mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-19 14:13:22 +02:00
Compare commits
24 Commits
compilade/
...
b3636
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
78eb487bb0 | ||
|
|
a77feb5d71 | ||
|
|
2e59d61c1b | ||
|
|
75e1dbbaab | ||
|
|
ad76569f8e | ||
|
|
7d787ed96c | ||
|
|
06658ad7c3 | ||
|
|
fc18425b6a | ||
|
|
879275ac98 | ||
|
|
7a3df798fc | ||
|
|
e5edb210cd | ||
|
|
0c41e03ceb | ||
|
|
f12ceaca0c | ||
|
|
436787f170 | ||
|
|
93bc3839f9 | ||
|
|
f91fc5639b | ||
|
|
e11bd856d5 | ||
|
|
8f824ffe8e | ||
|
|
3ba780e2a8 | ||
|
|
a07c32ea54 | ||
|
|
11b84eb457 | ||
|
|
1731d4238f | ||
|
|
a1631e53f6 | ||
|
|
fc54ef0d1c |
@@ -24,6 +24,8 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
ENV GGML_CUDA=1
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
RUN make -j$(nproc) llama-server
|
||||
|
||||
|
||||
@@ -26,6 +26,8 @@ RUN apt-get update && \
|
||||
COPY --from=build /app/build/bin/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -39,6 +39,8 @@ ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
ENV GGML_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
# Enable cURL
|
||||
ENV LLAMA_CURL=1
|
||||
|
||||
@@ -23,6 +23,8 @@ RUN cp /app/build/bin/llama-server /llama-server && \
|
||||
rm -rf /app
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
@@ -21,6 +21,8 @@ RUN apt-get update && \
|
||||
COPY --from=build /app/llama-server /llama-server
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
# Must be set to 0.0.0.0 so it can listen to requests from host machine
|
||||
ENV LLAMA_ARG_HOST=0.0.0.0
|
||||
|
||||
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]
|
||||
|
||||
|
||||
2
.ecrc
2
.ecrc
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"Exclude": ["^\\.gitmodules$"],
|
||||
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
|
||||
@@ -28,6 +28,7 @@
|
||||
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
|
||||
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
|
||||
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
|
||||
|
||||
{
|
||||
"name": "arm64-windows-msvc", "hidden": true,
|
||||
@@ -60,6 +61,8 @@
|
||||
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
|
||||
|
||||
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
|
||||
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
|
||||
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
|
||||
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
|
||||
]
|
||||
}
|
||||
|
||||
29
ci/run.sh
29
ci/run.sh
@@ -13,6 +13,9 @@
|
||||
# # with SYCL support
|
||||
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with VULKAN support
|
||||
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
@@ -40,7 +43,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_CUDA} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
@@ -52,6 +55,10 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
|
||||
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
|
||||
fi
|
||||
|
||||
if [ ! -z ${GG_BUILD_VULKAN} ]; then
|
||||
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
|
||||
fi
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
@@ -107,7 +114,7 @@ function gg_run_ctest_debug {
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
@@ -138,7 +145,7 @@ function gg_run_ctest_release {
|
||||
gg_check_build_requirements
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
@@ -266,7 +273,6 @@ function gg_sum_ctest_with_model_release {
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_open_llama_7b_v2 {
|
||||
cd ${SRC}
|
||||
@@ -290,8 +296,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -425,7 +431,7 @@ function gg_run_pythia_1_4b {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -535,7 +541,6 @@ function gg_sum_pythia_1_4b {
|
||||
}
|
||||
|
||||
# pythia_2_8b
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_pythia_2_8b {
|
||||
cd ${SRC}
|
||||
@@ -556,8 +561,8 @@ function gg_run_pythia_2_8b {
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -692,7 +697,7 @@ function gg_run_embd_bge_small {
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
|
||||
|
||||
@@ -761,7 +766,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
fi
|
||||
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
|
||||
test $ret -eq 0 && gg_run pythia_1_4b
|
||||
else
|
||||
test $ret -eq 0 && gg_run pythia_2_8b
|
||||
|
||||
@@ -77,6 +77,41 @@
|
||||
|
||||
using json = nlohmann::ordered_json;
|
||||
|
||||
//
|
||||
// Environment variable utils
|
||||
//
|
||||
|
||||
template<typename T>
|
||||
static typename std::enable_if<std::is_same<T, std::string>::value, void>::type
|
||||
get_env(std::string name, T & target) {
|
||||
char * value = std::getenv(name.c_str());
|
||||
target = value ? std::string(value) : target;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static typename std::enable_if<!std::is_same<T, bool>::value && std::is_integral<T>::value, void>::type
|
||||
get_env(std::string name, T & target) {
|
||||
char * value = std::getenv(name.c_str());
|
||||
target = value ? std::stoi(value) : target;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static typename std::enable_if<std::is_floating_point<T>::value, void>::type
|
||||
get_env(std::string name, T & target) {
|
||||
char * value = std::getenv(name.c_str());
|
||||
target = value ? std::stof(value) : target;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static typename std::enable_if<std::is_same<T, bool>::value, void>::type
|
||||
get_env(std::string name, T & target) {
|
||||
char * value = std::getenv(name.c_str());
|
||||
if (value) {
|
||||
std::string val(value);
|
||||
target = val == "1" || val == "true";
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// CPU utils
|
||||
//
|
||||
@@ -220,12 +255,6 @@ int32_t cpu_get_num_math() {
|
||||
// CLI argument parsing
|
||||
//
|
||||
|
||||
void gpt_params_handle_hf_token(gpt_params & params) {
|
||||
if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
|
||||
params.hf_token = std::getenv("HF_TOKEN");
|
||||
}
|
||||
}
|
||||
|
||||
void gpt_params_handle_model_default(gpt_params & params) {
|
||||
if (!params.hf_repo.empty()) {
|
||||
// short-hand to avoid specifying --hf-file -> default it to --model
|
||||
@@ -273,7 +302,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
|
||||
gpt_params_handle_model_default(params);
|
||||
|
||||
gpt_params_handle_hf_token(params);
|
||||
if (params.hf_token.empty()) {
|
||||
get_env("HF_TOKEN", params.hf_token);
|
||||
}
|
||||
|
||||
if (params.escape) {
|
||||
string_process_escapes(params.prompt);
|
||||
@@ -293,6 +324,32 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_params_parse_from_env(gpt_params & params) {
|
||||
// we only care about server-related params for now
|
||||
get_env("LLAMA_ARG_MODEL", params.model);
|
||||
get_env("LLAMA_ARG_MODEL_URL", params.model_url);
|
||||
get_env("LLAMA_ARG_MODEL_ALIAS", params.model_alias);
|
||||
get_env("LLAMA_ARG_HF_REPO", params.hf_repo);
|
||||
get_env("LLAMA_ARG_HF_FILE", params.hf_file);
|
||||
get_env("LLAMA_ARG_THREADS", params.n_threads);
|
||||
get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
|
||||
get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
|
||||
get_env("LLAMA_ARG_BATCH", params.n_batch);
|
||||
get_env("LLAMA_ARG_UBATCH", params.n_ubatch);
|
||||
get_env("LLAMA_ARG_N_GPU_LAYERS", params.n_gpu_layers);
|
||||
get_env("LLAMA_ARG_THREADS_HTTP", params.n_threads_http);
|
||||
get_env("LLAMA_ARG_CHAT_TEMPLATE", params.chat_template);
|
||||
get_env("LLAMA_ARG_N_PREDICT", params.n_predict);
|
||||
get_env("LLAMA_ARG_ENDPOINT_METRICS", params.endpoint_metrics);
|
||||
get_env("LLAMA_ARG_ENDPOINT_SLOTS", params.endpoint_slots);
|
||||
get_env("LLAMA_ARG_EMBEDDINGS", params.embedding);
|
||||
get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn);
|
||||
get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold);
|
||||
get_env("LLAMA_ARG_CONT_BATCHING", params.cont_batching);
|
||||
get_env("LLAMA_ARG_HOST", params.hostname);
|
||||
get_env("LLAMA_ARG_PORT", params.port);
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
const auto params_org = params; // the example can modify the default params
|
||||
|
||||
@@ -851,7 +908,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
|
||||
if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--n-gpu-layers-draft") {
|
||||
CHECK_ARG
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
@@ -1811,13 +1868,19 @@ std::string string_get_sortable_timestamp() {
|
||||
|
||||
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return; // Avoid infinite loop if 'search' is an empty string
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(search, pos)) != std::string::npos) {
|
||||
s.replace(pos, search.length(), replace);
|
||||
pos += replace.length();
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
void string_process_escapes(std::string & input) {
|
||||
|
||||
@@ -267,7 +267,7 @@ struct gpt_params {
|
||||
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
|
||||
};
|
||||
|
||||
void gpt_params_handle_hf_token(gpt_params & params);
|
||||
void gpt_params_parse_from_env(gpt_params & params);
|
||||
void gpt_params_handle_model_default(gpt_params & params);
|
||||
|
||||
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||||
|
||||
11662
common/stb_image.h
11662
common/stb_image.h
File diff suppressed because it is too large
Load Diff
@@ -63,6 +63,7 @@ class Model:
|
||||
model_name: str | None
|
||||
metadata_override: Path | None
|
||||
dir_model_card: Path
|
||||
is_lora: bool
|
||||
|
||||
# subclasses should define this!
|
||||
model_arch: gguf.MODEL_ARCH
|
||||
@@ -70,7 +71,7 @@ class Model:
|
||||
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@@ -92,6 +93,7 @@ class Model:
|
||||
self.metadata_override = metadata_override
|
||||
self.model_name = model_name
|
||||
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
|
||||
self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
|
||||
|
||||
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
|
||||
if self.ftype == gguf.LlamaFileType.GUESSED:
|
||||
@@ -1570,7 +1572,7 @@ class LlamaModel(Model):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -1593,7 +1595,8 @@ class LlamaModel(Model):
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
|
||||
super().prepare_tensors()
|
||||
|
||||
@@ -2140,8 +2143,9 @@ class Phi3MiniModel(Model):
|
||||
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||
|
||||
|
||||
@Model.register("PlamoForCausalLM")
|
||||
@@ -3816,7 +3820,7 @@ class ExaoneModel(Model):
|
||||
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
|
||||
if rope_scaling.get("rope_type", '').lower() == "llama3":
|
||||
base = self.hparams.get("rope_theta", 10000.0)
|
||||
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
||||
|
||||
factor = rope_scaling.get("factor", 8.0)
|
||||
@@ -3839,7 +3843,8 @@ class ExaoneModel(Model):
|
||||
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
||||
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
|
||||
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
if not self.is_lora:
|
||||
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
|
||||
|
||||
super().prepare_tensors()
|
||||
|
||||
|
||||
@@ -386,6 +386,7 @@ if __name__ == '__main__':
|
||||
dry_run=args.dry_run,
|
||||
dir_lora_model=dir_lora,
|
||||
lora_alpha=alpha,
|
||||
is_lora=True,
|
||||
)
|
||||
|
||||
logger.info("Exporting model...")
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
|
||||
|
||||
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
|
||||
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
|
||||
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
|
||||
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
|
||||
|
||||
@@ -28,10 +28,6 @@
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
|
||||
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
|
||||
|
||||
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
The SYCL backend would be broken by some PRs due to no online CI.
|
||||
@@ -45,6 +41,10 @@ The following release is verified with good quality:
|
||||
|
||||
## News
|
||||
|
||||
|
||||
- 2024.8
|
||||
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
|
||||
|
||||
- 2024.5
|
||||
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
|
||||
- Arch Linux is verified successfully.
|
||||
@@ -196,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
|
||||
|
||||
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
|
||||
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
|
||||
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
|
||||
|
||||
- **Adding support to Nvidia GPUs**
|
||||
|
||||
@@ -255,8 +255,6 @@ or
|
||||
# Export relevant ENV variables
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
||||
# Build LLAMA with MKL BLAS acceleration for intel GPU
|
||||
|
||||
# Option 1: Use FP32 (recommended for better performance in most cases)
|
||||
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
|
||||
@@ -216,13 +216,19 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
|
||||
|
||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return; // Avoid infinite loop if 'search' is an empty string
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(search, pos)) != std::string::npos) {
|
||||
s.replace(pos, search.length(), replace);
|
||||
pos += replace.length();
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
|
||||
@@ -104,7 +104,7 @@ static void usage(const char * executable) {
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --keep-split: will generate quatized model in the same shards as input");
|
||||
printf(" --keep-split: will generate quantized model in the same shards as input\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
|
||||
@@ -247,6 +247,51 @@ logging:
|
||||
--log-append Don't truncate the old log file.
|
||||
```
|
||||
|
||||
Available environment variables (if specified, these variables will override parameters specified in arguments):
|
||||
|
||||
- `LLAMA_CACHE`: cache directory, used by `--hf-repo`
|
||||
- `HF_TOKEN`: Hugging Face access token, used when accessing a gated model with `--hf-repo`
|
||||
- `LLAMA_ARG_MODEL`: equivalent to `-m`
|
||||
- `LLAMA_ARG_MODEL_URL`: equivalent to `-mu`
|
||||
- `LLAMA_ARG_MODEL_ALIAS`: equivalent to `-a`
|
||||
- `LLAMA_ARG_HF_REPO`: equivalent to `--hf-repo`
|
||||
- `LLAMA_ARG_HF_FILE`: equivalent to `--hf-file`
|
||||
- `LLAMA_ARG_THREADS`: equivalent to `-t`
|
||||
- `LLAMA_ARG_CTX_SIZE`: equivalent to `-c`
|
||||
- `LLAMA_ARG_N_PARALLEL`: equivalent to `-np`
|
||||
- `LLAMA_ARG_BATCH`: equivalent to `-b`
|
||||
- `LLAMA_ARG_UBATCH`: equivalent to `-ub`
|
||||
- `LLAMA_ARG_N_GPU_LAYERS`: equivalent to `-ngl`
|
||||
- `LLAMA_ARG_THREADS_HTTP`: equivalent to `--threads-http`
|
||||
- `LLAMA_ARG_CHAT_TEMPLATE`: equivalent to `--chat-template`
|
||||
- `LLAMA_ARG_N_PREDICT`: equivalent to `-n`
|
||||
- `LLAMA_ARG_ENDPOINT_METRICS`: if set to `1`, it will enable metrics endpoint (equivalent to `--metrics`)
|
||||
- `LLAMA_ARG_ENDPOINT_SLOTS`: if set to `0`, it will **disable** slots endpoint (equivalent to `--no-slots`). This feature is enabled by default.
|
||||
- `LLAMA_ARG_EMBEDDINGS`: if set to `1`, it will enable embeddings endpoint (equivalent to `--embeddings`)
|
||||
- `LLAMA_ARG_FLASH_ATTN`: if set to `1`, it will enable flash attention (equivalent to `-fa`)
|
||||
- `LLAMA_ARG_CONT_BATCHING`: if set to `0`, it will **disable** continuous batching (equivalent to `--no-cont-batching`). This feature is enabled by default.
|
||||
- `LLAMA_ARG_DEFRAG_THOLD`: equivalent to `-dt`
|
||||
- `LLAMA_ARG_HOST`: equivalent to `--host`
|
||||
- `LLAMA_ARG_PORT`: equivalent to `--port`
|
||||
|
||||
Example usage of docker compose with environment variables:
|
||||
|
||||
```yml
|
||||
services:
|
||||
llamacpp-server:
|
||||
image: ghcr.io/ggerganov/llama.cpp:server
|
||||
ports:
|
||||
- 8080:8080
|
||||
volumes:
|
||||
- ./models:/models
|
||||
environment:
|
||||
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
|
||||
LLAMA_ARG_MODEL: /models/my_model.gguf
|
||||
LLAMA_ARG_CTX_SIZE: 4096
|
||||
LLAMA_ARG_N_PARALLEL: 2
|
||||
LLAMA_ARG_ENDPOINT_METRICS: 1 # to disable, either remove or set to 0
|
||||
LLAMA_ARG_PORT: 8080
|
||||
```
|
||||
|
||||
## Build
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -2507,6 +2507,9 @@ int main(int argc, char ** argv) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// parse arguments from environment variables
|
||||
gpt_params_parse_from_env(params);
|
||||
|
||||
// TODO: not great to use extern vars
|
||||
server_log_json = params.log_json;
|
||||
server_verbose = params.verbosity > 0;
|
||||
|
||||
@@ -1760,7 +1760,8 @@ extern "C" {
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * mask,
|
||||
float scale,
|
||||
float max_bias);
|
||||
float max_bias,
|
||||
float logit_softcap);
|
||||
|
||||
GGML_API void ggml_flash_attn_ext_set_prec(
|
||||
struct ggml_tensor * a,
|
||||
|
||||
@@ -549,6 +549,13 @@ if (GGML_SYCL)
|
||||
file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp")
|
||||
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
|
||||
|
||||
find_package(DNNL)
|
||||
message("-- DNNL found:" ${DNNL_FOUND})
|
||||
if (GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_DNNL=0)
|
||||
endif()
|
||||
if (WIN32)
|
||||
find_package(IntelSYCL REQUIRED)
|
||||
find_package(MKL REQUIRED)
|
||||
@@ -561,6 +568,9 @@ if (GGML_SYCL)
|
||||
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
||||
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
|
||||
list(APPEND GGML_EXTRA_LIBS DNNL::dnnl)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_RPC)
|
||||
|
||||
@@ -337,33 +337,18 @@ static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict ds
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_4x4(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
|
||||
}
|
||||
else {
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_4x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
|
||||
}
|
||||
else {
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
|
||||
}
|
||||
|
||||
size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
|
||||
}
|
||||
else {
|
||||
assert(false);
|
||||
return 0;
|
||||
}
|
||||
UNUSED(quant_weights);
|
||||
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
|
||||
}
|
||||
|
||||
void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {
|
||||
|
||||
@@ -22,6 +22,7 @@ typedef void (* fattn_kernel_t)(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -657,11 +658,17 @@ void launch_fattn(
|
||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||
const int shmem = 0;
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float logit_softcap = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
scale /= logit_softcap;
|
||||
}
|
||||
|
||||
const uint32_t n_head = Q->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
@@ -675,7 +682,7 @@ void launch_fattn(
|
||||
V_data,
|
||||
mask ? ((const char *) mask->data) : nullptr,
|
||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||
scale, max_bias, m0, m1, n_head_log2,
|
||||
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
|
||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
@@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -44,6 +45,12 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
@@ -154,7 +161,13 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
half sum;
|
||||
if (use_logit_softcap) {
|
||||
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
sum = logit_softcap * tanhf(tmp.x + tmp.y);
|
||||
} else {
|
||||
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||
@@ -270,20 +283,20 @@ static __global__ void flash_attn_tile_ext_f16(
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
} break;
|
||||
default: {
|
||||
@@ -296,24 +309,45 @@ void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_ten
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
@@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -43,6 +44,12 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||
@@ -151,6 +158,10 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
}
|
||||
|
||||
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||
@@ -267,20 +278,20 @@ static __global__ void flash_attn_tile_ext_f32(
|
||||
}
|
||||
}
|
||||
|
||||
template <int cols_per_block, int parallel_blocks>
|
||||
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
|
||||
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
switch (Q->ne[0]) {
|
||||
case 64: {
|
||||
constexpr int D = 64;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
} break;
|
||||
case 128: {
|
||||
constexpr int D = 128;
|
||||
constexpr int nwarps = 8;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
} break;
|
||||
default: {
|
||||
@@ -290,23 +301,45 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
|
||||
}
|
||||
|
||||
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] <= 16) {
|
||||
constexpr int cols_per_block = 16;
|
||||
constexpr int parallel_blocks = 4;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 32) {
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 4;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 32;
|
||||
constexpr int parallel_blocks = 1;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
@@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -41,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_AVAILABLE
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
|
||||
@@ -190,6 +197,11 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||
|
||||
if (ncols == 1) {
|
||||
@@ -286,10 +298,10 @@ static __global__ void flash_attn_vec_ext_f16(
|
||||
#endif // FP16_AVAILABLE
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
@@ -297,48 +309,81 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * KQV = dst;
|
||||
ggml_tensor * Q = dst->src[0];
|
||||
ggml_tensor * K = dst->src[1];
|
||||
ggml_tensor * V = dst->src[2];
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||
|
||||
GGML_ASSERT(K->type == type_K);
|
||||
GGML_ASSERT(V->type == type_V);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
#include "common.cuh"
|
||||
#include "fattn-common.cuh"
|
||||
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
|
||||
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(D, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
@@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -40,6 +41,12 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
const int ne1,
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
|
||||
@@ -180,6 +187,11 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
for (int j = 0; j < ncols; ++j) {
|
||||
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
|
||||
sum = warp_reduce_sum(sum);
|
||||
|
||||
if (use_logit_softcap) {
|
||||
sum = logit_softcap*tanhf(sum);
|
||||
}
|
||||
|
||||
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||
|
||||
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
|
||||
@@ -267,10 +279,10 @@ static __global__ void flash_attn_vec_ext_f32(
|
||||
}
|
||||
}
|
||||
|
||||
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
|
||||
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
|
||||
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
constexpr int nwarps = D/WARP_SIZE;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
|
||||
constexpr bool need_f16_K = D != 128;
|
||||
constexpr bool need_f16_V = D != 128 && D != 64;
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
|
||||
@@ -278,44 +290,78 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
|
||||
|
||||
template <int D, ggml_type type_K, ggml_type type_V>
|
||||
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_tensor * Q = dst->src[0];
|
||||
ggml_tensor * K = dst->src[1];
|
||||
ggml_tensor * V = dst->src[2];
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * K = dst->src[1];
|
||||
const ggml_tensor * V = dst->src[2];
|
||||
|
||||
GGML_ASSERT(K->type == type_K);
|
||||
GGML_ASSERT(V->type == type_V);
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (Q->ne[1] == 1) {
|
||||
constexpr int cols_per_block = 1;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] == 2) {
|
||||
constexpr int cols_per_block = 2;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 4) {
|
||||
constexpr int cols_per_block = 4;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (Q->ne[1] <= 8) {
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 4;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
constexpr int cols_per_block = 8;
|
||||
constexpr int parallel_blocks = 1;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
|
||||
}
|
||||
}
|
||||
|
||||
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
#endif // FP16_MMA_AVAILABLE
|
||||
|
||||
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
|
||||
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
|
||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||
@@ -22,6 +22,7 @@ static __global__ void flash_attn_ext_f16(
|
||||
const float m0,
|
||||
const float m1,
|
||||
const uint32_t n_head_log2,
|
||||
const float logit_softcap,
|
||||
const int ne00,
|
||||
const int ne01,
|
||||
const int ne02,
|
||||
@@ -46,6 +47,12 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int ne2,
|
||||
const int ne3) {
|
||||
#ifdef FP16_MMA_AVAILABLE
|
||||
// Skip unused kernel variants for faster compilation:
|
||||
if (use_logit_softcap && !(D == 128 || D == 256)) {
|
||||
NO_DEVICE_CODE;
|
||||
return;
|
||||
}
|
||||
|
||||
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||
|
||||
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
|
||||
@@ -85,6 +92,8 @@ static __global__ void flash_attn_ext_f16(
|
||||
const half slopeh = __float2half(slopef);
|
||||
const half2 slope2 = make_half2(slopef, slopef);
|
||||
|
||||
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
|
||||
|
||||
frag_b Q_b[D/16][ncols/frag_n];
|
||||
|
||||
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
|
||||
@@ -194,6 +203,10 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
|
||||
}
|
||||
}
|
||||
|
||||
float KQ_max_new = KQ_max_f[j0/nwarps];
|
||||
@@ -237,6 +250,15 @@ static __global__ void flash_attn_ext_f16(
|
||||
const int k = k0 + threadIdx.x;
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
|
||||
|
||||
if (use_logit_softcap) {
|
||||
// There is no dedicated tangens hyperbolicus function for half2.
|
||||
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
|
||||
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
|
||||
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
|
||||
|
||||
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
|
||||
}
|
||||
}
|
||||
|
||||
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
|
||||
@@ -427,7 +449,8 @@ static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||
|
||||
template <int D, int cols_per_block, typename KQ_acc_t>
|
||||
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
constexpr int nwarps = 4;
|
||||
|
||||
@@ -435,20 +458,50 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
|
||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||
|
||||
float logit_softcap;
|
||||
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
|
||||
|
||||
if (4*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 4;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
if (2*blocks_num_pb1 < 2*nsm) {
|
||||
constexpr int parallel_blocks = 2;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
return;
|
||||
}
|
||||
constexpr int parallel_blocks = 1;
|
||||
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||
fattn_kernel_t fattn_kernel;
|
||||
if (logit_softcap == 0.0f) {
|
||||
constexpr bool use_logit_softcap = false;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
} else {
|
||||
constexpr bool use_logit_softcap = true;
|
||||
fattn_kernel = flash_attn_ext_f16<
|
||||
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
|
||||
}
|
||||
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
|
||||
}
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
|
||||
const ggml_tensor * KQV = dst;
|
||||
const ggml_tensor * Q = dst->src[0];
|
||||
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
|
||||
if (precision != GGML_PREC_DEFAULT) {
|
||||
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
|
||||
@@ -301,7 +301,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
||||
|
||||
ggml_cuda_set_device(ctx.device);
|
||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||
const int32_t precision = KQV->op_params[2];
|
||||
const int32_t precision = KQV->op_params[3];
|
||||
|
||||
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||
if (cc >= CC_OFFSET_AMD) {
|
||||
|
||||
@@ -82,6 +82,8 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
|
||||
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
|
||||
@@ -542,6 +544,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@@ -803,6 +807,9 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
|
||||
return false;
|
||||
}
|
||||
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
|
||||
case GGML_OP_SSM_CONV:
|
||||
case GGML_OP_SSM_SCAN:
|
||||
return true;
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
return ctx->support_simdgroup_reduction &&
|
||||
@@ -1538,6 +1545,121 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SSM_CONV:
|
||||
{
|
||||
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
||||
|
||||
GGML_ASSERT(ggml_is_contiguous(src0));
|
||||
GGML_ASSERT(ggml_is_contiguous(src1));
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
||||
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
|
||||
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
|
||||
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
|
||||
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
|
||||
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15];
|
||||
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16];
|
||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17];
|
||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SSM_SCAN:
|
||||
{
|
||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||
struct ggml_tensor * src4 = gf->nodes[i]->src[4];
|
||||
struct ggml_tensor * src5 = gf->nodes[i]->src[5];
|
||||
|
||||
GGML_ASSERT(src3);
|
||||
GGML_ASSERT(src4);
|
||||
GGML_ASSERT(src5);
|
||||
|
||||
size_t offs_src3 = 0;
|
||||
size_t offs_src4 = 0;
|
||||
size_t offs_src5 = 0;
|
||||
|
||||
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
|
||||
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
|
||||
id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
|
||||
|
||||
const int64_t ne30 = src3->ne[0]; GGML_UNUSED(ne30);
|
||||
const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
|
||||
|
||||
const uint64_t nb30 = src3->nb[0];
|
||||
const uint64_t nb31 = src3->nb[1];
|
||||
|
||||
const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
|
||||
const int64_t ne41 = src4->ne[1]; GGML_UNUSED(ne41);
|
||||
const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
|
||||
|
||||
const uint64_t nb40 = src4->nb[0];
|
||||
const uint64_t nb41 = src4->nb[1];
|
||||
const uint64_t nb42 = src4->nb[2];
|
||||
|
||||
const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
|
||||
const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
|
||||
const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
|
||||
|
||||
const uint64_t nb50 = src5->nb[0];
|
||||
const uint64_t nb51 = src5->nb[1];
|
||||
const uint64_t nb52 = src5->nb[2];
|
||||
|
||||
const int64_t d_state = ne00;
|
||||
const int64_t d_inner = ne01;
|
||||
const int64_t n_seq_tokens = ne11;
|
||||
const int64_t n_seqs = ne02;
|
||||
|
||||
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
|
||||
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
|
||||
|
||||
[encoder setBytes:&d_state length:sizeof(d_state) atIndex:7];
|
||||
[encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8];
|
||||
[encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9];
|
||||
[encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10];
|
||||
|
||||
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11];
|
||||
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12];
|
||||
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13];
|
||||
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
||||
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
||||
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
||||
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
|
||||
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18];
|
||||
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19];
|
||||
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20];
|
||||
[encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21];
|
||||
[encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22];
|
||||
[encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23];
|
||||
[encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24];
|
||||
[encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25];
|
||||
[encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26];
|
||||
[encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27];
|
||||
[encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
GGML_ASSERT(ne00 == ne10);
|
||||
@@ -2624,9 +2746,14 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
|
||||
float scale;
|
||||
float max_bias;
|
||||
float logit_softcap;
|
||||
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
|
||||
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
||||
memcpy(&logit_softcap, ((int32_t *) dst->op_params) + 2, sizeof(logit_softcap));
|
||||
|
||||
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
|
||||
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
||||
if (logit_softcap != 0.0f) {
|
||||
scale /= logit_softcap;
|
||||
}
|
||||
|
||||
const uint32_t n_head = src0->ne[2];
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||
@@ -2677,30 +2804,31 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||
} else {
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
||||
}
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
|
||||
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
|
||||
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
|
||||
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
||||
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
|
||||
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
|
||||
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
|
||||
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
|
||||
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
|
||||
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
|
||||
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
|
||||
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
|
||||
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
|
||||
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
|
||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
|
||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
|
||||
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
|
||||
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
|
||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
|
||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
|
||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
|
||||
[encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:28];
|
||||
|
||||
if (!use_vec_kernel) {
|
||||
// half8x8 kernel
|
||||
|
||||
@@ -667,6 +667,127 @@ kernel void kernel_diag_mask_inf_8(
|
||||
}
|
||||
}
|
||||
|
||||
// ref: ggml.c:ggml_compute_forward_ssm_conv_f32
|
||||
// TODO: optimize
|
||||
kernel void kernel_ssm_conv_f32(
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant int64_t & ne2,
|
||||
constant uint64_t & nb0,
|
||||
constant uint64_t & nb1,
|
||||
constant uint64_t & nb2,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t ir = tgpig.x;
|
||||
const int64_t i2 = tgpig.y;
|
||||
const int64_t i3 = tgpig.z;
|
||||
|
||||
const int64_t nc = ne10;
|
||||
const int64_t ncs = ne00;
|
||||
const int64_t nr = ne01;
|
||||
const int64_t n_t = ne1;
|
||||
const int64_t n_s = ne2;
|
||||
|
||||
device const float * s = (device const float *) ((device const char *) src0 + ir*nb01 + i2*nb00 + i3*nb02);
|
||||
device const float * c = (device const float *) ((device const char *) src1 + ir*nb11);
|
||||
device float * x = (device float *) ((device char *) dst + ir*nb0 + i2*nb1 + i3*nb2);
|
||||
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
||||
sumf += s[i0] * c[i0];
|
||||
}
|
||||
|
||||
x[0] = sumf;
|
||||
}
|
||||
|
||||
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32
|
||||
// TODO: optimize
|
||||
kernel void kernel_ssm_scan_f32(
|
||||
device const void * src0,
|
||||
device const void * src1,
|
||||
device const void * src2,
|
||||
device const void * src3,
|
||||
device const void * src4,
|
||||
device const void * src5,
|
||||
device float * dst,
|
||||
constant int64_t & d_state,
|
||||
constant int64_t & d_inner,
|
||||
constant int64_t & n_seq_tokens,
|
||||
constant int64_t & n_seqs,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant uint64_t & nb13,
|
||||
constant uint64_t & nb20,
|
||||
constant uint64_t & nb21,
|
||||
constant uint64_t & nb22,
|
||||
constant uint64_t & nb30,
|
||||
constant uint64_t & nb31,
|
||||
constant uint64_t & nb40,
|
||||
constant uint64_t & nb41,
|
||||
constant uint64_t & nb42,
|
||||
constant uint64_t & nb50,
|
||||
constant uint64_t & nb51,
|
||||
constant uint64_t & nb52,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t ir = tgpig.x;
|
||||
const int64_t i3 = tgpig.y;
|
||||
|
||||
const int64_t nc = d_state;
|
||||
const int64_t nr = d_inner;
|
||||
const int64_t n_t = n_seq_tokens;
|
||||
const int64_t n_s = n_seqs;
|
||||
|
||||
for (int64_t i2 = 0; i2 < n_t; ++i2) {
|
||||
device const float * s0 = (device const float *) ((device const char *) src0 + ir*nb01 + i3*nb02);
|
||||
device const float * x = (device const float *) ((device const char *) src1 + ir*nb10 + i2*nb11 + i3*nb12);
|
||||
device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*nb21 + i3*nb22);
|
||||
device const float * A = (device const float *) ((device const char *) src3 + ir*nb31);
|
||||
device const float * B = (device const float *) ((device const char *) src4 + i2*nb41 + i3*nb42);
|
||||
device const float * C = (device const float *) ((device const char *) src5 + i2*nb51 + i3*nb52);
|
||||
device float * y = (device float *) ((device char *) dst + ir*nb10 + i2*nb11 + i3*nb12); // TODO: do not use src1 strides
|
||||
device float * s = (device float *) ((device char *) dst + ir*nb01 + i3*nb02 + nb13);
|
||||
|
||||
if (i2 > 0) {
|
||||
s0 = s;
|
||||
}
|
||||
|
||||
// i1 == 0
|
||||
float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
|
||||
float x_dt = x[0] * dt_soft_plus;
|
||||
float sumf = 0.0f;
|
||||
|
||||
for (int64_t i0 = 0; i0 < nc; ++i0) {
|
||||
int64_t i = i0;
|
||||
float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt);
|
||||
sumf += state * C[i0];
|
||||
s[i] = state;
|
||||
}
|
||||
|
||||
y[0] = sumf;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_norm(
|
||||
device const void * src0,
|
||||
device float * dst,
|
||||
@@ -1976,6 +2097,7 @@ typedef void (flash_attn_ext_f16_t)(
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
constant float & logit_softcap,
|
||||
threadgroup half * shared,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2014,6 +2136,7 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
constant float & logit_softcap,
|
||||
threadgroup half * shared [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2138,19 +2261,6 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
}
|
||||
|
||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||
|
||||
const short tx = tiisg%4;
|
||||
const short ty = tiisg/4;
|
||||
|
||||
if (mask != q) {
|
||||
// mqk = mqk*scale + mask*slope
|
||||
ss[8*cc + ty*TF + 2*tx + 0] = scale*ss[8*cc + ty*TF + 2*tx + 0] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0];
|
||||
ss[8*cc + ty*TF + 2*tx + 1] = scale*ss[8*cc + ty*TF + 2*tx + 1] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1];
|
||||
} else {
|
||||
// mqk = mqk*scale
|
||||
ss[8*cc + ty*TF + 2*tx + 0] *= scale;
|
||||
ss[8*cc + ty*TF + 2*tx + 1] *= scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2162,10 +2272,19 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
float ms[Q];
|
||||
|
||||
for (short j = 0; j < Q; ++j) {
|
||||
const short p = tiisg;
|
||||
|
||||
const float m = M[j];
|
||||
const float s = ss[j*TF + p];
|
||||
|
||||
// scale and apply the logitcap / mask
|
||||
float s = ss[j*TF + tiisg]*scale;
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
s = logit_softcap*precise::tanh(s);
|
||||
}
|
||||
|
||||
if (mask != q) {
|
||||
// mqk = mqk + mask*slope
|
||||
s += slope*mp[ic + j*nb31/sizeof(half) + tiisg];
|
||||
}
|
||||
|
||||
smax = simd_max(max(smax, s));
|
||||
M[j] = simd_max(max(M[j], s));
|
||||
@@ -2176,7 +2295,7 @@ kernel void kernel_flash_attn_ext_f16(
|
||||
S[j] = S[j]*ms[j] + simd_sum(vs);
|
||||
|
||||
// the P matrix from the paper (Q rows, C columns)
|
||||
ss[j*TF + p] = vs;
|
||||
ss[j*TF + tiisg] = vs;
|
||||
}
|
||||
|
||||
// create a QxQ diagonal matrix for rescaling the output
|
||||
@@ -2345,6 +2464,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
constant float & m0,
|
||||
constant float & m1,
|
||||
constant uint32_t & n_head_log2,
|
||||
constant float & logit_softcap,
|
||||
threadgroup half * shared [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
@@ -2479,7 +2599,13 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
||||
|
||||
// mqk = mqk*scale + mask*slope
|
||||
if (tiisg == 0) {
|
||||
mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f);
|
||||
mqk *= scale;
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
mqk = logit_softcap*precise::tanh(mqk);
|
||||
}
|
||||
|
||||
mqk += (mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f;
|
||||
|
||||
ss4[cc] = mqk;
|
||||
}
|
||||
|
||||
@@ -38,6 +38,7 @@
|
||||
|
||||
#include "ggml-sycl/backend.hpp"
|
||||
#include "ggml-sycl/presets.hpp"
|
||||
#include "ggml-sycl/gemm.hpp"
|
||||
|
||||
bool ggml_sycl_loaded(void);
|
||||
void ggml_sycl_free_data(struct ggml_tensor * tensor);
|
||||
@@ -2482,6 +2483,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
|
||||
const sycl::half alpha_f16 = 1.0f;
|
||||
const sycl::half beta_f16 = 0.0f;
|
||||
#if !GGML_SYCL_DNNL
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
|
||||
*stream, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
@@ -2491,6 +2493,13 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
dpct::library_data_t::real_half)));
|
||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
|
||||
#else
|
||||
auto dnnl_stream = ctx.stream_dnnl(stream);
|
||||
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
|
||||
src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(), dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>());
|
||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
|
||||
@@ -2513,13 +2522,18 @@ inline void ggml_sycl_op_mul_mat_sycl(
|
||||
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
#if !GGML_SYCL_DNNL
|
||||
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
|
||||
*stream, oneapi::mkl::transpose::trans,
|
||||
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
|
||||
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
|
||||
src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
|
||||
dst_dd_i, ldc)));
|
||||
#else
|
||||
auto dnnl_stream = ctx.stream_dnnl(stream);
|
||||
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
|
||||
src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
|
||||
#endif
|
||||
}
|
||||
(void) dst;
|
||||
(void) src1_ddq_i;
|
||||
|
||||
@@ -19,6 +19,10 @@
|
||||
#include "dpct/helper.hpp"
|
||||
#include "ggml-sycl.h"
|
||||
#include "presets.hpp"
|
||||
#if GGML_SYCL_DNNL
|
||||
#include "dnnl.hpp"
|
||||
#include "dnnl_sycl.hpp"
|
||||
#endif
|
||||
|
||||
#define GGML_COMMON_DECL_SYCL
|
||||
#define GGML_COMMON_IMPL_SYCL
|
||||
@@ -277,6 +281,52 @@ struct ggml_backend_sycl_context {
|
||||
return stream(device, 0);
|
||||
}
|
||||
|
||||
#if GGML_SYCL_DNNL
|
||||
dnnl::engine make_engine(sycl::queue* q) {
|
||||
// Get the device associated with the queue
|
||||
sycl::device dev = q->get_device();
|
||||
// Get the context associated with the queue
|
||||
sycl::context ctx = q->get_context();
|
||||
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
|
||||
return eng;
|
||||
}
|
||||
|
||||
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
|
||||
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
|
||||
dnnl::stream stream_dnnl(int device, int _stream) {
|
||||
auto q = stream(device, _stream);
|
||||
return stream_dnnl(q);
|
||||
}
|
||||
dnnl::engine engine_dnnl(sycl::queue* qptr) {
|
||||
auto it = engine_map.find(qptr);
|
||||
if (it == engine_map.end()) {
|
||||
auto eng = make_engine(qptr);
|
||||
engine_map[qptr] = eng;
|
||||
return eng;
|
||||
}
|
||||
else
|
||||
{
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
dnnl::stream stream_dnnl(sycl::queue* qptr) {
|
||||
auto it = stream_map.find(qptr);
|
||||
if (it == stream_map.end()) {
|
||||
auto eng = engine_dnnl(qptr);
|
||||
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
|
||||
stream_map[qptr] = stream;
|
||||
return stream;
|
||||
}
|
||||
else
|
||||
{
|
||||
return it->second;
|
||||
}
|
||||
}
|
||||
dnnl::stream stream_dnnl() {
|
||||
return stream_dnnl(device, 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
// pool
|
||||
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
|
||||
|
||||
|
||||
101
ggml/src/ggml-sycl/gemm.hpp
Normal file
101
ggml/src/ggml-sycl/gemm.hpp
Normal file
@@ -0,0 +1,101 @@
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#ifndef GGML_SYCL_GEMM_HPP
|
||||
#define GGML_SYCL_GEMM_HPP
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
#if GGML_SYCL_DNNL
|
||||
|
||||
#include "dnnl.hpp"
|
||||
#include "dnnl_sycl.hpp"
|
||||
|
||||
class DnnlGemmWrapper {
|
||||
public:
|
||||
using dt = dnnl::memory::data_type;
|
||||
using tag = dnnl::memory::format_tag;
|
||||
|
||||
template<typename T>
|
||||
static constexpr dt to_dt() {
|
||||
if constexpr (std::is_same_v<T, float>) return dt::f32;
|
||||
else if constexpr (std::is_same_v<T, sycl::half>) return dt::f16;
|
||||
else static_assert(0);
|
||||
}
|
||||
|
||||
static inline void row_gemm(sycl::queue& q, bool a_trans,
|
||||
bool b_trans, int m, int n, int k,
|
||||
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
|
||||
{
|
||||
// Get the device associated with the queue
|
||||
sycl::device dev = q.get_device();
|
||||
// Get the context associated with the queue
|
||||
sycl::context ctx = q.get_context();
|
||||
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
|
||||
const dnnl::stream stream = dnnl::sycl_interop::make_stream(eng, q);
|
||||
dnnl::memory::dims a_dims = { m, k };
|
||||
dnnl::memory::dims b_dims = { k, n };
|
||||
dnnl::memory::dims c_dims = { m, n };
|
||||
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
|
||||
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
|
||||
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
|
||||
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
|
||||
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
|
||||
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
|
||||
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
|
||||
|
||||
// Create the primitive.
|
||||
auto matmul_prim = dnnl::matmul(matmul_pd);
|
||||
// Primitive arguments.
|
||||
std::unordered_map<int, dnnl::memory> matmul_args;
|
||||
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
|
||||
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
|
||||
matmul_args.insert({ DNNL_ARG_DST, c_mem });
|
||||
|
||||
matmul_prim.execute(stream, matmul_args);
|
||||
}
|
||||
|
||||
|
||||
static inline void row_gemm(const dnnl::stream& stream, bool a_trans,
|
||||
bool b_trans, int m, int n, int k,
|
||||
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
|
||||
{
|
||||
auto const eng = stream.get_engine();
|
||||
dnnl::memory::dims a_dims = { m, k };
|
||||
dnnl::memory::dims b_dims = { k, n };
|
||||
dnnl::memory::dims c_dims = { m, n };
|
||||
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
|
||||
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
|
||||
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
|
||||
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
|
||||
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
|
||||
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
|
||||
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
|
||||
|
||||
// Create the primitive.
|
||||
auto matmul_prim = dnnl::matmul(matmul_pd);
|
||||
// Primitive arguments.
|
||||
std::unordered_map<int, dnnl::memory> matmul_args;
|
||||
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
|
||||
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
|
||||
matmul_args.insert({ DNNL_ARG_DST, c_mem });
|
||||
|
||||
matmul_prim.execute(stream, matmul_args);
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif // GGML_SYCL_GEMM_HPP
|
||||
@@ -7095,7 +7095,8 @@ struct ggml_tensor * ggml_flash_attn_ext(
|
||||
struct ggml_tensor * v,
|
||||
struct ggml_tensor * mask,
|
||||
float scale,
|
||||
float max_bias) {
|
||||
float max_bias,
|
||||
float logit_softcap) {
|
||||
GGML_ASSERT(ggml_can_mul_mat(k, q));
|
||||
// TODO: check if vT can be multiplied by (k*qT)
|
||||
|
||||
@@ -7122,7 +7123,7 @@ struct ggml_tensor * ggml_flash_attn_ext(
|
||||
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||
|
||||
float params[] = { scale, max_bias };
|
||||
float params[] = { scale, max_bias, logit_softcap };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_FLASH_ATTN_EXT;
|
||||
@@ -7142,7 +7143,7 @@ void ggml_flash_attn_ext_set_prec(
|
||||
|
||||
const int32_t prec_i32 = (int32_t) prec;
|
||||
|
||||
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
|
||||
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
|
||||
}
|
||||
|
||||
// ggml_flash_attn_back
|
||||
@@ -15271,11 +15272,17 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float scale = 1.0f;
|
||||
float max_bias = 0.0f;
|
||||
float logit_softcap = 0.0f;
|
||||
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
|
||||
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
|
||||
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
if (logit_softcap != 0) {
|
||||
scale /= logit_softcap;
|
||||
}
|
||||
|
||||
const uint32_t n_head = neq2;
|
||||
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
|
||||
@@ -15339,7 +15346,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
|
||||
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
|
||||
|
||||
s = s*scale + mv; // scale KQ value and apply mask
|
||||
s = s*scale; // scale KQ value
|
||||
|
||||
if (logit_softcap != 0.0f) {
|
||||
s = logit_softcap*tanhf(s);
|
||||
}
|
||||
|
||||
s += mv; // apply mask
|
||||
|
||||
const float Mold = M;
|
||||
|
||||
@@ -15348,7 +15361,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
|
||||
|
||||
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
|
||||
|
||||
if (v->type== GGML_TYPE_F16) {
|
||||
if (v->type == GGML_TYPE_F16) {
|
||||
if (s > M) {
|
||||
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
|
||||
M = s;
|
||||
@@ -15415,7 +15428,7 @@ static void ggml_compute_forward_flash_attn_ext(
|
||||
const struct ggml_tensor * v,
|
||||
const struct ggml_tensor * mask,
|
||||
struct ggml_tensor * dst) {
|
||||
switch (dst->op_params[2]) {
|
||||
switch (dst->op_params[3]) {
|
||||
case GGML_PREC_DEFAULT:
|
||||
case GGML_PREC_F32:
|
||||
{
|
||||
@@ -15885,8 +15898,8 @@ static void ggml_compute_forward_ssm_scan_f32(
|
||||
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
|
||||
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
|
||||
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
|
||||
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
|
||||
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
|
||||
|
||||
// use the output as the source for the next token-wise iterations
|
||||
if (i2 > 0) { s0 = s; }
|
||||
|
||||
@@ -31,11 +31,17 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
|
||||
|
||||
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
|
||||
if (search.empty()) {
|
||||
return; // Avoid infinite loop if 'search' is an empty string
|
||||
return;
|
||||
}
|
||||
std::string builder;
|
||||
builder.reserve(s.length());
|
||||
size_t pos = 0;
|
||||
while ((pos = s.find(search, pos)) != std::string::npos) {
|
||||
s.replace(pos, search.length(), replace);
|
||||
pos += replace.length();
|
||||
size_t last_pos = 0;
|
||||
while ((pos = s.find(search, last_pos)) != std::string::npos) {
|
||||
builder.append(s, last_pos, pos - last_pos);
|
||||
builder.append(replace);
|
||||
last_pos = pos + search.length();
|
||||
}
|
||||
builder.append(s, last_pos, std::string::npos);
|
||||
s = std::move(builder);
|
||||
}
|
||||
|
||||
@@ -6605,6 +6605,7 @@ static bool llm_load_tensors(
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
const int64_t n_vocab_type = hparams.n_vocab_type;
|
||||
const int64_t n_rot = hparams.n_rot;
|
||||
const int64_t n_expert = hparams.n_expert;
|
||||
const int64_t n_expert_used = hparams.n_expert_used;
|
||||
const int64_t n_ctx_train = hparams.n_ctx_train;
|
||||
@@ -6662,7 +6663,7 @@ static bool llm_load_tensors(
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
|
||||
if (n_expert == 0) {
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
@@ -8115,8 +8116,8 @@ static bool llm_load_tensors(
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
|
||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
|
||||
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
|
||||
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
|
||||
@@ -8193,7 +8194,7 @@ static bool llm_load_tensors(
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
@@ -8874,9 +8875,10 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
0);
|
||||
cb(v, "v", il);
|
||||
|
||||
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
||||
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
||||
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
||||
|
||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
|
||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
|
||||
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
||||
}
|
||||
|
||||
@@ -8885,7 +8887,7 @@ static struct ggml_tensor * llm_build_kqv(
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
cb(kq, "kq", il);
|
||||
|
||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON) {
|
||||
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
|
||||
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
|
||||
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
||||
@@ -16820,7 +16822,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
if (name.find("attn_v.weight") != std::string::npos ||
|
||||
name.find("attn_qkv.weight") != std::string::npos) {
|
||||
name.find("attn_qkv.weight") != std::string::npos ||
|
||||
name.find("attn_kv_b.weight")!= std::string::npos) {
|
||||
++qs.n_attention_wv;
|
||||
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
|
||||
qs.has_output = true;
|
||||
@@ -17533,12 +17536,6 @@ struct llama_context * llama_new_context_with_model(
|
||||
params.flash_attn = false;
|
||||
}
|
||||
|
||||
if (params.flash_attn && model->hparams.attn_soft_cap) {
|
||||
LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
|
||||
params.flash_attn = false;
|
||||
}
|
||||
|
||||
|
||||
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
|
||||
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
|
||||
params.flash_attn = false;
|
||||
|
||||
@@ -949,6 +949,58 @@ struct test_rms_norm : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SSM_CONV
|
||||
struct test_ssm_conv : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne_a;
|
||||
const std::array<int64_t, 4> ne_b;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR3(type, ne_a, ne_b);
|
||||
}
|
||||
|
||||
test_ssm_conv(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
|
||||
std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
|
||||
: type(type), ne_a(ne_a), ne_b(ne_b) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
|
||||
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
|
||||
ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_SSM_SCAN
|
||||
struct test_ssm_scan : public test_case {
|
||||
const ggml_type type;
|
||||
|
||||
const int64_t d_state;
|
||||
const int64_t d_inner;
|
||||
const int64_t n_seq_tokens;
|
||||
const int64_t n_seqs;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
|
||||
}
|
||||
|
||||
test_ssm_scan(ggml_type type = GGML_TYPE_F32,
|
||||
int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
|
||||
: type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
|
||||
ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
||||
ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
|
||||
ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
|
||||
ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
||||
ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
|
||||
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_MUL_MAT
|
||||
struct test_mul_mat : public test_case {
|
||||
const ggml_type type_a;
|
||||
@@ -1652,19 +1704,20 @@ struct test_flash_attn_ext : public test_case {
|
||||
const bool mask; // use mask
|
||||
|
||||
const float max_bias; // ALiBi
|
||||
const float logit_softcap; // Gemma 2
|
||||
|
||||
const ggml_type type_KV;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
|
||||
return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 5e-4;
|
||||
}
|
||||
|
||||
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
|
||||
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}
|
||||
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
|
||||
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
|
||||
@@ -1673,7 +1726,7 @@ struct test_flash_attn_ext : public test_case {
|
||||
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
|
||||
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
|
||||
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
|
||||
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
|
||||
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
@@ -2239,6 +2292,12 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
|
||||
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
|
||||
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
|
||||
|
||||
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
|
||||
|
||||
#if 1
|
||||
for (ggml_type type_a : base_types) {
|
||||
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
@@ -2437,11 +2496,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
for (bool mask : { true, false } ) {
|
||||
for (float max_bias : { 0.0f, 8.0f }) {
|
||||
if (!mask && max_bias > 0.0f) continue;
|
||||
for (int nh : { 32, }) {
|
||||
for (int kv : { 512, 1024, }) {
|
||||
for (int nb : { 1, 2, 4, 8, }) {
|
||||
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
|
||||
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
|
||||
for (float logit_softcap : {0.0f, 10.0f}) {
|
||||
if (hs != 128 && logit_softcap != 0.0f) continue;
|
||||
for (int nh : { 32, }) {
|
||||
for (int kv : { 512, 1024, }) {
|
||||
for (int nb : { 1, 2, 4, 8, }) {
|
||||
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
|
||||
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -2483,7 +2545,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
|
||||
GGML_ABORT("fatal error");
|
||||
return false;
|
||||
}
|
||||
|
||||
static void usage(char ** argv) {
|
||||
|
||||
@@ -14,7 +14,7 @@ MODELS_REPO_URL=https://huggingface.co/ggml-org/$MODELS_REPO
|
||||
# Clone the Hugging Face repository if the directory does not exist
|
||||
if [ ! -d "$MODELS_REPO" ]; then
|
||||
echo "Cloning the Hugging Face repository..."
|
||||
git clone $MODELS_REPO_URL
|
||||
git clone $MODELS_REPO_URL --depth 1
|
||||
else
|
||||
echo "Repository already exists. Skipping clone."
|
||||
fi
|
||||
|
||||
@@ -166,12 +166,12 @@ static void test_sampler_queue(
|
||||
for (auto s : samplers_sequence) {
|
||||
switch (s){
|
||||
case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break;
|
||||
case 'f': GGML_ABORT("tail_free test not implemented"); break;
|
||||
case 'y': GGML_ABORT("typical test not implemented"); break;
|
||||
case 'f': GGML_ABORT("tail_free test not implemented");
|
||||
case 'y': GGML_ABORT("typical test not implemented");
|
||||
case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break;
|
||||
case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break;
|
||||
case 't': GGML_ABORT("temperature test not implemented"); break;
|
||||
default : GGML_ABORT("Unknown sampler"); break;
|
||||
case 't': GGML_ABORT("temperature test not implemented");
|
||||
default : GGML_ABORT("Unknown sampler");
|
||||
}
|
||||
|
||||
llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests
|
||||
|
||||
Reference in New Issue
Block a user