Compare commits

..

24 Commits

Author SHA1 Message Date
compilade
78eb487bb0 llama : fix qs.n_attention_wv for DeepSeek-V2 (#9156) 2024-08-27 13:09:23 +03:00
Xuan Son Nguyen
a77feb5d71 server : add some missing env variables (#9116)
* server : add some missing env variables

* add LLAMA_ARG_HOST to server dockerfile

* also add LLAMA_ARG_CONT_BATCHING
2024-08-27 11:07:01 +02:00
CausalLM
2e59d61c1b llama : fix ChatGLM4 wrong shape (#9194)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
This should fix THUDM/glm-4-9b-chat-1m and CausalLM/miniG
2024-08-27 09:58:22 +03:00
Carsten Kragelund Jørgensen
75e1dbbaab llama : fix llama3.1 rope_freqs not respecting custom head_dim (#9141)
* fix: llama3.1 rope_freqs not respecting custom head_dim

* fix: use potential head_dim for Exaone
2024-08-27 09:53:40 +03:00
arch-btw
ad76569f8e common : Update stb_image.h to latest version (#9161)
* Update stb_image.h to latest version

Fixes https://github.com/ggerganov/llama.cpp/issues/7431

* Update .ecrc
2024-08-27 08:58:50 +03:00
slaren
7d787ed96c ggml : do not crash when quantizing q4_x_x with an imatrix (#9192)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-08-26 19:44:43 +02:00
Georgi Gerganov
06658ad7c3 metal : separate scale and mask from QKT in FA kernel (#9189)
* metal : separate scale and mask from QKT in FA kernel

* metal : ne01 check no longer necessary

* metal : keep data in local memory
2024-08-26 18:31:02 +03:00
Georgi Gerganov
fc18425b6a ggml : add SSM Metal kernels (#8546)
* ggml : add ggml_ssm_conv metal impl

* ggml : add ssm_scan metal impl

ggml-ci
2024-08-26 17:55:36 +03:00
Georgi Gerganov
879275ac98 tests : fix compile warnings for unreachable code (#9185)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Close inactive issues / close-issues (push) Has been cancelled
ggml-ci
2024-08-26 16:30:25 +03:00
Georgi Gerganov
7a3df798fc ci : add VULKAN support to ggml-ci (#9055) 2024-08-26 12:19:39 +03:00
Georgi Gerganov
e5edb210cd server : update deps (#9183) 2024-08-26 12:16:57 +03:00
slaren
0c41e03ceb metal : gemma2 flash attention support (#9159) 2024-08-26 11:08:59 +02:00
slaren
f12ceaca0c ggml-ci : try to improve build time (#9160) 2024-08-26 11:03:30 +02:00
Justine Tunney
436787f170 llama : fix time complexity of string replacement (#9163)
This change fixes a bug where replacing text in a very long string could
cause llama.cpp to hang indefinitely. This is because the algorithm used
was quadratic, due to memmove() when s.replace() is called in a loop. It
seems most search results and LLM responses actually provide the O(n**2)
algorithm, which is a great tragedy. Using a builder string fixes things
2024-08-26 09:09:53 +03:00
Herman Semenov
93bc3839f9 common: fixed not working find argument --n-gpu-layers-draft (#9175)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-08-26 00:54:37 +02:00
Johannes Gäßler
f91fc5639b CUDA: fix Gemma 2 numerical issues for FA (#9166) 2024-08-25 22:11:48 +02:00
Johannes Gäßler
e11bd856d5 CPU/CUDA: Gemma 2 FlashAttention support (#8542)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Nix aarch64 builds / nix-build-aarch64 (push) Has been cancelled
* CPU/CUDA: Gemma 2 FlashAttention support

* apply logit_softcap to scale in kernel

* disable logit softcapping tests on Metal

* remove metal check
2024-08-24 21:34:59 +02:00
João Dinis Ferreira
8f824ffe8e quantize : fix typo in usage help of quantize.cpp (#9145)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
update-flake-lock / lockfile (push) Has been cancelled
2024-08-24 09:22:45 +03:00
Xuan Son Nguyen
3ba780e2a8 lora : fix llama conversion script with ROPE_FREQS (#9117)
Some checks failed
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2024-08-23 12:58:53 +02:00
piDack
a07c32ea54 llama : use F32 precision in GLM4 attention and no FA (#9130)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-08-23 10:27:17 +03:00
Akarshan Biswas
11b84eb457 [SYCL] Add a space to supress a cmake warning (#9133)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
2024-08-22 22:09:47 +08:00
luoyu-intel
1731d4238f [SYCL] Add oneDNN primitive support (#9091)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* add onednn

* add sycl_f16

* add dnnl stream

* add engine map

* use dnnl for intel only

* use fp16fp16fp16

* update doc
2024-08-22 12:50:10 +08:00
compilade
a1631e53f6 llama : simplify Mamba with advanced batch splits (#8526)
Some checks are pending
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
* llama : advanced batch splits

This includes equal-sequence-length batch splits which are useful
to simplify recurrent model operators.

* llama : always make recurrent state slots contiguous

* ggml : simplify mamba operators

* llama : fix integer signedness mixing

* llama : logits_all has priority over batch->logits

Otherwise, the server embeddings tests failed.
This was likely an existing problem but was only detected here
because of an additional assertion.

* llama : apply suggestions

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* llama : fix t5 segfault

* llama : fix Mamba session save and restore

* llama : minor cosmetic changes

* llama : rename llama_reorder_outputs to llama_output_reorder

Also move it closer to llama_output_reserve.

* llama : fix pooled embeddings when using batches with equal_seqs

* minor : add struct members for clarity

ggml-ci

* llama : fix T5 segfault again

* llama : fix Mamba pooled embeddings with multiple sequences

Until the pooled embeddings are refactored to allow splitting
across ubatches for causal embeddings,
recurrent models can only process a single sequence per ubatch
when calculating pooled embeddings.

* llama : add llama_model_is_recurrent to simplify figuring that out

This will make it easier to more cleanly support RWKV-v6 and Mamba-2.

* llama : fix simple splits when the batch contains embeddings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-08-21 17:58:11 -04:00
Xuan Son Nguyen
fc54ef0d1c server : support reading arguments from environment variables (#9105)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full-cuda.Dockerfile platforms:linux/amd64 tag:full-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/full.Dockerfile platforms:linux/amd64,linux/arm64 tag:full]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-cuda.Dockerfile platforms:linux/amd64 tag:light-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-intel.Dockerfile platforms:linux/amd64 tag:light-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:light-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-cli.Dockerfile platforms:linux/amd64,linux/arm64 tag:light]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-cuda.Dockerfile platforms:linux/amd64 tag:server-cuda]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-intel.Dockerfile platforms:linux/amd64 tag:server-intel]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server-rocm.Dockerfile platforms:linux/amd64,linux/arm64 tag:server-rocm]) (push) Waiting to run
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/llama-server.Dockerfile platforms:linux/amd64,linux/arm64 tag:server]) (push) Waiting to run
Nix CI / nix-eval (macos-latest) (push) Waiting to run
Nix CI / nix-eval (ubuntu-latest) (push) Waiting to run
Nix CI / nix-build (macos-latest) (push) Waiting to run
Nix CI / nix-build (ubuntu-latest) (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* server : support reading arguments from environment variables

* add -fa and -dt

* readme : specify non-arg env var
2024-08-21 11:04:34 +02:00
40 changed files with 6688 additions and 6247 deletions

View File

@@ -24,6 +24,8 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
ENV GGML_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
RUN make -j$(nproc) llama-server

View File

@@ -26,6 +26,8 @@ RUN apt-get update && \
COPY --from=build /app/build/bin/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@@ -39,6 +39,8 @@ ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
ENV GGML_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
# Enable cURL
ENV LLAMA_CURL=1

View File

@@ -23,6 +23,8 @@ RUN cp /app/build/bin/llama-server /llama-server && \
rm -rf /app
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

View File

@@ -21,6 +21,8 @@ RUN apt-get update && \
COPY --from=build /app/llama-server /llama-server
ENV LC_ALL=C.utf8
# Must be set to 0.0.0.0 so it can listen to requests from host machine
ENV LLAMA_ARG_HOST=0.0.0.0
HEALTHCHECK CMD [ "curl", "-f", "http://localhost:8080/health" ]

2
.ecrc
View File

@@ -1,5 +1,5 @@
{
"Exclude": ["^\\.gitmodules$"],
"Exclude": ["^\\.gitmodules$", "stb_image\\.h"],
"Disable": {
"IndentSize": true
}

View File

@@ -28,6 +28,7 @@
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Release" } },
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{
"name": "arm64-windows-msvc", "hidden": true,
@@ -60,6 +61,8 @@
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] }
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
]
}

View File

@@ -13,6 +13,9 @@
# # with SYCL support
# GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -40,7 +43,7 @@ if [ ! -z ${GG_BUILD_METAL} ]; then
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=1"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES=native"
fi
if [ ! -z ${GG_BUILD_SYCL} ]; then
@@ -52,6 +55,10 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -107,7 +114,7 @@ function gg_run_ctest_debug {
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Debug ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
(time ctest --output-on-failure -L main -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@@ -138,7 +145,7 @@ function gg_run_ctest_release {
gg_check_build_requirements
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
if [ -z ${GG_BUILD_LOW_PERF} ]; then
(time ctest --output-on-failure -L main ) 2>&1 | tee -a $OUT/${ci}-ctest.log
@@ -266,7 +273,6 @@ function gg_sum_ctest_with_model_release {
}
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
function gg_run_open_llama_7b_v2 {
cd ${SRC}
@@ -290,8 +296,8 @@ function gg_run_open_llama_7b_v2 {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@@ -425,7 +431,7 @@ function gg_run_pythia_1_4b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@@ -535,7 +541,6 @@ function gg_sum_pythia_1_4b {
}
# pythia_2_8b
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
cd ${SRC}
@@ -556,8 +561,8 @@ function gg_run_pythia_2_8b {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DGGML_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@@ -692,7 +697,7 @@ function gg_run_embd_bge_small {
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
@@ -761,7 +766,7 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
if [ -z ${GG_BUILD_CUDA} ] && [ -z ${GG_BUILD_VULKAN} ]; then
test $ret -eq 0 && gg_run pythia_1_4b
else
test $ret -eq 0 && gg_run pythia_2_8b

View File

@@ -77,6 +77,41 @@
using json = nlohmann::ordered_json;
//
// Environment variable utils
//
template<typename T>
static typename std::enable_if<std::is_same<T, std::string>::value, void>::type
get_env(std::string name, T & target) {
char * value = std::getenv(name.c_str());
target = value ? std::string(value) : target;
}
template<typename T>
static typename std::enable_if<!std::is_same<T, bool>::value && std::is_integral<T>::value, void>::type
get_env(std::string name, T & target) {
char * value = std::getenv(name.c_str());
target = value ? std::stoi(value) : target;
}
template<typename T>
static typename std::enable_if<std::is_floating_point<T>::value, void>::type
get_env(std::string name, T & target) {
char * value = std::getenv(name.c_str());
target = value ? std::stof(value) : target;
}
template<typename T>
static typename std::enable_if<std::is_same<T, bool>::value, void>::type
get_env(std::string name, T & target) {
char * value = std::getenv(name.c_str());
if (value) {
std::string val(value);
target = val == "1" || val == "true";
}
}
//
// CPU utils
//
@@ -220,12 +255,6 @@ int32_t cpu_get_num_math() {
// CLI argument parsing
//
void gpt_params_handle_hf_token(gpt_params & params) {
if (params.hf_token.empty() && std::getenv("HF_TOKEN")) {
params.hf_token = std::getenv("HF_TOKEN");
}
}
void gpt_params_handle_model_default(gpt_params & params) {
if (!params.hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
@@ -273,7 +302,9 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
gpt_params_handle_model_default(params);
gpt_params_handle_hf_token(params);
if (params.hf_token.empty()) {
get_env("HF_TOKEN", params.hf_token);
}
if (params.escape) {
string_process_escapes(params.prompt);
@@ -293,6 +324,32 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
return true;
}
void gpt_params_parse_from_env(gpt_params & params) {
// we only care about server-related params for now
get_env("LLAMA_ARG_MODEL", params.model);
get_env("LLAMA_ARG_MODEL_URL", params.model_url);
get_env("LLAMA_ARG_MODEL_ALIAS", params.model_alias);
get_env("LLAMA_ARG_HF_REPO", params.hf_repo);
get_env("LLAMA_ARG_HF_FILE", params.hf_file);
get_env("LLAMA_ARG_THREADS", params.n_threads);
get_env("LLAMA_ARG_CTX_SIZE", params.n_ctx);
get_env("LLAMA_ARG_N_PARALLEL", params.n_parallel);
get_env("LLAMA_ARG_BATCH", params.n_batch);
get_env("LLAMA_ARG_UBATCH", params.n_ubatch);
get_env("LLAMA_ARG_N_GPU_LAYERS", params.n_gpu_layers);
get_env("LLAMA_ARG_THREADS_HTTP", params.n_threads_http);
get_env("LLAMA_ARG_CHAT_TEMPLATE", params.chat_template);
get_env("LLAMA_ARG_N_PREDICT", params.n_predict);
get_env("LLAMA_ARG_ENDPOINT_METRICS", params.endpoint_metrics);
get_env("LLAMA_ARG_ENDPOINT_SLOTS", params.endpoint_slots);
get_env("LLAMA_ARG_EMBEDDINGS", params.embedding);
get_env("LLAMA_ARG_FLASH_ATTN", params.flash_attn);
get_env("LLAMA_ARG_DEFRAG_THOLD", params.defrag_thold);
get_env("LLAMA_ARG_CONT_BATCHING", params.cont_batching);
get_env("LLAMA_ARG_HOST", params.hostname);
get_env("LLAMA_ARG_PORT", params.port);
}
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
const auto params_org = params; // the example can modify the default params
@@ -851,7 +908,7 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
}
return true;
}
if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--gpu-layers-draft") {
if (arg == "-ngld" || arg == "--gpu-layers-draft" || arg == "--n-gpu-layers-draft") {
CHECK_ARG
params.n_gpu_layers_draft = std::stoi(argv[i]);
if (!llama_supports_gpu_offload()) {
@@ -1811,13 +1868,19 @@ std::string string_get_sortable_timestamp() {
void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return; // Avoid infinite loop if 'search' is an empty string
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
while ((pos = s.find(search, pos)) != std::string::npos) {
s.replace(pos, search.length(), replace);
pos += replace.length();
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
void string_process_escapes(std::string & input) {

View File

@@ -267,7 +267,7 @@ struct gpt_params {
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
};
void gpt_params_handle_hf_token(gpt_params & params);
void gpt_params_parse_from_env(gpt_params & params);
void gpt_params_handle_model_default(gpt_params & params);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);

File diff suppressed because it is too large Load Diff

View File

@@ -63,6 +63,7 @@ class Model:
model_name: str | None
metadata_override: Path | None
dir_model_card: Path
is_lora: bool
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
@@ -70,7 +71,7 @@ class Model:
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
use_temp_file: bool = False, eager: bool = False,
metadata_override: Path | None = None, model_name: str | None = None,
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False, is_lora: bool = False):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
@@ -92,6 +93,7 @@ class Model:
self.metadata_override = metadata_override
self.model_name = model_name
self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
self.is_lora = is_lora # true if model is used inside convert_lora_to_gguf.py
# Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
if self.ftype == gguf.LlamaFileType.GUESSED:
@@ -1570,7 +1572,7 @@ class LlamaModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@@ -1593,7 +1595,8 @@ class LlamaModel(Model):
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
if not self.is_lora:
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
super().prepare_tensors()
@@ -2140,8 +2143,9 @@ class Phi3MiniModel(Model):
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
if not self.is_lora:
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
@Model.register("PlamoForCausalLM")
@@ -3816,7 +3820,7 @@ class ExaoneModel(Model):
if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
if rope_scaling.get("rope_type", '').lower() == "llama3":
base = self.hparams.get("rope_theta", 10000.0)
dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
factor = rope_scaling.get("factor", 8.0)
@@ -3839,7 +3843,8 @@ class ExaoneModel(Model):
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
rope_factors.append(1 / ((1 - smooth) / factor + smooth))
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
if not self.is_lora:
self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
super().prepare_tensors()

View File

@@ -386,6 +386,7 @@ if __name__ == '__main__':
dry_run=args.dry_run,
dir_lora_model=dir_lora,
lora_alpha=alpha,
is_lora=True,
)
logger.info("Exporting model...")

View File

@@ -20,7 +20,7 @@
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL - Math Kernel Library)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -28,10 +28,6 @@
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
When targeting **Intel CPU**, it is recommended to use llama.cpp for [Intel oneMKL](README.md#intel-onemkl) backend.
It has the similar design of other llama.cpp BLAS-based paths such as *OpenBLAS, cuBLAS, etc..*. In beginning work, the oneAPI's [SYCLomatic](https://github.com/oneapi-src/SYCLomatic) open-source migration tool (Commercial release [Intel® DPC++ Compatibility Tool](https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html)) was used for this purpose.
## Recommended Release
The SYCL backend would be broken by some PRs due to no online CI.
@@ -45,6 +41,10 @@ The following release is verified with good quality:
## News
- 2024.8
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
- 2024.5
- Performance is increased: 34 -> 37 tokens/s of llama-2-7b.Q4_0 on Arc770.
- Arch Linux is verified successfully.
@@ -196,7 +196,7 @@ Please follow the instructions for downloading and installing the Toolkit for Li
Following guidelines/code snippets assume the default installation values. Otherwise, please make sure the necessary changes are reflected where applicable.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI MKL for intel GPUs.
Upon a successful installation, SYCL is enabled for the available intel devices, along with relevant libraries such as oneAPI oneDNN for Intel GPUs.
- **Adding support to Nvidia GPUs**
@@ -255,8 +255,6 @@ or
# Export relevant ENV variables
source /opt/intel/oneapi/setvars.sh
# Build LLAMA with MKL BLAS acceleration for intel GPU
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx

View File

@@ -216,13 +216,19 @@ static std::string gguf_data_to_str(enum gguf_type type, const void * data, int
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return; // Avoid infinite loop if 'search' is an empty string
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
while ((pos = s.find(search, pos)) != std::string::npos) {
s.replace(pos, search.length(), replace);
pos += replace.length();
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {

View File

@@ -104,7 +104,7 @@ static void usage(const char * executable) {
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
printf(" --keep-split: will generate quatized model in the same shards as input");
printf(" --keep-split: will generate quantized model in the same shards as input\n");
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");

View File

@@ -247,6 +247,51 @@ logging:
--log-append Don't truncate the old log file.
```
Available environment variables (if specified, these variables will override parameters specified in arguments):
- `LLAMA_CACHE`: cache directory, used by `--hf-repo`
- `HF_TOKEN`: Hugging Face access token, used when accessing a gated model with `--hf-repo`
- `LLAMA_ARG_MODEL`: equivalent to `-m`
- `LLAMA_ARG_MODEL_URL`: equivalent to `-mu`
- `LLAMA_ARG_MODEL_ALIAS`: equivalent to `-a`
- `LLAMA_ARG_HF_REPO`: equivalent to `--hf-repo`
- `LLAMA_ARG_HF_FILE`: equivalent to `--hf-file`
- `LLAMA_ARG_THREADS`: equivalent to `-t`
- `LLAMA_ARG_CTX_SIZE`: equivalent to `-c`
- `LLAMA_ARG_N_PARALLEL`: equivalent to `-np`
- `LLAMA_ARG_BATCH`: equivalent to `-b`
- `LLAMA_ARG_UBATCH`: equivalent to `-ub`
- `LLAMA_ARG_N_GPU_LAYERS`: equivalent to `-ngl`
- `LLAMA_ARG_THREADS_HTTP`: equivalent to `--threads-http`
- `LLAMA_ARG_CHAT_TEMPLATE`: equivalent to `--chat-template`
- `LLAMA_ARG_N_PREDICT`: equivalent to `-n`
- `LLAMA_ARG_ENDPOINT_METRICS`: if set to `1`, it will enable metrics endpoint (equivalent to `--metrics`)
- `LLAMA_ARG_ENDPOINT_SLOTS`: if set to `0`, it will **disable** slots endpoint (equivalent to `--no-slots`). This feature is enabled by default.
- `LLAMA_ARG_EMBEDDINGS`: if set to `1`, it will enable embeddings endpoint (equivalent to `--embeddings`)
- `LLAMA_ARG_FLASH_ATTN`: if set to `1`, it will enable flash attention (equivalent to `-fa`)
- `LLAMA_ARG_CONT_BATCHING`: if set to `0`, it will **disable** continuous batching (equivalent to `--no-cont-batching`). This feature is enabled by default.
- `LLAMA_ARG_DEFRAG_THOLD`: equivalent to `-dt`
- `LLAMA_ARG_HOST`: equivalent to `--host`
- `LLAMA_ARG_PORT`: equivalent to `--port`
Example usage of docker compose with environment variables:
```yml
services:
llamacpp-server:
image: ghcr.io/ggerganov/llama.cpp:server
ports:
- 8080:8080
volumes:
- ./models:/models
environment:
# alternatively, you can use "LLAMA_ARG_MODEL_URL" to download the model
LLAMA_ARG_MODEL: /models/my_model.gguf
LLAMA_ARG_CTX_SIZE: 4096
LLAMA_ARG_N_PARALLEL: 2
LLAMA_ARG_ENDPOINT_METRICS: 1 # to disable, either remove or set to 0
LLAMA_ARG_PORT: 8080
```
## Build

File diff suppressed because one or more lines are too long

View File

@@ -2507,6 +2507,9 @@ int main(int argc, char ** argv) {
return 1;
}
// parse arguments from environment variables
gpt_params_parse_from_env(params);
// TODO: not great to use extern vars
server_log_json = params.log_json;
server_verbose = params.verbosity > 0;

View File

@@ -1760,7 +1760,8 @@ extern "C" {
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias);
float max_bias,
float logit_softcap);
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,

View File

@@ -549,6 +549,13 @@ if (GGML_SYCL)
file(GLOB GGML_SOURCES_SYCL "ggml-sycl/*.cpp")
list(APPEND GGML_SOURCES_SYCL "ggml-sycl.cpp")
find_package(DNNL)
message("-- DNNL found:" ${DNNL_FOUND})
if (GGML_SYCL_TARGET STREQUAL "INTEL")
add_compile_definitions(GGML_SYCL_DNNL=${DNNL_FOUND})
else()
add_compile_definitions(GGML_SYCL_DNNL=0)
endif()
if (WIN32)
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
@@ -561,6 +568,9 @@ if (GGML_SYCL)
set(GGML_EXTRA_LIBS ${GGML_EXTRA_LIBS} -fsycl pthread m dl onemkl)
endif()
endif()
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
list(APPEND GGML_EXTRA_LIBS DNNL::dnnl)
endif()
endif()
if (GGML_RPC)

View File

@@ -337,33 +337,18 @@ static size_t quantize_q4_0_nr_bl(const float * restrict src, void * restrict ds
}
size_t quantize_q4_0_4x4(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
}
else {
assert(false);
return 0;
}
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 4);
}
size_t quantize_q4_0_4x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
}
else {
assert(false);
return 0;
}
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 4, 8);
}
size_t quantize_q4_0_8x8(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) {
if (!quant_weights) {
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
}
else {
assert(false);
return 0;
}
UNUSED(quant_weights);
return quantize_q4_0_nr_bl(src, dst, nrow, n_per_row, 8, 8);
}
void ggml_gemv_q4_0_4x4_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, const void * restrict vy, int nr, int nc) {

View File

@@ -22,6 +22,7 @@ typedef void (* fattn_kernel_t)(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -657,11 +658,17 @@ void launch_fattn(
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale = 1.0f;
float max_bias = 0.0f;
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) KQV->op_params + 2, sizeof(float));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
@@ -675,7 +682,7 @@ void launch_fattn(
V_data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2,
scale, max_bias, m0, m1, n_head_log2, logit_softcap,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,

View File

@@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -44,6 +45,12 @@ static __global__ void flash_attn_tile_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@@ -154,7 +161,13 @@ static __global__ void flash_attn_tile_ext_f16(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
half sum;
if (use_logit_softcap) {
const float2 tmp = __half22float2(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum = logit_softcap * tanhf(tmp.x + tmp.y);
} else {
sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
@@ -270,20 +283,20 @@ static __global__ void flash_attn_tile_ext_f16(
#endif // FP16_AVAILABLE
}
template <int cols_per_block, int parallel_blocks>
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
default: {
@@ -296,24 +309,45 @@ void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_ten
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -4,7 +4,7 @@
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
template<int D, int ncols, int nwarps, int parallel_blocks, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -20,6 +20,7 @@ static __global__ void flash_attn_tile_ext_f32(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -43,6 +44,12 @@ static __global__ void flash_attn_tile_ext_f32(
const int ne1,
const int ne2,
const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
@@ -151,6 +158,10 @@ static __global__ void flash_attn_tile_ext_f32(
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
if (use_logit_softcap) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] = logit_softcap * tanhf(sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
}
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
@@ -267,20 +278,20 @@ static __global__ void flash_attn_tile_ext_f32(
}
}
template <int cols_per_block, int parallel_blocks>
template <int cols_per_block, int parallel_blocks, bool use_logit_softcap>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks, use_logit_softcap>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
} break;
default: {
@@ -290,23 +301,45 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks, use_logit_softcap>(ctx, dst);
}
}

View File

@@ -1,7 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -41,6 +42,12 @@ static __global__ void flash_attn_vec_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16<D>(type_K);
@@ -190,6 +197,11 @@ static __global__ void flash_attn_vec_ext_f16(
for (int j = 0; j < ncols; ++j) {
half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
if (ncols == 1) {
@@ -286,10 +298,10 @@ static __global__ void flash_attn_vec_ext_f16(
#endif // FP16_AVAILABLE
}
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V>;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@@ -297,48 +309,81 @@ void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * KQV = dst;
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f16_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \

View File

@@ -1,7 +1,7 @@
#include "common.cuh"
#include "fattn-common.cuh"
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V> // D == head size
template<int D, int ncols, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -17,6 +17,7 @@ static __global__ void flash_attn_vec_ext_f32(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -40,6 +41,12 @@ static __global__ void flash_attn_vec_ext_f32(
const int ne1,
const int ne2,
const int ne3) {
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
@@ -180,6 +187,11 @@ static __global__ void flash_attn_vec_ext_f32(
for (int j = 0; j < ncols; ++j) {
float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
sum = warp_reduce_sum(sum);
if (use_logit_softcap) {
sum = logit_softcap*tanhf(sum);
}
sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
@@ -267,10 +279,10 @@ static __global__ void flash_attn_vec_ext_f32(
}
}
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V>
template <int D, int cols_per_block, int parallel_blocks, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V>;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>;
constexpr bool need_f16_K = D != 128;
constexpr bool need_f16_V = D != 128 && D != 64;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V);
@@ -278,44 +290,78 @@ void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx,
template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * Q = dst->src[0];
ggml_tensor * K = dst->src[1];
ggml_tensor * V = dst->src[2];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
GGML_ASSERT(K->type == type_K);
GGML_ASSERT(V->type == type_V);
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V>(ctx, dst);
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
} else {
constexpr bool use_logit_softcap = true;
ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, parallel_blocks, type_K, type_V, use_logit_softcap>(ctx, dst);
}
}
#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \

View File

@@ -6,7 +6,7 @@
#endif // FP16_MMA_AVAILABLE
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t, bool use_logit_softcap>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
@@ -22,6 +22,7 @@ static __global__ void flash_attn_ext_f16(
const float m0,
const float m1,
const uint32_t n_head_log2,
const float logit_softcap,
const int ne00,
const int ne01,
const int ne02,
@@ -46,6 +47,12 @@ static __global__ void flash_attn_ext_f16(
const int ne2,
const int ne3) {
#ifdef FP16_MMA_AVAILABLE
// Skip unused kernel variants for faster compilation:
if (use_logit_softcap && !(D == 128 || D == 256)) {
NO_DEVICE_CODE;
return;
}
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
@@ -85,6 +92,8 @@ static __global__ void flash_attn_ext_f16(
const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef);
const half2 logit_softcap_2 = make_half2(logit_softcap, logit_softcap);
frag_b Q_b[D/16][ncols/frag_n];
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
@@ -194,6 +203,10 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
if (use_logit_softcap) {
KQ_f_tmp[k0/WARP_SIZE] = logit_softcap*tanhf(KQ_f_tmp[k0/WARP_SIZE]);
}
}
float KQ_max_new = KQ_max_f[j0/nwarps];
@@ -237,6 +250,15 @@ static __global__ void flash_attn_ext_f16(
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
if (use_logit_softcap) {
// There is no dedicated tangens hyperbolicus function for half2.
KQ2_tmp[k0/WARP_SIZE] = h2exp(KQ2_tmp[k0/WARP_SIZE]*make_half2(2.0f, 2.0f));
KQ2_tmp[k0/WARP_SIZE] = (KQ2_tmp[k0/WARP_SIZE] - make_half2(1.0f, 1.0f))
/(KQ2_tmp[k0/WARP_SIZE] + make_half2(1.0f, 1.0f));
KQ2_tmp[k0/WARP_SIZE] *= logit_softcap_2;
}
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
@@ -427,7 +449,8 @@ static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
template <int D, int cols_per_block, typename KQ_acc_t>
void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
constexpr int nwarps = 4;
@@ -435,20 +458,50 @@ void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggm
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
float logit_softcap;
memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));
if (4*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 4;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return;
}
if (2*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 2;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
return;
}
constexpr int parallel_blocks = 1;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
fattn_kernel_t fattn_kernel;
if (logit_softcap == 0.0f) {
constexpr bool use_logit_softcap = false;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
} else {
constexpr bool use_logit_softcap = true;
fattn_kernel = flash_attn_ext_f16<
D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t, use_logit_softcap>;
}
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
}

View File

@@ -13,7 +13,7 @@ static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, g
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
@@ -301,7 +301,7 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
const int32_t precision = KQV->op_params[3];
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) {

View File

@@ -82,6 +82,8 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_RMS_NORM,
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
GGML_METAL_KERNEL_TYPE_NORM,
GGML_METAL_KERNEL_TYPE_SSM_CONV_F32,
GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
@@ -542,6 +544,8 @@ static struct ggml_backend_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_CONV_F32, ssm_conv_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32, ssm_scan_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
@@ -803,6 +807,9 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_context * ctx
return false;
}
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
case GGML_OP_SSM_CONV:
case GGML_OP_SSM_SCAN:
return true;
case GGML_OP_MUL_MAT:
case GGML_OP_MUL_MAT_ID:
return ctx->support_simdgroup_reduction &&
@@ -1538,6 +1545,121 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
}
} break;
case GGML_OP_SSM_CONV:
{
GGML_ASSERT(src0t == GGML_TYPE_F32);
GGML_ASSERT(src1t == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_CONV_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:11];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:12];
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:15];
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:16];
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:17];
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:18];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne1, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_SSM_SCAN:
{
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
struct ggml_tensor * src4 = gf->nodes[i]->src[4];
struct ggml_tensor * src5 = gf->nodes[i]->src[5];
GGML_ASSERT(src3);
GGML_ASSERT(src4);
GGML_ASSERT(src5);
size_t offs_src3 = 0;
size_t offs_src4 = 0;
size_t offs_src5 = 0;
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
id<MTLBuffer> id_src4 = src4 ? ggml_metal_get_buffer(src4, &offs_src4) : nil;
id<MTLBuffer> id_src5 = src5 ? ggml_metal_get_buffer(src5, &offs_src5) : nil;
const int64_t ne30 = src3->ne[0]; GGML_UNUSED(ne30);
const int64_t ne31 = src3->ne[1]; GGML_UNUSED(ne31);
const uint64_t nb30 = src3->nb[0];
const uint64_t nb31 = src3->nb[1];
const int64_t ne40 = src4->ne[0]; GGML_UNUSED(ne40);
const int64_t ne41 = src4->ne[1]; GGML_UNUSED(ne41);
const int64_t ne42 = src4->ne[2]; GGML_UNUSED(ne42);
const uint64_t nb40 = src4->nb[0];
const uint64_t nb41 = src4->nb[1];
const uint64_t nb42 = src4->nb[2];
const int64_t ne50 = src5->ne[0]; GGML_UNUSED(ne50);
const int64_t ne51 = src5->ne[1]; GGML_UNUSED(ne51);
const int64_t ne52 = src5->ne[2]; GGML_UNUSED(ne52);
const uint64_t nb50 = src5->nb[0];
const uint64_t nb51 = src5->nb[1];
const uint64_t nb52 = src5->nb[2];
const int64_t d_state = ne00;
const int64_t d_inner = ne01;
const int64_t n_seq_tokens = ne11;
const int64_t n_seqs = ne02;
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SSM_SCAN_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
[encoder setBuffer:id_src4 offset:offs_src4 atIndex:4];
[encoder setBuffer:id_src5 offset:offs_src5 atIndex:5];
[encoder setBuffer:id_dst offset:offs_dst atIndex:6];
[encoder setBytes:&d_state length:sizeof(d_state) atIndex:7];
[encoder setBytes:&d_inner length:sizeof(d_inner) atIndex:8];
[encoder setBytes:&n_seq_tokens length:sizeof(n_seq_tokens) atIndex:9];
[encoder setBytes:&n_seqs length:sizeof(n_seqs) atIndex:10];
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:11];
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:12];
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:13];
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
[encoder setBytes:&nb20 length:sizeof(nb20) atIndex:18];
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:19];
[encoder setBytes:&nb22 length:sizeof(nb22) atIndex:20];
[encoder setBytes:&nb30 length:sizeof(nb30) atIndex:21];
[encoder setBytes:&nb31 length:sizeof(nb31) atIndex:22];
[encoder setBytes:&nb40 length:sizeof(nb40) atIndex:23];
[encoder setBytes:&nb41 length:sizeof(nb41) atIndex:24];
[encoder setBytes:&nb42 length:sizeof(nb42) atIndex:25];
[encoder setBytes:&nb50 length:sizeof(nb50) atIndex:26];
[encoder setBytes:&nb51 length:sizeof(nb51) atIndex:27];
[encoder setBytes:&nb52 length:sizeof(nb52) atIndex:28];
[encoder dispatchThreadgroups:MTLSizeMake(d_inner, n_seqs, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break;
case GGML_OP_MUL_MAT:
{
GGML_ASSERT(ne00 == ne10);
@@ -2624,9 +2746,14 @@ static enum ggml_status ggml_metal_graph_compute(
float scale;
float max_bias;
float logit_softcap;
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
memcpy(&logit_softcap, ((int32_t *) dst->op_params) + 2, sizeof(logit_softcap));
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
if (logit_softcap != 0.0f) {
scale /= logit_softcap;
}
const uint32_t n_head = src0->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
@@ -2677,30 +2804,31 @@ static enum ggml_status ggml_metal_graph_compute(
} else {
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
}
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
[encoder setBytes:&logit_softcap length:sizeof(logit_softcap) atIndex:28];
if (!use_vec_kernel) {
// half8x8 kernel

View File

@@ -667,6 +667,127 @@ kernel void kernel_diag_mask_inf_8(
}
}
// ref: ggml.c:ggml_compute_forward_ssm_conv_f32
// TODO: optimize
kernel void kernel_ssm_conv_f32(
device const void * src0,
device const void * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant int64_t & ne10,
constant int64_t & ne11,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant int64_t & ne0,
constant int64_t & ne1,
constant int64_t & ne2,
constant uint64_t & nb0,
constant uint64_t & nb1,
constant uint64_t & nb2,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t ir = tgpig.x;
const int64_t i2 = tgpig.y;
const int64_t i3 = tgpig.z;
const int64_t nc = ne10;
const int64_t ncs = ne00;
const int64_t nr = ne01;
const int64_t n_t = ne1;
const int64_t n_s = ne2;
device const float * s = (device const float *) ((device const char *) src0 + ir*nb01 + i2*nb00 + i3*nb02);
device const float * c = (device const float *) ((device const char *) src1 + ir*nb11);
device float * x = (device float *) ((device char *) dst + ir*nb0 + i2*nb1 + i3*nb2);
float sumf = 0.0f;
for (int64_t i0 = 0; i0 < nc; ++i0) {
sumf += s[i0] * c[i0];
}
x[0] = sumf;
}
// ref: ggml.c:ggml_compute_forward_ssm_scan_f32
// TODO: optimize
kernel void kernel_ssm_scan_f32(
device const void * src0,
device const void * src1,
device const void * src2,
device const void * src3,
device const void * src4,
device const void * src5,
device float * dst,
constant int64_t & d_state,
constant int64_t & d_inner,
constant int64_t & n_seq_tokens,
constant int64_t & n_seqs,
constant uint64_t & nb00,
constant uint64_t & nb01,
constant uint64_t & nb02,
constant uint64_t & nb10,
constant uint64_t & nb11,
constant uint64_t & nb12,
constant uint64_t & nb13,
constant uint64_t & nb20,
constant uint64_t & nb21,
constant uint64_t & nb22,
constant uint64_t & nb30,
constant uint64_t & nb31,
constant uint64_t & nb40,
constant uint64_t & nb41,
constant uint64_t & nb42,
constant uint64_t & nb50,
constant uint64_t & nb51,
constant uint64_t & nb52,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
uint3 ntg[[threads_per_threadgroup]]) {
const int64_t ir = tgpig.x;
const int64_t i3 = tgpig.y;
const int64_t nc = d_state;
const int64_t nr = d_inner;
const int64_t n_t = n_seq_tokens;
const int64_t n_s = n_seqs;
for (int64_t i2 = 0; i2 < n_t; ++i2) {
device const float * s0 = (device const float *) ((device const char *) src0 + ir*nb01 + i3*nb02);
device const float * x = (device const float *) ((device const char *) src1 + ir*nb10 + i2*nb11 + i3*nb12);
device const float * dt = (device const float *) ((device const char *) src2 + ir*nb20 + i2*nb21 + i3*nb22);
device const float * A = (device const float *) ((device const char *) src3 + ir*nb31);
device const float * B = (device const float *) ((device const char *) src4 + i2*nb41 + i3*nb42);
device const float * C = (device const float *) ((device const char *) src5 + i2*nb51 + i3*nb52);
device float * y = (device float *) ((device char *) dst + ir*nb10 + i2*nb11 + i3*nb12); // TODO: do not use src1 strides
device float * s = (device float *) ((device char *) dst + ir*nb01 + i3*nb02 + nb13);
if (i2 > 0) {
s0 = s;
}
// i1 == 0
float dt_soft_plus = dt[0] <= 20.0f ? log(1.0f + exp(dt[0])) : dt[0];
float x_dt = x[0] * dt_soft_plus;
float sumf = 0.0f;
for (int64_t i0 = 0; i0 < nc; ++i0) {
int64_t i = i0;
float state = (s0[i] * exp(dt_soft_plus * A[i])) + (B[i0] * x_dt);
sumf += state * C[i0];
s[i] = state;
}
y[0] = sumf;
}
}
kernel void kernel_norm(
device const void * src0,
device float * dst,
@@ -1976,6 +2097,7 @@ typedef void (flash_attn_ext_f16_t)(
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
constant float & logit_softcap,
threadgroup half * shared,
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
@@ -2014,6 +2136,7 @@ kernel void kernel_flash_attn_ext_f16(
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
constant float & logit_softcap,
threadgroup half * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
@@ -2138,19 +2261,6 @@ kernel void kernel_flash_attn_ext_f16(
}
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
const short tx = tiisg%4;
const short ty = tiisg/4;
if (mask != q) {
// mqk = mqk*scale + mask*slope
ss[8*cc + ty*TF + 2*tx + 0] = scale*ss[8*cc + ty*TF + 2*tx + 0] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0];
ss[8*cc + ty*TF + 2*tx + 1] = scale*ss[8*cc + ty*TF + 2*tx + 1] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1];
} else {
// mqk = mqk*scale
ss[8*cc + ty*TF + 2*tx + 0] *= scale;
ss[8*cc + ty*TF + 2*tx + 1] *= scale;
}
}
}
@@ -2162,10 +2272,19 @@ kernel void kernel_flash_attn_ext_f16(
float ms[Q];
for (short j = 0; j < Q; ++j) {
const short p = tiisg;
const float m = M[j];
const float s = ss[j*TF + p];
// scale and apply the logitcap / mask
float s = ss[j*TF + tiisg]*scale;
if (logit_softcap != 0.0f) {
s = logit_softcap*precise::tanh(s);
}
if (mask != q) {
// mqk = mqk + mask*slope
s += slope*mp[ic + j*nb31/sizeof(half) + tiisg];
}
smax = simd_max(max(smax, s));
M[j] = simd_max(max(M[j], s));
@@ -2176,7 +2295,7 @@ kernel void kernel_flash_attn_ext_f16(
S[j] = S[j]*ms[j] + simd_sum(vs);
// the P matrix from the paper (Q rows, C columns)
ss[j*TF + p] = vs;
ss[j*TF + tiisg] = vs;
}
// create a QxQ diagonal matrix for rescaling the output
@@ -2345,6 +2464,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
constant float & m0,
constant float & m1,
constant uint32_t & n_head_log2,
constant float & logit_softcap,
threadgroup half * shared [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint3 tpitg[[thread_position_in_threadgroup]],
@@ -2479,7 +2599,13 @@ kernel void kernel_flash_attn_ext_vec_f16(
// mqk = mqk*scale + mask*slope
if (tiisg == 0) {
mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f);
mqk *= scale;
if (logit_softcap != 0.0f) {
mqk = logit_softcap*precise::tanh(mqk);
}
mqk += (mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f;
ss4[cc] = mqk;
}

View File

@@ -38,6 +38,7 @@
#include "ggml-sycl/backend.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp"
bool ggml_sycl_loaded(void);
void ggml_sycl_free_data(struct ggml_tensor * tensor);
@@ -2482,6 +2483,7 @@ inline void ggml_sycl_op_mul_mat_sycl(
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
#if !GGML_SYCL_DNNL
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
@@ -2491,6 +2493,13 @@ inline void ggml_sycl_op_mul_mat_sycl(
dpct::library_data_t::real_half)));
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
#else
auto dnnl_stream = ctx.stream_dnnl(stream);
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ptr, DnnlGemmWrapper::to_dt<sycl::half>(),
src0_ptr, DnnlGemmWrapper::to_dt<sycl::half>(), dst_f16.get(), DnnlGemmWrapper::to_dt<sycl::half>());
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
to_fp32_sycl(dst_f16.get(), dst_dd_i, row_diff* src1_ncols, stream);
#endif
}
else {
// GGML_SYCL_DEBUG("ggml_sycl_op_mul_mat_sycl - fp32 path\n");
@@ -2513,13 +2522,18 @@ inline void ggml_sycl_op_mul_mat_sycl(
const float alpha = 1.0f;
const float beta = 0.0f;
#if !GGML_SYCL_DNNL
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
dpct::get_value(&alpha, *stream), src0_ddf_i, ne00,
src1_ddf1_i, ne10, dpct::get_value(&beta, *stream),
dst_dd_i, ldc)));
#else
auto dnnl_stream = ctx.stream_dnnl(stream);
DnnlGemmWrapper::row_gemm(dnnl_stream, false, true, src1_ncols, row_diff, ne10, src1_ddf1_i, DnnlGemmWrapper::to_dt<float>(),
src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
#endif
}
(void) dst;
(void) src1_ddq_i;

View File

@@ -19,6 +19,10 @@
#include "dpct/helper.hpp"
#include "ggml-sycl.h"
#include "presets.hpp"
#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
#endif
#define GGML_COMMON_DECL_SYCL
#define GGML_COMMON_IMPL_SYCL
@@ -277,6 +281,52 @@ struct ggml_backend_sycl_context {
return stream(device, 0);
}
#if GGML_SYCL_DNNL
dnnl::engine make_engine(sycl::queue* q) {
// Get the device associated with the queue
sycl::device dev = q->get_device();
// Get the context associated with the queue
sycl::context ctx = q->get_context();
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
return eng;
}
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
dnnl::stream stream_dnnl(int device, int _stream) {
auto q = stream(device, _stream);
return stream_dnnl(q);
}
dnnl::engine engine_dnnl(sycl::queue* qptr) {
auto it = engine_map.find(qptr);
if (it == engine_map.end()) {
auto eng = make_engine(qptr);
engine_map[qptr] = eng;
return eng;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl(sycl::queue* qptr) {
auto it = stream_map.find(qptr);
if (it == stream_map.end()) {
auto eng = engine_dnnl(qptr);
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
stream_map[qptr] = stream;
return stream;
}
else
{
return it->second;
}
}
dnnl::stream stream_dnnl() {
return stream_dnnl(device, 0);
}
#endif
// pool
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];

101
ggml/src/ggml-sycl/gemm.hpp Normal file
View File

@@ -0,0 +1,101 @@
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
#ifndef GGML_SYCL_GEMM_HPP
#define GGML_SYCL_GEMM_HPP
#include <fstream>
#include <iostream>
#include "ggml-sycl.h"
#if GGML_SYCL_DNNL
#include "dnnl.hpp"
#include "dnnl_sycl.hpp"
class DnnlGemmWrapper {
public:
using dt = dnnl::memory::data_type;
using tag = dnnl::memory::format_tag;
template<typename T>
static constexpr dt to_dt() {
if constexpr (std::is_same_v<T, float>) return dt::f32;
else if constexpr (std::is_same_v<T, sycl::half>) return dt::f16;
else static_assert(0);
}
static inline void row_gemm(sycl::queue& q, bool a_trans,
bool b_trans, int m, int n, int k,
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
{
// Get the device associated with the queue
sycl::device dev = q.get_device();
// Get the context associated with the queue
sycl::context ctx = q.get_context();
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
const dnnl::stream stream = dnnl::sycl_interop::make_stream(eng, q);
dnnl::memory::dims a_dims = { m, k };
dnnl::memory::dims b_dims = { k, n };
dnnl::memory::dims c_dims = { m, n };
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
// Create the primitive.
auto matmul_prim = dnnl::matmul(matmul_pd);
// Primitive arguments.
std::unordered_map<int, dnnl::memory> matmul_args;
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
matmul_args.insert({ DNNL_ARG_DST, c_mem });
matmul_prim.execute(stream, matmul_args);
}
static inline void row_gemm(const dnnl::stream& stream, bool a_trans,
bool b_trans, int m, int n, int k,
const void* a, dt at, const void* b, dt bt, void* c, dt ct)
{
auto const eng = stream.get_engine();
dnnl::memory::dims a_dims = { m, k };
dnnl::memory::dims b_dims = { k, n };
dnnl::memory::dims c_dims = { m, n };
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
// Create the primitive.
auto matmul_prim = dnnl::matmul(matmul_pd);
// Primitive arguments.
std::unordered_map<int, dnnl::memory> matmul_args;
matmul_args.insert({ DNNL_ARG_SRC, a_mem });
matmul_args.insert({ DNNL_ARG_WEIGHTS, b_mem });
matmul_args.insert({ DNNL_ARG_DST, c_mem });
matmul_prim.execute(stream, matmul_args);
}
};
#endif
#endif // GGML_SYCL_GEMM_HPP

View File

@@ -7095,7 +7095,8 @@ struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias) {
float max_bias,
float logit_softcap) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
@@ -7122,7 +7123,7 @@ struct ggml_tensor * ggml_flash_attn_ext(
int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
float params[] = { scale, max_bias };
float params[] = { scale, max_bias, logit_softcap };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_FLASH_ATTN_EXT;
@@ -7142,7 +7143,7 @@ void ggml_flash_attn_ext_set_prec(
const int32_t prec_i32 = (int32_t) prec;
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
ggml_set_op_params_i32(a, 3, prec_i32); // scale is on first pos, max_bias on second
}
// ggml_flash_attn_back
@@ -15271,11 +15272,17 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float scale = 1.0f;
float max_bias = 0.0f;
float scale = 1.0f;
float max_bias = 0.0f;
float logit_softcap = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
if (logit_softcap != 0) {
scale /= logit_softcap;
}
const uint32_t n_head = neq2;
const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
@@ -15339,7 +15346,13 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
s = s*scale + mv; // scale KQ value and apply mask
s = s*scale; // scale KQ value
if (logit_softcap != 0.0f) {
s = logit_softcap*tanhf(s);
}
s += mv; // apply mask
const float Mold = M;
@@ -15348,7 +15361,7 @@ static void ggml_compute_forward_flash_attn_ext_f16(
const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
if (v->type== GGML_TYPE_F16) {
if (v->type == GGML_TYPE_F16) {
if (s > M) {
// s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
M = s;
@@ -15415,7 +15428,7 @@ static void ggml_compute_forward_flash_attn_ext(
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst) {
switch (dst->op_params[2]) {
switch (dst->op_params[3]) {
case GGML_PREC_DEFAULT:
case GGML_PREC_F32:
{
@@ -15885,8 +15898,8 @@ static void ggml_compute_forward_ssm_scan_f32(
const float * A = (const float *) ((const char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[1]) + i3*(src4->nb[2])); // {d_state, n_t, n_s}
const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[1]) + i3*(src5->nb[2])); // {d_state, n_t, n_s}
float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
float * y = ( float *) (( char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1]) + i3*(src1->nb[2])); // {d_inner, n_t, n_s}
float * s = ( float *) (( char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[3]); // {d_state, d_inner, n_s}
// use the output as the source for the next token-wise iterations
if (i2 > 0) { s0 = s; }

View File

@@ -31,11 +31,17 @@ void llama_log_callback_default(ggml_log_level level, const char * text, void *
static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return; // Avoid infinite loop if 'search' is an empty string
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
while ((pos = s.find(search, pos)) != std::string::npos) {
s.replace(pos, search.length(), replace);
pos += replace.length();
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}

View File

@@ -6605,6 +6605,7 @@ static bool llm_load_tensors(
const int64_t n_embd_gqa = n_embd_v_gqa;
const int64_t n_vocab = hparams.n_vocab;
const int64_t n_vocab_type = hparams.n_vocab_type;
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
const int64_t n_expert_used = hparams.n_expert_used;
const int64_t n_ctx_train = hparams.n_ctx_train;
@@ -6662,7 +6663,7 @@ static bool llm_load_tensors(
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
if (n_expert == 0) {
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
@@ -8115,8 +8116,8 @@ static bool llm_load_tensors(
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + (hparams.n_embd_head_k << 2)});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + (hparams.n_embd_head_k << 2)});
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
@@ -8193,7 +8194,7 @@ static bool llm_load_tensors(
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_embd/n_head/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
@@ -8874,9 +8875,10 @@ static struct ggml_tensor * llm_build_kqv(
0);
cb(v, "v", il);
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_GEMMA2) {
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
}
@@ -8885,7 +8887,7 @@ static struct ggml_tensor * llm_build_kqv(
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
cb(kq, "kq", il);
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON) {
if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX || model.arch == LLM_ARCH_QWEN2 || model.arch == LLM_ARCH_NEMOTRON || model.arch == LLM_ARCH_CHATGLM) {
// for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
// ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
@@ -16820,7 +16822,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// TODO: avoid hardcoded tensor names - use the TN_* constants
if (name.find("attn_v.weight") != std::string::npos ||
name.find("attn_qkv.weight") != std::string::npos) {
name.find("attn_qkv.weight") != std::string::npos ||
name.find("attn_kv_b.weight")!= std::string::npos) {
++qs.n_attention_wv;
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
qs.has_output = true;
@@ -17533,12 +17536,6 @@ struct llama_context * llama_new_context_with_model(
params.flash_attn = false;
}
if (params.flash_attn && model->hparams.attn_soft_cap) {
LLAMA_LOG_WARN("%s: flash_attn is not compatible with attn_soft_cap - forcing off\n", __func__);
params.flash_attn = false;
}
if (params.flash_attn && model->hparams.n_embd_head_k != model->hparams.n_embd_head_v) {
LLAMA_LOG_WARN("%s: flash_attn requires n_embd_head_k == n_embd_head_v - forcing off\n", __func__);
params.flash_attn = false;

View File

@@ -949,6 +949,58 @@ struct test_rms_norm : public test_case {
}
};
// GGML_OP_SSM_CONV
struct test_ssm_conv : public test_case {
const ggml_type type;
const std::array<int64_t, 4> ne_a;
const std::array<int64_t, 4> ne_b;
std::string vars() override {
return VARS_TO_STR3(type, ne_a, ne_b);
}
test_ssm_conv(ggml_type type = GGML_TYPE_F32,
std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
: type(type), ne_a(ne_a), ne_b(ne_b) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
return out;
}
};
// GGML_OP_SSM_SCAN
struct test_ssm_scan : public test_case {
const ggml_type type;
const int64_t d_state;
const int64_t d_inner;
const int64_t n_seq_tokens;
const int64_t n_seqs;
std::string vars() override {
return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
}
test_ssm_scan(ggml_type type = GGML_TYPE_F32,
int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
: type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
return out;
}
};
// GGML_OP_MUL_MAT
struct test_mul_mat : public test_case {
const ggml_type type_a;
@@ -1652,19 +1704,20 @@ struct test_flash_attn_ext : public test_case {
const bool mask; // use mask
const float max_bias; // ALiBi
const float logit_softcap; // Gemma 2
const ggml_type type_KV;
std::string vars() override {
return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
return VARS_TO_STR8(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV);
}
double max_nmse_err() override {
return 5e-4;
}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}
test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
: hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), type_KV(type_KV) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
@@ -1673,7 +1726,7 @@ struct test_flash_attn_ext : public test_case {
ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
return out;
}
};
@@ -2239,6 +2292,12 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
}
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
#if 1
for (ggml_type type_a : base_types) {
for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
@@ -2437,11 +2496,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (bool mask : { true, false } ) {
for (float max_bias : { 0.0f, 8.0f }) {
if (!mask && max_bias > 0.0f) continue;
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) {
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
for (float logit_softcap : {0.0f, 10.0f}) {
if (hs != 128 && logit_softcap != 0.0f) continue;
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) {
for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, logit_softcap, type_KV));
}
}
}
}
@@ -2483,7 +2545,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
}
GGML_ABORT("fatal error");
return false;
}
static void usage(char ** argv) {

View File

@@ -14,7 +14,7 @@ MODELS_REPO_URL=https://huggingface.co/ggml-org/$MODELS_REPO
# Clone the Hugging Face repository if the directory does not exist
if [ ! -d "$MODELS_REPO" ]; then
echo "Cloning the Hugging Face repository..."
git clone $MODELS_REPO_URL
git clone $MODELS_REPO_URL --depth 1
else
echo "Repository already exists. Skipping clone."
fi

View File

@@ -166,12 +166,12 @@ static void test_sampler_queue(
for (auto s : samplers_sequence) {
switch (s){
case 'k': llama_sample_top_k (nullptr, &candidates_p, top_k, 1); break;
case 'f': GGML_ABORT("tail_free test not implemented"); break;
case 'y': GGML_ABORT("typical test not implemented"); break;
case 'f': GGML_ABORT("tail_free test not implemented");
case 'y': GGML_ABORT("typical test not implemented");
case 'p': llama_sample_top_p (nullptr, &candidates_p, top_p, 1); break;
case 'm': llama_sample_min_p (nullptr, &candidates_p, min_p, 1); break;
case 't': GGML_ABORT("temperature test not implemented"); break;
default : GGML_ABORT("Unknown sampler"); break;
case 't': GGML_ABORT("temperature test not implemented");
default : GGML_ABORT("Unknown sampler");
}
llama_sample_softmax(nullptr, &candidates_p); // make sure tokens are sorted for tests