Compare commits

...

47 Commits

Author SHA1 Message Date
Eric Curtin
f211d1dc10 Treat hf.co/ prefix the same as hf:// (#11350)
ollama uses hf.co/ to specify huggingface prefix, like RamaLama
uses hf://

Treat them similarly.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 10:38:20 +00:00
amd-dwang
955a6c2d91 Vulkan-run-test: fix mmq_wg_denoms (#11343)
There should be a copy-and-paste error here.

*mmq_wg_denoms should be used together with *warptile_mmq, instead of
wg_denoms.
2025-01-23 08:14:28 +01:00
Jeff Bolz
1971adf55e vulkan: sort shaders for more deterministic binary (#11315)
Fixes #11306.
2025-01-23 08:07:50 +01:00
Jeff Bolz
5245729e33 vulkan: fix diag_mask_inf (#11323)
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
2025-01-23 08:01:17 +01:00
Diego Devesa
6152129d05 main : update README documentation for batch size (#11353)
* main : update README documentation for batch size

* fix formatting

* minor
2025-01-22 19:22:20 +01:00
Georgi Gerganov
16d3df7ab0 readme : add plugin links (#11355) 2025-01-22 19:44:26 +02:00
Diego Devesa
12c2bdf2de server : fix draft context not being released (#11354) 2025-01-22 17:44:40 +01:00
Olivier Chafik
c64d2becb1 minja: sync at 0f5f7f2b37 (#11352) 2025-01-22 16:16:27 +00:00
Jiří Podivín
96f4053934 Adding logprobs to /v1/completions (#11344)
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
2025-01-22 12:51:32 +01:00
Olivier Chafik
a94f3b2727 common: utils to split / join / repeat strings (from json converter) (#11342)
* Factor string_join, string_split, string_repeat into common

* json: refactor to surface a versatile builder

* Update common.cpp
2025-01-22 09:51:44 +00:00
tc-mb
3e3357fd77 llava : support Minicpm-omni (#11289)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* init

* add readme

* update readme

* no use make

* update readme

* update fix code

* fix editorconfig-checker

* no change convert py

* use clip_image_u8_free
2025-01-22 09:35:48 +02:00
Olivier Chafik
6171c9d258 Add Jinja template support (#11016)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Copy minja from 58f0ca6dd7

* Add --jinja and --chat-template-file flags

* Add missing <optional> include

* Avoid print in get_hf_chat_template.py

* No designated initializers yet

* Try and work around msvc++ non-macro max resolution quirk

* Update test_chat_completion.py

* Wire LLM_KV_TOKENIZER_CHAT_TEMPLATE_N in llama_model_chat_template

* Refactor test-chat-template

* Test templates w/ minja

* Fix deprecation

* Add --jinja to llama-run

* Update common_chat_format_example to use minja template wrapper

* Test chat_template in e2e test

* Update utils.py

* Update test_chat_completion.py

* Update run.cpp

* Update arg.cpp

* Refactor common_chat_* functions to accept minja template + use_jinja option

* Attempt to fix linkage of LLAMA_CHATML_TEMPLATE

* Revert LLAMA_CHATML_TEMPLATE refactor

* Normalize newlines in test-chat-templates for windows tests

* Forward decl minja::chat_template to avoid eager json dep

* Flush stdout in chat template before potential crash

* Fix copy elision warning

* Rm unused optional include

* Add missing optional include to server.cpp

* Disable jinja test that has a cryptic windows failure

* minja: fix vigogne (https://github.com/google/minja/pull/22)

* Apply suggestions from code review

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Finish suggested renamings

* Move chat_templates inside server_context + remove mutex

* Update --chat-template-file w/ recent change to --chat-template

* Refactor chat template validation

* Guard against missing eos/bos tokens (null token otherwise throws in llama_vocab::impl::token_get_attr)

* Warn against missing eos / bos tokens when jinja template references them

* rename: common_chat_template[s]

* reinstate assert on chat_templates.template_default

* Update minja to b8437df626

* Update minja to https://github.com/google/minja/pull/25

* Update minja from https://github.com/google/minja/pull/27

* rm unused optional header

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-21 13:18:51 +00:00
Xuan Son Nguyen
e28245f35f export-lora : fix tok_embd tensor (#11330) 2025-01-21 14:07:12 +01:00
Radoslav Gerganov
6da5bec81c rpc : better caching of the base buffer pointer (#11331)
There is no need to use map, just store the base pointer in the buffer
context.
2025-01-21 15:06:41 +02:00
Eric Curtin
2e2f8f093c linenoise.cpp refactoring (#11301)
More RAII mainly

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-21 09:32:35 +00:00
Georgi Gerganov
2139667ec4 metal : fix out-of-bounds write (#11314)
ggml-ci
2025-01-21 08:48:13 +02:00
Georgi Gerganov
80d0d6b4b7 common : add -hfd option for the draft model (#11318)
* common : add -hfd option for the draft model

* cont : fix env var

* cont : more fixes
2025-01-20 22:29:43 +02:00
Jeff Bolz
aea8ddd516 vulkan: fix coopmat2 validation failures (#11284)
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.

coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
2025-01-20 10:38:32 -06:00
Georgi Gerganov
9f7add1cde examples : fix add_special conditions (#11311)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-01-20 16:36:08 +02:00
Christopher Nielsen
90d987b105 mmap: add include for cerrno (#11296)
ggml-ci

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-20 16:02:43 +02:00
Michael Podvitskiy
a4251edd6f cmake: fix shell command quoting in build-info script (#11309) 2025-01-20 16:02:15 +02:00
Xuan Son Nguyen
ec7f3ac9ab llama : add support for Deepseek-R1-Qwen distill model (#11310)
* llama : add support for Deepseek-R1-Qwen distill model

* coding style
2025-01-20 14:35:07 +01:00
Georgi Gerganov
ef6dada60c cont : fix whitespaces (#11305) 2025-01-20 09:29:32 +02:00
Kyle Bruene
ae3c1db2f9 llama : re-add LLM_ARCH_PHIMOE (#11305)
Phi 3.5 MoE was partially removed during a refactor. The code was originally in llama.cpp and should be in llama-model.cpp after the refactor.
2025-01-20 09:21:01 +02:00
Georgi Gerganov
92bc493917 tests : increase timeout when sanitizers are enabled (#11300)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tests : increase timeout when sanitizers are enabled

* tests : add DEFAULT_HTTP_TIMEOUT
2025-01-19 20:22:30 +02:00
Georgi Gerganov
b9daaffe02 simple-chat : fix BOS being added to each message (#11278) 2025-01-19 18:12:09 +02:00
Nicolò Scipione
99487b57d4 SYCL: Introducing memory host pool (#11251)
* Implement host pool for matrix_info

Creating a new memory pool on the host to store memory location for
matrix_info needed to launch gemm_batch from oneMKL/oneMath.
Removing complex support in gemm_batch since it is not used in llama.cpp

* Remove unnecessary headers and cast

* Reorder member variable to avoid warning on initialization

* Formatting

* Remove unused variable

* Address PR review feedback - remove warning

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-01-19 21:33:34 +08:00
Eric Curtin
a1649cc13f Adding linenoise.cpp to llama-run (#11252)
This is a fork of linenoise that is C++17 compatible. I intend on
adding it to llama-run so we can do things like traverse prompt
history via the up and down arrows:

https://github.com/ericcurtin/linenoise.cpp

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-18 14:42:31 +00:00
Georgi Gerganov
4dd34ff831 cmake : add sanitizer flags for llama.cpp (#11279)
* cmake : add sanitizer flags for llama.cpp

ggml-ci

* tests : fix compile warnings

ggml-ci

* cmake : move sanitizer flags to llama_add_compile_flags

ggml-ci

* cmake : move llama.cpp compile flags to top level lists

ggml-ci

* cmake : apply only sanitizer flags at top level

ggml-ci

* tests : fix gguf context use in same_tensor_data

* gguf-test: tensor data comparison

* dummy : trigger ggml-ci

* unicode : silence gcc warnings

ggml-ci

* ci : use sanitizer builds only in Debug mode

ggml-ci

* cmake : add status messages [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-01-18 16:18:15 +02:00
Xuan Son Nguyen
f30f099228 server : implement cancellable request (#11285)
* server : implement cancellable request

* fix typo

* httplib 0.18.5

* fix i underflow
2025-01-18 14:12:05 +01:00
Georgi Gerganov
f26c874179 scripts : restore hf.sh (#11288)
ggml-ci
2025-01-18 13:18:32 +02:00
LostRuins Concedo
6390a998bf tts : add guide tokens support (#11186)
* Added the ability to use guide tokens for OuteTTS, greatly improving TTS recitation accuracy over long input sequences.

* applied linting suggestions, updated to latest llama_vocab changes, added a safety check, added newline to guide token start
2025-01-18 12:20:57 +02:00
Jeff Bolz
44e18ef939 vulkan: fix coopmat2 flash attention for non-contiguous inputs (#11281)
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.

Add noncontiguous FA tests in test-backend-ops.

Fixes #11268.
2025-01-18 09:26:50 +01:00
codezjx
3edfa7d375 llama.android: add field formatChat to control whether to parse special tokens when send message (#11270) 2025-01-17 14:57:56 +02:00
Radoslav Gerganov
667d72846c rpc : early register backend devices (#11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-01-17 10:57:09 +02:00
Georgi Gerganov
a133566d34 vocab : fix double-eos check (#11273)
ggml-ci
2025-01-17 09:28:00 +02:00
David Renshaw
960ec65273 llama : fix deprecation message: vocabable -> vocab (#11269) 2025-01-17 08:12:01 +01:00
musoles
7a689c415e README : added kalavai to infrastructure list (#11216) 2025-01-17 01:10:49 +01:00
Jeff Bolz
bd38ddea01 vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (#11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-01-16 22:47:10 +01:00
Jeff Bolz
466300fe14 vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (#11206)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Do masking on whole dwords, fetch all scales at once.
2025-01-16 22:23:49 +01:00
Jeff Bolz
206bc53422 vulkan: optimize coopmat2 q2_k dequant function (#11130) 2025-01-16 22:16:39 +01:00
RunningLeon
4dbc8b9cb7 llama : add internlm3 support (#11233)
* support internlm3

* fix lint
2025-01-16 20:10:38 +02:00
Johannes Gäßler
9c8dcefe17 CUDA: backwards pass for misc. ops, add tests (#11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-01-16 16:43:38 +01:00
Xuan Son Nguyen
681149ced2 llama : add llama_model_load_from_splits (#11255)
* llama : add `llama_model_load_from_splits`

* update
2025-01-16 13:54:08 +01:00
fj-y-saito
c67cc9837d ggml: aarch64: implement SVE kernels for q4_K_q8_K vector dot (#11227)
* Add SVE support for q4_K_q8_K

* Update ggml/src/ggml-cpu/ggml-cpu-quants.c

change to use K_SCALE_SIZE

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-16 11:11:49 +02:00
Eve
adc5dd92e8 vulkan: scale caching for k quants + misc fixes (#11081)
* q6_k scale caching

* 16 bit unpack

* q4_k test (slow)

* revert it

* q3_k

* q2_k

* little stuff

* try precalculating products of a and q2_k scales

* Revert "try precalculating products of a and q2_k scales"

This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b.

* unpack should be u16, add vim swap to gitignore (about time)

* better q4_k scales

* q5_k

* better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations

* q2_k better dequant

* q3_k optimizations

* q3_k use hmask simd from cpu avx version

* make the caches happy

* q3_k separate out calculation

* q2_k separate out

* little stuff

* use calc_superblock everywhere

* q2_k optimize scale calculation

* more barriers
2025-01-15 19:50:13 +00:00
Georgi Gerganov
f11cfdfd7f ci : use -no-cnv in gguf-split tests (#11254)
* ci : use -no-cnv in gguf-split tests

ggml-ci

* ci : use -no-cnv in requantize tests

ggml-ci

* scripts : fix [no ci]
2025-01-15 18:28:35 +02:00
109 changed files with 9786 additions and 1865 deletions

View File

@@ -87,6 +87,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-arm64.zip ./build/bin/*
- name: Upload artifacts
@@ -149,6 +150,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-macos-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -217,6 +219,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
cp LICENSE ./build/bin/
cp examples/run/linenoise.cpp/LICENSE ./build/bin/LICENSE.linenoise.cpp
zip -r llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip ./build/bin/*
- name: Upload artifacts
@@ -234,7 +237,7 @@ jobs:
strategy:
matrix:
sanitizer: [ADDRESS, THREAD, UNDEFINED]
build_type: [Debug, Release]
build_type: [Debug]
steps:
- name: Clone
@@ -796,6 +799,7 @@ jobs:
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
run: |
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
Copy-Item .\examples\run\linenoise.cpp\LICENSE .\build\bin\Release\linenoise.cpp.txt
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
- name: Upload artifacts

View File

@@ -112,9 +112,9 @@ jobs:
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
@@ -124,12 +124,31 @@ jobs:
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
run: |
cd examples/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}

1
.gitignore vendored
View File

@@ -18,6 +18,7 @@
*.metallib
*.o
*.so
*.swp
*.tmp
# IDE / OS

View File

@@ -83,11 +83,8 @@ include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
# override ggml options
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
# change the default for these ggml options
if (NOT DEFINED GGML_LLAMAFILE)
@@ -117,16 +114,62 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
#
# build the library
# 3rd-party
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
#
# build the library
#
add_subdirectory(src)
#
# utils, programs, examples and tests
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
#
# install
#
@@ -200,21 +243,3 @@ configure_file(cmake/llama.pc.in
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION lib/pkgconfig)
#
# utils, programs, examples and tests
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()

View File

@@ -1361,7 +1361,9 @@ llama-server: \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
common/chat-template.hpp \
common/json.hpp \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)

View File

@@ -16,7 +16,9 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
## Hot topics
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggerganov/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
@@ -204,6 +206,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
</details>

View File

@@ -44,7 +44,7 @@ if(MSVC)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)

View File

@@ -56,6 +56,7 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat-template.hpp
common.cpp
common.h
console.cpp
@@ -64,6 +65,7 @@ add_library(${TARGET} STATIC
json.hpp
log.cpp
log.h
minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp

View File

@@ -133,7 +133,8 @@ static void common_params_handle_model_default(
const std::string & model_url,
std::string & hf_repo,
std::string & hf_file,
const std::string & hf_token) {
const std::string & hf_token,
const std::string & model_default) {
if (!hf_repo.empty()) {
// short-hand to avoid specifying --hf-file -> default it to --model
if (hf_file.empty()) {
@@ -163,7 +164,7 @@ static void common_params_handle_model_default(
model = fs_get_cache_file(string_split<std::string>(f, '/').back());
}
} else if (model.empty()) {
model = DEFAULT_MODEL_PATH;
model = model_default;
}
}
@@ -299,8 +300,9 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
}
// TODO: refactor model params in a common struct
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token);
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token);
common_params_handle_model_default(params.model, params.model_url, params.hf_repo, params.hf_file, params.hf_token, DEFAULT_MODEL_PATH);
common_params_handle_model_default(params.speculative.model, params.speculative.model_url, params.speculative.hf_repo, params.speculative.hf_file, params.hf_token, "");
common_params_handle_model_default(params.vocoder.model, params.vocoder.model_url, params.vocoder.hf_repo, params.vocoder.hf_file, params.hf_token, "");
if (params.escape) {
string_process_escapes(params.prompt);
@@ -323,6 +325,14 @@ static bool common_params_parse_ex(int argc, char ** argv, common_params_context
throw std::invalid_argument("error: either --embedding or --reranking can be specified, but not both");
}
if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s%s\n",
params.chat_template.c_str(),
params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
));
}
return true;
}
@@ -376,6 +386,30 @@ static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & val
return devices;
}
static void add_rpc_devices(std::string servers) {
auto rpc_servers = string_split<std::string>(servers, ',');
if (rpc_servers.empty()) {
throw std::invalid_argument("no RPC servers specified");
}
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
if (!rpc_reg) {
throw std::invalid_argument("failed to find RPC backend");
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
throw std::invalid_argument("failed to find RPC device add function");
}
for (const auto & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
ggml_backend_device_register(dev);
} else {
throw std::invalid_argument("failed to register RPC device");
}
}
}
bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
auto ctx_arg = common_params_parser_init(params, ex, print_usage);
const common_params params_org = ctx_arg.params; // the example can modify the default params
@@ -1385,7 +1419,8 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
{"--rpc"}, "SERVERS",
"comma separated list of RPC servers",
[](common_params & params, const std::string & value) {
params.rpc_servers = value;
add_rpc_devices(value);
GGML_UNUSED(params);
}
).set_env("LLAMA_ARG_RPC"));
}
@@ -1604,6 +1639,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.hf_repo = value;
}
).set_env("LLAMA_ARG_HF_REPO"));
add_opt(common_arg(
{"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
"Same as --hf-repo, but for the draft model (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.hf_repo = value;
}
).set_env("LLAMA_ARG_HFD_REPO"));
add_opt(common_arg(
{"-hff", "--hf-file"}, "FILE",
"Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
@@ -1913,24 +1955,44 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
}
}
).set_examples({LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--jinja"},
"use jinja template for chat (default: disabled)",
[](common_params & params) {
params.use_jinja = true;
}
).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
add_opt(common_arg(
{"--chat-template"}, "JINJA_TEMPLATE",
string_format(
"set custom jinja chat template (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
if (!common_chat_verify_template(value)) {
throw std::runtime_error(string_format(
"error: the supplied chat template is not supported: %s\n"
"note: llama.cpp does not use jinja parser, we only support commonly used templates\n",
value.c_str()
));
}
params.chat_template = value;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
add_opt(common_arg(
{"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
string_format(
"set custom jinja chat template file (default: template taken from model's metadata)\n"
"if suffix/prefix are specified, template will be disabled\n"
"only commonly used templates are accepted (unless --jinja is set before this flag):\n"
"list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
),
[](common_params & params, const std::string & value) {
std::ifstream file(value);
if (!file) {
throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
}
std::copy(
std::istreambuf_iterator<char>(file),
std::istreambuf_iterator<char>(),
std::back_inserter(params.chat_template));
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
add_opt(common_arg(
{"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
@@ -2229,6 +2291,13 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.vocoder.model = value;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
add_opt(common_arg(
{"--tts-use-guide-tokens"},
"Use guide tokens to improve TTS word recall",
[](common_params & params) {
params.vocoder.use_guide_tokens = true;
}
).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
// model-specific
add_opt(common_arg(

268
common/chat-template.hpp Normal file
View File

@@ -0,0 +1,268 @@
/*
Copyright 2024 Google LLC
Use of this source code is governed by an MIT-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/MIT.
*/
// SPDX-License-Identifier: MIT
#pragma once
#include "minja.hpp"
#include <json.hpp>
#include <string>
#include <vector>
using json = nlohmann::ordered_json;
namespace minja {
class chat_template {
public:
private:
bool supports_tools_ = true;
// Meta-Llama-3.1-8B-Instruct's template expects arguments to be an object.
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
bool requires_object_arguments_ = false;
bool requires_typed_content_ = false;
bool supports_system_role_ = true;
bool supports_parallel_tool_calls_ = false;
std::string source_;
std::string bos_token_;
std::string eos_token_;
std::shared_ptr<minja::TemplateNode> template_root_;
std::string try_raw_render(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
{
try {
auto prompt = apply(messages, tools, add_generation_prompt, extra_context, /* adjust_inputs= */ false);
// fprintf(stderr, "Prompt: %s\n", prompt.c_str());
return prompt;
} catch (const std::exception & e) {
// fprintf(stderr, "Error: %s\n", e.what());
return "";
}
}
public:
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
{
template_root_ = minja::Parser::parse(source_, {
/* .trim_blocks = */ true,
/* .lstrip_blocks = */ true,
/* .keep_trailing_newline = */ false,
});
supports_tools_ = source.find("tools") != std::string::npos;
auto renders_string_arguments =
try_raw_render({
{
{"role", "user"},
{"content", "Hey"}
},
{
{"role", "assistant"},
{"tool_calls", json::array({
{
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", "{\"code\": \"print('Hello, World!')\"}"},
{"name", "ipython"},
}},
},
})},
}
}, {}, false).find("{\"code\": \"print") != std::string::npos;
if (!renders_string_arguments) {
auto renders_object_arguments =
try_raw_render({
{
{"role", "user"},
{"content", "Hey"}
},
{
{"role", "assistant"},
{"tool_calls", json::array({
{
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", {
{"code", "print('Hello, World!')"},
}},
{"name", "ipython"},
}},
},
})},
}
}, {}, false).find("{\"code\": \"print") != std::string::npos;
requires_object_arguments_ = renders_object_arguments;
}
supports_parallel_tool_calls_ = source.find("tool_call_id") != std::string::npos;
supports_system_role_ = try_raw_render({
{{"role", "system"}, {"content", "<System Needle>"}},
{{"role", "user"}, {"content", "Hey"}}
}, {}, false).find("<System Needle>") != std::string::npos;
requires_typed_content_ = try_raw_render({{{"role", "user"}, {"content", "Hey"}}}, {}, false).find("Hey") == std::string::npos
&& try_raw_render({{{"role", "user"}, {"content", {{{"type", "text"}, {"text", "Hey"}}}}}}, {}, false).find("Hey") != std::string::npos;
}
const std::string & source() const { return source_; }
const std::string & bos_token() const { return bos_token_; }
const std::string & eos_token() const { return eos_token_; }
bool supports_tools() const { return supports_tools_; }
bool supports_parallel_tool_calls() const { return supports_parallel_tool_calls_; }
std::string apply(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
bool adjust_inputs = true) const
{
json actual_messages;
// First, "fix" messages so they have a chance to be rendered correctly by the template
if (adjust_inputs && (requires_object_arguments_ || !supports_system_role_ || !supports_tools_ || requires_typed_content_)) {
actual_messages = json::array();
auto add_message = [&](const json & msg) {
if (requires_typed_content_ && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
actual_messages.push_back({
{"role", msg.at("role")},
{"content", {{
{"type", "text"},
{"text", msg.at("content")},
}}},
});
} else {
actual_messages.push_back(msg);
}
};
std::string pending_system;
auto flush_sys = [&]() {
if (!pending_system.empty()) {
add_message({
{"role", "user"},
{"content", pending_system},
});
pending_system.clear();
}
};
for (const auto & message_ : messages) {
auto message = message_;
if (!message.contains("role") || !message.contains("content")) {
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
}
std::string role = message.at("role");
if (message.contains("tool_calls")) {
if (requires_object_arguments_ || !supports_tools_) {
for (auto & tool_call : message.at("tool_calls")) {
if (tool_call["type"] == "function") {
auto & function = tool_call.at("function");
std::string arguments = function.at("arguments");
function["arguments"] = json::parse(arguments);
}
}
}
if (!supports_tools_) {
auto content = message.at("content");
auto tool_calls = json::array();
for (const auto & tool_call : message.at("tool_calls")) {
if (tool_call.at("type") != "function") {
continue;
}
const auto & function = tool_call.at("function");
auto tc = json {
{"name", function.at("name")},
{"arguments", function.at("arguments")},
};
if (tool_call.contains("id")) {
tc["id"] = tool_call["id"];
}
tool_calls.push_back(tc);
}
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && content != "") {
obj["content"] = content;
}
message["content"] = obj.dump(2);
message.erase("tool_calls");
}
}
if (!supports_tools_ && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", {
{"tool", message.at("name")},
{"content", message.at("content")},
}},
};
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
message["content"] = obj.dump(2);
message.erase("name");
}
if (!message["content"].is_null() && !supports_system_role_) {
std::string content = message.at("content");
if (role == "system") {
if (!pending_system.empty()) pending_system += "\n";
pending_system += content;
continue;
} else {
if (role == "user") {
if (!pending_system.empty()) {
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
pending_system.clear();
}
} else {
flush_sys();
}
}
}
add_message(message);
}
flush_sys();
} else {
actual_messages = messages;
}
auto context = minja::Context::make(json({
{"messages", actual_messages},
{"add_generation_prompt", add_generation_prompt},
{"bos_token", bos_token_},
{"eos_token", eos_token_},
}));
if (!tools.is_null()) {
auto tools_val = minja::Value(tools);
context->set("tools", tools_val);
}
if (!extra_context.is_null()) {
for (auto & kv : extra_context.items()) {
minja::Value val(kv.value());
context->set(kv.key(), val);
}
}
return template_root_->render(context);
}
};
} // namespace minja

View File

@@ -12,6 +12,7 @@
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include "chat-template.hpp"
#include <algorithm>
#include <cinttypes>
@@ -483,6 +484,48 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
if (i > 0) {
result << separator;
}
result << values[i];
}
return result.str();
}
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> parts;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
parts.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
parts.push_back(str.substr(start));
return parts;
}
std::string string_repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
std::string string_from(bool value) {
return value ? "true" : "false";
}
@@ -1043,7 +1086,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.rpc_servers = params.rpc_servers.c_str();
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
@@ -1729,67 +1771,75 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
// Chat template utils
//
std::string common_get_builtin_chat_template(const struct llama_model * model) {
const char * ptr_tmpl = llama_model_chat_template(model);
return ptr_tmpl == nullptr ? "" : ptr_tmpl;
}
bool common_chat_verify_template(const std::string & tmpl) {
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja) {
if (use_jinja) {
try {
auto chat_template = minja::chat_template(tmpl, "<s>", "</s>");
chat_template.apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
return true;
} catch (const std::exception & e) {
LOG_ERR("%s: failed to apply template: %s\n", __func__, e.what());
return false;
}
}
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & msgs,
bool add_ass) {
bool add_ass,
bool use_jinja) {
if (use_jinja) {
auto messages = json::array();
for (const auto & msg : msgs) {
messages.push_back({{"role", msg.role}, {"content", msg.content}});
}
return tmpl.apply(messages, /* tools= */ json(), add_ass);
}
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (const auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
int32_t res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
if (ptr_tmpl != nullptr) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
res = llama_chat_apply_template(tmpl.source().c_str(), chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass) {
bool add_ass,
bool use_jinja) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(tmpl, past_msg, false, use_jinja);
std::vector<common_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
@@ -1797,21 +1847,74 @@ std::string common_chat_format_single(const struct llama_model * model,
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
auto fmt_new_msg = common_chat_apply_template(tmpl, chat_new, add_ass, use_jinja);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::string common_chat_format_example(const common_chat_template & tmpl, bool use_jinja) {
std::vector<common_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return common_chat_apply_template(model, tmpl, msgs, true);
return common_chat_apply_template(tmpl, msgs, true, use_jinja);
}
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override)
{
auto vocab = llama_model_get_vocab(model);
std::string default_template_src = chat_template_override;
std::string template_tool_use_src = chat_template_override;
bool has_explicit_template = !chat_template_override.empty();
if (chat_template_override.empty()) {
auto str = llama_model_chat_template(model, /* name */ nullptr);
if (str) {
default_template_src = str;
has_explicit_template = true;
}
str = llama_model_chat_template(model, /* name */ "tool_use");
if (str) {
template_tool_use_src = str;
has_explicit_template = true;
}
}
if (default_template_src.empty() || default_template_src == "chatml") {
if (!template_tool_use_src.empty()) {
default_template_src = template_tool_use_src;
} else {
default_template_src = R"(
{%- for message in messages -%}
{{- "<|im_start|>" + message.role + "\n" + message.content + "<|im_end|>\n" -}}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{- "<|im_start|>assistant\n" -}}
{%- endif -%}
)";
}
}
const auto get_token = [&](llama_token token, const char * name, const char * jinja_variable_name) {
if (token == LLAMA_TOKEN_NULL) {
if (default_template_src.find(jinja_variable_name) != std::string::npos
|| template_tool_use_src.find(jinja_variable_name) != std::string::npos) {
LOG_WRN("%s: warning: vocab does not have a %s token, jinja template won't work as intended.\n", __func__, name);
}
return std::string();
} else {
return common_token_to_piece(vocab, token, true);
}
};
auto token_bos = get_token(llama_vocab_bos(vocab), "BOS", "bos_token");
auto token_eos = get_token(llama_vocab_eos(vocab), "EOS", "eos_token");
return {
has_explicit_template,
std::make_unique<minja::chat_template>(default_template_src, token_bos, token_eos),
template_tool_use_src.empty()
? nullptr
: std::make_unique<minja::chat_template>(template_tool_use_src, token_bos, token_eos)
};
}
//

View File

@@ -175,7 +175,11 @@ struct common_params_speculative {
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string model = ""; // draft model for speculative decoding // NOLINT
std::string model_url = ""; // model url to download // NOLINT
};
struct common_params_vocoder {
@@ -184,6 +188,8 @@ struct common_params_vocoder {
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
struct common_params {
@@ -246,7 +252,6 @@ struct common_params {
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
@@ -329,6 +334,7 @@ struct common_params {
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
std::vector<std::string> api_keys;
@@ -423,6 +429,10 @@ std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
template<class T>
@@ -507,12 +517,14 @@ struct llama_model * common_load_model_from_url(
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
@@ -596,30 +608,43 @@ struct common_chat_msg {
std::string content;
};
// Get the built-in chat template for the model. Return empty string if not present.
std::string common_get_builtin_chat_template(const struct llama_model * model);
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
namespace minja {
class chat_template;
}
typedef minja::chat_template common_chat_template;
struct common_chat_templates {
bool has_explicit_template; // Model had builtin template or template overridde was specified.
std::unique_ptr<common_chat_template> template_default; // always set (defaults to chatml)
std::unique_ptr<common_chat_template> template_tool_use;
};
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_apply_template(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
bool add_ass,
bool use_jinja);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
std::string common_chat_format_single(
const common_chat_template & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
std::string common_chat_format_example(
const common_chat_template & tmpl, bool use_jinja);
common_chat_templates common_chat_templates_from_model(const struct llama_model * model, const std::string & chat_template_override);
//
// KV cache utils

View File

@@ -1,4 +1,6 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <algorithm>
#include <fstream>
#include <map>
@@ -11,11 +13,6 @@
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
@@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto sub_zeros = string_repeat("0", sub_len);
auto sub_nines = string_repeat("9", sub_len);
auto to_reached = false;
out << "(";
@@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
uniform_range(min_s, string_repeat("9", digits));
min_s = "1" + string_repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
@@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
@@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
@@ -418,7 +373,7 @@ private:
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
return string_join(rules, " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
@@ -481,7 +436,7 @@ private:
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
return std::make_pair(string_join(results, " "), false);
};
while (i < length) {
@@ -539,7 +494,7 @@ private:
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
@@ -854,7 +809,7 @@ public:
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
@@ -905,7 +860,7 @@ public:
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@@ -1019,10 +974,10 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
}
}
@@ -1036,10 +991,27 @@ public:
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
return build_grammar([&](const llama_grammar_builder & callbacks) {
auto copy = schema;
callbacks.resolve_refs(copy);
callbacks.add_schema("", copy);
});
}
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb) {
SchemaConverter converter([&](const std::string &) { return json(); }, /* dotall= */ false);
llama_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);
},
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
return converter.visit(schema, name == "root" ? "" : name);
},
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
converter.resolve_refs(schema, "");
}
};
cb(builder);
converter.check_errors();
return converter.format_grammar();
}

View File

@@ -5,4 +5,12 @@
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema);
struct llama_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
std::function<void(nlohmann::ordered_json &)> resolve_refs;
};
std::string build_grammar(const std::function<void(const llama_grammar_builder &)> & cb);

2812
common/minja.hpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -696,6 +696,9 @@ class Model:
if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
res = "deepseek-v3"
if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
# ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
res = "deepseek-r1-qwen"
if res is None:
logger.warning("\n")
@@ -2882,6 +2885,66 @@ class InternLM2Model(Model):
return [(self.map_tensor_name(name), data_torch)]
@Model.register("InternLM3ForCausalLM")
class InternLM3Model(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
def set_vocab(self):
tokens, scores, toktypes = self._create_vocab_sentencepiece()
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
if "added_tokens_decoder" in tokenizer_config_json:
for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
if token_data.get("special"):
token_id = int(token_id)
token = token_data["content"]
special_vocab._set_special_token(token, token_id)
# update eos token
if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
special_vocab.special_token_ids["eos"] = token_id
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "head_dim" in hparams:
rope_dim = hparams["head_dim"]
else:
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
self.gguf_writer.add_rope_dimension_count(rope_dim)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
@Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT

View File

@@ -65,49 +65,50 @@ else:
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
]

View File

@@ -345,8 +345,18 @@ struct lora_merge_ctx {
gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur = inp_base;
for (size_t i = 0; i < adapters.size(); ++i) {
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
struct ggml_tensor * delta;
bool is_tok_embd = string_starts_with(name_base, "token_embd");
if (is_tok_embd) {
printf("%s : detected token embeddings tensor\n", __func__);
delta = ggml_mul_mat(ctx0,
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32),
ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32));
} else {
delta = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))),
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
}
// scale
const float alpha = adapters[i]->alpha;
const float rank = (float) inp_b[i]->ne[0];

View File

@@ -41,7 +41,7 @@ echo PASS
echo
# 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
echo PASS
echo
@@ -51,7 +51,7 @@ echo PASS
echo
# 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
echo PASS
echo
@@ -61,7 +61,7 @@ echo PASS
echo
# 4b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
echo PASS
echo
@@ -71,7 +71,7 @@ echo
#echo
# 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#echo PASS
#echo
@@ -81,7 +81,7 @@ echo PASS
echo
# 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
echo PASS
echo

View File

@@ -683,7 +683,7 @@ struct cmd_params_instance {
bool cpu_strict;
int poll;
int n_gpu_layers;
std::string rpc_servers;
std::string rpc_servers_str;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
@@ -696,8 +696,37 @@ struct cmd_params_instance {
llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers;
if (!rpc_servers.empty()) {
mparams.rpc_servers = rpc_servers.c_str();
if (!rpc_servers_str.empty()) {
auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
// add RPC devices
if (!rpc_servers.empty()) {
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
if (!rpc_reg) {
fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
exit(1);
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
exit(1);
}
static std::vector<ggml_backend_dev_t> devices;
devices.clear();
for (const std::string & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
devices.push_back(dev);
} else {
fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
exit(1);
}
}
devices.push_back(nullptr);
mparams.devices = devices.data();
}
}
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
@@ -708,7 +737,7 @@ struct cmd_params_instance {
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
}

View File

@@ -347,6 +347,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
jlong context_pointer,
jlong batch_pointer,
jstring jtext,
jboolean format_chat,
jint n_len
) {
@@ -356,7 +357,8 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto tokens_list = common_tokenize(context, text, 1);
bool parse_special = (format_chat == JNI_TRUE);
const auto tokens_list = common_tokenize(context, text, true, parse_special);
auto n_ctx = llama_n_ctx(context);
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
@@ -368,7 +370,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
}
for (auto id : tokens_list) {
LOGi("%s", common_token_to_piece(context, id).c_str());
LOGi("token: `%s`-> %d ", common_token_to_piece(context, id).c_str(), id);
}
common_batch_clear(*batch);

View File

@@ -65,6 +65,7 @@ class LLamaAndroid {
context: Long,
batch: Long,
text: String,
formatChat: Boolean,
nLen: Int
): Int
@@ -115,10 +116,10 @@ class LLamaAndroid {
}
}
fun send(message: String): Flow<String> = flow {
fun send(message: String, formatChat: Boolean = false): Flow<String> = flow {
when (val state = threadLocalState.get()) {
is State.Loaded -> {
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
val ncur = IntVar(completion_init(state.context, state.batch, message, formatChat, nlen))
while (ncur.value <= nlen) {
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
if (str == null) {

View File

@@ -0,0 +1,46 @@
## MiniCPM-o 2.6
Currently, this readme only supports minicpm-omni's image capabilities, and we will update the full-mode support as soon as possible.
### Prepare models and code
Download [MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) PyTorch model from huggingface to "MiniCPM-o-2_6" folder.
Clone llama.cpp:
```bash
git clone git@github.com:OpenBMB/llama.cpp.git
cd llama.cpp
git checkout minicpm-omni
```
### Usage of MiniCPM-o 2.6
Convert PyTorch model to gguf files (You can also download the converted [gguf](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) by us)
```bash
python ./examples/llava/minicpmv-surgery.py -m ../MiniCPM-o-2_6
python ./examples/llava/minicpmv-convert-image-encoder-to-gguf.py -m ../MiniCPM-o-2_6 --minicpmv-projector ../MiniCPM-o-2_6/minicpmv.projector --output-dir ../MiniCPM-o-2_6/ --image-mean 0.5 0.5 0.5 --image-std 0.5 0.5 0.5 --minicpmv_version 4
python ./convert_hf_to_gguf.py ../MiniCPM-o-2_6/model
# quantize int4 version
./llama-quantize ../MiniCPM-o-2_6/model/ggml-model-f16.gguf ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf Q4_K_M
```
Build llama.cpp using `CMake`:
https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md
```bash
cmake -B build
cmake --build build --config Release
```
Inference on Linux or Mac
```
# run f16 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-f16.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# run quantized int4 version
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -p "What is in the image?"
# or run in interactive mode
./llama-minicpmv-cli -m ../MiniCPM-o-2_6/model/ggml-model-Q4_K_M.gguf --mmproj ../MiniCPM-o-2_6/mmproj-model-f16.gguf -c 4096 --temp 0.7 --top-p 0.8 --top-k 100 --repeat-penalty 1.05 --image xx.jpg -i
```

View File

@@ -718,6 +718,9 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
else if (ctx->minicpmv_version == 3) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
else if (ctx->minicpmv_version == 4) {
pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
}
ggml_set_name(pos_embed, "pos_embed");
ggml_set_input(pos_embed);
}
@@ -1053,6 +1056,11 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
n_head = hidden_size/d_head;
num_query = 64;
}
else if (ctx->minicpmv_version == 4) {
hidden_size = 3584;
n_head = hidden_size/d_head;
num_query = 64;
}
struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
@@ -2041,6 +2049,7 @@ static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_imag
images[images.size()-1].push_back(patch);
}
}
clip_image_u8_free(refine_image);
}
return images;
}
@@ -2079,6 +2088,13 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
clip_image_f32_free(res);
}
}
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
if (imgs[i][j] != nullptr) {
clip_image_u8_free(imgs[i][j]);
}
}
}
return true;
}
else if (ctx->has_qwen2vl_merger) {
@@ -2335,6 +2351,9 @@ int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * i
else if (ctx->minicpmv_version == 3) {
n_patches = 64;
}
else if (ctx->minicpmv_version == 4) {
n_patches = 64;
}
} else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
int patch_size = params.patch_size * 2;
int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
@@ -2514,8 +2533,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
// -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
int* positions_data = (int*)malloc(ggml_nbytes(positions));
int bucket_coords_h[70];
int bucket_coords_w[70];
int bucket_coords_h[1024];
int bucket_coords_w[1024];
for (int i = 0; i < pos_h; i++){
bucket_coords_h[i] = std::floor(70.0*i/pos_h);
}
@@ -2543,6 +2562,9 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
else if (ctx->minicpmv_version == 3) {
embed_dim = 3584;
}
else if (ctx->minicpmv_version == 4) {
embed_dim = 3584;
}
auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
@@ -2786,6 +2808,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
else if (ctx->minicpmv_version == 3) {
return 3584;
}
else if (ctx->minicpmv_version == 4) {
return 3584;
}
}
if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
return ctx->vision_model.mm_1_b->ne[0];

View File

@@ -216,7 +216,7 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
return true;
}
static clip_image_f32 * only_v2_5_reshape_by_patch(clip_image_f32 * image, int patch_size) {
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
@@ -277,13 +277,7 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
else {
int has_minicpmv_projector = clip_is_minicpmv(ctx_clip);
if (has_minicpmv_projector == 2) {
encoded = clip_image_encode(ctx_clip, n_threads, only_v2_5_reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
else if (has_minicpmv_projector == 3) {
encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i]);
}
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(&img_res_v.data[i], patch_size), image_embd_v[i]);
}
if (!encoded) {
@@ -313,6 +307,9 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
load_image_size->height = img->ny;
clip_add_load_image_size(ctx_clip, load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size->width, load_image_size->height);
delete[] img_res_v.data;
img_res_v.size = 0;
img_res_v.data = nullptr;
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding

View File

@@ -140,6 +140,9 @@ static void process_image(struct llava_context * ctx_llava, struct llava_image_e
else if (has_minicpmv_projector == 3) {
system_prompt = "<|im_start|>user\n";
}
else if (has_minicpmv_projector == 4) {
system_prompt = "<|im_start|>user\n";
}
LOG_INF("%s: image token past: %d\n", __func__, n_past);
eval_string(ctx_llava->ctx_llama, (system_prompt+"<image>").c_str(), params->n_batch, &n_past, false);
process_eval_image_embed(ctx_llava, embeds, params->n_batch, &n_past, idx++);
@@ -227,6 +230,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
else if (has_minicpmv_projector == 3) {
user_prompt = "<|im_start|>user\n" + prompt;
}
else if (has_minicpmv_projector == 4) {
user_prompt = "<|im_start|>user\n" + prompt;
}
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
@@ -236,6 +242,9 @@ static struct common_sampler * llama_init(struct llava_context * ctx_llava, comm
else if (has_minicpmv_projector == 3) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
else if (has_minicpmv_projector == 4) {
eval_string(ctx_llava->ctx_llama, "<|im_end|><|im_start|>assistant\n", params->n_batch, &n_past, false);
}
// generate the response
@@ -308,7 +317,6 @@ int main(int argc, char ** argv) {
const auto * tmp = llama_loop(ctx_llava, smpl, n_past);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
printf("%s", tmp);// mistral llava-1.6
if (strstr(response.c_str(), "<user>")) break; // minicpm-v
fflush(stdout);

View File

@@ -501,7 +501,7 @@ default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3', default=2)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
# with proper
args = ap.parse_args()
@@ -545,12 +545,19 @@ if args.use_f32:
minicpmv_version = args.minicpmv_version
emb_dim = 4096
block_count = 26
if minicpmv_version == 1:
emb_dim = 2304
block_count = 26
elif minicpmv_version == 2:
emb_dim = 4096
block_count = 27
elif minicpmv_version == 3:
emb_dim = 3584
block_count = 27
elif minicpmv_version == 4:
emb_dim = 3584
block_count = 27
default_vision_config = {
"hidden_size": 1152,
@@ -567,6 +574,9 @@ model = Idefics2VisionTransformer(vision_config)
if minicpmv_version == 3:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
elif minicpmv_version == 4:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
processor = None
# if model.attn_pool is not None:
@@ -587,7 +597,7 @@ elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
minicpmv_version = 3
minicpmv_version = 4
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
@@ -625,7 +635,6 @@ if has_vision_encoder:
fout.add_uint32("clip.vision.projection_dim", 0)
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
block_count = 26
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
if processor is not None:

View File

@@ -8,7 +8,7 @@ ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
checkpoint = model.state_dict()
# get a list of mm tensor names

View File

@@ -310,9 +310,9 @@ These options help improve the performance and memory usage of the LLaMA models.
### Batch Size
- `-b N, --batch-size N`: Set the batch size for prompt processing (default: `2048`). This large batch size benefits users who have BLAS installed and enabled it during the build. If you don't have BLAS enabled ("BLAS=0"), you can use a smaller number, such as 8, to see the prompt progress as it's evaluated in some situations.
- `-ub N`, `--ubatch-size N`: Physical batch size. This is the maximum number of tokens that may be processed at a time. Increasing this value may improve performance during prompt processing, at the expense of higher memory usage. Default: `512`.
- `-ub N`, `--ubatch-size N`: physical maximum batch size. This is for pipeline parallelization. Default: `512`.
- `-b N`, `--batch-size N`: Logical batch size. Increasing this value above the value of the physical batch size may improve prompt processing performance when using multiple GPUs with pipeline parallelism. Default: `2048`.
### Prompt Caching

View File

@@ -4,6 +4,7 @@
#include "log.h"
#include "sampling.h"
#include "llama.h"
#include "chat-template.hpp"
#include <cstdio>
#include <cstring>
@@ -84,14 +85,6 @@ static void sigint_handler(int signo) {
}
#endif
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user");
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
}
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
@@ -165,6 +158,7 @@ int main(int argc, char ** argv) {
}
const llama_vocab * vocab = llama_model_get_vocab(model);
auto chat_templates = common_chat_templates_from_model(model, params.chat_template);
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
@@ -207,7 +201,7 @@ int main(int argc, char ** argv) {
}
// auto enable conversation mode if chat template is available
const bool has_chat_template = !common_get_builtin_chat_template(model).empty() || !params.chat_template.empty();
const bool has_chat_template = chat_templates.has_explicit_template && chat_templates.template_default;
if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
if (has_chat_template) {
LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
@@ -225,7 +219,7 @@ int main(int argc, char ** argv) {
// print chat template example in conversation mode
if (params.conversation_mode) {
if (params.enable_chat_template) {
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str());
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(*chat_templates.template_default, params.use_jinja).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
@@ -269,10 +263,18 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd_inp;
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
common_chat_msg new_msg{role, content};
auto formatted = common_chat_format_single(*chat_templates.template_default, chat_msgs, new_msg, role == "user", g_params->use_jinja);
chat_msgs.push_back({role, content});
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
};
{
auto prompt = (params.conversation_mode && params.enable_chat_template)
// format the system prompt in conversation mode (fallback to default if empty)
? chat_add_and_format(model, chat_msgs, "system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
? chat_add_and_format("system", params.prompt.empty() ? DEFAULT_SYSTEM_MESSAGE : params.prompt)
// otherwise use the prompt as is
: params.prompt;
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
@@ -779,7 +781,7 @@ int main(int argc, char ** argv) {
}
if (params.enable_chat_template) {
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str());
chat_add_and_format("assistant", assistant_ss.str());
}
is_interacting = true;
LOG("\n");
@@ -844,7 +846,7 @@ int main(int argc, char ** argv) {
bool format_chat = params.conversation_mode && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
? chat_add_and_format("user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);

View File

@@ -47,7 +47,7 @@ echo PASS
echo
# 3a. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --n-predict 32
echo PASS
echo
@@ -57,7 +57,7 @@ echo PASS
echo
# 4b. Test the requanted model is loading properly
$MAIN --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-requant-merge.gguf --n-predict 32
echo PASS
echo

View File

@@ -1,5 +1,5 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp)
add_executable(${TARGET} run.cpp linenoise.cpp/linenoise.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -0,0 +1,26 @@
Copyright (c) 2010-2014, Salvatore Sanfilippo <antirez at gmail dot com>
Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,128 @@
/* linenoise.h -- VERSION 1.0
*
* Guerrilla line editing library against the idea that a line editing lib
* needs to be 20,000 lines of C++ code.
*
* See linenoise.cpp for more information.
*
* ------------------------------------------------------------------------
*
* Copyright (c) 2010-2023, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>
* Copyright (c) 2025, Eric Curtin <ericcurtin17 at gmail dot com>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __LINENOISE_H
#define __LINENOISE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stddef.h> /* For size_t. */
#include <stdlib.h>
extern const char *linenoiseEditMore;
/* The linenoiseState structure represents the state during line editing.
* We pass this state to functions implementing specific editing
* functionalities. */
struct linenoiseState {
int in_completion; /* The user pressed TAB and we are now in completion
* mode, so input is handled by completeLine(). */
size_t completion_idx; /* Index of next completion to propose. */
int ifd; /* Terminal stdin file descriptor. */
int ofd; /* Terminal stdout file descriptor. */
char *buf; /* Edited line buffer. */
size_t buflen; /* Edited line buffer size. */
const char *prompt; /* Prompt to display. */
size_t plen; /* Prompt length. */
size_t pos; /* Current cursor position. */
size_t oldpos; /* Previous refresh cursor position. */
size_t len; /* Current edited line length. */
size_t cols; /* Number of columns in terminal. */
size_t oldrows; /* Rows used by last refrehsed line (multiline mode) */
int history_index; /* The history index we are currently editing. */
};
struct linenoiseCompletions {
size_t len = 0;
char ** cvec = nullptr;
bool to_free = true;
~linenoiseCompletions() {
if (!to_free) {
return;
}
for (size_t i = 0; i < len; ++i) {
free(cvec[i]);
}
free(cvec);
}
};
/* Non blocking API. */
int linenoiseEditStart(struct linenoiseState *l, int stdin_fd, int stdout_fd, char *buf, size_t buflen, const char *prompt);
const char *linenoiseEditFeed(struct linenoiseState *l);
void linenoiseEditStop(struct linenoiseState *l);
void linenoiseHide(struct linenoiseState *l);
void linenoiseShow(struct linenoiseState *l);
/* Blocking API. */
const char *linenoise(const char *prompt);
void linenoiseFree(void *ptr);
/* Completion API. */
typedef void(linenoiseCompletionCallback)(const char *, linenoiseCompletions *);
typedef const char*(linenoiseHintsCallback)(const char *, int *color, int *bold);
typedef void(linenoiseFreeHintsCallback)(const char *);
void linenoiseSetCompletionCallback(linenoiseCompletionCallback *);
void linenoiseSetHintsCallback(linenoiseHintsCallback *);
void linenoiseSetFreeHintsCallback(linenoiseFreeHintsCallback *);
void linenoiseAddCompletion(linenoiseCompletions *, const char *);
/* History API. */
int linenoiseHistoryAdd(const char *line);
int linenoiseHistorySetMaxLen(int len);
int linenoiseHistorySave(const char *filename);
int linenoiseHistoryLoad(const char *filename);
/* Other utilities. */
void linenoiseClearScreen(void);
void linenoiseSetMultiLine(int ml);
void linenoisePrintKeyCodes(void);
void linenoiseMaskModeEnable(void);
void linenoiseMaskModeDisable(void);
#ifdef __cplusplus
}
#endif
#endif /* __LINENOISE_H */

View File

@@ -19,13 +19,16 @@
#include <cstring>
#include <filesystem>
#include <iostream>
#include <list>
#include <sstream>
#include <string>
#include <vector>
#include "common.h"
#include "json.hpp"
#include "linenoise.cpp/linenoise.h"
#include "llama-cpp.h"
#include "chat-template.hpp"
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) || defined(_WIN32)
[[noreturn]] static void sigint_handler(int) {
@@ -103,6 +106,7 @@ class Opt {
llama_model_params model_params;
std::string model_;
std::string user;
bool use_jinja = false;
int context_size = -1, ngl = -1;
float temperature = -1;
bool verbose = false;
@@ -154,6 +158,8 @@ class Opt {
} else if (options_parsing &&
(parse_flag(argv, i, "-v", "--verbose") || parse_flag(argv, i, "-v", "--log-verbose"))) {
verbose = true;
} else if (options_parsing && strcmp(argv[i], "--jinja") == 0) {
use_jinja = true;
} else if (options_parsing && parse_flag(argv, i, "-h", "--help")) {
help = true;
return 0;
@@ -536,7 +542,7 @@ class LlamaData {
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
std::vector<std::string> msg_strs;
std::list<std::string> msg_strs;
std::vector<char> fmtted;
int init(Opt & opt) {
@@ -628,20 +634,20 @@ class LlamaData {
return path.substr(pos + 1);
}
int remove_proto(std::string & model_) {
const std::string::size_type pos = model_.find("://");
int rm_until_substring(std::string & model_, const std::string & substring) {
const std::string::size_type pos = model_.find(substring);
if (pos == std::string::npos) {
return 1;
}
model_ = model_.substr(pos + 3); // Skip past "://"
model_ = model_.substr(pos + substring.size()); // Skip past the substring
return 0;
}
int resolve_model(std::string & model_) {
int ret = 0;
if (string_starts_with(model_, "file://") || std::filesystem::exists(model_)) {
remove_proto(model_);
rm_until_substring(model_, "://");
return ret;
}
@@ -650,13 +656,16 @@ class LlamaData {
const std::vector<std::string> headers = { "--header",
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
remove_proto(model_);
rm_until_substring(model_, "://");
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "hf.co/")) {
rm_until_substring(model_, "hf.co/");
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "ollama://")) {
remove_proto(model_);
rm_until_substring(model_, "://");
ret = ollama_dl(model_, headers, bn);
} else if (string_starts_with(model_, "https://")) {
download(model_, headers, bn, true);
ret = download(model_, headers, bn, true);
} else {
ret = ollama_dl(model_, headers, bn);
}
@@ -711,13 +720,31 @@ static void add_message(const char * role, const std::string & text, LlamaData &
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(LlamaData & llama_data, const bool append) {
static int apply_chat_template(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, bool use_jinja) {
if (use_jinja) {
json messages = json::array();
for (const auto & msg : llama_data.messages) {
messages.push_back({
{"role", msg.role},
{"content", msg.content},
});
}
try {
auto result = tmpl.apply(messages, /* tools= */ json(), append);
llama_data.fmtted.resize(result.size() + 1);
memcpy(llama_data.fmtted.data(), result.c_str(), result.size() + 1);
return result.size();
} catch (const std::exception & e) {
printe("failed to render the chat template: %s\n", e.what());
return -1;
}
}
int result = llama_chat_apply_template(
llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(), llama_data.messages.size(), append,
tmpl.source().c_str(), llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_model_chat_template(llama_data.model.get()), llama_data.messages.data(),
result = llama_chat_apply_template(tmpl.source().c_str(), llama_data.messages.data(),
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
@@ -727,10 +754,12 @@ static int apply_chat_template(LlamaData & llama_data, const bool append) {
// Function to tokenize the prompt
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens) {
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first,
true) < 0) {
printe("failed to tokenize the prompt\n");
return -1;
@@ -776,7 +805,7 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
const llama_vocab * vocab = llama_model_get_vocab(llama_data.model.get());
std::vector<llama_token> tokens;
if (tokenize_prompt(vocab, prompt, tokens) < 0) {
if (tokenize_prompt(vocab, prompt, tokens, llama_data) < 0) {
return 1;
}
@@ -807,24 +836,44 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
batch = llama_batch_get_one(&new_token_id, 1);
}
printf("\033[0m");
return 0;
}
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
static int read_user_input(std::string & user_input) {
static const char * prompt_prefix = "> ";
#ifdef WIN32
printf(
"\r%*s"
"\r\033[0m%s",
get_terminal_width(), " ", prompt_prefix);
std::getline(std::cin, user_input);
if (std::cin.eof()) {
printf("\n");
return 1;
}
if (user == "/bye") {
#else
std::unique_ptr<char, decltype(&std::free)> line(const_cast<char *>(linenoise(prompt_prefix)), free);
if (!line) {
return 1;
}
if (user.empty()) {
user_input = line.get();
#endif
if (user_input == "/bye") {
return 1;
}
if (user_input.empty()) {
return 2;
}
#ifndef WIN32
linenoiseHistoryAdd(line.get());
#endif
return 0; // Should have data in happy path
}
@@ -847,8 +896,8 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
const int new_len = apply_chat_template(llama_data, append);
static int apply_chat_template_with_error_handling(const common_chat_template & tmpl, LlamaData & llama_data, const bool append, int & output_length, bool use_jinja) {
const int new_len = apply_chat_template(tmpl, llama_data, append, use_jinja);
if (new_len < 0) {
printe("failed to apply the chat template\n");
return -1;
@@ -865,10 +914,6 @@ static int handle_user_input(std::string & user_input, const std::string & user)
return 0; // No need for interactive input
}
printf(
"\r%*s"
"\r\033[32m> \033[0m",
get_terminal_width(), " ");
return read_user_input(user_input); // Returns true if input ends the loop
}
@@ -911,9 +956,11 @@ static int get_user_input(std::string & user_input, const std::string & user) {
}
// Main chat loop function
static int chat_loop(LlamaData & llama_data, const std::string & user) {
static int chat_loop(LlamaData & llama_data, const std::string & user, bool use_jinja) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
auto chat_templates = common_chat_templates_from_model(llama_data.model.get(), "");
GGML_ASSERT(chat_templates.template_default);
static const bool stdout_a_terminal = is_stdout_a_terminal();
while (true) {
// Get user input
@@ -924,7 +971,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
add_message("user", user.empty() ? user_input : user, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, true, new_len, use_jinja) < 0) {
return 1;
}
@@ -939,7 +986,7 @@ static int chat_loop(LlamaData & llama_data, const std::string & user) {
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
if (apply_chat_template_with_error_handling(*chat_templates.template_default, llama_data, false, prev_len, use_jinja) < 0) {
return 1;
}
}
@@ -999,7 +1046,7 @@ int main(int argc, const char ** argv) {
return 1;
}
if (chat_loop(llama_data, opt.user)) {
if (chat_loop(llama_data, opt.user, opt.use_jinja)) {
return 1;
}

View File

@@ -126,7 +126,7 @@ The project is under active development, and we are [looking for feedback and co
| `--grammar GRAMMAR` | BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '') |
| `--grammar-file FNAME` | file to read grammar from |
| `-j, --json-schema SCHEMA` | JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object<br/>For schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead |
| `--jinja` | Enable experimental Jinja templating engine (needed for tool use) |
**Example-specific params**

File diff suppressed because it is too large Load Diff

View File

@@ -19,6 +19,7 @@
#include "loading.html.hpp"
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <cinttypes>
@@ -32,6 +33,8 @@
using json = nlohmann::ordered_json;
constexpr int HTTP_POLLING_SECONDS = 1;
enum stop_type {
STOP_TYPE_NONE,
STOP_TYPE_EOS,
@@ -264,6 +267,11 @@ struct server_task {
params.speculative.n_min = std::max(params.speculative.n_min, 2);
params.speculative.n_max = std::max(params.speculative.n_max, 0);
// Use OpenAI API logprobs only if n_probs wasn't provided
if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
}
if (data.contains("lora")) {
if (data.at("lora").is_array()) {
params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
@@ -1602,6 +1610,30 @@ struct server_response {
// should never reach here
}
// same as recv(), but have timeout in seconds
// if timeout is reached, nullptr is returned
server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
bool cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout), [&]{
return !queue_results.empty();
});
if (!cr_res) {
return nullptr;
}
for (int i = 0; i < (int) queue_results.size(); i++) {
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
server_task_result_ptr res = std::move(queue_results[i]);
queue_results.erase(queue_results.begin() + i);
return res;
}
}
}
// should never reach here
}
// single-task version of recv()
server_task_result_ptr recv(int id_task) {
std::unordered_set<int> id_tasks = {id_task};
@@ -1661,6 +1693,8 @@ struct server_context {
// Necessary similarity of prompt for slot selection
float slot_prompt_similarity = 0.0f;
common_chat_templates chat_templates;
~server_context() {
// Clear any sampling context
for (server_slot & slot : slots) {
@@ -1701,13 +1735,16 @@ struct server_context {
add_bos_token = llama_vocab_get_add_bos(vocab);
has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
if (!params_base.speculative.model.empty()) {
if (!params_base.speculative.model.empty() || !params_base.speculative.hf_repo.empty()) {
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
auto params_dft = params_base;
params_dft.devices = params_base.speculative.devices;
params_dft.hf_file = params_base.speculative.hf_file;
params_dft.hf_repo = params_base.speculative.hf_repo;
params_dft.model = params_base.speculative.model;
params_dft.model_url = params_base.speculative.model_url;
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
params_dft.n_parallel = 1;
@@ -1735,16 +1772,44 @@ struct server_context {
// force F16 KV cache for the draft model for extra performance
cparams_dft.type_k = GGML_TYPE_F16;
cparams_dft.type_v = GGML_TYPE_F16;
// the context is not needed - we will create one for each slot
llama_init_dft.context.reset();
}
chat_templates = common_chat_templates_from_model(model, params_base.chat_template);
GGML_ASSERT(chat_templates.template_default.get() != nullptr);
return true;
}
bool validate_builtin_chat_template() const {
bool validate_builtin_chat_template(bool use_jinja) const {
llama_chat_message chat[] = {{"user", "test"}};
const char * tmpl = llama_model_chat_template(model);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
if (use_jinja) {
auto templates = common_chat_templates_from_model(model, "");
GGML_ASSERT(templates.template_default);
try {
templates.template_default->apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
if (templates.template_tool_use) {
templates.template_tool_use->apply({{
{"role", "user"},
{"content", "test"},
}}, json(), true);
}
return true;
} catch (const std::exception & e) {
SRV_ERR("failed to apply template: %s\n", e.what());
return false;
}
} else {
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
const int32_t chat_res = llama_chat_apply_template(tmpl, chat, 1, true, nullptr, 0);
return chat_res > 0;
}
}
void init() {
@@ -2322,10 +2387,21 @@ struct server_context {
void receive_multi_results(
const std::unordered_set<int> & id_tasks,
const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
const std::function<void(json)> & error_handler) {
const std::function<void(json)> & error_handler,
const std::function<bool()> & is_connection_closed) {
std::vector<server_task_result_ptr> results(id_tasks.size());
for (size_t i = 0; i < id_tasks.size(); i++) {
server_task_result_ptr result = queue_results.recv(id_tasks);
for (int i = 0; i < (int)id_tasks.size(); i++) {
server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
if (is_connection_closed()) {
cancel_tasks(id_tasks);
return;
}
if (result == nullptr) {
i--; // retry
continue;
}
if (result->is_error()) {
error_handler(result->to_json());
@@ -2349,10 +2425,20 @@ struct server_context {
void receive_cmpl_results_stream(
const std::unordered_set<int> & id_tasks,
const std::function<bool(server_task_result_ptr&)> & result_handler,
const std::function<void(json)> & error_handler) {
const std::function<void(json)> & error_handler,
const std::function<bool()> & is_connection_closed) {
size_t n_finished = 0;
while (true) {
server_task_result_ptr result = queue_results.recv(id_tasks);
server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
if (is_connection_closed()) {
cancel_tasks(id_tasks);
return;
}
if (result == nullptr) {
continue; // retry
}
if (result->is_error()) {
error_handler(result->to_json());
@@ -3608,9 +3694,12 @@ int main(int argc, char ** argv) {
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
{ "total_slots", ctx_server.params_base.n_parallel },
{ "model_path", ctx_server.params_base.model },
{ "chat_template", common_get_builtin_chat_template(ctx_server.model) },
{ "chat_template", ctx_server.chat_templates.template_default->source() },
{ "build_info", build_info },
};
if (ctx_server.params_base.use_jinja && ctx_server.chat_templates.template_tool_use) {
data["chat_template_tool_use"] = ctx_server.chat_templates.template_tool_use->source();
}
res_ok(res, data);
};
@@ -3633,6 +3722,7 @@ int main(int argc, char ** argv) {
const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
server_task_type type,
json & data,
std::function<bool()> is_connection_closed,
httplib::Response & res,
oaicompat_type oaicompat) {
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
@@ -3694,7 +3784,7 @@ int main(int argc, char ** argv) {
}
}, [&](const json & error_data) {
res_error(res, error_data);
});
}, is_connection_closed);
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
} else {
@@ -3704,6 +3794,7 @@ int main(int argc, char ** argv) {
if (res_json.is_array()) {
for (const auto & res : res_json) {
if (!server_sent_event(sink, "data", res)) {
// sending failed (HTTP connection closed), cancel the generation
return false;
}
}
@@ -3713,6 +3804,9 @@ int main(int argc, char ** argv) {
}
}, [&](const json & error_data) {
server_sent_event(sink, "error", error_data);
}, [&sink]() {
// note: do not use req.is_connection_closed here because req is already destroyed
return !sink.is_writable();
});
if (oaicompat != OAICOMPAT_TYPE_NONE) {
static const std::string ev_done = "data: [DONE]\n\n";
@@ -3735,6 +3829,7 @@ int main(int argc, char ** argv) {
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_NONE);
};
@@ -3744,6 +3839,7 @@ int main(int argc, char ** argv) {
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_COMPLETION);
};
@@ -3820,6 +3916,7 @@ int main(int argc, char ** argv) {
return handle_completions_impl(
SERVER_TASK_TYPE_INFILL,
data,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
};
@@ -3830,10 +3927,14 @@ int main(int argc, char ** argv) {
return;
}
json data = oaicompat_chat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
auto body = json::parse(req.body);
const auto & chat_template = body.contains("tools") && ctx_server.chat_templates.template_tool_use ? *ctx_server.chat_templates.template_tool_use : *ctx_server.chat_templates.template_default;
json data = oaicompat_completion_params_parse(body, chat_template, params.use_jinja);
return handle_completions_impl(
SERVER_TASK_TYPE_COMPLETION,
data,
req.is_connection_closed,
res,
OAICOMPAT_TYPE_CHAT);
};
@@ -3980,7 +4081,7 @@ int main(int argc, char ** argv) {
}, [&](const json & error_data) {
res_error(res, error_data);
error = true;
});
}, req.is_connection_closed);
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
}
@@ -4070,7 +4171,7 @@ int main(int argc, char ** argv) {
}, [&](const json & error_data) {
res_error(res, error_data);
error = true;
});
}, req.is_connection_closed);
}
if (error) {
@@ -4239,7 +4340,7 @@ int main(int argc, char ** argv) {
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
if (params.chat_template.empty()) {
if (!ctx_server.validate_builtin_chat_template()) {
if (!ctx_server.validate_builtin_chat_template(params.use_jinja)) {
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
params.chat_template = "chatml";
}
@@ -4247,8 +4348,8 @@ int main(int argc, char ** argv) {
// print sample chat example to make it clear which template is used
LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
params.chat_template.empty() ? "(built-in)" : params.chat_template.c_str(),
common_chat_format_example(ctx_server.model, params.chat_template).c_str());
ctx_server.chat_templates.template_default->source().c_str(),
common_chat_format_example(*ctx_server.chat_templates.template_default, ctx_server.params_base.use_jinja).c_str());
ctx_server.queue_tasks.on_new_task(std::bind(
&server_context::process_single_task, &ctx_server, std::placeholders::_1));

View File

@@ -4,22 +4,26 @@ from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
@pytest.fixture(autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason",
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,finish_reason,jinja,chat_template",
[
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length"),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length"),
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", False, None),
(None, "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, "length", True, None),
(None, "Book", "What is the best book", 8, "^ blue", 23, 8, "length", True, "This is not a chat template, it is"),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", False, None),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, "length", True, None),
]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason):
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, finish_reason, jinja, chat_template):
global server
server.jinja = jinja
server.chat_template = chat_template
server.start()
res = server.make_request("POST", "/chat/completions", data={
"model": model,

View File

@@ -1,4 +1,5 @@
import pytest
import requests
import time
from openai import OpenAI
from utils import *
@@ -405,3 +406,23 @@ def test_n_probs_post_sampling():
assert "bytes" in prob and type(prob["bytes"]) == list
# because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])
def test_cancel_request():
global server
server.n_ctx = 4096
server.n_predict = -1
server.n_slots = 1
server.server_slots = True
server.start()
# send a request that will take a long time, but cancel it before it finishes
try:
server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
}, timeout=0.1)
except requests.exceptions.ReadTimeout:
pass # expected
# make sure the slot is free
time.sleep(1) # wait for HTTP_POLLING_SECONDS
res = server.make_request("GET", "/slots")
assert res.body[0]["is_processing"] == False

View File

@@ -26,6 +26,9 @@ from re import RegexFlag
import wget
DEFAULT_HTTP_TIMEOUT = 10 if "LLAMA_SANITIZE" not in os.environ else 30
class ServerResponse:
headers: dict
status_code: int
@@ -69,13 +72,14 @@ class ServerProcess:
pooling: str | None = None
draft: int | None = None
api_key: str | None = None
response_format: str | None = None
lora_files: List[str] | None = None
disable_ctx_shift: int | None = False
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
jinja: bool | None = None
chat_template: str | None = None
chat_template_file: str | None = None
# session variables
process: subprocess.Popen | None = None
@@ -88,7 +92,7 @@ class ServerProcess:
if "PORT" in os.environ:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int = 10) -> None:
def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
@@ -166,8 +170,12 @@ class ServerProcess:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
if self.jinja:
server_args.append("--jinja")
if self.chat_template:
server_args.extend(["--chat-template", self.chat_template])
if self.chat_template_file:
server_args.extend(["--chat-template-file", self.chat_template_file])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
@@ -219,17 +227,18 @@ class ServerProcess:
path: str,
data: dict | Any | None = None,
headers: dict | None = None,
timeout: float | None = None,
) -> ServerResponse:
url = f"http://{self.server_host}:{self.server_port}{path}"
parse_body = False
if method == "GET":
response = requests.get(url, headers=headers)
response = requests.get(url, headers=headers, timeout=timeout)
parse_body = True
elif method == "POST":
response = requests.post(url, headers=headers, json=data)
response = requests.post(url, headers=headers, json=data, timeout=timeout)
parse_body = True
elif method == "OPTIONS":
response = requests.options(url, headers=headers)
response = requests.options(url, headers=headers, timeout=timeout)
else:
raise ValueError(f"Unimplemented method: {method}")
result = ServerResponse()

View File

@@ -16,6 +16,8 @@
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "minja.hpp"
#include "chat-template.hpp"
#include <random>
#include <sstream>
@@ -349,7 +351,7 @@ static llama_tokens format_infill(
}
// Format given chat. If tmpl is empty, we take the template from model metadata
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
inline std::string format_chat(const common_chat_template & tmpl, const std::vector<json> & messages) {
std::vector<common_chat_msg> chat;
for (size_t i = 0; i < messages.size(); ++i) {
@@ -377,7 +379,7 @@ inline std::string format_chat(const struct llama_model * model, const std::stri
chat.push_back({role, content});
}
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
const auto formatted_chat = common_chat_apply_template(tmpl, chat, true, /* use_jinja= */ false);
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
return formatted_chat;
@@ -576,14 +578,23 @@ static json oaicompat_completion_params_parse(const json & body) {
return llama_params;
}
static json oaicompat_chat_completion_params_parse(
const struct llama_model * model,
const json & body, /* openai api json semantics */
const std::string & chat_template) {
static json oaicompat_completion_params_parse(
const json & body, /* openai api json semantics */
const common_chat_template & tmpl,
bool use_jinja)
{
json llama_params;
// Apply chat template to the list of messages
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
auto tools = json_value(body, "tools", json());
auto has_tools = tools.is_array() && !tools.empty();
if (has_tools) {
if (use_jinja) {
LOG_WRN("tools param is not fully supported yet\n");
} else {
throw std::runtime_error("tools param requires --jinja flag");
}
}
// Handle "stop" field
if (body.contains("stop") && body.at("stop").is_string()) {
@@ -606,6 +617,13 @@ static json oaicompat_chat_completion_params_parse(
}
}
// Apply chat template to the list of messages
if (use_jinja) {
llama_params["prompt"] = tmpl.apply(body.at("messages"), tools, /* add_generation_prompt= */ true);
} else {
llama_params["prompt"] = format_chat(tmpl, body.at("messages"));
}
// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
@@ -621,7 +639,7 @@ static json oaicompat_chat_completion_params_parse(
}
// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
static const std::vector<std::string> unsupported_params { "tool_choice" };
for (const auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);

View File

@@ -98,10 +98,12 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, true, true);
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
std::vector<llama_token> prompt_tokens(n_prompt_tokens);
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), llama_get_kv_cache_used_cells(ctx) == 0, true) < 0) {
if (llama_tokenize(vocab, prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), is_first, true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
}
@@ -161,7 +163,7 @@ int main(int argc, char ** argv) {
break;
}
const char * tmpl = llama_model_chat_template(model);
const char * tmpl = llama_model_chat_template(model, /* name */ nullptr);
// add the user input to the message list and format it
messages.push_back({"user", strdup(user.c_str())});

View File

@@ -425,6 +425,33 @@ static void prompt_init(llama_tokens & prompt, const llama_vocab * vocab) {
prompt_add(prompt, vocab, "<|im_start|>\n", true, true);
}
static std::vector<llama_token> prepare_guide_tokens(const llama_vocab * vocab, const std::string & str) {
const std::string& delimiter = "<|text_sep|>";
std::vector<llama_token> result;
size_t start = 0;
size_t end = str.find(delimiter);
//first token is always a newline, as it was not previously added
result.push_back(common_tokenize(vocab, "\n", false, true)[0]);
while (end != std::string::npos) {
std::string current_word = str.substr(start, end - start);
auto tmp = common_tokenize(vocab, current_word, false, true);
result.push_back(tmp[0]);
start = end + delimiter.length();
end = str.find(delimiter, start);
}
// Add the last part
std::string current_word = str.substr(start);
auto tmp = common_tokenize(vocab, current_word, false, true);
if (tmp.size() > 0) {
result.push_back(tmp[0]);
}
return result;
}
int main(int argc, char ** argv) {
common_params params;
@@ -494,6 +521,7 @@ int main(int argc, char ** argv) {
const auto t_main_start = ggml_time_us();
std::vector<llama_token> codes;
std::vector<llama_token> guide_tokens;
// process prompt and generate voice codes
{
@@ -508,6 +536,9 @@ int main(int argc, char ** argv) {
// convert the input text into the necessary format expected by OuteTTS
{
std::string prompt_clean = process_text(params.prompt);
if (params.vocoder.use_guide_tokens) {
guide_tokens = prepare_guide_tokens(vocab, prompt_clean);
}
LOG_INF("%s: prompt: '%s'\n", __func__, prompt_clean.c_str());
@@ -717,6 +748,8 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
int n_past = batch.n_tokens;
int n_decode = 0;
bool next_token_uses_guide_token = true;
while (n_decode <= n_predict) {
// prepare the next batch
common_batch_clear(batch);
@@ -728,7 +761,17 @@ lovely<|t_0.56|><|code_start|><|634|><|596|><|1766|><|1556|><|1306|><|1285|><|14
continue;
}
const llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);
llama_token new_token_id = common_sampler_sample(smpl[i], ctx_ttc, i_batch[i]);
//guide tokens help prevent hallucinations by forcing the TTS to use the correct word
if (!guide_tokens.empty() && next_token_uses_guide_token && !llama_vocab_is_control(vocab, new_token_id) && !llama_vocab_is_eog(vocab, new_token_id)) {
llama_token guide_token = guide_tokens[0];
guide_tokens.erase(guide_tokens.begin());
new_token_id = guide_token; //ensure correct word fragment is used
}
//this is the token id that always precedes a new word
next_token_uses_guide_token = (new_token_id == 198);
common_sampler_accept(smpl[i], new_token_id, true);

View File

@@ -203,6 +203,8 @@ extern "C" {
// Backend registry
//
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Backend (reg) enumeration
GGML_API size_t ggml_backend_reg_count(void);
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);

View File

@@ -1384,16 +1384,20 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_back(
GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
float scale,
float max_bias);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
float scale,
float max_bias);
// rotary position embedding
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)

View File

@@ -37,6 +37,7 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
return true;
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
@@ -52,8 +53,12 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
return true;
default:

View File

@@ -208,7 +208,6 @@ extern "C" {
// Internal backend registry API
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Add backend dynamic loading support to the backend

View File

@@ -5573,7 +5573,88 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
uint32_t utmp[4];
#ifdef __ARM_NEON
#ifdef __ARM_FEATURE_SVE
float sumf = 0;
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
memcpy(utmp, x[i].scales, K_SCALE_SIZE);
uint32x2_t mins8 = { 0 };
mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
utmp[0] &= kmask1;
const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
sumf -= dmin * vaddvq_s32(prod);
const uint8_t * scales = (const uint8_t *)utmp;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
const int vector_length = ggml_cpu_get_sve_cnt()*8;
const svuint8_t m4b = svdup_n_u8(0xf);
const svint32_t mzero = svdup_n_s32(0);
svint32_t sumi1 = svdup_n_s32(0);
svint32_t sumi1_1 = svdup_n_s32(0);
svint32_t sumi1_2 = svdup_n_s32(0);
svint32_t sumi2 = svdup_n_s32(0);
svint32_t sumi2_1 = svdup_n_s32(0);
svint32_t sumi2_2 = svdup_n_s32(0);
switch (vector_length) {
case 128:
{
for (int j = 0; j < QK_K/64; ++j) {
svint8_t q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4), m4b));
svint8_t q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
sumi1_1 = svmla_n_s32_x(svptrue_b32(), sumi1_1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4+16), m4b));
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
sumi1_2 = svmla_n_s32_x(svptrue_b32(), sumi1_2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4), 4));
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
sumi2_1 = svmla_n_s32_x(svptrue_b32(), sumi2_1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_b8(), svld1_u8(svptrue_b8(), q4+16), 4));
q8bytes = svld1_s8(svptrue_b8(), q8); q8 += 16;
sumi2_2 = svmla_n_s32_x(svptrue_b32(), sumi2_2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
q4 += 32;
}
sumi1 = svadd_s32_x(svptrue_b32(), sumi1_1, sumi1_2);
sumi2 = svadd_s32_x(svptrue_b32(), sumi2_1, sumi2_2);
sumf += d * (svaddv_s32(svptrue_b32(), svadd_s32_x(svptrue_b32(), sumi1, sumi2)));
} break;
case 256:
case 512:
{
for (int j = 0; j < QK_K/64; ++j) {
const svuint8_t q4bits = svld1_u8(svptrue_pat_b8(SV_VL32), q4); q4 += 32;
svint8_t q4bytes = svreinterpret_s8_u8(svand_u8_x(svptrue_pat_b8(SV_VL32), q4bits, m4b));
svint8_t q8bytes = svld1_s8(svptrue_pat_b8(SV_VL32), q8); q8 += 32;
sumi1 = svmla_n_s32_x(svptrue_pat_b32(SV_VL8), sumi1, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+0]);
q4bytes = svreinterpret_s8_u8(svlsr_n_u8_x(svptrue_pat_b8(SV_VL32), q4bits, 4));
q8bytes = svld1_s8(svptrue_pat_b8(SV_VL32), q8); q8 += 32;
sumi2 = svmla_n_s32_x(svptrue_pat_b32(SV_VL8), sumi2, svdot_s32(mzero, q4bytes, q8bytes), scales[2*j+1]);
}
sumf += d * (svaddv_s32(svptrue_pat_b32(SV_VL8), svadd_s32_x(svptrue_pat_b32(SV_VL8), sumi1, sumi2)));
} break;
default:
assert(false && "Unsupported vector length");
break;
}
}
*s = sumf;
#elif __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf);
const int32x4_t mzero = vdupq_n_s32(0);

View File

@@ -3967,6 +3967,57 @@ static void ggml_compute_forward_dup_bytes(
}
}
static void ggml_compute_forward_dup_q(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
GGML_TENSOR_BINARY_OP_LOCALS
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
size_t qk = ggml_blck_size(type);
const int64_t nr = ggml_nelements(src1) / qk;
// destination must be contiguous in the first dimension
GGML_ASSERT(nb10 == ggml_type_size(dst->type));
// must either have first dimension large enough to hold a row, or fully contiguous
GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
const int ith = params->ith;
const int nth = params->nth;
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int64_t ir = ir0; ir < ir1; ++ir) {
uint32_t i = ir * qk;
const int64_t i03 = i/(ne00 * ne01 * ne02);
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int64_t i13 = i/(ne10 * ne11 * ne12);
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
dequantize_row_q(
(const void *) ((char *) src0->data + x_offset),
(float *) ((char *) dst->data + dst_offset), qk);
}
}
static void ggml_compute_forward_dup(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@@ -3993,6 +4044,10 @@ static void ggml_compute_forward_dup(
} break;
default:
{
if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
ggml_compute_forward_dup_q(params, dst);
break;
}
GGML_ABORT("fatal error");
}
}
@@ -6691,20 +6746,20 @@ static void ggml_compute_forward_silu_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * grad = dst->src[1];
const struct ggml_tensor * grad = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
assert(ggml_is_contiguous_1(grad));
assert(ggml_is_contiguous_1(src0));
assert(ggml_is_contiguous_1(src1));
assert(ggml_is_contiguous_1(dst));
assert(ggml_are_same_shape(src0, dst));
assert(ggml_are_same_shape(src0, grad));
assert(ggml_are_same_shape(src1, dst));
assert(ggml_are_same_shape(src1, grad));
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
const int nc = src1->ne[0];
const int nr = ggml_nrows(src1);
// rows per thread
const int dr = (nr + nth - 1)/nth;
@@ -6716,7 +6771,7 @@ static void ggml_compute_forward_silu_back_f32(
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])),
(float *) ((char *) src1->data + i1*(src1->nb[1])),
(float *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
@@ -6895,7 +6950,7 @@ static void ggml_compute_forward_norm_f32(
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
@@ -6966,7 +7021,7 @@ static void ggml_compute_forward_rms_norm_f32(
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps > 0.0f);
GGML_ASSERT(eps >= 0.0f);
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
@@ -7018,12 +7073,13 @@ static void ggml_compute_forward_rms_norm_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
const struct ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(src1->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
@@ -7042,8 +7098,8 @@ static void ggml_compute_forward_rms_norm_back_f32(
const int64_t i12 = i02;
const int64_t i13 = i03;
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
ggml_float sum_xx = 0.0;
ggml_float sum_xdz = 0.0;
@@ -7066,9 +7122,9 @@ static void ggml_compute_forward_rms_norm_back_f32(
{
// z = rms_norm(x)
//
// rms_norm(src0) =
// rms_norm(src1) =
// scale(
// src0,
// src1,
// div(
// 1,
// sqrt(
@@ -7076,13 +7132,13 @@ static void ggml_compute_forward_rms_norm_back_f32(
// scale(
// sum(
// sqr(
// src0)),
// src1)),
// (1.0/N)),
// eps))));
// postorder:
// ## op args grad
// 00 param src0 grad[#00]
// 00 param src1 grad[#00]
// 01 const 1
// 02 sqr (#00) grad[#02]
// 03 sum (#02) grad[#03]
@@ -7159,6 +7215,7 @@ static void ggml_compute_forward_rms_norm_back_f32(
// dx := scale(dx, rrms)
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
// dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
ggml_vec_cpy_f32 (ne00, dx, x);
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
@@ -7750,12 +7807,13 @@ static void ggml_compute_forward_out_prod_f32(
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
GGML_ASSERT(ne2 % ne02 == 0);
GGML_ASSERT(ne3 % ne03 == 0);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
@@ -7797,6 +7855,10 @@ static void ggml_compute_forward_out_prod_f32(
const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
const int64_t blck_1 = 16;
// dps == dst per src0, used for group query attention
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
const int64_t bir1 = MIN(bir + blck_1, ir1);
for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
@@ -7807,8 +7869,8 @@ static void ggml_compute_forward_out_prod_f32(
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
const int64_t i02 = i2 / dps2;
const int64_t i03 = i3 / dps3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
@@ -8906,9 +8968,9 @@ static void ggml_compute_forward_soft_max(
}
// ggml_compute_forward_soft_max_back
// ggml_compute_forward_soft_max_ext_back
static void ggml_compute_forward_soft_max_back_f32(
static void ggml_compute_forward_soft_max_ext_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@@ -8921,6 +8983,14 @@ static void ggml_compute_forward_soft_max_back_f32(
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src1, dst));
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
GGML_ASSERT(max_bias == 0.0f);
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
@@ -8969,10 +9039,11 @@ static void ggml_compute_forward_soft_max_back_f32(
// linear runtime, no additional memory
float dot_y_dy = 0;
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
ggml_vec_scale_f32(nc, dx, scale);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
@@ -8983,7 +9054,7 @@ static void ggml_compute_forward_soft_max_back_f32(
}
}
static void ggml_compute_forward_soft_max_back(
static void ggml_compute_forward_soft_max_ext_back(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
@@ -8992,7 +9063,7 @@ static void ggml_compute_forward_soft_max_back(
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_back_f32(params, dst);
ggml_compute_forward_soft_max_ext_back_f32(params, dst);
} break;
default:
{
@@ -9985,9 +10056,10 @@ static void ggml_compute_forward_im2col_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
const struct ggml_tensor * src1 = dst->src[1]; // convolution kernel
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -10009,11 +10081,11 @@ static void ggml_compute_forward_im2col_back_f32(
const int64_t IH = is_2D ? ne1 : 1;
const int64_t IW = ne0;
const int64_t KH = is_2D ? ne01 : 1;
const int64_t KW = ne00;
const int64_t KH = is_2D ? ne11 : 1;
const int64_t KW = ne10;
const int64_t OH = is_2D ? ne12 : 1;
const int64_t OW = ne11;
const int64_t OH = is_2D ? ne02 : 1;
const int64_t OW = ne01;
int ofs0 = is_2D ? nb3 : nb2;
int ofs1 = is_2D ? nb2 : nb1;
@@ -10059,9 +10131,9 @@ static void ggml_compute_forward_im2col_back_f32(
continue;
}
const float * const src_data = (const float *) src1->data
const float * const grad_in = (const float *) src0->data
+ (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
grad += src_data[iic*(KH*KW) + ikh*KW + ikw];
grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
}
}
float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
@@ -12484,22 +12556,22 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * src0 = dst->src[0];
const struct ggml_tensor * src1 = dst->src[1];
const struct ggml_tensor * opt0 = dst->src[2];
const struct ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
const struct ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
const struct ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(src0f));
GGML_ASSERT(ggml_is_contiguous(src1f));
GGML_ASSERT(ggml_is_contiguous(grad));
GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
const int64_t ith = params->ith;
const int64_t nth = params->nth;
// TODO: handle transposed/permuted matrices
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
const int64_t nc = src0f->ne[0];
const int64_t nr = ggml_nrows(src0f);
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
@@ -12508,12 +12580,12 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
const float d_by_nr = ((const float *) opt0->data)[0] / (float) nr;
const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
#ifndef NDEBUG
for (int64_t i = 0; i < nc; ++i) {
@@ -12526,11 +12598,11 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32(
// soft_max
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
assert(sum > 0.0);
ggml_vec_scale_f32(nc, ds0, 1.0/sum);
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
// grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d_by_nr);
@@ -12827,7 +12899,7 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
} break;
case GGML_OP_SOFT_MAX_BACK:
{
ggml_compute_forward_soft_max_back(params, tensor);
ggml_compute_forward_soft_max_ext_back(params, tensor);
} break;
case GGML_OP_ROPE:
{

View File

@@ -403,6 +403,16 @@ static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const st
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return src1->type == GGML_TYPE_F32 || src1->type == ggml_get_type_traits_cpu(src0->type)->vec_dot_type;
case GGML_OP_SOFT_MAX_BACK: {
if (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type != GGML_TYPE_F32) {
return false;
}
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
return max_bias == 0.0f;
}
case GGML_OP_IM2COL_BACK:
return src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32;
case GGML_OP_OUT_PROD:

View File

@@ -5,95 +5,89 @@
#include <cmath>
#include <cstdint>
static __global__ void cross_entropy_loss_f32(const float * logits, const float * labels, float * dst, const int nclasses, const int k) {
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
const int i0 = blockDim.x*blockIdx.x + warp_id*WARP_SIZE;
template <bool use_shared>
static __global__ void cross_entropy_loss_f32(
const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) {
extern __shared__ float tmp[];
const int ne_tmp = WARP_SIZE*nclasses;
extern __shared__ float tmp_all[];
float * tmp_logits = tmp_all + (2*warp_id + 0)*ne_tmp;
float * tmp_labels = tmp_all + (2*warp_id + 1)*ne_tmp;
// Each warp first loads ne_tmp logits/labels into shared memory:
for (int i = lane_id; i < ne_tmp; i += WARP_SIZE) {
const int ig = i0*nclasses + i; // ig == i global
tmp_logits[i] = ig < k*nclasses ? logits[ig] : 0.0f;
tmp_labels[i] = ig < k*nclasses ? labels[ig] : 0.0f;
}
// Each thread in the warp then calculates the cross entropy loss for a single row.
// TODO: pad in order to avoid shared memory bank conflicts.
logits += int64_t(blockIdx.x)*nclasses;
labels += int64_t(blockIdx.x)*nclasses;
// Find maximum for softmax:
float max = -INFINITY;
for (int i = 0; i < nclasses; ++i) {
max = fmaxf(max, tmp_logits[lane_id*nclasses + i]);
float max_logit = -INFINITY;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = logits[i];
max_logit = fmaxf(max_logit, val);
if (use_shared) {
tmp[i] = val;
}
}
max_logit = warp_reduce_max(max_logit);
// Calculate log(softmax(logits)) which is just logits - max:
float sum = 0.0f;
for (int i = 0; i < nclasses; ++i) {
float val = tmp_logits[lane_id*nclasses + i] - max;
sum += expf(val);
tmp_logits[lane_id*nclasses + i] = val;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float logit_i = use_shared ? tmp[i] : logits[i];
sum += expf(logit_i - max_logit);
}
sum = warp_reduce_sum(sum);
sum = logf(sum);
// log(exp(logits - max) / sum) = (logits - max) - log(sum)
float loss = 0.0f;
for (int i = 0; i < nclasses; ++i) {
loss += (tmp_logits[lane_id*nclasses + i] - sum) * tmp_labels[lane_id*nclasses + i];
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float logit_i = use_shared ? tmp[i] : logits[i];
loss += (logit_i - max_logit - sum) * labels[i];
}
loss = -warp_reduce_sum(loss) / (float)k;
__syncthreads();
if (lane_id == 0) {
tmp_all[warp_id] = loss;
}
__syncthreads();
if (warp_id != 0) {
return;
}
loss = lane_id < CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE/WARP_SIZE ? tmp_all[lane_id] : 0.0f;
loss = warp_reduce_sum(loss);
if (lane_id != 0) {
if (threadIdx.x != 0) {
return;
}
dst[blockIdx.x] = loss;
}
static __global__ void cross_entropy_loss_back_f32(const float * logits, const float * labels, const float * loss, float * dst, const int nclasses) {
template <bool use_shared>
static __global__ void cross_entropy_loss_back_f32(
const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels,
float * __restrict__ dst, const int nclasses) {
extern __shared__ float tmp[];
logits += int64_t(blockIdx.x)*nclasses;
labels += int64_t(blockIdx.x)*nclasses;
dst += int64_t(blockIdx.x)*nclasses;
float maxval = -INFINITY;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = logits[blockIdx.x*nclasses + i];
const float val = logits[i];
maxval = fmaxf(maxval, val);
tmp[i] = val;
if (use_shared) {
tmp[i] = val;
}
}
maxval = warp_reduce_max(maxval);
float sum = 0.0f;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
const float val = expf(tmp[i] - maxval);
const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval);
sum += val;
tmp[i] = val;
if (use_shared) {
tmp[i] = val;
} else {
dst[i] = val;
}
}
sum = warp_reduce_sum(sum);
const float sm_scale = 1.0f/sum;
const float d_by_nrows = *loss/gridDim.x;
const float d_by_nrows = *grad/gridDim.x;
for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) {
dst[blockIdx.x*nclasses + i] = (tmp[i]*sm_scale - labels[blockIdx.x*nclasses + i])*d_by_nrows;
const float val = use_shared ? tmp[i] : dst[i];
dst[i] = (val*sm_scale - labels[i])*d_by_nrows;
}
}
@@ -119,48 +113,77 @@ void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor *
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
const dim3 blocks_num((nrows + CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE - 1) / CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE, 1, 1);
const int shmem = 2*CUDA_CROSS_ENTROPY_LOSS_BLOCK_SIZE*ne00*sizeof(float);
const dim3 blocks_dim(WARP_SIZE, 1, 1);
const dim3 blocks_num(nrows, 1, 1);
const size_t nbytes_shared = ne00*sizeof(float);
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x);
cross_entropy_loss_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
} else {
cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows);
}
CUDA_CHECK(cudaGetLastError());
// Combine results from individual blocks:
sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream);
}
void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * opt0 = dst->src[2];
const ggml_tensor * grad = dst->src[0];
const ggml_tensor * src0f = dst->src[1];
const ggml_tensor * src1f = dst->src[2];
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(opt0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0f->type == GGML_TYPE_F32);
GGML_ASSERT(src1f->type == GGML_TYPE_F32);
GGML_ASSERT( grad->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_scalar(grad));
GGML_ASSERT(ggml_is_contiguous(src0f));
GGML_ASSERT(ggml_is_contiguous(src1f));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0f, src1f));
GGML_ASSERT(ggml_are_same_shape(src0f, dst));
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
const int64_t ne00 = src0f->ne[0];
const int64_t nrows = ggml_nrows(src0f);
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
const float * opt0_d = (const float *) opt0->data;
float * dst_d = (float *) dst->data;
const float * grad_d = (const float *) grad->data;
const float * src0f_d = (const float *) src0f->data;
const float * src1f_d = (const float *) src1f->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
const dim3 blocks_dim(WARP_SIZE, 1, 1);
const dim3 blocks_num(nrows, 1, 1);
const int shmem = ne00*sizeof(float);
const size_t nbytes_shared = ne00*sizeof(float);
cross_entropy_loss_back_f32<<<blocks_num, blocks_dim, shmem, stream>>>(src0_d, src1_d, opt0_d, dst_d, ne00);
const int id = ggml_cuda_get_device();
const size_t smpbo = ggml_cuda_info().devices[id].smpbo;
if (nbytes_shared <= smpbo) {
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
static bool shared_memory_limit_raised[GGML_CUDA_MAX_DEVICES] = {false};
if (!shared_memory_limit_raised[id]) {
CUDA_CHECK(cudaFuncSetAttribute(cross_entropy_loss_back_f32<true>, cudaFuncAttributeMaxDynamicSharedMemorySize, smpbo));
shared_memory_limit_raised[id] = true;
}
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__))
cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
} else {
cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00);
}
}

View File

@@ -3,15 +3,15 @@
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(
const void * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
const void * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
@@ -22,10 +22,10 @@ static __global__ void k_get_rows(
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
const void * src0_row = (const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
@@ -39,15 +39,15 @@ static __global__ void k_get_rows(
template<typename src0_t, typename dst_t>
static __global__ void k_get_rows_float(
const src0_t * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
const src0_t * __restrict__ src0, const int32_t * __restrict__ src1, dst_t * __restrict__ dst,
const int64_t ne00, /*const int64_t ne01, const int64_t ne02, const int64_t ne03,*/
/*const int64_t ne10, const int64_t ne11,*/ const int64_t ne12, /*const int64_t ne13,*/
/*const size_t s0,*/ const size_t s1, const size_t s2, const size_t s3,
/*const size_t nb00,*/ const size_t nb01, const size_t nb02, const size_t nb03,
const size_t s10, const size_t s11, const size_t s12/*, const size_t s13*/) {
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
@@ -58,14 +58,38 @@ static __global__ void k_get_rows_float(
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = src0_row[i00];
}
template<typename grad_t, typename dst_t>
static __global__ void k_get_rows_back_float(
const grad_t * __restrict__ grad, const int32_t * __restrict__ rows, dst_t * __restrict__ dst, const int64_t ncols, const int64_t nrows_grad) {
const int col = blockIdx.x*blockDim.x + threadIdx.x;
if (col >= ncols) {
return;
}
const int dst_row = blockIdx.y*blockDim.y + threadIdx.y;
float sum = 0.0f;
for (int64_t i = 0; i < nrows_grad; ++i) {
if (rows[i] != dst_row) {
continue;
}
sum += grad[i*ncols + col];
}
dst[dst_row*ncols + col] = sum;
}
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
static void get_rows_cuda(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
@@ -87,22 +111,25 @@ static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, gg
GGML_ASSERT(ne00 % 2 == 0);
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
GGML_UNUSED(dst);
}
template<typename src0_t>
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
static void get_rows_cuda_float(
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
GGML_ASSERT(ne13 == 1);
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
@@ -119,12 +146,12 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
//const size_t s13 = nb13 / ggml_element_size(src1);
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
GGML_UNUSED(dst);
}
@@ -132,42 +159,41 @@ static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * sr
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
const void * src0_d = (const void *) src0->data;
const int32_t * src1_d = (const int32_t *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) src1_d;
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
switch (src0->type) {
case GGML_TYPE_F16:
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_F32:
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q4_0:
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q4_1:
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q5_0:
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q5_1:
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
case GGML_TYPE_Q8_0:
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
break;
default:
// TODO: k-quants
@@ -175,3 +201,34 @@ void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
break;
}
}
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass
GGML_TENSOR_BINARY_OP_LOCALS
const float * src0_d = (const float *) src0->data;
const int32_t * src1_d = (const int32_t *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ne02*ne03 == 1);
GGML_ASSERT(ne12*ne13 == 1);
GGML_ASSERT(ne2*ne3 == 1);
const dim3 block_dims(CUDA_GET_ROWS_BACK_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + CUDA_GET_ROWS_BACK_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BACK_BLOCK_SIZE;
const dim3 block_nums(block_num_x, ne1, 1);
k_get_rows_back_float<<<block_nums, block_dims, 0, stream>>>(src0_d, src1_d, dst_d, ne00, ne10);
}

View File

@@ -1,5 +1,8 @@
#include "common.cuh"
#define CUDA_GET_ROWS_BLOCK_SIZE 256
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -2003,6 +2003,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_GET_ROWS:
ggml_cuda_op_get_rows(ctx, dst);
break;
case GGML_OP_GET_ROWS_BACK:
ggml_cuda_op_get_rows_back(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cuda_dup(ctx, dst);
break;
@@ -2091,9 +2094,15 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_LEAKY_RELU:
ggml_cuda_op_leaky_relu(ctx, dst);
break;
case GGML_OP_SILU_BACK:
ggml_cuda_op_silu_back(ctx, dst);
break;
case GGML_OP_RMS_NORM:
ggml_cuda_op_rms_norm(ctx, dst);
break;
case GGML_OP_RMS_NORM_BACK:
ggml_cuda_op_rms_norm_back(ctx, dst);
break;
case GGML_OP_MUL_MAT:
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
GGML_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
@@ -2138,6 +2147,9 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
case GGML_OP_SOFT_MAX:
ggml_cuda_op_soft_max(ctx, dst);
break;
case GGML_OP_SOFT_MAX_BACK:
ggml_cuda_op_soft_max_back(ctx, dst);
break;
case GGML_OP_ROPE:
ggml_cuda_op_rope(ctx, dst);
break;
@@ -2912,7 +2924,7 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
} break;
case GGML_OP_OUT_PROD:
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
case GGML_OP_GET_ROWS:
{
switch (op->src[0]->type) {
@@ -2928,6 +2940,10 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
return false;
}
} break;
case GGML_OP_GET_ROWS_BACK:
{
return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
} break;
case GGML_OP_CPY:
{
ggml_type src0_type = op->src[0]->type;
@@ -3001,8 +3017,12 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
}
return false;
} break;
case GGML_OP_SILU_BACK:
return ggml_is_contiguous(op->src[0]);
break;
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
break;
case GGML_OP_NONE:
@@ -3027,6 +3047,11 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
return true;
case GGML_OP_SOFT_MAX_BACK: {
float max_bias = 0.0f;
memcpy(&max_bias, (const float *) op->op_params + 1, sizeof(float));
return max_bias == 0.0f;
}
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK: {
const size_t ts = ggml_type_size(op->src[0]->type);

View File

@@ -5,20 +5,24 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
float2 mean_var = make_float2(0.f, 0.f);
x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
float2 mean_var = make_float2(0.0f, 0.0f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
const float xi = x[col];
mean_var.x += xi;
mean_var.y += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var);
if (block_size > WARP_SIZE) {
if constexpr (block_size > WARP_SIZE) {
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float2 s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
@@ -32,7 +36,7 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols, c
const float inv_std = rsqrtf(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
dst[col] = (x[col] - mean) * inv_std;
}
}
@@ -40,14 +44,8 @@ template <int block_size>
static __global__ void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
// blockIdx.x: num_groups idx
// threadIdx.x: block_size idx
int start = blockIdx.x * group_size;
int end = start + group_size;
start += threadIdx.x;
if (end >= ne_elements) {
end = ne_elements;
}
const int start = blockIdx.x*group_size + threadIdx.x;
const int end = min(blockIdx.x*group_size + group_size, ne_elements);
float tmp = 0.0f; // partial sum for thread in warp
@@ -56,10 +54,11 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
}
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
if constexpr (block_size > WARP_SIZE) {
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
@@ -68,11 +67,11 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
tmp = warp_reduce_sum(tmp);
}
float mean = tmp / group_size;
const float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
const float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
@@ -80,8 +79,8 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
@@ -90,8 +89,8 @@ static __global__ void group_norm_f32(const float * x, float * dst, const int gr
tmp = warp_reduce_sum(tmp);
}
float variance = tmp / group_size;
float scale = rsqrtf(variance + eps);
const float variance = tmp / group_size;
const float scale = rsqrtf(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
@@ -102,19 +101,23 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
x += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
const float xi = x[col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
if constexpr (block_size > WARP_SIZE) {
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
@@ -127,12 +130,63 @@ static __global__ void rms_norm_f32(const float * x, float * dst, const int ncol
const float scale = rsqrtf(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
dst[col] = scale * x[col];
}
}
template <int block_size>
static __global__ void rms_norm_back_f32(
const float * grad, const float * xf, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
grad += int64_t(row)*ncols;
xf += int64_t(row)*ncols;
dst += int64_t(row)*ncols;
float sum_xx = 0.0f; // sum for squares of x, equivalent to forward pass
float sum_xg = 0.0f; // sum for x * gradient, needed because RMS norm mixes inputs
for (int col = tid; col < ncols; col += block_size) {
const float xfi = xf[col];
sum_xx += xfi * xfi;
sum_xg += xfi * grad[col];
}
// sum up partial sums
sum_xx = warp_reduce_sum(sum_xx);
sum_xg = warp_reduce_sum(sum_xg);
if constexpr (block_size > WARP_SIZE) {
static_assert(block_size == 1024, "unexpected block_size");
__shared__ float s_sum_xx[32];
__shared__ float s_sum_xg[32];
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum_xx[warp_id] = sum_xx;
s_sum_xg[warp_id] = sum_xg;
}
__syncthreads();
sum_xx = s_sum_xx[lane_id];
sum_xx = warp_reduce_sum(sum_xx);
sum_xg = s_sum_xg[lane_id];
sum_xg = warp_reduce_sum(sum_xg);
}
const float mean_eps = sum_xx / ncols + eps;
const float sum_eps = sum_xx + ncols*eps;
const float scale_grad = rsqrtf(mean_eps);
const float scale_x = -scale_grad * sum_xg/sum_eps;
for (int col = tid; col < ncols; col += block_size) {
dst[col] = scale_grad*grad[col] + scale_x*xf[col];
}
}
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
@@ -142,7 +196,8 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
}
}
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
static void group_norm_f32_cuda(
const float * x, float * dst, const int num_groups, const float eps, const int group_size, const int ne_elements, cudaStream_t stream) {
if (group_size < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
@@ -153,7 +208,6 @@ static void group_norm_f32_cuda(const float * x, float * dst, const int num_grou
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
@@ -163,6 +217,16 @@ static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, con
}
}
static void rms_norm_back_f32_cuda(const float * grad, const float * xf, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_back_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(grad, xf, dst, ncols, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_back_f32<1024><<<nrows, block_dims, 0, stream>>>(grad, xf, dst, ncols, eps);
}
}
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
@@ -179,6 +243,7 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}
@@ -198,6 +263,7 @@ void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst)
float eps;
memcpy(&eps, dst->op_params + 1, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], eps, group_size, ggml_nelements(src0), stream);
@@ -219,6 +285,33 @@ void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * grad = dst->src[0]; // gradients
const ggml_tensor * src0f = dst->src[1]; // src0 from forward pass
const float * grad_d = (const float *) grad->data;
const float * src0f_d = (const float *) src0f->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(grad));
GGML_ASSERT( grad->type == GGML_TYPE_F32);
GGML_ASSERT(src0f->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0f->ne[0];
const int64_t nrows = ggml_nrows(src0f);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
GGML_ASSERT(eps >= 0.0f);
rms_norm_back_f32_cuda(grad_d, src0f_d, dst_d, ne00, nrows, eps, stream);
}

View File

@@ -5,3 +5,5 @@ void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rms_norm_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -11,16 +11,15 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ne01 == ne11);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == src0->ne[2]);
GGML_ASSERT(ne2 % src0->ne[2] == 0);
GGML_ASSERT(ne3 % src0->ne[3] == 0);
GGML_ASSERT(ne2 == src1->ne[2]);
GGML_ASSERT(ne3 == src0->ne[3]);
GGML_ASSERT(ne3 == src1->ne[3]);
const float * src0_d = (const float *) src0->data;
@@ -33,8 +32,6 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const float alpha = 1.0f;
const float beta = 0.0f;
GGML_ASSERT(ne2 == 1);
GGML_ASSERT(ne3 == 1);
CUBLAS_CHECK(cublasSetStream(handle, stream));
const bool src1_T = ggml_is_transposed(src1);
@@ -42,10 +39,27 @@ void ggml_cuda_out_prod(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const int64_t ldb = (src1_T ? nb10 : nb11) / sizeof(float);
GGML_ASSERT( (src1_T ? nb11 : nb10) == sizeof(float));
CUBLAS_CHECK(
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
ne0, ne1, ne01,
&alpha, src0_d, ne00,
src1_d, ldb,
&beta, dst_d, ne0));
// data strides in dimensions 2/3
const size_t s02 = nb02 / sizeof(float);
const size_t s03 = nb03 / sizeof(float);
const size_t s12 = nb12 / sizeof(float);
const size_t s13 = nb13 / sizeof(float);
const size_t s2 = nb2 / sizeof(float);
const size_t s3 = nb3 / sizeof(float);
// dps == dst per src0, used for group query attention
const int64_t dps2 = ne2 / ne02;
const int64_t dps3 = ne3 / ne03;
// TODO batched matrix multiplication
for (int64_t i3 = 0; i3 < ne3; ++i3) {
for (int64_t i2 = 0; i2 < ne2; ++i2) {
CUBLAS_CHECK(
cublasSgemm(handle, CUBLAS_OP_N, src1_cublas_op,
ne0, ne1, ne01,
&alpha, src0_d + (i3/dps3)*s03 + (i2/dps2)*s02, ne00,
src1_d + i3 *s13 + i2 *s12, ldb,
&beta, dst_d + i3 *s3 + i2 *s2, ne0));
}
}
}

View File

@@ -39,9 +39,9 @@ static __device__ void rope_yarn(
template<bool forward, bool has_ff, typename T>
static __global__ void rope_norm(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors) {
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
@@ -83,9 +83,9 @@ static __global__ void rope_norm(
template<bool forward, bool has_ff, typename T>
static __global__ void rope_neox(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors) {
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
@@ -127,9 +127,9 @@ static __global__ void rope_neox(
template<bool forward, bool has_ff, typename T>
static __global__ void rope_multi(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
const int n_dims, const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * __restrict__ freq_factors, const mrope_sections sections) {
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
@@ -187,9 +187,9 @@ static __global__ void rope_multi(
template<bool forward, bool has_ff, typename T>
static __global__ void rope_vision(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
const int32_t * __restrict__ pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * __restrict__ freq_factors, const mrope_sections sections) {
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
@@ -234,9 +234,9 @@ static __global__ void rope_vision(
template<bool forward, typename T>
static void rope_norm_cuda(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, cudaStream_t stream) {
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
@@ -257,9 +257,9 @@ static void rope_norm_cuda(
template<bool forward, typename T>
static void rope_neox_cuda(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, cudaStream_t stream) {
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
@@ -280,9 +280,9 @@ static void rope_neox_cuda(
template<bool forward, typename T>
static void rope_multi_cuda(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, const mrope_sections sections, cudaStream_t stream) {
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
@@ -303,9 +303,9 @@ static void rope_multi_cuda(
template<bool forward, typename T>
static void rope_vision_cuda(
const T * __restrict__ x, T * __restrict__ dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * __restrict__ pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * __restrict__ freq_factors, const mrope_sections sections, cudaStream_t stream) {
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);

View File

@@ -1,5 +1,7 @@
#include "common.cuh"
#include "ggml.h"
#include "softmax.cuh"
#include <cstdint>
template <typename T>
static __device__ __forceinline__ float t2f32(T val) {
@@ -11,14 +13,20 @@ __device__ float __forceinline__ t2f32<half>(half val) {
return __half2float(val);
}
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
template <bool use_shared, int ncols_template, int block_size_template, typename T>
static __global__ void soft_max_f32(
const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y,
const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
x += int64_t(rowx)*ncols;
mask += int64_t(rowy)*ncols * (mask != nullptr);
dst += int64_t(rowx)*ncols;
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE;
@@ -29,7 +37,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
// shared memory buffer to cache values between iterations:
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
float * vals = use_shared ? buf_iw + WARP_SIZE : dst;
float max_val = -INFINITY;
@@ -41,10 +49,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
break;
}
const int64_t ix = (int64_t)rowx*ncols + col;
const int64_t iy = (int64_t)rowy*ncols + col;
const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
const float val = x[col]*scale + (mask ? slope*t2f32(mask[col]) : 0.0f);
vals[col] = val;
max_val = max(max_val, val);
@@ -110,8 +115,29 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
return;
}
const int64_t idst = (int64_t)rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
dst[col] = vals[col] * inv_sum;
}
}
static __global__ void soft_max_back_f32(
const float * grad, const float * dstf, float * dst, const int ncols, const float scale) {
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
grad += int64_t(rowx)*ncols;
dstf += int64_t(rowx)*ncols;
dst += int64_t(rowx)*ncols;
float dgf_dot = 0.0f; // dot product of dst from forward pass and gradients
for (int col = tid; col < ncols; col += WARP_SIZE) {
dgf_dot += dstf[col]*grad[col];
}
dgf_dot = warp_reduce_sum(dgf_dot);
for (int col = tid; col < ncols; col += WARP_SIZE) {
dst[col] = scale * (grad[col] - dgf_dot) * dstf[col];
}
}
@@ -121,7 +147,7 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
const size_t nbytes_shared = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
const uint32_t n_head = nrows_x/nrows_y;
@@ -131,50 +157,68 @@ static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, cons
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
// FIXME: this limit could be raised by ~2-4x on Ampere or newer
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
if (nbytes_shared < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
switch (ncols_x) {
case 32:
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 32, 32><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 64:
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 64, 64><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 128:
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 128, 128><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 256:
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 256, 256><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 512:
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 512, 512><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 1024:
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 2048:
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 4096:
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
default:
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
soft_max_f32<true, 0, 0><<<block_nums, block_dims, nbytes_shared, stream>>>
(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
}
} else {
const size_t shmem_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
const size_t nbytes_shared_low = WARP_SIZE*sizeof(float);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, nbytes_shared_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
}
}
static void soft_max_back_f32_cuda(
const float * grad, const float * dstf, float * dst,
const int ncols, const int nrows, const float scale, cudaStream_t stream) {
const dim3 block_dims(WARP_SIZE, 1, 1);
const dim3 block_nums(nrows, 1, 1);
soft_max_back_f32<<<block_nums, block_dims, 0, stream>>>(grad, dstf, dst, ncols, scale);
}
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const void * src1_d = src1 ? (const void *)src1->data : nullptr;
const float * src0_d = (const float *) src0->data;
const void * src1_d = src1 ? (const void *) src1->data : nullptr;
float * dst_d = (float *) dst->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
@@ -189,18 +233,42 @@ void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
if (use_f16) {
const half * src1_dd = (const half *)src1_d;
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
soft_max_f32_cuda(src0_d, (const half *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
} else {
const float * src1_dd = (const float *)src1_d;
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
soft_max_f32_cuda(src0_d, (const float *) src1_d, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
}
}
void ggml_cuda_op_soft_max_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // grad
const ggml_tensor * src1 = dst->src[1]; // forward pass output
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ncols = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
GGML_ASSERT(max_bias == 0.0f);
soft_max_back_f32_cuda(src0_d, src1_d, dst_d, ncols, nrows, scale, stream);
}

View File

@@ -3,3 +3,5 @@
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_soft_max_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -51,6 +51,19 @@ static __global__ void silu_f32(const float * x, float * dst, const int k) {
dst[i] = x[i] / (1.0f + expf(-x[i]));
}
static __global__ void silu_back_f32(
const float * grad, const float * xf, float * dst, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
const float xfi = xf[i];
const float s = 1.0f / (1.0f + expf(-xfi));
dst[i] = grad[i] * s * (1.0f + xfi * (1.0f - s));
}
static __global__ void tanh_f32(const float * x, float * dst, int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
@@ -173,6 +186,11 @@ static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
}
static void silu_back_f32_cuda(const float * grad, const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SILU_BACK_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
silu_back_f32<<<num_blocks, CUDA_SILU_BACK_BLOCK_SIZE, 0, stream>>>(grad, x, dst, k);
}
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
@@ -284,6 +302,24 @@ void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0]; // input from forward pass
const ggml_tensor * src1 = dst->src[1]; // grads of forward pass output
const float * src0_d = (const float *) src0->data;
const float * src1_d = (const float *) src1->data;
float * dst_d = (float *) dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
silu_back_f32_cuda(src0_d, src1_d, dst_d, ggml_nelements(src0), stream);
}
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;

View File

@@ -4,6 +4,7 @@
#define CUDA_STEP_BLOCK_SIZE 256
#define CUDA_GELU_BLOCK_SIZE 256
#define CUDA_SILU_BLOCK_SIZE 256
#define CUDA_SILU_BACK_BLOCK_SIZE 256
#define CUDA_TANH_BLOCK_SIZE 256
#define CUDA_RELU_BLOCK_SIZE 256
#define CUDA_SIGMOID_BLOCK_SIZE 256
@@ -23,6 +24,8 @@ void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_silu_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

View File

@@ -4416,7 +4416,6 @@ void kernel_mul_mv_q2_K_f32_impl(
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
@@ -4447,7 +4446,7 @@ void kernel_mul_mv_q2_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -4613,7 +4612,7 @@ void kernel_mul_mv_q3_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
dst_f32[first_row + row] = sumf1[row];
}
}
@@ -4729,7 +4728,7 @@ void kernel_mul_mv_q4_K_f32_impl(
device float * dst_f32 = (device float *) dst + (int64_t)im*args.ne0*args.ne1 + (int64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -4861,7 +4860,7 @@ void kernel_mul_mv_q5_K_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
const float tot = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = tot;
@@ -4906,6 +4905,10 @@ void kernel_mul_mv_q6_K_f32_impl(
const int row = 2*r0 + sgitg;
if (row >= args.ne0) {
return;
}
const uint i12 = im%args.ne12;
const uint i13 = im/args.ne12;
@@ -5061,7 +5064,7 @@ void kernel_mul_mv_iq2_xxs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@@ -5179,7 +5182,7 @@ void kernel_mul_mv_iq2_xs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@@ -5289,7 +5292,7 @@ void kernel_mul_mv_iq3_xxs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.5f;
@@ -5401,7 +5404,7 @@ void kernel_mul_mv_iq3_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -5514,7 +5517,7 @@ void kernel_mul_mv_iq2_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum * 0.25f;
@@ -5614,7 +5617,7 @@ void kernel_mul_mv_iq1_s_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -5709,7 +5712,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < N_DST; ++row) {
for (int row = 0; row < N_DST && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -5799,7 +5802,7 @@ void kernel_mul_mv_iq4_nl_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2 && first_row + row < args.ne01; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;
@@ -5888,7 +5891,7 @@ void kernel_mul_mv_iq4_xs_f32_impl(
device float * dst_f32 = (device float *) dst + (uint64_t)im*args.ne0*args.ne1 + (uint64_t)r1*args.ne0;
for (int row = 0; row < 2; ++row) {
for (int row = 0; row < 2 && first_row + row < args.ne0; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst_f32[first_row + row] = all_sum;

View File

@@ -181,7 +181,7 @@ struct ggml_backend_rpc_context {
struct ggml_backend_rpc_buffer_context {
std::shared_ptr<socket_t> sock;
std::unordered_map<ggml_backend_buffer_t, void *> base_cache;
void * base_ptr;
uint64_t remote_ptr;
};
@@ -423,16 +423,15 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
return ctx->base_cache[buffer];
if (ctx->base_ptr != nullptr) {
return ctx->base_ptr;
}
rpc_msg_buffer_get_base_req request = {ctx->remote_ptr};
rpc_msg_buffer_get_base_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_BUFFER_GET_BASE, &request, sizeof(request), &response, sizeof(response));
GGML_ASSERT(status);
void * base_ptr = reinterpret_cast<void *>(response.base_ptr);
ctx->base_cache[buffer] = base_ptr;
return base_ptr;
ctx->base_ptr = reinterpret_cast<void *>(response.base_ptr);
return ctx->base_ptr;
}
static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
@@ -557,7 +556,7 @@ static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_back
if (response.remote_ptr != 0) {
ggml_backend_buffer_t buffer = ggml_backend_buffer_init(buft,
ggml_backend_rpc_buffer_interface,
new ggml_backend_rpc_buffer_context{sock, {}, response.remote_ptr},
new ggml_backend_rpc_buffer_context{sock, nullptr, response.remote_ptr},
response.remote_size);
return buffer;
} else {

View File

@@ -333,8 +333,12 @@ struct ggml_backend_sycl_context {
// pool
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
std::unique_ptr<ggml_sycl_pool> host_pools[GGML_SYCL_MAX_DEVICES];
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);
static std::unique_ptr<ggml_sycl_pool> new_pool_for_host(queue_ptr qptr, int device);
ggml_sycl_pool & pool(int device) {
if (pools[device] == nullptr) {
pools[device] = new_pool_for_device(stream(device,0), device);
@@ -345,6 +349,15 @@ struct ggml_backend_sycl_context {
ggml_sycl_pool & pool() {
return pool(device);
}
ggml_sycl_pool & host_pool(int device) {
if (host_pools[device] == nullptr) {
host_pools[device] = new_pool_for_host(stream(device, 0), device);
}
return *host_pools[device];
}
ggml_sycl_pool & host_pool() { return host_pool(device); }
};
// common device functions

View File

@@ -82,6 +82,14 @@ inline std::string get_device_backend_and_type(const sycl::device &device) {
return device_type.str();
}
template <typename Ts> struct matrix_info_t {
oneapi::mkl::transpose transpose_info[2];
Ts value_info[2];
std::int64_t size_info[3];
std::int64_t ld_info[3];
std::int64_t groupsize_info;
};
namespace dpct
{
typedef sycl::queue *queue_ptr;
@@ -1727,26 +1735,13 @@ namespace dpct
};
template <class Ta, class Tb, class Tc, class Ts>
inline void gemm_batch_impl(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void **a, int lda,
const void **b, int ldb, const void *beta, void **c,
int ldc, int batch_size)
{
struct matrix_info_t
{
oneapi::mkl::transpose transpose_info[2];
Ts value_info[2];
std::int64_t size_info[3];
std::int64_t ld_info[3];
std::int64_t groupsize_info;
};
inline void gemm_batch_impl(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans,
int m, int n, int k, const void * alpha, const void ** a, int lda, const void ** b,
int ldb, const void * beta, void ** c, int ldc, int batch_size,
matrix_info_t<float> * matrix_info) {
Ts alpha_value = dpct::get_value(reinterpret_cast<const Ts *>(alpha), q);
Ts beta_value = dpct::get_value(reinterpret_cast<const Ts *>(beta), q);
matrix_info_t *matrix_info =
(matrix_info_t *)std::malloc(sizeof(matrix_info_t));
matrix_info->transpose_info[0] = a_trans;
matrix_info->transpose_info[1] = b_trans;
matrix_info->value_info[0] = alpha_value;
@@ -1763,23 +1758,18 @@ namespace dpct
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ q }, matrix_info->transpose_info,
matrix_info->transpose_info + 1, matrix_info->size_info, matrix_info->size_info + 1,
matrix_info->size_info + 2, matrix_info->value_info, reinterpret_cast<const Ta **>(a),
matrix_info->ld_info, reinterpret_cast<const Tb **>(b), matrix_info->ld_info + 1,
matrix_info->value_info + 1, reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1,
&(matrix_info->groupsize_info));
matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
#else
sycl::event e = oneapi::mkl::blas::column_major::gemm_batch(
q, matrix_info->transpose_info, matrix_info->transpose_info + 1, matrix_info->size_info,
matrix_info->size_info + 1, matrix_info->size_info + 2, matrix_info->value_info,
matrix_info->size_info + 1, matrix_info->size_info + 2, reinterpret_cast<Ts *>(matrix_info->value_info),
reinterpret_cast<const Ta **>(a), matrix_info->ld_info, reinterpret_cast<const Tb **>(b),
matrix_info->ld_info + 1, matrix_info->value_info + 1, reinterpret_cast<Tc **>(c),
matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
matrix_info->ld_info + 1, reinterpret_cast<Ts *>(matrix_info->value_info + 1),
reinterpret_cast<Tc **>(c), matrix_info->ld_info + 2, 1, &(matrix_info->groupsize_info));
#endif
q.submit([&](sycl::handler &cgh)
{
cgh.depends_on(e);
cgh.host_task([=] { std::free(matrix_info); }); });
}
template <class Ta, class Tb, class Tc, class Ts>
@@ -2422,25 +2412,11 @@ namespace dpct
/// \param [in] ldc Leading dimension of C.
/// \param [in] batch_size Specifies the number of matrix multiply operations to perform.
/// \param [in] scaling_type Data type of the scaling factors.
inline void gemm_batch(sycl::queue &q, oneapi::mkl::transpose a_trans,
oneapi::mkl::transpose b_trans, int m, int n, int k,
const void *alpha, const void *a[],
library_data_t a_type, int lda, const void *b[],
library_data_t b_type, int ldb, const void *beta,
void *c[], library_data_t c_type, int ldc,
int batch_size, library_data_t scaling_type)
{
if (scaling_type == library_data_t::real_float &&
c_type == library_data_t::complex_float)
{
scaling_type = library_data_t::complex_float;
}
else if (scaling_type == library_data_t::real_double &&
c_type == library_data_t::complex_double)
{
scaling_type = library_data_t::complex_double;
}
inline void gemm_batch(sycl::queue & q, oneapi::mkl::transpose a_trans, oneapi::mkl::transpose b_trans, int m,
int n, int k, const void * alpha, const void * a[], library_data_t a_type, int lda,
const void * b[], library_data_t b_type, int ldb, const void * beta, void * c[],
library_data_t c_type, int ldc, int batch_size, library_data_t scaling_type,
matrix_info_t<float> * matrix_info) {
std::uint64_t key =
detail::get_type_combination_id(a_type, b_type, c_type, scaling_type);
switch (key)
@@ -2449,48 +2425,24 @@ namespace dpct
library_data_t::real_float, library_data_t::real_float,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<float, float, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
detail::gemm_batch_impl<float, float, float, float>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb,
beta, c, ldc, batch_size, matrix_info);
break;
}
case detail::get_type_combination_id(
library_data_t::real_double, library_data_t::real_double,
library_data_t::real_double, library_data_t::real_double):
{
detail::gemm_batch_impl<double, double, double, double>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_float, library_data_t::complex_float,
library_data_t::complex_float, library_data_t::complex_float):
{
detail::gemm_batch_impl<std::complex<float>, std::complex<float>,
std::complex<float>, std::complex<float>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
break;
}
case detail::get_type_combination_id(
library_data_t::complex_double, library_data_t::complex_double,
library_data_t::complex_double, library_data_t::complex_double):
{
detail::gemm_batch_impl<std::complex<double>, std::complex<double>,
std::complex<double>, std::complex<double>>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
detail::gemm_batch_impl<double, double, double, double>(q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb,
beta, c, ldc, batch_size, matrix_info);
break;
}
case detail::get_type_combination_id(
library_data_t::real_half, library_data_t::real_half,
library_data_t::real_half, library_data_t::real_half):
{
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half,
sycl::half>(q, a_trans, b_trans, m, n, k, alpha,
a, lda, b, ldb, beta, c, ldc,
batch_size);
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
#ifdef __INTEL_MKL__
@@ -2498,19 +2450,16 @@ namespace dpct
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_bfloat16, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16,
oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
case detail::get_type_combination_id(
library_data_t::real_bfloat16, library_data_t::real_bfloat16,
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float,
float>(q, a_trans, b_trans, m, n, k, alpha, a, lda,
b, ldb, beta, c, ldc, batch_size);
detail::gemm_batch_impl<oneapi::mkl::bfloat16, oneapi::mkl::bfloat16, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
#endif
@@ -2522,10 +2471,9 @@ namespace dpct
dpct::get_value(reinterpret_cast<const std::int32_t *>(alpha), q);
float beta_float =
dpct::get_value(reinterpret_cast<const std::int32_t *>(beta), q);
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t,
float>(q, a_trans, b_trans, m, n, k, &alpha_float,
a, lda, b, ldb, &beta_float, c, ldc,
batch_size);
detail::gemm_batch_impl<std::int8_t, std::int8_t, std::int32_t, float>(
q, a_trans, b_trans, m, n, k, &alpha_float, a, lda, b, ldb, &beta_float, c, ldc, batch_size,
matrix_info);
break;
}
case detail::get_type_combination_id(
@@ -2533,8 +2481,7 @@ namespace dpct
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<std::int8_t, std::int8_t, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
case detail::get_type_combination_id(
@@ -2542,8 +2489,7 @@ namespace dpct
library_data_t::real_float, library_data_t::real_float):
{
detail::gemm_batch_impl<sycl::half, sycl::half, float, float>(
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc,
batch_size);
q, a_trans, b_trans, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc, batch_size, matrix_info);
break;
}
case detail::get_type_combination_id(
@@ -2557,8 +2503,7 @@ namespace dpct
sycl::half alpha_half(alpha_value);
sycl::half beta_half(beta_value);
detail::gemm_batch_impl<sycl::half, sycl::half, sycl::half, sycl::half>(
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc,
batch_size);
q, a_trans, b_trans, m, n, k, &alpha_half, a, lda, b, ldb, &beta_half, c, ldc, batch_size, matrix_info);
break;
}
default:

View File

@@ -1173,6 +1173,85 @@ struct ggml_sycl_pool_leg : public ggml_sycl_pool {
}
};
struct ggml_sycl_pool_host : public ggml_sycl_pool {
queue_ptr qptr;
int device;
inline static int counter{ 0 };
struct ggml_sycl_buffer {
void * ptr = nullptr;
size_t size = 0;
};
// Set arbitrarly to 64
static constexpr int MAX_POOL_SIZE{ 64 };
std::vector<ggml_sycl_buffer> buffer_pool = std::vector<ggml_sycl_buffer>(MAX_POOL_SIZE);
size_t pool_size = 0;
explicit ggml_sycl_pool_host(queue_ptr qptr_, int device_) : qptr(qptr_), device(device_) {}
~ggml_sycl_pool_host() {
for (int i = 0; i < MAX_POOL_SIZE; ++i) {
ggml_sycl_buffer & b = buffer_pool[i];
if (b.ptr != nullptr) {
SYCL_CHECK(CHECK_TRY_ERROR(sycl::free(b.ptr, *qptr)));
b.ptr = nullptr;
pool_size -= b.size;
b.size = 0;
}
}
counter = 0;
}
void * alloc(size_t size, size_t * actual_size) override {
if (counter == MAX_POOL_SIZE) {
ggml_sycl_buffer b = buffer_pool[0];
void * ptr = b.ptr;
*actual_size = b.size;
counter = 1;
return ptr;
}
ggml_sycl_buffer & b = buffer_pool[counter];
if (b.ptr == nullptr) {
void * ptr;
SYCL_CHECK(CHECK_TRY_ERROR(ptr = (void *) sycl::malloc_host(size, *qptr)));
if (!ptr) {
GGML_LOG_ERROR("%s: can't allocate %lu Bytes of memory on host\n", __func__, size);
return nullptr;
}
pool_size += size;
*actual_size = size;
counter = counter + 1;
return ptr;
} else {
++counter;
b.size = size;
return b.ptr;
}
}
void free(void * ptr, size_t size) override {
// if the pool is not completed add the pointer to it in place of the first nullptr found.
// Otherwise do nothing, pointers will be freed once the pool is deallocated.
for (int i = 0; i < MAX_POOL_SIZE; ++i) {
ggml_sycl_buffer & b = buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
}
};
std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_host(queue_ptr qptr, int device) {
// return pool for the host to speed up memory management
return std::unique_ptr<ggml_sycl_pool>(new ggml_sycl_pool_host(qptr, device));
}
std::unique_ptr<ggml_sycl_pool> ggml_backend_sycl_context::new_pool_for_device(queue_ptr qptr, int device) {
// TBD: NO VMM support
// if (ggml_sycl_info().devices[device].vmm) {
@@ -3363,6 +3442,7 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
ggml_sycl_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
ggml_sycl_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
ggml_sycl_pool_alloc<matrix_info_t<float>> matrix_info(ctx.host_pool(), 1);
sycl::range<3> block_dims(1, ne12, ne13);
/*
@@ -3391,14 +3471,10 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
});
}
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
*main_stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
(const void **)(ptrs_src.get() + 0 * ne23),
dpct::library_data_t::real_half, nb01 / nb00,
(const void **)(ptrs_src.get() + 1 * ne23),
dpct::library_data_t::real_half, nb11 / nb10, beta,
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
cu_compute_type)));
*main_stream, oneapi::mkl::transpose::trans, oneapi::mkl::transpose::nontrans, ne01, ne11, ne10, alpha,
(const void **) (ptrs_src.get() + 0 * ne23), dpct::library_data_t::real_half, nb01 / nb00,
(const void **) (ptrs_src.get() + 1 * ne23), dpct::library_data_t::real_half, nb11 / nb10, beta,
(void **) (ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23, cu_compute_type, matrix_info.get())));
}
}
catch (sycl::exception const &exc) {

View File

@@ -29,8 +29,6 @@
#include "ggml-vulkan-shaders.hpp"
#define VK_API_VERSION VK_API_VERSION_1_2
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
#define VK_VENDOR_ID_AMD 0x1002
@@ -228,6 +226,8 @@ struct vk_device_struct {
vk_pipeline pipeline_repeat_f32;
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
vk_pipeline pipeline_cpy_f32_quant[GGML_TYPE_COUNT];
vk_pipeline pipeline_cpy_quant_f32[GGML_TYPE_COUNT];
vk_pipeline pipeline_norm_f32;
vk_pipeline pipeline_group_norm_f32;
vk_pipeline pipeline_rms_norm_f32;
@@ -384,10 +384,13 @@ struct vk_flash_attn_push_constants {
uint32_t nev3;
uint32_t nem1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
uint32_t nb11;
uint32_t nb12;
uint32_t nb13;
uint32_t nb21;
uint32_t nb22;
uint32_t nb23;
uint32_t nb31;
@@ -1609,11 +1612,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
@@ -1626,21 +1625,18 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f16, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
#undef CREATE_MM
#undef CREATE_MM2
} else
@@ -1677,31 +1673,31 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
}
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
@@ -1711,31 +1707,31 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
}
#undef CREATE_MM2
@@ -1965,6 +1961,20 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_0], "cpy_f32_q4_0", cpy_f32_q4_0_len, cpy_f32_q4_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q4_1], "cpy_f32_q4_1", cpy_f32_q4_1_len, cpy_f32_q4_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_0], "cpy_f32_q5_0", cpy_f32_q5_0_len, cpy_f32_q5_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q5_1], "cpy_f32_q5_1", cpy_f32_q5_1_len, cpy_f32_q5_1_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_Q8_0], "cpy_f32_q8_0", cpy_f32_q8_0_len, cpy_f32_q8_0_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_quant[GGML_TYPE_IQ4_NL], "cpy_f32_iq4_nl", cpy_f32_iq4_nl_len, cpy_f32_iq4_nl_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_0], "cpy_q4_0_f32", cpy_q4_0_f32_len, cpy_q4_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q4_1], "cpy_q4_1_f32", cpy_q4_1_f32_len, cpy_q4_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q4_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_0], "cpy_q5_0_f32", cpy_q5_0_f32_len, cpy_q5_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q5_1], "cpy_q5_1_f32", cpy_q5_1_f32_len, cpy_q5_1_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q5_1), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_Q8_0], "cpy_q8_0_f32", cpy_q8_0_f32_len, cpy_q8_0_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_Q8_0), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_cpy_quant_f32[GGML_TYPE_IQ4_NL], "cpy_iq4_nl_f32", cpy_iq4_nl_f32_len, cpy_iq4_nl_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {(uint32_t)ggml_blck_size(GGML_TYPE_IQ4_NL), 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
@@ -2002,7 +2012,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {1, 512, 1}, {}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
@@ -2268,6 +2278,14 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
#endif
VkPhysicalDeviceMaintenance4Features maint4_features {};
maint4_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MAINTENANCE_4_FEATURES;
if (maintenance4_support) {
last_struct->pNext = (VkBaseOutStructure *)&maint4_features;
last_struct = (VkBaseOutStructure *)&maint4_features;
device_extensions.push_back("VK_KHR_maintenance4");
}
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
@@ -2643,7 +2661,14 @@ void ggml_vk_instance_init() {
vk_instance_initialized = true;
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
uint32_t api_version = vk::enumerateInstanceVersion();
if (api_version < VK_API_VERSION_1_2) {
std::cerr << "ggml_vulkan: Error: Vulkan 1.2 required." << std::endl;
GGML_ABORT("fatal error");
}
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, api_version };
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
@@ -2953,7 +2978,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
}
}
GGML_ASSERT(src1_type == GGML_TYPE_F32);
GGML_ASSERT(src1_type == GGML_TYPE_F32 || (ctx->device->coopmat2 && src1_type == GGML_TYPE_F16));
switch (src0_type) {
case GGML_TYPE_Q4_0:
@@ -3689,6 +3714,33 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const
return ctx->device->pipeline_cpy_f16_f16;
}
}
if (src->type == GGML_TYPE_F32) {
switch (to) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return ctx->device->pipeline_cpy_f32_quant[to];
default:
break;
}
}
if (to == GGML_TYPE_F32) {
switch (src->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return ctx->device->pipeline_cpy_quant_f32[src->type];
default:
break;
}
}
std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl;
GGML_ABORT("fatal error");
@@ -3766,8 +3818,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
src1_uma = d_Qy != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
// Reformat and convert to fp16 if src1 is non-contiguous, or for coopmat2 for better perf
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
@@ -4347,8 +4400,11 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
ids_uma = d_ids != nullptr;
}
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
// Reformat and convert to fp16 if non-contiguous, or for coopmat2 for better perf
const bool x_non_contig = (ctx->device->coopmat2 && src0->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src0);
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
!ggml_vk_dim01_contiguous(src1);
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
@@ -4358,7 +4414,8 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
if (qx_needs_dequant) {
GGML_ABORT("fatal error");
// Fall back to dequant + f16 mulmat
mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
}
// Not implemented
@@ -4766,7 +4823,14 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
}
assert(pipelines);
bool aligned = (KV % pipelines[1]->align) == 0;
const uint32_t q_stride = (uint32_t)(nbq1 / ggml_type_size(q->type));
const uint32_t k_stride = (uint32_t)(nbk1 / ggml_type_size(k->type));
const uint32_t v_stride = (uint32_t)(nbv1 / ggml_type_size(v->type));
bool aligned = (KV % pipelines[1]->align) == 0 &&
// the "aligned" shader variant will forcibly align strides, for performance
(q_stride & 7) == 0 && (k_stride & 7) == 0 && (v_stride & 7) == 0;
vk_pipeline pipeline = pipelines[aligned];
assert(pipeline);
@@ -4802,15 +4866,15 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
if (ctx->device->uma) {
ggml_vk_host_get(ctx->device, q->data, d_Q, q_buf_offset);
ggml_vk_host_get(ctx->device, k->data, d_K, q_buf_offset);
ggml_vk_host_get(ctx->device, v->data, d_V, q_buf_offset);
ggml_vk_host_get(ctx->device, dst->data, d_D, q_buf_offset);
ggml_vk_host_get(ctx->device, k->data, d_K, k_buf_offset);
ggml_vk_host_get(ctx->device, v->data, d_V, v_buf_offset);
ggml_vk_host_get(ctx->device, dst->data, d_D, d_buf_offset);
Q_uma = d_Q != nullptr;
K_uma = d_K != nullptr;
V_uma = d_V != nullptr;
D_uma = d_D != nullptr;
if (mask) {
ggml_vk_host_get(ctx->device, mask->data, d_M, q_buf_offset);
ggml_vk_host_get(ctx->device, mask->data, d_M, m_buf_offset);
M_uma = d_M != nullptr;
}
}
@@ -4848,7 +4912,18 @@ static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx
}
}
const vk_flash_attn_push_constants pc = { N, KV, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3, (uint32_t)neq2, (uint32_t)neq3, (uint32_t)nek2, (uint32_t)nek3, (uint32_t)nev2, (uint32_t)nev3, nem1, (uint32_t)nbq2, (uint32_t)nbq3, (uint32_t)nbk2, (uint32_t)nbk3, (uint32_t)nbv2, (uint32_t)nbv3, nbm1, scale, max_bias, logit_softcap, mask != nullptr, n_head_log2, m0, m1 };
const vk_flash_attn_push_constants pc = { N, KV,
(uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3,
(uint32_t)neq2, (uint32_t)neq3,
(uint32_t)nek2, (uint32_t)nek3,
(uint32_t)nev2, (uint32_t)nev3,
nem1,
q_stride, (uint32_t)nbq2, (uint32_t)nbq3,
k_stride, (uint32_t)nbk2, (uint32_t)nbk3,
v_stride, (uint32_t)nbv2, (uint32_t)nbv3,
nbm1,
scale, max_bias, logit_softcap,
mask != nullptr, n_head_log2, m0, m1 };
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
{
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
@@ -5160,7 +5235,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
}
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
GGML_ASSERT(op == GGML_OP_GET_ROWS || op == GGML_OP_CPY || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
GGML_ASSERT(dst->buffer != nullptr);
const uint64_t ne00 = src0->ne[0];
@@ -7905,12 +7980,36 @@ static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggm
{
ggml_type src0_type = op->src[0]->type;
ggml_type src1_type = op->src[1] != nullptr ? op->src[1]->type : src0_type;
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
if (src0_type == GGML_TYPE_F32) {
switch (src1_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return true;
default:
break;
}
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return true;
if (src1_type == GGML_TYPE_F32) {
switch (src0_type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_IQ4_NL:
return true;
default:
break;
}
}
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
return true;
}
@@ -8601,6 +8700,7 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
ggml_tensor * src2 = tensor->src[2];
ggml_tensor * src3 = tensor->src[3];
void * tensor_data = tensor->data;
@@ -8663,6 +8763,9 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " src2->name=" << src2->name << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " src3->name=" << src3->name << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
@@ -8707,6 +8810,9 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
@@ -8729,6 +8835,9 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
if (src2 != nullptr) {
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
}
if (src3 != nullptr) {
std::cerr << "src3=" << src3 << " op=" << ggml_op_name(src3->op) << " type=" << ggml_type_name(src3->type) << " ne0=" << src3->ne[0] << " nb0=" << src3->nb[0] << " ne1=" << src3->ne[1] << " nb1=" << src3->nb[1] << " ne2=" << src3->ne[2] << " nb2=" << src3->nb[2] << " ne3=" << src3->ne[3] << " nb3=" << src3->nb[3] << " offset=" << src3->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);

View File

@@ -0,0 +1,51 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#include "dequant_funcs.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
#endif
void main() {
#if defined(DATA_A_IQ4_NL)
init_iq4nl_shmem();
if (gl_LocalInvocationIndex.x != 0) {
return;
}
#endif
const uint idx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * QUANT_K;
if (idx >= p.ne) {
return;
}
uint dst_idx = get_doffset() + dst_idx(idx);
uint src_idx = src0_idx_quant(idx, QUANT_K);
const uint a_offset = 0;
const uint ib = src_idx;
const vec2 dm = get_dm(ib, a_offset);
[[unroll]] for (int j = 0; j < QUANT_K; j += 4) {
vec4 v = dequantize4(ib, j / QUANT_R, a_offset);
v = v * dm.x + vec4(dm.y);
#if QUANT_R == 2
data_d[dst_idx + j/2 + 0] = v[0];
data_d[dst_idx + j/2 + QUANT_K/2 + 0] = v[1];
data_d[dst_idx + j/2 + 1] = v[2];
data_d[dst_idx + j/2 + QUANT_K/2 + 1] = v[3];
#else
data_d[dst_idx + j + 0] = v[0];
data_d[dst_idx + j + 1] = v[1];
data_d[dst_idx + j + 2] = v[2];
data_d[dst_idx + j + 3] = v[3];
#endif
}
}

View File

@@ -0,0 +1,237 @@
#version 450
#include "types.comp"
#include "generic_unary_head.comp"
#if defined(DATA_A_IQ4_NL)
// 16 invocations needed for init_iq4nl_shmem
layout(local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
#else
layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in;
#endif
layout (binding = 0) readonly buffer S {float data_s[];};
layout (binding = 1) writeonly buffer Q {A_TYPE data_q[];};
#if defined(DATA_A_Q4_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
[[unroll]] for (int j = 0; j < QUANT_K_Q4_0/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_Q4_0/2 + j]*id;
const uint xi0 = min(15, int(x0 + 8.5));
const uint xi1 = min(15, int(x1 + 8.5));
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
}
}
#endif
#if defined(DATA_A_Q4_1)
void quantize(uint dst_idx, uint src_idx)
{
float vmin = 1.0/0.0;
float vmax = -vmin;
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1; ++j) {
const float v = data_s[src_idx + j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
data_q[dst_idx].m = float16_t(vmin);
[[unroll]] for (int j = 0; j < QUANT_K_Q4_1/2; ++j) {
const float x0 = (data_s[src_idx + 0 + j] - vmin)*id;
const float x1 = (data_s[src_idx + QUANT_K_Q4_1/2 + j] - vmin)*id;
const uint xi0 = min(15, int(x0 + 0.5));
const uint xi1 = min(15, int(x1 + 0.5));
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
}
}
#endif
#if defined(DATA_A_Q5_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
uint32_t qh = 0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_0/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_Q5_0/2 + j]*id;
const uint xi0 = min(31, int(x0 + 16.5));
const uint xi1 = min(31, int(x1 + 16.5));
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_0/2);
}
data_q[dst_idx].qh[0] = uint16_t(qh & 0xFFFF);
data_q[dst_idx].qh[1] = uint16_t(qh >> 16);
}
#endif
#if defined(DATA_A_Q5_1)
void quantize(uint dst_idx, uint src_idx)
{
float min = data_s[src_idx + 0];
float max = min;
[[unroll]] for (int j = 1; j < QUANT_K_Q5_1; ++j) {
const float v = data_s[src_idx + j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = (d != 0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
data_q[dst_idx].m = float16_t(min);
uint32_t qh = 0;
[[unroll]] for (int j = 0; j < QUANT_K_Q5_1/2; ++j) {
const float x0 = (data_s[src_idx + 0 + j] - min)*id;
const float x1 = (data_s[src_idx + QUANT_K_Q5_1/2 + j] - min)*id;
const uint xi0 = uint(x0 + 0.5);
const uint xi1 = uint(x1 + 0.5);
data_q[dst_idx].qs[j] = uint8_t((xi0 & 0xf) | ((xi1 & 0xf) << 4));
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QUANT_K_Q5_1/2);
}
data_q[dst_idx].qh = qh;
}
#endif
#if defined(DATA_A_Q8_0)
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0; // absolute max
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; j++) {
const float v = data_s[src_idx + j];
amax = max(amax, abs(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = (d != 0.0) ? 1.0/d : 0.0;
data_q[dst_idx].d = float16_t(d);
[[unroll]] for (int j = 0; j < QUANT_K_Q8_0; ++j) {
const float x0 = data_s[src_idx + j]*id;
data_q[dst_idx].qs[j] = int8_t(round(x0));
}
}
#endif
#if defined(DATA_A_IQ4_NL)
uint best_index(float x) {
if (x <= kvalues_iq4nl[0]) return 0;
if (x >= kvalues_iq4nl[15]) return 15;
int ml = 0, mu = 15;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < kvalues_iq4nl[mav]) mu = mav; else ml = mav;
}
return x - kvalues_iq4nl[mu-1] < kvalues_iq4nl[mu] - x ? mu-1 : mu;
}
void quantize(uint dst_idx, uint src_idx)
{
float amax = 0.0;
float vmax = 0.0;
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL; ++j) {
const float v = data_s[src_idx + j];
if (amax < abs(v)) {
amax = abs(v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = (d != 0.0) ? 1.0/d : 0.0;
float sumqx = 0, sumq2 = 0;
[[unroll]] for (int j = 0; j < QUANT_K_IQ4_NL/2; ++j) {
const float x0 = data_s[src_idx + 0 + j]*id;
const float x1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*id;
const uint xi0 = best_index(x0);
const uint xi1 = best_index(x1);
data_q[dst_idx].qs[j] = uint8_t(xi0 | (xi1 << 4));
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = data_s[src_idx + 0 + j]*data_s[src_idx + 0 + j];
const float w1 = data_s[src_idx + QUANT_K_IQ4_NL/2 + j]*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
sumqx += w0*v0*data_s[src_idx + j] + w1*v1*data_s[src_idx + QUANT_K_IQ4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
data_q[dst_idx].d = float16_t(sumq2 > 0 ? sumqx/sumq2 : d);
}
#endif
void main() {
#if defined(DATA_A_IQ4_NL)
init_iq4nl_shmem();
if (gl_LocalInvocationIndex.x != 0) {
return;
}
#endif
const uint idx = gl_WorkGroupID.z * 262144 + gl_WorkGroupID.y * 512 + gl_WorkGroupID.x * QUANT_K;
if (idx >= p.ne) {
return;
}
uint dst_idx = dst_idx_quant(idx, QUANT_K);
uint src_idx = get_aoffset() + src0_idx(idx);
quantize(dst_idx, src_idx);
}

View File

@@ -101,19 +101,25 @@ layout(buffer_reference, std430, buffer_reference_align = 4) buffer decodeBufQ2_
block_q2_K block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ2_K_packed16 {
block_q2_K_packed16 block;
};
float16_t dequantFuncQ2_K(const in decodeBufQ2_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ2_K_packed16 bl16 = decodeBufQ2_K_packed16(bl);
const f16vec2 d = bl.block.d;
const uint idx = coordInBlock[1];
const uint iqs = idx;
const uint qsi = (iqs / 128) * 32 + (iqs % 32); // 0..31
const uint scalesi = iqs / 16; // 0..15
const uint qsshift = ((iqs % 128) / 32) * 2; // 0,2,4,6
const uint scalesi = (idx & 0xF0) >> 4; // 0..15
const uint qsshift = (idx & 0x60) >> 4; // 0,2,4,6
uint qs = uint32_t(bl16.block.qs[((idx & 0x80) >> 3) + ((idx & 0x1E) >> 1)]);
qs = (qs >> qsshift) & 0x0303;
qs = unpack8(qs)[idx & 1];
uint32_t qs = bl.block.qs[qsi];
const uint scales = bl.block.scales[scalesi];
float16_t ret = d.x * float16_t(scales & 0xF) * float16_t((qs >> qsshift) & 3) - d.y * float16_t(scales >> 4);
float16_t ret = d.x * float16_t(scales & 0xF) * float16_t(qs) - d.y * float16_t(scales >> 4);
return ret;
}
@@ -157,39 +163,47 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4
block_q4_K_packed16 block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ4_K_packed128 {
block_q4_K_packed128 block;
};
float16_t dequantFuncQ4_K(const in decodeBufQ4_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ4_K_packed16 bl16 = decodeBufQ4_K_packed16(bl);
decodeBufQ4_K_packed128 bl128 = decodeBufQ4_K_packed128(bl);
const uint idx = coordInBlock[1];
const uint b = (idx & 0x20) >> 5; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7
const f16vec2 loadd = bl.block.d;
uvec4 v = bl128.block.q4k[0];
const f16vec2 loadd = unpackFloat2x16(v.x);
uint32_t sc;
uint32_t mbyte;
uint32_t scidx0 = (is < 4) ? is : (is + 4);
uint32_t scidx1 = (is < 4) ? is : (is - 4);
uint32_t scidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint32_t scidxshift1 = (is < 4) ? 0 : 2;
uint32_t mbidx0 = is + 4;
uint32_t mbidx1 = (is < 4) ? is + 4 : is;
uint32_t mbidxmask0 = (is < 4) ? 0xF : 0xF0;
uint32_t mbidxshift0 = (is < 4) ? 0 : 4;
uint32_t mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint32_t mbidxshift1 = (is < 4) ? 0 : 2;
uint32_t scale0 = v.y;
uint32_t scale4 = v.z;
uint32_t scale8 = v.w;
sc = uint8_t((bl.block.scales[scidx0] & 0xF) | ((bl.block.scales[scidx1] & scidxmask1) >> scidxshift1));
mbyte = uint8_t(((bl.block.scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((bl.block.scales[mbidx1] & mbidxmask1) >> mbidxshift1));
uint32_t sc_lo = scale0;
uint32_t mb_lo = scale4;
uint32_t sc_hi = (scale8 & 0x0F0F0F0F) | ((scale0 & 0xC0C0C0C0) >> 2);
uint32_t mb_hi = ((scale8 & 0xF0F0F0F0) >> 4) | ((scale4 & 0xC0C0C0C0) >> 2);
sc = is < 4 ? sc_lo : sc_hi;
mbyte = is < 4 ? mb_lo : mb_hi;
sc = sc >> (8 * (is & 3));
mbyte = mbyte >> (8 * (is & 3));
sc &= 0x3F;
mbyte &= 0x3F;
const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte);
uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
qs = (qs >> (b * 4 + 8 * (idx & 1))) & 0xF;
float16_t ret = d * float16_t(qs) - m;
@@ -204,47 +218,53 @@ layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5
block_q5_K_packed16 block;
};
layout(buffer_reference, std430, buffer_reference_align = 16) buffer decodeBufQ5_K_packed128 {
block_q5_K_packed128 block;
};
float16_t dequantFuncQ5_K(const in decodeBufQ5_K bl, const in uint blockCoords[2], const in uint coordInBlock[2])
{
decodeBufQ5_K_packed16 bl16 = decodeBufQ5_K_packed16(bl);
decodeBufQ5_K_packed128 bl128 = decodeBufQ5_K_packed128(bl);
const uint idx = coordInBlock[1];
const uint b = (idx & 0x20) >> 5; // 0,1
const uint is = (idx & 0xE0) >> 5; // 0..7
const uint32_t hm = 0x0101 << is;
uvec4 v = bl128.block.q5k[0];
const f16vec2 loadd = bl.block.d;
const f16vec2 loadd = unpackFloat2x16(v.x);
uint32_t sc;
uint32_t mbyte;
uint32_t scidx0 = (is < 4) ? is : (is + 4);
uint32_t scidx1 = (is < 4) ? is : (is - 4);
uint32_t scidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint32_t scidxshift1 = (is < 4) ? 0 : 2;
uint32_t mbidx0 = is + 4;
uint32_t mbidx1 = (is < 4) ? is + 4 : is;
uint32_t mbidxmask0 = (is < 4) ? 0xF : 0xF0;
uint32_t mbidxshift0 = (is < 4) ? 0 : 4;
uint32_t mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint32_t mbidxshift1 = (is < 4) ? 0 : 2;
uint32_t scale0 = v.y;
uint32_t scale4 = v.z;
uint32_t scale8 = v.w;
sc = uint8_t((bl.block.scales[scidx0] & 0xF) | ((bl.block.scales[scidx1] & scidxmask1) >> scidxshift1));
mbyte = uint8_t(((bl.block.scales[mbidx0] & mbidxmask0) >> mbidxshift0) | ((bl.block.scales[mbidx1] & mbidxmask1) >> mbidxshift1));
uint32_t sc_lo = scale0;
uint32_t mb_lo = scale4;
uint32_t sc_hi = (scale8 & 0x0F0F0F0F) | ((scale0 & 0xC0C0C0C0) >> 2);
uint32_t mb_hi = ((scale8 & 0xF0F0F0F0) >> 4) | ((scale4 & 0xC0C0C0C0) >> 2);
sc = is < 4 ? sc_lo : sc_hi;
mbyte = is < 4 ? mb_lo : mb_hi;
sc = sc >> (8 * (is & 3));
mbyte = mbyte >> (8 * (is & 3));
sc &= 0x3F;
mbyte &= 0x3F;
const float16_t d = loadd.x * float16_t(sc);
const float16_t m = loadd.y * float16_t(mbyte);
uint qh = uint32_t(bl16.block.qh[(idx & 0x1E) >> 1]);
qh = qh & hm;
qh = unpack8(qh)[idx & 1];
qh = ((qh >> is) & 0x101) << 4;
uint qs = uint32_t(bl16.block.qs[((idx & 0xC0) >> 2) + ((idx & 0x1E) >> 1)]);
qs = (qs >> (b * 4)) & 0x0F0F;
qs = unpack8(qs)[idx & 1];
qs = unpack8(qs | qh)[idx & 1];
float16_t ret = d * (float16_t(qs) + (qh != 0 ? float16_t(16) : float16_t(0))) - m;
float16_t ret = d * (float16_t(qs)) - m;
return ret;
}

View File

@@ -12,7 +12,7 @@ layout (push_constant) uniform parameter
#include "types.comp"
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout(local_size_x = 1, local_size_y = 512, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};

View File

@@ -42,10 +42,13 @@ layout (push_constant) uniform parameter {
uint32_t nev3;
uint32_t nem1;
uint32_t nb01;
uint32_t nb02;
uint32_t nb03;
uint32_t nb11;
uint32_t nb12;
uint32_t nb13;
uint32_t nb21;
uint32_t nb22;
uint32_t nb23;
uint32_t nb31;
@@ -146,7 +149,24 @@ void main() {
tensorLayoutK = setTensorLayoutDimensionNV(tensorLayoutK, KV, D);
tensorLayoutV = setTensorLayoutDimensionNV(tensorLayoutV, KV, D);
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA> Q;
// nb?1 are already divided by the type size and are in units of elements
uint32_t q_stride = p.nb01;
uint32_t k_stride = p.nb11;
uint32_t v_stride = p.nb21;
// hint to the compiler that strides are aligned for the aligned variant of the shader
if (Clamp != gl_CooperativeMatrixClampModeConstantNV)
{
q_stride &= ~7;
#if !defined(BLOCK_SIZE)
k_stride &= ~7;
v_stride &= ~7;
#endif
}
tensorLayoutQ = setTensorLayoutStrideNV(tensorLayoutQ, q_stride, 1);
tensorLayoutK = setTensorLayoutStrideNV(tensorLayoutK, k_stride, 1);
tensorLayoutV = setTensorLayoutStrideNV(tensorLayoutV, v_stride, 1);
coopmat<Q_TYPE, gl_ScopeWorkgroup, Br, D, gl_MatrixUseAccumulator> Q;
coopmat<float16_t, gl_ScopeWorkgroup, Br, D, gl_MatrixUseA> Qf16;
uint32_t q_offset = iq2*p.nb02+iq3*p.nb03;

View File

@@ -54,3 +54,23 @@ uint dst_idx(uint idx) {
const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + i10*p.nb10;
}
uint src0_idx_quant(uint idx, uint qk) {
const uint i03 = fastdiv(idx, p.ne0_012mp, p.ne0_012L);
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
const uint i02 = fastdiv(idx - i03_offset, p.ne0_01mp, p.ne0_01L);
const uint i02_offset = i02*p.ne01*p.ne00;
const uint i01 = fastdiv(idx - i03_offset - i02_offset, p.ne0_0mp, p.ne0_0L);
const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + (i00/qk)*p.nb00;
}
uint dst_idx_quant(uint idx, uint qk) {
const uint i13 = fastdiv(idx, p.ne1_012mp, p.ne1_012L);
const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;
const uint i12 = fastdiv(idx - i13_offset, p.ne1_01mp, p.ne1_01L);
const uint i12_offset = i12*p.ne11*p.ne10;
const uint i11 = fastdiv(idx - i13_offset - i12_offset, p.ne1_0mp, p.ne1_0L);
const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + (i10/qk)*p.nb10;
}

View File

@@ -5,6 +5,80 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE sccache1[BLOCK_SIZE/16][16];
shared FLOAT_TYPE sccache2[BLOCK_SIZE/16][16];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint v_im, const uint ix, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
barrier();
if (!all_threads) { // when we don't have enough blocks to use all threads
if (i < num_blocks_per_row) {
const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
}
barrier();
if (i >= num_blocks_per_row)
continue;
} else {
const uint32_t scale = uint32_t(data_a[ib0 + i].scales[itid]);
sccache1[ix][itid] = FLOAT_TYPE(scale & 0xF);
sccache2[ix][itid] = FLOAT_TYPE((scale >> 4) & 0xF);
barrier();
}
const uint32_t qs_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303));
const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303));
const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303));
const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303));
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), sccache1[ix][ 8*v_im] * qs_u32_0[l ],
fma(FLOAT_TYPE(b16[l]), sccache1[ix][1 + 8*v_im] * qs_u32_0[l+2],
fma(FLOAT_TYPE(b32[l]), sccache1[ix][2 + 8*v_im] * qs_u32_2[l ],
fma(FLOAT_TYPE(b48[l]), sccache1[ix][3 + 8*v_im] * qs_u32_2[l+2],
fma(FLOAT_TYPE(b64[l]), sccache1[ix][4 + 8*v_im] * qs_u32_4[l ],
fma(FLOAT_TYPE(b80[l]), sccache1[ix][5 + 8*v_im] * qs_u32_4[l+2],
fma(FLOAT_TYPE(b96[l]), sccache1[ix][6 + 8*v_im] * qs_u32_6[l ],
fma(FLOAT_TYPE(b112[l]), sccache1[ix][7 + 8*v_im] * qs_u32_6[l+2], sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), sccache2[ix][ 8*v_im],
fma(FLOAT_TYPE(b16[l]), sccache2[ix][1 + 8*v_im],
fma(FLOAT_TYPE(b32[l]), sccache2[ix][2 + 8*v_im],
fma(FLOAT_TYPE(b48[l]), sccache2[ix][3 + 8*v_im],
fma(FLOAT_TYPE(b64[l]), sccache2[ix][4 + 8*v_im],
fma(FLOAT_TYPE(b80[l]), sccache2[ix][5 + 8*v_im],
fma(FLOAT_TYPE(b96[l]), sccache2[ix][6 + 8*v_im],
fma(FLOAT_TYPE(b112[l]), sccache2[ix][7 + 8*v_im], sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
@@ -14,88 +88,28 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;
const uint step = 8;
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - 8*v_im; // 0...7
const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
uvec2 qs0 = uvec2(unpack8(qs0_u16));
uvec2 qs16 = uvec2(unpack8(qs16_u16));
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
}
temp[j][n] = fma(dall, sum1, fma(-dmin, sum2, temp[j][n]));
}
}
}
const uint nbr_par_th = num_blocks_per_row%it_size;
const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
uint i0 = 0;
[[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
calc_superblock(a_offset, b_offset, itid, v_im, ix, q_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

View File

@@ -5,6 +5,74 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE sccache[BLOCK_SIZE/16][2][8];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint ix, const uint itid8, const uint v_im, const uint v_im4, const uint v_in, const uint32_t hm_m[4], const uint q_offset, const uint y_offset, const uint s_shift, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
if (!all_threads) { // when we don't have enough blocks to use all threads
barrier();
if (i < num_blocks_per_row)
sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32);
barrier();
if (i >= num_blocks_per_row)
continue;
}
const uint32_t hmk = ~(uint32_t(data_a_packed16[ib0 + i].hmask[v_in]) | (uint32_t(data_a_packed16[ib0 + i].hmask[v_in + 8]) << 16));
const vec4 hmk_0 = vec4(unpack8(((hmk & hm_m[0]) >> ( v_im4)) << 2));
const vec4 hmk_1 = vec4(unpack8(((hmk & hm_m[1]) >> (1 + v_im4)) << 2));
const vec4 hmk_2 = vec4(unpack8(((hmk & hm_m[2]) >> (2 + v_im4)) << 2));
const vec4 hmk_3 = vec4(unpack8(((hmk & hm_m[3]) >> (3 + v_im4)) << 2));
// 0, 1, 16, 17
uint32_t qs_u32 = uint32_t(data_a[ib0 + i].qs[q_offset]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 1]) << 8);
qs_u32 |= (uint32_t(data_a[ib0 + i].qs[q_offset + 16]) | (uint32_t(data_a[ib0 + i].qs[q_offset + 17]) << 8)) << 16;
const vec4 qs_u32_0 = vec4(unpack8(qs_u32 & 0x03030303));
const vec4 qs_u32_2 = vec4(unpack8((qs_u32 >> 2) & 0x03030303));
const vec4 qs_u32_4 = vec4(unpack8((qs_u32 >> 4) & 0x03030303));
const vec4 qs_u32_6 = vec4(unpack8((qs_u32 >> 6) & 0x03030303));
if (all_threads) {
barrier();
sccache[ix][v_im][itid8] = FLOAT_TYPE(int8_t(((data_a[ib0+i].scales[itid8] >> v_im4) & 0xF) | (((data_a[ib0+i].scales[itid8%4+8] >> s_shift) & 3) << 4)) - 32);
barrier();
}
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum = fma(FLOAT_TYPE( b0[l]) * sccache[ix][v_im][0], qs_u32_0[l ] - hmk_0[l ],
fma(FLOAT_TYPE( b16[l]) * sccache[ix][v_im][1], qs_u32_0[l+2] - hmk_0[l+2],
fma(FLOAT_TYPE( b32[l]) * sccache[ix][v_im][2], qs_u32_2[l ] - hmk_1[l ],
fma(FLOAT_TYPE( b48[l]) * sccache[ix][v_im][3], qs_u32_2[l+2] - hmk_1[l+2],
fma(FLOAT_TYPE( b64[l]) * sccache[ix][v_im][4], qs_u32_4[l ] - hmk_2[l ],
fma(FLOAT_TYPE( b80[l]) * sccache[ix][v_im][5], qs_u32_4[l+2] - hmk_2[l+2],
fma(FLOAT_TYPE( b96[l]) * sccache[ix][v_im][6], qs_u32_6[l ] - hmk_3[l ],
fma(FLOAT_TYPE(b112[l]) * sccache[ix][v_im][7], qs_u32_6[l+2] - hmk_3[l+2], sum))))))));
}
temp[j][n] = fma(d, sum, temp[j][n]);
}
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
@@ -14,76 +82,37 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;
const uint itid8 = itid%8;
const uint step = 8;
const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_im4 = v_im*4;
const uint v_in = itid - 8*v_im; // 0...7
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint8_t m = uint8_t(1 << (4 * v_im));
const uint32_t m = 0x01010101 << (4 * v_im);
uint32_t hm_m[4];
[[unroll]] for (uint j = 0; j < 4; ++j)
hm_m[j] = m << j;
const uint l0 = 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
const uint s_shift = 4 * v_im;
const uint s_shift = v_im4 + 2*(itid8/4);
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
uint16_t s0_16 = data_a_packed16[ib0 + i].scales[0];
uint16_t s2_16 = data_a_packed16[ib0 + i].scales[1];
uint16_t s4_16 = data_a_packed16[ib0 + i].scales[2];
uint16_t s6_16 = data_a_packed16[ib0 + i].scales[3];
uint16_t s8_16 = data_a_packed16[ib0 + i].scales[4];
uint16_t s10_16 = data_a_packed16[ib0 + i].scales[5];
u8vec2 s0 = unpack8(s0_16);
u8vec2 s2 = unpack8(s2_16);
u8vec2 s4 = unpack8(s4_16);
u8vec2 s6 = unpack8(s6_16);
u8vec2 s8 = unpack8(s8_16);
u8vec2 s10 = unpack8(s10_16);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 b0 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 0]);
vec2 b16 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 8]);
vec2 b32 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 16]);
vec2 b48 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 24]);
vec2 b64 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 32]);
vec2 b80 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 40]);
vec2 b96 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 48]);
vec2 b112 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y_idx) / 2 + 56]);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 2; ++l) {
sum = fma(FLOAT_TYPE(b0[l]) * FLOAT_TYPE(int8_t(((s0[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b32[l]) * FLOAT_TYPE(int8_t(((s2[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b64[l]) * FLOAT_TYPE(int8_t(((s4[0] >> s_shift) & 0xF) | ((s8[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b96[l]) * FLOAT_TYPE(int8_t(((s6[0] >> s_shift) & 0xF) | ((s10[0] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b16[l]) * FLOAT_TYPE(int8_t(((s0[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b48[l]) * FLOAT_TYPE(int8_t(((s2[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 0) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b80[l]) * FLOAT_TYPE(int8_t(((s4[1] >> s_shift) & 0xF) | ((s8[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4)),
fma(FLOAT_TYPE(b112[l]) * FLOAT_TYPE(int8_t(((s6[1] >> s_shift) & 0xF) | ((s10[1] >> (s_shift + 2) & 0x3) << 4)) - 32), FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4)), sum))))))));
}
temp[j][n] = fma(d, sum, temp[j][n]);
}
}
}
const uint nbr_par_th = num_blocks_per_row%it_size;
const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
uint i0 = 0;
[[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
calc_superblock(a_offset, b_offset, ix, itid8, v_im, v_im4, v_in, hm_m, q_offset, y_offset, s_shift, i0 + ix, num_blocks_per_row, first_row, num_rows, false);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

View File

@@ -6,6 +6,86 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint v_im, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
const uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
const uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
const uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
const uint32_t scale_0_4_l = (scale4_u32 << 16) | scale0_u32;
const uint32_t scale_0_4_h = (scale_0_4_l & 0xC0C0C0C0) >> 2;
const vec4 scale_0_4_l_f = vec4(unpack8(scale_0_4_l & 0x3F3F3F3F));
const vec4 scale8_f = vec4(unpack8((((scale8_u32 << 12) | scale8_u32) & 0x0F0F0F0F) | scale_0_4_h));
const FLOAT_TYPE sc0 = scale_0_4_l_f.x;
const FLOAT_TYPE sc1 = scale_0_4_l_f.y;
const FLOAT_TYPE sc2 = scale_0_4_l_f.z;
const FLOAT_TYPE sc3 = scale_0_4_l_f.w;
const FLOAT_TYPE sc4 = scale8_f.x;
const FLOAT_TYPE sc5 = scale8_f.y;
const FLOAT_TYPE sc6 = scale8_f.z;
const FLOAT_TYPE sc7 = scale8_f.w;
const uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4];
const uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16];
const uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F;
const uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F;
const uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F;
const uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F;
const vec4 qs0_lo4 = vec4(unpack8(qs0_u32_lo4));
const vec4 qs64_lo4 = vec4(unpack8(qs64_u32_lo4));
const vec4 qs0_hi4 = vec4(unpack8(qs0_u32_hi4));
const vec4 qs64_hi4 = vec4(unpack8(qs64_u32_hi4));
const FLOAT_TYPE q4_0 = qs0_lo4.x;
const FLOAT_TYPE q4_1 = qs0_lo4.y;
const FLOAT_TYPE q4_2 = qs0_lo4.z;
const FLOAT_TYPE q4_3 = qs0_lo4.w;
const FLOAT_TYPE q4_4 = qs0_hi4.x;
const FLOAT_TYPE q4_5 = qs0_hi4.y;
const FLOAT_TYPE q4_6 = qs0_hi4.z;
const FLOAT_TYPE q4_7 = qs0_hi4.w;
const FLOAT_TYPE q4_8 = qs64_lo4.x;
const FLOAT_TYPE q4_9 = qs64_lo4.y;
const FLOAT_TYPE q4_10 = qs64_lo4.z;
const FLOAT_TYPE q4_11 = qs64_lo4.w;
const FLOAT_TYPE q4_12 = qs64_hi4.x;
const FLOAT_TYPE q4_13 = qs64_hi4.y;
const FLOAT_TYPE q4_14 = qs64_hi4.z;
const FLOAT_TYPE q4_15 = qs64_hi4.w;
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 by10 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 ]);
vec4 by132 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8]);
vec4 by20 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 ]);
vec4 by232 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8]);
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
@@ -15,13 +95,11 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;
const uint step = 4;
const uint il = itid/step; // 0...3
const uint ir = itid - step*il; // 0...7 or 0...3
const uint il = itid/4; // 0...3
const uint ir = itid - 4*il; // 0...3
const uint n = 4;
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
@@ -31,89 +109,14 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
uint32_t qs0_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4];
uint32_t qs64_u32 = data_a_packed32[ib0 + i].qs[q_offset / 4 + 16];
uint32_t qs0_u32_lo4 = qs0_u32 & 0x0F0F0F0F;
uint32_t qs0_u32_hi4 = (qs0_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_u32_lo4 = qs64_u32 & 0x0F0F0F0F;
uint32_t qs64_u32_hi4 = (qs64_u32 >> 4) & 0x0F0F0F0F;
uvec4 qs0_lo4 = uvec4(unpack8(qs0_u32_lo4));
uvec4 qs64_lo4 = uvec4(unpack8(qs64_u32_lo4));
uvec4 qs0_hi4 = uvec4(unpack8(qs0_u32_hi4));
uvec4 qs64_hi4 = uvec4(unpack8(qs64_u32_hi4));
const uint32_t q4_0 = qs0_lo4.x;
const uint32_t q4_1 = qs0_lo4.y;
const uint32_t q4_2 = qs0_lo4.z;
const uint32_t q4_3 = qs0_lo4.w;
const uint32_t q4_4 = qs0_hi4.x;
const uint32_t q4_5 = qs0_hi4.y;
const uint32_t q4_6 = qs0_hi4.z;
const uint32_t q4_7 = qs0_hi4.w;
const uint32_t q4_8 = qs64_lo4.x;
const uint32_t q4_9 = qs64_lo4.y;
const uint32_t q4_10 = qs64_lo4.z;
const uint32_t q4_11 = qs64_lo4.w;
const uint32_t q4_12 = qs64_hi4.x;
const uint32_t q4_13 = qs64_hi4.y;
const uint32_t q4_14 = qs64_hi4.z;
const uint32_t q4_15 = qs64_hi4.w;
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 by10 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 ]);
vec4 by132 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y1_idx) / 4 + 8]);
vec4 by20 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 ]);
vec4 by232 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y2_idx) / 4 + 8]);
const FLOAT_TYPE sx = fma(FLOAT_TYPE(by10.x), q4_0, fma(FLOAT_TYPE(by10.y), q4_1, fma(FLOAT_TYPE(by10.z), q4_2, FLOAT_TYPE(by10.w) * q4_3)));
const FLOAT_TYPE sy = fma(FLOAT_TYPE(by132.x), q4_4, fma(FLOAT_TYPE(by132.y), q4_5, fma(FLOAT_TYPE(by132.z), q4_6, FLOAT_TYPE(by132.w) * q4_7)));
const FLOAT_TYPE sz = fma(FLOAT_TYPE(by20.x), q4_8, fma(FLOAT_TYPE(by20.y), q4_9, fma(FLOAT_TYPE(by20.z), q4_10, FLOAT_TYPE(by20.w) * q4_11)));
const FLOAT_TYPE sw = fma(FLOAT_TYPE(by232.x), q4_12, fma(FLOAT_TYPE(by232.y), q4_13, fma(FLOAT_TYPE(by232.z), q4_14, FLOAT_TYPE(by232.w) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x), sc2, fma(FLOAT_TYPE(by132.x), sc3, fma(FLOAT_TYPE(by20.x), sc6, fma(FLOAT_TYPE(by232.x), sc7,
fma(FLOAT_TYPE(by10.y), sc2, fma(FLOAT_TYPE(by132.y), sc3, fma(FLOAT_TYPE(by20.y), sc6, fma(FLOAT_TYPE(by232.y), sc7,
fma(FLOAT_TYPE(by10.z), sc2, fma(FLOAT_TYPE(by132.z), sc3, fma(FLOAT_TYPE(by20.z), sc6, fma(FLOAT_TYPE(by232.z), sc7,
fma(FLOAT_TYPE(by10.w), sc2, fma(FLOAT_TYPE(by132.w), sc3, fma(FLOAT_TYPE(by20.w), sc6, FLOAT_TYPE(by232.w) * sc7)))))))))))))));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size)
calc_superblock(a_offset, b_offset, v_im, q_offset, y_offset, i, num_blocks_per_row, first_row, num_rows);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

View File

@@ -6,6 +6,118 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint v_im, const uint l0, const uint q_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
const uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
const uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
const uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
const uint32_t scale_0_4_l = (scale4_u32 << 16) | scale0_u32;
const uint32_t scale_0_4_h = (scale_0_4_l & 0xC0C0C0C0) >> 2;
const vec4 scale_0_4_l_f = vec4(unpack8(scale_0_4_l & 0x3F3F3F3F));
const vec4 scale8_f = vec4(unpack8((((scale8_u32 << 12) | scale8_u32) & 0x0F0F0F0F) | scale_0_4_h));
const FLOAT_TYPE sc0 = scale_0_4_l_f.x;
const FLOAT_TYPE sc1 = scale_0_4_l_f.y;
const FLOAT_TYPE sc2 = scale_0_4_l_f.z;
const FLOAT_TYPE sc3 = scale_0_4_l_f.w;
const FLOAT_TYPE sc4 = scale8_f.x;
const FLOAT_TYPE sc5 = scale8_f.y;
const FLOAT_TYPE sc6 = scale8_f.z;
const FLOAT_TYPE sc7 = scale8_f.w;
const uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
const uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16);
uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F;
uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F;
uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F;
const uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8]));
const uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4;
const uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3;
const uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010);
const uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1;
qs0_16_u32_lo4 += qs0_16_lo4_offset16;
qs0_16_u32_hi4 += qs0_16_hi4_offset16;
qs64_80_u32_lo4 += qs64_80_lo4_offset16;
qs64_80_u32_hi4 += qs64_80_hi4_offset16;
const vec4 qs0_16_lo4 = vec4(unpack8(qs0_16_u32_lo4));
const vec4 qs64_80_lo4 = vec4(unpack8(qs64_80_u32_lo4));
const vec4 qs0_16_hi4 = vec4(unpack8(qs0_16_u32_hi4));
const vec4 qs64_80_hi4 = vec4(unpack8(qs64_80_u32_hi4));
const FLOAT_TYPE q4_0 = qs0_16_lo4.x;
const FLOAT_TYPE q4_1 = qs0_16_lo4.y;
const FLOAT_TYPE q4_2 = qs0_16_lo4.z;
const FLOAT_TYPE q4_3 = qs0_16_lo4.w;
const FLOAT_TYPE q4_4 = qs0_16_hi4.x;
const FLOAT_TYPE q4_5 = qs0_16_hi4.y;
const FLOAT_TYPE q4_6 = qs0_16_hi4.z;
const FLOAT_TYPE q4_7 = qs0_16_hi4.w;
const FLOAT_TYPE q4_8 = qs64_80_lo4.x;
const FLOAT_TYPE q4_9 = qs64_80_lo4.y;
const FLOAT_TYPE q4_10 = qs64_80_lo4.z;
const FLOAT_TYPE q4_11 = qs64_80_lo4.w;
const FLOAT_TYPE q4_12 = qs64_80_hi4.x;
const FLOAT_TYPE q4_13 = qs64_80_hi4.y;
const FLOAT_TYPE q4_14 = qs64_80_hi4.z;
const FLOAT_TYPE q4_15 = qs64_80_hi4.w;
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 by10 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 ]);
vec2 by116 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8]);
vec2 by132 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16]);
vec2 by148 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24]);
vec2 by20 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 ]);
vec2 by216 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8]);
vec2 by232 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16]);
vec2 by248 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24]);
const FLOAT_TYPE sx =
fma(FLOAT_TYPE(by10.x), q4_0,
fma(FLOAT_TYPE(by10.y), q4_1,
fma(FLOAT_TYPE(by116.x), q4_2,
FLOAT_TYPE(by116.y) * q4_3)));
const FLOAT_TYPE sy =
fma(FLOAT_TYPE(by132.x), q4_4,
fma(FLOAT_TYPE(by132.y), q4_5,
fma(FLOAT_TYPE(by148.x), q4_6,
FLOAT_TYPE(by148.y) * q4_7)));
const FLOAT_TYPE sz =
fma(FLOAT_TYPE(by20.x), q4_8,
fma(FLOAT_TYPE(by20.y), q4_9,
fma(FLOAT_TYPE(by216.x), q4_10,
FLOAT_TYPE(by216.y) * q4_11)));
const FLOAT_TYPE sw =
fma(FLOAT_TYPE(by232.x), q4_12,
fma(FLOAT_TYPE(by232.y), q4_13,
fma(FLOAT_TYPE(by248.x), q4_14,
FLOAT_TYPE(by248.y) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
}
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
@@ -15,11 +127,11 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;
const uint il = itid/4; // 0...3
const uint ir = itid - 4*il; // 0...7 or 0...3
const uint ir = itid - 4*il; // 0...3
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const uint v_in = il % 2;
@@ -28,121 +140,14 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
vec2 d = vec2(data_a[ib0 + i].d);
const FLOAT_TYPE dall = FLOAT_TYPE(d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(d.y);
uint32_t scale0_u32 = data_a_packed16[ib0 + i].scales[v_im ];
uint32_t scale4_u32 = data_a_packed16[ib0 + i].scales[v_im + 2];
uint32_t scale8_u32 = data_a_packed16[ib0 + i].scales[v_im + 4];
uvec4 scale0 = uvec4(unpack8(scale0_u32));
uvec4 scale4 = uvec4(unpack8(scale4_u32));
uvec4 scale8 = uvec4(unpack8(scale8_u32));
const uint32_t sc0 = ( scale0.x & 0x3f);
const uint32_t sc1 = ( scale0.y & 0x3f);
const uint32_t sc2 = ( scale4.x & 0x3f);
const uint32_t sc3 = ( scale4.y & 0x3f);
const uint32_t sc4 = (( scale8.x & 0x0f) | ((scale0.x & 0xc0) >> 2));
const uint32_t sc5 = (( scale8.y & 0x0f) | ((scale0.y & 0xc0) >> 2));
const uint32_t sc6 = (((scale8.x >> 4) & 0x0f) | ((scale4.x & 0xc0) >> 2));
const uint32_t sc7 = (((scale8.y >> 4) & 0x0f) | ((scale4.y & 0xc0) >> 2));
uint32_t qs0_16_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 8]) << 16);
uint32_t qs64_80_u32 = uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 32]) | (uint32_t(data_a_packed16[ib0 + i].qs[q_offset / 2 + 40]) << 16);
uint32_t qs0_16_u32_lo4 = qs0_16_u32 & 0x0F0F0F0F;
uint32_t qs0_16_u32_hi4 = (qs0_16_u32 >> 4) & 0x0F0F0F0F;
uint32_t qs64_80_u32_lo4 = qs64_80_u32 & 0x0F0F0F0F;
uint32_t qs64_80_u32_hi4 = (qs64_80_u32 >> 4) & 0x0F0F0F0F;
uint32_t qh = pack32(u16vec2(data_a_packed16[ib0 + i].qh[l0 / 2], data_a_packed16[ib0 + i].qh[l0 / 2 + 8]));
uint32_t qs0_16_lo4_offset16 = ((qh >> (2*v_im)) & 0x01010101) << 4;
uint32_t qs0_16_hi4_offset16 = ((qh >> (2*v_im)) & 0x02020202) << 3;
uint32_t qs64_80_lo4_offset16 = ((qh >> (2*v_im)) & 0x10101010) << 0;
uint32_t qs64_80_hi4_offset16 = ((qh >> (2*v_im)) & 0x20202020) >> 1;
qs0_16_u32_lo4 += qs0_16_lo4_offset16;
qs0_16_u32_hi4 += qs0_16_hi4_offset16;
qs64_80_u32_lo4 += qs64_80_lo4_offset16;
qs64_80_u32_hi4 += qs64_80_hi4_offset16;
uvec4 qs0_16_lo4 = uvec4(unpack8(qs0_16_u32_lo4));
uvec4 qs64_80_lo4 = uvec4(unpack8(qs64_80_u32_lo4));
uvec4 qs0_16_hi4 = uvec4(unpack8(qs0_16_u32_hi4));
uvec4 qs64_80_hi4 = uvec4(unpack8(qs64_80_u32_hi4));
const uint32_t q4_0 = qs0_16_lo4.x;
const uint32_t q4_1 = qs0_16_lo4.y;
const uint32_t q4_2 = qs0_16_lo4.z;
const uint32_t q4_3 = qs0_16_lo4.w;
const uint32_t q4_4 = qs0_16_hi4.x;
const uint32_t q4_5 = qs0_16_hi4.y;
const uint32_t q4_6 = qs0_16_hi4.z;
const uint32_t q4_7 = qs0_16_hi4.w;
const uint32_t q4_8 = qs64_80_lo4.x;
const uint32_t q4_9 = qs64_80_lo4.y;
const uint32_t q4_10 = qs64_80_lo4.z;
const uint32_t q4_11 = qs64_80_lo4.w;
const uint32_t q4_12 = qs64_80_hi4.x;
const uint32_t q4_13 = qs64_80_hi4.y;
const uint32_t q4_14 = qs64_80_hi4.z;
const uint32_t q4_15 = qs64_80_hi4.w;
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec2 by10 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 ]);
vec2 by116 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 8]);
vec2 by132 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 16]);
vec2 by148 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y1_idx) / 2 + 24]);
vec2 by20 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 ]);
vec2 by216 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 8]);
vec2 by232 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 16]);
vec2 by248 = vec2(data_b_v2[(j*p.batch_stride_b + b_offset + y2_idx) / 2 + 24]);
const FLOAT_TYPE sx =
fma(FLOAT_TYPE(by10.x), q4_0,
fma(FLOAT_TYPE(by10.y), q4_1,
fma(FLOAT_TYPE(by116.x), q4_2,
FLOAT_TYPE(by116.y) * q4_3)));
const FLOAT_TYPE sy =
fma(FLOAT_TYPE(by132.x), q4_4,
fma(FLOAT_TYPE(by132.y), q4_5,
fma(FLOAT_TYPE(by148.x), q4_6,
FLOAT_TYPE(by148.y) * q4_7)));
const FLOAT_TYPE sz =
fma(FLOAT_TYPE(by20.x), q4_8,
fma(FLOAT_TYPE(by20.y), q4_9,
fma(FLOAT_TYPE(by216.x), q4_10,
FLOAT_TYPE(by216.y) * q4_11)));
const FLOAT_TYPE sw =
fma(FLOAT_TYPE(by232.x), q4_12,
fma(FLOAT_TYPE(by232.y), q4_13,
fma(FLOAT_TYPE(by248.x), q4_14,
FLOAT_TYPE(by248.y) * q4_15)));
const FLOAT_TYPE smin =
fma(FLOAT_TYPE(by10.x) + FLOAT_TYPE(by10.y) + FLOAT_TYPE(by116.x) + FLOAT_TYPE(by116.y), sc2,
fma(FLOAT_TYPE(by132.x) + FLOAT_TYPE(by132.y) + FLOAT_TYPE(by148.x) + FLOAT_TYPE(by148.y), sc3,
fma(FLOAT_TYPE(by20.x) + FLOAT_TYPE(by20.y) + FLOAT_TYPE(by216.x) + FLOAT_TYPE(by216.y), sc6,
(FLOAT_TYPE(by232.x) + FLOAT_TYPE(by232.y) + FLOAT_TYPE(by248.x) + FLOAT_TYPE(by248.y)) * sc7)));
temp[j][n] = fma(dall, fma(sx, sc0, fma(sy, sc1, fma(sz, sc4, sw * sc5))), fma(-dmin, smin, temp[j][n]));
}
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size)
calc_superblock(a_offset, b_offset, v_im, l0, q_offset, y_offset, i, num_blocks_per_row, first_row, num_rows);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

View File

@@ -6,7 +6,77 @@
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
shared FLOAT_TYPE sccache[BLOCK_SIZE/16][16];
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
void calc_superblock(const uint a_offset, const uint b_offset, const uint itid, const uint ix, const uint ql_offset, const uint qh_offset, const uint s_offset, const uint y_offset, const uint i, const uint num_blocks_per_row, const uint first_row, const uint num_rows, const bool all_threads) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
if (!all_threads) { // when we don't have enough blocks to use all threads
barrier();
if (i < num_blocks_per_row)
sccache[ix][itid] = FLOAT_TYPE(data_a[ib0 + i].scales[itid]);
barrier();
if (i >= num_blocks_per_row)
continue;
}
const uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
const uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
const uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
const uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
const uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
const uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
const uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16);
const uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
const uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
const uint32_t qh4_u32 = (qh_u32 & 0x30303030);
const uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
const uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
const uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32;
const uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32;
const uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32;
const vec4 q0 = vec4(unpack8(q0_u32)) - 32;
const vec4 q1 = vec4(unpack8(q1_u32)) - 32;
const vec4 q2 = vec4(unpack8(q2_u32)) - 32;
const vec4 q3 = vec4(unpack8(q3_u32)) - 32;
if (all_threads) {
barrier();
sccache[ix][itid] = FLOAT_TYPE(data_a[ib0 + i].scales[itid]);
barrier();
}
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 by0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 ]);
vec4 by32 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8]);
vec4 by64 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16]);
vec4 by96 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24]);
FLOAT_TYPE sum[4] = {0, 0, 0, 0};
[[unroll]] for (uint l = 0; l < 4; ++l) {
sum[0] = fma(FLOAT_TYPE(by0[l]), q0[l], sum[0]);
sum[1] = fma(FLOAT_TYPE(by32[l]), q1[l], sum[1]);
sum[2] = fma(FLOAT_TYPE(by64[l]), q2[l], sum[2]);
sum[3] = fma(FLOAT_TYPE(by96[l]), q3[l], sum[3]);
}
temp[j][n] = fma(fma(sum[0], sccache[ix][s_offset], fma(sum[1], sccache[ix][s_offset + 2], fma(sum[2], sccache[ix][s_offset + 4], sum[3] * sccache[ix][s_offset + 6]))), d, temp[j][n]);
}
}
}
void compute_outputs(const uint first_row, const uint num_rows) {
uint a_offset, b_offset, d_offset;
get_offsets(a_offset, b_offset, d_offset);
@@ -15,13 +85,11 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
// 16 threads are used to process each block
const uint it_size = gl_WorkGroupSize.x/16;
const uint tid = gl_LocalInvocationID.x;
const uint itid = tid%16; // 0...16
const uint ix = tid/16;
const uint itid = tid%16; // 0...15
const uint ix = tid/16;
const uint step = 8;
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - step*v_im; // 0...15 or 0...7
const uint v_im = itid/8; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = itid - 8*v_im; // 0...7
const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28
const uint is = v_in / 4;
@@ -31,68 +99,18 @@ void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
const uint s_offset = 8*v_im + is;
const uint y_offset = 128*v_im + l0;
FLOAT_TYPE temp[NUM_COLS][NUM_ROWS];
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
temp[j][i] = FLOAT_TYPE(0);
}
}
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
const uint y_idx = i * QUANT_K + y_offset;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
FLOAT_TYPE scales[4];
scales[0] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]);
scales[1] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]);
scales[2] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]);
scales[3] = FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]);
uint32_t ql0_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 1]) << 16);
uint32_t ql32_u32 = uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 16]) | (uint32_t(data_a_packed16[ib0 + i].ql[ql_offset / 2 + 17]) << 16);
uint32_t ql0_u32_lo4 = ql0_u32 & 0x0F0F0F0F;
uint32_t ql0_u32_hi4 = (ql0_u32 >> 4) & 0x0F0F0F0F;
uint32_t ql32_u32_lo4 = ql32_u32 & 0x0F0F0F0F;
uint32_t ql32_u32_hi4 = (ql32_u32 >> 4) & 0x0F0F0F0F;
uint32_t qh_u32 = uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2]) | (uint32_t(data_a_packed16[ib0 + i].qh[qh_offset / 2 + 1]) << 16);
uint32_t qh0_u32 = (qh_u32 & 0x03030303) << 4;
uint32_t qh2_u32 = (qh_u32 & 0x0C0C0C0C) << 2;
uint32_t qh4_u32 = (qh_u32 & 0x30303030) << 0;
uint32_t qh6_u32 = (qh_u32 & 0xC0C0C0C0) >> 2;
uint32_t q0_u32 = ql0_u32_lo4 | qh0_u32;
uint32_t q1_u32 = ql32_u32_lo4 | qh2_u32;
uint32_t q2_u32 = ql0_u32_hi4 | qh4_u32;
uint32_t q3_u32 = ql32_u32_hi4 | qh6_u32;
uvec4 q0 = uvec4(unpack8(q0_u32));
uvec4 q1 = uvec4(unpack8(q1_u32));
uvec4 q2 = uvec4(unpack8(q2_u32));
uvec4 q3 = uvec4(unpack8(q3_u32));
[[unroll]] for (uint j = 0; j < NUM_COLS; ++j) {
vec4 by0 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 ]);
vec4 by32 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 8]);
vec4 by64 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 16]);
vec4 by96 = vec4(data_b_v4[(j*p.batch_stride_b + b_offset + y_idx) / 4 + 24]);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 4; ++l) {
sum = fma(FLOAT_TYPE(by0[l]) * scales[0], FLOAT_TYPE(int8_t(q0[l]) - 32),
fma(FLOAT_TYPE(by32[l]) * scales[1], FLOAT_TYPE(int8_t(q1[l]) - 32),
fma(FLOAT_TYPE(by64[l]) * scales[2], FLOAT_TYPE(int8_t(q2[l]) - 32),
fma(FLOAT_TYPE(by96[l]) * scales[3], FLOAT_TYPE(int8_t(q3[l]) - 32), sum))));
}
temp[j][n] += sum * d;
}
}
}
const uint nbr_par_th = num_blocks_per_row%it_size;
const uint nbr_all_th = num_blocks_per_row - nbr_par_th;
uint i0 = 0;
[[unroll]] for (; i0 < nbr_all_th; i0 += it_size)
calc_superblock(a_offset, b_offset, itid, ix, ql_offset, qh_offset, s_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, true);
calc_superblock(a_offset, b_offset, itid, ix, ql_offset, qh_offset, s_offset, y_offset, i0 + ix, num_blocks_per_row, first_row, num_rows, false);
reduce_result(temp, d_offset, first_row, num_rows, tid);
}

View File

@@ -57,17 +57,13 @@ layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#if QUANT_K > 1
#define DECODEFUNCA , dequantFuncA
#define MAT_A_TYPE float16_t
#include "dequant_funcs_cm2.comp"
#else
#define DECODEFUNCA
#define MAT_A_TYPE A_TYPE
#endif
#define MAT_B_TYPE B_TYPE
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
@@ -236,16 +232,13 @@ void main() {
for (uint block_k = start_k, i = 0; i < k_iters; block_k += BK, ++i) {
coopmat<MAT_A_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_B_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, block_k, BK), tensorViewTranspose);
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
} else
#endif // !defined(MUL_MAT_ID)
@@ -261,10 +254,8 @@ void main() {
[[dont_unroll]]
for (uint block_k = start_k; block_k < end_k; block_k += BK) {
coopmat<MAT_A_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<MAT_B_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a_ft;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b_ft;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA> mat_a;
coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB> mat_b;
// Clamping is expensive, so detect different code paths for each combination
// of A and B needing clamping.
@@ -281,16 +272,12 @@ void main() {
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, (block_k & ~7), BK), tensorViewTranspose);
#endif
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (unclampedA && !unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutA, ir * BM, BM, (block_k & ~7), BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (!unclampedA && unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
#ifdef MUL_MAT_ID
@@ -298,16 +285,12 @@ void main() {
#else
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutB, ic * BN, BN, (block_k & ~7), BK), tensorViewTranspose);
#endif
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
} else if (!unclampedA && !unclampedB) {
coopMatLoadTensorNV(mat_a, data_a, pos_a, sliceTensorLayoutNV(tensorLayoutAClamp, ir * BM, BM, block_k, BK) DECODEFUNCA);
coopMatLoadTensorNV(mat_b, data_b, pos_b, sliceTensorLayoutNV(tensorLayoutBClamp, ic * BN, BN, block_k, BK), tensorViewTranspose);
mat_a_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BM, BK, gl_MatrixUseA>(mat_a);
mat_b_ft = coopmat<FLOAT_TYPE, gl_ScopeWorkgroup, BK, BN, gl_MatrixUseB>(mat_b);
sum = coopMatMulAdd(mat_a_ft, mat_b_ft, sum);
sum = coopMatMulAdd(mat_a, mat_b, sum);
}
}
}

View File

@@ -227,6 +227,11 @@ struct block_q4_K_packed32
uint32_t qs[QUANT_K_Q4_K/2/4];
};
struct block_q4_K_packed128
{
uvec4 q4k[9];
};
#if defined(DATA_A_Q4_K)
#define QUANT_K QUANT_K_Q4_K
#define A_TYPE block_q4_K
@@ -252,6 +257,11 @@ struct block_q5_K_packed16
uint16_t qs[QUANT_K_Q5_K/2/2];
};
struct block_q5_K_packed128
{
uvec4 q5k[11];
};
#if defined(DATA_A_Q5_K)
#define QUANT_K QUANT_K_Q5_K
#define A_TYPE block_q5_K

View File

@@ -17,13 +17,13 @@
#include <cstring>
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <sys/stat.h>
#include <sys/types.h>
#ifdef _WIN32
#include <windows.h>
#include <direct.h> // For _mkdir on Windows
#include <algorithm> // For std::replace on w64devkit
#else
#include <unistd.h>
#include <sys/wait.h>
@@ -316,8 +316,11 @@ void matmul_shaders(bool fp16, bool matmul_id, bool coopmat, bool coopmat2, bool
// For aligned matmul loads
std::string load_vec_a = (coopmat2 || tname == "f32" || tname == "f16") ? load_vec : "2";
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
// don't generate f32 variants for coopmat2
if (!coopmat2) {
string_to_spv(shader_name + "_" + tname + "_f32", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
string_to_spv(shader_name + "_" + tname + "_f32_aligned", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a}, {"LOAD_VEC_B", load_vec}, {"B_TYPE", aligned_b_type_f32}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}, {"ALIGNED", "1"}}), fp16, coopmat, coopmat2, f16acc);
}
if (tname != "f16" && tname != "f32") {
string_to_spv(shader_name + "_" + tname + "_f16", source_name, merge_maps(base_dict, {{data_a_key, "1"}, {"LOAD_VEC_A", load_vec_a_unaligned}, {"B_TYPE", "float16_t"}, {"D_TYPE", "float"}, {"B_IS_FLOAT", "1"}}), fp16, coopmat, coopmat2, f16acc);
@@ -417,6 +420,11 @@ void process_shaders() {
string_to_spv("contig_cpy_f32_f16", "contig_copy.comp", {{"A_TYPE", "float"}, {"D_TYPE", "float16_t"}});
string_to_spv("contig_cpy_f16_f16", "contig_copy.comp", {{"A_TYPE", "float16_t"}, {"D_TYPE", "float16_t"}, {"OPTIMIZATION_ERROR_WORKAROUND", "1"}});
for (std::string t : {"q4_0", "q4_1", "q5_0", "q5_1", "q8_0", "iq4_nl"}) {
string_to_spv("cpy_f32_" + t, "copy_to_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("cpy_" + t + "_f32", "copy_from_quant.comp", {{"DATA_A_" + to_uppercase(t), "1"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
}
string_to_spv("add_f32", "add.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
@@ -494,6 +502,7 @@ void write_output_files() {
fprintf(hdr, "#include <cstdint>\n\n");
fprintf(src, "#include \"%s\"\n\n", basename(target_hpp).c_str());
std::sort(shader_fnames.begin(), shader_fnames.end());
for (const auto& pair : shader_fnames) {
const std::string& name = pair.first;
#ifdef _WIN32

View File

@@ -3450,12 +3450,14 @@ struct ggml_tensor * ggml_soft_max_ext(
return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
}
// ggml_soft_max_back
// ggml_soft_max_ext_back
static struct ggml_tensor * ggml_soft_max_back_impl(
static struct ggml_tensor * ggml_soft_max_ext_back_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float scale,
float max_bias,
bool inplace) {
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
@@ -3463,21 +3465,28 @@ static struct ggml_tensor * ggml_soft_max_back_impl(
result->src[0] = a;
result->src[1] = b;
memcpy((float *) result->op_params + 0, &scale, sizeof(float));
memcpy((float *) result->op_params + 1, &max_bias, sizeof(float));
return result;
}
struct ggml_tensor * ggml_soft_max_back(
struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, false);
struct ggml_tensor * b,
float scale,
float max_bias) {
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, false);
}
struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_tensor * ggml_soft_max_ext_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, true);
struct ggml_tensor * b,
float scale,
float max_bias) {
return ggml_soft_max_ext_back_impl(ctx, a, b, scale, max_bias, true);
}
// ggml_rope
@@ -5076,10 +5085,10 @@ struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_are_same_shape(a, b));
GGML_ASSERT(ggml_is_scalar(c));
GGML_ASSERT(ggml_is_scalar(a));
GGML_ASSERT(ggml_are_same_shape(b, c));
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_dup_tensor(ctx, b);
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
result->src[0] = a;
@@ -5258,7 +5267,7 @@ static void ggml_sub_or_set(
}
static void ggml_compute_backward(
struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, bool * grads_needed) {
struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i, const bool * grads_needed) {
struct ggml_tensor * tensor = cgraph->nodes[i];
struct ggml_tensor * grad = ggml_graph_get_grad(cgraph, tensor);
@@ -5402,7 +5411,7 @@ static void ggml_compute_backward(
if (src0_needs_grads) {
float eps;
memcpy(&eps, tensor->op_params, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, src0, grad, eps));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_rms_norm_back(ctx, grad, src0, eps));
}
} break;
case GGML_OP_MUL_MAT: {
@@ -5585,7 +5594,13 @@ static void ggml_compute_backward(
} break;
case GGML_OP_SOFT_MAX: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_back(ctx, grad, tensor));
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (const float *) tensor->op_params + 0, sizeof(float));
memcpy(&max_bias, (const float *) tensor->op_params + 1, sizeof(float));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_soft_max_ext_back(ctx, grad, tensor, scale, max_bias));
}
GGML_ASSERT((!src1 || !src1_needs_grads) && "backward pass for softmax mask not implemented");
} break;
@@ -5626,7 +5641,7 @@ static void ggml_compute_backward(
const int32_t d1 = ggml_get_op_params_i32(tensor, 5);
const bool is_2D = ggml_get_op_params_i32(tensor, 6) == 1;
ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, src0, grad, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
ggml_add_or_set(ctx, cgraph, isrc1, ggml_im2col_back(ctx, grad, src0, src1->ne, s0, s1, p0, p1, d0, d1, is_2D));
}
} break;
case GGML_OP_POOL_2D: {
@@ -5669,7 +5684,7 @@ static void ggml_compute_backward(
} break;
case GGML_UNARY_OP_SILU: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, src0, grad));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_silu_back(ctx, grad, src0));
}
} break;
case GGML_UNARY_OP_EXP: {
@@ -5686,7 +5701,7 @@ static void ggml_compute_backward(
} break;
case GGML_OP_CROSS_ENTROPY_LOSS: {
if (src0_needs_grads) {
ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, src0, src1, grad));
ggml_add_or_set(ctx, cgraph, isrc0, ggml_cross_entropy_loss_back(ctx, grad, src0, src1));
}
GGML_ASSERT(!src1_needs_grads && "backward pass for labels not implemented");
} break;

View File

@@ -648,6 +648,10 @@ struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_par
ok = ok && data != nullptr;
if (ok) {
ggml_set_name(data, "GGUF tensor data binary blob");
}
// read the binary blob with the tensor data
ok = ok && gr.read(data->data, ctx->size);

View File

@@ -288,9 +288,6 @@ extern "C" {
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
const float * tensor_split;
// comma separated list of RPC servers to use for offloading
const char * rpc_servers;
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
// If the provided progress_callback returns true, model loading continues.
// If it returns false, model loading is immediately aborted.
@@ -418,10 +415,20 @@ extern "C" {
struct llama_model_params params),
"use llama_model_load_from_file instead");
// Load the model from a file
// If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf
// If the split file name does not follow this pattern, use llama_model_load_from_splits
LLAMA_API struct llama_model * llama_model_load_from_file(
const char * path_model,
struct llama_model_params params);
// Load the model from multiple splits (support custom naming scheme)
// The paths must be in the correct order
LLAMA_API struct llama_model * llama_model_load_from_splits(
const char ** paths,
size_t n_paths,
struct llama_model_params params);
DEPRECATED(LLAMA_API void llama_free_model(struct llama_model * model),
"use llama_model_free instead");
@@ -503,7 +510,8 @@ extern "C" {
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
// Get the default chat template. Returns nullptr if not available
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model);
// If name is NULL, returns the default chat template
LLAMA_API const char * llama_model_chat_template(const struct llama_model * model, const char * name);
// Returns the total number of parameters in the model
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
@@ -951,7 +959,7 @@ extern "C" {
LLAMA_API llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab);
LLAMA_API llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab);
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocabable_get_text instead");
DEPRECATED(LLAMA_API const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_text instead");
DEPRECATED(LLAMA_API float llama_token_get_score(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_score instead");
DEPRECATED(LLAMA_API enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_get_attr instead");
DEPRECATED(LLAMA_API bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token), "use llama_vocab_is_eog instead");

View File

@@ -0,0 +1,112 @@
ied 4 ½ months
__ggml_vocab_test__
Führer
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
this is 🦙.cpp
__ggml_vocab_test__
w048 7tuijk dsdfhu
__ggml_vocab_test__
нещо на Български
__ggml_vocab_test__
កាន់តែពិសេសអាចខលចេញ
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
Hello
__ggml_vocab_test__
(
__ggml_vocab_test__
=
__ggml_vocab_test__
' era
__ggml_vocab_test__
Hello, y'all! How are you 😁 ?我想在apple工作1314151天
__ggml_vocab_test__
!!!!!!
__ggml_vocab_test__
3
__ggml_vocab_test__
33
__ggml_vocab_test__
333
__ggml_vocab_test__
3333
__ggml_vocab_test__
33333
__ggml_vocab_test__
333333
__ggml_vocab_test__
3333333
__ggml_vocab_test__
33333333
__ggml_vocab_test__
333333333
__ggml_vocab_test__
Cửa Việt
__ggml_vocab_test__
discards
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
__ggml_vocab_test__

View File

@@ -0,0 +1,46 @@
1122 220 19 220 26062 3951
37 50753 261
220
256
262
197
198
271
1406
1572
9707 1879
21927 1879
9707 4337
21927 4337
21927 4337 0
9707 11 1879 0
21927 11 1879 0
419 374 11162 99 247 13 10821
86 15 19 23 220 22 83 1963 41808 11472 2940 16739
78762 14144 1456 13073 63471 33594 3038 133178 79012
146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 147805 148301 147270 44258 223 146848
145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 320 3243 42365 429 702 1181 1828 3950 8
9707
21927
220 21927
256 21927
262 21927
262 21927 198 262 21927
320
198 284
6 11385
9707 11 379 64848 0 2585 525 498 26525 223 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216
17085 2928
18
18 18
18 18 18
18 18 18 18
18 18 18 18 18
18 18 18 18 18 18
18 18 18 18 18 18 18
18 18 18 18 18 18 18 18
18 18 18 18 18 18 18 18 18
34 90063 128324
2560 2347
198 4710 14731 65497 7847 1572 2303 78672 10947 145836 320 8252 8 26525 114 378 235 149921 30543 320 35673 99066 97534 8 25521 227 11162 99 247 149955 220 18 220 18 18 220 18 18 18 220 18 18 18 18 220 18 18 18 18 18 220 18 18 18 18 18 18 220 18 18 18 18 18 18 18 220 18 18 18 18 18 18 18 18 220 18 13 18 220 18 496 18 220 18 1112 18 220 146394 97529 241 44258 233 146568 44258 224 147603 20879 115 146280 44258 223 146280 147272 97529 227 144534 937 104100 18493 22377 99257 16 18 16 19 16 20 16 35727 21216 55460 53237 18658 14144 1456 13073 63471 33594 3038 133178 79012 3355 4605 4605 13874 13874 73594 3014 3014 28149 17085 2928 26610 7646 358 3003 1012 364 83 813 566 594 1052 11 364 787 498 2704 30 364 44 537 2704 358 3278 1281 432 11 364 35 498 1075 1045 15243 30 1205 6 42612 264 63866 43

77
scripts/get_hf_chat_template.py Executable file
View File

@@ -0,0 +1,77 @@
#!/usr/bin/env python
'''
Fetches the Jinja chat template of a HuggingFace model.
If a model has multiple chat templates, you can specify the variant name.
Syntax:
./scripts/get_hf_chat_template.py model_id [variant]
Examples:
./scripts/get_hf_chat_template.py NousResearch/Meta-Llama-3-8B-Instruct
./scripts/get_hf_chat_template.py NousResearch/Hermes-3-Llama-3.1-8B tool_use
./scripts/get_hf_chat_template.py meta-llama/Llama-3.2-3B-Instruct
'''
import json
import re
import sys
def get_hf_chat_template(model_id, variant=None):
try:
# Use huggingface_hub library if available.
# Allows access to gated models if the user has access and ran `huggingface-cli login`.
from huggingface_hub import hf_hub_download
with open(hf_hub_download(repo_id=model_id, filename="tokenizer_config.json")) as f:
config_str = f.read()
except ImportError:
import requests
assert re.match(r"^[\w.-]+/[\w.-]+$", model_id), f"Invalid model ID: {model_id}"
response = requests.get(f"https://huggingface.co/{model_id}/resolve/main/tokenizer_config.json")
if response.status_code == 401:
raise Exception('Access to this model is gated, please request access, authenticate with `huggingface-cli login` and make sure to run `pip install huggingface_hub`')
response.raise_for_status()
config_str = response.text
try:
config = json.loads(config_str)
except json.JSONDecodeError:
# Fix https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json
# (Remove extra '}' near the end of the file)
config = json.loads(re.sub(r'\}([\n\s]*\}[\n\s]*\],[\n\s]*"clean_up_tokenization_spaces")', r'\1', config_str))
chat_template = config['chat_template']
if isinstance(chat_template, str):
return chat_template
else:
variants = {
ct['name']: ct['template']
for ct in chat_template
}
def format_variants():
return ', '.join(f'"{v}"' for v in variants.keys())
if variant is None:
if 'default' not in variants:
raise Exception(f'Please specify a chat template variant (one of {format_variants()})')
variant = 'default'
sys.stderr.write(f'Note: picked "default" chat template variant (out of {format_variants()})\n')
elif variant not in variants:
raise Exception(f"Variant {variant} not found in chat template (found {format_variants()})")
return variants[variant]
def main(args):
if len(args) < 1:
raise ValueError("Please provide a model ID and an optional variant name")
model_id = args[0]
variant = None if len(args) < 2 else args[1]
template = get_hf_chat_template(model_id, variant)
sys.stdout.write(template)
if __name__ == '__main__':
main(sys.argv[1:])

View File

@@ -29,7 +29,7 @@ add_library(llama
unicode-data.cpp
)
target_include_directories(llama PUBLIC . ../include)
target_include_directories(llama PUBLIC . ../include ../common)
target_compile_features (llama PUBLIC cxx_std_17) # don't bump
target_link_libraries(llama PUBLIC ggml)

View File

@@ -179,6 +179,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE, "tokenizer.chat_template" },
{ LLM_KV_TOKENIZER_CHAT_TEMPLATE_N, "tokenizer.chat_template.%s" },
{ LLM_KV_TOKENIZER_FIM_PRE_ID, "tokenizer.ggml.fim_pre_token_id" },
{ LLM_KV_TOKENIZER_FIM_SUF_ID, "tokenizer.ggml.fim_suf_token_id" },
{ LLM_KV_TOKENIZER_FIM_MID_ID, "tokenizer.ggml.fim_mid_token_id" },
@@ -1443,10 +1444,11 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_CONVNEXT_GAMMA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
};
LLM_KV::LLM_KV(llm_arch arch) : arch(arch) {}
LLM_KV::LLM_KV(llm_arch arch, const char * suffix) : arch(arch), suffix(suffix) {}
std::string LLM_KV::operator()(llm_kv kv) const {
return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
return suffix ? ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch), suffix)
: ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
}
std::string LLM_TN_IMPL::str() const {

View File

@@ -177,6 +177,7 @@ enum llm_kv {
LLM_KV_TOKENIZER_HF_JSON,
LLM_KV_TOKENIZER_RWKV,
LLM_KV_TOKENIZER_CHAT_TEMPLATE,
LLM_KV_TOKENIZER_CHAT_TEMPLATE_N,
LLM_KV_TOKENIZER_FIM_PRE_ID,
LLM_KV_TOKENIZER_FIM_SUF_ID,
LLM_KV_TOKENIZER_FIM_MID_ID,
@@ -335,9 +336,10 @@ enum llm_tensor_layer {
};
struct LLM_KV {
LLM_KV(llm_arch arch);
LLM_KV(llm_arch arch, const char * suffix = nullptr);
llm_arch arch;
const char * suffix;
std::string operator()(llm_kv kv) const;
};

View File

@@ -152,7 +152,7 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_MINICPM;
} else if (tmpl_contains("'Assistant: ' + message['content'] + eos_token")) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_2;
} else if (tmpl_contains(LU8("'<Assistant>' + message['content'] + '<end▁of▁sentence>'"))) {
} else if (tmpl_contains(LU8("<Assistant>")) && tmpl_contains(LU8("<User>")) && tmpl_contains(LU8("<end▁of▁sentence>"))) {
return LLM_CHAT_TEMPLATE_DEEPSEEK_3;
} else if (tmpl_contains("[|system|]") && tmpl_contains("[|assistant|]") && tmpl_contains("[|endofturn|]")) {
// ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct/discussions/8#66bae61b1893d14ee8ed85bb

View File

@@ -7,6 +7,7 @@
#include <cstring>
#include <climits>
#include <stdexcept>
#include <cerrno>
#ifdef __has_include
#if __has_include(<unistd.h>)

View File

@@ -64,6 +64,33 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
}
}
// return a list of splits for a given path
// for example, given "<name>-00002-of-00004.gguf", returns list of all 4 splits
static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) {
std::vector<std::string> paths;
std::string split_prefix;
std::vector<char> buf(llama_path_max(), 0);
{
int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split);
if (!ret) {
throw std::runtime_error(format("invalid split file name: %s", path.c_str()));
}
split_prefix = std::string(buf.data(), ret);
}
if (split_prefix.empty()) {
throw std::runtime_error(format("invalid split file: %s", path.c_str()));
}
for (int idx = 0; idx < n_split; ++idx) {
int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split);
paths.push_back(std::string(buf.data(), ret));
}
return paths;
}
namespace GGUFMeta {
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
struct GKV_Base_Type {
@@ -413,7 +440,12 @@ namespace GGUFMeta {
template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
llama_model_loader::llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits,
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p) {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
@@ -425,6 +457,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
}
}
// Load the main GGUF
struct ggml_context * ctx = NULL;
struct gguf_init_params params = {
/*.no_alloc = */ true,
@@ -460,35 +493,54 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
// Load additional GGML contexts
if (n_split > 1) {
// make sure the main file is loaded first
uint16_t idx = 0;
get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO);
get_key(kv_split_no, idx);
if (idx != 0) {
throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str()));
}
std::vector<char> split_prefix(llama_path_max(), 0);
if (!llama_split_prefix(split_prefix.data(), split_prefix.size(), fname.c_str(), idx, n_split)) {
throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
// generate list of splits if needed
if (splits.empty()) {
splits = llama_get_list_splits(fname, idx, n_split);
}
// in case user give a custom list of splits, check if it matches the expected number
if (n_split != (uint16_t)splits.size()) {
throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split));
}
if (trace > 0) {
LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
}
std::vector<char> split_path(llama_path_max(), 0);
// load other splits
for (idx = 1; idx < n_split; idx++) {
llama_split_path(split_path.data(), split_path.size(), split_prefix.data(), idx, n_split);
const char * fname_split = splits[idx].c_str();
struct gguf_init_params split_params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx,
};
gguf_context_ptr ctx_gguf { gguf_init_from_file(split_path.data(), split_params) };
gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
if (!ctx_gguf) {
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path.data()));
throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, fname_split));
}
files.emplace_back(new llama_file(split_path.data(), "rb"));
// check idx
{
const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str());
if (kid < 0) {
throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split));
}
int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid);
if (idx_gguf != idx) {
throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx));
}
}
files.emplace_back(new llama_file(fname_split, "rb"));
contexts.emplace_back(ctx);
// Save tensors data offset info of the shard.

View File

@@ -90,7 +90,12 @@ struct llama_model_loader {
size_t size_data = 0;
std::vector<std::pair<size_t, size_t>> mmaps_used;
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p);
llama_model_loader(
const std::string & fname,
std::vector<std::string> & splits, // optional, only need if the split does not follow naming scheme
bool use_mmap,
bool check_tensors,
const struct llama_model_kv_override * param_overrides_p);
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type

View File

@@ -2203,6 +2203,50 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PHIMOE:
{
const int64_t n_embd_head = n_embd / n_head;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
if (layer.wqkv == nullptr) {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
}
} break;
case LLM_ARCH_PLAMO:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -3717,7 +3761,6 @@ struct llama_model_params llama_model_default_params() {
/*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ nullptr,
/*.rpc_servers =*/ nullptr,
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.kv_overrides =*/ nullptr,
@@ -3912,8 +3955,10 @@ uint64_t llama_model_size(const struct llama_model * model) {
return model->size();
}
const char * llama_model_chat_template(const struct llama_model * model) {
const auto & it = model->gguf_kv.find(LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE));
const char * llama_model_chat_template(const struct llama_model * model, const char * name) {
const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE_N)
: LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
const auto & it = model->gguf_kv.find(key);
if (it == model->gguf_kv.end()) {
return nullptr;
}

View File

@@ -323,8 +323,6 @@ struct llama_model {
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
std::vector<std::string> rpc_servers;
// list of devices used in this model
std::vector<ggml_backend_dev_t> devices;

View File

@@ -526,7 +526,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
std::vector<std::string> splits = {};
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides);
ml.init_mappings(false); // no prefetching
llama_model model(llama_model_default_params());

Some files were not shown because too many files have changed in this diff Show More