mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
13 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a1cdd29cd2 | ||
|
|
5a317898e8 | ||
|
|
8a203f9fa1 | ||
|
|
4fd3e29297 | ||
|
|
2d5db48371 | ||
|
|
6986c7835a | ||
|
|
943e6081cc | ||
|
|
7694b52b9a | ||
|
|
79e3efb0e9 | ||
|
|
4b7e245adf | ||
|
|
5ea4339273 | ||
|
|
ee9654138a | ||
|
|
dc271c52ed |
22
README.md
22
README.md
@@ -9,6 +9,7 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
**Hot topics:**
|
||||
|
||||
- Quantization formats `Q4` and `Q8` have changed again (19 May) - [(info)](https://github.com/ggerganov/llama.cpp/pull/1508)
|
||||
- Quantization formats `Q4` and `Q5` have changed - requantize any old models [(info)](https://github.com/ggerganov/llama.cpp/pull/1405)
|
||||
- [Roadmap May 2023](https://github.com/ggerganov/llama.cpp/discussions/1220)
|
||||
|
||||
@@ -80,6 +81,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
@@ -333,16 +335,16 @@ Several quantization methods are supported. They differ in the resulting model d
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0910 | 5.9862 | 5.9481 | 5.9069 |
|
||||
| 7B | file size | 13.0G | 4.0G | 4.8G | 4.4G | 4.8G | 7.1G |
|
||||
| 7B | ms/tok @ 4th | 128 | 50 | 54 | 75 | 83 | 75 |
|
||||
| 7B | ms/tok @ 8th | 123 | 44 | 52 | 53 | 58 | 72 |
|
||||
| 7B | bits/weight | 16.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0 |
|
||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3607 | 5.2856 | 5.2706 | 5.2548 |
|
||||
| 13B | file size | 25.0G | 7.6G | 9.1G | 8.4G | 9.1G | 14G |
|
||||
| 13B | ms/tok @ 4th | 239 | 93 | 101 | 150 | 164 | 141 |
|
||||
| 13B | ms/tok @ 8th | 240 | 81 | 96 | 96 | 104 | 136 |
|
||||
| 13B | bits/weight | 16.0 | 5.0 | 6.0 | 5.5 | 6.0 | 9.0 |
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
| 7B | file size | 13.0G | 3.5G | 3.9G | 4.3G | 4.7G | 6.7G |
|
||||
| 7B | ms/tok @ 4th | 127 | 55 | 54 | 76 | 83 | 72 |
|
||||
| 7B | ms/tok @ 8th | 122 | 43 | 45 | 52 | 56 | 67 |
|
||||
| 7B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
| 13B | perplexity | 5.2543 | 5.3860 | 5.3608 | 5.2856 | 5.2706 | 5.2548 |
|
||||
| 13B | file size | 25.0G | 6.8G | 7.6G | 8.3G | 9.1G | 13G |
|
||||
| 13B | ms/tok @ 4th | - | 103 | 105 | 148 | 160 | 131 |
|
||||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
### Perplexity (measuring model quality)
|
||||
|
||||
|
||||
151
examples/chat-persistent.sh
Executable file
151
examples/chat-persistent.sh
Executable file
@@ -0,0 +1,151 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euo pipefail
|
||||
|
||||
cd "$(dirname "$0")/.." || exit
|
||||
|
||||
if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
|
||||
echo >&2 "error: PROMPT_CACHE_FILE and CHAT_SAVE_DIR must be provided"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
|
||||
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
|
||||
USER_NAME="${USER_NAME:-User}"
|
||||
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
||||
DATE_TIME="$(date +%H:%M)"
|
||||
DATE_YEAR="$(date +%Y)"
|
||||
|
||||
LOG="${CHAT_SAVE_DIR}/main.log"
|
||||
LOG_BG="${CHAT_SAVE_DIR}/main-bg.log"
|
||||
CUR_PROMPT_FILE="${CHAT_SAVE_DIR}/current-prompt.txt"
|
||||
CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
|
||||
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
|
||||
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
|
||||
|
||||
SESSION_SIZE_MSG_PATTERN='main: session file matches \d+ / \d+'
|
||||
SAMPLE_TIME_MSG_PATTERN='sample time =\s+\d+.\d+ ms /\s+\d+'
|
||||
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
|
||||
|
||||
CTX_SIZE=2048
|
||||
CTX_ROTATE_POINT=$((CTX_SIZE * 3 / 5)) # REVIEW
|
||||
OPTS=(--model "$MODEL" --ctx_size "$CTX_SIZE" --repeat_last_n 256 "$@")
|
||||
|
||||
# An unbuffered `tail -c+N`
|
||||
skip_bytes() {
|
||||
LANG=C IFS= read -r -n "$1" -d '' c
|
||||
while LANG=C IFS= read -r -n 1 -d '' c; do
|
||||
printf '%s' "$c"
|
||||
done
|
||||
}
|
||||
|
||||
mkdir -p "$CHAT_SAVE_DIR"
|
||||
echo >"$LOG"
|
||||
trap "tail -n100 ${LOG}" EXIT
|
||||
|
||||
if [[ ! -e "$CUR_PROMPT_FILE" ]]; then
|
||||
sed -e "s/\[\[USER_NAME\]\]/${USER_NAME}/g" \
|
||||
-e "s/\[\[AI_NAME\]\]/${AI_NAME}/g" \
|
||||
-e "s/\[\[DATE_TIME\]\]/${DATE_TIME}/g" \
|
||||
-e "s/\[\[DATE_YEAR\]\]/${DATE_YEAR}/g" \
|
||||
"$PROMPT_TEMPLATE" >"$CUR_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ ! -e "$NEXT_PROMPT_FILE" ]]; then
|
||||
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ "$(tail -c4 "$NEXT_PROMPT_FILE")" != "..." ]]; then
|
||||
echo '...' >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
|
||||
echo 'Prompt cache does not exist, building...'
|
||||
# Default batch_size to 8 here for better user feedback during initial prompt processing
|
||||
./main 2>>"$LOG" \
|
||||
--batch_size 8 \
|
||||
"${OPTS[@]}" \
|
||||
--prompt-cache "$PROMPT_CACHE_FILE" \
|
||||
--file "$CUR_PROMPT_FILE" \
|
||||
--n_predict 1
|
||||
echo
|
||||
echo 'Done!'
|
||||
fi
|
||||
|
||||
if [[ ! -e "$CUR_PROMPT_CACHE" ]]; then
|
||||
cp "$PROMPT_CACHE_FILE" "$CUR_PROMPT_CACHE"
|
||||
fi
|
||||
if [[ ! -e "$NEXT_PROMPT_CACHE" ]]; then
|
||||
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
|
||||
fi
|
||||
|
||||
printf '%s ' "$(< "$CUR_PROMPT_FILE")"
|
||||
n_tokens=0
|
||||
|
||||
while read -e line; do
|
||||
# Limit generation to remaining context, with a buffer and estimating 2 chars/token for input
|
||||
n_predict=$((CTX_SIZE - n_tokens - ${#line} / 2 - 32))
|
||||
|
||||
# Swap prompts when we're about to run out of context
|
||||
if ((n_predict <= 0)); then
|
||||
wait # for background main (below) to finish with next prompt
|
||||
mv "$NEXT_PROMPT_FILE" "$CUR_PROMPT_FILE"
|
||||
mv "$NEXT_PROMPT_CACHE" "$CUR_PROMPT_CACHE"
|
||||
|
||||
sed -r "$SED_DELETE_MESSAGES" "$CUR_PROMPT_FILE" >"$NEXT_PROMPT_FILE"
|
||||
echo '...' >>"$NEXT_PROMPT_FILE"
|
||||
cp "$PROMPT_CACHE_FILE" "$NEXT_PROMPT_CACHE"
|
||||
|
||||
n_tokens=0
|
||||
n_predict=$((CTX_SIZE / 2))
|
||||
fi
|
||||
|
||||
echo " ${line}" >>"$CUR_PROMPT_FILE"
|
||||
if ((n_tokens > CTX_ROTATE_POINT)); then
|
||||
echo " ${line}" >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
n_prompt_len_pre=$(($(wc -c <"$CUR_PROMPT_FILE")))
|
||||
|
||||
printf '%s: ' "$AI_NAME" >>"$CUR_PROMPT_FILE"
|
||||
|
||||
./main 2>>"$LOG" "${OPTS[@]}" \
|
||||
--prompt-cache "$CUR_PROMPT_CACHE" \
|
||||
--prompt-cache-all \
|
||||
--file "$CUR_PROMPT_FILE" \
|
||||
--reverse-prompt "${USER_NAME}:" \
|
||||
--n_predict "$n_predict" |
|
||||
skip_bytes 1 | # skip BOS token added by ./main
|
||||
tee "$CUR_PROMPT_FILE.tmp" | # save prompt + generation to tmp file
|
||||
skip_bytes "$n_prompt_len_pre" # print generation
|
||||
|
||||
mv "$CUR_PROMPT_FILE.tmp" "$CUR_PROMPT_FILE"
|
||||
|
||||
# if we hit n_predict instead of reverse-prompt, we need to add the prompt
|
||||
if [[ "$(tail -n1 "$CUR_PROMPT_FILE")" != "${USER_NAME}:" ]]; then
|
||||
printf '\n%s:' "$USER_NAME"
|
||||
printf '\n%s:' "$USER_NAME" >> "$CUR_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
printf ' '
|
||||
|
||||
# HACK get num tokens from debug message
|
||||
# TODO get both messages in one go
|
||||
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
||||
! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||
echo >&2 "Couldn't get number of tokens from ./main output!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
n_tokens=$(($(cut -d/ -f2 <<<"$session_size_msg") + $(cut -d/ -f2 <<<"$sample_time_msg")))
|
||||
|
||||
if ((n_tokens > CTX_ROTATE_POINT)); then
|
||||
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"
|
||||
fi
|
||||
|
||||
# Update cache for next prompt in background, ideally during user input
|
||||
./main >>"$LOG_BG" 2>&1 "${OPTS[@]}" \
|
||||
--prompt-cache "$NEXT_PROMPT_CACHE" \
|
||||
--file "$NEXT_PROMPT_FILE" \
|
||||
--n_predict 1 &
|
||||
done
|
||||
@@ -321,12 +321,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else if (arg == "--n-parts") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_parts = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(0);
|
||||
@@ -357,7 +351,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
if (params.prompt_cache_all &&
|
||||
(params.interactive || params.interactive_first ||
|
||||
params.instruct || params.antiprompt.size())) {
|
||||
params.instruct)) {
|
||||
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(1);
|
||||
@@ -379,8 +373,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
fprintf(stderr, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
fprintf(stderr, " run in interactive mode and poll user input upon seeing PROMPT (can be\n");
|
||||
fprintf(stderr, " specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " halt generation at PROMPT, return control in interactive mode\n");
|
||||
fprintf(stderr, " (can be specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
@@ -418,7 +412,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value\n");
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
fprintf(stderr, " --n-parts N number of model parts (default: -1 = determine from dimensions)\n");
|
||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
@@ -473,7 +466,6 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
@@ -757,7 +749,7 @@ bool console_readline(console_state & con_st, std::string & line) {
|
||||
break;
|
||||
}
|
||||
|
||||
if (input_char == WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
@@ -772,7 +764,7 @@ bool console_readline(console_state & con_st, std::string & line) {
|
||||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != WEOF) {
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -24,7 +24,6 @@ struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_parts = -1; // amount of model parts (-1 = determine from model dimensions)
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
@@ -45,15 +44,15 @@ struct gpt_params {
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
|
||||
@@ -208,8 +208,8 @@ int main(int argc, char ** argv) {
|
||||
params.antiprompt.push_back("### Instruction:\n\n");
|
||||
}
|
||||
|
||||
// enable interactive mode if reverse prompt or interactive start is specified
|
||||
if (params.antiprompt.size() != 0 || params.interactive_first) {
|
||||
// enable interactive mode if interactive start is specified
|
||||
if (params.interactive_first) {
|
||||
params.interactive = true;
|
||||
}
|
||||
|
||||
@@ -241,7 +241,7 @@ int main(int argc, char ** argv) {
|
||||
sigint_action.sa_flags = 0;
|
||||
sigaction(SIGINT, &sigint_action, NULL);
|
||||
#elif defined (_WIN32)
|
||||
auto console_ctrl_handler = [](DWORD ctrl_type) -> BOOL {
|
||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||
};
|
||||
SetConsoleCtrlHandler(static_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||
@@ -305,7 +305,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<llama_token> embd;
|
||||
|
||||
while (n_remain != 0 || params.interactive) {
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
if (embd.size() > 0) {
|
||||
// infinite text generation via context swapping
|
||||
@@ -503,9 +503,8 @@ int main(int argc, char ** argv) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
}
|
||||
|
||||
// in interactive mode, and not currently processing queued inputs;
|
||||
// check if we should prompt the user for more
|
||||
if (params.interactive && (int) embd_inp.size() <= n_consumed) {
|
||||
// if not currently processing queued inputs;
|
||||
if ((int) embd_inp.size() <= n_consumed) {
|
||||
|
||||
// check for reverse prompt
|
||||
if (params.antiprompt.size()) {
|
||||
@@ -516,10 +515,21 @@ int main(int argc, char ** argv) {
|
||||
|
||||
is_antiprompt = false;
|
||||
// Check if each of the reverse prompts appears at the end of the output.
|
||||
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
|
||||
// so we'll compensate for that by widening the search window a bit.
|
||||
for (std::string & antiprompt : params.antiprompt) {
|
||||
if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
|
||||
is_interacting = true;
|
||||
size_t extra_padding = params.interactive ? 0 : 2;
|
||||
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
|
||||
: 0;
|
||||
|
||||
if (last_output.find(antiprompt.c_str(), search_start_pos) != std::string::npos) {
|
||||
if (params.interactive) {
|
||||
is_interacting = true;
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
}
|
||||
is_antiprompt = true;
|
||||
fflush(stdout);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -321,7 +321,6 @@ int main(int argc, char ** argv) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = 256;
|
||||
lparams.n_parts = 1;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = false;
|
||||
lparams.use_mlock = false;
|
||||
|
||||
@@ -26,7 +26,6 @@ int main(int argc, char ** argv) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_parts = params.n_parts;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
|
||||
14
ggml-cuda.cu
14
ggml-cuda.cu
@@ -42,19 +42,19 @@ typedef void (*dequantize_mul_mat_vec_cuda_t)(const void * vx, const float * y,
|
||||
#define QK4_0 32
|
||||
#define QR4_0 2
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
half d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
#define QR4_1 2
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
half d; // delta
|
||||
half m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
#define QR5_0 2
|
||||
@@ -78,10 +78,10 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) +
|
||||
#define QK8_0 32
|
||||
#define QR8_0 1
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
half d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
|
||||
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
||||
#define CUDA_DMMV_BLOCK_SIZE 32 // dmmv = dequantize_mul_mat_vec
|
||||
|
||||
295
ggml.c
295
ggml.c
@@ -201,9 +201,6 @@ typedef double ggml_float;
|
||||
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
||||
#endif
|
||||
|
||||
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
||||
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
||||
|
||||
#elif defined(__POWER9_VECTOR__)
|
||||
|
||||
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
||||
@@ -772,18 +769,18 @@ int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
||||
|
||||
#define QK4_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
ggml_fp16_t d; // delta
|
||||
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
||||
} block_q4_0;
|
||||
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
|
||||
|
||||
#define QK4_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float m; // min
|
||||
ggml_fp16_t d; // delta
|
||||
ggml_fp16_t m; // min
|
||||
uint8_t qs[QK4_1 / 2]; // nibbles / quants
|
||||
} block_q4_1;
|
||||
static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
|
||||
|
||||
#define QK5_0 32
|
||||
typedef struct {
|
||||
@@ -804,16 +801,16 @@ static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) +
|
||||
|
||||
#define QK8_0 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
ggml_fp16_t d; // delta
|
||||
int8_t qs[QK8_0]; // quants
|
||||
} block_q8_0;
|
||||
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
|
||||
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
|
||||
|
||||
#define QK8_1 32
|
||||
typedef struct {
|
||||
float d; // delta
|
||||
float s; // d * sum(qs[i])
|
||||
int8_t qs[QK8_1]; // quants
|
||||
float d; // delta
|
||||
float s; // d * sum(qs[i])
|
||||
int8_t qs[QK8_1]; // quants
|
||||
} block_q8_1;
|
||||
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
|
||||
|
||||
@@ -840,7 +837,7 @@ static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * r
|
||||
const float d = max / -8;
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = d;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const float x0 = x[i*qk + 0 + j]*id;
|
||||
@@ -880,8 +877,8 @@ static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * r
|
||||
const float d = (max - min) / ((1 << 4) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = d;
|
||||
y[i].m = min;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
y[i].m = GGML_FP32_TO_FP16(min);
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const float x0 = (x[i*qk + 0 + j] - min)*id;
|
||||
@@ -1012,7 +1009,7 @@ static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * r
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = d;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const float x0 = x[i*QK8_0 + j]*id;
|
||||
@@ -1047,7 +1044,7 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int
|
||||
const float d = amax / ((1 << 7) - 1);
|
||||
const float id = d ? 1.0f/d : 0.0f;
|
||||
|
||||
y[i].d = d;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
|
||||
for (int j = 0; j < 8; j++) {
|
||||
const float32x4_t v = vmulq_n_f32(srcv[j], id);
|
||||
@@ -1082,7 +1079,7 @@ static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int
|
||||
|
||||
// Quantize these floats
|
||||
const float d = maxScalar / 127.f;
|
||||
y[i].d = d;
|
||||
y[i].d = GGML_FP32_TO_FP16(d);
|
||||
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
|
||||
const __m256 mul = _mm256_set1_ps( id );
|
||||
|
||||
@@ -1181,7 +1178,7 @@ static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * r
|
||||
sum += y[i].qs[QK8_1/2 + j];
|
||||
}
|
||||
|
||||
y[i].s = d * sum;
|
||||
y[i].s = sum*d;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1333,7 +1330,7 @@ static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict
|
||||
const int nb = k / qk;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
const float d = x[i].d;
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int x0 = (x[i].qs[j] & 0x0F) - 8;
|
||||
@@ -1353,8 +1350,8 @@ static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict
|
||||
const int nb = k / qk;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
const float d = x[i].d;
|
||||
const float m = x[i].m;
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
const float m = GGML_FP16_TO_FP32(x[i].m);
|
||||
|
||||
for (int j = 0; j < qk/2; ++j) {
|
||||
const int x0 = (x[i].qs[j] & 0x0F);
|
||||
@@ -1429,7 +1426,7 @@ static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, in
|
||||
const block_q8_0 * restrict x = vx;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
const float d = x[i].d;
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
|
||||
for (int j = 0; j < qk; ++j) {
|
||||
y[i*qk + j] = x[i].qs[j]*d;
|
||||
@@ -1693,8 +1690,9 @@ quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
|
||||
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
|
||||
float tmp[8];
|
||||
|
||||
for (int i = 0; i < 8; i++)
|
||||
for (int i = 0; i < 8; i++) {
|
||||
tmp[i] = GGML_FP16_TO_FP32(x[i]);
|
||||
}
|
||||
|
||||
return _mm256_loadu_ps(tmp);
|
||||
}
|
||||
@@ -2114,8 +2112,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
const block_q8_0 * restrict y0 = &y[i + 0];
|
||||
const block_q8_0 * restrict y1 = &y[i + 1];
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
||||
const int8x16_t s8b = vdupq_n_s8(0x8);
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
||||
const int8x16_t s8b = vdupq_n_s8(0x8);
|
||||
|
||||
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
|
||||
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
|
||||
@@ -2143,8 +2141,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
|
||||
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
#else
|
||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
|
||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
|
||||
@@ -2161,8 +2159,8 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2174,7 +2172,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
/* Compute combined scale for the block */
|
||||
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
|
||||
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
||||
|
||||
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
||||
|
||||
@@ -2198,7 +2196,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
// Compute combined scale for the block
|
||||
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
|
||||
const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
||||
|
||||
const __m128i lowMask = _mm_set1_epi8(0xF);
|
||||
const __m128i off = _mm_set1_epi8(8);
|
||||
@@ -2240,7 +2238,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
_mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 0 and 1
|
||||
const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
|
||||
const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
|
||||
|
||||
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
|
||||
|
||||
@@ -2258,7 +2256,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
_mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 2 and 3
|
||||
const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
|
||||
const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
|
||||
|
||||
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
|
||||
|
||||
@@ -2291,7 +2289,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
_mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 0 and 1
|
||||
const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
|
||||
const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
|
||||
|
||||
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
|
||||
|
||||
@@ -2309,7 +2307,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
|
||||
|
||||
// Compute combined scale for the block 2 and 3
|
||||
const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
|
||||
const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
|
||||
|
||||
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
|
||||
|
||||
@@ -2357,7 +2355,7 @@ static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void *
|
||||
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
sumf += (x[i].d*y[i].d)*sumi;
|
||||
sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -2387,7 +2385,7 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
||||
const block_q8_1 * restrict y0 = &y[i + 0];
|
||||
const block_q8_1 * restrict y1 = &y[i + 1];
|
||||
|
||||
summs += x0->m * y0->s + x1->m * y1->s;
|
||||
summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0x0F);
|
||||
|
||||
@@ -2411,8 +2409,8 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
||||
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
|
||||
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||
#else
|
||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
|
||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
|
||||
@@ -2429,8 +2427,8 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2443,13 +2441,13 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
||||
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float * d0 = &x[i].d;
|
||||
const float * d1 = &y[i].d;
|
||||
const float d0 = GGML_FP16_TO_FP32(x[i].d);
|
||||
const float d1 = y[i].d;
|
||||
|
||||
summs += x[i].m * y[i].s;
|
||||
summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
|
||||
|
||||
const __m256 d0v = _mm256_broadcast_ss( d0 );
|
||||
const __m256 d1v = _mm256_broadcast_ss( d1 );
|
||||
const __m256 d0v = _mm256_set1_ps( d0 );
|
||||
const __m256 d1v = _mm256_set1_ps( d1 );
|
||||
|
||||
// Compute combined scales
|
||||
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
|
||||
@@ -2483,7 +2481,7 @@ static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void *
|
||||
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -2559,16 +2557,13 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||
|
||||
const float x0d = GGML_FP16_TO_FP32(x0->d);
|
||||
const float x1d = GGML_FP16_TO_FP32(x1->d);
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
#else
|
||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
||||
@@ -2585,8 +2580,8 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2661,7 +2656,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; i++) {
|
||||
/* Compute combined scale for the block */
|
||||
const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
|
||||
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
||||
|
||||
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
||||
__m256i bxhi = bytes_from_bits_32(x[i].qh);
|
||||
@@ -2685,7 +2680,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; i++) {
|
||||
/* Compute combined scale for the block */
|
||||
const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
|
||||
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
||||
|
||||
__m256i bx = bytes_from_nibbles_32(x[i].qs);
|
||||
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
|
||||
@@ -2728,7 +2723,7 @@ static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void *
|
||||
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
|
||||
}
|
||||
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
|
||||
sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -2810,16 +2805,13 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||
|
||||
const float x0d = GGML_FP16_TO_FP32(x0->d);
|
||||
const float x1d = GGML_FP16_TO_FP32(x1->d);
|
||||
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
|
||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
|
||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||
#else
|
||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
||||
@@ -2836,8 +2828,8 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -2897,15 +2889,14 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
|
||||
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
|
||||
|
||||
const float x0d = GGML_FP16_TO_FP32(x0->d);
|
||||
|
||||
// dot product
|
||||
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
|
||||
wasm_i32x4_add(
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
|
||||
sumv = wasm_f32x4_add(sumv,
|
||||
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
|
||||
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
|
||||
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
|
||||
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
|
||||
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d));
|
||||
}
|
||||
|
||||
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
|
||||
@@ -2927,7 +2918,7 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
|
||||
bx = _mm256_or_si256(bx, bxhi);
|
||||
|
||||
const __m256 dy = _mm256_broadcast_ss(&y[i].d);
|
||||
const __m256 dy = _mm256_set1_ps(y[i].d);
|
||||
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
||||
|
||||
const __m256 q = mul_sum_us8_pairs_float(bx, by);
|
||||
@@ -2961,7 +2952,7 @@ static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void *
|
||||
bxh = _mm_or_si128(bxh, bxhih);
|
||||
bx = _mm256_set_m128i(bxh, bxl);
|
||||
|
||||
const __m256 dy = _mm256_broadcast_ss(&y[i].d);
|
||||
const __m256 dy = _mm256_set1_ps(y[i].d);
|
||||
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
||||
|
||||
const __m256 q = mul_sum_us8_pairs_float(bx, by);
|
||||
@@ -3031,11 +3022,11 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
|
||||
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
|
||||
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
|
||||
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
|
||||
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
|
||||
#else
|
||||
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
|
||||
@@ -3053,8 +3044,8 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
|
||||
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
||||
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
||||
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
|
||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -3066,7 +3057,7 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
|
||||
// Main loop
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
// Compute combined scale for the block
|
||||
const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
|
||||
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
|
||||
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
|
||||
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
|
||||
|
||||
@@ -3092,7 +3083,7 @@ static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void *
|
||||
sumi += x[i].qs[j]*y[i].qs[j];
|
||||
}
|
||||
|
||||
sumf += (x[i].d*y[i].d)*sumi;
|
||||
sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
|
||||
}
|
||||
|
||||
*s = sumf;
|
||||
@@ -3599,6 +3590,9 @@ struct ggml_compute_params {
|
||||
// work buffer for all threads
|
||||
size_t wsize;
|
||||
void * wdata;
|
||||
|
||||
// atomic counter used to distribute chunks of work
|
||||
atomic_int * aic;
|
||||
};
|
||||
|
||||
//
|
||||
@@ -9039,18 +9033,20 @@ static void ggml_compute_forward_rms_norm_f32(
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
atomic_store(params->aic, 0);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_ASSERT(src0->nb[0] == sizeof(float));
|
||||
|
||||
const int ith = params->ith;
|
||||
const int ith = params->ith; UNUSED(ith);
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t ne03 = src0->ne[3];
|
||||
const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
|
||||
|
||||
const size_t nb01 = src0->nb[1];
|
||||
const size_t nb02 = src0->nb[2];
|
||||
@@ -9062,30 +9058,45 @@ static void ggml_compute_forward_rms_norm_f32(
|
||||
|
||||
const float eps = 1e-6f; // TODO: make this a parameter
|
||||
|
||||
// TODO: optimize
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
|
||||
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
const int nr = ggml_nrows(src0);
|
||||
const int dr = (nr + 8*nth - 1)/(8*nth);
|
||||
|
||||
ggml_float sum = 0.0;
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
sum += (ggml_float)(x[i00] * x[i00]);
|
||||
}
|
||||
while (true) {
|
||||
const int ir0 = atomic_fetch_add(params->aic, dr);
|
||||
|
||||
float mean = sum/ne00;
|
||||
|
||||
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||||
|
||||
memcpy(y, x, ne00 * sizeof(float));
|
||||
// for (int i00 = 0; i00 < ne00; i00++) {
|
||||
// y[i00] = x[i00];
|
||||
// }
|
||||
|
||||
const float scale = 1.0f/sqrtf(mean + eps);
|
||||
|
||||
ggml_vec_scale_f32(ne00, y, scale);
|
||||
for (int ir = ir0; ir < ir0 + dr; ++ir) {
|
||||
if (ir >= nr) {
|
||||
break;
|
||||
}
|
||||
|
||||
// src0 indices
|
||||
const int i03 = ir/(ne02*ne01);
|
||||
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
|
||||
ggml_float sum = 0.0;
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
sum += (ggml_float)(x[i00] * x[i00]);
|
||||
}
|
||||
|
||||
float mean = sum/ne00;
|
||||
|
||||
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
|
||||
|
||||
memcpy(y, x, ne00 * sizeof(float));
|
||||
// for (int i00 = 0; i00 < ne00; i00++) {
|
||||
// y[i00] = x[i00];
|
||||
// }
|
||||
|
||||
const float scale = 1.0f/sqrtf(mean + eps);
|
||||
|
||||
ggml_vec_scale_f32(ne00, y, scale);
|
||||
}
|
||||
|
||||
if (ir0 + dr >= nr) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -9760,7 +9771,7 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
|
||||
const int ith = params->ith;
|
||||
const int ith = params->ith; UNUSED(ith);
|
||||
const int nth = params->nth;
|
||||
|
||||
GGML_ASSERT(ne02 == ne12);
|
||||
@@ -9876,6 +9887,8 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
||||
}
|
||||
}
|
||||
|
||||
atomic_store(params->aic, 0);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -9883,43 +9896,48 @@ static void ggml_compute_forward_mul_mat_q_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
// parallelize by src0 rows using ggml_vec_dot_q
|
||||
|
||||
// total rows in src0
|
||||
const int nr = ne01*ne02*ne03;
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
void * wdata = params->wdata;
|
||||
const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
||||
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// src0 indices
|
||||
const int i03 = ir/(ne02*ne01);
|
||||
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
// parallelize by src0 rows using ggml_vec_dot_q
|
||||
|
||||
const int i13 = i03;
|
||||
const int i12 = i02;
|
||||
const int nr = ggml_nrows(src0);
|
||||
const int dr = (nr + 8*nth - 1)/(8*nth);
|
||||
|
||||
const int i0 = i01;
|
||||
const int i2 = i02;
|
||||
const int i3 = i03;
|
||||
while (true) {
|
||||
const int ir0 = atomic_fetch_add(params->aic, dr);
|
||||
|
||||
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
||||
char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
|
||||
for (int ir = ir0; ir < ir0 + dr; ++ir) {
|
||||
if (ir >= nr) {
|
||||
break;
|
||||
}
|
||||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
||||
// src0 indices
|
||||
const int i03 = ir/(ne02*ne01);
|
||||
const int i02 = (ir - i03*ne02*ne01)/ne01;
|
||||
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
|
||||
|
||||
assert(ne00 % 32 == 0);
|
||||
const int i13 = i03;
|
||||
const int i12 = i02;
|
||||
|
||||
for (int64_t ic = 0; ic < ne11; ++ic) {
|
||||
vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
|
||||
const int i0 = i01;
|
||||
const int i2 = i02;
|
||||
const int i3 = i03;
|
||||
|
||||
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
|
||||
char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
|
||||
|
||||
float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
|
||||
|
||||
assert(ne00 % 32 == 0);
|
||||
|
||||
for (int64_t ic = 0; ic < ne11; ++ic) {
|
||||
vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
|
||||
}
|
||||
}
|
||||
|
||||
if (ir0 + dr >= nr) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13758,6 +13776,7 @@ struct ggml_compute_state_shared {
|
||||
|
||||
// synchronization primitives
|
||||
atomic_int n_ready;
|
||||
atomic_int aic;
|
||||
atomic_bool has_work;
|
||||
atomic_bool stop; // stop all threads
|
||||
};
|
||||
@@ -13826,6 +13845,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
/*.spin =*/ GGML_LOCK_INITIALIZER,
|
||||
/*.n_threads =*/ n_threads,
|
||||
/*.n_ready =*/ 0,
|
||||
/*.aic =*/ 0,
|
||||
/*.has_work =*/ false,
|
||||
/*.stop =*/ false,
|
||||
};
|
||||
@@ -13846,6 +13866,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
.nth = n_threads,
|
||||
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
||||
.aic = &state_shared.aic,
|
||||
},
|
||||
.node = NULL,
|
||||
.shared = &state_shared,
|
||||
@@ -14135,6 +14156,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
/*.nth =*/ node->n_tasks,
|
||||
/*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
/*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
|
||||
/*.aic =*/ &state_shared.aic,
|
||||
};
|
||||
|
||||
ggml_compute_forward(¶ms, node);
|
||||
@@ -14158,6 +14180,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
.nth = node->n_tasks,
|
||||
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
||||
.aic = &state_shared.aic,
|
||||
};
|
||||
workers[j].node = node;
|
||||
}
|
||||
@@ -14173,6 +14196,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
}
|
||||
|
||||
params.type = GGML_TASK_COMPUTE;
|
||||
params.aic = &state_shared.aic;
|
||||
ggml_compute_forward(¶ms, node);
|
||||
|
||||
// wait for thread pool
|
||||
@@ -14213,6 +14237,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
||||
.nth = node->n_tasks,
|
||||
.wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
|
||||
.wdata = cgraph->work ? cgraph->work->data : NULL,
|
||||
.aic = &state_shared.aic,
|
||||
};
|
||||
workers[j].node = node;
|
||||
}
|
||||
|
||||
2
ggml.h
2
ggml.h
@@ -190,7 +190,7 @@
|
||||
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
||||
#define GGML_FILE_VERSION 1
|
||||
|
||||
#define GGML_QNT_VERSION 1 // bump this on quantization format changes
|
||||
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
|
||||
27
llama.cpp
27
llama.cpp
@@ -406,6 +406,7 @@ enum llama_file_version {
|
||||
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
|
||||
LLAMA_FILE_VERSION_GGJT_V1, // added padding
|
||||
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
|
||||
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
|
||||
};
|
||||
|
||||
struct llama_file_loader {
|
||||
@@ -438,6 +439,8 @@ struct llama_file_loader {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V1;
|
||||
} else if (magic == 'ggjt' && version == 2) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V2;
|
||||
} else if (magic == 'ggjt' && version == 3) {
|
||||
file_version = LLAMA_FILE_VERSION_GGJT_V3;
|
||||
} else {
|
||||
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
|
||||
magic, version);
|
||||
@@ -812,10 +815,9 @@ static bool kv_cache_init(
|
||||
struct llama_context_params llama_context_default_params() {
|
||||
struct llama_context_params result = {
|
||||
/*.n_ctx =*/ 512,
|
||||
/*.n_parts =*/ -1,
|
||||
/*.gpu_layers =*/ 0,
|
||||
/*.seed =*/ -1,
|
||||
/*.f16_kv =*/ false,
|
||||
/*.f16_kv =*/ true,
|
||||
/*.logits_all =*/ false,
|
||||
/*.vocab_only =*/ false,
|
||||
/*.use_mmap =*/ true,
|
||||
@@ -845,7 +847,8 @@ static const char *llama_file_version_name(llama_file_version version) {
|
||||
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (latest)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
|
||||
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
|
||||
}
|
||||
|
||||
return "unknown";
|
||||
@@ -925,11 +928,19 @@ static void llama_model_load_internal(
|
||||
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
||||
}
|
||||
|
||||
if (file_version != LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
|
||||
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
|
||||
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1305)");
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)");
|
||||
}
|
||||
}
|
||||
|
||||
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
|
||||
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
|
||||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
|
||||
throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -942,7 +953,7 @@ static void llama_model_load_internal(
|
||||
size_t ctx_size;
|
||||
size_t mmapped_size;
|
||||
ml->calc_sizes(&ctx_size, &mmapped_size);
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
||||
fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/1024.0/1024.0);
|
||||
|
||||
// print memory requirements
|
||||
{
|
||||
@@ -2607,8 +2618,8 @@ size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
|
||||
}
|
||||
|
||||
// Sets the state reading from the specified source address
|
||||
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
|
||||
const uint8_t * inp = src;
|
||||
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
uint8_t * inp = src;
|
||||
|
||||
// set rng
|
||||
{
|
||||
|
||||
5
llama.h
5
llama.h
@@ -19,7 +19,7 @@
|
||||
# define LLAMA_API
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_VERSION 2
|
||||
#define LLAMA_FILE_VERSION 3
|
||||
#define LLAMA_FILE_MAGIC 'ggjt'
|
||||
#define LLAMA_FILE_MAGIC_UNVERSIONED 'ggml'
|
||||
#define LLAMA_SESSION_MAGIC 'ggsn'
|
||||
@@ -55,7 +55,6 @@ extern "C" {
|
||||
|
||||
struct llama_context_params {
|
||||
int n_ctx; // text context
|
||||
int n_parts; // -1 for default
|
||||
int n_gpu_layers; // number of layers to store in VRAM
|
||||
int seed; // RNG seed, -1 for random
|
||||
|
||||
@@ -139,7 +138,7 @@ extern "C" {
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src);
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
|
||||
@@ -1,6 +1,10 @@
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include <cassert>
|
||||
#include "llama.h"
|
||||
|
||||
#ifdef NDEBUG
|
||||
#undef NDEBUG
|
||||
#endif
|
||||
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
#include <cassert>
|
||||
@@ -8,7 +12,6 @@
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
|
||||
void dump(const llama_token_data_array * candidates) {
|
||||
for (size_t i = 0; i < candidates->size; i++) {
|
||||
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
|
||||
|
||||
Reference in New Issue
Block a user