Vh_vsplat_R(0x7fff);

View File

@@ -136,8 +136,6 @@ static inline void hvx_copy_f32_uu(uint8_t * restrict dst, const uint8_t * restr
dst_type * restrict vdst = (dst_type *) dst; \
src_type * restrict vsrc = (src_type *) src; \
\
const HVX_Vector zero = Q6_V_vsplat_R(0); \
\
const uint32_t elem_size = sizeof(__fp16); \
const uint32_t epv = 128 / elem_size; \
const uint32_t nvec = n / epv; \

View File

@@ -0,0 +1,116 @@
#ifndef HVX_DIV_H
#define HVX_DIV_H
#include <HAP_farf.h>
#include <math.h>
#include <string.h>
#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include "hvx-base.h"
#include "hex-utils.h"
#include "hvx-inverse.h"
#include "hvx-arith.h"
#if __HVX_ARCH__ < 79
#define HVX_OP_MUL(a, b) Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(a, b))
#else
#define HVX_OP_MUL(a, b) Q6_Vsf_vmpy_VsfVsf(a, b)
#endif
#define hvx_div_f32_loop_body(dst_type, src0_type, src1_type, vec_store) \
do { \
dst_type * restrict vdst = (dst_type *) dst; \
src0_type * restrict vsrc0 = (src0_type *) src0; \
src1_type * restrict vsrc1 = (src1_type *) src1; \
\
const HVX_Vector nan_inf_mask = Q6_V_vsplat_R(0x7f800000); \
\
const uint32_t nvec = n / VLEN_FP32; \
const uint32_t nloe = n % VLEN_FP32; \
\
uint32_t i = 0; \
\
_Pragma("unroll(4)") \
for (; i < nvec; i++) { \
HVX_Vector inv_src1 = hvx_vec_inverse_f32_guard(vsrc1[i], nan_inf_mask); \
HVX_Vector res = HVX_OP_MUL(vsrc0[i], inv_src1); \
vdst[i] = res; \
} \
if (nloe) { \
HVX_Vector inv_src1 = hvx_vec_inverse_f32_guard(vsrc1[i], nan_inf_mask); \
HVX_Vector res = HVX_OP_MUL(vsrc0[i], inv_src1); \
vec_store((void *) &vdst[i], nloe * SIZEOF_FP32, res); \
} \
} while(0)
// 3-letter suffix variants
static inline void hvx_div_f32_aaa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) dst % 128 == 0);
assert((uintptr_t) src0 % 128 == 0);
assert((uintptr_t) src1 % 128 == 0);
hvx_div_f32_loop_body(HVX_Vector, HVX_Vector, HVX_Vector, hvx_vec_store_a);
}
static inline void hvx_div_f32_aau(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) dst % 128 == 0);
assert((uintptr_t) src0 % 128 == 0);
hvx_div_f32_loop_body(HVX_Vector, HVX_Vector, HVX_UVector, hvx_vec_store_a);
}
static inline void hvx_div_f32_aua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) dst % 128 == 0);
assert((uintptr_t) src1 % 128 == 0);
hvx_div_f32_loop_body(HVX_Vector, HVX_UVector, HVX_Vector, hvx_vec_store_a);
}
static inline void hvx_div_f32_auu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) dst % 128 == 0);
hvx_div_f32_loop_body(HVX_Vector, HVX_UVector, HVX_UVector, hvx_vec_store_a);
}
static inline void hvx_div_f32_uaa(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) src0 % 128 == 0);
assert((uintptr_t) src1 % 128 == 0);
hvx_div_f32_loop_body(HVX_UVector, HVX_Vector, HVX_Vector, hvx_vec_store_u);
}
static inline void hvx_div_f32_uau(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) src0 % 128 == 0);
hvx_div_f32_loop_body(HVX_UVector, HVX_Vector, HVX_UVector, hvx_vec_store_u);
}
static inline void hvx_div_f32_uua(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
assert((uintptr_t) src1 % 128 == 0);
hvx_div_f32_loop_body(HVX_UVector, HVX_UVector, HVX_Vector, hvx_vec_store_u);
}
static inline void hvx_div_f32_uuu(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, uint32_t n) {
hvx_div_f32_loop_body(HVX_UVector, HVX_UVector, HVX_UVector, hvx_vec_store_u);
}
static inline void hvx_div_f32(uint8_t * restrict dst, const uint8_t * restrict src0, const uint8_t * restrict src1, const uint32_t num_elems) {
if (hex_is_aligned((void *) dst, 128)) {
if (hex_is_aligned((void *) src0, 128)) {
if (hex_is_aligned((void *) src1, 128)) hvx_div_f32_aaa(dst, src0, src1, num_elems);
else hvx_div_f32_aau(dst, src0, src1, num_elems);
} else {
if (hex_is_aligned((void *) src1, 128)) hvx_div_f32_aua(dst, src0, src1, num_elems);
else hvx_div_f32_auu(dst, src0, src1, num_elems);
}
} else {
if (hex_is_aligned((void *) src0, 128)) {
if (hex_is_aligned((void *) src1, 128)) hvx_div_f32_uaa(dst, src0, src1, num_elems);
else hvx_div_f32_uau(dst, src0, src1, num_elems);
} else {
if (hex_is_aligned((void *) src1, 128)) hvx_div_f32_uua(dst, src0, src1, num_elems);
else hvx_div_f32_uuu(dst, src0, src1, num_elems);
}
}
}
#undef HVX_OP_MUL
#endif // HVX_DIV_H

View File

@@ -91,6 +91,27 @@ static inline HVX_Vector hvx_vec_tanh_f32(HVX_Vector x) {
} \
} while(0)
#define hvx_tanh_loop_body(dst_type, src_type, vec_store) \
do { \
dst_type * restrict vdst = (dst_type *) dst; \
src_type * restrict vsrc = (src_type *) src; \
\
const uint32_t epv = 128 / sizeof(float); \
const uint32_t nvec = n / epv; \
const uint32_t nloe = n % epv; \
\
uint32_t i = 0; \
\
_Pragma("unroll(4)") \
for (; i < nvec; i++) { \
vdst[i] = hvx_vec_tanh_f32(vsrc[i]); \
} \
if (nloe) { \
HVX_Vector tmp = hvx_vec_tanh_f32(vsrc[i]); \
vec_store((void *) &vdst[i], nloe * sizeof(float), tmp); \
} \
} while(0)
static inline void hvx_sigmoid_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
@@ -111,4 +132,10 @@ static inline void hvx_sigmoid_f32_uu(uint8_t * restrict dst, const uint8_t * re
hvx_sigmoid_loop_body(HVX_UVector, HVX_UVector, hvx_vec_store_u);
}
static inline void hvx_tanh_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
hvx_tanh_loop_body(HVX_Vector, HVX_Vector, hvx_vec_store_a);
}
#endif /* HVX_SIGMOID_H */

View File

@@ -12,11 +12,17 @@
#define RSQRT_ONE_HALF 0x3f000000 // 0.5
#define RSQRT_THREE_HALVES 0x3fc00000 // 1.5
#if __HVX_ARCH__ < 79
#define HVX_OP_MUL(a, b) Q6_Vsf_equals_Vqf32(Q6_Vqf32_vmpy_VsfVsf(a, b))
#else
#define HVX_OP_MUL(a, b) Q6_Vsf_vmpy_VsfVsf(a, b)
#endif
static inline HVX_Vector hvx_vec_rsqrt_f32(HVX_Vector in_vec) {
//Algorithm :
// x2 = input*0.5
// y = * (long *) &input
// y = 0x5f3759df - (y>>2)
// y = 0x5f3759df - (y>>1)
// y = y*(threehalfs - x2*y*y)
HVX_Vector rsqrtconst = Q6_V_vsplat_R(RSQRT_CONST);
@@ -57,4 +63,64 @@ static inline HVX_Vector hvx_vec_rsqrt_f32(HVX_Vector in_vec) {
return Q6_Vsf_equals_Vqf32(temp);
}
// Compute sqrt(x) as x*inv_sqrt(x)
#define hvx_sqrt_f32_loop_body(dst_type, src_type, vec_store) \
do { \
dst_type * restrict vdst = (dst_type *) dst; \
src_type * restrict vsrc = (src_type *) src; \
\
const uint32_t nvec = n / VLEN_FP32; \
const uint32_t nloe = n % VLEN_FP32; \
\
uint32_t i = 0; \
\
_Pragma("unroll(4)") \
for (; i < nvec; i++) { \
HVX_Vector inv_sqrt = hvx_vec_rsqrt_f32(vsrc[i]); \
HVX_Vector sqrt_res = HVX_OP_MUL(inv_sqrt, vsrc[i]); \
vdst[i] = sqrt_res; \
} \
if (nloe) { \
HVX_Vector inv_sqrt = hvx_vec_rsqrt_f32(vsrc[i]); \
HVX_Vector sqrt_res = HVX_OP_MUL(inv_sqrt, vsrc[i]); \
vec_store((void *) &vdst[i], nloe * SIZEOF_FP32, sqrt_res); \
} \
} while(0)
static inline void hvx_sqrt_f32_aa(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
assert((unsigned long) src % 128 == 0);
hvx_sqrt_f32_loop_body(HVX_Vector, HVX_Vector, hvx_vec_store_a);
}
static inline void hvx_sqrt_f32_au(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) dst % 128 == 0);
hvx_sqrt_f32_loop_body(HVX_Vector, HVX_UVector, hvx_vec_store_a);
}
static inline void hvx_sqrt_f32_ua(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
assert((unsigned long) src % 128 == 0);
hvx_sqrt_f32_loop_body(HVX_UVector, HVX_Vector, hvx_vec_store_u);
}
static inline void hvx_sqrt_f32_uu(uint8_t * restrict dst, const uint8_t * restrict src, uint32_t n) {
hvx_sqrt_f32_loop_body(HVX_UVector, HVX_UVector, hvx_vec_store_u);
}
static inline void hvx_sqrt_f32(uint8_t * restrict dst, const uint8_t * restrict src, const int num_elems) {
if ((unsigned long) dst % 128 == 0) {
if ((unsigned long) src % 128 == 0) {
hvx_sqrt_f32_aa(dst, src, num_elems);
} else {
hvx_sqrt_f32_au(dst, src, num_elems);
}
} else {
if ((unsigned long) src % 128 == 0) {
hvx_sqrt_f32_ua(dst, src, num_elems);
} else {
hvx_sqrt_f32_uu(dst, src, num_elems);
}
}
}
#endif /* HVX_SQRT_H */

View File

@@ -12,6 +12,7 @@
#include "hvx-sigmoid.h"
#include "hvx-sqrt.h"
#include "hvx-arith.h"
#include "hvx-div.h"
#include "hvx-base.h"
#endif /* HVX_UTILS_H */

View File

@@ -440,6 +440,45 @@ static void proc_matmul_req(struct htp_context * ctx,
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_argsort_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[1];
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[0].fd = bufs[1].fd;
rsp_bufs[0].ptr = bufs[1].ptr;
rsp_bufs[0].offset = bufs[1].offset;
rsp_bufs[0].size = bufs[1].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.dst.data = (uint32_t) bufs[1].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_argsort(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_cpy_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[1];
@@ -679,6 +718,45 @@ static void proc_unary_req(struct htp_context * ctx, struct htp_general_req * re
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_sum_rows_req(struct htp_context * ctx, struct htp_general_req * req, struct dspqueue_buffer * bufs) {
struct dspqueue_buffer rsp_bufs[HTP_MAX_PACKET_BUFFERS];
// We had written to the output buffer, we'd also need to flush it
rsp_bufs[0].fd = bufs[1].fd;
rsp_bufs[0].ptr = bufs[1].ptr;
rsp_bufs[0].offset = bufs[1].offset;
rsp_bufs[0].size = bufs[1].size;
rsp_bufs[0].flags = (DSPQUEUE_BUFFER_FLAG_FLUSH_SENDER | // Flush HTP
DSPQUEUE_BUFFER_FLAG_INVALIDATE_RECIPIENT); // Invalidate CPU
// Setup Op context
struct htp_ops_context octx = { 0 };
octx.ctx = ctx;
octx.src0 = req->src0;
octx.dst = req->dst;
octx.flags = req->flags;
octx.op = req->op;
memcpy(octx.op_params, req->op_params, sizeof(octx.op_params));
// Update data pointers
octx.src0.data = (uint32_t) bufs[0].ptr;
octx.dst.data = (uint32_t) bufs[1].ptr;
octx.n_threads = ctx->n_threads;
struct profile_data prof;
profile_start(&prof);
uint32_t rsp_status = HTP_STATUS_INTERNAL_ERR;
if (vtcm_acquire(ctx) == AEE_SUCCESS) {
rsp_status = op_sum_rows(&octx);
vtcm_release(ctx);
}
profile_stop(&prof);
send_htp_rsp(ctx, req->op, rsp_status, rsp_bufs, 1, &prof);
}
static void proc_activations_req(struct htp_context * ctx,
struct htp_general_req * req,
struct dspqueue_buffer * bufs,
@@ -951,6 +1029,7 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
case HTP_OP_MUL:
case HTP_OP_ADD:
case HTP_OP_SUB:
case HTP_OP_DIV:
if (n_bufs != 3) {
FARF(ERROR, "Bad binary-req buffer list");
continue;
@@ -968,6 +1047,25 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
proc_unary_req(ctx, &req, bufs);
break;
case HTP_OP_SQR:
case HTP_OP_SQRT:
if (n_bufs != 2) {
FARF(ERROR, "Bad unary-req buffer list");
continue;
}
proc_unary_req(ctx, &req, bufs);
break;
case HTP_OP_SUM_ROWS:
if (n_bufs != 2) {
FARF(ERROR, "Bad unary-req buffer list");
continue;
}
proc_sum_rows_req(ctx, &req, bufs);
break;
case HTP_OP_UNARY_SILU:
case HTP_OP_UNARY_GELU:
if (n_bufs != 2) {
@@ -980,6 +1078,7 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
case HTP_OP_GLU_SWIGLU:
case HTP_OP_GLU_SWIGLU_OAI:
case HTP_OP_SOFTMAX:
case HTP_OP_GLU_GEGLU:
if ((n_bufs != 2) && (n_bufs != 3)) {
FARF(ERROR, "Bad act-req buffer list");
continue;
@@ -1035,6 +1134,14 @@ static void htp_packet_callback(dspqueue_t queue, int error, void * context) {
proc_cpy_req(ctx, &req, bufs);
break;
case HTP_OP_ARGSORT:
if (n_bufs != 2) {
FARF(ERROR, "Bad argsort-req buffer list");
continue;
}
proc_argsort_req(ctx, &req, bufs);
break;
default:
FARF(ERROR, "Unknown Op %u", req.op);
break;

View File

@@ -0,0 +1,115 @@
#pragma clang diagnostic ignored "-Wunused-variable"
#pragma clang diagnostic ignored "-Wunused-function"
#pragma clang diagnostic ignored "-Wunused-but-set-variable"
#include <HAP_farf.h>
#include <HAP_perf.h>
#include <string.h>
#include <math.h>
#include "hex-dma.h"
#include "hvx-utils.h"
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "htp-ctx.h"
#include "htp-msg.h"
#include "htp-ops.h"
#define sum_rows_preamble \
struct htp_tensor *src0 = &octx->src0;\
struct htp_tensor *dst = &octx->dst; \
\
const uint32_t ne00 = src0->ne[0]; \
const uint32_t ne01 = src0->ne[1]; \
const uint32_t ne02 = src0->ne[2]; \
const uint32_t ne03 = src0->ne[3]; \
\
const uint32_t nb00 = src0->nb[0]; \
const uint32_t nb01 = src0->nb[1]; \
const uint32_t nb02 = src0->nb[2]; \
const uint32_t nb03 = src0->nb[3]; \
\
const uint32_t ne0 = dst->ne[0]; \
const uint32_t ne1 = dst->ne[1]; \
const uint32_t ne2 = dst->ne[2]; \
const uint32_t ne3 = dst->ne[3]; \
\
const uint32_t nb0 = dst->nb[0]; \
const uint32_t nb1 = dst->nb[1]; \
const uint32_t nb2 = dst->nb[2]; \
const uint32_t nb3 = dst->nb[3]; \
static int sum_rows_thread_f32(struct htp_ops_context * octx, const int nth, const int ith) {
sum_rows_preamble;
const uint32_t src0_nrows_per_thread = octx->src0_nrows_per_thread;
const size_t src0_row_size = nb01;
const size_t dst_row_size = nb1;
const uint32_t src0_nrows = ne01 * ne02 * ne03; // src0 rows
const uint32_t src0_start_row = src0_nrows_per_thread * ith;
const uint32_t src0_end_row = MIN(src0_start_row + src0_nrows_per_thread, src0_nrows);
// no work for this thread
if (src0_start_row >= src0_end_row) {
return HTP_STATUS_OK;
}
int opt_path = 0;
if ((0 == hex_is_aligned((void *) src0->data, VLEN)) && !(nb01 & (VLEN - 1))) {
opt_path = 1;
}
const uint8_t * restrict data_src = (const uint8_t *) src0->data;
uint8_t * restrict data_dst = (uint8_t *) dst->data;
const float * restrict src_th = (float *) (data_src + (src0_start_row * src0_row_size));
float * restrict dst_th = (float *) (data_dst + (src0_start_row * dst_row_size));
for (uint32_t ir = 0; ir < src0_nrows_per_thread; ir++) {
const float * restrict src_local = src_th + (ir * ne00);
if (ir + 1 < src0_nrows_per_thread) {
hex_l2fetch(src_local + ne00, src0_row_size, src0_row_size, 1);
}
if (1 == opt_path) {
dst_th[ir] = hvx_reduce_sum_f32_a((const uint8_t *) src_local, ne00);
} else {
dst_th[ir] = hvx_reduce_sum_f32((const uint8_t *) src_local, ne00);
}
}
return HTP_STATUS_OK;
}
static void sum_rows_work_f32(unsigned int n, unsigned int i, void *data) {
sum_rows_thread_f32((struct htp_ops_context *) data, n, i);
}
int op_sum_rows(struct htp_ops_context * octx) {
sum_rows_preamble;
if (octx->src0.type != HTP_TYPE_F32) {
return HTP_STATUS_NO_SUPPORT;
}
if (octx->flags & HTP_OPFLAGS_SKIP_COMPUTE) {
return HTP_STATUS_OK;
}
const int n_threads = octx->n_threads;
const uint32_t src0_nrows = ne01 * ne02 * ne03;
uint32_t n_jobs = MIN(n_threads, src0_nrows);
octx->src0_nrows_per_thread = (src0_nrows + n_jobs - 1) / n_jobs;
worker_pool_run_func(octx->ctx->worker_pool, sum_rows_work_f32, octx, n_jobs);
return HTP_STATUS_OK;
}

View File

@@ -132,6 +132,56 @@ static void rms_norm_htp_f32(const float * restrict src,
}
}
static void sqr_htp_f32(const float * restrict src,
float * restrict dst,
uint8_t * restrict spad,
const uint32_t num_rows,
const uint32_t row_elems,
const size_t row_size,
int32_t * op_params,
int opt_path) {
for (uint32_t ir = 0; ir < num_rows; ir++) {
const float * restrict src_local = src + (ir * row_elems);
float * restrict dst_local = dst + (ir * row_elems);
if (ir + 1 < num_rows) {
hex_l2fetch(src_local + row_elems, row_size, row_size, 1);
}
if (1 == opt_path) {
hvx_sqr_f32_aa((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems);
} else {
hvx_sqr_f32((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems);
}
}
}
static void sqrt_htp_f32(const float * restrict src,
float * restrict dst,
uint8_t * restrict spad,
const uint32_t num_rows,
const uint32_t row_elems,
const size_t row_size,
int32_t * op_params,
int opt_path) {
for (uint32_t ir = 0; ir < num_rows; ir++) {
const float * restrict src_local = src + (ir * row_elems);
float * restrict dst_local = dst + (ir * row_elems);
if (ir + 1 < num_rows) {
hex_l2fetch(src_local + row_elems, row_size, row_size, 1);
}
if (1 == opt_path) {
hvx_sqrt_f32_aa((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems);
} else {
hvx_sqrt_f32((uint8_t *) dst_local, (const uint8_t *) src_local, row_elems);
}
}
}
static void unary_job_f32_per_thread(const struct htp_tensor * src,
struct htp_tensor * dst,
uint8_t * spad,
@@ -181,6 +231,12 @@ static void unary_job_f32_per_thread(const struct htp_tensor * src,
case HTP_OP_SCALE:
scale_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
case HTP_OP_SQR:
sqr_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
case HTP_OP_SQRT:
sqrt_htp_f32(src_th, dst_th, spad_th, src0_end_row - src0_start_row, ne0, nb1, op_params, opt_path);
break;
default:
break;
@@ -218,6 +274,14 @@ static int execute_op_unary_f32(struct htp_ops_context * octx) {
unary_op_func = unary_job_dispatcher_f32;
op_type = "scale-f32";
break;
case HTP_OP_SQR:
unary_op_func = unary_job_dispatcher_f32;
op_type = "sqr-f32";
break;
case HTP_OP_SQRT:
unary_op_func = unary_job_dispatcher_f32;
op_type = "sqrt-f32";
break;
default:
FARF(ERROR, "Unsupported unary Op %u\n", octx->op);

View File

@@ -43,6 +43,10 @@ find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
if (GGML_HIP_RCCL)
find_package(rccl REQUIRED)
endif()
if (${hip_VERSION} VERSION_LESS 6.1)
message(FATAL_ERROR "At least ROCM/HIP V6.1 is required")
endif()
@@ -118,6 +122,10 @@ if (NOT GGML_HIP_MMQ_MFMA)
add_compile_definitions(GGML_HIP_NO_MMQ_MFMA)
endif()
if (GGML_HIP_RCCL)
add_compile_definitions(GGML_USE_NCCL) # RCCL has the same interface as NCCL.
endif()
if (GGML_HIP_EXPORT_METRICS)
set(CMAKE_HIP_FLAGS "${CMAKE_HIP_FLAGS} -Rpass-analysis=kernel-resource-usage --save-temps")
endif()
@@ -137,4 +145,8 @@ if (GGML_STATIC)
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
endif()
if (GGML_HIP_RCCL)
target_link_libraries(ggml-hip PRIVATE ggml-base roc::rccl)
endif()
target_link_libraries(ggml-hip PRIVATE ggml-base hip::host roc::rocblas roc::hipblas)

View File

@@ -1480,13 +1480,15 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_bin_one(ggml_met
ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm(ggml_metal_library_t lib, const ggml_tensor * op) {
assert(op->op == GGML_OP_L2_NORM);
GGML_ASSERT(op->src[0]->ne[0] % 4 == 0);
GGML_ASSERT(ggml_is_contiguous_1(op->src[0]));
char base[256];
char name[256];
snprintf(base, 256, "kernel_l2_norm_f32");
const bool is_c4 = op->src[0]->ne[0] % 4 == 0;
const char * t0_str = ggml_type_name(op->src[0]->type);
const char * t_str = ggml_type_name(op->type);
snprintf(base, 256, "kernel_l2_norm_%s_%s%s", t0_str, t_str, is_c4 ? "_4" : "");
snprintf(name, 256, "%s", base);
ggml_metal_pipeline_with_params res = ggml_metal_library_get_pipeline(lib, name);
@@ -1494,6 +1496,7 @@ ggml_metal_pipeline_with_params ggml_metal_library_get_pipeline_l2_norm(ggml_met
res = ggml_metal_library_compile_pipeline(lib, base, name, nullptr);
}
res.c4 = is_c4;
res.smem = 32*sizeof(float);
return res;

View File

@@ -1086,9 +1086,8 @@ bool ggml_metal_device_supports_op(ggml_metal_device_t dev, const struct ggml_te
case GGML_OP_MEAN:
case GGML_OP_SOFT_MAX:
case GGML_OP_GROUP_NORM:
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_L2_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0 && ggml_is_contiguous_1(op->src[0]));
return has_simdgroup_reduction && ggml_is_contiguous_rows(op->src[0]);
case GGML_OP_COUNT_EQUAL:
return has_simdgroup_reduction &&
op->src[0]->type == GGML_TYPE_I32 &&

View File

@@ -539,8 +539,21 @@ typedef struct {
typedef struct {
int32_t ne00;
int32_t ne00_4;
int32_t ne01;
int32_t ne02;
int32_t ne03;
uint64_t nb00;
uint64_t nb01;
uint64_t nb02;
uint64_t nb03;
int32_t ne0;
int32_t ne1;
int32_t ne2;
int32_t ne3;
uint64_t nb0;
uint64_t nb1;
uint64_t nb2;
uint64_t nb3;
float eps;
} ggml_metal_kargs_l2_norm;

View File

@@ -2979,39 +2979,59 @@ int ggml_metal_op_l2_norm(ggml_metal_op_t ctx, int idx) {
GGML_TENSOR_LOCALS( int32_t, ne, op, ne);
GGML_TENSOR_LOCALS(uint64_t, nb, op, nb);
GGML_ASSERT(ggml_is_contiguous_rows(op->src[0]));
ggml_metal_buffer_id bid_src0 = ggml_metal_get_buffer_id(op->src[0]);
ggml_metal_buffer_id bid_dst = ggml_metal_get_buffer_id(op);
float eps;
memcpy(&eps, op->op_params, sizeof(float));
int nth = 32; // SIMD width
ggml_metal_kargs_l2_norm args = {
/*.ne00 =*/ ne00,
/*.ne00_4 =*/ ne00/4,
/*.nb01 =*/ nb01,
/*.eps =*/ eps,
/*.ne00 =*/ ne00,
/*.ne01 =*/ ne01,
/*.ne02 =*/ ne02,
/*.ne03 =*/ ne03,
/*.nb00 =*/ nb00,
/*.nb01 =*/ nb01,
/*.nb02 =*/ nb02,
/*.nb03 =*/ nb03,
/*.ne0 =*/ ne0,
/*.ne1 =*/ ne1,
/*.ne2 =*/ ne2,
/*.ne3 =*/ ne3,
/*.nb0 =*/ nb0,
/*.nb1 =*/ nb1,
/*.nb2 =*/ nb2,
/*.nb3 =*/ nb3,
/*.eps =*/ eps,
};
auto pipeline = ggml_metal_library_get_pipeline_l2_norm(lib, op);
while (nth < ne00/4 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
if (pipeline.c4) {
args.ne00 = ne00/4;
args.ne0 = ne0/4;
}
int nth = 32; // SIMD width
while (nth < ne00 && nth < ggml_metal_pipeline_max_theads_per_threadgroup(pipeline)) {
nth *= 2;
}
nth = std::min(nth, ggml_metal_pipeline_max_theads_per_threadgroup(pipeline));
nth = std::min(nth, ne00/4);
const size_t smem = pipeline.smem;
const int64_t nrows = ggml_nrows(op->src[0]);
ggml_metal_encoder_set_pipeline(enc, pipeline);
ggml_metal_encoder_set_bytes (enc, &args, sizeof(args), 0);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op->src[0]), 1);
ggml_metal_encoder_set_buffer (enc, ggml_metal_get_buffer_id(op), 2);
ggml_metal_encoder_set_buffer (enc, bid_src0, 1);
ggml_metal_encoder_set_buffer (enc, bid_dst, 2);
ggml_metal_encoder_set_threadgroup_memory_size(enc, smem, 0);
ggml_metal_encoder_dispatch_threadgroups(enc, nrows, 1, 1, nth, 1, 1);
ggml_metal_encoder_dispatch_threadgroups(enc, ne01, ne02, ne03, nth, 1, 1);
return 1;
}

View File

@@ -90,6 +90,8 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_shared_i = {
/* .memset_tensor = */ ggml_backend_metal_buffer_shared_memset_tensor,
/* .set_tensor = */ ggml_backend_metal_buffer_shared_set_tensor,
/* .get_tensor = */ ggml_backend_metal_buffer_shared_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_metal_buffer_shared_cpy_tensor,
/* .clear = */ ggml_backend_metal_buffer_shared_clear,
/* .reset = */ NULL,
@@ -164,6 +166,8 @@ static ggml_backend_buffer_i ggml_backend_metal_buffer_private_i = {
/* .memset_tensor = */ ggml_backend_metal_buffer_private_memset_tensor,
/* .set_tensor = */ ggml_backend_metal_buffer_private_set_tensor,
/* .get_tensor = */ ggml_backend_metal_buffer_private_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_metal_buffer_private_cpy_tensor,
/* .clear = */ ggml_backend_metal_buffer_private_clear,
/* .reset = */ NULL,
@@ -563,6 +567,8 @@ static ggml_backend_i ggml_backend_metal_i = {
/* .free = */ ggml_backend_metal_free,
/* .set_tensor_async = */ ggml_backend_metal_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_metal_get_tensor_async,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ ggml_backend_metal_cpy_tensor_async, // only needed for multi-GPU setups
/* .synchronize = */ ggml_backend_metal_synchronize,
/* .graph_plan_create = */ NULL,

View File

@@ -2706,26 +2706,32 @@ template [[host_name("kernel_rms_norm_f32_4")]] kernel kernel_rms_norm_f
template [[host_name("kernel_rms_norm_mul_f32_4")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float4, 2>;
template [[host_name("kernel_rms_norm_mul_add_f32_4")]] kernel kernel_rms_norm_fuse_t kernel_rms_norm_fuse_impl<float4, 3>;
kernel void kernel_l2_norm_f32(
template <typename T0, typename T>
kernel void kernel_l2_norm_impl(
constant ggml_metal_kargs_l2_norm & args,
device const char * src0,
device char * dst,
threadgroup float * shmem_f32 [[threadgroup(0)]],
uint tgpig[[threadgroup_position_in_grid]],
ushort tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort ntg[[threads_per_threadgroup]]) {
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]],
ushort tiisg[[thread_index_in_simdgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i03 = tgpig.z;
const int i02 = tgpig.y;
const int i01 = tgpig.x;
if (sgitg == 0) {
shmem_f32[tiisg] = 0.0f;
}
device const float4 * x = (device const float4 *) (src0 + tgpig*args.nb01);
device const T0 * x = (device const T0 *) (src0 + i03*args.nb03 + i02*args.nb02 + i01*args.nb01);
device T * y = (device T *) (dst + i03*args.nb3 + i02*args.nb2 + i01*args.nb1);
float sumf = 0.0f;
// parallel sum
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00; i00 += ntg.x) {
sumf += dot(x[i00], x[i00]);
}
sumf = simd_sum(sumf);
@@ -2743,12 +2749,16 @@ kernel void kernel_l2_norm_f32(
const float scale = 1.0f/sqrt(max(sumf, args.eps));
device float4 * y = (device float4 *) dst + tgpig*args.ne00_4;
for (int i00 = tpitg; i00 < args.ne00_4; i00 += ntg) {
for (int i00 = tpitg.x; i00 < args.ne00; i00 += ntg.x) {
y[i00] = x[i00] * scale;
}
}
typedef decltype(kernel_l2_norm_impl<float, float>) kernel_l2_norm_t;
template [[host_name("kernel_l2_norm_f32_f32")]] kernel kernel_l2_norm_t kernel_l2_norm_impl<float, float>;
template [[host_name("kernel_l2_norm_f32_f32_4")]] kernel kernel_l2_norm_t kernel_l2_norm_impl<float4, float4>;
kernel void kernel_group_norm_f32(
constant ggml_metal_kargs_group_norm & args,
device const float * src0,

View File

@@ -3478,6 +3478,8 @@ static ggml_backend_i ggml_backend_opencl_i = {
/* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
/* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
/* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .synchronize = */ ggml_backend_opencl_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
@@ -4716,6 +4718,8 @@ static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_opencl_buffer_clear,
/* .reset = */ ggml_backend_opencl_buffer_reset,

View File

@@ -705,6 +705,8 @@ static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_rpc_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_rpc_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_rpc_buffer_cpy_tensor,
/* .clear = */ ggml_backend_rpc_buffer_clear,
/* .reset = */ NULL,
@@ -893,6 +895,8 @@ static ggml_backend_i ggml_backend_rpc_interface = {
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .synchronize = */ ggml_backend_rpc_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,

View File

@@ -589,6 +589,8 @@ static const ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
/* .memset_tensor = */ ggml_backend_sycl_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,
/* .clear = */ ggml_backend_sycl_buffer_clear,
/* .reset = */ ggml_backend_sycl_buffer_reset,
@@ -4455,6 +4457,8 @@ static ggml_backend_i ggml_backend_sycl_interface = {
/* .free = */ ggml_backend_sycl_free,
/* .set_tensor_async = */ ggml_backend_sycl_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_sycl_get_tensor_async,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL, // ggml_backend_sycl_cpy_tensor_async,
// // TODO: update for the new
// interface

View File

@@ -101,6 +101,8 @@ const ggml_backend_buffer_i ggml_backend_remoting_buffer_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_remoting_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_remoting_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_remoting_buffer_cpy_tensor,
/* .clear = */ ggml_backend_remoting_buffer_clear,
/* .reset = */ NULL,
@@ -113,6 +115,8 @@ const ggml_backend_buffer_i ggml_backend_remoting_buffer_from_ptr_interface = {
/* .memset_tensor = */ NULL,
/* .set_tensor = */ ggml_backend_remoting_buffer_set_tensor_from_ptr,
/* .get_tensor = */ ggml_backend_remoting_buffer_get_tensor_from_ptr,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_remoting_buffer_cpy_tensor,
/* .clear = */ ggml_backend_remoting_buffer_clear,
/* .reset = */ NULL,

View File

@@ -34,6 +34,8 @@ static ggml_backend_i ggml_backend_remoting_interface = {
/* .free = */ ggml_backend_remoting_free,
/* .set_tensor_async = */ NULL, // ggml_backend_remoting_set_tensor_async,
/* .get_tensor_async = */ NULL, // ggml_backend_remoting_get_tensor_async,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL, // ggml_backend_remoting_cpy_tensor_async,
/* .synchronize = */ NULL, // ggml_backend_remoting_synchronize,
/* .graph_plan_create = */ NULL,

View File

@@ -13073,6 +13073,8 @@ static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
/* .memset_tensor = */ ggml_backend_vk_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
/* .clear = */ ggml_backend_vk_buffer_clear,
/* .reset = */ NULL,
@@ -14374,6 +14376,8 @@ static ggml_backend_i ggml_backend_vk_interface = {
/* .free = */ ggml_backend_vk_free,
/* .set_tensor_async = */ ggml_backend_vk_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_vk_get_tensor_async,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
/* .synchronize = */ ggml_backend_vk_synchronize,
/* .graph_plan_create = */ NULL,

View File

@@ -2197,6 +2197,8 @@ static ggml_backend_i ggml_backend_webgpu_i = {
/* .free = */ ggml_backend_webgpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
@@ -2362,6 +2364,8 @@ static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
/* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ NULL, // TODO: optional, implement this
/* .clear = */ ggml_backend_webgpu_buffer_clear,
/* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor

View File

@@ -313,6 +313,8 @@ static ggml_backend_buffer_i ggml_backend_zdnn_buffer_i = {
/* .memset_tensor = */ ggml_backend_zdnn_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_zdnn_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_zdnn_buffer_get_tensor,
/* .set_tensor_2d = */ NULL,
/* .get_tensor_2d = */ NULL,
/* .cpy_tensor = */ NULL,
/* .clear = */ ggml_backend_zdnn_buffer_clear,
/* .reset = */ NULL,
@@ -417,20 +419,22 @@ static enum ggml_status ggml_backend_zdnn_graph_compute(ggml_backend_t backend,
}
static ggml_backend_i ggml_backend_zdnn_i = {
/* .get_name = */ ggml_backend_zdnn_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
/* .get_name = */ ggml_backend_zdnn_name,
/* .free = */ ggml_backend_zdnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_zdnn_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
/* .graph_optimize = */ NULL,
};
static ggml_guid_t ggml_backend_zdnn_guid(void) {

View File

@@ -240,6 +240,8 @@ static struct ggml_backend_i ggml_backend_zendnn_i = {
/* .free = */ ggml_backend_zendnn_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .get_tensor_2d_async = */ NULL,
/* .set_tensor_2d_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ NULL,

View File

@@ -189,9 +189,10 @@ extern "C" {
LLAMA_API const char * llama_flash_attn_type_name(enum llama_flash_attn_type flash_attn_type);
enum llama_split_mode {
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
LLAMA_SPLIT_MODE_NONE = 0, // single GPU
LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
LLAMA_SPLIT_MODE_ROW = 2, // split layers and KV across GPUs, use tensor parallelism if supported
LLAMA_SPLIT_MODE_TENSOR = 3,
};
// TODO: simplify (https://github.com/ggml-org/llama.cpp/pull/9294#pullrequestreview-2286561979)
@@ -482,7 +483,7 @@ extern "C" {
enum llama_params_fit_status {
LLAMA_PARAMS_FIT_STATUS_SUCCESS = 0, // found allocations that are projected to fit
LLAMA_PARAMS_FIT_STATUS_FAILURE = 1, // could not find allocations that are projected to fit
LLAMA_PARAMS_FIT_STATUS_ERROR = 2, // a hard error occured, e.g. because no model could be found at the specified path
LLAMA_PARAMS_FIT_STATUS_ERROR = 2, // a hard error occurred, e.g. because no model could be found at the specified path
};
// fits mparams and cparams to free device memory (assumes system memory is unlimited)

View File

@@ -972,9 +972,11 @@ void llama_context::set_abort_callback(bool (*abort_callback)(void * data), void
for (auto & backend : backends) {
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get()));
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data);
if (reg) {
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback");
if (set_abort_callback_fn) {
set_abort_callback_fn(backend.get(), this->abort_callback, this->abort_callback_data);
}
}
}
}

View File

@@ -187,7 +187,11 @@ llama_kv_cache::llama_kv_cache(
t->buffer = buf; // set dummy buffer for KV cache so that the backend scheduler won't try to allocate it
}
} else {
buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft); // real buffer
if (ggml_backend_buft_is_meta(buft)) {
buf = ggml_backend_meta_alloc_ctx_tensors_from_buft(ctx.get(), buft);
} else {
buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft); // real buffer
}
}
if (!buf) {
throw std::runtime_error("failed to allocate buffer for kv cache");

View File

@@ -1,5 +1,6 @@
#include "llama-memory-recurrent.h"
#include "ggml-backend.h"
#include "llama-impl.h"
#include "llama-io.h"
#include "llama-batch.h"
@@ -101,7 +102,8 @@ llama_memory_recurrent::llama_memory_recurrent(
// allocate tensors and initialize the buffers to avoid NaNs in the padding
for (auto & [buft, ctx] : ctx_map) {
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
ggml_backend_buffer_t buf = ggml_backend_buft_is_meta(buft) ?
ggml_backend_meta_alloc_ctx_tensors_from_buft(ctx.get(), buft) : ggml_backend_alloc_ctx_tensors_from_buft(ctx.get(), buft);
if (!buf) {
throw std::runtime_error("failed to allocate buffer for rs cache");
}

View File

@@ -419,14 +419,16 @@ static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode s
// add the device extra buffer type (if any)
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
if (reg) {
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
while (extra_bufts && *extra_bufts) {
buft_list.emplace_back(dev, *extra_bufts);
++extra_bufts;
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(dev);
while (extra_bufts && *extra_bufts) {
buft_list.emplace_back(dev, *extra_bufts);
++extra_bufts;
}
}
}
@@ -7502,7 +7504,11 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
t->buffer = buf; // set dummy buffer for weights so that the backend scheduler won't try to allocate them
}
} else {
buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); // real buffer
if (ggml_backend_buft_is_meta(buft)) {
buf = ggml_backend_meta_alloc_ctx_tensors_from_buft(ctx, buft); // real buffer
} else {
buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); // real buffer
}
}
if (buf == nullptr) {
throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));

View File

@@ -21,7 +21,9 @@
#include <cstdio>
#include <cstring>
#include <ctime>
#include <regex>
#include <stdexcept>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@@ -160,6 +162,9 @@ static void llama_params_fit_impl(
const char * path_model, struct llama_model_params * mparams, struct llama_context_params * cparams,
float * tensor_split, struct llama_model_tensor_buft_override * tensor_buft_overrides,
size_t * margins_s, uint32_t n_ctx_min, enum ggml_log_level log_level) {
if (mparams->split_mode == LLAMA_SPLIT_MODE_TENSOR) {
throw llama_params_fit_exception("llama_params_fit is not implemented for SPLIT_MODE_TENSOR, abort");
}
constexpr int64_t MiB = 1024*1024;
typedef std::vector<llama_device_memory_data> dmds_t;
const llama_model_params default_mparams = llama_model_default_params();
@@ -879,6 +884,67 @@ static int llama_model_load(const std::string & fname, std::vector<std::string>
return 0;
}
static enum ggml_backend_meta_split_state llama_meta_device_get_tensor_split(const struct ggml_tensor * tensor, void * userdata) {
// attention
const std::regex pattern_qkv_weight("blk\\.\\d*\\.attn_(q|k|v).weight");
if (std::regex_match(tensor->name, pattern_qkv_weight)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE1;
}
const std::regex pattern_qkv_bias("blk\\.\\d*\\.attn_(q|k|v)\\.bias");
if (std::regex_match(tensor->name, pattern_qkv_bias)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
const std::regex pattern_qk_norm("blk\\.\\d*\\.attn_(q|k)_norm\\.weight");
if (std::regex_match(tensor->name, pattern_qk_norm)) {
return tensor->ne[1] == 1 ? GGML_BACKEND_SPLIT_STATE_MIRRORED : GGML_BACKEND_SPLIT_STATE_BY_NE1;
}
const std::regex pattern_kv_cache("cache_(k|v)_l\\d*");
const std::regex pattern_attn_sinks("blk\\.\\d*\\.attn_sinks.weight");
if (std::regex_match(tensor->name, pattern_kv_cache) || std::regex_match(tensor->name, pattern_attn_sinks)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
const std::regex pattern_attn_out_weight("blk\\.\\d*\\.attn_output.weight");
if (std::regex_match(tensor->name, pattern_attn_out_weight)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
const std::regex pattern_attn_out_bias("blk\\.\\d*\\.attn_output.bias");
if (std::regex_match(tensor->name, pattern_attn_out_bias)) {
return GGML_BACKEND_SPLIT_STATE_MIRRORED;
}
// FFN
const std::regex pattern_ffn_up_gate_weight("blk\\.\\d*\\.ffn_(up|gate)(_exps)?.weight");
if (std::regex_match(tensor->name, pattern_ffn_up_gate_weight)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE1;
}
const std::regex pattern_ffn_up_gate_bias("blk\\.\\d*\\.ffn_(up|gate)(_exps)?.bias");
if (std::regex_match(tensor->name, pattern_ffn_up_gate_bias)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
const std::regex pattern_ffn_down_weight("blk\\.\\d*\\.ffn_down(_exps)?.weight");
if (std::regex_match(tensor->name, pattern_ffn_down_weight)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
const std::regex pattern_ffn_down_bias("blk\\.\\d*\\.ffn_down(_exps)?.bias");
if (std::regex_match(tensor->name, pattern_ffn_down_bias)) {
return GGML_BACKEND_SPLIT_STATE_MIRRORED;
}
// output
const std::regex pattern_output_weight("output\\.weight");
if (std::regex_match(tensor->name, pattern_output_weight)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE1;
}
const std::regex pattern_output_bias("output\\.bias");
if (std::regex_match(tensor->name, pattern_output_bias)) {
return GGML_BACKEND_SPLIT_STATE_BY_NE0;
}
// everything else
return GGML_BACKEND_SPLIT_STATE_MIRRORED;
GGML_UNUSED(userdata);
}
static struct llama_model * llama_model_load_from_file_impl(
const std::string & path_model,
std::vector<std::string> & splits,
@@ -911,8 +977,16 @@ static struct llama_model * llama_model_load_from_file_impl(
// create list of devices to use with this model
if (params.devices) {
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
model->devices.push_back(*dev);
if (params.split_mode == LLAMA_SPLIT_MODE_TENSOR) {
size_t n_devs = 0;
while (params.devices[n_devs]) {
n_devs++;
}
model->devices.push_back(ggml_backend_meta_device(params.devices, n_devs, llama_meta_device_get_tensor_split, nullptr));
} else {
for (ggml_backend_dev_t * dev = params.devices; *dev; ++dev) {
model->devices.push_back(*dev);
}
}
} else {
// default device selection
@@ -922,47 +996,61 @@ static struct llama_model * llama_model_load_from_file_impl(
std::vector<ggml_backend_dev_t> igpus;
std::vector<ggml_backend_dev_t> rpc_servers;
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
switch (ggml_backend_dev_type(dev)) {
case GGML_BACKEND_DEVICE_TYPE_CPU:
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
// skip CPU backends since they are handled separately
break;
if (params.split_mode == LLAMA_SPLIT_MODE_TENSOR) {
std::vector<ggml_backend_dev_t> devs;
devs.reserve(ggml_backend_dev_count());
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
devs.push_back(ggml_backend_dev_get(i));
}
GGML_ASSERT(devs.size() >= 2);
GGML_ASSERT(ggml_backend_dev_buffer_type(devs.back()) == ggml_backend_cpu_buffer_type());
gpus.push_back(ggml_backend_meta_device(devs.data(), devs.size() - 1, llama_meta_device_get_tensor_split, nullptr));
} else {
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
switch (ggml_backend_dev_type(dev)) {
case GGML_BACKEND_DEVICE_TYPE_CPU:
case GGML_BACKEND_DEVICE_TYPE_ACCEL:
// skip CPU backends since they are handled separately
break;
case GGML_BACKEND_DEVICE_TYPE_GPU: {
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
rpc_servers.push_back(dev);
} else {
// check if there is already a GPU with the same device id
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
auto it = std::find_if(gpus.begin(), gpus.end(), [&props](ggml_backend_dev_t d) {
ggml_backend_dev_props d_props;
ggml_backend_dev_get_props(d, &d_props);
if (props.device_id && d_props.device_id) {
return strcmp(props.device_id, d_props.device_id) == 0;
}
return false;
});
if (it != gpus.end()) {
LLAMA_LOG_INFO("%s: skipping device %s (%s) with id %s - already using device %s (%s) with the same id\n",
__func__,
ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
props.device_id ? props.device_id : "unknown id",
ggml_backend_dev_name(*it), ggml_backend_dev_description(*it));
case GGML_BACKEND_DEVICE_TYPE_GPU: {
ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
if (ggml_backend_reg_name(reg) == std::string("RPC")) {
rpc_servers.push_back(dev);
} else {
gpus.push_back(dev);
}
}
break;
}
// check if there is already a GPU with the same device id
ggml_backend_dev_props props;
ggml_backend_dev_get_props(dev, &props);
auto it = std::find_if(gpus.begin(), gpus.end(), [&props](ggml_backend_dev_t d) {
ggml_backend_dev_props d_props;
ggml_backend_dev_get_props(d, &d_props);
if (props.device_id && d_props.device_id) {
return strcmp(props.device_id, d_props.device_id) == 0;
}
return false;
});
case GGML_BACKEND_DEVICE_TYPE_IGPU:
igpus.push_back(dev);
break;
if (it != gpus.end()) {
LLAMA_LOG_INFO("%s: skipping device %s (%s) with id %s - already using device %s (%s) with the same id\n",
__func__,
ggml_backend_dev_name(dev), ggml_backend_dev_description(dev),
props.device_id ? props.device_id : "unknown id",
ggml_backend_dev_name(*it), ggml_backend_dev_description(*it));
} else {
gpus.push_back(dev);
}
}
break;
}
case GGML_BACKEND_DEVICE_TYPE_IGPU:
igpus.push_back(dev);
break;
case GGML_BACKEND_DEVICE_TYPE_META:
GGML_ABORT("fatal error");
break;
}
}
}

View File

@@ -259,6 +259,8 @@ static const char * split_mode_str(llama_split_mode mode) {
return "layer";
case LLAMA_SPLIT_MODE_ROW:
return "row";
case LLAMA_SPLIT_MODE_TENSOR:
return "tensor";
default:
GGML_ABORT("invalid split mode");
}
@@ -440,7 +442,7 @@ static void print_usage(int /* argc */, char ** argv) {
join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -ncmoe, --n-cpu-moe <n> (default: %s)\n",
join(cmd_params_defaults.n_cpu_moe, ",").c_str());
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
printf(" -sm, --split-mode <none|layer|row|tensor> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n",
join(cmd_params_defaults.main_gpu, ",").c_str());
@@ -723,6 +725,8 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
mode = LLAMA_SPLIT_MODE_LAYER;
} else if (m == "row") {
mode = LLAMA_SPLIT_MODE_ROW;
} else if (m == "tensor") {
mode = LLAMA_SPLIT_MODE_TENSOR;
} else {
invalid_param = true;
break;
@@ -1685,7 +1689,7 @@ struct markdown_printer : public printer {
return 6;
}
if (field == "split_mode") {
return 5;
return 6;
}
if (field == "flash_attn") {
return 2;