Compare commits

...

29 Commits

Author SHA1 Message Date
Georgi Gerganov
6c8a04576e experiments 2026-01-28 09:45:07 +02:00
Georgi Gerganov
003c90352d ngram-map : take into account the input can become shorter 2026-01-27 11:56:13 +02:00
Georgi Gerganov
9f8401a533 ngram-map : fix uninitialized values 2026-01-27 11:07:18 +02:00
Georgi Gerganov
bc33838037 common : rename speculative.draftless_type -> speculative.type 2026-01-27 10:19:36 +02:00
Georgi Gerganov
351e798b2a Merge branch 'master' into pr/18471 2026-01-27 10:04:19 +02:00
Sascha Rogmann
dd23149dea CODEOWNERS: add common/ngram-map.* (#18471) 2026-01-26 22:06:43 +01:00
Sascha Rogmann
72f416e973 minor: comments 2026-01-26 22:04:00 +01:00
Georgi Gerganov
1f8d36665d minor : cleanup + fix build 2026-01-26 14:05:17 +02:00
Georgi Gerganov
a3300937e5 common : better names 2026-01-26 13:59:08 +02:00
Georgi Gerganov
f895bca71a minor : cleanup 2026-01-26 13:56:28 +02:00
Sascha Rogmann
fd4d803c60 common: print performance in spec decoding 2026-01-26 00:20:05 +01:00
Sascha Rogmann
288ab50597 doc: (draftless) speculative decoding 2026-01-25 23:58:55 +01:00
Sascha Rogmann
8ea068e5f8 spec: remove --spec-config 2026-01-25 23:56:29 +01:00
Georgi Gerganov
9ac881767c cont : naming 2026-01-25 21:39:54 +02:00
Georgi Gerganov
924517dd38 spec : refactor 2026-01-25 18:21:57 +02:00
Sascha Rogmann
af382c384a common: cleanup (use common_speculative_state_draft) 2026-01-25 16:41:44 +01:00
Sascha Rogmann
cb3a40277a common: moved self-spec impl to ngram-map 2026-01-25 01:16:06 +01:00
Sascha Rogmann
a1584ac80f server: cleanup (remove slot.batch_spec, rename) 2026-01-24 15:55:02 +01:00
Sascha Rogmann
1e29af4ea5 common: add option --spec-draftless 2026-01-24 15:55:02 +01:00
Sascha Rogmann
eb43748b05 common: add vector of speculative states 2026-01-24 15:55:02 +01:00
Sascha Rogmann
b38eb5907c common: add enum common_speculative_type 2026-01-24 15:55:02 +01:00
Sascha Rogmann
456268fa7f common: ngram map, config self-speculative decoding 2026-01-24 15:36:44 +01:00
Sascha Rogmann
907d094f9e server: can_speculate() requires a task instance 2026-01-24 15:36:44 +01:00
Sascha Rogmann
f1f6584ce6 common: use %zu format specifier for size_t in logging
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-24 15:36:44 +01:00
Sascha Rogmann
917f4bb14b server: replace can_speculate() with slot.can_speculate()
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-01-24 15:36:44 +01:00
Sascha Rogmann
38f7c28795 server: can_speculate() tests self-spec 2026-01-24 15:36:44 +01:00
Sascha Rogmann
e3e809cc01 can_speculate() includes self-speculation
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2026-01-24 15:36:44 +01:00
Sascha Rogmann
1faeb628db server: moved self-call into speculative.cpp 2026-01-24 15:36:43 +01:00
Sascha Rogmann
1fb2658b0d server: introduce self-speculative decoding 2026-01-24 15:36:43 +01:00
18 changed files with 1607 additions and 255 deletions

View File

@@ -18,6 +18,7 @@
/common/jinja/ @ngxson @CISC @aldehir
/common/llguidance.* @ggerganov
/common/log.* @ggerganov
/common/ngram-map.* @srogmann
/common/peg-parser.* @aldehir
/common/sampling.* @ggerganov
/common/speculative.* @ggerganov

View File

@@ -73,6 +73,8 @@ add_library(${TARGET} STATIC
log.h
ngram-cache.cpp
ngram-cache.h
ngram-map.cpp
ngram-map.h
peg-parser.cpp
peg-parser.h
preset.cpp

View File

@@ -6,6 +6,7 @@
#include "json-schema-to-grammar.h"
#include "log.h"
#include "sampling.h"
#include "speculative.h"
#include "preset.h"
// fix problem with std::min and std::max
@@ -1216,16 +1217,16 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"-lcs", "--lookup-cache-static"}, "FNAME",
"path to static lookup cache to use for lookup decoding (not updated by generation)",
[](common_params & params, const std::string & value) {
params.lookup_cache_static = value;
params.speculative.lookup_cache_static = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-lcd", "--lookup-cache-dynamic"}, "FNAME",
"path to dynamic lookup cache to use for lookup decoding (updated by generation)",
[](common_params & params, const std::string & value) {
params.lookup_cache_dynamic = value;
params.speculative.lookup_cache_dynamic = value;
}
).set_examples({LLAMA_EXAMPLE_LOOKUP}));
).set_examples({LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-c", "--ctx-size"}, "N",
string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
@@ -3396,6 +3397,68 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.speculative.replacements.push_back({ tgt, dft });
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_CLI}));
add_opt(common_arg(
{"--spec-draftless"}, "[none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v|ngram-map-mod]",
string_format("type of speculative decoding to use when no draft model is provided (default: %s)\n",
common_speculative_type_to_str(params.speculative.type).c_str()),
[](common_params & params, const std::string & value) {
if (value == "none") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NONE;
} else if (value == "ngram-cache") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_CACHE;
} else if (value == "ngram-simple") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE;
} else if (value == "ngram-map-k") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K;
} else if (value == "ngram-map-k4v") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V;
} else if (value == "ngram-map-mod") {
params.speculative.type = COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD;
} else {
throw std::invalid_argument("unknown speculative decoding type without draft model");
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-size-n"}, "N",
string_format("ngram size N for ngram-simple/ngram-map speculative decoding, length of lookup n-gram (default: %d)", params.speculative.ngram_size_n),
[](common_params & params, int value) {
if (value < 1 || value > 1024) {
throw std::invalid_argument("ngram size N must be between 1 and 1024 inclusive");
}
params.speculative.ngram_size_n = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-size-m"}, "N",
string_format("ngram size M for ngram-simple/ngram-map speculative decoding, length of draft m-gram (default: %d)", params.speculative.ngram_size_m),
[](common_params & params, int value) {
if (value < 1 || value > 1024) {
throw std::invalid_argument("ngram size M must be between 1 and 1024 inclusive");
}
params.speculative.ngram_size_m = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-check-rate"}, "N",
string_format("ngram check rate for ngram-simple/ngram-map speculative decoding (default: %d)", params.speculative.ngram_check_rate),
[](common_params & params, int value) {
if (value < 1) {
throw std::invalid_argument("ngram check rate must be at least 1");
}
params.speculative.ngram_check_rate = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--spec-ngram-min-hits"}, "N",
string_format("minimum hits for ngram-map speculative decoding (default: %d)", params.speculative.ngram_min_hits),
[](common_params & params, int value) {
if (value < 1) {
throw std::invalid_argument("ngram min hits must be at least 1");
}
params.speculative.ngram_min_hits = value;
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"-ctkd", "--cache-type-k-draft"}, "TYPE",
string_format(

View File

@@ -1097,7 +1097,10 @@ common_init_result::common_init_result(common_params & params) :
if (params.fit_params) {
LOG_INF("%s: fitting params to device memory, for bugs during this step try to reproduce them with -fit off, or provide --verbose logs if the bug only occurs with -fit on\n", __func__);
llama_params_fit(params.model.path.c_str(), &mparams, &cparams,
params.tensor_split, params.tensor_buft_overrides.data(), params.fit_params_target.data(), params.fit_params_min_ctx,
params.tensor_split,
params.tensor_buft_overrides.data(),
params.fit_params_target.data(),
params.fit_params_min_ctx,
params.verbosity >= 4 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_ERROR);
}
@@ -1208,10 +1211,6 @@ std::vector<llama_adapter_lora_ptr> & common_init_result::lora() {
return pimpl->lora;
}
void common_init_result::free_context() {
pimpl->context.reset();
}
common_init_result_ptr common_init_from_params(common_params & params) {
common_init_result_ptr res(new common_init_result(params));

View File

@@ -164,6 +164,17 @@ enum common_params_sampling_config : uint64_t {
COMMON_PARAMS_SAMPLING_CONFIG_MIROSTAT_ETA = 1 << 11,
};
enum common_speculative_type {
COMMON_SPECULATIVE_TYPE_NONE, // no speculative decoding
COMMON_SPECULATIVE_TYPE_DRAFT, // draft model
COMMON_SPECULATIVE_TYPE_EAGLE3, // eagle draft model
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, // simple self-speculative decoding
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, // self-speculative decoding with n-gram keys only
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, // self-speculative decoding with n-gram keys and 4 m-gram values
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, // self-speculative decoding with 3-level n-gram cache
COMMON_SPECULATIVE_TYPE_COUNT // number of types, unknown type
};
// sampling parameters
struct common_params_sampling {
@@ -251,6 +262,7 @@ struct common_params_speculative {
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
std::vector<std::pair<std::string, std::string>> replacements; // main to speculative model replacements
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
@@ -261,6 +273,20 @@ struct common_params_speculative {
struct cpu_params cpuparams_batch;
struct common_params_model model;
common_speculative_type type = COMMON_SPECULATIVE_TYPE_NONE; // type of speculative decoding
uint16_t ngram_size_n = 12; // ngram size for lookup
uint16_t ngram_size_m = 48; // mgram size for speculative tokens
uint16_t ngram_check_rate = 1; // check rate for ngram lookup
uint16_t ngram_min_hits = 1; // minimum hits at ngram/mgram lookup for mgram to be proposed
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
bool has_dft() const {
return !model.path.empty() || !model.hf_repo.empty();
}
};
struct common_params_vocoder {
@@ -378,8 +404,6 @@ struct common_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
// llama-debug specific options
@@ -575,10 +599,6 @@ struct common_params {
// return false from callback to abort model loading or true to continue
llama_progress_callback load_progress_callback = NULL;
void * load_progress_callback_user_data = NULL;
bool has_speculative() const {
return !speculative.model.path.empty() || !speculative.model.hf_repo.empty();
}
};
// call once at the start of a program if it uses libcommon
@@ -714,8 +734,6 @@ struct common_init_result {
std::vector<llama_adapter_lora_ptr> & lora();
void free_context();
private:
struct impl;
std::unique_ptr<impl> pimpl;

View File

@@ -192,12 +192,12 @@ void common_ngram_cache_draft(
break;
}
LOG(" - draft candidate: token=%d\n", drafted_token);
LOG_DBG(" - draft candidate: token=%d\n", drafted_token);
draft.push_back(drafted_token);
}
}
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename) {
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename) {
std::ofstream file_out(filename, std::ios::binary);
for (std::pair<common_ngram, common_ngram_cache_part> item : ngram_cache) {
const common_ngram ngram = item.first;
@@ -217,10 +217,9 @@ void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & fil
file_out.write(reinterpret_cast<const char *>(&count), sizeof(int32_t));
}
}
}
common_ngram_cache common_ngram_cache_load(std::string & filename) {
common_ngram_cache common_ngram_cache_load(const std::string & filename) {
std::ifstream hashmap_file(filename, std::ios::binary);
if (!hashmap_file) {
throw std::ifstream::failure("Unable to open file " + filename);

View File

@@ -88,12 +88,12 @@ void common_ngram_cache_draft(
// Save an ngram cache to a file.
// ngram_cache: the ngram cache to save.
// filename: the path under which to save the ngram cache.
void common_ngram_cache_save(common_ngram_cache & ngram_cache, std::string & filename);
void common_ngram_cache_save(common_ngram_cache & ngram_cache, const std::string & filename);
// Load an ngram cache saved with common_ngram_cache_save.
// filename: the path from which to load the ngram cache.
// returns: an ngram cache containing the information saved to filename.
common_ngram_cache common_ngram_cache_load(std::string & filename);
common_ngram_cache common_ngram_cache_load(const std::string & filename);
// Merge two ngram caches.
// ngram_cache_target: the ngram cache to which to add the information from ngram_cache_add.

457
common/ngram-map.cpp Normal file
View File

@@ -0,0 +1,457 @@
#include "common.h"
#include "log.h"
#include "ngram-map.h"
#include <cinttypes>
#include <cstdint>
#include <cstdio>
#include <sstream>
// Print the values of a sublist of `llama_tokens & inp` to a string in the form [v0, v1, v2, ...].
static std::string common_tokens_to_str(const llama_tokens & inp, size_t start, size_t length) {
std::ostringstream oss;
oss << '[';
for (size_t i = 0; i < length; ++i) {
if (i > 0) {
oss << ", ";
}
oss << inp[start + i];
}
oss << ']';
return oss.str();
}
// n-gram simple
//
/**
* Perform speculative generation using the model's own token history.
* Searches for a matching pattern in the token history and returns draft tokens.
*
* @param state Current state of this implementation
* @param tokens Token history to search in
* @param sampled Last sampled token
* @return Vector of draft tokens, empty if no matching pattern is found
*/
llama_tokens common_ngram_simple_draft(
common_ngram_simple_state & state,
const llama_tokens & tokens, llama_token sampled) {
// Simple implementation of self-speculative decoding without a draft model.
//
const size_t cur_len = tokens.size();
// Only check every check_rate tokens to save compute
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
if (state.idx_last_check + state.config.check_rate > cur_len && cur_len > state.idx_last_check) {
llama_tokens draft_tokens;
return draft_tokens;
}
size_t n_draft_min = state.config.size_ngram; // size of n-gram to lookup in token history
size_t n_draft_max = state.config.size_mgram; // the m-gram following the found n-gram is used for draft
// vector for tokens we want to verify.
// return empty vector if there is no match.
llama_tokens draft_tokens;
// We need at least n_draft_min + n_draft_max + 1 tokens.
if (cur_len <= static_cast<size_t>(n_draft_min + n_draft_max + 1)) {
return draft_tokens;
}
// pattern search
llama_tokens pattern;
pattern.reserve(n_draft_min);
for (size_t j = cur_len - n_draft_min + 1; j < cur_len; ++j) {
pattern.push_back(tokens[j]);
}
pattern.push_back(sampled); // add the last token to the pattern
// We do a search in the token history.
state.idx_last_check = cur_len;
size_t match_pos = 0; // we ignore position 0, position 0 == no match
// search backwards, but skip the current match (we are currently there)
for (size_t j = cur_len - n_draft_min - 1; j > 0; --j) {
bool match = true;
for (size_t k = 0; k < pattern.size(); ++k) {
if (tokens[j + k] != pattern[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
if (match_pos == 0) {
return draft_tokens;
}
const size_t copy_max = std::min(
n_draft_max,
cur_len - (match_pos + n_draft_min)
);
if (copy_max < n_draft_min) {
return draft_tokens;
}
LOG_DBG("%s: #tokens = %zu: found matching pattern at pos %zu, length %zu, draft length %zu\n",
__func__, cur_len,
match_pos, pattern.size(), copy_max);
draft_tokens.reserve(copy_max);
for (size_t j = 0; j < copy_max; ++j) {
draft_tokens.push_back(tokens[match_pos + n_draft_min + j]);
}
return draft_tokens;
}
// n-gram map
//
// maximum number of counted values of a ngram map value.
#define COMMON_NGRAM_MAX_VALUE_COUNT 16380
void common_ngram_map_draft(common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft) {
// reset last key and value.
map.last_draft_created = false;
map.last_draft_key_idx = 0;
map.last_draft_value_idx = 0;
const size_t cur_len = inp.size();
const uint16_t n = map.size_key;
const uint16_t m = map.size_value;
if (cur_len < static_cast<size_t>(2 * n + m)) {
return;
}
// Only check every check_rate tokens to save compute
// i.e., perform check if (cur_len - idx_last_check) >= check_rate
if (map.idx_last_check + map.check_rate > cur_len && cur_len > map.idx_last_check) {
return;
}
map.idx_last_check = cur_len;
// search pattern, the key n-gram
std::vector<llama_token> key_tokens;
key_tokens.reserve(n);
for (size_t j = cur_len - n + 1; j < cur_len; ++j) {
key_tokens.push_back(inp[j]);
}
key_tokens.push_back(sampled);
// search for the key in the map
size_t match_pos = 0;
for (size_t j = cur_len - n - m - 1; j > 0; --j) {
bool match = true;
for (size_t k = 0; k < n; ++k) {
if (inp[j + k] != key_tokens[k]) {
match = false;
break;
}
}
if (match) {
match_pos = j;
break;
}
}
if (match_pos > 0) {
LOG_INF("%s: cur_len = %zu, n = %d, m = %d, sz_tkns = %zu, sampled = %d, match_pos = %zu\n", __func__,
cur_len, n, m, key_tokens.size(), sampled, match_pos);
}
if (match_pos == 0) {
return;
}
// We have a match, now we look for the statistics of the key.
size_t key_offset = map.keys.size(); // offset in the map
// We iterate through the std::vector<common_ngram_map_key> map->keys.
for (size_t i = 0; i < map.keys.size(); ++i) {
bool match = true;
for (size_t j = 0; j < n; ++j) {
if (inp[map.keys[i].key_idx + j] != key_tokens[j]) {
match = false;
break;
}
}
if (match) {
key_offset = i;
break;
}
}
if (key_offset == map.keys.size()) {
// We create a new key-entry, it will get offset key_offset.
common_ngram_map_key new_key;
new_key.key_idx = match_pos;
new_key.stat_idx = 0;
new_key.key_num = 0;
for (int i = 0; i < COMMON_NGRAM_MAX_VALUES; ++i) {
new_key.values[i].value_num = 0;
new_key.values[i].n_accepted = m;
}
map.keys.push_back(new_key);
}
// our key n-gram:
common_ngram_map_key & curr_key = map.keys[key_offset];
// update number of key hits
curr_key.key_num = (uint16_t) std::min((int) map.keys[key_offset].key_num + 1,
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
if (map.key_only) {
// simple mode:
// Fill in the draft with the m tokens following the key.
// We work with value values[0] only.
int n_draft_tokens = std::min((int) m, (int) curr_key.values[0].n_accepted);
for (int i = 0; i < n_draft_tokens; ++i) {
draft.push_back(inp[match_pos + n + i]);
}
LOG_INF("%s: key_offset = %zu, key_num = %d, draft.size = %zu\n", __func__,
key_offset, curr_key.key_num, draft.size());
map.last_draft_created = false;
map.last_draft_key_idx = key_offset;
map.last_draft_value_idx = 0; // value 0 is used for simple mode
return;
}
if (curr_key.key_num < map.min_hits) {
// not enough hits to consider this a good draft
LOG_DBG("%s: key_offset = %zu, key_num = %d, min_hits = %d, no draft\n", __func__,
key_offset, curr_key.key_num, map.min_hits);
return;
}
// complex mode: examine the different m-grams after this key n-gram.
//
// determine all (max COMMON_NGRAM_MAX_VALUES) m-grams after the key n-gram.
for (size_t i = curr_key.stat_idx; i <= match_pos; ++i) {
// begins the key n-gram at index i?
bool match_key = true;
for (size_t k = 0; k < n; ++k) {
if (inp[i + k] != key_tokens[k]) {
match_key = false;
break;
}
}
if (!match_key) {
continue;
}
// Do we haven a existing value m-gram or a new one after the key at index i?
size_t idx_begin_value_key = i + n;
int idx_value = -1;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
size_t idx_begin_value_v = curr_key.values[v].value_idx;
if (idx_begin_value_v == 0) {
// We found an empty value slot => we found a new value m-gram after the key n-gram.
curr_key.values[v].value_idx = idx_begin_value_key;
curr_key.values[v].value_num = 0;
curr_key.values[v].n_accepted = m;
idx_value = v;
break;
}
bool match = true;
for (size_t j = 0; j < m; ++j) {
if (inp[idx_begin_value_key + j] != inp[idx_begin_value_v + j]) {
match = false;
break;
}
}
if (match) {
// We found an existing value m-gram after the key n-gram.
idx_value = v;
break;
}
}
if (idx_value >= 0) {
// We found a value m-gram of the key n-gram.
curr_key.values[idx_value].value_num = (uint16_t) std::min((int) curr_key.values[idx_value].value_num + 1,
(int) COMMON_NGRAM_MAX_VALUE_COUNT);
}
}
// the statistics are updated up to match_pos.
curr_key.stat_idx = match_pos;
// Do we have a value we could use for the draft?
uint16_t max_occur = 0;
int slot_max = 0;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
uint16_t curr_occur = curr_key.values[v].value_num;
if (curr_occur > max_occur) {
max_occur = curr_occur;
slot_max = v;
}
}
// What is sum of the other occurences?
uint32_t sum_occur = 0;
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
if (v == slot_max) {
continue;
}
uint16_t curr_occur = curr_key.values[v].value_num;
sum_occur += curr_occur;
}
LOG_INF("%s: key_offset = %zu, max_occur = %d, sum_occur = %d, slot_max = %d [%zu/%d, %zu/%d, %zu/%d, %zu/%d]\n", __func__,
key_offset,
max_occur, sum_occur, slot_max,
curr_key.values[0].value_idx, curr_key.values[0].value_num,
curr_key.values[1].value_idx, curr_key.values[1].value_num,
curr_key.values[2].value_idx, curr_key.values[2].value_num,
curr_key.values[3].value_idx, curr_key.values[3].value_num
);
// Print the tokens of the four values (if idx != 0), use LOG_INF
for (int v = 0; v < COMMON_NGRAM_MAX_VALUES; ++v) {
if (curr_key.values[v].value_idx != 0) {
LOG_INF("%s: value[%d] = %s\n", __func__, v, common_tokens_to_str(inp, curr_key.values[v].value_idx, m).c_str());
}
}
if (sum_occur > 0 && max_occur < 3 * sum_occur) {
// The most frequent value is not much more frequent than the other values.
// We do not use the draft.
return;
}
// We use the most frequent value values[slot_max] for the draft.
// Fill in the draft with the m tokens following the key.
int n_draft_tokens = std::min((int) m, (int) curr_key.values[slot_max].n_accepted);
for (int i = 0; i < n_draft_tokens; ++i) {
draft.push_back(inp[match_pos + n + i]);
}
LOG_INF("%s: key_offset = %zu, slot_max = %d, key_num = %d, draft.size = %zu\n", __func__,
key_offset, slot_max,
curr_key.key_num, draft.size());
map.last_draft_created = true;
map.last_draft_key_idx = key_offset;
map.last_draft_value_idx = slot_max; // value used for draft generation.
}
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted) {
if (!map.last_draft_created) {
return;
}
// find the key and its chosen value.
const size_t key_idx = map.last_draft_key_idx;
const size_t val_idx = map.last_draft_value_idx;
// find key corresponding to key_idx.
common_ngram_map_key & curr_key = map.keys[key_idx];
// find value corresponding to val_idx.
struct common_ngram_map_value & curr_value = curr_key.values[val_idx]; // value used for draft generation.
// update the value statistics
LOG_INF("common_ngram_map_send_accepted: n_accepted = %d, prev value_num = %d\n",
n_accepted, curr_value.n_accepted);
curr_value.n_accepted = n_accepted;
}
//
// n-gram mod
//
common_ngram_mod::common_ngram_mod(uint16_t m) : m(m) {
int64_t n = 1;
for (int32_t i = 0; i < N_MODS; ++i) {
n *= mods[i];
}
entries.resize(n);
const size_t size_bytes = entries.size() * sizeof(common_ngram_mod_entry);
LOG_INF("%s: size = %.3f MB\n", __func__, size_bytes / (1024.0 * 1024.0));
}
void common_ngram_mod::add(const llama_token * tokens) {
const uint64_t i = idx(tokens);
common_ngram_mod_entry & entry = entries[i];
if (entry.n_choices < COMMON_NGRAM_MOD_MAX_CHOICES) {
entry.n_choices++;
}
entry.choices[entry.head] = tokens[N_MODS];
entry.head = (entry.head + 1) % COMMON_NGRAM_MOD_MAX_CHOICES;
}
llama_token common_ngram_mod::get(const llama_token * tokens, int32_t offs) const {
const uint64_t i = idx(tokens);
const common_ngram_mod_entry & entry = entries[i];
if (entry.n_choices == 0) {
return LLAMA_TOKEN_NULL;
}
const int32_t k = (offs + entry.head) % entry.n_choices;
return entry.choices[k];
}
uint64_t common_ngram_mod::idx(const llama_token * tokens) {
uint64_t rh = 0;
uint64_t res = 0;
for (uint64_t i = 0; i < N_MODS; ++i) {
rh = rh * 31 + tokens[i];
res = res * mods[i] + (rh % mods[i]);
}
return res;
}
void common_ngram_mod_draft(
common_ngram_mod & mod,
const llama_tokens & inp,
llama_token sampled,
llama_tokens & draft) {
const size_t N_MODS = common_ngram_mod::N_MODS;
const size_t cur_len = inp.size();
if (cur_len < N_MODS) {
return;
}
if (mod.n_calls++ % 64 == 0) {
const size_t n_start = (256*(mod.n_calls/64)) % GGML_PAD(cur_len, 256);
for (size_t i = 0; i < 256 && n_start + i < cur_len - N_MODS; ++i) {
mod.add(inp.data() + n_start + i);
}
}
draft.resize(N_MODS + mod.m);
for (size_t i = 0; i < N_MODS - 1; ++i) {
draft[i] = inp[cur_len - N_MODS + 1 + i];
}
draft[N_MODS - 1] = sampled;
for (size_t i = 0; i < mod.m; ++i) {
const llama_token token = mod.get(draft.data() + i, cur_len + i);
if (token == LLAMA_TOKEN_NULL) {
draft.clear();
return;
}
draft[N_MODS + i] = token;
}
// only return the m tokens that were drafted
for (size_t i = 0; i < mod.m; ++i) {
draft[i] = draft[N_MODS + i];
}
draft.resize(mod.m);
}

143
common/ngram-map.h Normal file
View File

@@ -0,0 +1,143 @@
#pragma once
//
// common/ngram-map.h: structures used to manage a map from n-grams to a list of m-grams
//
// These structures are used to do a lookup of n-grams followed by m-grams in token history.
//
// There are two algorithms implemented:
// 1. ngram_simple: lookup of n-grams followed by m-grams in token history.
// 2. ngram_map: lookup of n-grams followed by m-grams in token history using a map.
// The map is a vector of key n-grams, and for each key n-gram there is a list of value m-grams.
//
#include "llama.h"
#include "common.h"
#include <vector>
// n-gram simple
//
// config of n-gram simple.
struct common_ngram_simple_config {
uint16_t size_ngram; // size of n-grams to lookup in self-mode
uint16_t size_mgram; // size of m-grams to draft in self-mode
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
};
// current state (and config) of n-gram simple.
struct common_ngram_simple_state {
common_ngram_simple_config config;
size_t idx_last_check = 0; // index of last check in context history (mutable)
common_ngram_simple_state(const common_ngram_simple_config & config)
: config(config) {}
};
// Searches for a n-gram in the history and checks whether a draft sequence should be generated.
// state: the ngram simple state to search in.
// inp: the tokens generated so far.
// sampled: the token that was just sampled.
// draft: vector to store the draft tokens, initially empty.
llama_tokens common_ngram_simple_draft(
common_ngram_simple_state & state,
const llama_tokens & tokens, llama_token sampled);
// n-gram map
//
// maximum number of m-gram values stored for each key n-gram.
#define COMMON_NGRAM_MAX_VALUES 4
// statistics of a m-gram after a known n-gram
struct common_ngram_map_value {
size_t value_idx = 0; // index of value m-gram in token-history (0 if unused)
uint16_t value_num = 0; // number of occurences of this value m-gram after the key n-gram (0 in an unused values-slot)
int16_t n_accepted = -1; // number of accepted tokens at last draft (-1 if unused)
};
// statistics of a n-gram
struct common_ngram_map_key {
size_t key_idx; // index of key n-gram in token-history
size_t stat_idx; // index of last token of stastistics computation (key_num, values)
uint16_t key_num; // number of occurences of this key n-gram in token-history
common_ngram_map_value values[COMMON_NGRAM_MAX_VALUES]; // some known values after the key
};
// map from n-grams to following m-grams in token-history
struct common_ngram_map {
uint16_t size_key; // size of key n-grams
uint16_t size_value; // size of value m-grams
bool key_only; // true if only key n-grams are used, no values.
// first draft: vector only, no map.
std::vector<common_ngram_map_key> keys; // key n-grams which occur several times in token-history
uint16_t check_rate; // check for speculative decoding without draft model for each check_rate token
uint16_t min_hits; // minimum number of key hits to consider a draft
common_ngram_map(uint16_t sz_key, uint16_t sz_value, bool only_keys,
uint16_t check_rate, uint16_t min_hits)
: size_key(sz_key), size_value(sz_value), key_only(only_keys),
check_rate(check_rate), min_hits(min_hits) {}
bool last_draft_created = false; // true if a draft was created at last call.
size_t last_draft_key_idx = 0; // index of last key used for draft generation.
uint16_t last_draft_value_idx = 0; // index of last value used for draft generation.
size_t idx_last_check = 0; // index of last check in context history
};
// Searches for the n-gram in the history and checks whether a draft sequence should be generated.
// map: the ngram map to search in.
// inp: the tokens generated so far.
// sampled: the token that was just sampled.
// draft: vector to store the draft tokens, initially empty.
void common_ngram_map_draft(
common_ngram_map & map,
const llama_tokens & inp, llama_token sampled,
llama_tokens & draft);
// Update the statistics of a value after a draft was processed.
void common_ngram_map_accept(common_ngram_map & map, uint16_t n_accepted);
//
// n-gram mod
//
#define COMMON_NGRAM_MOD_MAX_CHOICES 4
struct common_ngram_mod_entry {
uint32_t head = 0;
uint32_t n_choices = 0;
llama_token choices[COMMON_NGRAM_MOD_MAX_CHOICES];
};
struct common_ngram_mod {
common_ngram_mod(uint16_t m);
void add(const llama_token * tokens);
llama_token get(const llama_token * tokens, int32_t offs) const;
uint64_t n_calls = 0;
uint16_t m;
std::vector<common_ngram_mod_entry> entries;
static constexpr int32_t N_MODS = 17;
static constexpr int32_t mods[N_MODS] = { 2, 1, 1, 1, 8, 1, 1, 1, 16, 1, 1, 1, 32, 1, 1, 1, 64, };
static uint64_t idx(const llama_token * tokens);
};
void common_ngram_mod_draft(
common_ngram_mod & mod,
const llama_tokens & inp,
llama_token sampled,
llama_tokens & draft);

View File

@@ -1,97 +1,54 @@
#include "speculative.h"
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "log.h"
#include "common.h"
#include "ngram-cache.h"
#include "ngram-map.h"
#include "sampling.h"
#include <cstring>
#include <algorithm>
#include <cstring>
#include <iomanip>
#include <map>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
struct common_speculative {
struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
struct llama_context * ctx_dft;
struct common_sampler * smpl;
llama_batch batch;
llama_tokens prompt_dft;
bool vocab_dft_compatible = true; // whether retokenization is needed
std::map<std::string, std::string> tgt_dft_replacements = {};
const std::vector<enum common_speculative_type> common_speculative_types = {
COMMON_SPECULATIVE_TYPE_NONE,
COMMON_SPECULATIVE_TYPE_DRAFT,
COMMON_SPECULATIVE_TYPE_EAGLE3,
COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V,
COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD,
COMMON_SPECULATIVE_TYPE_NGRAM_CACHE
};
struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft) {
auto * result = new common_speculative {
/* .ctx_tgt = */ ctx_tgt,
/* .ctx_dft = */ ctx_dft,
/* .smpl = */ nullptr,
/* .batch = */ llama_batch_init(llama_n_batch(ctx_dft), 0, 1),
/* .prompt_dft = */ {},
/* .vocab_dft_compatible = */ false,
};
const std::map<std::string, enum common_speculative_type> common_speculative_type_from_name_map = {
{"none", COMMON_SPECULATIVE_TYPE_NONE},
{"draft", COMMON_SPECULATIVE_TYPE_DRAFT},
{"eagle3", COMMON_SPECULATIVE_TYPE_EAGLE3},
{"ngram_simple", COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE},
{"ngram_map_k", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K},
{"ngram_map_k4v", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V},
{"ngram_map_mod", COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD},
{"ngram_cache", COMMON_SPECULATIVE_TYPE_NGRAM_CACHE}
};
// TODO: optimize or pass from outside?
#if 0
{
common_params_sampling params;
params.no_perf = false;
struct common_speculative_config {
common_speculative_type type;
common_params_speculative params;
params.top_k = 40;
params.top_p = 0.9;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
COMMON_SAMPLER_TYPE_TOP_P,
COMMON_SAMPLER_TYPE_INFILL,
};
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
#else
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 10;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
#endif
result->vocab_dft_compatible = common_speculative_are_compatible(ctx_tgt, ctx_dft);
LOG_DBG("vocab_dft_compatible = %d\n", result->vocab_dft_compatible);
return result;
}
void common_speculative_free(struct common_speculative * spec) {
if (spec == nullptr) {
return;
}
common_sampler_free(spec->smpl);
llama_batch_free(spec->batch);
delete spec;
}
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft) {
const struct llama_model * model_tgt = llama_get_model(ctx_tgt);
const struct llama_model * model_dft = llama_get_model(ctx_dft);
common_speculative_config(common_speculative_type t,
const common_params_speculative & p = common_params_speculative{}) : type(t), params(p) {}
};
static bool common_speculative_are_compatible(
const struct llama_model * model_tgt,
const struct llama_model * model_dft) {
const struct llama_vocab * vocab_tgt = llama_model_get_vocab(model_tgt);
const struct llama_vocab * vocab_dft = llama_model_get_vocab(model_dft);
@@ -134,11 +91,12 @@ bool common_speculative_are_compatible(
for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
const char * token_text_tgt = llama_vocab_get_text(vocab_tgt, i);
const char * token_text_dft = llama_vocab_get_text(vocab_dft, i);
if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
LOG_DBG("%s: draft model vocab must match target model to use speculation but ", __func__);
LOG_DBG("token %d content differs - target '%s', draft '%s'\n", i,
common_token_to_piece(ctx_tgt, i).c_str(),
common_token_to_piece(ctx_dft, i).c_str());
common_token_to_piece(vocab_tgt, i).c_str(),
common_token_to_piece(vocab_dft, i).c_str());
return false;
}
}
@@ -147,50 +105,437 @@ bool common_speculative_are_compatible(
return true;
}
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest) {
spec->tgt_dft_replacements[source] = dest;
// state of an implementation of speculative decoding
//
// each implementation has a unique type and a state that is implementation-specific
// in a subclass of common_speculative_state
struct common_speculative_state {
const enum common_speculative_type type;
size_t drafts_call_count = 0; // number of times this implementation was called.
size_t drafts_generated_count = 0; // number of times a draft or part was generated by this implementation.
size_t drafts_accepted_count = 0; // number of times a draft or part was accepted by the target model.
size_t drafts_generated_tokens = 0; // number of tokens generated by this implementation.
size_t drafts_accepted_tokens = 0; // number of tokens accepted by the target model.
// TODO: track performance of most recent calls
const bool gen_perf = true; // whether to generate performance stats.
int64_t gen_duration_us = 0; // total time spent in this implementation in microseconds.
virtual ~common_speculative_state() = default;
common_speculative_state(enum common_speculative_type type) : type(type) {}
};
struct common_speculative_state_draft : public common_speculative_state {
struct llama_context * ctx_tgt; // only used for retokenizing from ctx_dft
struct llama_context * ctx_dft;
struct common_sampler * smpl;
llama_batch batch;
llama_tokens prompt_dft;
bool vocab_cmpt = true; // whether retokenization is needed
std::unordered_map<std::string, std::string> vocab_map;
common_speculative_state_draft(
enum common_speculative_type type,
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft,
const std::vector<std::pair<std::string, std::string>> & replacements)
: common_speculative_state(type)
, ctx_tgt(ctx_tgt)
, ctx_dft(ctx_dft)
{
batch = llama_batch_init(llama_n_batch(ctx_dft), 0, 1);
smpl = nullptr;
// TODO: optimize or pass from outside?
// {
// common_params_sampling params;
// params.no_perf = false;
//
// params.top_k = 40;
// params.top_p = 0.9;
//
// params.samplers = {
// COMMON_SAMPLER_TYPE_TOP_K,
// COMMON_SAMPLER_TYPE_TOP_P,
// COMMON_SAMPLER_TYPE_INFILL,
// };
//
// result->smpl = common_sampler_init(llama_get_model(ctx_dft), params);
// }
{
common_params_sampling params;
params.no_perf = false;
params.top_k = 10;
params.samplers = {
COMMON_SAMPLER_TYPE_TOP_K,
};
smpl = common_sampler_init(llama_get_model(ctx_dft), params);
}
vocab_cmpt = common_speculative_are_compatible(llama_get_model(ctx_tgt), llama_get_model(ctx_dft));
LOG_DBG("vocab_cmpt = %d\n", vocab_cmpt);
if (!vocab_cmpt) {
LOG_WRN("the target and draft vocabs are not compatible - tokens will be translated between the two\n");
for (const auto & pair : replacements) {
vocab_map[pair.first] = pair.second;
}
}
}
~common_speculative_state_draft() override {
llama_perf_context_print(ctx_dft);
llama_free(ctx_dft);
common_sampler_free(smpl);
llama_batch_free(batch);
}
};
struct common_speculative_state_eagle3 : public common_speculative_state {
common_speculative_state_eagle3(enum common_speculative_type type) : common_speculative_state(type) {}
};
// state of self-speculation (simple implementation, not ngram-map)
struct common_speculative_state_ngram_simple : public common_speculative_state {
common_ngram_simple_state state;
common_speculative_state_ngram_simple(
enum common_speculative_type type,
common_ngram_simple_state state)
: common_speculative_state(type), state(state) {}
};
struct common_speculative_state_ngram_map_k : public common_speculative_state {
// draft ngram map for speculative decoding without draft model
common_ngram_map map;
common_speculative_state_ngram_map_k(
enum common_speculative_type type,
common_ngram_map map)
: common_speculative_state(type), map(std::move(map)) {}
};
struct common_speculative_state_ngram_map_k4v : public common_speculative_state_ngram_map_k {
common_speculative_state_ngram_map_k4v(
enum common_speculative_type type,
common_ngram_map map)
: common_speculative_state_ngram_map_k(type, std::move(map)) {}
};
struct common_speculative_state_ngram_mod : public common_speculative_state {
common_ngram_mod mod;
common_speculative_state_ngram_mod(
enum common_speculative_type type,
common_ngram_mod mod)
: common_speculative_state(type), mod(std::move(mod)) {}
};
struct common_speculative_state_ngram_cache : public common_speculative_state {
uint16_t n_draft;
bool save_dynamic;
bool save_static;
common_ngram_cache ngram_cache_context;
common_ngram_cache ngram_cache_dynamic;
common_ngram_cache ngram_cache_static;
size_t cache_size = 0; // number of tokens in n-gram cache
common_speculative_state_ngram_cache(
const enum common_speculative_type type,
const std::string & path_static,
const std::string & path_dynamic,
uint16_t n_draft,
bool save_dynamic,
bool save_static)
: common_speculative_state(type)
, n_draft(n_draft)
, save_dynamic(save_dynamic)
, save_static(save_static)
{
if (!path_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(path_static);
} catch (...) {
LOG_ERR("failed to open static lookup cache: %s", path_static.c_str());
GGML_ABORT("Couldn't read static lookup cache");
}
}
if (!path_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(path_dynamic);
} catch (...) {
LOG_ERR("failed to open dynamic lookup cache: %s", path_dynamic.c_str());
GGML_ABORT("Couldn't read dynamic lookup cache");
}
}
}
};
struct common_speculative {
std::vector<std::unique_ptr<common_speculative_state>> impls; // list of implementations to use and their states
common_speculative_state * curr_impl = nullptr; // current implementation in use (for stats)
};
static common_ngram_map get_common_ngram_map(const common_speculative_config & config) {
uint16_t size_key = config.params.ngram_size_n;
uint16_t size_value = config.params.ngram_size_m;
bool key_only = (config.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
uint16_t check_rate = config.params.ngram_check_rate;
uint16_t min_hits = config.params.ngram_min_hits;
return common_ngram_map(size_key, size_value, key_only, check_rate, min_hits);
}
static struct common_speculative_state_ngram_cache create_state_ngram_cache(
const std::string & path_static, const std::string & path_dynamic,
const common_speculative_config & config) {
uint16_t n_draft = 8; // TODO get from config?
// TODO bool param in common/common.h to set save_static/save_dynamic?
bool save_static = false;
bool save_dynamic = false;
common_speculative_state_ngram_cache state(config.type, path_static, path_dynamic, n_draft, save_static, save_dynamic);
return state;
}
std::string common_speculative_type_name_str() {
std::string result;
for (size_t i = 0; i < common_speculative_types.size(); i++) {
if (i > 0) {
result += ", ";
}
result += common_speculative_type_to_str(common_speculative_types[i]);
}
return result;
}
std::string common_speculative_type_to_str(enum common_speculative_type type) {
switch (type) {
case COMMON_SPECULATIVE_TYPE_NONE: return "none";
case COMMON_SPECULATIVE_TYPE_DRAFT: return "draft";
case COMMON_SPECULATIVE_TYPE_EAGLE3: return "eagle3";
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: return "ngram_simple";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: return "ngram_map_k";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: return "ngram_map_k4v";
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD: return "ngram_map_mod";
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: return "ngram_cache";
default: return "unknown";
}
}
enum common_speculative_type common_speculative_type_from_name(const std::string & name) {
const auto it = common_speculative_type_from_name_map.find(name);
if (it == common_speculative_type_from_name_map.end()) {
return COMMON_SPECULATIVE_TYPE_COUNT;
}
return it->second;
}
// initialization of the speculative decoding system
//
struct common_speculative * common_speculative_init(
const struct common_params_speculative & params,
struct llama_context * ctx_tgt,
const struct llama_context_params & cparams_dft,
struct llama_model * model_dft) {
llama_context * ctx_dft = nullptr;
if (model_dft) {
ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (ctx_dft == nullptr) {
LOG_ERR("%s", "failed to create draft context\n");
return nullptr;
}
}
// Compute the implementations to use based on the config and their order of preference
std::vector<common_speculative_config> configs = {}; // list of speculative configs to try
{
bool has_draft = !params.model.path.empty();
bool has_draft_eagle3 = false; // TODO PR-18039: if params.speculative.eagle3
bool has_ngram_cache = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_CACHE);
bool has_ngram_simple = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE);
bool has_ngram_map_k = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K);
bool has_ngram_map_k4v = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V);
bool has_ngram_map_mod = (params.type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD);
// In a more complex implementation we could use the same implementation but with different parameters.
// This was initially used in PR-18471 but removed to simplify the code.
if (has_ngram_simple) {
// This implementation can guess a lot of tokens without any draft model.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE, params));
}
if (has_ngram_map_k) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K, params));
}
if (has_ngram_map_k4v) {
// This implementation can guess tokens with high acceptance rate but is more expensive.
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V, params));
}
if (has_ngram_map_mod) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD, params));
}
if (has_ngram_cache) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_NGRAM_CACHE, params));
}
if (has_draft) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_DRAFT, params));
}
if (has_draft_eagle3) {
configs.push_back(common_speculative_config(COMMON_SPECULATIVE_TYPE_EAGLE3, params));
}
}
std::vector<std::unique_ptr<common_speculative_state>> implementations = {};
for (const common_speculative_config & config : configs) {
LOG_DBG("%s: adding implementation %s\n", __func__, common_speculative_type_to_str(config.type).c_str());
switch (config.type) {
case COMMON_SPECULATIVE_TYPE_NONE:
break;
case COMMON_SPECULATIVE_TYPE_DRAFT: {
implementations.push_back(std::make_unique<common_speculative_state_draft>(config.type,
/* .ctx_tgt = */ ctx_tgt,
/* .ctx_dft = */ ctx_dft,
/* .replacements = */ params.replacements
));
break;
}
case COMMON_SPECULATIVE_TYPE_EAGLE3: {
implementations.push_back(std::make_unique<common_speculative_state_eagle3>(config.type));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE: {
common_ngram_map ngram_map = get_common_ngram_map(config);
uint16_t ngram_size_key = ngram_map.size_key;
uint16_t mgram_size_value = ngram_map.size_value;
uint16_t check_rate = ngram_map.check_rate;
auto config_simple = common_ngram_simple_config{
/* .size_ngram = */ ngram_size_key,
/* .size_mgram = */ mgram_size_value,
/* .check_rate = */ check_rate
};
auto state = std::make_unique<common_speculative_state_ngram_simple>(
/* .type = */ config.type,
/* .state = */ common_ngram_simple_state(config_simple)
);
implementations.push_back(std::move(state));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K: {
implementations.push_back(std::make_unique<common_speculative_state_ngram_map_k>(
(config.type),
get_common_ngram_map(config)
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V: {
implementations.push_back(std::make_unique<common_speculative_state_ngram_map_k4v>(
(config.type),
get_common_ngram_map(config)
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD: {
common_ngram_mod mod(config.params.ngram_size_m);
implementations.push_back(std::make_unique<common_speculative_state_ngram_mod>(
(config.type),
std::move(mod)
));
break;
}
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE: {
auto state = create_state_ngram_cache(
params.lookup_cache_static, params.lookup_cache_dynamic, config);
implementations.push_back(std::make_unique<common_speculative_state_ngram_cache>(state));
break;
}
default:
break;
}
}
if (implementations.empty()) {
LOG_WRN("%s", "no implementations specified for speculative decoding\n");
return nullptr;
}
auto * result = new common_speculative {
/* .impls = */ std::move(implementations)
};
return result;
}
void common_speculative_free(struct common_speculative * spec) {
if (spec == nullptr) {
return;
}
delete spec;
}
static std::string replace_to_dft(
struct common_speculative * spec,
const std::string& input) {
struct common_speculative_state_draft * spec,
const std::string & input) {
std::string result = input;
for (const auto & pair : spec->tgt_dft_replacements) {
for (const auto & pair : spec->vocab_map) {
size_t pos = result.find(pair.first);
while (pos != std::string::npos) {
result.replace(pos, pair.first.length(), pair.second);
pos = result.find(pair.first, pos + pair.second.length());
}
}
return result;
}
static std::string replace_to_tgt(
struct common_speculative * spec,
struct common_speculative_state_draft * spec,
const std::string& input) {
std::string result = input;
for (const auto& pair : spec->tgt_dft_replacements) {
for (const auto & pair : spec->vocab_map) {
size_t pos = result.find(pair.second);
while (pos != std::string::npos) {
result.replace(pos, pair.second.length(), pair.first);
pos = result.find(pair.second, pos + pair.first.length());
}
}
return result;
}
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
static llama_tokens common_speculative_use_draft_model(
struct common_speculative_state_draft * spec,
struct common_speculative_params params,
const llama_tokens & prompt_tgt_main_model, // specified in target model vocab
const llama_tokens & prompt_tgt, // specified in target model vocab
llama_token id_last) {
auto & batch = spec->batch;
auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl;
auto & batch = spec->batch;
auto & ctx_tgt = spec->ctx_tgt;
auto & ctx_dft = spec->ctx_dft;
auto & smpl = spec->smpl;
auto & prompt_dft = spec->prompt_dft;
auto * mem_dft = llama_get_memory(ctx_dft);
@@ -200,13 +545,16 @@ llama_tokens common_speculative_gen_draft(
const int n_ctx = llama_n_ctx(ctx_dft) - params.n_draft;
llama_tokens prompt_tgt_draft_model;
if (!spec->vocab_dft_compatible) {
llama_tokens prompt_cnv;
if (!spec->vocab_cmpt) {
std::string text;
text = common_detokenize(ctx_tgt, prompt_tgt_main_model, true);
text = common_detokenize(ctx_tgt, prompt_tgt, true);
text = replace_to_dft(spec, text);
LOG_DBG("%s: main->draft detokenized string: '%s'\n", __func__, text.c_str());
prompt_tgt_draft_model = common_tokenize(ctx_dft, text, false, true);
prompt_cnv = common_tokenize(ctx_dft, text, false, true);
// convert id_last to draft vocab. llama_detokenize is called directly to avoid an allocation
const auto * model_tgt = llama_get_model(ctx_tgt);
@@ -214,6 +562,7 @@ llama_tokens common_speculative_gen_draft(
int32_t n_chars = llama_detokenize(vocab_tgt, &id_last, 1, nullptr, 0, false, false);
GGML_ASSERT(n_chars < 0 && "failed to detokenize id_last");
text.resize(-n_chars);
llama_detokenize(vocab_tgt, &id_last, 1, text.data(), text.size(), false, false);
text = replace_to_dft(spec, text);
@@ -221,23 +570,22 @@ llama_tokens common_speculative_gen_draft(
LOG_DBG("main->draft detokenized id_last(%d): '%s'\n", id_last, text.c_str());
id_last = common_tokenize(ctx_dft, text, false, true)[0];
}
// prompt_tgt's tokens will always be compatible with ctx_dft
const llama_tokens &prompt_tgt =
spec->vocab_dft_compatible ? prompt_tgt_main_model : prompt_tgt_draft_model;
const int i_start = std::max<int>(0, (int) prompt_tgt.size() - n_ctx);
const llama_tokens & prompt_cur = spec->vocab_cmpt ? prompt_tgt : prompt_cnv;
const int i_start = std::max<int>(0, (int) prompt_cur.size() - n_ctx);
// reuse as much as possible from the old draft context
// ideally, the draft context should be as big as the target context and we will always reuse the entire prompt
for (int i = 0; i < (int) prompt_dft.size(); ++i) {
int cur = 0;
while (i_start + cur < (int) prompt_tgt.size() &&
while (i_start + cur < (int) prompt_cur.size() &&
i + cur < (int) prompt_dft.size() &&
prompt_tgt[i_start + cur] == prompt_dft[i + cur]) {
prompt_cur[i_start + cur] == prompt_dft[i + cur]) {
cur++;
}
if ((cur >= params.n_reuse || n_ctx >= (int) prompt_tgt.size()) && cur > reuse_n) {
if ((cur >= 256 || n_ctx >= (int) prompt_cur.size()) && cur > reuse_n) {
reuse_i = i;
reuse_n = cur;
}
@@ -282,11 +630,11 @@ llama_tokens common_speculative_gen_draft(
// prepare a batch to evaluate any new tokens in the prompt
common_batch_clear(batch);
for (size_t i = i_start + reuse_n; i < prompt_tgt.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_tgt[i]);
common_batch_add(batch, prompt_tgt[i], i - i_start, { 0 }, false);
for (size_t i = i_start + reuse_n; i < prompt_cur.size(); ++i) {
//LOG_DBG("i = %d, i_start = %d, reuse_n = %d, i - i_start = %d, id = %6d\n", i, i_start, reuse_n, i - i_start, prompt_cur[i]);
common_batch_add(batch, prompt_cur[i], i - i_start, { 0 }, false);
prompt_dft.push_back(prompt_tgt[i]);
prompt_dft.push_back(prompt_cur[i]);
}
// we should rarely end-up here during normal decoding
@@ -348,7 +696,7 @@ llama_tokens common_speculative_gen_draft(
prompt_dft.push_back(id);
}
if (!spec->vocab_dft_compatible) {
if (!spec->vocab_cmpt) {
std::string detokenized = common_detokenize(ctx_dft, result, true);
detokenized = replace_to_tgt(spec, detokenized);
LOG_DBG("draft->main detokenized string: '%s'\n", detokenized.c_str());
@@ -357,5 +705,211 @@ llama_tokens common_speculative_gen_draft(
result.resize(params.n_draft);
}
}
return result;
}
/**
* Perform speculative generation using a 3-tier n-gram cache.
*
* @param state Current state of this implementation
* @param tokens Token history to search in
* @param sampled Last sampled token
* @return Vector of draft tokens, empty if draft is found
*/
static llama_tokens common_speculative_gen_ngram_cache(
common_speculative_state_ngram_cache & state,
const llama_tokens & tokens, llama_token sampled) {
if (state.cache_size < tokens.size() + 1) {
llama_tokens tokens_new;
tokens_new.reserve(tokens.size() + 1 - state.cache_size);
for (size_t j = state.cache_size; j < tokens.size(); ++j) {
tokens_new.push_back(tokens[j]);
}
tokens_new.push_back(sampled); // add the last token
// Update context ngram cache with new tokens:
common_ngram_cache_update(state.ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
tokens_new, tokens_new.size(), false);
state.cache_size = tokens.size() + 1;
}
llama_tokens inp;
inp.reserve(tokens.size() + 1);
for (size_t j = 0; j < tokens.size(); ++j) {
inp.push_back(tokens[j]);
}
inp.push_back(sampled);
llama_tokens draft;
draft.push_back(sampled);
common_ngram_cache_draft(inp, draft, state.n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX,
state.ngram_cache_context,
state.ngram_cache_dynamic,
state.ngram_cache_static);
if (draft.size() > 0) {
// delete first token in draft (which is the sampled token)
draft.erase(draft.begin());
}
return draft;
}
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt_tgt, // specified in target model vocab
llama_token id_last) {
llama_tokens result = {};
spec->curr_impl = nullptr; // reset current implementation
// TODO: avoid dynamic casts
for (auto & impl : spec->impls) {
impl->drafts_call_count++;
const int64_t t_start_us = impl->gen_perf ? ggml_time_us() : 0;
switch (impl->type) {
case COMMON_SPECULATIVE_TYPE_NONE:
{
} break;
case COMMON_SPECULATIVE_TYPE_DRAFT:
{
// Create a draft using a draft model.
auto * draft_impl = dynamic_cast<struct common_speculative_state_draft *>(impl.get());
if (draft_impl) {
result = common_speculative_use_draft_model(draft_impl, params, prompt_tgt, id_last);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_EAGLE3:
{
// Work in progress: https://github.com/ggml-org/llama.cpp/pull/18039
} break;
case COMMON_SPECULATIVE_TYPE_NGRAM_SIMPLE:
{
// Use common_ngram_map_draft to generate a draft from the current context.
auto * state = dynamic_cast<struct common_speculative_state_ngram_simple *>(impl.get());
if (state) {
result = common_ngram_simple_draft(state->state, prompt_tgt, id_last);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K:
{
// Use common_ngram_map_draft to generate a draft from the current context.
auto * state = dynamic_cast<common_speculative_state_ngram_map_k *>(impl.get());
if (state) {
common_ngram_map_draft(state->map, prompt_tgt, id_last, result);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V:
{
// Use common_ngram_map_draft to generate a draft from the current context.
auto * state = dynamic_cast<common_speculative_state_ngram_map_k *>(impl.get());
if (state) {
common_ngram_map_draft(state->map, prompt_tgt, id_last, result);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_NGRAM_MAP_MOD:
{
auto * state = dynamic_cast<common_speculative_state_ngram_mod *>(impl.get());
if (state) {
common_ngram_mod_draft(state->mod, prompt_tgt, id_last, result);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_NGRAM_CACHE:
{
auto * state = dynamic_cast<common_speculative_state_ngram_cache *>(impl.get());
if (state) {
result = common_speculative_gen_ngram_cache(*state, prompt_tgt, id_last);
} else {
GGML_ABORT("unexpected implementation in type %d", impl.get()->type);
}
} break;
case COMMON_SPECULATIVE_TYPE_COUNT:
{
GGML_ABORT("invalid speculative type COUNT");
}
}
const int64_t t_now_us = impl->gen_perf ? ggml_time_us() : 0;
impl->gen_duration_us += t_now_us - t_start_us; // accumulate duration for this implementation
if (!result.empty()) {
LOG_DBG("%s: called impl %s, hist size = %zu, call_count = %zu, gen = %zu\n", __func__,
common_speculative_type_to_str(impl.get()->type).c_str(),
prompt_tgt.size(),
impl.get()->drafts_call_count, result.size());
spec->curr_impl = impl.get(); // set current implementation for stats
impl->drafts_generated_count++;
impl->drafts_generated_tokens += result.size();
break; // We have a draft, so break out of the loop and return it.
}
}
return result;
}
void common_speculative_accept(struct common_speculative * spec, uint16_t n_accepted) {
if (n_accepted == 0) {
return;
}
common_speculative_state * impl = spec->curr_impl;
GGML_ASSERT(impl);
if (n_accepted > 0) {
impl->drafts_accepted_count++;
impl->drafts_accepted_tokens += n_accepted;
}
LOG_WRN("XXXXXXXXXXXXX n_accepted = %d\n", n_accepted);
if (impl->type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K ||
impl->type == COMMON_SPECULATIVE_TYPE_NGRAM_MAP_K4V) {
// TODO: add common_speculative_state::accept() to base class and remove this dynamic cast
auto * state = dynamic_cast<struct common_speculative_state_ngram_map_k *>(impl);
if (state) {
common_ngram_map_accept(state->map, n_accepted);
}
}
}
void common_speculative_print_stats(const struct common_speculative * spec) {
if (spec == nullptr) {
return;
}
for (const auto & impl : spec->impls) {
std::string str_perf;
if (impl->gen_perf) {
std::ostringstream oss;
oss << std::fixed << std::setprecision(3) << impl->gen_duration_us / 1000.0;
str_perf = ", dur = " + oss.str() + " ms";
} else {
str_perf = "";
}
LOG_INF("statistics %s: #calls = %zu, #gen drafts = %zu, #acc drafts = %zu, #gen tokens = %zu, #acc tokens = %zu%s\n",
common_speculative_type_to_str(impl->type).c_str(),
impl->drafts_call_count,
impl->drafts_generated_count,
impl->drafts_accepted_count,
impl->drafts_generated_tokens,
impl->drafts_accepted_tokens,
str_perf.c_str());
}
}

View File

@@ -7,29 +7,36 @@ struct common_speculative;
struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
float p_min = 0.75f; // min probability required to accept a token in the draft
};
// comma separated list of all types
std::string common_speculative_type_name_str();
// convert string to type
enum common_speculative_type common_speculative_type_from_name(const std::string & name);
// convert type to string
std::string common_speculative_type_to_str(enum common_speculative_type type);
struct common_speculative * common_speculative_init(
struct llama_context * ctx_tgt,
struct llama_context * ctx_dft
);
const struct common_params_speculative & params,
struct llama_context * ctx_tgt,
const struct llama_context_params & cparams_dft,
struct llama_model * model_dft);
void common_speculative_free(struct common_speculative * spec);
bool common_speculative_are_compatible(
const struct llama_context * ctx_tgt,
const struct llama_context * ctx_dft);
void common_speculative_add_replacement_tgt_dft(
struct common_speculative * spec,
const char *source, const char *dest);
// sample up to n_draft tokens and add them to the batch using the draft model
llama_tokens common_speculative_gen_draft(
struct common_speculative * spec,
struct common_speculative_params params,
const llama_tokens & prompt,
llama_token id_last);
// informs the speculative decoder that n_accepted tokens were accepted by the target model
void common_speculative_accept(struct common_speculative * spec, uint16_t n_accepted);
// print statistics about the speculative decoding
void common_speculative_print_stats(const struct common_speculative * spec);

120
docs/speculative.md Normal file
View File

@@ -0,0 +1,120 @@
# Speculative Decoding
llama.cpp supports speculative decoding, a technique that can significantly accelerate token generation by predicting multiple tokens ahead of the main model.
[Speculative decoding](https://en.wikipedia.org/wiki/Transformer_(deep_learning)#Speculative_decoding) leverages the fact that computing n tokens in a batch (as in prompt processing) is more efficient than computing n sequentially (as in response generation). By generating draft tokens quickly and then verifying them with the target model in a single batch, this approach can achieve substantial speedups when the draft predictions are frequently correct.
## Implementations
The `llama-server` application supports several implementations of speculative decoding:
### Draft Model (`draft`)
A much smaller model (called the _draft model_) generates drafts.
A draft model is the most used approach in speculative decoding.
### n-gram Cache (`ngram-cache`)
An n-gram is a sequence of n tokens. The n-gram cache implementation maintains statistics about short n-gram sequences.
A draft is computed using probabilities derived from these statistics. External statistics can also be loaded from files for improved accuracy.
See:
- #5479, #6828, #6848
### n-gram Map (`ngram-simple`, `ngram-map-*`)
These implementations search the token history for patterns and use matching sequences as draft candidates.
They require no additional model but rely on patterns that have already appeared in the generated text.
An example to use this approach can be the rewriting of source code by a LLM.
#### n-gram Map (`ngram-simple`)
This implementation looks for the last n-gram in history that matches the current n-gram and creates a draft using the m tokens following the matched n-gram. It is the simplest self-speculative approach with minimal overhead.
#### n-gram Map Key (`ngram-map-k`)
This implementation looks for the current n-gram of size n (called the _key_) in the token history. If the key n-gram is followed by the same m tokens (called the _mgram_) multiple times, it creates a draft using these m tokens. This approach requires a minimum number of occurrences (argument `--spec-ngram-min-hits`) before generating drafts.
The number of accepted tokens is stored for each used n-gram.
#### n-gram Map Key-4-Values (`ngram-map-k4v`)
This experimental implementation looks for the current n-gram of size n (called the _key_) in the token history. For each key, up to four _values_ (n-grams of size m, called _mgrams_) are tracked. An internal statistic counts the occurrences of each mgram after the key n-gram. If one mgram is significantly more frequent than the others, it is used as the draft.
The number of accepted tokens is stored for each used n-gram.
**Example:** Server options to be used if there are a lot of longer repetitions.
```bash
llama-server [...] --spec-draftless ngram-map-k4v --spec-ngram-size-n 8 --spec-ngram-size-m 8 --spec-ngram-min-hits 2
```
## Command-Line Options (draftless)
If a draft model is combined with a draftless decoding the draftless decoding has higher precedence.
```
--spec-draftless [none|ngram-cache|ngram-simple|ngram-map-k|ngram-map-k4v]
type of speculative decoding to use when no draft model is provided
(default: none)
--spec-ngram-size-n N ngram size N for ngram-simple/ngram-map speculative decoding, length
of lookup n-gram (default: 12)
--spec-ngram-size-m N ngram size M for ngram-simple/ngram-map speculative decoding, length
of draft m-gram (default: 48)
--spec-ngram-check-rate N ngram check rate for ngram-simple/ngram-map speculative decoding
(default: 1)
--spec-ngram-min-hits N minimum hits for ngram-map speculative decoding (default: 1)
```
### `--spec-draftless TYPE`
Specifies a type of speculative decoding without draft model.
| Type | Description |
|------|-------------|
| `none` | No speculative decoding (default) |
| `ngram-cache` | Use n-gram cache lookup |
| `ngram-simple` | Use simple n-gram pattern matching |
| `ngram-map-k` | Use n-gram pattern matching with n-gram-keys |
| `ngram-map-k4v` | Use n-gram pattern matching with n-gram-keys and up to four m-gram values (experimental) |
**Example:** Server-instance used to refactor source code.
```bash
./llama-server [...] --spec-draftless ngram-simple
```
### `--spec-ngram-size-n N`
Sets the size N of the lookup n-gram for n-gram map based speculative decoding.
The n-gram size N determines how many tokens in a row to look back when searching for matching patterns.
### `--spec-ngram-size-m M`
Sets the size M of the draft m-gram for n-gram map based speculative decoding.
The m-gram size determines how many tokens to draft when a match is found.
Larger values can provide more speedup but may reduce acceptance rate.
### `--spec-ngram-check-rate R`
This option aims at performance if the n-gram lookup in history is to costly. A lookup will be executed at every R tokens (default is 1, every token).
### `--spec-ngram-min-hits H`
This option defines how often a key has to appear in the token history to be used as a draft (default is 1).
## Statistics
Each speculative decoding implementation prints statistics.
```
draft acceptance rate = 0.57576 ( 171 accepted / 297 generated)
statistics ngram_simple: #calls = 15, #gen drafts = 5, #acc drafts = 5, #gen tokens = 187, #acc tokens = 73
statistics draft: #calls = 10, #gen drafts = 10, #acc drafts = 10, #gen tokens = 110, #acc tokens = 98
```
- `#calls`: number of calls of this implementations
- `#gen drafts`: number of drafts generated by this implementation
- `#acc drafts`: number of drafts accepted (partially) by the main model
- `#gen tokens`: number of tokens generated by this implementation (including rejected tokens)
- `#acc tokens`: number of tokens accepted by the main model

View File

@@ -32,9 +32,9 @@ int main(int argc, char ** argv){
common_ngram_cache ngram_cache;
common_ngram_cache_update(ngram_cache, LLAMA_NGRAM_STATIC, LLAMA_NGRAM_STATIC, inp, inp.size(), true);
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.lookup_cache_static.c_str());
fprintf(stderr, "%s: hashing done, writing file to %s\n", __func__, params.speculative.lookup_cache_static.c_str());
common_ngram_cache_save(ngram_cache, params.lookup_cache_static);
common_ngram_cache_save(ngram_cache, params.speculative.lookup_cache_static);
return 0;
}

View File

@@ -46,18 +46,18 @@ int main(int argc, char ** argv){
{
const int64_t t_start_draft_us = ggml_time_us();
if (!params.lookup_cache_static.empty()) {
if (!params.speculative.lookup_cache_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
if (!params.speculative.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}

View File

@@ -51,18 +51,18 @@ int main(int argc, char ** argv){
const int64_t t_start_draft_us = ggml_time_us();
common_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
if (!params.lookup_cache_static.empty()) {
if (!params.speculative.lookup_cache_static.empty()) {
try {
ngram_cache_static = common_ngram_cache_load(params.lookup_cache_static);
ngram_cache_static = common_ngram_cache_load(params.speculative.lookup_cache_static);
} catch (std::ifstream::failure const &) {
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.speculative.lookup_cache_static.c_str());
exit(1);
}
}
if (!params.lookup_cache_dynamic.empty()) {
if (!params.speculative.lookup_cache_dynamic.empty()) {
try {
ngram_cache_dynamic = common_ngram_cache_load(params.lookup_cache_dynamic);
ngram_cache_dynamic = common_ngram_cache_load(params.speculative.lookup_cache_dynamic);
} catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
}
@@ -210,7 +210,7 @@ int main(int argc, char ** argv){
// Update dynamic ngram cache with context ngram cache and save it to disk:
common_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
common_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
common_ngram_cache_save(ngram_cache_dynamic, params.speculative.lookup_cache_dynamic);
LOG("\n\n");

View File

@@ -34,10 +34,9 @@ int main(int argc, char ** argv) {
llama_numa_init(params.numa);
llama_model * model_tgt = NULL;
//llama_model * model_dft = NULL;
llama_model * model_dft = NULL;
llama_context * ctx_tgt = NULL;
llama_context * ctx_dft = NULL;
// load the target model
auto llama_init_tgt = common_init_from_params(params);
@@ -63,12 +62,7 @@ int main(int argc, char ** argv) {
auto llama_init_dft = common_init_from_params(params);
//model_dft = llama_init_dft->model();
ctx_dft = llama_init_dft->context();
if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
LOG_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params.speculative.model.path.c_str(), params.model.path.c_str());
}
model_dft = llama_init_dft->model();
// Tokenize the prompt
std::vector<llama_token> inp;
@@ -129,13 +123,9 @@ int main(int argc, char ** argv) {
// init the speculator
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft;
params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
params_spec.p_min = p_min;
struct common_speculative * spec = common_speculative_init(ctx_tgt, ctx_dft);
for (auto &pair : params.speculative.replacements) {
common_speculative_add_replacement_tgt_dft(spec, pair.first.c_str(), pair.second.c_str());
}
struct common_speculative * spec = common_speculative_init(params.speculative, ctx_tgt, common_context_params_to_llama(params), model_dft);
llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
@@ -249,8 +239,6 @@ int main(int argc, char ** argv) {
LOG_INF("\n");
LOG_INF("draft:\n\n");
llama_perf_context_print(ctx_dft);
LOG_INF("\n");
LOG_INF("target:\n\n");
common_perf_print(ctx_tgt, smpl);

View File

@@ -48,11 +48,8 @@ enum server_state {
struct server_slot {
int id;
llama_batch batch_spec = {};
// TODO: change to unique_ptrs for consistency:
llama_context * ctx = nullptr;
llama_context * ctx_dft = nullptr;
// multimodal
mtmd_context * mctx = nullptr;
@@ -259,7 +256,7 @@ struct server_slot {
}
bool can_speculate() const {
return ctx_dft;
return !!spec;
}
void add_token(const completion_token_output & token) {
@@ -397,6 +394,7 @@ struct server_slot {
draft_ratio, n_draft_accepted, n_draft_total
);
}
common_speculative_print_stats(spec);
}
json to_json(bool only_metrics = false) const {
@@ -553,18 +551,13 @@ private:
// note: keep these alive - they determine the lifetime of the model, context, etc.
common_init_result_ptr llama_init;
common_init_result_ptr llama_init_dft;
llama_context * ctx = nullptr;
bool vocab_dft_compatible = true;
llama_model * model_dft = nullptr;
llama_context_params cparams_dft;
llama_batch batch {};
llama_model_ptr model_dft;
bool add_bos_token = true;
int32_t n_ctx; // total context for all clients / slots
@@ -597,13 +590,8 @@ private:
// Clear any sampling context
for (server_slot & slot : slots) {
llama_free(slot.ctx_dft);
slot.ctx_dft = nullptr;
common_speculative_free(slot.spec);
slot.spec = nullptr;
llama_batch_free(slot.batch_spec);
}
llama_batch_free(batch);
@@ -648,44 +636,26 @@ private:
add_bos_token = llama_vocab_get_add_bos(vocab);
if (params_base.has_speculative()) {
if (params_base.speculative.has_dft()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
const auto & params_spec = params_base.speculative;
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.model = params_base.speculative.model;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
params_dft.cache_type_k = params_base.speculative.cache_type_k;
params_dft.cache_type_v = params_base.speculative.cache_type_v;
params_dft.devices = params_spec.devices;
params_dft.model = params_spec.model;
params_dft.n_gpu_layers = params_spec.n_gpu_layers;
params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
params_dft.tensor_buft_overrides = params_spec.tensor_buft_overrides;
llama_init_dft = common_init_from_params(params_dft);
model_dft = llama_init_dft->model();
auto mparams_dft = common_model_params_to_llama(params_dft);
model_dft.reset(llama_model_load_from_file(params_dft.model.path.c_str(), mparams_dft));
if (model_dft == nullptr) {
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
SRV_ERR("failed to load draft model, '%s'\n", params_spec.model.path.c_str());
return false;
}
vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft->context());
if (!vocab_dft_compatible) {
SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
}
const int n_ctx_dft = llama_n_ctx(llama_init_dft->context());
cparams_dft = common_context_params_to_llama(params_dft);
cparams_dft.n_batch = n_ctx_dft;
// the context is not needed - we will create one for each slot
llama_init_dft->free_context();
}
std::string & mmproj_path = params_base.mmproj.path;
@@ -695,6 +665,7 @@ private:
}
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params_base.mmproj_use_gpu;
mparams.print_timings = false;
mparams.n_threads = params_base.cpuparams.n_threads;
@@ -702,6 +673,7 @@ private:
mparams.warmup = params_base.warmup;
mparams.image_min_tokens = params_base.image_min_tokens;
mparams.image_max_tokens = params_base.image_max_tokens;
mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
if (mctx == nullptr) {
SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
@@ -718,11 +690,6 @@ private:
params_base.n_cache_reuse = 0;
SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
}
if (params_base.has_speculative()) {
SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
return false;
}
}
if (!llama_memory_can_shift(llama_get_memory(ctx))) {
@@ -757,29 +724,39 @@ private:
for (int i = 0; i < params_base.n_parallel; i++) {
server_slot slot;
slot.id = i;
slot.ctx = ctx;
slot.id = i;
slot.ctx = ctx;
slot.n_ctx = n_ctx_slot;
slot.mctx = mctx;
slot.mctx = mctx;
slot.prompt.tokens.has_mtmd = mctx != nullptr;
if (model_dft) {
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
// try speculative decoding
{
const auto & params_spec = params_base.speculative;
// TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
if (slot.ctx_dft == nullptr) {
SRV_ERR("%s", "failed to create draft context\n");
return false;
}
auto params_dft = params_base;
slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
if (slot.spec == nullptr) {
SRV_ERR("%s", "failed to create speculator\n");
return false;
}
for (auto & pair : params_base.speculative.replacements) {
common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
params_dft.n_parallel = 1;
params_dft.n_ctx = params_spec.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_spec.n_ctx;
params_dft.n_batch = llama_n_ctx_seq(ctx);
params_dft.cache_type_k = params_spec.cache_type_k;
params_dft.cache_type_v = params_spec.cache_type_v;
params_dft.cpuparams.n_threads = params_spec.cpuparams.n_threads;
params_dft.cpuparams_batch.n_threads = params_spec.cpuparams_batch.n_threads;
auto cparams_dft = common_context_params_to_llama(params_dft);
slot.spec = common_speculative_init(params_base.speculative, slot.ctx, cparams_dft, model_dft.get());
if (slot.spec) {
if (mctx) {
SRV_ERR("%s\n", "speculative decoding is not supported with multimodal");
return false;
}
SRV_WRN("%s", "speculative decoding context initialized\n");
} else {
SRV_WRN("%s", "speculative decoding context not initialized\n");
}
}
@@ -1059,7 +1036,7 @@ private:
return res;
}
std::vector<common_adapter_lora_info> construct_lora_list(const std::map<int, float> & config) {
std::vector<common_adapter_lora_info> construct_lora_list(const std::map<int, float> & config) const {
std::vector<common_adapter_lora_info> output = params_base.lora_adapters; // copy
for (size_t i = 0; i < output.size(); ++i) {
auto it = config.find(i);
@@ -1162,7 +1139,7 @@ private:
backend_sampling &= task.params.sampling.backend_sampling;
// TODO: speculative decoding requires multiple samples per batch - not supported yet
backend_sampling &= !(slot.ctx_dft && task.params.speculative.n_max > 0);
backend_sampling &= !(slot.spec && task.params.speculative.n_max > 0);
// TODO: getting post/pre sampling logits is not yet supported with backend sampling
backend_sampling &= !need_logits;
@@ -1179,14 +1156,6 @@ private:
slot.smpl.reset();
}
// initialize draft batch
// TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
if (slot.ctx_dft) {
llama_batch_free(slot.batch_spec);
slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
}
slot.task = std::make_unique<const server_task>(std::move(task));
slot.state = slot.task->is_child()
@@ -2066,13 +2035,19 @@ private:
GGML_ABORT("not supported by multimodal");
}
struct common_speculative_params params_spec;
params_spec.n_draft = n_draft_max;
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
params_spec.p_min = slot.task->params.speculative.p_min;
struct common_speculative_params params_spec = {
/*.params_spec.n_draft =*/ n_draft_max,
/*.params_spec.p_min =*/ slot.task->params.speculative.p_min,
};
const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, slot.sampled);
if (draft.size() > 0) {
std::string tmp = common_detokenize(slot.ctx, draft);
//LOG_WRN("XXXXXX: draft: '%s'\n", tmp.c_str());
}
// add the sampled token to the batch
slot.i_batch_dft.push_back(batch.n_tokens);
common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
@@ -2813,6 +2788,9 @@ private:
// update how many tokens out of those tested were accepted
slot.n_draft_accepted += ids.size() - 1;
// inform the speculative decoding about the number of accepted tokens
common_speculative_accept(slot.spec, ids.size() - 1);
// rollback to the state before sampling the draft tokens
slot.prompt.tokens.keep_first(slot.prompt.n_tokens() - n_draft);

View File

@@ -5,6 +5,7 @@
#include "llama.h"
#include "chat.h"
#include "sampling.h"
#include "speculative.h"
#include "json-schema-to-grammar.h"
using json = nlohmann::ordered_json;
@@ -76,6 +77,11 @@ json task_params::to_json(bool only_metrics) const {
{"speculative.n_max", speculative.n_max},
{"speculative.n_min", speculative.n_min},
{"speculative.p_min", speculative.p_min},
{"speculative.type", common_speculative_type_to_str(speculative.type)},
{"speculative.ngram_size_n", speculative.ngram_size_n},
{"speculative.ngram_size_m", speculative.ngram_size_m},
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
{"backend_sampling", sampling.backend_sampling},
@@ -135,6 +141,11 @@ json task_params::to_json(bool only_metrics) const {
{"speculative.n_max", speculative.n_max},
{"speculative.n_min", speculative.n_min},
{"speculative.p_min", speculative.p_min},
{"speculative.type", common_speculative_type_to_str(speculative.type)},
{"speculative.ngram_size_n", speculative.ngram_size_n},
{"speculative.ngram_size_m", speculative.ngram_size_m},
{"speculative.ngram_c_rate", speculative.ngram_check_rate},
{"speculative.ngram_m_hits", speculative.ngram_min_hits},
{"timings_per_token", timings_per_token},
{"post_sampling_probs", post_sampling_probs},
{"backend_sampling", sampling.backend_sampling},
@@ -242,6 +253,18 @@ task_params server_task::params_from_json_cmpl(
params.speculative.n_min = std::max(params.speculative.n_min, 0);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
params.speculative.type = common_speculative_type_from_name(json_value(data, "speculative.type", common_speculative_type_to_str(defaults.speculative.type)));
params.speculative.ngram_size_n = json_value(data, "speculative.ngram_size_n", defaults.speculative.ngram_size_n);
params.speculative.ngram_size_m = json_value(data, "speculative.ngram_size_m", defaults.speculative.ngram_size_m);
params.speculative.ngram_check_rate = json_value(data, "speculative.ngram_c_rate", defaults.speculative.ngram_check_rate);
params.speculative.ngram_min_hits = json_value(data, "speculative.ngram_m_hits", defaults.speculative.ngram_min_hits);
params.speculative.ngram_size_n = std::max(std::min(1, (int) params.speculative.ngram_size_n), 1024);
params.speculative.ngram_size_m = std::max(std::min(1, (int) params.speculative.ngram_size_m), 1024);
params.speculative.ngram_check_rate = std::max(std::min(1, (int) params.speculative.ngram_check_rate), 1024);
params.speculative.ngram_min_hits = std::max(std::min(1, (int) params.speculative.ngram_min_hits), 1024);
// Use OpenAI API logprobs only if n_probs wasn't provided
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);