Compare commits

..

49 Commits

Author SHA1 Message Date
Georgi Gerganov
c0c3e428dd refactor 2026-02-16 23:02:45 +02:00
Georgi Gerganov
7f049860b4 resoning and error handling 2026-02-16 22:16:15 +02:00
Georgi Gerganov
2ffa45edfc add tokens 2026-02-16 21:52:54 +02:00
Georgi Gerganov
9c29be1177 store full response 2026-02-16 21:44:29 +02:00
Georgi Gerganov
013963cfd5 add html 2026-02-16 21:22:06 +02:00
Georgi Gerganov
e2e998a2d6 fix prompts 2026-02-16 21:02:25 +02:00
Georgi Gerganov
6c41664b8b simplify 2026-02-16 19:50:27 +02:00
Georgi Gerganov
7b84af8051 fix counts 2026-02-16 16:38:31 +02:00
Georgi Gerganov
60a501e138 cleanup 2026-02-16 16:31:14 +02:00
Georgi Gerganov
e6e777cfb3 resume eval 2026-02-16 16:21:36 +02:00
Georgi Gerganov
ad3a54eb68 ignore errors 2026-02-16 15:23:23 +02:00
Georgi Gerganov
c6d70b9bea add AGENTS.md 2026-02-16 13:13:35 +02:00
Georgi Gerganov
de956a6ca8 cleanup 2026-02-16 12:02:16 +02:00
Georgi Gerganov
350e7c1409 datasets : fix aime2025 2026-02-16 11:55:57 +02:00
Georgi Gerganov
db10dda1f3 grade : improve regex + logs 2026-02-16 11:51:36 +02:00
Georgi Gerganov
52759bf078 grader : update prompt 2026-02-16 11:17:53 +02:00
Georgi Gerganov
99e3c3d02c datasets : add aime2025 2026-02-16 11:07:54 +02:00
Georgi Gerganov
c6315655b7 cont 2026-02-16 10:56:58 +02:00
Georgi Gerganov
f762a71d56 grader : improve example answers 2026-02-16 10:51:41 +02:00
Georgi Gerganov
73e61d5b75 rename 2026-02-16 10:30:10 +02:00
Georgi Gerganov
cffd268bb3 add gpqa + sampling + docs 2026-02-16 00:52:33 +02:00
Georgi Gerganov
e8a807519a datasets : add gsm8k 2026-02-15 23:19:46 +02:00
Georgi Gerganov
1db8428f00 remove old files 2026-02-15 22:16:54 +02:00
Georgi Gerganov
7751ae2796 docs 2026-02-15 22:15:50 +02:00
Georgi Gerganov
d2b10302ce improve grader 2026-02-15 22:12:02 +02:00
Georgi Gerganov
68dde884d6 minor 2026-02-15 21:21:40 +02:00
Georgi Gerganov
fd90796da2 eval : support multiple dataset runs 2026-02-15 21:08:24 +02:00
Georgi Gerganov
8156d549f6 sim : fix answer matching 2026-02-15 21:08:24 +02:00
Georgi Gerganov
9695e6feb4 test : fix path 2026-02-15 21:08:24 +02:00
Georgi Gerganov
fb1481d60d eval : add prompts 2026-02-15 21:08:24 +02:00
Georgi Gerganov
812ae13ec1 eval : print progress 2026-02-15 21:08:24 +02:00
Georgi Gerganov
e79e8d02d5 examples: add task summary table to llama-eval-new.py 2026-02-15 21:08:23 +02:00
Georgi Gerganov
a939f4c47e docs: update llama-eval-discussion.md with threading and model parameter updates
- Add threading support implementation details
- Document ThreadPoolExecutor usage and thread safety
- Add model parameter implementation details
- Include testing results for both features
2026-02-15 21:08:23 +02:00
Georgi Gerganov
62b04cef54 examples: add threading support and model parameter to llama-eval-new.py
- Add ThreadPoolExecutor for parallel request processing controlled by --threads
- Add --model argument to specify model name in request data
- Refactor process() to use thread-safe _process_single_case() method
- Update progress tracking to work with concurrent execution
2026-02-15 21:08:23 +02:00
Georgi Gerganov
37b26cafee docs: update llama-eval-discussion.md with session work summary 2026-02-15 21:08:23 +02:00
Georgi Gerganov
04f6872116 examples: use cached dataset path in simulator to avoid HF Hub requests 2026-02-15 21:08:23 +02:00
Georgi Gerganov
c2619c18bf examples: use cached dataset path to avoid HF Hub requests 2026-02-15 21:08:23 +02:00
Georgi Gerganov
87f8930968 examples: remove HF_HUB_OFFLINE to allow dataset download 2026-02-15 21:08:23 +02:00
Georgi Gerganov
9453f9de12 examples: use HF_HUB_OFFLINE to avoid HF Hub warnings 2026-02-15 21:08:23 +02:00
Georgi Gerganov
5a1be6ce37 examples: implement flexible grader system for answer validation
- Add Grader class supporting regex and CLI-based grading
- Implement built-in regex patterns for AIME, GSM8K, MMLU, HellaSwag, ARC, WinoGrande
- Add CLI grader interface: python script.py --answer <pred> --expected <gold>
- Add HF telemetry disable to avoid warnings
- Support exact match requirement for regex patterns
- Add 30-second timeout for CLI grader
- Handle both boxed and plain text formats for AIME answers
2026-02-15 21:08:23 +02:00
Georgi Gerganov
a80814e97b docs: remove README.md from llama-eval 2026-02-15 21:08:23 +02:00
Georgi Gerganov
5cc2258e82 examples: add simplified llama-eval-new.py for AIME evaluation
- Create new simplified evaluation script focused only on AIME
- Implement EvalState and Processor dataclasses for structured state management
- Add real-time feedback showing correct/incorrect status per case
- Abstract grading interface for external grader support
- Use structured JSON output for eval state
- Apply HuggingFace dataset caching to avoid repeated downloads
- Remove Levenshtein matching - eval script only sends requests and validates answers
2026-02-15 21:08:22 +02:00
Georgi Gerganov
c87af1d527 docs: update llama-eval-discussion.md with session work summary
Add summary of llama-server-simulator implementation work including
features, testing results, technical decisions, and refactoring.
2026-02-15 21:08:22 +02:00
Georgi Gerganov
23d4e21a81 examples: refactor test-simulator.sh for better readability
Extract repeating question string into TEST_QUESTION variable and
create make_request() helper function to reduce code duplication.
Add proper error handling for error responses.
2026-02-15 21:08:22 +02:00
Georgi Gerganov
07d5e1e0ea examples: add llama-server simulator for testing eval scripts
Add a standalone Python script that simulates a llama-server HTTP endpoint
for testing the eval script. The simulator:

- Implements /v1/chat/completions endpoint with OpenAI-compatible format
- Loads AIME dataset from HuggingFace with local caching
- Uses Levenshtein distance for intelligent question matching
- Supports configurable success rate for correct/wrong answer generation
- Provides debug logging for troubleshooting

Also includes test scripts and documentation for testing and understanding
the simulator functionality.
2026-02-15 21:08:22 +02:00
gatbontonpc
8839037528 add checkpointing 2026-02-15 21:08:22 +02:00
gatbontonpc
89cab3dbc5 Add readme 2026-02-15 21:08:22 +02:00
gatbontonpc
c2d83ca048 multi source llama-eval 2026-02-15 21:08:22 +02:00
gatbontonpc
c05df17ce3 working llama-eval mc and math suite 2026-02-15 21:08:19 +02:00
70 changed files with 3027 additions and 1720 deletions

View File

@@ -17,7 +17,7 @@ jobs:
- name: Install komac
run: |
cargo binstall komac@2.15.0 -y
cargo binstall komac@2.11.2 -y
- name: Find latest release
id: find_latest_release

View File

@@ -115,6 +115,11 @@ option(LLAMA_TESTS_INSTALL "llama: install tests" ON)
option(LLAMA_OPENSSL "llama: use openssl to support HTTPS" ON)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# deprecated
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
if (LLAMA_CURL)
message(WARNING "LLAMA_CURL option is deprecated and will be ignored")
endif()
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
@@ -142,15 +147,10 @@ if (NOT DEFINED GGML_CUDA_GRAPHS)
endif()
# transition helpers
function (llama_option_depr TYPE OLD)
function (llama_option_depr TYPE OLD NEW)
if (${OLD})
set(NEW "${ARGV2}")
if(NEW)
message(${TYPE} "${OLD} is deprecated, use ${NEW} instead")
set(${NEW} ON PARENT_SCOPE)
else()
message(${TYPE} "${OLD} is deprecated and will be ignored")
endif()
message(${TYPE} "${OLD} is deprecated and will be removed in the future.\nUse ${NEW} instead\n")
set(${NEW} ON PARENT_SCOPE)
endif()
endfunction()
@@ -163,7 +163,6 @@ llama_option_depr(WARNING LLAMA_RPC GGML_RPC)
llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
llama_option_depr(WARNING LLAMA_CURL)
include("cmake/license.cmake")
license_add_file("llama.cpp" "LICENSE")

View File

@@ -5,6 +5,7 @@ find_package(Threads REQUIRED)
llama_add_compile_flags()
# Build info header
#
if(EXISTS "${PROJECT_SOURCE_DIR}/.git")
set(GIT_DIR "${PROJECT_SOURCE_DIR}/.git")
@@ -109,16 +110,29 @@ if (BUILD_SHARED_LIBS)
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
endif()
target_link_libraries(${TARGET} PRIVATE
build_info
cpp-httplib
)
# TODO: use list(APPEND LLAMA_COMMON_EXTRA_LIBS ...)
set(LLAMA_COMMON_EXTRA_LIBS build_info)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} cpp-httplib)
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
set(LLGUIDANCE_LIB_NAME "${CMAKE_STATIC_LIBRARY_PREFIX}llguidance${CMAKE_STATIC_LIBRARY_SUFFIX}")
# Set the correct library file extension based on platform
if (WIN32)
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
# Add Windows-specific libraries
set(LLGUIDANCE_PLATFORM_LIBS
ws2_32 # Windows Sockets API
userenv # For GetUserProfileDirectoryW
ntdll # For NT functions
bcrypt # For BCryptGenRandom
)
else()
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
set(LLGUIDANCE_PLATFORM_LIBS "")
endif()
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
@@ -140,10 +154,8 @@ if (LLAMA_LLGUIDANCE)
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
target_link_libraries(${TARGET} PRIVATE llguidance)
if (WIN32)
target_link_libraries(${TARGET} PRIVATE ws2_32 userenv ntdll bcrypt)
endif()
endif()
# Add platform libraries to the main target
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_link_libraries(${TARGET} PUBLIC llama Threads::Threads)
target_link_libraries(${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

View File

@@ -670,7 +670,7 @@ static std::vector<T> string_split(const std::string & str, char delim) {
}
template<>
inline std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
{
std::vector<std::string> parts;
size_t begin_pos = 0;
@@ -685,7 +685,7 @@ inline std::vector<std::string> string_split<std::string>(const std::string & in
return parts;
}
inline bool string_starts_with(const std::string & str,
static bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
@@ -870,11 +870,11 @@ const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
const char * const LLM_FFN_EXPS_REGEX = "\\.ffn_(up|down|gate)_(ch|)exps";
inline std::string llm_ffn_exps_block_regex(int idx) {
static std::string llm_ffn_exps_block_regex(int idx) {
return string_format("blk\\.%d%s", idx, LLM_FFN_EXPS_REGEX);
}
inline llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
static llama_model_tensor_buft_override llm_ffn_exps_cpu_override() {
return { LLM_FFN_EXPS_REGEX, ggml_backend_cpu_buffer_type() };
}

View File

@@ -1049,9 +1049,6 @@ class TextModel(ModelBase):
if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
# ref: https://huggingface.co/zai-org/GLM-4.5-Air
res = "glm4"
if chkhsh == "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267":
# ref: https://huggingface.co/zai-org/GLM-4.7-Flash
res = "glm4"
if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
# ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
res = "minerva-7b"
@@ -1085,6 +1082,9 @@ class TextModel(ModelBase):
if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
# ref: https://huggingface.co/aari1995/German_Semantic_V3
res = "jina-v2-de"
if chkhsh == "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267":
# ref: https://huggingface.co/zai-org/GLM-4.7-Flash
res = "glm4"
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
@@ -1124,9 +1124,6 @@ class TextModel(ModelBase):
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
res = "command-r"
if chkhsh == "d772b220ace2baec124bed8cfafce0ead7d6c38a4b65ef11261cf9d5d62246d1":
# ref: https://huggingface.co/CohereLabs/tiny-aya-base
res = "tiny_aya"
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
# ref: https://huggingface.co/Qwen/Qwen1.5-7B
res = "qwen2"
@@ -1268,9 +1265,6 @@ class TextModel(ModelBase):
if chkhsh == "d30d75d9059f1aa2c19359de71047b3ae408c70875e8a3ccf8c5fba56c9d8af4":
# ref: https://huggingface.co/Qwen/Qwen3.5-9B-Instruct
res = "qwen35"
if chkhsh == "b4b8ca1f9769494fbd956ebc4c249de6131fb277a4a3345a7a92c7dd7a55808d":
# ref: https://huggingface.co/jdopensource/JoyAI-LLM-Flash
res = "joyai-llm"
if res is None:
logger.warning("\n")
@@ -7366,17 +7360,6 @@ class Cohere2Model(TextModel):
self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Cohere2 runtime in llama.cpp expects no bias tensors;
# the actual weight only contains 0-value tensors as bias, we can skip them
if name.endswith(".bias"):
if torch.any(data_torch != 0):
raise ValueError(f"Bias tensor {name!r} is not zero.")
logger.debug(f"Skipping bias tensor {name!r} for Cohere2 conversion.")
return
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("OlmoForCausalLM")
@ModelBase.register("OLMoForCausalLM")

View File

@@ -99,7 +99,6 @@ models = [
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "tiny_aya", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereLabs/tiny-aya-base", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
@@ -149,8 +148,7 @@ models = [
{"name": "youtu", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Youtu-LLM-2B", },
{"name": "solar-open", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/upstage/Solar-Open-100B", },
{"name": "exaone-moe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/K-EXAONE-236B-A23B", },
{"name": "qwen35", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3.5-9B-Instruct", },
{"name": "joyai-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jdopensource/JoyAI-LLM-Flash", },
{"name": "qwen35", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen3.5-9B-Instruct", }
]
# some models are known to be broken upstream, so we will skip them as exceptions
@@ -160,7 +158,6 @@ pre_computed_hashes = [
{"name": "chatglm-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-chat", "chkhsh": "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", "chkhsh": "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.5-Air", "chkhsh": "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.7-Flash", "chkhsh": "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267"},
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", "chkhsh": "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35"},
{"name": "hunyuan", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-A13B-Instruct", "chkhsh": "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664"},
{"name": "hunyuan-dense", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tencent/Hunyuan-4B-Instruct", "chkhsh": "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6"},
@@ -174,6 +171,7 @@ pre_computed_hashes = [
{"name": "grok-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/alvarobartt/grok-2-tokenizer", "chkhsh": "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273"},
# jina-v2-de variants
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/aari1995/German_Semantic_V3", "chkhsh": "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df"},
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/zai-org/GLM-4.7-Flash", "chkhsh": "cdf5f35325780597efd76153d4d1c16778f766173908894c04afc20108536267"},
]

View File

@@ -0,0 +1,190 @@
# llama-eval Codebase Guidelines
## Overview
This directory contains Python evaluation tools for llama.cpp:
- `llama-eval.py` - Main evaluation tool with multiple datasets (AIME, AIME2025, GSM8K, GPQA)
- `llama-server-simulator.py` - Flask-based server simulator for testing
- `test-simulator.sh` - Test script for the simulator
## Build/Run Commands
### Virtual Environment
The project uses a virtual environment located at `venv/`:
```bash
source venv/bin/activate
```
### Running the Main Evaluator
```bash
python llama-eval.py \
--server http://127.0.0.1:8013 \
--model gpt-oss-20b-hf-low \
--dataset aime \
--n_cases 10 \
--grader-type llm \
--seed 42
```
### Running the Simulator (for testing)
```bash
python llama-server-simulator.py --port 8033 --success-rate 0.8
```
### Running Tests
```bash
./test-simulator.sh
```
## Code Style Guidelines
### Imports
- Standard library imports first (argparse, json, os, re, subprocess, sys, time)
- Third-party imports (requests, tqdm, datasets, flask) after standard library
- Relative imports not used
- Group imports by category with blank line between groups
### Formatting
- 4-space indentation
- Max line length: 125 characters (per parent project's .flake8)
- Use double quotes for strings
- Use triple double quotes for docstrings
- Binary operators at the beginning of continued lines
### Naming Conventions
- Classes: PascalCase (e.g., `AimeDataset`, `Grader`, `Processor`)
- Functions: snake_case (e.g., `normalize_number`, `get_prompt`)
- Variables: snake_case (e.g., `question_text`, `correct_count`)
- Constants: UPPER_SNAKE_CASE (e.g., `GRADER_PATTERNS`, `TEMPLATE_REGISTRY`)
- Private methods: prefix with underscore (e.g., `_load_dataset`, `_grade_regex`)
### Types
- Use type hints for all function signatures
- Import from `typing` module: `Dict`, `List`, `Optional`, `Any`, `Tuple`
- Use `@dataclass` for data structures
- Prefer `Optional[T]` over `Union[T, None]`
### Error Handling
- Use try/except for network requests and file operations
- Return `None` or `False` on errors when appropriate
- Use `ValueError` for invalid arguments
- Use `FileNotFoundError` for missing files
- CLI scripts should handle exceptions gracefully
### Dataclasses
- Use `@dataclass` for structured data
- Define fields with explicit types
- Use `Optional[T]` for nullable fields
- Provide default values where appropriate
### String Formatting
- Use f-strings for formatting (Python 3.6+)
- Use triple double quotes for multi-line strings
- Escape backslashes in regex patterns: `r'\\boxed{(\d+)}'`
### File Paths
- Use `pathlib.Path` instead of string paths
- Create directories with `mkdir(parents=True, exist_ok=True)`
- Use `Path.home()` for user home directory
### Logging
- Use `print()` for user-facing output
- Use `sys.stderr` for debug logging
- Simulator writes debug logs to `/tmp/simulator-debug.log`
### Testing
- Test script uses bash with `set -e` for strict error handling
- Simulator runs in background with PID tracking
- Tests verify correct answers, error cases, and edge cases
- Use `curl` for HTTP testing in shell scripts
### Whitespace Cleanup
- Remove trailing whitespace from all lines
- When making edits, do not leave trailing whitespace
## Dataset Support
### AIME Dataset
- 90 questions from 2025 AIME competition
- Answers in `\boxed{answer}` format
- Supports regex, CLI, and LLM grading
### AIME2025 Dataset
- 30 questions from 2025 AIME I & II
- Answers in `\boxed{answer}` format
- Requires loading two config parts
### GSM8K Dataset
- 7473 math word problems
- Answers numeric values with `####` separator
- Supports regex, CLI, and LLM grading
### GPQA Dataset
- 198 questions from GPQA Diamond
- Multiple choice with shuffled options (A, B, C, D)
- **Requires LLM grader** (returns letter A/B/C/D)
## Grading Types
### Regex Grader
- Built-in patterns per dataset
- Prioritizes `\boxed{}` for AIME datasets
- Extracts last number for GSM8K
### CLI Grader
- External script interface
- Call: `grader.sh --answer <pred> --expected <gold>`
- Exit code 0 = correct, non-zero = incorrect
### LLM Grader
- Uses judge model for answer extraction
- Includes few-shot examples
- Case-insensitive comparison
- Required for GPQA
## Configuration
### Sampling Parameters (Optional)
- `--temperature`: Sampling temperature
- `--top-k`: Top K sampling
- `--top-p`: Top P sampling
- `--min-p`: Min P sampling
- Only passed to API if explicitly specified
### Default Values
- `--n_predict`: -1 (infinite)
- `--grader-type`: llm
- `--seed`: 1234
- `--threads`: 32
- `--output`: llama-eval-state.json
## Output Format
### Progress Table
- Shows task ID, dataset, prompt (truncated to 43 chars), expected answer, status
- Uses `tqdm` for progress bars
### Results Summary
- Format: `Results: X/Y correct (Z%)`
- Displayed after all tasks complete
### JSON Output
- Complete eval state saved to output file
- Contains: task IDs, correctness, prompts, extracted answers, sampling config
- Uses `dataclasses.asdict()` for serialization
## HuggingFace Datasets
- Cache directory: `~/.cache/huggingface/datasets`
- Set via `HF_DATASETS_CACHE` environment variable
- Telemetry disabled via `HF_HUB_DISABLE_TELEMETRY=1`
- Datasets loaded with `datasets.load_dataset()`
## Flask Simulator
- Runs on configurable port (default: 5000)
- Endpoint: `/v1/chat/completions` (OpenAI-compatible)
- Uses Dice coefficient for question matching
- Configurable success rate for testing
- Debug logs to `/tmp/simulator-debug.log`

View File

@@ -0,0 +1,94 @@
# llama-eval Implementation Summary
## Overview
Simple evaluation tool for llama.cpp with support for multiple datasets (AIME, GSM8K, GPQA) and flexible grading (regex, CLI, LLM).
## Key Features
- **Multiple Datasets**: AIME, GSM8K, GPQA with proper answer extraction
- **Flexible Grading**: Regex, CLI, or LLM-based grading
- **Parallel Processing**: Configurable thread count for concurrent requests
- **Sampling Parameters**: Temperature, Top K, Top P, Min P (optional)
- **Real-time Feedback**: Progress tracking with detailed output
- **JSON Output**: Complete eval state saved for debugging
- **GPQA Support**: Answer shuffling with reproducible results
## Architecture
### Eval State
```python
@dataclass
class EvalState:
id: str
tasks: List[str]
task_states: Dict[str, Dict[str, Any]]
sampling_config: Dict[str, Any]
```
### Processor
- Handles processing, grading, and state management
- Thread-safe concurrent execution
- Configurable sampling parameters
### Grader
- Abstract grading interface supporting multiple types
- Regex grader with dataset-specific patterns
- CLI grader with external script interface
- LLM grader with configurable server and model
### Datasets
- `AimeDataset`: 90 AIME 2025 questions
- `Aime2025Dataset`: 30 AIME 2025 I & II questions
- `Gsm8kDataset`: 7473 math word problems
- `GpqaDataset`: 198 GPQA Diamond questions with shuffling
## Configuration
### Sampling Parameters (Optional)
- `--temperature`: Sampling temperature
- `--top-k`: Top K sampling
- `--top-p`: Top P sampling
- `--min-p`: Min P sampling
- Only passed if explicitly specified
### Grading Types
- **regex**: Built-in patterns for each dataset
- **cli**: External script with `--answer` and `--expected` args
- **llm**: LLM-based extraction with few-shot examples and configurable server/model
### Dataset Requirements
- **AIME**: Supports regex, CLI, or LLM grader
- **AIME2025**: Supports regex, CLI, or LLM grader
- **GSM8K**: Supports regex, CLI, or LLM grader
- **GPQA**: Requires LLM grader
## Output Format
### Progress Table
```
Task ID Dataset Prompt (first 43 chars) Expected Status
aime_000_001 AIME Complete the following reactions and sel... A pending
```
### Results Summary
```
============================================================
Results: 8/10 correct (80.0%)
============================================================
```
### JSON Output
Complete eval state with task IDs, correctness, prompts, extracted answers, and sampling configuration.
## Technical Details
- Default max tokens: -1 (infinite)
- Default grader type: llm
- Default seed: 1234
- Default threads: 32
- Prompt truncation: First 43 chars + padding + "..."
- Response truncation: Last 10 lines for grading
- GPQA requires LLM grader (returns letter A/B/C/D)
- Judge model defaults to evaluated model if not specified
- Sample answers defined in SAMPLE_ANSWERS dict for few-shot learning

View File

@@ -0,0 +1,112 @@
# llama-eval Evaluation Tool
Simple evaluation tool for llama.cpp with support for multiple datasets.
## Features
- **Multiple Datasets**: AIME, GSM8K, GPQA
- **Flexible Grading**: Regex, CLI, or LLM-based grading
- **Parallel Processing**: Configurable thread count
- **Real-time Feedback**: Progress tracking with detailed output
- **Sampling Parameters**: Temperature, Top K, Top P, Min P
- **JSON Output**: Complete eval state saved for debugging
## Usage
```bash
python llama-eval.py \
--server http://127.0.0.1:8013 \
--model gpt-oss-20b-hf-low \
--judge-model gpt-oss-20b-hf-medium \
--dataset aime \
--n_cases 10 \
--grader-type llm \
--seed 42
```
## CLI Arguments
- `--server`: llama-server URL (default: http://127.0.0.1:8013)
- `--model`: Model name for evaluation (default: llama)
- `--judge-model`: Model name for LLM judge (default: same as main model)
- `--judge-server`: Server URL for LLM judge (default: same as main server)
- `--dataset`: Dataset type (aime, aime2025, gsm8k, gpqa)
- `--n_cases`: Number of cases to evaluate (default: all)
- `--n_predict`: Max tokens to predict per prompt (default: -1, infinite)
- `--temperature`: Sampling temperature (default: not passed)
- `--top-k`: Top K sampling (default: not passed)
- `--top-p`: Top P sampling (default: not passed)
- `--min-p`: Min P sampling (default: not passed)
- `--threads`: Number of threads for parallel requests (default: 32)
- `--verbose`: Show detailed output for each case
- `--output`: Output file for eval state (default: llama-eval-state.json)
- `--grader-type`: Grader type (regex, cli, llm, default: llm)
- `--grader-script`: Path to CLI grader script (required for --grader-type cli)
- `--seed`: Random seed for shuffling (default: 1234)
## Datasets
### AIME
- 90 questions from 2025 AIME competition
- Answers in boxed format: `\boxed{answer}`
- Requires regex grader or LLM grader
### AIME2025
- 30 questions from 2025 AIME I & II competitions
- Answers in boxed format: `\boxed{answer}`
- Supports regex, CLI, or LLM grader
### GSM8K
- 7473 math word problems
- Answers are numeric values
- Requires regex grader or LLM grader
### GPQA
- 198 questions from GPQA Diamond dataset
- Multiple choice with shuffled options
- Requires LLM grader (returns letter A, B, C, or D)
## Grading Types
### Regex Grader
Built-in patterns for different datasets:
- AIME: `\boxed{(\d+)}|\b(\d+)\b`
- AIME2025: `\boxed{(\d+)}|\b(\d+)\b`
- GSM8K: `\b(\d+)\b`
- GPQA: Letter extraction (A, B, C, D)
### CLI Grader
External script interface:
```bash
./grader.sh --answer <pred> --expected <gold>
```
Returns exit code 0 if correct, non-zero if incorrect.
### LLM Grader
Uses LLM to extract and compare answers:
- Configurable server and model
- Includes few-shot examples from sample answers
- Case-insensitive comparison
- Required for GPQA dataset
## Output
### Progress Table
```
Task ID Dataset Prompt (first 43 chars) Expected Status
aime_000_001 AIME Complete the following reactions and sel... A pending
```
### Results
```
============================================================
Results: 8/10 correct (80.0%)
============================================================
```
### JSON Output
Complete eval state saved to output file with:
- Task IDs and correctness status
- Prompts and extracted answers
- Sampling configuration
- Processing metadata

1229
examples/llama-eval/llama-eval.py Executable file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,36 @@
# llama-server-simulator
Standalone Python script simulating llama-server HTTP endpoint for testing.
## Features
- HTTP Server with OpenAI-compatible `/v1/chat/completions` endpoint
- AIME Dataset Integration - Loads 90 questions from HuggingFace
- Intelligent Question Matching - Uses exact matching, LaTeX removal, and Levenshtein distance
- Configurable Success Rate - Control correct/wrong answer generation (0-1)
- Debug Logging - Troubleshoot matching issues
## Usage
```bash
python llama-server-simulator.py --success-rate 0.8
```
## Arguments
- `--success-rate`: Probability of returning correct answer (0.0-1.0, default: 0.8)
- `--port`: Server port (default: 8033)
- `--debug`: Enable debug logging (default: False)
## Testing
```bash
./test-simulator.sh
```
## Implementation Details
- Uses Levenshtein distance for partial matching (threshold: 0.3)
- Automatic caching via HuggingFace datasets library
- Wrong answers generated by incrementing expected answer
- Debug output written to stderr

View File

@@ -0,0 +1,283 @@
#!/usr/bin/env python3
import argparse
import json
import random
import re
import time
import sys
import os
from typing import Dict, List, Optional
from dataclasses import dataclass, asdict
from pathlib import Path
import datasets
from flask import Flask, request, jsonify
# Set cache directory for HuggingFace datasets
cache_dir = Path.home() / ".cache" / "huggingface" / "datasets"
cache_dir.mkdir(parents=True, exist_ok=True)
os.environ["HF_DATASETS_CACHE"] = str(cache_dir)
def dice(s1: str, s2: str) -> float:
"""Calculate Dice coefficient between two strings based on bigram overlap."""
if not s1 and not s2:
return 1.0
def _bigrams(s: str):
return [s[i : i + 2] for i in range(len(s) - 1)]
bigrams1 = _bigrams(s1)
bigrams2 = _bigrams(s2)
if not bigrams1 and not bigrams2:
return 1.0
from collections import Counter
freq1 = Counter(bigrams1)
freq2 = Counter(bigrams2)
intersection = sum(min(freq1[bg], freq2[bg]) for bg in freq1)
dice_coeff = 2 * intersection / (len(bigrams1) + len(bigrams2))
return dice_coeff
def debug_log(message: str):
"""Log debug messages to both stdout and a file"""
print(message, file=sys.stderr)
with open("/tmp/simulator-debug.log", "a") as f:
f.write(message + "\n")
app = Flask(__name__)
@dataclass
class EvalState:
id: str
tasks: List[str]
task_states: Dict[str, Dict]
sampling_config: Dict
def normalize_number(s: str) -> Optional[int]:
match = re.match(r"\d+", s) # match digits from the start
if not match:
return None
return int(match.group(0))
class AimeDataset:
def __init__(self, split: str = "train"):
self.split = split
self.questions: List[Dict] = []
self._load_dataset()
def _load_dataset(self):
print(f"Loading AIME dataset (split: {self.split})...")
cache_path = Path.home() / ".cache" / "huggingface" / "datasets" / "AI-MO___aimo-validation-aime" / "default" / "0.0.0"
if cache_path.exists():
print(f"Using cached dataset from {cache_path}")
ds = datasets.load_dataset("AI-MO/aimo-validation-aime", split=self.split, cache_dir=str(cache_path))
else:
ds = datasets.load_dataset("AI-MO/aimo-validation-aime", split=self.split)
self.questions = list(ds)
print(f"AIME dataset loaded: {len(self.questions)} questions")
def find_question(self, request_text: str) -> Optional[Dict]:
best_match = None
best_distance = -1
best_index = -1
for i, question in enumerate(self.questions):
question_text = question["problem"]
request_lower = request_text.lower()
question_lower = question_text.lower()
# Exact match
if question_lower == request_lower:
debug_log(f"DEBUG: Found exact match at index {i}")
return question
# Remove LaTeX formatting for more flexible matching
question_no_latex = re.sub(r'\$[^$]+\$', '', question_text)
if question_no_latex.lower() == request_lower:
debug_log(f"DEBUG: Found match (no LaTeX) at index {i}")
return question
# Calculate Levenshtein distance for partial matches
# Only consider if request is at least 50% of question length
if len(request_lower) >= len(question_lower) * 0.5:
distance = dice(question_lower, request_lower)
if distance > best_distance:
best_distance = distance
best_match = question
best_index = i
if best_match and best_distance > 0.3: # Threshold for partial match
debug_log(f"DEBUG: Found best partial match at index {best_index} with distance {best_distance:.3f}")
return best_match
debug_log(f"DEBUG: No matching question found for: {request_text[:100]}...")
return None
def get_answer(self, question: Dict) -> str:
answer = question["answer"]
if isinstance(answer, str):
normalized = normalize_number(answer)
return str(normalized) if normalized is not None else answer
return str(answer)
class Simulator:
def __init__(
self,
port: int = 8033,
host: str = "localhost",
success_rate: float = 0.8,
dataset_split: str = "train"
):
self.port = port
self.host = host
self.success_rate = success_rate
self.dataset = AimeDataset(dataset_split)
self.eval_state = EvalState(
id="aime-2025",
tasks=["aime"],
task_states={},
sampling_config={"temperature": 0, "max_tokens": 2048}
)
def _generate_response(
self,
question: Dict,
should_be_correct: bool
) -> Dict:
expected_answer = self.dataset.get_answer(question)
if should_be_correct:
response_text = expected_answer
else:
response_text = self._generate_wrong_answer(question)
return {
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "llama",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": response_text
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 100,
"completion_tokens": 50,
"total_tokens": 150
}
}
def _generate_wrong_answer(self, question: Dict) -> str:
expected_answer = self.dataset.get_answer(question)
if expected_answer.isdigit():
wrong_answer = str(int(expected_answer) + 1)
else:
wrong_answer = expected_answer + " (wrong)"
return wrong_answer
def _process_request(self, request_data: Dict) -> Dict:
messages = request_data.get("messages", [])
if not messages:
return {"error": "No messages in request"}
request_text = messages[0].get("content", "")
debug_log(f"DEBUG: Received request with content: {request_text[:150]}...")
question = self.dataset.find_question(request_text)
if not question:
debug_log(f"DEBUG: find_question returned None")
return {"error": "No matching question found"}
should_be_correct = random.random() < self.success_rate
response = self._generate_response(question, should_be_correct)
task_id = "aime"
self.eval_state.task_states[task_id] = {
"correct": should_be_correct,
"expected": self.dataset.get_answer(question),
"predicted": response["choices"][0]["message"]["content"]
}
return response
@app.route('/v1/chat/completions', methods=['POST'])
def chat_completions():
try:
request_data = request.get_json()
if not request_data:
return jsonify({"error": "Invalid JSON"}), 400
response = simulator._process_request(request_data)
return jsonify(response)
except Exception as e:
print(f"Error processing request: {e}")
return jsonify({"error": str(e)}), 500
def main():
parser = argparse.ArgumentParser(
description="llama-server simulator for testing eval scripts"
)
parser.add_argument(
"--port",
type=int,
default=8033,
help="Server port (default: 8033)"
)
parser.add_argument(
"--host",
type=str,
default="localhost",
help="Server host (default: localhost)"
)
parser.add_argument(
"--success-rate",
type=float,
default=0.8,
help="Success rate 0-1 (default: 0.8)"
)
parser.add_argument(
"--dataset-split",
type=str,
default="train",
help="AIME dataset split to use (default: train)"
)
args = parser.parse_args()
global simulator
simulator = Simulator(
port=args.port,
host=args.host,
success_rate=args.success_rate,
dataset_split=args.dataset_split
)
print("\n=== llama-server-simulator ===")
print(f"Server running on http://{args.host}:{args.port}")
print(f"Success rate: {args.success_rate}")
print(f"AIME dataset loaded: {len(simulator.dataset.questions)} questions")
print("\nPress Ctrl+C to stop\n")
app.run(host=args.host, port=args.port, debug=False)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,86 @@
#!/bin/bash
set -e
# Get the directory where this script is located
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
echo "=== llama-server-simulator Test Script ==="
echo ""
PORT=8033
SUCCESS_RATE=0.8
TEST_PORT=8034
echo "Starting simulator on port $PORT with success rate $SUCCESS_RATE..."
source "$SCRIPT_DIR/venv/bin/activate"
python3 "$SCRIPT_DIR/llama-server-simulator.py" --port $PORT --success-rate $SUCCESS_RATE > /tmp/simulator-test.log 2>&1 &
SIMULATOR_PID=$!
echo "Waiting for simulator to start..."
sleep 5
# Helper function to make a request and extract the answer
make_request() {
local question="$1"
curl -s -X POST http://localhost:$PORT/v1/chat/completions \
-H "Content-Type: application/json" \
-d "{
\"model\": \"llama\",
\"messages\": [
{\"role\": \"user\", \"content\": \"$question\"}
],
\"temperature\": 0,
\"max_tokens\": 2048
}" | python3 -c "import sys, json; data = json.load(sys.stdin); print(data.get('choices', [{}])[0].get('message', {}).get('content', data.get('error', 'No response')))"
}
# Test question (repeated in multiple tests)
TEST_QUESTION="Quadratic polynomials P(x) and Q(x) have leading coefficients 2 and -2, respectively. The graphs of both polynomials pass through the two points (16,54) and (20,53). Find P(0) + Q(0)."
echo ""
echo "=== Test 1: Correct Answer ==="
echo "Sending request with known question..."
answer=$(make_request "$TEST_QUESTION")
echo "Answer: $answer"
echo "Expected: 116"
echo "Correct: $([ "$answer" == "116" ] && echo "Yes" || echo "No")"
echo ""
echo "=== Test 2: Wrong Answer ==="
echo "Sending request with known question (success rate 0.0)..."
answer=$(make_request "$TEST_QUESTION")
echo "Answer: $answer"
echo "Expected: 116"
echo "Correct: $([ "$answer" == "116" ] && echo "Yes" || echo "No")"
echo ""
echo "=== Test 3: No Matching Question ==="
echo "Sending request with non-matching text..."
response=$(make_request "What is the capital of France?")
echo "Response: $response"
echo "Expected: No matching question found"
echo "Correct: $([ "$response" == "No matching question found" ] && echo "Yes" || echo "No")"
echo ""
echo "=== Test 4: Success Rate Verification ==="
echo "Sending 10 requests to test success rate..."
correct_count=0
for i in {1..10}; do
answer=$(make_request "$TEST_QUESTION")
if [ "$answer" == "116" ]; then
correct_count=$((correct_count + 1))
fi
echo " Request $i: Answer = $answer"
done
echo "Correct answers: $correct_count/10"
echo "Expected: ~8/10 (80% success rate)"
echo "Success rate: $(echo "scale=1; $correct_count * 10" | bc)%"
echo ""
echo "=== Test Complete ==="
echo "Stopping simulator..."
kill $SIMULATOR_PID 2>/dev/null
wait $SIMULATOR_PID 2>/dev/null || true
echo "Simulator stopped."

View File

@@ -42,15 +42,11 @@ def load_model_and_tokenizer(model_path, device="auto"):
config = config.text_config
multimodal = True
def print_if_exists(label, obj, attr, default="N/A"):
val = getattr(obj, attr) if hasattr(obj, attr) else default
print(f"{label}", val)
print_if_exists("Vocab size: ", config, "vocab_size")
print_if_exists("Hidden size: ", config, "hidden_size")
print_if_exists("Number of layers: ", config, "num_hidden_layers")
print_if_exists("BOS token id: ", config, "bos_token_id")
print_if_exists("EOS token id: ", config, "eos_token_id")
print("Vocab size: ", config.vocab_size)
print("Hidden size: ", config.hidden_size)
print("Number of layers: ", config.num_hidden_layers)
print("BOS token id: ", config.bos_token_id)
print("EOS token id: ", config.eos_token_id)
unreleased_model_name = os.getenv("UNRELEASED_MODEL_NAME")
if unreleased_model_name:

View File

@@ -78,7 +78,7 @@ def list_all_tensors(model_path: Path, unique: bool = False):
print(tensor_name)
def print_tensor_info(model_path: Path, tensor_name: str, num_values: Optional[int] = None):
def print_tensor_info(model_path: Path, tensor_name: str):
tensor_file = find_tensor_file(model_path, tensor_name)
if tensor_file is None:
@@ -96,12 +96,6 @@ def print_tensor_info(model_path: Path, tensor_name: str, num_values: Optional[i
print(f"Tensor: {tensor_name}")
print(f"File: {tensor_file}")
print(f"Shape: {shape}")
if num_values is not None:
tensor = f.get_tensor(tensor_name)
print(f"Dtype: {tensor.dtype}")
flat = tensor.flatten()
n = min(num_values, flat.numel())
print(f"Values: {flat[:n].tolist()}")
else:
print(f"Error: Tensor '{tensor_name}' not found in {tensor_file}")
sys.exit(1)
@@ -133,15 +127,6 @@ def main():
action="store_true",
help="List unique tensor patterns in the model (layer numbers replaced with #)"
)
parser.add_argument(
"-n", "--num-values",
nargs="?",
const=10,
default=None,
type=int,
metavar="N",
help="Print the first N values of the tensor flattened (default: 10 if flag is given without a number)"
)
args = parser.parse_args()
@@ -167,7 +152,7 @@ def main():
if args.tensor_name is None:
print("Error: tensor_name is required when not using --list")
sys.exit(1)
print_tensor_info(model_path, args.tensor_name, args.num_values)
print_tensor_info(model_path, args.tensor_name)
if __name__ == "__main__":

View File

@@ -4,7 +4,7 @@ project("ggml" C CXX ASM)
### GGML Version
set(GGML_VERSION_MAJOR 0)
set(GGML_VERSION_MINOR 9)
set(GGML_VERSION_PATCH 7)
set(GGML_VERSION_PATCH 5)
set(GGML_VERSION_BASE "${GGML_VERSION_MAJOR}.${GGML_VERSION_MINOR}.${GGML_VERSION_PATCH}")
find_program(GIT_EXE NAMES git git.exe NO_CMAKE_FIND_ROOT_PATH)

View File

@@ -752,7 +752,6 @@ extern "C" {
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_view (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);

View File

@@ -17,6 +17,11 @@
//#define AT_PRINTF(...) GGML_LOG_DEBUG(__VA_ARGS__)
#define AT_PRINTF(...)
static bool ggml_is_view(const struct ggml_tensor * t) {
return t->view_src != NULL;
}
// ops that return true for this function must not use restrict pointers for their backend implementations
bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
@@ -622,7 +627,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
GGML_ASSERT(buffer_id >= 0);
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_impl_is_view(node)) {
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
hn->allocated = true;
assert(hn->addr.offset == 0);
@@ -653,7 +658,7 @@ static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
if (p_hn->n_children == 1 && p_hn->n_views == 0) {
if (ggml_impl_is_view(parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
@@ -734,7 +739,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
// itself is never used and should not be considered a dependency
if (ggml_impl_is_view(node) && node->op != GGML_OP_NONE) {
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
struct ggml_tensor * view_src = node->view_src;
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
}
@@ -801,7 +806,7 @@ static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgr
parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
if (ggml_impl_is_view(parent)) {
if (ggml_is_view(parent)) {
struct ggml_tensor * view_src = parent->view_src;
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
view_src_hn->n_views -= 1;

View File

@@ -9,11 +9,6 @@ function(ggml_add_cpu_backend_features cpu_name arch)
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE ${ARGN})
target_compile_definitions(${GGML_CPU_FEATS_NAME} PRIVATE GGML_BACKEND_DL GGML_BACKEND_BUILD GGML_BACKEND_SHARED)
set_target_properties(${GGML_CPU_FEATS_NAME} PROPERTIES POSITION_INDEPENDENT_CODE ON)
# Disable LTO for the feature detection code to prevent cross-module optimization
# from inlining architecture-specific instructions into the score function.
# Without this, LTO can cause SIGILL when loading backends on older CPUs
# (e.g., loading power10 backend on power9 crashes before feature check runs).
target_compile_options(${GGML_CPU_FEATS_NAME} PRIVATE -fno-lto)
target_link_libraries(${cpu_name} PRIVATE ${GGML_CPU_FEATS_NAME})
endfunction()

View File

@@ -3226,316 +3226,6 @@ void ggml_gemm_q4_K_8x8_q8_K(int n,
UNUSED(ncols_interleaved);
UNUSED(blocklen);
#if defined(__aarch64__) && defined(__ARM_FEATURE_SVE) && defined(__ARM_FEATURE_MATMUL_INT8)
if (svcntb() * 8 == 256) {
constexpr int q8_k_blocklen = 4;
const svuint8_t m4b_1 = svdup_n_u8(0x0f);
// 8 accumulators: 2 row pairs × 4 col pairs
svfloat32_t acc_f32_01, acc_f32_23, acc_f32_45, acc_f32_67;
uint32_t idx_arr[8] = { 0, 2, 4, 6, 1, 3, 5, 7 };
svbool_t pg = svptrue_pat_b32(SV_VL8);
svuint32_t idx = svld1(pg, idx_arr);
static const uint32_t idx_data[8] = {0, 4, 2, 6, 1, 5, 3, 7};
svuint32_t idx1 = svld1_u32(svptrue_b32(), idx_data);
for (int y = 0; y < nr / q8_k_blocklen; y++) {
const block_q8_Kx4 * GGML_RESTRICT q8_ptr = (const block_q8_Kx4 *) vy + (y * nb);
for (int x = 0; x < nc / ncols_interleaved; x++) {
const block_q4_Kx8 * GGML_RESTRICT q4_ptr = (const block_q4_Kx8 *) vx + (x * nb);
acc_f32_01 = svdup_n_f32(0);
acc_f32_23 = svdup_n_f32(0);
acc_f32_45 = svdup_n_f32(0);
acc_f32_67 = svdup_n_f32(0);
for (int b = 0; b < nb; b++) {
// bsums pairs belongs to the same q8_k subblock
// 64 elemnts loaded and made sum of 0-7 and 8-15 sum || 16-23 and 24 - 31 sum
const int16x8_t bsums[4]{
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 0), vld1q_s16(q8_ptr[b].bsums + 16 * 0 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 1), vld1q_s16(q8_ptr[b].bsums + 16 * 1 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 2), vld1q_s16(q8_ptr[b].bsums + 16 * 2 + 8)),
vpaddq_s16(vld1q_s16(q8_ptr[b].bsums + 16 * 3), vld1q_s16(q8_ptr[b].bsums + 16 * 3 + 8)),
};
int32_t bsums_arr32[4][8];
for (int q8_row = 0; q8_row < 4; q8_row++) {
int16x8_t v16 = bsums[q8_row];
// low 4
int32x4_t v32_lo = vmovl_s16(vget_low_s16(v16));
vst1q_s32(&bsums_arr32[q8_row][0], v32_lo);
// high 4
int32x4_t v32_hi = vmovl_s16(vget_high_s16(v16));
vst1q_s32(&bsums_arr32[q8_row][4], v32_hi);
}
svint32_t sb_acc_0 = svdup_n_s32(0);
svint32_t sb_acc_2 = svdup_n_s32(0);
svint32_t acc_00 = svdup_n_s32(0);
svint32_t acc_11 = svdup_n_s32(0);
svint32_t acc_22 = svdup_n_s32(0);
svint32_t acc_33 = svdup_n_s32(0);
svint32_t acc_44 = svdup_n_s32(0);
svint32_t acc_55 = svdup_n_s32(0);
svint32_t acc_66 = svdup_n_s32(0);
svint32_t acc_77 = svdup_n_s32(0);
svint32_t bias_acc_00 = svdup_n_s32(0);
svint32_t bias_acc_22 = svdup_n_s32(0);
svint32_t bias_acc_44 = svdup_n_s32(0);
svint32_t bias_acc_66 = svdup_n_s32(0);
for (int sb = 0; sb < QK_K / 64; sb++) {
// Need scales for the low and high nibbles
// 2 * 12 = 24 bytes per subblock, 4 sbs -> 4 * 24 = 96 bytes total
svint32_t block_scale_0, block_scale_1, block_scale_2, block_scale_3;
svint32_t q4sb_mins_0, q4sb_mins_1;
{
// 2-superblock I am working on
const int offset = sb * 24 + 0 * 12;
const uint8_t * scales_in = &q4_ptr[b].scales[offset];
const int offset1 = sb * 24 + 12;
const uint8_t * scales_in1 = &q4_ptr[b].scales[offset1];
constexpr uint32_t kmask1 = 0x3f3f3f3f;
constexpr uint32_t kmask2 = 0x0f0f0f0f;
constexpr uint32_t kmask3 = 0x03030303;
constexpr uint8_t scales_size = 12;
uint32_t sm[3];
memcpy(sm, scales_in, scales_size);
uint32_t sm1[3];
memcpy(sm1, scales_in1, scales_size);
const uint32_t mins_0_3 = sm[1] & kmask1;
const uint32_t mins_4_7 = ((sm[2] >> 4) & kmask2) | (((sm[1] >> 6) & kmask3) << 4);
const uint32_t mins_0_3_1 = sm1[1] & kmask1;
const uint32_t mins_4_7_1 = ((sm1[2] >> 4) & kmask2) | (((sm1[1] >> 6) & kmask3) << 4);
svuint32_t mins_u32_temp = svzip1_u32(svdup_n_u32(mins_0_3), svdup_n_u32(mins_4_7));
svuint32_t mins_u32_temp_1 = svzip1_u32(svdup_n_u32(mins_0_3_1), svdup_n_u32(mins_4_7_1));
/* reinterpret u32 → u8 */
svuint8_t mins_u8 = svreinterpret_u8_u32(mins_u32_temp);
svuint8_t mins_u8_1 = svreinterpret_u8_u32(mins_u32_temp_1);
/* widen u8 → u16->u32 (lower half only) */
svuint32_t mins_u16 = svunpklo_u32(svunpklo_u16(mins_u8));
svuint32_t mins_u16_1 = svunpklo_u32(svunpklo_u16(mins_u8_1));
q4sb_mins_0 = svreinterpret_s32_u32(mins_u16);
q4sb_mins_1 = svreinterpret_s32_u32(mins_u16_1);
uint32_t scales_u32_0 = sm[0] & kmask1;
uint32_t scales_u32_1 = (sm[2] & kmask2) | (((sm[0] >> 6) & kmask3) << 4);
uint32_t scales_u32_2 = sm1[0] & kmask1;
uint32_t scales_u32_3 = (sm1[2] & kmask2) | (((sm1[0] >> 6) & kmask3) << 4);
svuint32_t S01 = svdup_n_u32(scales_u32_0);
svuint32_t S23 = svdup_n_u32(scales_u32_1);
svuint32_t R01 = svdup_n_u32(scales_u32_2);
svuint32_t R23 = svdup_n_u32(scales_u32_3);
svint8_t S01_b = svreinterpret_s8_u32(S01);
svint8_t S23_b = svreinterpret_s8_u32(S23);
svint8_t R01_b = svreinterpret_s8_u32(R01);
svint8_t R23_b = svreinterpret_s8_u32(R23);
svint32_t S01_d = svunpklo_s32(svunpklo_s16(svzip1_s8(S01_b, S01_b)));
svint32_t R01_d = svunpklo_s32(svunpklo_s16(svzip1_s8(R01_b, R01_b)));
svint32_t S23_d = svunpklo_s32(svunpklo_s16(svzip1_s8(S23_b, S23_b)));
svint32_t R23_d = svunpklo_s32(svunpklo_s16(svzip1_s8(R23_b, R23_b)));
block_scale_0 = svtbl_s32(svzip1_s32(S01_d, R01_d), idx);
block_scale_1 = svtbl_s32(svzip2_s32(S01_d, R01_d), idx);
block_scale_2 = svtbl_s32(svzip1_s32(S23_d, R23_d), idx);
block_scale_3 = svtbl_s32(svzip2_s32(S23_d, R23_d), idx);
}
const int8_t * q8_base_1 = q8_ptr[b].qs + sb * 256;
// Load 32-byte per row pair, 1 subblock each time
// predicate for activating higher lanes for 16 int8 elements
const svbool_t ph16 = svptrue_pat_b8(SV_VL16);
// predicate for activating lower lanes for 16 int8 elements
const svbool_t pl16 = svnot_b_z(svptrue_b8(), ph16);
svint8_t q8_qs_0 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 0), svld1_s8(pl16, q8_base_1 + 112));
svint8_t q8_qs_2 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 32), svld1_s8(pl16, q8_base_1 + 144));
svint8_t q8_qs_4 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 64), svld1_s8(pl16, q8_base_1 + 176));
svint8_t q8_qs_6 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 96), svld1_s8(pl16, q8_base_1 + 208));
svint8_t q8_qs_1 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 16), svld1_s8(pl16, q8_base_1 + 128));
svint8_t q8_qs_3 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 48), svld1_s8(pl16, q8_base_1 + 160));
svint8_t q8_qs_5 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 80), svld1_s8(pl16, q8_base_1 + 192));
svint8_t q8_qs_7 = svadd_s8_x(svptrue_b8(), svld1_s8(ph16, q8_base_1 + 112), svld1_s8(pl16, q8_base_1 + 224));
// Q4s columns iterated in pairs (01, 23, 45, 67)
for (int cp = 0; cp < ncols_interleaved / 2; cp++) {
sb_acc_0 = svdup_n_s32(0);
sb_acc_2 = svdup_n_s32(0);
svuint8_t q4_qs_cp_00 = svld1rq_u8(svptrue_b8(), q4_ptr[b].qs + sb * QK_K + 16 * cp + 0);
svuint8_t q4_qs_cp_01 = svld1rq_u8(svptrue_b8(), q4_ptr[b].qs + sb * QK_K + 16 * cp + 64);
svuint8_t q4_qs_cp_02 = svld1rq_u8(svptrue_b8(), q4_ptr[b].qs + sb * QK_K + 16 * cp + 128);
svuint8_t q4_qs_cp_03 = svld1rq_u8(svptrue_b8(), q4_ptr[b].qs + sb * QK_K + 16 * cp + 192);
svint8_t q4_nibbles_00 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_u8_m(ph16, q4_qs_cp_00, m4b_1), 4));
svint8_t q4_nibbles_01 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_u8_m(ph16, q4_qs_cp_01, m4b_1), 4));
svint8_t q4_nibbles_02 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_u8_m(ph16, q4_qs_cp_02, m4b_1), 4));
svint8_t q4_nibbles_03 = svreinterpret_s8_u8(svlsr_n_u8_m(pl16, svand_u8_m(ph16, q4_qs_cp_03, m4b_1), 4));
sb_acc_0 = svmmla_s32(sb_acc_0, q4_nibbles_00, q8_qs_0);
sb_acc_0 = svmmla_s32(sb_acc_0, q4_nibbles_01, q8_qs_2);
sb_acc_0 = svmmla_s32(sb_acc_0, q4_nibbles_02, q8_qs_4);
sb_acc_0 = svmmla_s32(sb_acc_0, q4_nibbles_03, q8_qs_6);
sb_acc_2 = svmmla_s32(sb_acc_2, q4_nibbles_00, q8_qs_1);
sb_acc_2 = svmmla_s32(sb_acc_2, q4_nibbles_01, q8_qs_3);
sb_acc_2 = svmmla_s32(sb_acc_2, q4_nibbles_02, q8_qs_5);
sb_acc_2 = svmmla_s32(sb_acc_2, q4_nibbles_03, q8_qs_7);
if(cp == 0) {
acc_00 = svmla_s32_m(svptrue_b32(), acc_00, sb_acc_0, block_scale_0);
acc_44 = svmla_s32_m(svptrue_b32(), acc_44, sb_acc_2, block_scale_0);
}
if(cp == 1) {
acc_11 = svmla_s32_m(svptrue_b32(), acc_11, sb_acc_0, block_scale_1);
acc_55 = svmla_s32_m(svptrue_b32(), acc_55, sb_acc_2, block_scale_1);
}
if(cp == 2) {
acc_22 = svmla_s32_m(svptrue_b32(), acc_22, sb_acc_0, block_scale_2);
acc_66 = svmla_s32_m(svptrue_b32(), acc_66, sb_acc_2, block_scale_2);
}
if(cp == 3) {
acc_33 = svmla_s32_m(svptrue_b32(), acc_33, sb_acc_0, block_scale_3);
acc_77 = svmla_s32_m(svptrue_b32(), acc_77, sb_acc_2, block_scale_3);
}
}
bias_acc_00 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_00, svdup_n_s32(bsums_arr32[sb][0]), q4sb_mins_0);
bias_acc_00 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_00, svdup_n_s32(bsums_arr32[sb][1]), q4sb_mins_1);
bias_acc_22 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_22, svdup_n_s32(bsums_arr32[sb][2]), q4sb_mins_0);
bias_acc_22 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_22, svdup_n_s32(bsums_arr32[sb][3]), q4sb_mins_1);
bias_acc_44 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_44, svdup_n_s32(bsums_arr32[sb][4]), q4sb_mins_0);
bias_acc_44 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_44, svdup_n_s32(bsums_arr32[sb][5]), q4sb_mins_1);
bias_acc_66 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_66, svdup_n_s32(bsums_arr32[sb][6]), q4sb_mins_0);
bias_acc_66 = svmla_s32_m(svptrue_pat_b32(SV_VL8), bias_acc_66, svdup_n_s32(bsums_arr32[sb][7]), q4sb_mins_1);
} // for sb
acc_00 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_00, svext_s32(acc_00, acc_00, 4));
acc_11 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_11, svext_s32(acc_11, acc_11, 4));
acc_22 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_22, svext_s32(acc_22, acc_22, 4));
acc_33 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_33, svext_s32(acc_33, acc_33, 4));
acc_44 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_44, svext_s32(acc_44, acc_44, 4));
acc_55 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_55, svext_s32(acc_55, acc_55, 4));
acc_66 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_66, svext_s32(acc_66, acc_66, 4));
acc_77 = svadd_s32_z(svptrue_pat_b32(SV_VL4), acc_77, svext_s32(acc_77, acc_77, 4));
svint32_t reorder_acc_01 = svtbl_s32( svzip1_s32( svtrn1_s32(acc_00, acc_11), svtrn1_s32(acc_22, acc_33)), idx1);
svint32_t reorder_acc_23 = svtbl_s32( svzip1_s32( svtrn2_s32(acc_00, acc_11), svtrn2_s32(acc_22, acc_33)), idx1);
svint32_t reorder_acc_45 = svtbl_s32( svzip1_s32( svtrn1_s32(acc_44, acc_55), svtrn1_s32(acc_66, acc_77)), idx1);
svint32_t reorder_acc_67 = svtbl_s32( svzip1_s32( svtrn2_s32(acc_44, acc_55), svtrn2_s32(acc_66, acc_77)), idx1);
// Broadcast q8 scalar
svfloat32_t q8_d = svdup_f32(q8_ptr[b].d[0]);
svfloat32_t q4_dmin_temp = svcvt_f32_f16_x(svptrue_b32(), svzip1_f16( svld1_f16(svptrue_pat_b16(SV_VL8), (const __fp16 *)q4_ptr[b].dmin), svdup_f16(0)));
svfloat32_t q4_d_temp = svcvt_f32_f16_x(svptrue_b32(), svzip1_f16( svld1_f16(svptrue_pat_b16(SV_VL8), (const __fp16 *)q4_ptr[b].d), svdup_f16(0)));
svfloat32_t scale1 = svmul_f32_x(svptrue_b32(), q4_d_temp, q8_d);
svfloat32_t dmins1 = svmul_f32_x(svptrue_b32(), q4_dmin_temp, q8_d);
acc_f32_01 = svmls_f32_m(svptrue_b32(), acc_f32_01, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), bias_acc_00), dmins1);
acc_f32_01 = svmla_f32_m(svptrue_b32(), acc_f32_01, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), reorder_acc_01), scale1);
q8_d = svdup_f32(q8_ptr[b].d[1]);
scale1 = svmul_f32_x(svptrue_b32(), q4_d_temp, q8_d);
dmins1 = svmul_f32_x(svptrue_b32(), q4_dmin_temp, q8_d);
acc_f32_23 = svmls_f32_m(svptrue_b32(), acc_f32_23, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), bias_acc_22), dmins1);
acc_f32_23 = svmla_f32_m(svptrue_b32(), acc_f32_23, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), reorder_acc_23), scale1);
q8_d = svdup_f32(q8_ptr[b].d[2]);
scale1 = svmul_f32_x(svptrue_b32(), q4_d_temp, q8_d);
dmins1 = svmul_f32_x(svptrue_b32(), q4_dmin_temp, q8_d);
acc_f32_45 = svmls_f32_m(svptrue_b32(), acc_f32_45, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), bias_acc_44), dmins1);
acc_f32_45 = svmla_f32_m(svptrue_b32(), acc_f32_45, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), reorder_acc_45), scale1);
q8_d = svdup_f32(q8_ptr[b].d[3]);
scale1 = svmul_f32_x(svptrue_b32(), q4_d_temp, q8_d);
dmins1 = svmul_f32_x(svptrue_b32(), q4_dmin_temp, q8_d);
acc_f32_67 = svmls_f32_m(svptrue_b32(), acc_f32_67, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), bias_acc_66), dmins1);
acc_f32_67 = svmla_f32_m(svptrue_b32(), acc_f32_67, svcvt_f32_s32_m(svdup_n_f32(0), svptrue_b32(), reorder_acc_67), scale1);
} // for b
// With the previous reorder, the tile is already in the correct memory layout.
// Predicate for exactly 4 lanes
svbool_t pg4 = svptrue_pat_b32(SV_VL4);
for (int i = 0; i < q8_k_blocklen; i++) {
int row = y * q8_k_blocklen + i;
for (int j = 0; j < 2; j++) {
int col = x * ncols_interleaved + j * 4;
int offset = row * bs + col;
if (i == 0 && j == 0) {
// acc_f32_0 → lower half of acc_f32_01
svst1_f32(pg4, s + offset, acc_f32_01);
} else if (i == 0 && j == 1) {
// acc_f32_1 → upper half of acc_f32_01
svst1_f32(pg4, s + offset, svext_f32(acc_f32_01, acc_f32_01, 4));
} else if (i == 1 && j == 0) {
// acc_f32_2
svst1_f32(pg4, s + offset, acc_f32_23);
} else if (i == 1 && j == 1) {
// acc_f32_3
svst1_f32(pg4, s + offset, svext_f32(acc_f32_23, acc_f32_23, 4));
} else if (i == 2 && j == 0) {
// acc_f32_4
svst1_f32(pg4, s + offset, acc_f32_45);
} else if (i == 2 && j == 1) {
// acc_f32_5
svst1_f32(pg4, s + offset, svext_f32(acc_f32_45, acc_f32_45, 4));
} else if (i == 3 && j == 0) {
// acc_f32_6
svst1_f32(pg4, s + offset, acc_f32_67);
} else if (i == 3 && j == 1) {
// acc_f32_7
svst1_f32(pg4, s + offset, svext_f32(acc_f32_67, acc_f32_67, 4));
}
}
}
} // for x
} // for y
return;
}
#endif // SVE compile-time end
#if defined(__aarch64__) && defined(__ARM_NEON) && defined(__ARM_FEATURE_MATMUL_INT8)
constexpr int q8_k_blocklen = 4;
const uint8x16_t m4b = vdupq_n_u8(0x0f);

View File

@@ -63,7 +63,7 @@ static __global__ void flash_attn_ext_f16(
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
#if defined(GGML_USE_HIP) && HIP_VERSION >= 60500000
#if defined(GGML_USE_HIP)
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::row_major> frag_a_K;
typedef wmma::fragment<wmma::matrix_a, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_a_V;
typedef wmma::fragment<wmma::matrix_b, frag_m, frag_n, 16, _Float16, wmma::col_major> frag_b;
@@ -135,7 +135,7 @@ static __global__ void flash_attn_ext_f16(
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
half2 * VKQ2 = (half2 *) VKQ;
#if defined(GGML_USE_HIP) && HIP_VERSION >= 60500000
#if defined(GGML_USE_HIP)
const _Float16 * K_h_f16 = reinterpret_cast<const _Float16 *>(K_h);
const _Float16 * V_h_f16 = reinterpret_cast<const _Float16 *>(V_h);
_Float16 * KQ_f16 = reinterpret_cast<_Float16 *>(KQ);

View File

@@ -2278,12 +2278,11 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
// [TAG_MUL_MAT_ID_CUDA_GRAPHS]
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
static_assert(MMVQ_MAX_BATCH_SIZE == MMVF_MAX_BATCH_SIZE);
if (ne2 <= MMVQ_MAX_BATCH_SIZE) {
if (ggml_is_quantized(src0->type)) {
if (ne2 <= MMVQ_MMID_MAX_BATCH_SIZE) {
if (ne2 <= 4) {
ggml_cuda_mul_mat_vec_q(ctx, src0, src1, ids, dst);
return;
}
@@ -2306,8 +2305,6 @@ static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor *
}
}
// note: this path should not be reached when recording CUDA graphs, because it requires stream synchronization
// TODO: add asserts to verify this. should work with CUDA, HIP, etc.
cudaStream_t stream = ctx.stream();
GGML_ASSERT(nb12 % nb11 == 0);
@@ -2868,6 +2865,15 @@ static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
bool use_cuda_graph = true;
// Loop over nodes in GGML graph to obtain info needed for CUDA graph
const std::string gemma3n_per_layer_proj_src0_name = "inp_per_layer_selected";
const std::string gemma3n_per_layer_proj_src1_name = "per_layer_proj";
const std::string ffn_moe_gate_bias_prefix = "ffn_moe_gate_biased";
const std::string ffn_moe_up_bias_prefix = "ffn_moe_up_biased";
const std::string ffn_moe_down_bias_prefix = "ffn_moe_down_biased";
const std::string nemotron_h_block_out_prefix = "nemotron_h_block_out";
const std::string mamba2_y_add_d_prefix = "mamba2_y_add_d";
const std::string delta_net_prefix = "dnet_add";
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor * node = cgraph->nodes[i];
@@ -2882,17 +2888,34 @@ static bool ggml_cuda_graph_check_compability(ggml_cgraph * cgraph) {
#endif
}
// [TAG_MUL_MAT_ID_CUDA_GRAPHS]
if (node->op == GGML_OP_MUL_MAT_ID && (!ggml_is_quantized(node->src[0]->type) || node->ne[2] > MMVQ_MMID_MAX_BATCH_SIZE)) {
// under these conditions, the mul_mat_id operation will need to synchronize the stream, so we cannot use CUDA graphs
// TODO: figure out a way to enable for larger batch sizes, without hurting performance
// ref: https://github.com/ggml-org/llama.cpp/pull/18958
use_cuda_graph = false;
if (node->op == GGML_OP_MUL_MAT_ID && node->ne[2] != 1) {
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported node type\n", __func__);
#endif
}
if (node->op == GGML_OP_ADD &&
node->src[1] && node->src[1]->ne[1] > 1 &&
(node->src[0] ? node->src[0]->name != gemma3n_per_layer_proj_src0_name : true) &&
(node->src[1] ? node->src[1]->name != gemma3n_per_layer_proj_src1_name : true) &&
strncmp(node->name, ffn_moe_gate_bias_prefix.c_str(), ffn_moe_gate_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_up_bias_prefix.c_str(), ffn_moe_up_bias_prefix.size()) != 0 &&
strncmp(node->name, ffn_moe_down_bias_prefix.c_str(), ffn_moe_down_bias_prefix.size()) != 0 &&
strncmp(node->name, nemotron_h_block_out_prefix.c_str(), nemotron_h_block_out_prefix.size()) != 0 &&
strncmp(node->name, mamba2_y_add_d_prefix.c_str(), mamba2_y_add_d_prefix.size()) != 0 &&
strncmp(node->name, delta_net_prefix.c_str(), delta_net_prefix.size()) != 0) {
// disable CUDA graphs for batch size > 1 for now while excluding the matrix-matrix addition as part of Gemma3n's `project_per_layer_input` operation
// by means of matching node names. See
// https://github.com/ggml-org/llama.cpp/blob/f9a31eea06a859e34cecb88b4d020c7f03d86cc4/src/llama-model.cpp#L10199-L10241 and
// https://github.com/huggingface/transformers/blob/bda75b4011239d065de84aa3e744b67ebfa7b245/src/transformers/models/gemma3n/modeling_gemma3n.py#L1773,
// Generally, changes in batch size or context size can cause changes to the grid size of some kernels.
use_cuda_graph = false;
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
#endif
}
if (!use_cuda_graph) {
break;
}

View File

@@ -1,7 +1,6 @@
#include "common.cuh"
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
#define MMVQ_MMID_MAX_BATCH_SIZE 4 // Max. batch size for which to use MMVQ kernels for MUL_MAT_ID
void ggml_cuda_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, const ggml_cuda_mm_fusion_args_host * fusion = nullptr);

View File

@@ -98,10 +98,6 @@ static bool ggml_op_is_empty(enum ggml_op op) {
}
}
static inline bool ggml_impl_is_view(const struct ggml_tensor * t) {
return t->view_src != NULL;
}
static inline float ggml_compute_softplus_f32(float input) {
return (input > 20.0f) ? input : logf(1 + expf(input));
}

View File

@@ -484,7 +484,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_scale_f32, kernel_scale_f32_4;
cl_kernel kernel_sqr_cont_f32, kernel_sqr_cont_f32_4, kernel_sqr_cont_f16, kernel_sqr_cont_f16_4;
cl_kernel kernel_sqrt_cont_f32, kernel_sqrt_cont_f32_4, kernel_sqrt_cont_f16, kernel_sqrt_cont_f16_4;
cl_kernel kernel_mean_f32, kernel_mean_f32_4;
cl_kernel kernel_mean_f32;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_erf, kernel_gelu_erf_4;
@@ -543,15 +543,15 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_solve_tri_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
cl_kernel kernel_argsort_f32_i32;
cl_kernel kernel_sum_rows_f32, kernel_sum_rows_f32_4;
cl_kernel kernel_sum_rows_f32;
cl_kernel kernel_repeat_f32;
cl_kernel kernel_pad;
cl_kernel kernel_tanh_f32, kernel_tanh_f32_4, kernel_tanh_f32_nc;
cl_kernel kernel_tanh_f16, kernel_tanh_f16_4, kernel_tanh_f16_nc;
cl_kernel kernel_expm1_f32, kernel_expm1_f32_4, kernel_expm1_f32_nc;
cl_kernel kernel_expm1_f16, kernel_expm1_f16_4, kernel_expm1_f16_nc;
cl_kernel kernel_softplus_f32, kernel_softplus_f32_4, kernel_softplus_f32_nc;
cl_kernel kernel_softplus_f16, kernel_softplus_f16_4, kernel_softplus_f16_nc;
cl_kernel kernel_expm1_f32_nd;
cl_kernel kernel_expm1_f16_nd;
cl_kernel kernel_softplus_f32_nd;
cl_kernel kernel_softplus_f16_nd;
cl_kernel kernel_upscale;
cl_kernel kernel_upscale_bilinear;
cl_kernel kernel_concat_f32;
@@ -1837,7 +1837,6 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_mean_f32 = clCreateKernel(prog, "kernel_mean_f32", &err), err));
CL_CHECK((backend_ctx->kernel_mean_f32_4 = clCreateKernel(prog, "kernel_mean_f32_4", &err), err));
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
@@ -1875,7 +1874,6 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_sum_rows_f32 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32", &err), err));
CL_CHECK((backend_ctx->kernel_sum_rows_f32_4 = clCreateKernel(backend_ctx->program_sum_rows_f32, "kernel_sum_rows_f32_4", &err), err));
GGML_LOG_CONT(".");
}
@@ -1980,16 +1978,20 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("expm1.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_expm1_f32 = clCreateKernel(prog, "kernel_expm1_f32", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f32_4 = clCreateKernel(prog, "kernel_expm1_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f32_nc = clCreateKernel(prog, "kernel_expm1_f32_nc", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f16 = clCreateKernel(prog, "kernel_expm1_f16", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f16_4 = clCreateKernel(prog, "kernel_expm1_f16_4", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f16_nc = clCreateKernel(prog, "kernel_expm1_f16_nc", &err), err));
cl_program prog;
if (!kernel_src.empty()) {
prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_expm1_f32_nd = clCreateKernel(prog, "kernel_expm1_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_expm1_f16_nd = clCreateKernel(prog, "kernel_expm1_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: expm1 kernel source not found or empty. Expm1 operation will not be available.\n");
prog = nullptr;
backend_ctx->kernel_expm1_f32_nd = nullptr;
backend_ctx->kernel_expm1_f16_nd = nullptr;
}
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// softplus
@@ -2001,16 +2003,20 @@ static void load_cl_kernels(ggml_backend_opencl_context *backend_ctx, ggml_cl_ve
#else
const std::string kernel_src = read_file("softplus.cl");
#endif
cl_program prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_softplus_f32 = clCreateKernel(prog, "kernel_softplus_f32", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f32_4 = clCreateKernel(prog, "kernel_softplus_f32_4", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f32_nc = clCreateKernel(prog, "kernel_softplus_f32_nc", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f16 = clCreateKernel(prog, "kernel_softplus_f16", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f16_4 = clCreateKernel(prog, "kernel_softplus_f16_4", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f16_nc = clCreateKernel(prog, "kernel_softplus_f16_nc", &err), err));
cl_program prog;
if (!kernel_src.empty()) {
prog =
build_program_from_source(backend_ctx->context, backend_ctx->device, kernel_src.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_softplus_f32_nd = clCreateKernel(prog, "kernel_softplus_f32_nd", &err), err));
CL_CHECK((backend_ctx->kernel_softplus_f16_nd = clCreateKernel(prog, "kernel_softplus_f16_nd", &err), err));
GGML_LOG_CONT(".");
} else {
GGML_LOG_WARN("ggml_opencl: softplus kernel source not found or empty. Softplus operation will not be available.\n");
prog = nullptr;
backend_ctx->kernel_softplus_f32_nd = nullptr;
backend_ctx->kernel_softplus_f16_nd = nullptr;
}
CL_CHECK(clReleaseProgram(prog));
GGML_LOG_CONT(".");
}
// upscale
@@ -3457,9 +3463,11 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_TANH:
return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
case GGML_UNARY_OP_EXPM1:
return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
case GGML_UNARY_OP_SOFTPLUS:
return op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16;
return (op->src[0]->type == GGML_TYPE_F32 && op->type == GGML_TYPE_F32) ||
(op->src[0]->type == GGML_TYPE_F16 && op->type == GGML_TYPE_F16);
default:
return false;
}
@@ -3579,7 +3587,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
}
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
return op->src[0]->type == GGML_TYPE_F32;
return op->src[0]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]);
case GGML_OP_FLASH_ATTN_EXT:
{
const ggml_tensor * q = op->src[0];
@@ -6392,6 +6400,7 @@ static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const
GGML_UNUSED(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
@@ -6414,14 +6423,7 @@ static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
cl_kernel kernel;
const bool is_c4 = ne00 % 4 == 0;
if (is_c4) {
kernel = backend_ctx->kernel_mean_f32_4;
} else {
kernel = backend_ctx->kernel_mean_f32;
}
cl_kernel kernel = backend_ctx->kernel_mean_f32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
@@ -6438,7 +6440,7 @@ static void ggml_cl_mean(ggml_backend_t backend, const ggml_tensor * src0, const
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = {64 * (size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)64, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
@@ -7386,8 +7388,18 @@ static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, cons
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_expm1_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_expm1_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_expm1");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
@@ -7399,74 +7411,70 @@ static void ggml_cl_expm1(ggml_backend_t backend, const ggml_tensor * src0, cons
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
const int ne10 = dst->ne[0];
const int ne11 = dst->ne[1];
const int ne12 = dst->ne[2];
const int ne13 = dst->ne[3];
cl_kernel kernel;
const cl_ulong nb10 = dst->nb[0];
const cl_ulong nb11 = dst->nb[1];
const cl_ulong nb12 = dst->nb[2];
const cl_ulong nb13 = dst->nb[3];
if (ggml_is_contiguous(src0)) {
// Handle contiguous input
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_expm1_f32_4;
} else {
kernel = backend_ctx->kernel_expm1_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_expm1_f32;
} else {
kernel = backend_ctx->kernel_expm1_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
} else {
// Handle non-contiguous input
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_expm1_f32_nc;
} else {
kernel = backend_ctx->kernel_expm1_f16_nc;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb3));
int nth = 64;
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_softplus(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@@ -7482,8 +7490,18 @@ static void ggml_cl_softplus(ggml_backend_t backend, const ggml_tensor * src0, c
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_ulong offset0_abs = extra0->offset + src0->view_offs;
cl_ulong offsetd_abs = extrad->offset + dst->view_offs;
cl_kernel kernel;
if (dst->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_softplus_f32_nd;
} else if (dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_softplus_f16_nd;
} else {
GGML_ASSERT(false && "Unsupported type for ggml_cl_softplus");
}
GGML_ASSERT(kernel != nullptr);
const int ne00 = src0->ne[0];
const int ne01 = src0->ne[1];
@@ -7495,74 +7513,70 @@ static void ggml_cl_softplus(ggml_backend_t backend, const ggml_tensor * src0, c
const cl_ulong nb02 = src0->nb[2];
const cl_ulong nb03 = src0->nb[3];
const cl_ulong nb0 = dst->nb[0];
const cl_ulong nb1 = dst->nb[1];
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
const int ne10 = dst->ne[0];
const int ne11 = dst->ne[1];
const int ne12 = dst->ne[2];
const int ne13 = dst->ne[3];
cl_kernel kernel;
const cl_ulong nb10 = dst->nb[0];
const cl_ulong nb11 = dst->nb[1];
const cl_ulong nb12 = dst->nb[2];
const cl_ulong nb13 = dst->nb[3];
if (ggml_is_contiguous(src0)) {
// Handle contiguous input
int n = ggml_nelements(dst);
if (n % 4 == 0) {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_softplus_f32_4;
} else {
kernel = backend_ctx->kernel_softplus_f16_4;
}
n /= 4;
} else {
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_softplus_f32;
} else {
kernel = backend_ctx->kernel_softplus_f16;
}
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0_abs));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd_abs));
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong),&nb02));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong),&nb03));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong),&nb10));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong),&nb11));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong),&nb12));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong),&nb13));
size_t * local_work_size_ptr = local_work_size;
if (n % 64 != 0 && !backend_ctx->non_uniform_workgroups) {
local_work_size_ptr = nullptr;
}
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
} else {
// Handle non-contiguous input
if (src0->type == GGML_TYPE_F32) {
kernel = backend_ctx->kernel_softplus_f32_nc;
} else {
kernel = backend_ctx->kernel_softplus_f16_nc;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb00));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_ulong), &nb01));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb02));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb03));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb0));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb1));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb3));
int nth = 64;
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);
size_t global_work_size[3];
if (ne10 == 0 || ne11 == 0 || ne12 == 0 || ne13 == 0) { // Handle case of 0 elements
return;
}
global_work_size[0] = (size_t)ne10;
global_work_size[1] = (size_t)ne11;
global_work_size[2] = (size_t)ne12;
size_t lws0 = 16, lws1 = 4, lws2 = 1;
if (ne10 < 16) lws0 = ne10;
if (ne11 < 4) lws1 = ne11;
if (ne12 < 1) lws2 = ne12 > 0 ? ne12 : 1;
while (lws0 * lws1 * lws2 > 256 && lws0 > 1) lws0 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws1 > 1) lws1 /= 2;
while (lws0 * lws1 * lws2 > 256 && lws2 > 1) lws2 /= 2;
size_t local_work_size[] = {lws0, lws1, lws2};
size_t* local_work_size_ptr = local_work_size;
if (!backend_ctx->non_uniform_workgroups) {
if (global_work_size[0] % local_work_size[0] != 0 ||
global_work_size[1] % local_work_size[1] != 0 ||
global_work_size[2] % local_work_size[2] != 0) {
local_work_size_ptr = NULL;
}
}
if (global_work_size[0] == 0 || global_work_size[1] == 0 || global_work_size[2] == 0) return;
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size_ptr, dst);
}
static void ggml_cl_repeat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1_shape_def, ggml_tensor * dst) {
@@ -11074,6 +11088,7 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
GGML_UNUSED(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(ggml_is_contiguous(src0));
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
@@ -11096,14 +11111,7 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
const cl_ulong nb2 = dst->nb[2];
const cl_ulong nb3 = dst->nb[3];
cl_kernel kernel;
const bool is_c4 = ne00 % 4 == 0;
if (is_c4) {
kernel = backend_ctx->kernel_sum_rows_f32_4;
} else {
kernel = backend_ctx->kernel_sum_rows_f32;
}
cl_kernel kernel = backend_ctx->kernel_sum_rows_f32;
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
@@ -11120,7 +11128,7 @@ static void ggml_cl_sum_rows(ggml_backend_t backend, const ggml_tensor * src0, c
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb2));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb3));
size_t global_work_size[] = {64 * (size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t global_work_size[] = {(size_t)ne01, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)64, 1, 1};
backend_ctx->enqueue_ndrange_kernel(kernel, 3, global_work_size, local_work_size, dst);

View File

@@ -3,111 +3,80 @@
//------------------------------------------------------------------------------
// expm1
//------------------------------------------------------------------------------
kernel void kernel_expm1_f32(
global const float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
dst[get_global_id(0)] = exp(src0[get_global_id(0)]) - 1.0f;
}
kernel void kernel_expm1_f32_4(
global const float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
dst[get_global_id(0)] = exp(src0[get_global_id(0)]) - 1.0f;
}
kernel void kernel_expm1_f16(
global const half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
dst[get_global_id(0)] = exp(src0[get_global_id(0)]) - 1.0h;
}
kernel void kernel_expm1_f16_4(
global const half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
dst[get_global_id(0)] = exp(src0[get_global_id(0)]) - 1.0h;
}
kernel void kernel_expm1_f32_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
kernel void kernel_expm1_f32_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
src0 = src0 + offset0;
dst = dst + offsetd;
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const float * x = (global const float *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*y = exp(*x) - 1.0f;
*dst_val_ptr = exp(*src_val_ptr) - 1;
}
}
}
kernel void kernel_expm1_f16_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
kernel void kernel_expm1_f16_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
src0 = src0 + offset0;
dst = dst + offsetd;
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const half * x = (global const half *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global half * y = (global half *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*y = exp(*x) - 1.0f;
*dst_val_ptr = exp(*src_val_ptr) - 1;
}
}
}

View File

@@ -1,13 +1,8 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
// Most devices have max workgroup size of 1024, so this is enough for subgroup
// sizes of 16, 32, 64 and 128. Increase this value for smaller subgroups sizes
#define MAX_SUBGROUPS 64
kernel void kernel_mean_f32(
global char * src0,
global float * src0,
ulong offset0,
global char * dst,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
@@ -20,121 +15,25 @@ kernel void kernel_mean_f32(
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
dst = dst + offsetd;
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int lid = get_local_id(0);
const int lsize = get_local_size(0);
const uint sg_size = get_sub_group_size();
const uint sg_id = get_sub_group_id();
const uint sg_lid = get_sub_group_local_id();
__local float lmem[MAX_SUBGROUPS];
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
if(sg_id == 0){
lmem[sg_lid] = 0.0f;
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
global float * src_row = (global float *) (src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) (dst + i1*nb1 + i2*nb2 + i3*nb3);
float sumf = 0.0f;
for (int i0 = lid; i0 < ne00; i0 += lsize) {
sumf += src_row[i0];
}
sumf = sub_group_reduce_add(sumf);
barrier(CLK_LOCAL_MEM_FENCE);
if(sg_lid == 0){
lmem[sg_id] = sumf;
}
barrier(CLK_LOCAL_MEM_FENCE);
sumf = lmem[sg_lid];
sumf = sub_group_reduce_add(sumf);
if (lid == 0) {
dst_row[0] = sumf / ne00;
}
}
kernel void kernel_mean_f32_4(
global char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
dst = dst + offsetd;
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int lid = get_local_id(0);
const int lsize = get_local_size(0);
const uint sg_size = get_sub_group_size();
const uint sg_id = get_sub_group_id();
const uint sg_lid = get_sub_group_local_id();
__local float lmem[MAX_SUBGROUPS];
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
if(sg_id == 0){
lmem[sg_lid] = 0.0f;
}
global float4 * src_row = (global float4 *) (src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) (dst + i1*nb1 + i2*nb2 + i3*nb3);
float4 sum_vec = (float4)0.0f;
for (int i0 = lid; i0 < ne00 / 4; i0 += lsize) {
sum_vec += src_row[i0];
}
float sumf = dot(sum_vec, (float4)(1.0f));
sumf = sub_group_reduce_add(sumf);
barrier(CLK_LOCAL_MEM_FENCE);
if(sg_lid == 0){
lmem[sg_id] = sumf;
}
barrier(CLK_LOCAL_MEM_FENCE);
sumf = lmem[sg_lid];
sumf = sub_group_reduce_add(sumf);
if (lid == 0) {
dst_row[0] = sumf / ne00;
}
dst_row[0] = row_sum / ne00;
}

View File

@@ -3,114 +3,86 @@
//------------------------------------------------------------------------------
// softplus
//------------------------------------------------------------------------------
kernel void kernel_softplus_f32(
global const float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
dst[get_global_id(0)] = (src0[get_global_id(0)] > 20.0f) ? src0[get_global_id(0)] : log(1.0f + exp(src0[get_global_id(0)]));
inline float softplus_f32(float x){
float ax = fabs(x);
float m = fmax(x, 0.0f);
return log1p(exp(-ax)) + m;
}
kernel void kernel_softplus_f32_4(
global const float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
dst[get_global_id(0)] = (src0[get_global_id(0)] > 20.0f) ? src0[get_global_id(0)] : log(1.0f + exp(src0[get_global_id(0)]));
}
kernel void kernel_softplus_f16(
global const half * src0,
ulong offset0,
global half * dst,
ulong offsetd
) {
src0 = (global half*)((global char*)src0 + offset0);
dst = (global half*)((global char*)dst + offsetd);
const float x = convert_float(src0[get_global_id(0)]);
dst[get_global_id(0)] = convert_half_rte((x > 20.0f) ? x : log(1.0f + exp(x)));
}
kernel void kernel_softplus_f16_4(
global const half4 * src0,
ulong offset0,
global half4 * dst,
ulong offsetd
) {
src0 = (global half4*)((global char*)src0 + offset0);
dst = (global half4*)((global char*)dst + offsetd);
const float4 x = convert_float4(src0[get_global_id(0)]);
dst[get_global_id(0)] = convert_half4_rte((x > 20.0f) ? x : log(1.0f + exp(x)));
}
kernel void kernel_softplus_f32_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
kernel void kernel_softplus_f32_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
src0 = src0 + offset0;
dst = dst + offsetd;
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const float *src_val_ptr = (global const float *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const float * x = (global const float *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global float * y = (global float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global float *dst_val_ptr = (global float *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
*y = (*x > 20.0f) ? *x : log(1.0f + exp(*x));
*dst_val_ptr = softplus_f32(*src_val_ptr);
}
}
}
kernel void kernel_softplus_f16_nc(
global const char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
kernel void kernel_softplus_f16_nd(
global void * p_src0_base,
ulong off_src0_abs,
global void * p_dst_base,
ulong off_dst_abs,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3
int ne10,
int ne11,
int ne12,
int ne13,
ulong nb10,
ulong nb11,
ulong nb12,
ulong nb13
) {
src0 = src0 + offset0;
dst = dst + offsetd;
int i0 = get_global_id(0);
int i1 = get_global_id(1);
int i2 = get_global_id(2);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
if (i0 < ne10 && i1 < ne11 && i2 < ne12) {
for (int i3 = 0; i3 < ne13; ++i3) {
ulong src_offset_in_tensor = (ulong)i0*nb00 + (ulong)i1*nb01 + (ulong)i2*nb02 + (ulong)i3*nb03;
global const half *src_val_ptr = (global const half *)((global char *)p_src0_base + off_src0_abs + src_offset_in_tensor);
for (int i0 = get_local_id(0); i0 < ne00; i0 += get_local_size(0)) {
global const half * hx = (global const half *)(src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global half * hy = (global half *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
ulong dst_offset_in_tensor = (ulong)i0*nb10 + (ulong)i1*nb11 + (ulong)i2*nb12 + (ulong)i3*nb13;
global half *dst_val_ptr = (global half *)((global char *)p_dst_base + off_dst_abs + dst_offset_in_tensor);
const float x = convert_float(*hx);
*hy = convert_half_rte((x > 20.0f) ? x : log(1.0f + exp(x)));
*dst_val_ptr = (half)(softplus_f32((float)(*src_val_ptr)));
}
}
}

View File

@@ -1,13 +1,8 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
// Most devices have max workgroup size of 1024, so this is enough for subgroup
// sizes of 16, 32, 64 and 128. Increase this value for smaller subgroups sizes
#define MAX_SUBGROUPS 64
kernel void kernel_sum_rows_f32(
global char * src0,
global float * src0,
ulong offset0,
global char * dst,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
@@ -20,121 +15,25 @@ kernel void kernel_sum_rows_f32(
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
dst = dst + offsetd;
src0 = (global float *)((global char *)src0 + offset0);
dst = (global float *)((global char *)dst + offsetd);
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int lid = get_local_id(0);
const int lsize = get_local_size(0);
const uint sg_size = get_sub_group_size();
const uint sg_id = get_sub_group_id();
const uint sg_lid = get_sub_group_local_id();
__local float lmem[MAX_SUBGROUPS];
int i3 = get_global_id(2);
int i2 = get_global_id(1);
int i1 = get_global_id(0);
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
if(sg_id == 0){
lmem[sg_lid] = 0.0f;
global float * src_row = (global float *) ((global char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) ((global char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
for (int i0 = 0; i0 < ne00; i0++) {
row_sum += src_row[i0];
}
global float * src_row = (global float *) (src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) (dst + i1*nb1 + i2*nb2 + i3*nb3);
float sumf = 0.0f;
for (int i0 = lid; i0 < ne00; i0 += lsize) {
sumf += src_row[i0];
}
sumf = sub_group_reduce_add(sumf);
barrier(CLK_LOCAL_MEM_FENCE);
if(sg_lid == 0){
lmem[sg_id] = sumf;
}
barrier(CLK_LOCAL_MEM_FENCE);
sumf = lmem[sg_lid];
sumf = sub_group_reduce_add(sumf);
if (lid == 0) {
dst_row[0] = sumf;
}
}
kernel void kernel_sum_rows_f32_4(
global char * src0,
ulong offset0,
global char * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb01,
ulong nb02,
ulong nb03,
ulong nb1,
ulong nb2,
ulong nb3
) {
src0 = src0 + offset0;
dst = dst + offsetd;
const int i3 = get_group_id(2);
const int i2 = get_group_id(1);
const int i1 = get_group_id(0);
const int lid = get_local_id(0);
const int lsize = get_local_size(0);
const uint sg_size = get_sub_group_size();
const uint sg_id = get_sub_group_id();
const uint sg_lid = get_sub_group_local_id();
__local float lmem[MAX_SUBGROUPS];
if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
return;
}
if(sg_id == 0){
lmem[sg_lid] = 0.0f;
}
global float4 * src_row = (global float4 *) (src0 + i1*nb01 + i2*nb02 + i3*nb03);
global float * dst_row = (global float *) (dst + i1*nb1 + i2*nb2 + i3*nb3);
float4 sum_vec = (float4)0.0f;
for (int i0 = lid; i0 < ne00 / 4; i0 += lsize) {
sum_vec += src_row[i0];
}
float sumf = dot(sum_vec, (float4)(1.0f));
sumf = sub_group_reduce_add(sumf);
barrier(CLK_LOCAL_MEM_FENCE);
if(sg_lid == 0){
lmem[sg_id] = sumf;
}
barrier(CLK_LOCAL_MEM_FENCE);
sumf = lmem[sg_lid];
sumf = sub_group_reduce_add(sumf);
if (lid == 0) {
dst_row[0] = sumf;
}
dst_row[0] = row_sum;
}

View File

@@ -1496,10 +1496,6 @@ bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tenso
(t0->nb[3] == t1->nb[3]);
}
bool ggml_is_view(const struct ggml_tensor * t) {
return ggml_impl_is_view(t);
}
// check if t1 can be represented as a repetition of t0
bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");

View File

@@ -1 +1 @@
d6754f3d0e6d0acd21c12442353c9fd2f94188e7
a8db410a252c8c8f2d120c6f2e7133ebe032f35d

View File

@@ -57,14 +57,13 @@ add_library(llama
models/deci.cpp
models/deepseek.cpp
models/deepseek2.cpp
models/delta-net-base.cpp
models/dots1.cpp
models/dream.cpp
models/ernie4-5-moe.cpp
models/ernie4-5.cpp
models/exaone-moe.cpp
models/exaone.cpp
models/exaone4.cpp
models/exaone-moe.cpp
models/falcon-h1.cpp
models/falcon.cpp
models/gemma-embedding.cpp
@@ -92,12 +91,10 @@ add_library(llama
models/llama-iswa.cpp
models/llama.cpp
models/maincoder.cpp
models/mamba-base.cpp
models/mamba.cpp
models/mimo2-iswa.cpp
models/minicpm3.cpp
models/minimax-m2.cpp
models/mistral3.cpp
models/modern-bert.cpp
models/mpt.cpp
models/nemotron-h.cpp
@@ -121,12 +118,12 @@ add_library(llama
models/qwen2moe.cpp
models/qwen2vl.cpp
models/qwen3.cpp
models/qwen35.cpp
models/qwen35moe.cpp
models/qwen3vl.cpp
models/qwen3vl-moe.cpp
models/qwen3moe.cpp
models/qwen3next.cpp
models/qwen3vl-moe.cpp
models/qwen3vl.cpp
models/qwen35.cpp
models/qwen35moe.cpp
models/refact.cpp
models/rnd1.cpp
models/rwkv6-base.cpp
@@ -145,6 +142,8 @@ add_library(llama
models/t5-enc.cpp
models/wavtokenizer-dec.cpp
models/xverse.cpp
models/mistral3.cpp
models/graph-context-mamba.cpp
)
set_target_properties(llama PROPERTIES

View File

@@ -39,8 +39,6 @@ private:
std::vector<ggml_tensor *> tensors; // per layer
};
using llama_adapter_cvec_ptr = std::shared_ptr<llama_adapter_cvec>;
//
// llama_adapter_lora
//
@@ -86,4 +84,3 @@ struct llama_adapter_lora {
};
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;
using llama_adapter_loras_ptr = std::unique_ptr<llama_adapter_loras>;

View File

@@ -22,8 +22,6 @@ llama_context::llama_context(
const llama_model & model,
llama_context_params params) :
model(model),
cvec(std::make_unique<llama_adapter_cvec>()),
loras(std::make_unique<llama_adapter_loras>()),
balloc(std::make_unique<llama_batch_allocr>(model.hparams.n_pos_per_embd())) {
// TODO warning when creating llama_context with awkward ctx size that is not a power of 2,
// may need to be backend-dependent
@@ -1067,11 +1065,11 @@ void llama_context::set_adapters_lora(llama_adapter_lora ** adapters, size_t n_a
return;
}
loras.reset(new llama_adapter_loras());
loras.clear();
for (size_t i = 0; i < n_adapters; i ++) {
if (scales[i] != 0.0f) {
loras->insert({adapters[i], scales[i]});
loras[adapters[i]] = scales[i];
}
}
@@ -1081,14 +1079,14 @@ void llama_context::set_adapters_lora(llama_adapter_lora ** adapters, size_t n_a
bool llama_context::adapters_lora_are_same(llama_adapter_lora ** adapters, size_t n_adapters, float * scales) {
LLAMA_LOG_DEBUG("%s: adapters = %p\n", __func__, (void *) adapters);
if (n_adapters != loras->size()) {
if (n_adapters != loras.size()) {
return false;
}
for (size_t i = 0; i < n_adapters; i ++) {
auto it = loras->find(adapters[i]);
auto it = loras.find(adapters[i]);
if (it == loras->end() || it->second != scales[i]) {
if (it == loras.end() || it->second != scales[i]) {
return false;
}
}
@@ -1106,7 +1104,7 @@ bool llama_context::set_adapter_cvec(
// TODO: should we reserve?
return cvec->apply(model, data, len, n_embd, il_start, il_end);
return cvec.apply(model, data, len, n_embd, il_start, il_end);
}
llm_graph_result * llama_context::process_ubatch(const llama_ubatch & ubatch, llm_graph_type gtype, llama_memory_context_i * mctx, ggml_status & ret) {
@@ -2083,8 +2081,8 @@ llm_graph_params llama_context::graph_params(
/*.gtype =*/ gtype,
/*.sched =*/ sched.get(),
/*.backend_cpu =*/ backend_cpu,
/*.cvec =*/ cvec.get(),
/*.loras =*/ loras.get(),
/*.cvec =*/ &cvec,
/*.loras =*/ &loras,
/*.mctx =*/ mctx,
/*.cross =*/ &cross,
/*.samplers =*/ sampling.samplers,

View File

@@ -256,10 +256,9 @@ private:
const llama_model & model;
llama_cparams cparams;
llama_adapter_cvec_ptr cvec;
llama_adapter_loras_ptr loras;
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_adapter_loras loras;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably

View File

@@ -17,41 +17,6 @@
#include <sstream>
#include <unordered_set>
// dedup helpers
static ggml_tensor * build_kq_mask(
ggml_context * ctx,
const llama_kv_cache_context * mctx,
const llama_ubatch & ubatch,
const llama_cparams & cparams) {
const auto n_kv = mctx->get_n_kv();
const auto n_tokens = ubatch.n_tokens;
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
return ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
}
static bool can_reuse_kq_mask(
ggml_tensor * kq_mask,
const llama_kv_cache_context * mctx,
const llama_ubatch & ubatch,
const llama_cparams & cparams) {
const auto n_kv = mctx->get_n_kv();
const auto n_tokens = ubatch.n_tokens;
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
bool res = true;
res &= (kq_mask->ne[0] == n_kv);
res &= (kq_mask->ne[1] == n_tokens/n_stream);
res &= (kq_mask->ne[2] == 1);
res &= (kq_mask->ne[3] == n_stream);
return res;
}
// impl
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
if (ubatch->token) {
const int64_t n_tokens = ubatch->n_tokens;
@@ -438,7 +403,8 @@ bool llm_graph_input_attn_kv::can_reuse(const llm_graph_params & params) {
res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
//res &= self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= can_reuse_kq_mask(self_kq_mask, mctx, params.ubatch, params.cparams);
res &= self_kq_mask->ne[0] == mctx->get_n_kv();
res &= self_kq_mask->ne[1] == params.ubatch.n_tokens;
return res;
}
@@ -458,7 +424,8 @@ bool llm_graph_input_attn_k::can_reuse(const llm_graph_params & params) {
res &= self_k_idxs->ne[0] == params.ubatch.n_tokens;
res &= can_reuse_kq_mask(self_kq_mask, mctx, params.ubatch, params.cparams);
res &= self_kq_mask->ne[0] == mctx->get_n_kv();
res &= self_kq_mask->ne[1] == params.ubatch.n_tokens;
return res;
}
@@ -488,8 +455,11 @@ bool llm_graph_input_attn_kv_iswa::can_reuse(const llm_graph_params & params) {
res &= self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
//res &= self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= can_reuse_kq_mask(self_kq_mask, mctx->get_base(), params.ubatch, params.cparams);
res &= can_reuse_kq_mask(self_kq_mask_swa, mctx->get_swa(), params.ubatch, params.cparams);
res &= self_kq_mask->ne[0] == mctx->get_base()->get_n_kv();
res &= self_kq_mask->ne[1] == params.ubatch.n_tokens;
res &= self_kq_mask_swa->ne[0] == mctx->get_swa()->get_n_kv();
res &= self_kq_mask_swa->ne[1] == params.ubatch.n_tokens;
return res;
}
@@ -551,7 +521,8 @@ bool llm_graph_input_mem_hybrid::can_reuse(const llm_graph_params & params) {
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
//res &= inp_attn->self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= can_reuse_kq_mask(inp_attn->self_kq_mask, mctx->get_attn(), params.ubatch, params.cparams);
res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
@@ -594,7 +565,8 @@ bool llm_graph_input_mem_hybrid_k::can_reuse(const llm_graph_params & params) {
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
res &= can_reuse_kq_mask(inp_attn->self_kq_mask, mctx->get_attn(), params.ubatch, params.cparams);
res &= inp_attn->self_kq_mask->ne[0] == mctx->get_attn()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
@@ -653,7 +625,8 @@ bool llm_graph_input_mem_hybrid_iswa::can_reuse(const llm_graph_params & params)
res &= inp_attn->self_k_idxs->ne[0] == params.ubatch.n_tokens;
//res &= inp_attn->self_v_idxs->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= can_reuse_kq_mask(inp_attn->self_kq_mask, attn_ctx->get_base(), params.ubatch, params.cparams);
res &= inp_attn->self_kq_mask->ne[0] == attn_ctx->get_base()->get_n_kv();
res &= inp_attn->self_kq_mask->ne[1] == params.ubatch.n_tokens;
}
// swa tensors may not be allocated if there are no SWA attention layers
@@ -661,7 +634,8 @@ bool llm_graph_input_mem_hybrid_iswa::can_reuse(const llm_graph_params & params)
res &= inp_attn->self_k_idxs_swa->ne[0] == params.ubatch.n_tokens;
//res &= inp_attn->self_v_idxs_swa->ne[0] == params.ubatch.n_tokens; // TODO: need to move this to the unified cache and check there
res &= can_reuse_kq_mask(inp_attn->self_kq_mask_swa, attn_ctx->get_swa(), params.ubatch, params.cparams);
res &= inp_attn->self_kq_mask_swa->ne[0] == attn_ctx->get_swa()->get_n_kv();
res &= inp_attn->self_kq_mask_swa->ne[1] == params.ubatch.n_tokens;
}
res &= inp_rs->s_copy->ne[0] == mctx->get_recr()->get_n_rs();
@@ -1917,11 +1891,14 @@ static std::unique_ptr<llm_graph_input_attn_kv> build_attn_inp_kv_impl(
{
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
const auto n_kv = mctx_cur->get_n_kv();
const auto n_tokens = ubatch.n_tokens;
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
inp->self_v_idxs = mctx_cur->build_input_v_idxs(ctx0, ubatch);
inp->self_kq_mask = build_kq_mask(ctx0, mctx_cur, ubatch, cparams);
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
@@ -2006,9 +1983,13 @@ static std::unique_ptr<llm_graph_input_attn_k> build_attn_inp_k_impl(
{
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_iswa for SWA");
const auto n_kv = mctx_cur->get_n_kv();
const auto n_tokens = ubatch.n_tokens;
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
inp->self_k_idxs = mctx_cur->build_input_k_idxs(ctx0, ubatch);
inp->self_kq_mask = build_kq_mask(ctx0, mctx_cur, ubatch, cparams);
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
@@ -2207,11 +2188,15 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
auto inp = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, mctx_cur);
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
{
const auto n_kv = mctx_cur->get_base()->get_n_kv();
inp->self_k_idxs = mctx_cur->get_base()->build_input_k_idxs(ctx0, ubatch);
inp->self_v_idxs = mctx_cur->get_base()->build_input_v_idxs(ctx0, ubatch);
inp->self_kq_mask = build_kq_mask(ctx0, mctx_cur->get_base(), ubatch, cparams);
inp->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask);
ggml_set_name(inp->self_kq_mask, "self_kq_mask");
@@ -2222,10 +2207,12 @@ llm_graph_input_attn_kv_iswa * llm_graph_context::build_attn_inp_kv_iswa() const
{
GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache for non-SWA");
const auto n_kv = mctx_cur->get_swa()->get_n_kv();
inp->self_k_idxs_swa = mctx_cur->get_swa()->build_input_k_idxs(ctx0, ubatch);
inp->self_v_idxs_swa = mctx_cur->get_swa()->build_input_v_idxs(ctx0, ubatch);
inp->self_kq_mask_swa = build_kq_mask(ctx0, mctx_cur->get_swa(), ubatch, cparams);
inp->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp->self_kq_mask_swa);
ggml_set_name(inp->self_kq_mask_swa, "self_kq_mask_swa");
@@ -2387,21 +2374,27 @@ llm_graph_input_mem_hybrid_iswa * llm_graph_context::build_inp_mem_hybrid_iswa()
auto inp_attn = std::make_unique<llm_graph_input_attn_kv_iswa>(hparams, cparams, attn_ctx);
const auto n_stream = cparams.kv_unified ? 1 : ubatch.n_seqs_unq;
{
const auto n_kv = attn_ctx->get_base()->get_n_kv();
inp_attn->self_k_idxs = attn_ctx->get_base()->build_input_k_idxs(ctx0, ubatch);
inp_attn->self_v_idxs = attn_ctx->get_base()->build_input_v_idxs(ctx0, ubatch);
inp_attn->self_kq_mask = build_kq_mask(ctx0, attn_ctx->get_base(), ubatch, cparams);
inp_attn->self_kq_mask = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp_attn->self_kq_mask);
inp_attn->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_attn->self_kq_mask, GGML_TYPE_F16) : inp_attn->self_kq_mask;
}
{
const auto n_kv = attn_ctx->get_swa()->get_n_kv();
inp_attn->self_k_idxs_swa = attn_ctx->get_swa()->build_input_k_idxs(ctx0, ubatch);
inp_attn->self_v_idxs_swa = attn_ctx->get_swa()->build_input_v_idxs(ctx0, ubatch);
inp_attn->self_kq_mask_swa = build_kq_mask(ctx0, attn_ctx->get_swa(), ubatch, cparams);
inp_attn->self_kq_mask_swa = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_kv, n_tokens/n_stream, 1, n_stream);
ggml_set_input(inp_attn->self_kq_mask_swa);
inp_attn->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp_attn->self_kq_mask_swa, GGML_TYPE_F16) : inp_attn->self_kq_mask_swa;

View File

@@ -308,7 +308,6 @@ struct llm_tokenizer_bpe : llm_tokenizer {
break;
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM:
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE:
case LLAMA_VOCAB_PRE_TYPE_JOYAI_LLM:
regex_exprs = {
"\\p{N}{1,3}",
"[一-龥぀-ゟ゠-ヿ]+",
@@ -423,14 +422,6 @@ struct llm_tokenizer_bpe : llm_tokenizer {
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_TINY_AYA:
regex_exprs = {
// original regex from tokenizer.json: "\\d{1,3}(?=(?:\\d{3})*\\b)"
"\\d{1,3}(?=(?:\\d{3})*\\b)",
// original regex from tokenizer.json: "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?i:'s|'t|'re|'ve|'m|'ll|'d)?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?i:'s|'t|'re|'ve|'m|'ll|'d)?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
"[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])?|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
};
break;
case LLAMA_VOCAB_PRE_TYPE_KIMI_K2:
regex_exprs = {
// K2 trigger pattern - this will activate the custom K2 handler in unicode.cpp
@@ -2014,14 +2005,10 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "megrez") {
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
} else if (
tokenizer_pre == "gpt-4o" ||
tokenizer_pre == "llama4") {
tokenizer_pre == "gpt-4o" ||
tokenizer_pre == "llama4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
clean_spaces = false;
} else if (
tokenizer_pre == "tiny_aya") {
pre_type = LLAMA_VOCAB_PRE_TYPE_TINY_AYA;
clean_spaces = false;
} else if (
tokenizer_pre == "superbpe") {
pre_type = LLAMA_VOCAB_PRE_TYPE_SUPERBPE;
@@ -2052,10 +2039,6 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "hunyuan-dense") {
pre_type = LLAMA_VOCAB_PRE_TYPE_HUNYUAN_DENSE;
clean_spaces = false;
} else if (
tokenizer_pre == "joyai-llm") {
pre_type = LLAMA_VOCAB_PRE_TYPE_JOYAI_LLM;
clean_spaces = false;
} else if (
tokenizer_pre == "kimi-k2") {
pre_type = LLAMA_VOCAB_PRE_TYPE_KIMI_K2;

View File

@@ -55,8 +55,6 @@ enum llama_vocab_pre_type {
LLAMA_VOCAB_PRE_TYPE_YOUTU = 44,
LLAMA_VOCAB_PRE_TYPE_EXAONE_MOE = 45,
LLAMA_VOCAB_PRE_TYPE_QWEN35 = 46,
LLAMA_VOCAB_PRE_TYPE_TINY_AYA = 47,
LLAMA_VOCAB_PRE_TYPE_JOYAI_LLM = 48,
};
struct LLM_KV;

View File

@@ -1,333 +0,0 @@
#include "models.h"
#define CHUNK_SIZE 64
// utility to get one slice from the third dimension
// input dim: [x, y, c, b]
// output dim: [x, y, 1, b]
static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t c) {
return ggml_view_4d(ctx0, t, t->ne[0], t->ne[1], 1, t->ne[3],
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
llm_build_delta_net_base::llm_build_delta_net_base(const llm_graph_params & params) : llm_graph_context(params) {}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_delta_net_base::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}

View File

@@ -1,7 +1,9 @@
#include "models.h"
llm_build_falcon_h1::llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params) :
llm_build_mamba_base(params) {
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@@ -2,7 +2,7 @@
llm_build_granite_hybrid::llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params) :
llm_build_mamba_base(params) {
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@@ -1,10 +1,8 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_graph_context_mamba::llm_graph_context_mamba(const llm_graph_params & params) : llm_graph_context(params) {}
llm_build_mamba_base::llm_build_mamba_base(const llm_graph_params & params) : llm_graph_context(params) {}
ggml_tensor * llm_build_mamba_base::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * llm_graph_context_mamba::build_mamba_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,
@@ -145,7 +143,7 @@ ggml_tensor * llm_build_mamba_base::build_mamba_layer(llm_graph_input_rs * inp,
return cur;
}
ggml_tensor * llm_build_mamba_base::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * llm_graph_context_mamba::build_mamba2_layer(llm_graph_input_rs * inp,
ggml_tensor * cur,
const llama_model & model,
const llama_ubatch & ubatch,

View File

@@ -1,6 +1,6 @@
#include "models.h"
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
llm_build_jamba::llm_build_jamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
ggml_tensor * cur;

View File

@@ -1,8 +1,6 @@
#include "models.h"
#include "ggml.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
// Causal Conv1d function for Q,K,V
@@ -67,7 +65,7 @@ static ggml_tensor * causal_conv1d(ggml_cgraph * gf, ggml_context * ctx0, ggml_t
}
llm_build_kimi_linear::llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params) :
llm_build_mamba_base(params), model(model) {
llm_graph_context_mamba(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@@ -1,6 +1,7 @@
#include "models.h"
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_build_mamba_base(params) {
llm_build_mamba::llm_build_mamba(const llama_model & model, const llm_graph_params & params) : llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@@ -1,51 +1,23 @@
#pragma once
#include "llama-model.h"
#include "llama-graph.h"
#include "../llama-model.h"
#include "../llama-graph.h"
// note: almost all graphs require atleast sqrtf, so include cmath globally
// TODO: remove in follow-up PR - move to .cpp files
#include "../llama-memory-recurrent.h"
#include <cmath>
//
// base classes
//
struct llm_graph_context_mamba : public llm_graph_context {
llm_graph_context_mamba(const llm_graph_params & params);
struct llm_build_mamba_base : public llm_graph_context {
llm_build_mamba_base(const llm_graph_params & params);
virtual ~llm_build_mamba_base() = default;
virtual ~llm_graph_context_mamba() = default;
ggml_tensor * build_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
ggml_tensor * build_mamba2_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il) const;
};
struct llm_build_delta_net_base : public llm_graph_context {
llm_build_delta_net_base(const llm_graph_params & params);
virtual ~llm_build_delta_net_base() = default;
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il);
};
// Base class for RWKV-related models
struct llm_build_rwkv6_base : public llm_graph_context {
const llama_model & model;
@@ -86,10 +58,6 @@ struct llm_build_rwkv7_base : public llm_graph_context {
int il) const;
};
//
// models
//
struct llm_build_afmoe : public llm_graph_context {
llm_build_afmoe(const llama_model & model, const llm_graph_params & params);
};
@@ -207,7 +175,7 @@ struct llm_build_falcon : public llm_graph_context {
llm_build_falcon(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_falcon_h1 : public llm_build_mamba_base {
struct llm_build_falcon_h1 : public llm_graph_context_mamba {
llm_build_falcon_h1(const llama_model & model, const llm_graph_params & params);
};
@@ -285,7 +253,7 @@ private:
const int il);
};
struct llm_build_granite_hybrid : public llm_build_mamba_base {
struct llm_build_granite_hybrid : public llm_graph_context_mamba {
llm_build_granite_hybrid(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_layer_ffn(ggml_tensor * cur, ggml_tensor * inpSA, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, ggml_tensor * inp_pos, llm_graph_input_attn_kv * inp_attn,
@@ -316,12 +284,11 @@ struct llm_build_jais : public llm_graph_context {
llm_build_jais(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_jamba : public llm_build_mamba_base {
struct llm_build_jamba : public llm_graph_context_mamba {
llm_build_jamba(const llama_model & model, const llm_graph_params & params);
};
// TODO: derive llm_build_delta_net_base instead
struct llm_build_kimi_linear : public llm_build_mamba_base {
struct llm_build_kimi_linear : public llm_graph_context_mamba {
llm_build_kimi_linear(const llama_model & model, const llm_graph_params & params);
std::pair<ggml_tensor *, ggml_tensor *> build_kda_autoregressive(
@@ -380,7 +347,7 @@ struct llm_build_maincoder : public llm_graph_context {
llm_build_maincoder(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_mamba : public llm_build_mamba_base {
struct llm_build_mamba : public llm_graph_context_mamba {
llm_build_mamba(const llama_model & model, const llm_graph_params & params);
};
@@ -412,11 +379,11 @@ struct llm_build_nemotron : public llm_graph_context {
llm_build_nemotron(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_nemotron_h : public llm_build_mamba_base {
struct llm_build_nemotron_h : public llm_graph_context_mamba {
llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il);
ggml_tensor * build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il);
ggml_tensor * build_attention_layer(ggml_tensor * cur, llm_graph_input_attn_kv * inp_attn,
const llama_model & model, int64_t n_embd_head, int il);
const llama_model & model, const int64_t n_embd_head, const int il);
};
struct llm_build_neo_bert : public llm_graph_context {
@@ -461,7 +428,7 @@ struct llm_build_phi3 : public llm_graph_context {
llm_build_phi3(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_plamo2 : public llm_build_mamba_base {
struct llm_build_plamo2 : public llm_graph_context_mamba {
llm_build_plamo2(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_plamo2_mamba_layer(llm_graph_input_rs * inp, ggml_tensor * cur, const llama_model & model, const llama_ubatch & ubatch, int il);
@@ -510,7 +477,7 @@ struct llm_build_qwen3vlmoe : public llm_graph_context {
llm_build_qwen3vlmoe(const llama_model & model, const llm_graph_params & params);
};
struct llm_build_qwen3next : public llm_build_delta_net_base {
struct llm_build_qwen3next : public llm_graph_context_mamba {
llm_build_qwen3next(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@@ -528,6 +495,26 @@ private:
ggml_tensor * cur,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
// returns pair of output and new state
std::pair<ggml_tensor *, ggml_tensor *> build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * beta,
ggml_tensor * state,
int il);
ggml_tensor * build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,
@@ -542,8 +529,7 @@ private:
const llama_model & model;
};
// TODO: derive llm_build_delta_net_base instead
struct llm_build_qwen35 : public llm_graph_context {
struct llm_build_qwen35 : public llm_graph_context_mamba {
llm_build_qwen35(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(
@@ -561,7 +547,6 @@ private:
ggml_tensor * diag_mask,
int il);
ggml_tensor * build_layer_ffn(
ggml_tensor * cur,
int il);
@@ -603,8 +588,7 @@ private:
const llama_model & model;
};
// TODO: derive llm_build_delta_net_base instead
struct llm_build_qwen35moe : public llm_graph_context {
struct llm_build_qwen35moe : public llm_graph_context_mamba {
llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params);
private:
ggml_tensor * build_layer_attn(

View File

@@ -1,7 +1,9 @@
#include "models.h"
llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_graph_params & params) :
llm_build_mamba_base(params) {
llm_graph_context_mamba(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
@@ -63,8 +65,8 @@ llm_build_nemotron_h::llm_build_nemotron_h(const llama_model & model, const llm_
ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor * cur,
llm_graph_input_attn_kv * inp_attn,
const llama_model & model,
int64_t n_embd_head,
int il) {
const int64_t n_embd_head,
const int il) {
// compute Q and K
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
@@ -104,7 +106,7 @@ ggml_tensor * llm_build_nemotron_h::build_attention_layer(ggml_tensor *
return cur;
}
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, int il) {
ggml_tensor * llm_build_nemotron_h::build_ffn_layer(ggml_tensor * cur, const llama_model & model, const int il) {
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_ffn(cur,
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,

View File

@@ -1,9 +1,7 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_plamo2::llm_build_plamo2(const llama_model & model, const llm_graph_params & params) :
llm_build_mamba_base(params) {
llm_graph_context_mamba(params) {
ggml_tensor * cur;
ggml_tensor * inpL;

View File

@@ -1,11 +1,10 @@
#include "ggml.h"
#include "models.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
llm_build_qwen35::llm_build_qwen35(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params), model(model) {
llm_graph_context_mamba(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@@ -1,11 +1,10 @@
#include "ggml.h"
#include "models.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
llm_build_qwen35moe::llm_build_qwen35moe(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params), model(model) {
llm_graph_context_mamba(params), model(model) {
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);

View File

@@ -1,9 +1,10 @@
#include "ggml.h"
#include "models.h"
#include "llama-memory-recurrent.h"
#define CHUNK_SIZE 64
llm_build_qwen3next::llm_build_qwen3next(const llama_model & model, const llm_graph_params & params) :
llm_build_delta_net_base(params), model(model) {
llm_graph_context_mamba(params), model(model) {
ggml_tensor * cur;
ggml_tensor * inpL;
@@ -82,6 +83,326 @@ static ggml_tensor * get_slice_2d(ggml_context * ctx0, ggml_tensor * t, int64_t
t->nb[1], t->nb[2], t->nb[3], t->nb[2] * c);
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_chunking(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b,
ggml_tensor * s,
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
g = ggml_permute(ctx0, g, 2, 1, 3, 0); // [ 1, n_tokens, H_v, n_seqs]
b = ggml_permute(ctx0, b, 2, 0, 1, 3); // [ 1, n_tokens, H_v, n_seqs]
const int CS = CHUNK_SIZE;
const int pad = (CS - n_tokens % CS) % CS;
const int n_chunks = (n_tokens + pad) / CS;
q = ggml_pad(ctx0, q, 0, pad, 0, 0);
k = ggml_pad(ctx0, k, 0, pad, 0, 0);
v = ggml_pad(ctx0, v, 0, pad, 0, 0);
g = ggml_pad(ctx0, g, 0, pad, 0, 0);
b = ggml_pad(ctx0, b, 0, pad, 0, 0);
ggml_tensor * v_b = ggml_mul(ctx0, v, b);
ggml_tensor * k_b = ggml_mul(ctx0, k, b);
cb(v_b, "v_b", il);
cb(k_b, "k_b", il);
q = ggml_reshape_4d(ctx0, q, S_k, CS, n_chunks, H_k * n_seqs);
k = ggml_reshape_4d(ctx0, k, S_k, CS, n_chunks, H_k * n_seqs);
k_b = ggml_reshape_4d(ctx0, k_b, S_k, CS, n_chunks, H_v * n_seqs);
v = ggml_reshape_4d(ctx0, v, S_v, CS, n_chunks, H_v * n_seqs);
v_b = ggml_reshape_4d(ctx0, v_b, S_v, CS, n_chunks, H_v * n_seqs);
g = ggml_reshape_4d(ctx0, g, CS, 1, n_chunks, H_v * n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, CS, n_chunks, H_v * n_seqs);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_cs = ggml_cumsum(ctx0, g);
cb(g_cs, "g_cs", il);
ggml_tensor * g_cs_i = g_cs;
ggml_tensor * g_cs_j = ggml_reshape_4d(ctx0, g_cs, 1, CS, n_chunks, H_v * n_seqs);
g_cs_j = ggml_repeat_4d(ctx0, g_cs_j, CS, CS, n_chunks, H_v * n_seqs);
// [CS, CS, n_chunks, H_v * n_seqs]
ggml_tensor * decay_mask;
decay_mask = ggml_sub(ctx0, g_cs_j, g_cs_i);
decay_mask = ggml_tri(ctx0, decay_mask, GGML_TRI_TYPE_LOWER_DIAG);
decay_mask = ggml_exp(ctx0, decay_mask);
cb(decay_mask, "decay_mask", il);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kb;
kb = ggml_mul_mat(ctx0, k, k_b);
kb = ggml_mul (ctx0, kb, decay_mask);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * attn;
attn = ggml_tri(ctx0, kb, GGML_TRI_TYPE_LOWER);
ggml_tensor * identity;
identity = ggml_view_1d(ctx0, attn, CS, 0);
identity = ggml_fill (ctx0, identity, 1.0f);
identity = ggml_diag (ctx0, identity);
ggml_tensor * lhs = ggml_add(ctx0, attn, identity);
cb(lhs, "dnet_add_ch_lhs", il);
attn = ggml_neg(ctx0, attn);
ggml_tensor * lin_solve = ggml_solve_tri(ctx0, lhs, attn, true, true, false);
attn = ggml_add(ctx0, lin_solve, identity);
cb(attn, "dnet_add_ch_attn_solved", il); // [CS, CS, n_chunks, H_k * n_seqs]
// [S_v, CS, n_chunks, H_v * n_seqs]
v = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, v_b)), attn);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_exp = ggml_exp(ctx0, g_cs);
k_b = ggml_cont(ctx0, ggml_transpose(ctx0, k_b));
// [CS, S_k, n_chunks, H_k * n_seqs]
ggml_tensor * kbg = ggml_mul(ctx0, k_b, g_exp);
cb(kbg, "k_beta_g_exp", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * k_cd = ggml_mul_mat(ctx0, kbg, attn);
cb(k_cd, "k_cumdecay", il);
// [S_k, CS, n_chunks, H_k * n_seqs]
ggml_tensor * g_exp_t = ggml_transpose(ctx0, g_exp);
ggml_tensor * q_g_exp = ggml_mul(ctx0, q, g_exp_t);
// [CS, CS, n_chunks, H_k * n_seqs]
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
kq = ggml_mul(ctx0, kq, decay_mask);
kq = ggml_tri(ctx0, kq, GGML_TRI_TYPE_LOWER_DIAG);
cb(kq, "kq", il);
// vectorized calculation of key_gdiff
// improved from the chunked version:
// g_last = torch.clamp(g_cum[:, :, -1], max=50.0).exp().unsqueeze(-1).unsqueeze(-1)
// g_diff = torch.clamp(g_cum[:, :, -1:] - g_cum, max=50.0).exp()
// key_gdiff = key * g_diff.unsqueeze(-1)
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
// get last element in g_cumsum along CS dimension (ne0)
// example: [[x, y, z, ..., last], ...] -> [[last], ...]
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last = ggml_view_4d(ctx0, g_cs, 1, 1, g_cs->ne[2], g_cs->ne[3],
g_cs->nb[1],
g_cs->nb[2],
g_cs->nb[3],
ggml_row_size(g_cs->type, g_cs->ne[0] - 1));
cb(g_last, "g_last", il);
// TODO: remove this cont when CUDA supports non-cont unary ops
g_last = ggml_cont(ctx0, g_last);
// [1, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_last_exp = ggml_exp(ctx0, g_last);
cb(g_last_exp, "g_last_exp", il);
// [CS, 1, n_chunks, H_v * n_seqs]
ggml_tensor * g_diff = ggml_neg(ctx0, ggml_sub(ctx0, g_cs, g_last));
cb(g_diff, "g_diff", il);
ggml_tensor * g_diff_exp = ggml_exp(ctx0, g_diff);
ggml_tensor * g_diff_exp_t = ggml_transpose(ctx0, g_diff_exp);
// [S_k, CS, n_chunks, H_v * n_seqs]
ggml_tensor * kg = ggml_mul(ctx0, k, g_diff_exp_t);
cb(kg, "key_gdiff", il);
// [CS, S_k, n_chunks, H_v * n_seqs]
ggml_tensor * kg_t = ggml_cont(ctx0, ggml_transpose(ctx0, kg));
cb(kg_t, "key_gdiff_t", il);
ggml_tensor * s_t = ggml_transpose(ctx0, s);
s_t = ggml_cont_4d(ctx0, s_t, S_v, S_v, 1, H_v * n_seqs);
cb(s_t, "dnet_add_ch_state", il);
// [CS, S_v, n_chunks, H_v * n_seqs]
ggml_tensor * v_t = ggml_cont(ctx0, ggml_transpose(ctx0, v));
for (int64_t chunk = 0; chunk < n_chunks; chunk++) {
ggml_tensor * ch_k_cd = get_slice_2d(ctx0, k_cd, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_v_t = get_slice_2d(ctx0, v_t, chunk); // [ CS, S_v, 1, H_v * n_seqs]
ggml_tensor * ch_kq = get_slice_2d(ctx0, kq, chunk); // [ CS, CS, 1, H_k * n_seqs]
ggml_tensor * ch_q_g_exp = get_slice_2d(ctx0, q_g_exp, chunk); // [S_k, CS, 1, H_k * n_seqs]
ggml_tensor * ch_kg_t = get_slice_2d(ctx0, kg_t, chunk); // [ CS, S_k, 1, H_v * n_seqs]
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_p = ggml_mul_mat(ctx0, ch_k_cd, s_t);
cb(v_t_p, "v_prime", il);
// [CS, S_v, 1, H_v * n_seqs]
ggml_tensor * v_t_new = ggml_sub(ctx0, ch_v_t, v_t_p);
cb(v_t_new, "v_t_new", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * v_attn = ggml_mul_mat(ctx0, v_t_new, ch_kq);
cb(v_attn, "v_attn", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * attn_inter = ggml_mul_mat(ctx0, s_t, ch_q_g_exp);
cb(attn_inter, "attn_inter", il);
// [S_v, CS, 1, H_v * n_seqs]
ggml_tensor * o_ch = ggml_add(ctx0, attn_inter, v_attn);
cb(o_ch, "dnet_add_ch_attn_out", il);
v = ggml_set_inplace(ctx0, v, o_ch, v->nb[1], v->nb[2], v->nb[3], chunk * v->nb[2]);
// kgdmulvnew = (key_gdiff).transpose(-1, -2) @ v_new
// TODO: head broadcast might not work here - probably will need a transpose
ggml_tensor * kgv = ggml_mul_mat(ctx0, ch_kg_t, v_t_new); // [S_k, S_v, 1, H_k * n_seqs]
// last_recurrent_state = last_recurrent_state * g_last + kgdmulvnew
ggml_tensor * ch_g_last_exp = get_slice_2d(ctx0, g_last_exp, chunk);
s_t = ggml_mul(ctx0, s_t, ch_g_last_exp);
s_t = ggml_add(ctx0, s_t, kgv);
cb(s_t, "dnet_add_ch_state", il);
}
s_t = ggml_reshape_4d(ctx0, s_t, S_v, S_v, H_v, n_seqs);
// truncate padded tokens
ggml_tensor * o = ggml_view_4d(ctx0, v,
S_v, n_tokens, H_v, n_seqs,
ggml_row_size(v->type, S_v),
ggml_row_size(v->type, S_v * CS * n_chunks),
ggml_row_size(v->type, S_v * CS * n_chunks * H_v), 0);
o = ggml_permute (ctx0, o, 0, 2, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
std::pair<ggml_tensor *, ggml_tensor *> llm_build_qwen3next::build_delta_net_autoregressive(
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * g,
ggml_tensor * b, // beta
ggml_tensor * s, // state
int il) {
const int64_t S_k = q->ne[0];
const int64_t H_k = q->ne[1];
const int64_t n_tokens = q->ne[2];
const int64_t n_seqs = q->ne[3];
const int64_t S_v = v->ne[0];
const int64_t H_v = v->ne[1];
GGML_ASSERT(n_tokens == 1);
GGML_ASSERT(S_k == S_v);
GGML_ASSERT(H_v % H_k == 0);
GGML_ASSERT(q->ne[0] == S_k && q->ne[1] == H_k && q->ne[2] == n_tokens && q->ne[3] == n_seqs);
GGML_ASSERT(k->ne[0] == S_k && k->ne[1] == H_k && k->ne[2] == n_tokens && k->ne[3] == n_seqs);
GGML_ASSERT(v->ne[0] == S_v && v->ne[1] == H_v && v->ne[2] == n_tokens && v->ne[3] == n_seqs);
GGML_ASSERT(g->ne[0] == H_v && g->ne[1] == n_tokens && g->ne[2] == n_seqs);
GGML_ASSERT(b->ne[0] == H_v && b->ne[2] == n_tokens && b->ne[3] == n_seqs);
GGML_ASSERT(s->ne[0] == S_v && s->ne[1] == S_v && s->ne[2] == H_v && s->ne[3] == n_seqs);
const float scale = 1.0f / sqrtf(S_k);
q = ggml_scale(ctx0, q, scale);
q = ggml_permute(ctx0, q, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
k = ggml_permute(ctx0, k, 0, 2, 1, 3); // [S_k, n_tokens, H_k, n_seqs]
v = ggml_permute(ctx0, v, 0, 2, 1, 3); // [S_v, n_tokens, H_v, n_seqs]
cb(q, "q_in", il);
cb(k, "k_in", il);
cb(v, "v_in", il);
cb(b, "b_in", il);
cb(g, "g_in", il);
g = ggml_reshape_4d(ctx0, g, 1, 1, H_v, n_seqs);
b = ggml_reshape_4d(ctx0, b, 1, 1, H_v, n_seqs);
// [S_v, S_v, H_v, n_seqs]
g = ggml_exp(ctx0, g);
s = ggml_mul(ctx0, s, g);
ggml_tensor * s_t = ggml_cont(ctx0, ggml_transpose(ctx0, s));
// [1, S_v, H_v, n_seqs]
ggml_tensor * sk;
sk = ggml_mul (ctx0, s_t, k);
sk = ggml_sum_rows(ctx0, sk);
// [S_v, 1, H_v, n_seqs]
ggml_tensor * d;
d = ggml_sub(ctx0, v, ggml_transpose(ctx0, sk));
d = ggml_mul(ctx0, d, b);
// [1, S_v, H_v, n_seqs]
ggml_tensor * d_t;
d_t = ggml_transpose(ctx0, d);
// [S_v, S_v, H_v, n_seqs]
ggml_tensor * kd;
k = ggml_repeat(ctx0, k, s);
kd = ggml_mul (ctx0, k, d_t);
s_t = ggml_add(ctx0, s_t, kd);
cb(s_t, "dnet_add_ar_state", il);
ggml_tensor * s_q = ggml_mul (ctx0, s_t, q);
ggml_tensor * o = ggml_sum_rows(ctx0, s_q);
o = ggml_permute (ctx0, o, 2, 0, 1, 3); // [S_v, H_v, n_tokens, n_seqs]
s = ggml_transpose(ctx0, s_t); // [S_v, S_v, H_v, n_seqs]
return {o, s};
}
ggml_tensor * llm_build_qwen3next::build_norm_gated(
ggml_tensor * input,
ggml_tensor * weights,

View File

@@ -1,7 +1,5 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv6_base::llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}

View File

@@ -1,7 +1,5 @@
#include "models.h"
#include "llama-memory-recurrent.h"
llm_build_rwkv7_base::llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) :
llm_graph_context(params),
model(model) {}

View File

@@ -769,12 +769,6 @@ static std::vector<size_t> unicode_regex_split_custom(const std::string & text,
} else if (regex_expr == "\\p{AFMoE_digits}") {
// AFMOE digit pattern - use custom implementation for proper splitting
bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets);
} else if (regex_expr == "\\d{1,3}(?=(?:\\d{3})*\\b)") {
// tiny_aya digit grouping pattern from tokenizer.json:
// {"type": "Split", "pattern": {"Regex": "\\d{1,3}(?=(?:\\d{3})*\\b)"}, "behavior": "Isolated"}
// Splits digits into groups of 3 from the right (e.g., 1234567 -> 1, 234, 567)
// TODO: Revisit this regex, incase there are any subtle tokenization differences with the original regex.
bpe_offsets = unicode_regex_split_custom_afmoe(text, offsets);
}
return bpe_offsets;

View File

@@ -347,8 +347,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
int count = 0;
double nll = 0.0;
const int n_seq = std::max(1, n_batch / n_ctx);
LOG_INF("%s: computing over %d chunks, n_ctx=%d, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
LOG_INF("%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
for (int i = 0; i < n_chunk; ++i) {
const int start = i * params.ppl_stride;
@@ -1738,21 +1737,11 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
const int n_batch = params.n_batch;
const int num_batches = (static_cast<int>(n_ctx) + n_batch - 1) / n_batch;
// Calculate n_seq based on the logits file's n_ctx, but cap it at what the context supports
const int n_seq_max = llama_n_seq_max(ctx);
int n_seq = std::max(1, n_batch / static_cast<int>(n_ctx));
if (n_seq > n_seq_max) {
LOG_WRN("%s: calculated n_seq=%d exceeds context's n_seq_max=%d, capping at %d\n",
__func__, n_seq, n_seq_max, n_seq_max);
n_seq = n_seq_max;
}
const int num_batches = (n_ctx + n_batch - 1)/n_batch;
const int nv = 2*((n_vocab + 1)/2) + 4;
const bool add_bos = llama_vocab_get_add_bos(vocab);
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
llama_batch batch = llama_batch_init(std::min(n_batch, static_cast<int>(n_ctx)*n_seq), 0, 1);
std::vector<uint16_t> log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv);
std::vector<float> kld_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
std::vector<float> p_diff_values(size_t(n_ctx - 1 - n_ctx/2)*n_chunk);
@@ -1761,8 +1750,6 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
logits.reserve(size_t(n_ctx) * n_vocab);
}
LOG_INF("%s: computing over %d chunks, n_ctx=%u, batch_size=%d, n_seq=%d\n", __func__, n_chunk, n_ctx, n_batch, n_seq);
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) {
@@ -1787,122 +1774,107 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
auto kld_ptr = kld_values.data();
auto p_diff_ptr = p_diff_values.data();
const int first = n_ctx/2;
for (int i = 0; i < n_chunk; i += n_seq) {
for (int i = 0; i < n_chunk; ++i) {
const int start = i * n_ctx;
const int end = start + n_ctx;
const int n_seq_batch = std::min(n_seq, n_chunk - i);
const auto t_start = std::chrono::high_resolution_clock::now();
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i);
return;
}
// clear the KV cache
llama_memory_clear(llama_get_memory(ctx), true);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
const int batch_size = std::min(end - batch_start, n_batch);
int n_outputs = 0;
// save original token and restore it after eval
const auto token_org = tokens[batch_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[batch_start] = llama_vocab_bos(vocab);
}
common_batch_clear(batch);
for (int seq = 0; seq < n_seq_batch; seq++) {
int seq_start = batch_start + seq*n_ctx;
// save original token and restore it after eval
const auto token_org = tokens[seq_start];
// add BOS token for the first batch of each chunk
if (add_bos && j == 0) {
tokens[seq_start] = llama_vocab_bos(vocab);
}
for (int k = 0; k < batch_size; ++k) {
const int pos = j*n_batch + k;
const bool need_logits = pos >= first;
common_batch_add(batch, tokens[seq_start + k], pos, { seq }, need_logits);
n_outputs += need_logits;
}
// restore the original token in case it was set to BOS
tokens[seq_start] = token_org;
for (int i = 0; i < batch_size; i++) {
common_batch_add(batch, tokens[batch_start + i], j*n_batch + i, {0}, true);
}
if (llama_decode(ctx, batch)) {
LOG_ERR("%s : failed to decode\n", __func__);
LOG_ERR("%s : failed to eval\n", __func__);
llama_batch_free(batch);
return;
}
if (num_batches > 1 && n_outputs > 0) {
// restore the original token in case it was set to BOS
tokens[batch_start] = token_org;
if (num_batches > 1) {
const auto * batch_logits = llama_get_logits(ctx);
logits.insert(logits.end(), batch_logits, batch_logits + size_t(n_outputs) * n_vocab);
logits.insert(logits.end(), batch_logits, batch_logits + size_t(batch_size) * n_vocab);
}
}
llama_batch_free(batch);
const auto t_end = std::chrono::high_resolution_clock::now();
if (i == 0) {
llama_synchronize(ctx);
const auto t_end = std::chrono::high_resolution_clock::now();
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
LOG_INF("%s: %.2f seconds per pass - ETA ", __func__, t_total);
int total_seconds = (int)(t_total * n_chunk / n_seq);
int total_seconds = (int)(t_total * n_chunk);
if (total_seconds >= 60*60) {
LOG("%d hours ", total_seconds / (60*60));
total_seconds = total_seconds % (60*60);
}
LOG("%.2f minutes\n", total_seconds / 60.0);
LOG("\n");
LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
}
LOG("\n");
LOG("chunk PPL ln(PPL(Q)/PPL(base)) KL Divergence Δp RMS Same top p\n");
// Read log probs for each sequence in the batch
for (int seq = 0; seq < n_seq_batch; seq++) {
if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) {
LOG_ERR("%s: failed reading log-probs for chunk %d\n", __func__, i + seq);
llama_batch_free(batch);
return;
}
const int first = n_ctx/2;
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx);
process_logits(n_vocab, all_logits + size_t(first)*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
p_diff_ptr += n_ctx - 1 - first;
kld_ptr += n_ctx - 1 - first;
const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits_ith(ctx, seq*n_ctx + first);
LOG("%4d", i+1);
process_logits(n_vocab, all_logits, tokens.data() + start + seq*n_ctx + first, n_ctx - 1 - first,
workers, log_probs_uint16, kld, kld_ptr, p_diff_ptr);
p_diff_ptr += n_ctx - 1 - first;
kld_ptr += n_ctx - 1 - first;
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
const double ppl_val = exp(log_ppl.first);
const double ppl_unc = ppl_val * log_ppl.second; // ppl_unc = sqrt( (dexp(x) / dx) ** 2 * log_ppl.second ** 2 )
LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
LOG("%4d", i + seq + 1);
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
auto log_ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count);
const double ppl_val = exp(log_ppl.first);
const double ppl_unc = ppl_val * log_ppl.second;
LOG(" %9.4lf ± %9.4lf", ppl_val, ppl_unc);
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
auto log_ppl_base = mean_and_uncertainty(kld.sum_nll_base, kld.sum_nll_base2, kld.count);
const double log_ppl_cov = covariance(kld.sum_nll, kld.sum_nll_base, kld.sum_nll_nll_base, kld.count);
const double log_ppl_ratio_val = log_ppl.first - log_ppl_base.first;
const double log_ppl_ratio_unc = sqrt(log_ppl.second*log_ppl.second + log_ppl_base.second*log_ppl_base.second - 2.0*log_ppl_cov);
LOG(" %10.5lf ± %10.5lf", log_ppl_ratio_val, log_ppl_ratio_unc);
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
const double p_diff_rms_val = sqrt(p_diff_mse.first);
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count);
LOG(" %10.5lf ± %10.5lf", kl_div.first, kl_div.second);
double p_top_val = 1.*kld.n_same_top/kld.count;
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
auto p_diff_mse = mean_and_uncertainty(kld.sum_p_diff2, kld.sum_p_diff4, kld.count);
const double p_diff_rms_val = sqrt(p_diff_mse.first);
const double p_diff_rms_unc = 0.5/p_diff_rms_val * p_diff_mse.second;
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_diff_rms_val, 100.0*p_diff_rms_unc);
double p_top_val = 1.*kld.n_same_top/kld.count;
double p_top_unc = sqrt(p_top_val*(1 - p_top_val)/(kld.count - 1));
LOG(" %6.3lf ± %6.3lf %%", 100.0*p_top_val, 100.0*p_top_unc);
LOG("\n");
}
LOG("\n");
logits.clear();
}
llama_batch_free(batch);
LOG("\n");
if (kld.count < 100) return; // we do not wish to do statistics on so few values
@@ -2024,7 +1996,7 @@ int main(int argc, char ** argv) {
const bool ppl = !params.hellaswag && !params.winogrande && !params.multiple_choice && !params.kl_divergence;
if (ppl || params.kl_divergence) {
if (ppl) {
const int32_t n_seq = std::max(1, params.n_batch / n_ctx);
const int32_t n_kv = n_seq * n_ctx;
@@ -2034,8 +2006,12 @@ int main(int argc, char ** argv) {
params.n_batch = std::min(params.n_batch, n_kv);
} else {
params.n_batch = std::min(params.n_batch, params.n_ctx);
// ensure there's at least enough seq_ids for HellaSwag
params.n_parallel = std::max(4, params.n_parallel);
if (params.kl_divergence) {
params.n_parallel = 1;
} else {
// ensure there's at least enough seq_ids for HellaSwag
params.n_parallel = std::max(4, params.n_parallel);
}
}
if (params.ppl_stride > 0) {

View File

@@ -59,4 +59,8 @@ target_include_directories(${TARGET} PRIVATE ../mtmd)
target_include_directories(${TARGET} PRIVATE ${CMAKE_SOURCE_DIR})
target_link_libraries(${TARGET} PRIVATE server-context PUBLIC common cpp-httplib ${CMAKE_THREAD_LIBS_INIT})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_17)

Binary file not shown.

View File

@@ -1,5 +1,5 @@
<script lang="ts">
import { ActionIconRemove } from '$lib/components/app';
import { RemoveButton } from '$lib/components/app';
import { formatFileSize, getFileTypeLabel, getPreviewText, isTextFile } from '$lib/utils';
import { AttachmentType } from '$lib/enums';
@@ -104,7 +104,7 @@
onclick={onClick}
>
<div class="absolute top-2 right-2 opacity-0 transition-opacity group-hover:opacity-100">
<ActionIconRemove {id} {onRemove} />
<RemoveButton {id} {onRemove} />
</div>
<div class="pr-8">
@@ -158,7 +158,7 @@
{#if !readonly}
<div class="absolute top-2 right-2 opacity-0 transition-opacity group-hover:opacity-100">
<ActionIconRemove {id} {onRemove} />
<RemoveButton {id} {onRemove} />
</div>
{/if}
</button>

View File

@@ -1,5 +1,5 @@
<script lang="ts">
import { ActionIconRemove } from '$lib/components/app';
import { RemoveButton } from '$lib/components/app';
interface Props {
id: string;
@@ -58,7 +58,7 @@
<div
class="absolute top-1 right-1 flex items-center justify-center opacity-0 transition-opacity group-hover:opacity-100"
>
<ActionIconRemove {id} {onRemove} class="text-white" />
<RemoveButton {id} {onRemove} class="text-white" />
</div>
{/if}
</div>

View File

@@ -5,7 +5,6 @@
interface Props {
class?: string;
disabled?: boolean;
onInput?: () => void;
onKeydown?: (event: KeyboardEvent) => void;
onPaste?: (event: ClipboardEvent) => void;
placeholder?: string;
@@ -15,7 +14,6 @@
let {
class: className = '',
disabled = false,
onInput,
onKeydown,
onPaste,
placeholder = 'Ask anything...',
@@ -54,10 +52,7 @@
class:cursor-not-allowed={disabled}
{disabled}
onkeydown={onKeydown}
oninput={(event) => {
autoResizeTextarea(event.currentTarget);
onInput?.();
}}
oninput={(event) => autoResizeTextarea(event.currentTarget)}
onpaste={onPaste}
{placeholder}
></textarea>

View File

@@ -14,17 +14,12 @@
</script>
<header
class="pointer-events-none fixed top-0 right-0 left-0 z-50 flex items-center justify-end p-4 duration-200 ease-linear {sidebar.open
class="md:background-transparent pointer-events-none fixed top-0 right-0 left-0 z-50 flex items-center justify-end bg-background/40 p-4 backdrop-blur-xl duration-200 ease-linear {sidebar.open
? 'md:left-[var(--sidebar-width)]'
: ''}"
>
<div class="pointer-events-auto flex items-center space-x-2">
<Button
variant="ghost"
size="icon"
onclick={toggleSettings}
class="rounded-full backdrop-blur-lg"
>
<Button variant="ghost" size="sm" onclick={toggleSettings}>
<Settings class="h-4 w-4" />
</Button>
</div>

View File

@@ -11,7 +11,7 @@
let isCurrentConversationLoading = $derived(isLoading());
let isStreaming = $derived(isChatStreaming());
let hasProcessingData = $derived(processingState.processingState !== null);
let processingDetails = $derived(processingState.getTechnicalDetails());
let processingDetails = $derived(processingState.getProcessingDetails());
let showProcessingInfo = $derived(
isCurrentConversationLoading || isStreaming || config().keepStatsVisible || hasProcessingData
@@ -63,7 +63,7 @@
<div class="chat-processing-info-container pointer-events-none" class:visible={showProcessingInfo}>
<div class="chat-processing-info-content">
{#each processingDetails as detail (detail)}
<span class="chat-processing-info-detail pointer-events-auto backdrop-blur-sm">{detail}</span>
<span class="chat-processing-info-detail pointer-events-auto">{detail}</span>
{/each}
</div>
</div>
@@ -73,7 +73,7 @@
position: sticky;
top: 0;
z-index: 10;
padding: 0 1rem 0.75rem;
padding: 1.5rem 1rem;
opacity: 0;
transform: translateY(50%);
transition:
@@ -100,6 +100,7 @@
color: var(--muted-foreground);
font-size: 0.75rem;
padding: 0.25rem 0.75rem;
background: var(--muted);
border-radius: 0.375rem;
font-family:
ui-monospace, SFMono-Regular, 'SF Mono', Consolas, 'Liberation Mono', Menlo, monospace;

View File

@@ -1,10 +1,11 @@
<script lang="ts">
import { Download, Upload, Trash2 } from '@lucide/svelte';
import { Button } from '$lib/components/ui/button';
import { DialogConversationSelection, DialogConfirmation } from '$lib/components/app';
import { DialogConversationSelection } from '$lib/components/app';
import { createMessageCountMap } from '$lib/utils';
import { conversationsStore, conversations } from '$lib/stores/conversations.svelte';
import { toast } from 'svelte-sonner';
import DialogConfirmation from '$lib/components/app/dialogs/DialogConfirmation.svelte';
let exportedConversations = $state<DatabaseConversation[]>([]);
let importedConversations = $state<DatabaseConversation[]>([]);

View File

@@ -9,7 +9,7 @@
import Input from '$lib/components/ui/input/input.svelte';
import { conversationsStore, conversations } from '$lib/stores/conversations.svelte';
import { chatStore } from '$lib/stores/chat.svelte';
import { getPreviewText } from '$lib/utils';
import { getPreviewText } from '$lib/utils/text';
import ChatSidebarActions from './ChatSidebarActions.svelte';
const sidebar = Sidebar.useSidebar();

View File

@@ -1,6 +1,6 @@
<script lang="ts">
import { Trash2, Pencil, MoreHorizontal, Download, Loader2, Square } from '@lucide/svelte';
import { DropdownMenuActions } from '$lib/components/app';
import { ActionDropdown } from '$lib/components/app';
import * as Tooltip from '$lib/components/ui/tooltip';
import { getAllLoadingChats } from '$lib/stores/chat.svelte';
import { conversationsStore } from '$lib/stores/conversations.svelte';
@@ -128,7 +128,7 @@
{#if renderActionsDropdown}
<div class="actions flex items-center">
<DropdownMenuActions
<ActionDropdown
triggerIcon={MoreHorizontal}
triggerTooltip="More actions"
bind:open={dropdownOpen}

View File

@@ -616,7 +616,7 @@
code={incompleteCodeBlock.code}
language={incompleteCodeBlock.language || 'text'}
disabled={true}
onPreview={(code, lang) => {
onPreview={(code: string, lang: string) => {
previewCode = code;
previewLanguage = lang;
previewDialogOpen = true;

View File

@@ -18,13 +18,9 @@ import { ServerRole } from '$lib/enums';
* - **Default Params**: Server-wide generation defaults
*/
class ServerStore {
/**
*
*
* State
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// State
// ─────────────────────────────────────────────────────────────────────────────
props = $state<ApiLlamaCppServerProps | null>(null);
loading = $state(false);
@@ -32,22 +28,16 @@ class ServerStore {
role = $state<ServerRole | null>(null);
private fetchPromise: Promise<void> | null = null;
/**
*
*
* Getters
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Getters
// ─────────────────────────────────────────────────────────────────────────────
get defaultParams(): ApiLlamaCppServerProps['default_generation_settings']['params'] | null {
return this.props?.default_generation_settings?.params || null;
}
get contextSize(): number | null {
const nCtx = this.props?.default_generation_settings?.n_ctx;
return typeof nCtx === 'number' ? nCtx : null;
return this.props?.default_generation_settings?.n_ctx ?? null;
}
get webuiSettings(): Record<string, string | number | boolean> | undefined {
@@ -62,13 +52,9 @@ class ServerStore {
return this.role === ServerRole.MODEL;
}
/**
*
*
* Data Handling
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Data Handling
// ─────────────────────────────────────────────────────────────────────────────
async fetch(): Promise<void> {
if (this.fetchPromise) return this.fetchPromise;
@@ -129,13 +115,9 @@ class ServerStore {
this.fetchPromise = null;
}
/**
*
*
* Utilities
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Utilities
// ─────────────────────────────────────────────────────────────────────────────
private detectRole(props: ApiLlamaCppServerProps): void {
const newRole = props?.role === ServerRole.ROUTER ? ServerRole.ROUTER : ServerRole.MODEL;

View File

@@ -47,26 +47,18 @@ import {
} from '$lib/constants/localstorage-keys';
class SettingsStore {
/**
*
*
* State
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// State
// ─────────────────────────────────────────────────────────────────────────────
config = $state<SettingsConfigType>({ ...SETTING_CONFIG_DEFAULT });
theme = $state<string>('auto');
isInitialized = $state(false);
userOverrides = $state<Set<string>>(new Set());
/**
*
*
* Utilities (private helpers)
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Utilities (private helpers)
// ─────────────────────────────────────────────────────────────────────────────
/**
* Helper method to get server defaults with null safety
@@ -84,13 +76,9 @@ class SettingsStore {
}
}
/**
*
*
* Lifecycle
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Lifecycle
// ─────────────────────────────────────────────────────────────────────────────
/**
* Initialize the settings store by loading from localStorage
@@ -142,13 +130,9 @@ class SettingsStore {
this.theme = localStorage.getItem('theme') || 'auto';
}
/**
*
*
* Config Updates
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Config Updates
// ─────────────────────────────────────────────────────────────────────────────
/**
* Update a specific configuration setting
@@ -250,13 +234,9 @@ class SettingsStore {
}
}
/**
*
*
* Reset
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Reset
// ─────────────────────────────────────────────────────────────────────────────
/**
* Reset configuration to defaults
@@ -305,13 +285,9 @@ class SettingsStore {
this.saveConfig();
}
/**
*
*
* Server Sync
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Server Sync
// ─────────────────────────────────────────────────────────────────────────────
/**
* Initialize settings with props defaults when server properties are first loaded
@@ -373,13 +349,9 @@ class SettingsStore {
this.saveConfig();
}
/**
*
*
* Utilities
*
*
*/
// ─────────────────────────────────────────────────────────────────────────────
// Utilities
// ─────────────────────────────────────────────────────────────────────────────
/**
* Get a specific configuration value

View File

@@ -44,7 +44,8 @@
<Story
name="Default"
args={{ class: 'max-w-[56rem] w-[calc(100vw-2rem)]' }}
play={async ({ canvas, userEvent }) => {
play={async (context) => {
const { canvas, userEvent } = context;
const textarea = await canvas.findByRole('textbox');
const submitButton = await canvas.findByRole('button', { name: 'Send' });
@@ -74,7 +75,8 @@
class: 'max-w-[56rem] w-[calc(100vw-2rem)]',
uploadedFiles: fileAttachments
}}
play={async ({ canvas }) => {
play={async (context) => {
const { canvas } = context;
const jpgAttachment = canvas.getByAltText('1.jpg');
const svgAttachment = canvas.getByAltText('hf-logo.svg');
const pdfFileExtension = canvas.getByText('PDF');

View File

@@ -17,7 +17,7 @@ endif()
target_link_libraries(${TARGET} PRIVATE Threads::Threads)
if (WIN32 AND NOT MSVC)
target_link_libraries(${TARGET} PUBLIC ws2_32)
target_link_libraries(${TARGET} PRIVATE ws2_32)
endif()
target_compile_features(${TARGET} PRIVATE cxx_std_17)