Compare commits

..

661 Commits

Author SHA1 Message Date
Georgi Gerganov
2f74c354c0 graph : make FA compatible with MLA + add initial Metal kernels (#12953)
* graph : make mla compatible with FA

* metal : add exp FA kernels for DeepSeek models

ggml-ci

* llama : minor naming updates

ggml-ci

* ggml : disable FA for DS head sizes

* tests : add FA tests for MLA shapes

ggml-ci
2025-04-17 18:16:36 +03:00
Alan Gray
207c22ec2d ggml: Re-enable CUDA graphs in presence of CONT and DUP nodes (#12970) 2025-04-17 15:19:42 +02:00
hipudding
7a395f67a7 CANN: Add support for async operator submission (#12864)
Submit operators using asynchronous threads to improve performance.

Use the environment variable GGML_CANN_ASYNC_MODE to control whether
asynchronous submission is enabled. It is disabled by default.

Testing shows a 10%–20% performance improvement in scenarios with
small parameter sizes, especially in quantized models.
2025-04-17 20:34:16 +08:00
Mikko Juola
971f245b3b llama : recognize IBM Granite 3.3 FIM tokens (#12988)
The Granite's FIM tokens are very similar to Qwen's; it's just that
they use underscore instead of a dash. So <fim_middle> for example
instead of <fim-middle>.

Opening up tokenizer_config.json in ibm-granite/granite-3.3-8b-base
shows:

```
    "<fim_prefix>",
    "<fim_middle>",
    "<fim_suffix>",
    "<fim_pad>",
    ...
    "<reponame>",
```
2025-04-17 11:37:05 +03:00
kimminsu
12b17501e6 opencl: fix incorrect local_size index in profiling log (#12868) 2025-04-16 14:25:57 -07:00
Jeff Bolz
015022bb53 vulkan: enable coopmat2 FA gqa and split_k optimizations more often (#12931)
The grouped query attention optmization doesn't require a power of two ratio,
the only thing relying on it was the modulo operation written as bitwise &.

split_k need not depend on gqa_ratio - enable it any time there's only one
workgroup in the X dimension. The shader gets the split index from the x coord,
and multiple workgroups in the X dimension (pre-split) indicates a larger
FA operation that wouldn't need splitting.
2025-04-16 20:37:25 +02:00
Chenguang Li
b43d89e311 CANN: Add 310P operator support check (#12962) 2025-04-16 16:21:05 +08:00
lhez
80f19b4186 opencl: split ggml-opencl.cl into multiple files and cleanup (#12886)
* opencl: refactor - split the kernel files

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>

* opencl: split more kernels into separate files

* opencl: specify subgroup size instead of querying it

* opencl: refine Adreno cl compiler version parsing

* opencl: skip some kernels not used by Adreno on old compilers

* opencl: refine logic for selecting Adreno kernels

* opencl: refine Adreno cl compiler version

* opencl: cleanup preprocessor for kernels

* opencl: consider Adreno CL compiler on Windows

* opencl: add final newline for `mul_mv_f16_f16.cl`

---------

Co-authored-by: Shangqing Gu <quic_shawngu@quicinc.com>
2025-04-15 12:26:00 -07:00
Georgi Gerganov
f8f820cc4d metal : add FA-vec kernels for head size 96 (#12952)
ggml-ci
2025-04-15 14:45:05 +03:00
hipudding
54a7272043 CANN: Add x86 build ci (#12950)
* CANN: Add x86 build ci

* CANN: fix code format
2025-04-15 12:08:55 +01:00
David Huang
84778e9770 CUDA/HIP: Share the same unified memory allocation logic. (#12934)
Replace compile-time `GGML_HIP_UMA` with environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY`. This unifies the usage on NVIDIA and AMD GPUs, and allows a single binary to be shared between integrated and dedicated GPUs.
2025-04-15 11:20:38 +02:00
Akarshan Biswas
510676475f SYCL: Add ROPE vision kernel (#12887)
* SYCL: Add ROPE vision kernel

* Add comment about rope mode
2025-04-15 10:37:42 +02:00
Juk Armstrong
daa422881a llama : DeepSeek V2/V3 MLA implementation (#12801)
* Merged using squash to remove all noise commit messages

* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large

* Removed 3 conts (2x RoPE and 1x RMS-norm)

* Changed to use `<cmath>` instead of `<math.h>`

* Reverted removal of the 3 conts

* Used `reshape` in `llm_graph_context::build_attn_mha()`

* Use `k_pe = ggml_reshape`

* Removed the 3 conts again

* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF

* Removed MQA optimisation from `build_attn_mha()` as no gains now

* Simplified `is_mla` branch in `llm_build_deepseek2()`

* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls

* Fixed call to `build_attn` in `llm_build_t5_enc`
2025-04-15 09:49:57 +03:00
Srihari-mcw
eccc7a1602 ggml : Add AVX512 implementation of GEMM - Q4_Kx8 (#12829)
* Add AVX512 implementation of GEMM - q4kx8

* Update changes to remove unnecessary whitespaces
2025-04-15 09:22:36 +03:00
Chenguang Li
0019279bb5 CANN: Opt ROPE optimization (#12865)
* [CANN]Opt ROPE optimization

* [CANN]Codestyle adjustment

* [CANN]Fix the ROPE precision issue

* [CANN]codestyle fix

* [CANN]add rope unsupport case

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-15 10:09:35 +08:00
Xinpeng Dou
b0c75ac9f9 CANN: Optimize CANN buffer pool memory management (#12875)
Multiple optional memory pools are provided for CANN, including VMM, 
priority queue-based, and traditional memory pools.
1.When the memory pool is available and GGML_CANN_DISABLE_VMM_POOL 
   is not defined, the VMM pool is selected by default.
2.Otherwise, if GGML_CANN_ENABLE_BUF_PRIO_POOL is defined, 
   the priority queue-based memory pool is used.
3.If neither condition is met, the default memory pool is used.
2025-04-15 10:04:24 +08:00
Russyyds
d6d2c2ab8c Add performance print for gemma3 in example (#12929) 2025-04-14 19:18:20 +02:00
Akarshan Biswas
75afa0ae31 SYCL: Fix im2col (#12910)
* SYCL: Fix im2col

* restore local workgroup size adjustments for large inputs

* restore format
2025-04-14 14:23:53 +02:00
Radoslav Gerganov
c772d54926 rpc : use ggml_context_ptr (#12938) 2025-04-14 13:59:34 +03:00
Neo Zhang Jianyu
81c7e64fc2 dsiable curl lib check, this action is missed by commit bd3f59f812 (#12761) (#12937) 2025-04-14 18:19:07 +08:00
Georgi Gerganov
526739b879 sync : ggml
ggml-ci
2025-04-14 09:26:15 +03:00
cmdr2
a25355e264 cpu: fix cpu backend's supports-op for GET_ROWS_BACK. fixes a fatal when running test-backend-ops with only the CPU backend (ggml/1190) 2025-04-14 09:26:15 +03:00
SXX
e959d32b1c ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register (#12773)
* ggml: use _mm[512/256]_dpbusd[_avx]_epi32 to directly accumulate into the result register

* simplifies the codebase by removing redundant functions
2025-04-14 08:47:55 +03:00
Alan Gray
307bfa253d ggml: disable CUDA graphs for unsupported DUP and CONT node types (#12891)
Fixes #12798
2025-04-13 23:12:21 +02:00
Ed Addario
71e90e8813 quantize: Handle user-defined quantization levels for additional tensors (#12511)
* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' coding guidelines

* Update descriptions to match existing style

* Add llama_model_quantize_params parameters

* Add new quantize parameters parsing and validation

* Update usage

* Add new parameters defaults

* Add new quantization parameters logic

* Minor refactoring as per the contributors' guidelines

* Implement general --tensor-type instead of tensor-specific command option

* Fix implied type bug

* Restore missing #includes

* Add regex capability for tensor selection

* Refactor function name and update ALLOWED_TENSOR_TYPE

* Add missing #include

* Handle edge case when tensor name is cls.output

* Minor logging improvement
2025-04-13 21:29:28 +03:00
Prajwal B Mehendarkar
bc091a4dc5 common : Define cache directory on AIX (#12915) 2025-04-12 17:33:39 +02:00
Jeff Bolz
a4837577aa vulkan: use aligned loads for flash attention mask (#12853)
Rewrite the stride logic for the mask tensor in the FA shader to force the
stride to be aligned, to allow using more efficient loads.
2025-04-12 10:44:48 +02:00
Matt Clayton
e59ea539b8 llava: Fix cpu-only clip image encoding sefault (#12907)
* llava: Fix cpu-only clip image encoding

* clip : no smart ptr for ggml_backend_t

* Fix for backend_ptr push_back

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-12 07:29:03 +02:00
Georgi Gerganov
c94085df28 server : add VSCode's Github Copilot Chat support (#12896)
* server : add VSCode's Github Copilot Chat support

* cont : update handler name
2025-04-11 23:37:41 +03:00
yuri@FreeBSD
e8a62631b3 rpc : Set cache directory in rpc-server.cpp on FreeBSD (#12903) 2025-04-11 22:04:14 +02:00
Olivier Chafik
b6930ebc42 tool-call: fix non-tool-calling grammar crashes w/ Qwen / Hermes 2 templates (#12900)
* `tool-call`: don't call common_chat_params_init_hermes_2_pro when there aren't tools (or when there's a schema)

* test all chat formats w/o tools
2025-04-11 21:47:52 +02:00
yuri@FreeBSD
68b08f36d0 common : Define cache directory on FreeBSD (#12892) 2025-04-11 21:45:44 +02:00
Ewan Crawford
578754b315 sycl: Support sycl_ext_oneapi_limited_graph (#12873)
The current usage of the SYCL-Graph extension checks for
the `sycl_ext_oneapi_graph` device aspect. However, it is also
possible to support `sycl_ext_oneapi_limied_graph` devices that
don't support update
2025-04-11 15:32:14 +02:00
tastelikefeet
b2034c2b55 contrib: support modelscope community (#12664)
* support download from modelscope

* support login

* remove comments

* add arguments

* fix code

* fix win32

* test passed

* fix readme

* revert readme

* change to MODEL_ENDPOINT

* revert tail line

* fix readme

* refactor model endpoint

* remove blank line

* fix header

* fix as comments

* update comment

* update readme

---------

Co-authored-by: tastelikefeet <yuze.zyz@alibaba-inc/com>
2025-04-11 14:01:56 +02:00
Yuxuan Zhang
06bb53ad9b llama-model : add Glm4Model implementation for GLM-4-0414 (#12867)
* GLM-4-0414

* use original one

* Using with tensor map

* fix bug

* change order

* change order

* format with flask8
2025-04-11 12:10:10 +02:00
Xuan-Son Nguyen
0c50923944 clip : use smart pointer (⚠️ breaking change) (#12869)
* clip : use smart pointers

* fix warmup

* add forward declaration

* misisng include

* fix include (2)

* composite

* simplify batch ptr

* fix conflict
2025-04-11 12:09:39 +02:00
Akarshan Biswas
fccf9cae83 SYCL: Add fp16 type support to unary op kernels (#12788)
* SYCL: Add fp16 support to some elementwise OP kernels

* remove comment

ggml-ci

* Use static_cast directly

* remove not needed cast from tanh

* Use static cast and remove unneeded castings

* Adjust device_support_op for unary OPs

* Use cast_data and typed_data struct to deduplicate casting code
2025-04-11 16:03:50 +08:00
Daniel Han
ec6c09d0fa convert : Llama4 RoPE fix (#12889) 2025-04-11 09:49:09 +02:00
R0CKSTAR
8ac9f5d765 ci : Replace freediskspace to free_disk_space in docker.yml (#12861)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-11 09:26:17 +02:00
Daniel Bevenius
12e9158f25 xcf : add check for visionos build version (#12854)
This commit adds a check for the visionos build version used with vtool
in build-xcframework.sh. The script now checks the Xcode version and
determines whether to use "xros" or "visionos" for the build version.

This commit also uses xcrun for the vtool so that the version of vtool
in xcode command line tools is used instead of the one in the system
path.

Refs: https://github.com/ggml-org/whisper.cpp/pull/2994#issuecomment-2773292223
2025-04-11 09:24:34 +02:00
Xuan-Son Nguyen
5b1f13cb64 convert : proper tensor name mapping for llama4 (#12870)
* Llama-4 mapping

* remove hacky renaming

---------

Co-authored-by: Daniel Han <danielhanchen@gmail.com>
2025-04-11 09:23:37 +02:00
Xuan-Son Nguyen
8b91d5355a llama : correct rms norm for llama 4 (#12882) 2025-04-11 08:49:50 +02:00
Aaron Teo
0fed24c347 ggml: fix compilation error s390x (#12848)
* ggml: fixes #12846 compilation error

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: add documentation for code change

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: refactor to type-cast and update documentation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

* ggml: update documentation to provide full issue link

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>

---------

Co-authored-by: Aleksei Nikiforov <aleksei.nikiforov@ibm.com>
2025-04-11 08:20:07 +03:00
Georgi Gerganov
47ba87d0a4 sync : ggml 2025-04-11 00:17:47 +03:00
Georgi Gerganov
1d2b613445 tests : fix init order (#0)
ggml-ci
2025-04-11 00:17:47 +03:00
Georgi Gerganov
eb420e1148 sync : ggml
ggml-ci
2025-04-11 00:17:47 +03:00
cmdr2
cb79c2e7fa ggml: don't include arm_neon.h when using CUDA 12 with ARM Neon (ggml/1187)
fix #1186
2025-04-11 00:17:47 +03:00
Diego Devesa
fe92821ea9 ggml : add bilinear upscale support (ggml/1185) 2025-04-11 00:17:47 +03:00
Diego Devesa
459895c326 ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op

* ggml : remove deprecated custom ops
2025-04-11 00:17:47 +03:00
Georgi Gerganov
e4bf72d631 scripts : fix sync-ggml-am.sh 2025-04-11 00:17:47 +03:00
Xuan-Son Nguyen
8b9cc7cdd8 llava : introduce libmtmd (#12849)
* wip llava2

* migrated gemma3 to llava2

* add timings

* correct pre/postfix

* fix missing include

* fix compilation unused var warn

* update llava2_tokenize

* change name llava2 --> mtmd

* improve api

* refine helpers

* Update examples/llava/mtmd.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-10 22:57:16 +02:00
Xuan-Son Nguyen
64eda5deb9 convert : ability to lazy-load safetensors remotely without downloading to disk (#12820)
* gguf util : add SafetensorRemote

* fix style

* convert: add --remote option

* convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.

* correct metadata.name

* small style fix

* support HF_TOKEN

* convert : use writeable buffer for remote lazy tensors

* convert : fix flake8 lint regarding lamdba assigment

* multithreaded download

* multithread: print debug

* fix style

* Revert "multithreaded download"

This reverts commit 42fc895ace.

* bring back _get_request_headers

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-04-10 17:24:44 +02:00
Chenguang Li
fe5b78c896 CANN: Support more ops (#12841)
* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D

* [CANN]Support COUNT_EQUAL && STEP && SGN

* [CANN]codestyle adjustment

* [CANN]codestyle adjustment

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-10 08:51:52 +08:00
Prajwal B Mehendarkar
11d07e1e69 Fixes #12823 (#12830)
* Including limits file on AIX

* Fixes #12823
2025-04-10 01:18:01 +02:00
Rudi Servo
b0091ecc1e docker : added all CPU to GPU images (#12749) 2025-04-10 01:17:12 +02:00
Piotr Kubaj
31f7803bc4 ggml-cpu-impl.h: do not redefine bool on POWER9 (#12856)
error: unknown type name '_Bool'
2025-04-10 01:00:34 +02:00
Piotr Kubaj
2391506ace ggml-impl.h: fix build on POWER9 (#12855)
error: ISO C++17 does not allow 'register' storage class specifier
2025-04-10 01:00:25 +02:00
Bo Zheng
d3bd7193ba llama : Support Qwen3 and Qwen3MoE (#12828)
* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
2025-04-09 11:47:36 +02:00
R0CKSTAR
d9a63b2f2e musa: enable freediskspace for docker image build (#12839)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-09 11:22:30 +02:00
Romain Biessy
8ed71242f4 sycl: update documentation to use -no-cnv (#12845) 2025-04-09 11:22:04 +02:00
Plamen Minev
381603a775 ci: detach common from the library (#12827)
* fix: detach common from the library

* fix: building chat test template
2025-04-09 10:11:11 +02:00
Xuan-Son Nguyen
65a69e6e1b clip : do not print ftype (#12832) 2025-04-09 10:09:53 +02:00
Georgi Gerganov
47277d6d1d readme : add rpc backend (#12842) 2025-04-09 10:54:42 +03:00
Chenguang Li
6e1c4cebdb CANN: Support Opt CONV_TRANSPOSE_1D and ELU (#12786)
* [CANN] Support ELU and CONV_TRANSPOSE_1D

* [CANN]Modification review comments

* [CANN]Modification review comments

* [CANN]name adjustment

* [CANN]remove lambda used in template

* [CANN]Use std::func instead of template

* [CANN]Modify the code according to the review comments

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
2025-04-09 14:04:14 +08:00
Jeff Bolz
0090950f67 vulkan: In coopmat2 mmq, load q4_k/q5_k scales through shared memory (#12833)
q4_k and q5_k had a lot of redundant global loads where the same 16B of
scale information is repeatedly loaded and decoded during each loop iteration.
This change restructures the loops to more explicitly iterate over whole
blocks in the outer loop (with unrolled inner loop) and to copy/decode the
scale data into shared memory once at the start of each outer loop. The copy
is pipelined so the scale load from global memory is relatively cheap.

This improves q4_k/q5_k model prompt processing performance by around 5-7%.
I briefly tried applying this to q6_k and q4_0, and it didn't help for q6_k
and hurt for q4_0.

The big "else" path in mul_mm_cm2.comp that had all the clamped/unclamped
variants isn't used as often as it originally was (e.g. due to the padded_N
change), so I trimmed it down to offset some of the new complexity of the
semi-manual loop unrolling.
2025-04-09 07:25:08 +02:00
Jeff Bolz
7ecd780b1a vulkan: Use fp16 for the flash attention P*V multiplication (#12783)
This is consistent with the ggml-cuda behavior and the mul_mat fallback.
2025-04-09 07:12:57 +02:00
Sigbjørn Skjæret
7538246e7c cuda : add f32 to bf16 copy op (#12806)
This allows BF16 KV-cache on CUDA.
2025-04-08 23:21:31 +02:00
Matt Clayton
b32efad2bc llava: improve clip_ctx destructor to not memleak load_image_size (#12834) 2025-04-08 22:01:58 +02:00
Georgi Gerganov
a19b5cef16 llama : fix FA when KV cache is not used (i.e. embeddings) (#12825)
* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
2025-04-08 19:54:51 +03:00
Xuan-Son Nguyen
78a1ba0a4f server : fix thread.join() on exit (#12831) 2025-04-08 18:37:06 +02:00
dm4
2dabf759e7 llava: add more helper functions to check projector types in clip context (#12824)
Signed-off-by: dm4 <sunrisedm4@gmail.com>
2025-04-08 15:49:13 +02:00
Prajwal B Mehendarkar
1d343b4069 arg : Including limits file on AIX (#12822) 2025-04-08 14:30:59 +02:00
characharm
8ca6e1c3a4 server : webui : Improve Chat Input with Auto-Sizing Textarea (#12785)
* Update ChatScreen.tsx

* useAutosizeTextarea.ts

useAutosizeTextarea to encapsulate the logic.

* Implement responsive auto-sizing chat textarea

Replaces the manual textarea resizing with an automatic height adjustment based on content.

- `useChatTextarea` hook to manage textarea state and auto-sizing logic via refs, preserving the optimization
- Textarea now grows vertically up to a maximum height (`lg:max-h-48`) on large screens (lg breakpoint and up).
- Disables auto-sizing and enables manual vertical resizing (`resize-vertical`) on smaller screens for better mobile usability.
- Aligns the "Send" button to the bottom of the textarea (`items-end`) for consistent positioning during resize.

* -update compressed index.html.gz after npm run build
-refactor: replace OptimizedTextareaValue with AutosizeTextareaApi in VSCode context hook

* chore: normalize line endings to LF
refactor: AutosizeTextareaApi -> chatTextareaApi

* refactor: Rename interface to PascalCase

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-08 11:14:59 +02:00
Neo Zhang Jianyu
656babd6c2 Revert "sycl:remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor" (#12812)
* Revert "sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_s…"

This reverts commit 518a01480e.

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* Update ggml/src/ggml-sycl/ggml-sycl.cpp

* rm tail space
2025-04-08 15:03:21 +08:00
compilade
a226bc7a9a gguf-py : support lazy tensor splitting (#12809)
* gguf-py : support lazy tensor splitting

Splitting usually involves returning tuples of tensors,
which need to be handled properly to avoid early eager evaluation.

* gguf-py : fix flake8 lint
2025-04-08 09:03:07 +02:00
Xuan-Son Nguyen
1466621e73 llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00
lhez
82974011f3 opencl: better identify Adreno GPU (#12760) 2025-04-07 13:22:54 -07:00
stduhpf
4ccea213bc hellaswag: display estimated score confidence interval (#12797) 2025-04-07 18:47:08 +03:00
Georgi Gerganov
1a1ab7e7a4 cuda : fix HIP and MUSA BF16 (#0)
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
a4e46e28f9 sync : ggml
ggml-ci
2025-04-07 18:44:17 +03:00
Georgi Gerganov
ff067dbcb9 ggml : simplify Arm fp16 CPU logic (ggml/1177)
* ggml : simlpify Arm fp16 CPU logic

ggml-ci

* cont : bring back CUDA/MUSA checks

ggml-ci
2025-04-07 18:44:17 +03:00
Sigbjørn Skjæret
36ca8b3628 CUDA: don't convert BF16 weights to FP32 (ggml/1174)
* add bf16 support

* use convert_from_bf16_cuda instead of convert_unary_cuda for f32

* revert 7ec5085

* move functionality into convert_unary with constexpr
2025-04-07 18:44:17 +03:00
cmdr2
995083e4ed cpu: move all the operators into a separate c++ file (except mul_mat) (ggml/1167)
* cpu: refactor SIMD mappings and vectorized op functions into separate files

* Fix warning for ggml_float to float

* Fix warnings

* cpu: move all the operations (except mul_mat) to a separate c++ file

* fix whitespace

* Update ggml/src/ggml-cpu/vec.h

Co-authored-by: Diego Devesa <slarengh@gmail.com>

* Fix PR comments - use GGML_UNUSED, use cassert in ops.cpp

* Reverse the order of import for ops.h and vec.h, to match what was present in ggml-cpu.c previously

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-07 18:44:17 +03:00
zhouwg
518a01480e sycl: remove redundant memcopy in function ggml_backend_sycl_buffer_set_tensor (#12734) 2025-04-07 17:22:57 +02:00
Xuan-Son Nguyen
e391d3ee8d ci : no curl on ggml-ci (#12796) 2025-04-07 15:37:28 +03:00
Xuan-Son Nguyen
bd3f59f812 cmake : enable curl by default (#12761)
* cmake : enable curl by default

* no curl if no examples

* fix build

* fix build-linux-cross

* add windows-setup-curl

* fix

* shell

* fix path

* fix windows-latest-cmake*

* run: include_directories

* LLAMA_RUN_EXTRA_LIBS

* sycl: no llama_curl

* no test-arg-parser on windows

* clarification

* try riscv64 / arm64

* windows: include libcurl inside release binary

* add msg

* fix mac / ios / android build

* will this fix xcode?

* try clearing the cache

* add bunch of licenses

* revert clear cache

* fix xcode

* fix xcode (2)

* fix typo
2025-04-07 13:35:19 +02:00
zhouwg
52b3d71f12 CANN: fix typo in ggml-cann (#12733) 2025-04-07 19:34:14 +08:00
hipudding
d0d5b2232b CANN: Refactor to reduce duplicate code (#12731)
* CANN: Refactor to reduce duplicate code

* CANN: fix review comment
2025-04-07 17:10:36 +08:00
R0CKSTAR
916c83bfe7 musa: fix compilation warnings in mp_22/31 (#12780)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-06 15:23:54 +02:00
Jeff Bolz
0c74b04376 vulkan: fix NaN issue in flash attention shader (#12776)
Use -FLT_MAX/2 rather than -inf as the initial value for computing the maximum.
2025-04-06 11:03:47 +02:00
Jeff Bolz
80b717d493 vulkan: Use unclamped loads for flash attention mask (#12720)
nem1 must be a multiple of GGML_KQ_MASK_PAD, and GGML_KQ_MASK_PAD is a multiple
of the number of rows in the matrix. The KV dim is a multiple of the number of
columns for the aligned shader.
2025-04-06 10:47:13 +02:00
0cc4m
6bf28f0111 Vulkan: Tune Vulkan mmq int dot shader for performance (#12767)
Some checks failed
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cpu.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64,linux/arm64 server:true tag:cpu]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/cuda.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:cuda]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/intel.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:intel]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/musa.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:musa]) (push) Has been cancelled
Publish Docker image / Push Docker image to Docker Hub (map[dockerfile:.devops/vulkan.Dockerfile freediskspace:false full:true light:true platforms:linux/amd64 server:true tag:vulkan]) (push) Has been cancelled
2025-04-05 18:04:03 +02:00
Sergey Fedorov
f1e3eb4249 common : fix includes in arg.cpp and gemma3-cli.cpp (#12766)
* arg.cpp: add a missing include

* gemma3-cli.cpp: fix cinttypes include
2025-04-05 17:46:00 +02:00
Xuan-Son Nguyen
0364178ca2 clip : refactor clip_init, add tests (#12757)
* refactor clip_init

* fix loading file

* fix style

* test ok

* better test with report

* add missing headers

* clarify

* add KEY_MM_PATCH_MERGE_TYPE

* remove bool has_* pattern

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/llava/clip.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* use ggml_soft_max_ext

* refactor logging system

* add minicpm-v-o 2.6 for testing

* use nullptr everywhere

* fix Yi-VL model

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-04-05 17:17:40 +02:00
エシュナヴァリシア
c6ff5d2a8d common: custom hf endpoint support (#12769)
Some checks failed
Close inactive issues / close-issues (push) Has been cancelled
* common: custom hf endpoint support

Add support for custom huggingface endpoints via HF_ENDPOINT environment variable

You can now specify a custom huggingface endpoint using the HF_ENDPOINT environment variable when using the --hf-repo flag, which works similarly to huggingface-cli's endpoint configuration.

Example usage:
HF_ENDPOINT=https://hf-mirror.com/ ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

The trailing slash in the URL is optional:
HF_ENDPOINT=https://hf-mirror.com ./bin/llama-cli --hf-repo Qwen/Qwen1.5-0.5B-Chat-GGUF --hf-file qwen1_5-0_5b-chat-q2_k.gguf -p "The meaning to life and the universe is"

* Update common/arg.cpp

readability Improvement

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Apply suggestions from code review

---------

Co-authored-by: ベアトリーチェ <148695646+MakiSonomura@users.noreply.github.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-04-05 15:31:42 +02:00
Olivier Chafik
7a84777f42 sync: minja (#12739)
* sync: minja

https://github.com/google/minja/pull/57

* fix json include
2025-04-04 21:16:39 +01:00
Georgi Gerganov
3e1d29348b kv-cache : simplify + fix warning for recurrent models (#12756)
ggml-ci
2025-04-04 21:48:10 +03:00
bandoti
1be76e4620 ci: add Linux cross-compile build (#12428) 2025-04-04 14:05:12 -03:00
Nauful Shaikh
b772394297 server : webui : Upgrade daisyui, tailwindcss. (#12735)
* Upgrade daisyui, tailwindcss.

* Switch to all themes.

* Revert a change.

* Update formatting.

* Install packages before npm build.

* Revert "Install packages before npm build."

This reverts commit 336c5147e6.

* Add index.html.gz

* run build

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-04-04 16:09:52 +02:00
nick huang
23106f94ea gguf-split : --merge now respects --dry-run option (#12681)
* gguf-split now respects dry-run option

* removing trailing space
2025-04-04 16:09:12 +02:00
Nicolò Scipione
94148ba330 sycl: allow ggml-sycl configuration and compilation using Visual Studio project/solution (#12625) 2025-04-04 16:00:46 +02:00
Ronny Brendel
9ac4d611d0 cmake: fix ggml-shaders-gen compiler paths containing spaces (#12747)
fixes error for compiler paths with spaces
2025-04-04 10:12:40 -03:00
Daniel Bevenius
348888e0dc docs : add XCFramework section to README.md [no ci] (#12746)
This commit adds a new section to the README.md file, detailing the
usage of the XCFramework.

The motivation for this is that it might not be immediately clear to
users how to use the XCFramework in their projects and hopefully this
will help.
2025-04-04 10:24:12 +02:00
Jeff Bolz
74d4f5b041 vulkan: Hybrid waitForFences/getFenceStatus to reduce fence latency (#12630)
There seems to be a bubble waking up from waitForFences, which costs a few
percent performance and also increased variance in performance. This change
inserts an "almost_ready" fence when the graph is about 80% complete and we
waitForFences for the almost_ready fence and then spin (with _mm_pauses) waiting
for the final fence to be signaled.
2025-04-04 07:54:35 +02:00
Jeff Bolz
35e592eb30 vulkan: set cmake minimum and project name in vulkan-shaders (#12744) 2025-04-04 07:53:20 +02:00
lhez
7d7b1bafa7 opencl: update doc for OpenCL (#12702)
* opencl: add OpenCL to build.md

* opencl: remove fixed issue/TODO

* opencl: add link to OPENCL.md

* opencl: update doc - refine tools requirement for Windows 11 arm64
2025-04-03 22:18:17 -07:00
Gaurav Garg
c262beddf2 CUDA: Prefer vector flash decoding kernel for Gemma models (#12738)
* Prefer vector flash decoding kernel for Gemma models

Vector flash decoding kernel was not being picked for models with head dimension 256. Gemma models are in this category.
Removing this limit improves e2e performance by upto 12% in gen phase throughput for Gemm models.

* Update ggml/src/ggml-cuda/fattn.cu

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-04-03 18:20:29 +02:00
yumeyao
5dd5d1ab00 vocab : use string_view::find() to avoid unnecessary looking up beyond the fragment range (#12706) 2025-04-03 18:32:54 +03:00
Jeff Bolz
1c059995e0 vulkan: Fix missing cmake logic for dot product extension (#12721) 2025-04-03 10:08:26 -05:00
Atharva Dubey
2004644b7a ci : add env variable in ggml-ci and document the same in SYCL.md (#12736) 2025-04-03 15:12:39 +03:00
R0CKSTAR
5f696e88e0 sync : minja (inclusionAI/Ling) and update tests (#12699)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-03 13:51:35 +02:00
a3sh
193c3e03a6 fix MUSA compiler warning (#12704)
* fix MUSA compiler warning

* replace (void) with GGML_UNUSED
2025-04-03 09:32:55 +02:00
Chenguang Li
65cfe136a0 CANN: Support operator SIN COS ARGMAX (#12709)
* [CANN]support sin cos argmax

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]codestyle adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]Remove redundant code

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
2025-04-03 15:18:08 +08:00
Alan Gray
3f9da22c2b Simplify and improve CUDA graphs through use of indirect copy pointers (#9017)
* CUDA: Simplify and improve CUDA graphs through use of indirect copy pointers

Previously there was complexity in the CUDA graphs implementation due
frequently changing parameters to copy kernels associated with K and V
cache pointers. This patch simplifies by using indirection to avoid
such parameters frequently changing, avoiding the need for frequent
graph updates.

Fixes #12152

* Addressed comments

* fix HIP builds

* properly sync to stream

* removed ggml_cuda_cpy_fn_ptrs

* move stream sync before free

* guard to only use indirection with graphs

* style fixes

* check for errors

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-04-03 03:31:15 +02:00
hipudding
2a0dc97e56 CANN: Fix failed test cases (#12708)
* CANN: Fix memory waste in aclnn_tensor

* CANN: fix backend ops fail

* CANN: fix acl_tensor memory alloc.

* CANN: format

* CANN: remove trailing whitespace
2025-04-03 08:49:51 +08:00
lhez
97a20c012b opencl: use max_alloc_size in backend ctx instead of querying again (#12705) 2025-04-02 17:01:42 -07:00
Jeff Bolz
f01bd02376 vulkan: Implement split_k for coopmat2 flash attention. (#12627)
When using group query attention, we have one workgroup per KV batch and this
can be very few workgroups (e.g. just 8 in some models). Enable split_k to
spread the work across SMs. This helps a lot when the KV cache is large.
2025-04-02 14:25:08 -05:00
bandoti
6f3bd38640 cmake: remove caching from vulkan coopmat checks (#12719) 2025-04-02 14:56:26 -03:00
Jeff Bolz
be0a0f8cae vulkan: Implement grouped query attention in the coopmat2 FA shader (#12559)
When adjacent batches of Q share the same batches of K/V, batch them into
the same workgroup. For example, when:

dst(128,32,1,1) = FA(q(128,1,32,1), k(128,16640,8,1), v(128,16640,8,1))

previously we would run 32 workgroups computing 1 result each, now we will
run 8 workgroups computing 4 results each.

This doesn't directly translate to better performance (at least when you have
>=32 SMs), but in a subsequent change I'll enable split_k which will scale much
better with 4x fewer workgroups.
2025-04-02 19:40:32 +02:00
0cc4m
92e3006bb6 Vulkan: Fix mmq int dot float cache size (#12722) 2025-04-02 19:12:30 +02:00
Georgi Gerganov
833e2b7409 model : print tensor size during load (#12711)
* model : print tensor size during load

* cont : fix units MB -> MiB

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-04-02 16:38:54 +03:00
Diego Devesa
e0e912f49b llama : add option to override model tensor buffers (#11397)
* llama : add option to override tensor buffers

* ggml : fix possible underflow in ggml_nbytes
2025-04-02 14:52:01 +02:00
Georgi Gerganov
a10b36c91a llama : refactor kv cache guard (#12695)
* llama : refactor kv cache guard

ggml-ci

* cont : fix comment [no ci]

* llama : fix kv_cache restore logic

ggml-ci

* context : simplify kv cache updates

ggml-ci

* cont : better name [no ci]

* llama : fix llama_decode return code when could not find KV slot

ggml-ci

* context : change log err -> warn [no ci]

* kv-cache : add comment + warning
2025-04-02 14:32:59 +03:00
Sigbjørn Skjæret
83a88bd6af vocab : BailingMoE : change possessive quantifiers to greedy (#12677) 2025-04-02 11:21:48 +02:00
Xuan-Son Nguyen
42eb248f46 common : remove json.hpp from common.cpp (#12697)
* common : remove json.hpp from common.cpp

* fix comment
2025-04-02 09:58:34 +02:00
Chenguang Li
9bacd6b374 [CANN] get_rows and dup optimization (#12671)
* [CANN]get_rows and dup optimization.

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]GET_ROWS and CPY/DUP optimization

Co-authored-by: hipudding <huafengchun@gmail.com>
Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

* [CANN]code style adjustment

Signed-off-by: noemotiovon <noemotiovon@gmail.com>

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: noemotiovon <noemotiovon@gmail.com>
Co-authored-by: hipudding <huafengchun@gmail.com>
2025-04-02 15:22:13 +08:00
Xuan-Son Nguyen
267c1399f1 common : refactor downloading system, handle mmproj with -hf option (#12694)
* (wip) refactor downloading system [no ci]

* fix all examples

* fix mmproj with -hf

* gemma3: update readme

* only handle mmproj in llava example

* fix multi-shard download

* windows: fix problem with std::min and std::max

* fix 2
2025-04-01 23:44:05 +02:00
Junil Kim
f423981ac8 opencl : fix memory allocation size (#12649)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
issue:
https://github.com/CodeLinaro/llama.cpp/pull/17#issuecomment-2760611283

This patch fixes the memory allocation size
not exceeding the maximum size of the OpenCL device.
2025-04-01 09:54:34 -07:00
jklincn
e39e727e9a llama : use LLM_KV_GENERAL_FILE_TYPE instead of gguf_find_key (#12672) 2025-04-01 14:54:28 +02:00
Sigbjørn Skjæret
5936a616e4 convert : BailingMoE : fix qkv split when head_dim is 0 (#12687)
NOTE: Ling-lite-base is broken, see https://huggingface.co/inclusionAI/Ling-lite-base/discussions/2
2025-04-01 14:37:13 +02:00
Georgi Gerganov
3fd072a540 metal : use F32 prec in FA kernels (#12688)
* metal : use F32 prec in FA kernels

ggml-ci

* cont : fix FA vec kernel

ggml-ci
2025-04-01 14:57:19 +03:00
R0CKSTAR
a6f32f0b34 Fix clang warning in gguf_check_reserved_keys (#12686)
* Fix clang warning in gguf_check_reserved_keys

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Fix typo

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-04-01 13:12:53 +02:00
Wagner Bruna
2bb3597e42 vulkan: fix build when glslc doesn't support coopmat (#12683) 2025-04-01 11:38:07 +02:00
Romain Biessy
8293970542 SYCL: Rename oneMKL to oneMath (#12192)
* Rename oneMKL Interface to oneMath

* Use oneMath for Intel vendor

* Rename occurences to mkl

* clang-format

* Silence verbose warnings

* Set oneMath HIP_TARGETS

* Fix silence warnings

* Remove step to build oneMath from build instructions

* Use fixed oneMath version

* Remove INTEL_CPU

* Fold CMake oneDNN conditions

* Use Intel oneMKL for Intel devices

* Improve CMake message

* Link against MKL::MKL_SYCL::BLAS only

* Move oneMath documentation to Nvidia and AMD sections
2025-04-01 16:24:29 +08:00
Akarshan Biswas
8bbf26083d SYCL: switch to SYCL namespace (#12674) 2025-04-01 10:11:39 +02:00
Sigbjørn Skjæret
35782aeedb convert : BailingMoE : avoid setting rope_dim to 0 (#12678)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-31 23:09:48 +02:00
Daniel Bevenius
c80a7759da vocab : add special infill tokens for CodeLlama (#11850)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* vocab : add special infill tokens for CodeLlama

The commit adds the following special tokens for CodeLlama infill:
- `▁<PRE>`
- `▁<SUF>`
- `▁<MID>`

The motivation for this is that currently the infill example uses
CodeLlama as a suggested model. But when using this model the following
error is generated:
```console
/llama.cpp-debug/examples/infill/infill.cpp:165: GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0) failed

Could not attach to process.  If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user.  For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
305251 Aborted                 (core dumped)
./build/bin/llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf \
  -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 \
  --in-prefix "def helloworld():\n    print(\"hell" \
  --in-suffix "\n   print(\"goodbye world\")\n    "
```

* squash! vocab : add special infill tokens for CodeLlama

Add _<EOT> as well.
2025-03-31 18:40:56 +02:00
a3sh
250d7953e8 ggml : faster ssm scan (#10558)
* faster ssm_scan

* delete unused commnet

* clang format

* add space

* modify unnecessary calculations

* faster ssm conv implementatioin

* modify file name with dash
2025-03-31 18:05:13 +02:00
Sigbjørn Skjæret
403fbacbbc convert : Qwerky : use lora_rank_tokenshift and lora_rank_decay if present (#12667) 2025-03-31 16:36:25 +02:00
0cc4m
a8a1f33567 Vulkan: Add DP4A MMQ and Q8_1 quantization shader (#12135)
* Vulkan: Add DP4A MMQ and Q8_1 quantization shader

* Add q4_0 x q8_1 matrix matrix multiplication support

* Vulkan: Add int8 coopmat MMQ support

* Vulkan: Add q4_1, q5_0 and q5_1 quants, improve integer dot code

* Add GL_EXT_integer_dot_product check

* Remove ggml changes, fix mmq pipeline picker

* Remove ggml changes, restore Intel coopmat behaviour

* Fix glsl compile attempt when integer vec dot is not supported

* Remove redundant code, use non-saturating integer dot, enable all matmul sizes for mmq

* Remove redundant comment

* Fix integer dot check

* Fix compile issue with unsupported int dot glslc

* Update Windows build Vulkan SDK version
2025-03-31 14:37:01 +02:00
Georgi Gerganov
1790e73157 cmake : fix whitespace (#0) 2025-03-31 15:07:32 +03:00
Georgi Gerganov
0114a32da0 sync : ggml
ggml-ci
2025-03-31 15:07:32 +03:00
Sandro Hanea
a7724480fd cmake: improve Vulkan cooperative matrix support checks (whisper/2966)
Co-authored-by: Sandro Hanea <me@sandro.rocks>
2025-03-31 15:07:32 +03:00
Sigbjørn Skjæret
1a85949067 llava : proper description fix (#12668) 2025-03-31 11:28:30 +02:00
Akarshan Biswas
6c02a032fa SYCL: Remove misleading ggml_sycl_op_flatten function (#12387)
* SYCL: Remove misleading ggml_sycl_op_flatten function

* remove trailing whitespace

* Fix L2 norm from rebase

* remove try catch block from element_wise.cpp

* remove comment from common.hp

* ggml-sycl.cpp: Add try catch sycl::exception block in compute_forward

* norm.cpp: remove try catch exception block
2025-03-31 11:25:24 +02:00
Sigbjørn Skjæret
f52d59d771 llava : fix clip loading GGUFs with missing description (#12660) 2025-03-31 11:07:07 +02:00
marcoStocchi
52de2e5949 tts : remove printfs (#12640)
* tts.cpp : llama tokens console output is done using LOG_INF instead of printf(). Therefore the options '--log-disable' and '--log-file' have now uniform impact on all output.
2025-03-31 11:20:30 +03:00
Sigbjørn Skjæret
2c3f8b850a llama : support BailingMoE (Ling) (#12634)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-30 22:21:03 +02:00
Georgi Gerganov
4663bd353c metal : use constexpr in FA kernels + fix typedef (#12659)
* metal : use constexpr in FA kernels

ggml-ci

* cont

ggml-ci

* cont : fix typedef

ggml-ci
2025-03-30 22:04:04 +03:00
Juyoung Suk
b3de7cac73 llama : add Trillion 7B model support (#12556)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Support Trillion 7B

* Update llama.h

* Update llama.h

* Update llama-vocab.cpp for Trillion

* Update llama-vocab.cpp
2025-03-30 20:38:33 +02:00
Sergei Vorobyov
7242dd9675 llama-chat : Add Yandex instruct model template support (#12621)
* add yandex template

* update yandex chat template

* fix tests

* adjust chat template

* fix style

* fix tool macro in template

* add clarify comment

---------

Co-authored-by: Sergei Vorobev <serv01@yandex-team.ru>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-30 20:12:03 +02:00
R0CKSTAR
492d7f1ff7 musa: fix all warnings, re-enable -DLLAMA_FATAL_WARNINGS=ON in ci and update doc (#12611)
* musa: fix all warnings

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: enable -DLLAMA_FATAL_WARNINGS=ON in run.sh

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: update ci doc (install ccache)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* fix Windows build issue

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-30 10:59:38 +02:00
Georgi Gerganov
d3f1f0acfb sync : ggml
ggml-ci
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
360dc22c00 cpu : rm unused variable (ggml/1166) 2025-03-30 08:33:31 +03:00
cmdr2
a62d7fa7a9 cpu: de-duplicate some of the operators and refactor (ggml/1144)
* cpu: de-duplicate some of the operators and refactor

* Fix PR comments

* Fix PR comments
2025-03-30 08:33:31 +03:00
Daniel Bevenius
e408d4351a ggml : add logging for native build options/vars (whisper/2935)
This commit adds debug level logging for the native build options and
variables to ggml/CMakeLists.txt.

The motivation for this is that it can be useful to see the effective
result of `GGML_NATIVE`, `GGML_NATIVE_DEFAULT`, and `INS_ENB` for a
cmake build. I've found myself adding similar logging a few times now,
so I thought it might be a good idea to add this.

Example output, specifying `-DCMAKE_MESSAGE_LOG_LEVEL=DEBUG` when
running cmake produces the following output:
```console
-- GGML_NATIVE         : OFF
-- GGML_NATIVE_DEFAULT : OFF
-- INS_ENB             : OFF
```
2025-03-30 08:33:31 +03:00
Daniel Bevenius
3891e183c6 examples : command.wasm updates (whisper/2904)
This commit updates the command.wasm example by adding a server.py script to make it easy to start a local http server to try out the example, updates the build instructions, and also addresses some of the compiler warnings that were being generated.

* emscripten : fix TOTAL_STACK for wasm

This commit moves the TOTAL_STACK setting from the compile flags to the
linker flags. This is because the TOTAL_STACK setting is a linker
setting.

The motivation for this change is that currently the following warnings
are generated when building:
```console
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'TOTAL_STACK' [-Wunused-command-line-argument]
```

* examples : suppress C++17 deprecation warning for std::codecvt_utf8

This commit suppresses the C++17 deprecation warning for
std::codecvt_utf8 similar to what is done in
examples/talk-llama/unicode.cpp.

The motivation for this change is to suppress these warnings:
```console
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:251:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  251 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:31: warning: 'codecvt_utf8<wchar_t>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |                               ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/codecvt:193:28: note: 'codecvt_utf8<wchar_t>' has been explicitly marked deprecated here
  193 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 codecvt_utf8 : public __codecvt_utf8<_Elem> {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
/Users/danbev/work/ai/whisper-work/examples/common.cpp:257:10: warning: 'wstring_convert<std::codecvt_utf8<wchar_t>>' is deprecated [-Wdeprecated-declarations]
  257 |     std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
      |          ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/locale:3145:28: note: 'wstring_convert<std::codecvt_utf8<wchar_t>>' has been explicitly marked deprecated here
 3145 | class _LIBCPP_TEMPLATE_VIS _LIBCPP_DEPRECATED_IN_CXX17 wstring_convert {
      |                            ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:723:41: note: expanded from macro '_LIBCPP_DEPRECATED_IN_CXX17'
  723 | #    define _LIBCPP_DEPRECATED_IN_CXX17 _LIBCPP_DEPRECATED
      |                                         ^
/Users/danbev/work/wasm/emsdk/upstream/emscripten/cache/sysroot/include/c++/v1/__config:688:49: note: expanded from macro '_LIBCPP_DEPRECATED'
  688 | #      define _LIBCPP_DEPRECATED __attribute__((__deprecated__))
      |                                                 ^
4 warnings generated.
```

* ggml : suppress double-promotion warning in GGML_F16x4_REDUCE

This commit adds a cast to `ggml_float` in the `GGML_F16x4_REDUCE` macro
to suppress a double-promotion warning.

Currently the following warning is generated when compiling the
command.wasm example:
```console
/whisper-work/src/ggml-cpu/ggml-cpu.c:1592:5: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1592 |     GGML_F16_VEC_REDUCE(sumf, sum);
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/whisper-work/src/ggml-cpu/ggml-cpu.c:1640:9: warning: implicit conversion increases floating-point precision: 'float' to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 1640 |         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:932:37: note: expanded from macro 'GGML_F16_VEC_REDUCE'
  932 | #define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
      |                                     ^
/Users/danbev/work/ai/whisper-work/src/ggml-cpu/ggml-cpu.c:920:44: note: expanded from macro 'GGML_F16x4_REDUCE'
  918 |     res = wasm_f32x4_extract_lane(x[0], 0) +       \
      |         ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919 |           wasm_f32x4_extract_lane(x[0], 1) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  920 |           wasm_f32x4_extract_lane(x[0], 2) +       \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~
  921 |           wasm_f32x4_extract_lane(x[0], 3);        \
      |           ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2 warnings generated.
```
wasm_f32x4_extract_lane returns a 32-bit float and this is what the
addition is performed on. But there is an implicit conversion from
32-bit float to 64-bit double when the result is assigned to `res`,
which is of type `ggml_float`. My understanding here is that this is
intentional and adding a cast to `ggml_float` should suppress the
warning.

* emscripten : add -Wno-deprecated to for emscripten

This commit adds -Wno-deprecated to the CMAKE_CXX_FLAGS for emscripten
builds.

The motivation for this is that currently there a number of warnings
generated like the following:
```console
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
warning: JS library symbol '$print' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
warning: JS library symbol '$printErr' is deprecated. Please open a bug if you have a continuing need for this symbol [-Wdeprecated]
em++: warning: warnings in JS library compilation [-Wjs-compiler]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
em++: warning: linker setting ignored during compilation: 'ENVIRONMENT' [-Wunused-command-line-argument]
```

The downside of this is that we might miss other deprecation warnings
in the future so I'm not sure if this is acceptable. But it make the
wasm examples cleaner without the warnings.

* examples : fix tautological-compare warning in stb_vorbis.c [no ci]

This commit applies a fix to address a tautological-compare warning
in stb_vorbis.c.

The motivation for this is that currently the following warning is
generated when compiling the commmand-wasm example:
```console
/Users/danbev/work/ai/whisper-work/examples/stb_vorbis.c:1404:75: warning: pointer comparison always evaluates to false [-Wtautological-compare]
 1404 |       if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) {
      |                                                                           ^
1 warning generated.
```

This fix was taken from an open pull request on the stb repository
that addreses this issue:
https://github.com/nothings/stb/pull/1746

* squash! examples : update command.wasm instructions [no ci]

This commit adds a Python script to serve the the wasm examples build
in the `build-em` directory. Initially I thought that it would be enough
to start a simple python server but I did not notice that there was an
error in the browser console when I did that:
```console
command.js:1 Uncaught (in promise) DataCloneError: Failed to execute 'postMessage' on 'Worker': SharedArrayBuffer transfer requires self.crossOriginIsolated.
    at command.js:1:1206224
    at new Promise (<anonymous>)
    at loadWasmModuleToWorker (command.js:1:1204981)
    at Array.map (<anonymous>)
    at Object.loadWasmModuleToAllWorkers (command.js:1:1206428)
    at command.js:1:1204318
    at callRuntimeCallbacks (command.js:1:1202062)
    at preRun (command.js:1:6136)
    at run (command.js:1:1294094)
    at removeRunDependency (command.js:1:7046)
```
We need a few CORS headers to be set and in order hopefully make this
easy for users a Python script is added to the examples directory.
This should be able to server all the wasm examples provided they have
been built. command.wasm's README.md is updated to reflect this change.

* examples : remove unused functions

This commit removed the unused functions convert_to_utf8 and
convert_to_wstring from examples/common.cpp.

* Revert "examples : fix tautological-compare warning in stb_vorbis.c [no ci]"

This reverts commit 8e3c47d96141c7675c985562ebdc705e839e338a.

We should not make this change here and instead when the upstream PR is
merged we can sync with it.

Refs: https://github.com/ggerganov/whisper.cpp/issues/2784
2025-03-30 08:33:31 +03:00
Xuan-Son Nguyen
af6ae1efb2 llama : fix non-causal mask for gemma 3 (#12615) 2025-03-30 00:07:37 +01:00
Djip007
0bb2919335 llama : change cpu_buft_list order: ACCEL -> GPU host -> CPU extra -> CPU (#12632)
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.

Co-authored-by: philou <philou@framework>
2025-03-29 14:07:37 +01:00
Jay
a69f846351 cmake : fix ccache conflict (#12522)
If users already set CMAKE_C_COMPILER_LAUNCHER globally, setting it in
cmake again will lead to conflict and compile fail.

Signed-off-by: Jay <BusyJay@users.noreply.github.com>
2025-03-29 11:04:58 +01:00
hipudding
d07a0d7a79 CANN : remove clang-format in ggml-cann (#12607) 2025-03-29 11:03:28 +01:00
Sigbjørn Skjæret
3714c3ee1a llama : fix incorrect Qwen2Moe ffn_moe_out graph callback (#12631) 2025-03-28 22:13:02 +01:00
Georgi Gerganov
b4ae50810e metal : improve FA + improve MoE (#12612)
* ggml : FA with different K, V head sizes (CPU)

ggml-ci

* metal : add FA with HS=192

* metal : extend FA to support different K and V head sizes

ggml-ci

* metal : add FA vector kernels for heads K 192 and V 128

ggml-ci

* ggml : restrict op on other backends to equal head sizes

ggml-ci

* metal : optimize FA-vec kernel

ggml-ci

* metal : FA remove mq registers

* metal : improve MoE mul_mat_id condition

ggml-ci

* metal : fix comments + remove unnecessary addition

ggml-ci

* metal : avoid too much shared memory usage with mul_mat_id

ggml-ci
2025-03-28 20:21:59 +02:00
Icenowy Zheng
b86f600723 vulkan: fix coopmat shader generation when cross-compiling (#12272)
* vulkan: fix coopmat shader generation when cross-compiling

Previously the status of coopmat{,2} support isn't passed to the
vulkan-shaders-gen project building on the host, which leads to build
failure because of the cross-compiling code expecting coopmat{,2}
shaders that didn't get generated.

Fix this by passing the coopmat{,2} support status to vulkan-shaders
subproject.

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>

* Only call coop-mat shaders once

* Fix whitespace

---------

Signed-off-by: Icenowy Zheng <uwu@icenowy.me>
Co-authored-by: bandoti <141645996+bandoti@users.noreply.github.com>
2025-03-28 14:51:06 -03:00
Johannes Gäßler
dd373dd3bf llama: fix error on bad grammar (#12628) 2025-03-28 18:08:52 +01:00
Benson Wong
5d01670266 server : include speculative decoding stats when timings_per_token is enabled (#12603)
* Include speculative decoding stats when timings_per_token is true

New fields added to the `timings` object:

  - draft_n           : number of draft tokens generated
  - draft_accepted_n  : number of draft tokens accepted
  - draft_accept_ratio: ratio of accepted/generated

* Remove redundant draft_accept_ratio var

* add draft acceptance rate to server console output
2025-03-28 10:05:44 +02:00
Radoslav Gerganov
ef03229ff4 rpc : update README for cache usage (#12620) 2025-03-28 09:44:13 +02:00
amritahs-ibm
13731766db llamafile : ppc64le GEMV forwarding for FP32. (#12594)
This patch enables usage of MMA when one of the
dimensions of the matrix(ie either M or N) is 1. This
is useful in case of token generation where N < 2.

The concept of 'GEMV Forwarding' is used where when one
of the matrix has a single row/column, the elements are
broadcasted, instead of using packing routine to prepack
the matrix elements.

This change results in 5% - 15% improvement in total
speed(ie all tokens/total time), across various batch
sizes. This is in comparision with the corresponding
dot product implementation.

The patch is tested with FP32 models of Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf on a IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-28 09:43:22 +02:00
Radoslav Gerganov
ab6ab8f809 rpc : send hash when tensor data is above some fixed threshold (#12496)
* rpc : send hash when tensor data is above some fixed threshold

ref #10095

* rpc : put cache under $HOME/.cache/llama.cpp

* try to fix win32 build

* another try to fix win32 build

* remove llama as dependency
2025-03-28 08:18:04 +02:00
Piotr
2099a9d5db server : Support listening on a unix socket (#12613)
* server : Bump cpp-httplib to include AF_UNIX windows support

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

* server : Allow running the server example on a unix socket

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

---------

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
2025-03-27 23:41:04 +01:00
Georgi Gerganov
2969019837 media : add SVG logo [no ci] (#12616) 2025-03-27 23:09:05 +02:00
lhez
5dec47dcd4 opencl: add multi and vision rope, gelu_quick and im2col (#12600)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* opencl: add `im2col`

* opencl: add `gelu_quick`

* opencl: add mrope

* opencl: add vision rope
2025-03-27 08:08:08 -07:00
Si1w
f125b8dccf llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
HighDoping
953c2a62cf model : restore support for T5Encoder (#12590) 2025-03-27 11:43:33 +01:00
Csaba Kecskemeti
d5c6309d91 convert : Support Qwen2_5_VLForConditionalGeneration (#12595) 2025-03-27 11:11:23 +01:00
Georgi Gerganov
029c693fdc sync : ggml
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
771d84371c scripts : update sync + fix cmake merge
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
df0665a483 sync : ggml
ggml-ci
2025-03-27 09:04:38 +02:00
Georgi Gerganov
0306aad1ca cmake : sync/merge PowerPC build commands (#0) 2025-03-27 09:04:38 +02:00
amritahs-ibm
c7b43ab608 llamafile : ppc64le MMA implementation for Q4_0. (#12489)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le ISA using MMA
builtins. This patch handles matrix multiplication
between quantised datatypes, block_q4_0 and
block_q8_0.

This change results in 5% - 50% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-27 08:51:47 +02:00
xctan
24feaec057 ggml : riscv: add 128-bit RVV support (#12530)
* ggml : add 128-bit RVV support

* ggml : revert to old RVV 256+ q2_K, q3_K, q4_K, q6_K impl

* remove trailing whitespaces

* restructure vector length selection code
2025-03-27 08:38:34 +02:00
Georgi Gerganov
f28bc4c286 llama : make loras compatible with repacking (#12593)
* llama : make loras compatible with repacking

ggml-ci

* cont : simplify

ggml-ci

* cont : add TODO [no ci]
2025-03-27 08:24:10 +02:00
Akarshan Biswas
f17a3bb4e8 SYCL: implement memset ggml backend buffer interface (#12580)
* SYCL: implement memset ggml backend buffer interface

* use GGML_ABORT macro

* Do not wait for all queues to finish for memset operation
2025-03-27 09:46:00 +08:00
Slobodan Josic
bd40678df7 HIP: Add support for RDNA4 targets (#12372) 2025-03-26 23:46:30 +01:00
Georgi Gerganov
b3298fa47a metal : refactor mat-vec code (#12569)
* metal : refactor mat-vec code

ggml-ci

* metal : rename all_sum -> sum_all

ggml-ci

* metal : fix comments [no ci]

* metal : fix nr constant [no ci]

* metal : mv q6_K support nr0 > 1

ggml-ci

* metal : reduce register pressure

ggml-ci

* metal : fix typo [no ci]

* metal : reduce register pressure

ggml-ci
2025-03-26 21:38:38 +02:00
Michał Moskal
2447ad8a98 upgrade to llguidance 0.7.10 (#12576) 2025-03-26 11:06:09 -07:00
Ivy233
02082f1519 clip: Fix llama-llava-clip-quantize-cli quantization error under CUDA backend (#12566)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* [Fix] Compiling clip-quantize-cli and running it in a CUDA environment will cause ggml_fp16_to_fp32 to report an error when trying to access video memory. You need to switch to the CPU backend to run quantize.
After the fix, it will automatically run in the CPU backend and will no longer be bound to CUDA.

* [Fix]Roll back the signature and implementation of clip_model_load, and change the call in clip_model_quantize to clip_init.
2025-03-26 15:06:04 +01:00
Georgi Gerganov
df4d20cd53 convert : fix squeeze for ssm_conv tensors (#12573)
* convert : fix squeeze for ssm_conv tensors

* convert : match ssm_conv tensors by type

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-03-26 08:21:05 -04:00
Georgi Gerganov
5ed38b6852 ggml : fix MUL_MAT_ID repack with Q8_K (#12544)
* ggml : fix MUL_MAT_ID repack with Q8_K

ggml-ci

* ggml : improve repack templates

ggml-ci
2025-03-26 13:02:00 +02:00
R0CKSTAR
fd7855f8f5 doc: [MUSA] minor changes (#12583)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-26 09:09:48 +02:00
Sigbjørn Skjæret
53af4dba42 convert: fix Mistral3/Gemma3 model hparams init (#12571)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Fix Mistral3/Gemma3 model hparams init

* set positional args correctly

* use existing hparams if passed
2025-03-25 23:03:10 +01:00
Eric Curtin
ef19c71769 run: de-duplicate fmt and format functions and optimize (#11596) 2025-03-25 18:46:11 +01:00
Dan Johansson
053b3f9aae ggml-cpu : update KleidiAI to v1.5.0 (#12568)
ggml-cpu : bug fix related to KleidiAI LHS packing

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 13:10:18 +02:00
Akarshan Biswas
e2f560175a SYCL: disable Q4_0 reorder optimization (#12560)
ggml-ci
2025-03-25 18:40:18 +08:00
Dan Johansson
36ee06dd2d docs : add build instructions for KleidiAI (#12563)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 11:35:20 +02:00
R0CKSTAR
3cd3a39532 ci: [MUSA] add CI and update doc (#12562)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-25 09:45:08 +02:00
Georgi Gerganov
2d77d88e70 context : fix worst-case reserve outputs (#12545)
ggml-ci
2025-03-25 09:19:23 +02:00
Akarshan Biswas
c95fa362b3 ci: [SYCL] ggml-ci Use main GPU and enable sysman (#12547) 2025-03-24 19:35:38 +02:00
lhez
2b65ae3029 opencl: simplify kernel embedding logic in cmakefile (#12503)
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-03-24 09:20:47 -07:00
Akarshan Biswas
48d7021c61 CI: fix SYCL build (#12546)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-03-24 14:58:32 +02:00
Tei Home
3361e2deba docs: update: improve the Fedoa CUDA guide (#12536)
* docs: update fedora-cuda guide

- Rename and place into Backend Folder.
- Update Host-Supplied Packages.
- Expand Recommended Users Section.

* docs: improve the flow of CUDA-FEDORA.md
2025-03-24 11:02:26 +00:00
compilade
00d53800e0 llama-vocab : add SuperBPE pre-tokenizer (#12532) 2025-03-24 11:47:24 +01:00
R0CKSTAR
7ea75035b6 CUDA: Fix clang warnings (#12540)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-24 11:28:34 +01:00
Prajwal B Mehendarkar
c54f6b7988 mmap : skip resource limit checks on AIX (#12541) 2025-03-24 12:17:10 +02:00
Jeff Bolz
9b169a4d4e vulkan: fix mul_mat_vec failure in backend tests (#12529)
The OOB calculation could be wrong if the last iteration was during one of
the unrolled loops. Adjust the unrolling counts to avoid this. Add a couple
new backend tests that hit this failure on NVIDIA GPUs.
2025-03-24 07:56:17 +01:00
Marius Gerdes
77f9c6bbe5 server : Add verbose output to OAI compatible chat endpoint. (#12246)
Add verbose output to server_task_result_cmpl_final::to_json_oaicompat_chat_stream, making it conform with server_task_result_cmpl_final::to_json_oaicompat_chat, as well as the other to_json methods.
2025-03-23 19:30:26 +01:00
Lars Sonchocky-Helldorf
18b663d8e4 install : add macports (#12518)
MacPorts section added
2025-03-23 10:21:48 +02:00
Xuan-Son Nguyen
fbdfefe74e llama : gemma3 : use output tensor if it exists in model weight (#12506)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : gemma3 : use output tensor if it exists in model weight

* also add to the llm_tensor_names
2025-03-22 23:28:19 +01:00
Georgi Gerganov
ba932dfb50 ggml : fix quantized cpy op (#12310)
* ggml : fix quantized cpy op

ggml-ci

* tests : add cpy tests for all types

ggml-ci

* tests : add BF16 copy tests

ggml-ci

* tests : fix loop for same-type copy

ggml-ci

* tests : add option to permute the dst tensor

ggml-ci
2025-03-22 16:23:26 +02:00
R0CKSTAR
fac63a3d78 musa: refine compute capability (#12493)
* musa: refine compute capability

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* Address review comments

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-22 10:11:37 +01:00
Jeff Bolz
eddfb43850 vulkan: Optimize mul_mat_vec p021 and nc shaders (#12505)
* tests: add mul_mat perf/functional tests for p021/nc vulkan shaders

* vulkan: Optimize mul_mat_vec p021 and nc shaders.

These shaders are used in attention calculations, and when the KV cache grows
large they start to dominate the run time. For the nc shader (which is called
with large 'k' dimension), use unrolling and vector loads. For the p021 shader
(which is called with large 'm' and small 'k' dimensions), take advantage of
grouped query attention to reuse loads from the A matrix for the whole group,
and reduce the number of workgroups (too much overhead from tiny dispatches).

Using subgroupAdd in the p021 shader also helps, use that conditionally.
2025-03-22 09:40:11 +01:00
stduhpf
4375415b4a Vulkan: RTE rounding for cpy to quant (#12480)
* Vulkan: RTE rounding for cpy to quant

Co-Authored-By: Jeff Bolz <jbolz@nvidia.com>

* remove trailing whitespace

* avoid duplicating pipeline_cpy_f32_quant

* fix copypasting issue

* remove duplicated code

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-03-21 20:34:50 +01:00
Eve
30c42ef5cb vulkan: workaround for AMD Windows driver 16 bit unpack8 bug (#12472) 2025-03-21 20:27:47 +01:00
Georgi Gerganov
af04481e6b model : do not repack if a GPU device is present (#12498)
ggml-ci
2025-03-21 16:14:29 +02:00
Sigbjørn Skjæret
960e726077 chore : cleanup llama_model_loader::TENSOR_ usage (#12492) 2025-03-21 10:21:36 +01:00
marcoStocchi
ea1518e839 llama-tts : avoid crashes related to bad model file paths (#12482) 2025-03-21 11:12:45 +02:00
蕭澧邦
1aa87ee53d [SYCL] Fix build on Windows when ccache enabled (#9954) (#9976)
* [SYCL] Fix build on Windows when ccache enabled (#9954)

* take effect only on windows and force it to icl

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-21 14:58:47 +08:00
Svetlozar Georgiev
9ffcc9e374 sycl: cleanup oneDNN related code (#12097) 2025-03-21 10:15:56 +08:00
Woof Dog
e04643063b webui : Prevent rerendering on textarea input (#12299)
* webui: Make textarea uncontrolled to eliminate devastating lag

* Update index.html.gz

* use signal-style implementation

* rm console log

* no duplicated savedInitValue set

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-20 15:57:43 +01:00
Sigbjørn Skjæret
dbb3a4739e llama : make Qwen2MoE QKV bias optional (#12477)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-03-20 12:49:59 +01:00
Srihari-mcw
3d82dbcbce ggml : block interleaving support for Q4_K quantization for x86 AVX2 architecture (#12332)
* Add block interleaving support for Q4_K quantization

* Remove whitespaces and fix CI/CD issues

* Update pointer of bsums from int16_t to const int16_t

* Add vector version of quantize_q8_K_4x8 function

* Update code formatting based on review comments
2025-03-20 13:35:34 +02:00
Bartowski
732b5fbf5e convert : avoid calls to tokenizer.added_tokens_decoder (#12473)
tokenizer.added_tokens_decoder returns a fresh dict every time relatively slowly (~0.04s on average) which results in massive slowdowns when we have a huge number of added tokens
2025-03-20 08:36:37 +02:00
fairydreaming
568013d0cd context : clear sets containing encoder output sequence ids before storing new values (#12470)
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-19 21:01:57 +01:00
Gaurav Garg
517b5ddbf0 CUDA: Improve flash decoding kernel GPU occupancy for BS=1 case (#12183)
- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1

Fixes Issue: #12182
---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-19 20:52:06 +01:00
Jeff Bolz
a9b59288e2 vulkan: optimize iq1 coopmat2 dequant functions (#12427) 2025-03-19 19:56:23 +01:00
Guus Waals
0fd8487b14 Fix visionOS build and add CI (#12415)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* ci: add visionOS build workflow

Add a new GitHub Actions workflow for building on visionOS with CMake and Xcode.

* ggml: Define _DARWIN_C_SOURCE for visionOS to fix missing u_xxx typedefs

* ci: remove define hacks for u_xxx system types

---------

Co-authored-by: Giovanni Petrantoni <7008900+sinkingsugar@users.noreply.github.com>
2025-03-19 11:15:23 +01:00
Sigbjørn Skjæret
108e53c2f1 llama : add support for GPT2, Bloom and CodeShell tied word embeddings (#12456)
* Add support for GPT2, Bloom and CodeShell tied word embeddings

* Deduplicate tied word embeddings weights

* Workaround for incorrect weight map

It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.

* check++

* fatfingers--
2025-03-19 09:08:49 +01:00
Sigbjørn Skjæret
a686171ea7 convert : Support chat_template.json (#12460) 2025-03-19 08:58:13 +01:00
Jeff Bolz
c446b2edd2 vulkan: Submit once enough matmul work has been recorded (#12406)
I've been seeing significantly worse performance for tg with flash attention
enabled vs disabled, and it seems to be related to the submit heuristic.
Change the heuristic to check how many bytes worth of weight matrix are
used and flush every 100MB, and ramp up after the first few submits.
This seems to resolve the issue, and also increases perf for non-FA a bit.
2025-03-19 08:26:26 +01:00
lhez
d84635b1b0 opencl: improve profiling (#12442)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* opencl: more profiling timing

* opencl: generate trace for profiling

* opencl: reduce profiling overhead

* Populate profiling timing info at the end rather than after each
  kernel run

* opencl: fix for chrome tracing
2025-03-18 12:54:55 -07:00
Georgi Gerganov
75422e8bc4 graph : normalize Q, K, V shapes + sync cross attention (#12449)
* graph : normalize Q, K, V shapes and add comments

ggml-ci

* context : synchronize before getting cross attention data

* model : fix command-r attention norm check
2025-03-18 21:35:19 +02:00
R0CKSTAR
bb115d2bf7 musa: override warp_size of musa device to 32 (#12445)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-18 19:28:26 +01:00
Xuan-Son Nguyen
29fff308c7 llama : support converting Mistral Small text-only (#12450) 2025-03-18 19:16:19 +01:00
Georgi Gerganov
c6af2161b2 speculative : fix seg fault in certain cases (#12454) 2025-03-18 19:35:11 +02:00
Xuan-Son Nguyen
99aa304fb9 llama : add support for EXAONE tied word embeddings (#12451) 2025-03-18 17:24:33 +01:00
Georgi Gerganov
8551c44d84 context : always use non-causal attention for encoder graphs (#12447)
* context : always use non-causal attention for encoder graphs

ggml-ci

* context : move the change to llama_context::encode()

ggml-ci
2025-03-18 13:05:49 +02:00
Łukasz Ślusarczyk
35cae5ba05 SYCL: using graphs is configurable by environment variable and compile option (#12371)
* alberto changes

* enable sycl graphs by env variable

* fixed compilation warnings in ggml-sycl.cpp

* renamed graph variables

* fix markdown in docs/backend/SYCL.md

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>

* fix markdown in docs/backend/SYCL.md again

* compiling graphs by default, renamed graph_enable to graph_disable

---------

Co-authored-by: Romain Biessy <romain.biessy@codeplay.com>
2025-03-18 11:16:31 +01:00
Georgi Gerganov
810e0af3f5 server : fix warmup draft cache type (#12446)
ggml-ci
2025-03-18 12:05:42 +02:00
Prajwal B Mehendarkar
eba92d64c3 cmake : fix PowerPC build (#12241)
Closes #12240
2025-03-18 11:37:33 +02:00
fj-y-saito
d9a14523bb ggml : add SVE support for q6_K_q8_K (#12361) 2025-03-18 10:14:39 +02:00
0cc4m
fd123cfead Vulkan: Default to 1GB allocations instead of 4GB to avoid fragmentation and driver issues (#12434) 2025-03-18 07:21:40 +01:00
Łukasz Ślusarczyk
a53f7f7b88 fixed compilation warnings in ggml-sycl (#12424)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-18 08:51:25 +08:00
Molly Sophia
7dfad387e3 llama: Add support for RWKV v7 architecture (#12412)
* ggml: Add op l2_norm

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml: Add op rwkv_wkv7

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: Add support for RWKV7 and ARWKV7 models

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix inference with RWKV6Qwen2

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: add more (a)rwkv7 variants in size

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* Apply code-format changes

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* fix MUSA build

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* llama: fix shape error with rwkv using llama-parallel

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-03-18 07:27:50 +08:00
Sigbjørn Skjæret
60c902926c docs : bring llama-cli conversation/template docs up-to-date (#12426) 2025-03-17 21:14:32 +01:00
Gaurav Garg
b1b132efcb cuda : enable CUDA Graph on CUDA Toolkit < 12.x (#12394)
* Enable CUDA Graph on CTK < 12.x

`cudaGraphExecUpdate` API was changed on 12.x. For this reason CUDA graph support was disabled on older CUDA toolkit. This change enables CUDA support in CTK version < 12.x by using older API if CTK < 12.x.

* Fix compilation errors with MUSA

* Disable CUDA Graph for MUSA
2025-03-17 20:25:13 +02:00
Guus Waals
01e8f2138b ggml-vulkan: remove unused find_program(glslc) (#12416)
It's already found by FindVulkan.cmake in the parent CMakeLists
2025-03-17 13:35:43 -03:00
Jeff Bolz
484a8ab513 vulkan: Add N/2 and N/4 optimized paths in coopmat2 shader (#12312) 2025-03-17 09:26:18 -05:00
Daniele
cf2270e4d3 vulkan: subgroup size tuning (#12087)
* vulkan: subgroup size test

* Vulkan: Add device architecture enum and logic to recognize AMD generations

* vulkan: use new architecture logic to specify subgroup size

* Initial vulkan subgroup size tuning for RDNA3

* vulkan: commonize RDNA subgroup tuning

* vulkan: override subgroup size if required_subgroup_size = 0

* vulkan: disable warp 32 for RDNA3

* vulkan: fine tuned RDNA1 subgroup sizes

* vulkan: adjusted subgroup size map

* vulkan: fixed RDNA2 subgroup map

---------

Co-authored-by: 0cc4m <picard12@live.de>
2025-03-17 12:42:33 +01:00
Jeff Bolz
f07690c930 vulkan: use fp32 in coopmat2 q4_k dequant function (#12309) 2025-03-17 10:43:35 +01:00
Jeff Bolz
891c63956d vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking (#12273)
* vulkan: Pad N dimension of B matrix for coopmat2 perf, to avoid bounds checking
2025-03-17 10:41:59 +01:00
Jeff Bolz
2f21123c1d vulkan: Adjust coopmat2 tile sizes and selection heuristic (#12258) 2025-03-17 10:35:00 +01:00
Christian Kastner
374101fd74 cmake : enable building llama.cpp using system libggml (#12321)
* cmake: Factor out compiler flag function from ggml

llama.cpps's build requires it, too, and we may want to make use of it
without add_subdirectory(ggml).

* cmake: Enable building against system ggml

This facilitates package maintenance for Linux distributions, where the
libggml library most likely will be shipped as an individual package
upon which a llama.cpp package depends.
2025-03-17 11:05:23 +02:00
Akarshan Biswas
b3c9a65673 SYCL: set extras only on GGML_TYPE_Q4_0 (#12366)
* SYCL: set extras only on GGML_TYPE_Q4_0

* release tensor_extras in reset buffer interface
2025-03-17 09:45:12 +08:00
Sigbjørn Skjæret
8ba95dca20 llama : fix OLMo-2-0325-32B-Instruct K-norm size (#12400) 2025-03-16 19:46:36 +02:00
Georgi Gerganov
dc079cfdff context : fix init of n_outputs (#12397)
ggml-ci
2025-03-16 19:29:36 +02:00
Daniel Bevenius
7b61bcc87c ci : add --symlinks to xcframework zip command (#12409)
This commit adds the --symlinks option to the zip command used to create
the xcframework zip file. This is necessary to create symlinks in the
zip file. Without this option,  the Versions symlink is stored as a
regular directory entry in the zip file, rather than as a symlink in the
zip which causes the followig error in xcode:
```console
Couldn't resolve framework symlink for '/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current': readlink(/Users/danbev/work/ai/llama.cpp/tmp_1/build-apple/llama.xcframework/macos-arm64_x86_64/llama.framework/Versions/Current): Invalid argument (22)
```

Refs: https://github.com/ggml-org/llama.cpp/pull/11996#issuecomment-2727026377
2025-03-16 18:22:05 +01:00
marcoStocchi
f4c3dd5daa llama-tts : add '-o' option (#12398)
* added -o option to specify an output file name

* llama-tts returns ENOENT in case of file write error

note : PR #12042 is closed as superseded with this one.
2025-03-15 17:23:11 +01:00
aubreyli
3d35d87b41 SYCL: Delete redundant plus sign and space (#12391) 2025-03-15 15:49:03 +01:00
fairydreaming
b19bd064c0 SYCL : support non-contiguous tensors in binary ops (add, sub, etc) (#12399)
* sycl : support non-contiguous tensors in binary ops

* sycl : silence unused variable warning

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-15 22:19:30 +08:00
Chenguang Li
92a391327e [CANN]MUL_MAT optimization (#12382) 2025-03-15 09:31:08 +08:00
Eric Curtin
9f2250ba72 Add CLI arg to llama-run to adjust the number of threads used (#12370)
We default to 4, sometimes we want to manually adjust this

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-14 16:41:20 +00:00
Sigbjørn Skjæret
774973b8f3 main : add -sysf / --system-prompt-file (#12249) (#12250)
* add system_prompt_file

* add -sysf / --system-prompt-file

* remove system_prompt_file
2025-03-14 16:57:05 +01:00
fairydreaming
8fcb563613 Load all MoE experts during warmup (#11571)
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup

* common : use new API to enable warmup mode during model warmup

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
2025-03-14 13:47:05 +01:00
Victor
add2a3aa5a server: fix "--grammar-file" parameter (#12285) 2025-03-14 11:21:17 +01:00
Georgi Gerganov
c522ce4143 graph : simplify attn input build for unified KV cache (#12381)
ggml-ci
2025-03-14 10:47:44 +02:00
Georgi Gerganov
081bee8c64 hparams : add SWA rope parameters (#12374)
ggml-ci
2025-03-14 09:03:24 +02:00
Georgi Gerganov
84d5475541 llama : fix Gemma3 SWA KV cache shift (#12373)
* llama : fix Gemma3 SWA KV cache shift

ggml-ci

* hparams : add comment [no ci]
2025-03-13 19:08:07 +02:00
Xuan-Son Nguyen
be7c303410 arg : no n_predict = -2 for examples except for main and infill (#12364) 2025-03-13 12:34:54 +01:00
Georgi Gerganov
e0dbec0bc6 llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00
Ishaan Gandhi
2048b5913d server : fix crash when using verbose output with input tokens that are not in printable range (#12178) (#12338)
* Fix DOS index bug

* Remove new APIs

* remove extra line

* Remove from API

* Add extra newline

* Update examples/server/server.cpp

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-13 11:10:05 +01:00
Oscar Barenys
f08f4b3187 Update build.yml for Windows Vulkan builder to use Vulkan 1.4.304 SDK for VK_NV_cooperative_matrix2 support (#12301) 2025-03-12 20:06:58 +01:00
Daniel Bevenius
80a02aa858 llama.swiftui : fix xcframework dir in README [no ci] (#12353)
This commit fixes the path to the xcframework in the README file which I
had forgotten to change after renaming the build directory.
2025-03-12 13:45:32 +01:00
Alberto Cabrera Pérez
363f8c5d67 sycl : variable sg_size support for mmvq kernels (#12336)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-03-12 09:57:32 +00:00
uvos
34c961b181 CUDA/HIP: Fix fattn-vec-* when device warp size is not 32 (#12315)
When fattn-wmma was ported over to warp64 various bits that also touch fattn-vec where converted to
selectable warp size, however the fattn-vec kernels dont work with 64 wide warps for now, so we need
to avoid launching them with parameters for warp64
2025-03-12 10:14:11 +01:00
Xuan-Son Nguyen
7841fc723e llama : Add Gemma 3 support (+ experimental vision capability) (#12343)
* llama : Add Gemma 3 text-only support

* fix python coding style

* fix compile on ubuntu

* python: fix style

* fix ubuntu compile

* fix build on ubuntu (again)

* fix ubuntu build, finally

* clip : Experimental support for Gemma 3 vision (#12344)

* clip : Experimental support for Gemma 3 vision

* fix build

* PRId64
2025-03-12 09:30:24 +01:00
Jeff Bolz
bf69cfe62f vulkan: fix bug in coopmat1 mul_mat_id (#12316)
* tests: run mul_mat_id with a larger N

* vulkan: fix bug in coopmat1 mul_mat_id
2025-03-12 06:59:19 +01:00
uvos
10f2e81809 CUDA/HIP: refractor mmqv to unify the calculation of nwarps and rows per block between host and device code. (#12177)
refactor mmqv to unify the calculation of nwarps and rows per block between host and device code.

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-03-11 20:16:03 +01:00
jklincn
ba7654380a ggml-backend : fix backend search path (#12330)
* Fix backend search path

* replace .native() with '/'

* reverted .native()
2025-03-11 14:25:17 +01:00
BB-fat
6ab2e4765a metal : Cache the Metal library at the device context level (#12265) 2025-03-11 13:45:02 +02:00
Xuan-Son Nguyen
96e1280839 clip : bring back GPU support (#12322)
* clip : bring back GPU support

* use n_gpu_layers param

* fix double free

* ggml_backend_init_by_type

* clean up
2025-03-11 09:20:16 +01:00
Eve
2c9f833d17 mat vec double buffer (#12188) 2025-03-10 19:28:11 +00:00
R0CKSTAR
251364549f musa: support new arch mp_31 and update doc (#12296)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-10 18:18:25 +01:00
Henry Linjamäki
8acdacb3ea opencl: use OpenCL C standard supported by the device (#12221)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
This patch nudges the llama.cpp a bit to be supported on PoCL which
doesn't support OpenCL C CL2.0. The issue is solved by querying the
device for the supported OpenCL C versions and using the highest one
available.
2025-03-10 09:57:00 -07:00
John Bean
89b2b56e86 readme: added Sidekick to available UIs (#12311) 2025-03-10 16:13:09 +02:00
Georgi Gerganov
e128a1bf5b tests : fix test-quantize-fns to init the CPU backend (#12306)
ggml-ci
2025-03-10 14:07:15 +02:00
marcoStocchi
6ef79a67ca common : refactor '-o' option (#12278)
As discussed in PR 'llama-tts : add -o option' (#12042):

* common_params : 'out_file' string is the only output file name parameter left in common_params. It's intended to be used in all example programs implementing an '-o' option.

* cvector-generator, export-lora, imatrix : default output filenames moved from 'common_params' to the 'main()' of each example program.
2025-03-10 13:34:13 +02:00
Olivier Chafik
4e39a3c332 server: extract <think> tags from qwq outputs (#12297)
* extract <think> tags from qwq outputs

* const for all static regexes in chat.cpp
2025-03-10 10:59:03 +00:00
Olivier Chafik
be421fc429 tool-call: ensure there's always a non-empty tool call id (#12292) 2025-03-10 09:45:29 +00:00
Olivier Chafik
87c2630546 allow missing content in message if tool_calls provided (#12293) 2025-03-10 09:45:07 +00:00
Olivier Chafik
2b3a25c212 sampler: fixes trigger tokens + lazy grammars (fix typo cast from token to string) (#12291)
* Fix typo in lazy grammar handling (fixes trigger tokens)

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-10 09:44:42 +00:00
tc-mb
8352cdc87b llava : fix bug in minicpm-v code (#11513)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* fix bug in minicpm-v code

* update readme of minicpm-v
2025-03-10 10:33:24 +02:00
Georgi Gerganov
1e2f78a004 server : add speculative decoding presets for FIM (#12287) 2025-03-09 19:08:20 +02:00
Georgi Gerganov
0fd7ca7a21 authors : update (#12271) 2025-03-08 18:26:00 +02:00
Jason C.H
6fefc05a7a ggml-backend : make path_str compatible with C++20 (#12269) 2025-03-08 17:02:39 +01:00
Georgi Gerganov
7ab364390f server : infill gen ends on new line (#12254) 2025-03-07 20:54:30 +02:00
Daniel Bevenius
7c7f3b7f43 ggml : skip intermediate .air file when compiling .metallib (#12247)
This commit updates the compilation of default.metallib to skip the
intermediate .air (Apple Intermediate Representation) file.

The motivation for this change is to simplify the custom command a
little and avoid generating and then removing the .air file.
2025-03-07 14:15:27 +01:00
Georgi Gerganov
102ac1891d sync : ggml
ggml-ci
2025-03-07 14:49:44 +02:00
vmobilis
d6ae2fa061 ggml : ggml_compute_forward_concat() for arbitrary tensor type (ggml/1118)
* ggml_compute_forward_concat() for arbitrary tensor type

* Check that tensors' type match

* ggml-cpu.c: check type of source tensors

* ggml-cpu.c: move tensor type check to ggml_compute_forward_concat()

* ggml.c: check concatenated tensor type

* Remove tensor type check from ggml_compute_forward_concat() in ggml-cpu.c

..., as it was moved to ggml.c.
2025-03-07 14:49:44 +02:00
Rémy O
68d0027f3d ggml-cpu: faster AVX2 variant for IQ1_M (#12216) 2025-03-07 13:54:22 +02:00
Georgi Gerganov
ea002810a2 ci : fix save-load test invocations (#12245) 2025-03-07 12:19:31 +02:00
Sigbjørn Skjæret
8fad3c7a7c server : Log original chat template parsing error (#12233) 2025-03-07 11:15:33 +01:00
Olivier Chafik
7cf64f6bee sync: minja - support QwQ-32B (#12235)
8a76f7815e
2025-03-07 09:33:37 +00:00
BB-fat
5e2d57b2b2 metal : simplify kernel arguments using a struct (#3229) (#12194)
* metal : refactor im2col parameters into a struct

* metal: Change im2col offset types from int32_t to uint64_t to support larger memory offsets

* metal : refactor sum_rows parameters into a struct

* metal : refactor soft_max parameters into a struct

* metal : refactor diag_mask_inf parameters into a struct

* metal : refactor ssm_conv parameters into a struct

* metal : refactor ssm_scan parameters into a struct

* metal : refactor get_rows parameters into a struct

* metal : refactor group_norm parameters into a struct

* metal : refactor conv_transpose_1d parameters into a struct

* metal : refactor upscale parameters into a struct

* metal : refactor pad parameters into a struct

* metal : refactor pad_reflect_1d parameters into a struct

* metal : refactor arange parameters into a struct

* metal : refactor timestep_embedding parameters into a struct

* metal : refactor argsort parameters into a struct

* metal : refactor leaky_relu parameters into a struct

* metal : refactor pool_2d parameters into a struct

* metal : fix trailing whitespace

---------

Co-authored-by: alexju <alexju@tencent.com>
2025-03-07 08:35:57 +01:00
David Huang
f1648e91cf HIP: fix rocWMMA build flags under Windows (#12230) 2025-03-07 08:06:08 +01:00
Daniel Bevenius
d6c95b0740 metal : fix default.metallib build (#12224)
This commit updates the custom command to build the default.metallib
file to use the correct path to ../ggml-common.h by using the variable
METALLIB_COMMON.

The motivation for this change is that currently when building and
specifying GGML_METAL_EMBED_LIBRARY=OFF the following error is
generated:
```console
[ 11%] Linking CXX shared library ../../bin/libggml.dylib
[ 11%] Built target ggml
make[2]: *** No rule to make target `ggml/src/ggml-metal/ggml-common.h', needed by `bin/default.metallib'.  Stop.
make[1]: *** [ggml/src/ggml-metal/CMakeFiles/ggml-metal-lib.dir/all] Error 2
```

With the above change the build could progress but there was a follow
on error about not being able to find the ggml-common.h file in
ggml-metal.metal where is was included as a relative path:
```console
[ 11%] Compiling Metal kernels
/Users/danbev/work/llama.cpp/build/bin/ggml-metal.metal:6:10: error: '../ggml-common.h' file not found, did you mean 'ggml-common.h'?
         ^~~~~~~~~~~~~~~~~~
         "ggml-common.h"
1 error generated.
```
Removing the relative path then allowed the build to complete
successfully.
2025-03-07 06:23:16 +01:00
lhez
d76a86d967 opencl: Noncontiguous norm, rms_norm, disable fp16 for some ops (#12217)
* opencl: support noncontiguous `norm`

* opencl: support noncontiguous `rms_norm`

* opencl: disable fp16 for `ADD`, `MUL`, `SCALE`, `RELU`, `GELU`, `SILU`, `CLAMP`
2025-03-07 00:20:35 +00:00
xiaofei
776f9e59cc cmake : fix undefined reference errors for std::filesystem in ggml (#12092) (#12094)
Signed-off-by: Ray Lee <hburaylee@gmail.com>
Co-authored-by: Ray Lee <hburaylee@gmail.com>
2025-03-06 22:58:25 +00:00
Lucas Moura Belo
3d652bfddf readme : update bindings (#12229) 2025-03-06 21:15:13 +02:00
Johannes Gäßler
5220a16d18 CUDA: fix FA logic for PTX 7.0 and CC >= 7.5 (#12222) 2025-03-06 18:45:09 +01:00
David Huang
3ffbbd5ce1 HIP: rocWMMA documentation and enabling in workflow builds (#12179)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Enable rocWMMA for Windows CI build

* Enable for Ubuntu

* GGML_HIP_ROCWMMA_FATTN documentation work
2025-03-06 14:14:11 +01:00
Olivier Chafik
42994048a3 update function-calling.md w/ template override for functionary-small-v3.2 (#12214) 2025-03-06 09:03:31 +00:00
Aaron Teo
e9b2f84f14 llava: add big-endian conversion for image encoder (#12218)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
2025-03-06 09:33:21 +01:00
uvos
e721c05c93 HIP/CUDA: set the paramerter value in maintain_cuda_graph instead of replaceing it. (#12209)
This avoids conflict with internal cuda/hip runtimes memory managment behavior.
2025-03-06 08:20:52 +01:00
Han Yin
57b6abf85a android : fix KV cache log message condition (#12212) 2025-03-06 08:22:49 +02:00
Henry Linjamäki
94bb63e4f0 opencl : fix buffer alignment (#12197)
Fix the following error:

```
ggml-alloc.c:99: not enough space in the buffer
ggml_tallocr_alloc: not enough space in the buffer to allocate blk.17.ffn_down.weight (needed 27525120, available 27521024)
```

which occurs when `ggml_backend_opencl_context::alignment` is larger
than `cl_ptr_base` (hard-coded to `0x1000`).

Also, fix `ggml_backend_opencl_context::alignment` was set to
`CL_DEVICE_MEM_BASE_ADDR_ALIGN` which was treated as bytes but the
value is reported in bits.
2025-03-06 02:33:40 +01:00
Henry Linjamäki
f79243992c opencl : fix ulong kernel args were set from int variables (#12174)
... which left garbage bits in the upper half of the kernel args. This
caused segmentation faults when running PoCL.
2025-03-06 02:31:14 +01:00
simon886212
ed4ce0dda2 opencl : fix profile-related errors (#12095)
Co-authored-by: ubuntu <ubuntu@localhost.localdomain>
2025-03-06 02:30:05 +01:00
Rémy O
07d1572347 ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions (#12154)
* ggml-cpu: Faster IQ1 mul_mat_vec on AVX2 using BMI2 instructions

* cmake: Add GGML_BMI2 build option

* ggml: enable BMI2 on relevant CPU variants

* ggml-cpu: include BMI2 in backend score

* ggml-cpu: register BMI2 in ggml_backend_cpu_get_features

* ggml-cpu: add __BMI2__ define when using MSVC
2025-03-06 02:26:10 +01:00
Akarshan Biswas
5e43f104cc SYCL: Disable f16 Unary OPs as not supported by the kernels (#12201) 2025-03-05 16:58:23 +01:00
Plamen Minev
16e4b22c5e ggml : fix GGMLMetalClass ODR (#12200)
-- it might happen if ggml is loaded from 2 separate libraries since each one of them will expose the class. This is more of a guard since we want to use only Metal as embedded library and don't care about the other case.
2025-03-05 17:16:01 +02:00
Daniel Bevenius
074c4fd39d ci : add fetch-depth to xcframework upload (#12195)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
This commit adds the fetch-depth: 0 option to the checkout action in the
build.yml workflow file (0 meaning that it fetches the complete
history). The default value is 1 when not specified which only fetches
the latest commit.

This is necessary to ensure that `git rev-list --count HEAD` counts the
total number of commits in the history. Currently because the default is
being used the name of the xcframework artifact is always
llama-b1-xcframework.
2025-03-05 14:16:40 +01:00
Olivier Chafik
669912d9a5 tool-call: fix Qwen 2.5 Coder support, add micro benchmarks, support trigger patterns for lazy grammars (#12034)
* sampler: turn lazy grammar trigger words to regexes

* add scripts/tool_bench.sh & .py

* constrain llama json output regardless of function name if matches at beginning

* update relaxed newline space rule in grammar tests

* support add_generation_prompt query parameter (useful for /apply_template)

* Update src/llama-grammar.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-05 13:05:13 +00:00
Daniel Bevenius
fa31c438e0 ci : fix xcframework artifact tag (#12191)
The commit add the name parameter to the upload-artifact action to
ensure that the artifact is uploaded with the correct name.

The motivation for this is that currently the uploaded xcframework
is named as llama-b1-xcframework.zip. With this change the name of this
artifact should contain the build number like the other artifacts.
2025-03-05 10:22:29 +01:00
Daniel Bevenius
3ccbfe5a71 ci : remove xframework upload (#12190)
* ci : remove xframework upload

This commit removes the upload of the xframework zip file as an
artifact.

The motivation for this change is that the xframework zip file is
currently being uploaded as part of strategy and will therefore be
attempted to be uploaded multiple times and will fail the build.

The uploading should be moved to somewhere else in the build to avoid
this.

* ci : add xcframework upload to macos-latest job
2025-03-05 08:34:02 +01:00
Clauszy
06a92a193a server : fix cache reuse logic (#12161)
The first kv shift offsets the positions of all tokens after head_c.
When using llama_kv_cache_seq_rm next, using head_c will remove the valid tokens because their positions have already been offset.
2025-03-05 09:25:45 +02:00
Daniel Bevenius
a057897ad4 llama : add xcframework build script (#11996)
* llama : add xcframework build script

This commit adds a script to build an XCFramework for Apple
ios, macos, visionos, and tvos platforms.

The generated XCFramework can then be added to a project and used in
the same way as a regular framework. The llama.swiftui example project
has been updated to use the XCFramework and can be started using the
following command:
```console
$ open examples/llama.swiftui/llama.swiftui.xcodeproj/
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10747

* examples : remove llama.cpp (source dir ref) from project.pbxproj

This commit removes the reference to llama.cpp from the project.pbxproj
file since Package.swift has been removed.

* ci : updated build.yml to use build-xcframework.sh

* ci : add xcframework build to github releases

This commit adds the ability to create a GitHub release with the
xcframework build artifact.

* scripts : add apple app validation scripts

This commit adds scripts that can validate the iOS, macOS, tvOS, and
VisionOS applications. The scripts create a simple test app project,
copy the llama.xcframework to the test project, build and archive the
app, create an IPA from the archive, and validate the IPA using altool.

The motivation for this is to provide some basic validation and
hopefully avoid having to manually validate apps in Xcode.

* llama : remove Package.swift

This commit removes the Package.swift file, as we are now building an
XCFramework for the project.

* llama : remove Sources and spm-headers directories

* llama : use TargetConditionals.h for visionOS/tvOS
2025-03-05 06:30:31 +01:00
mgroeber9110
5bbe6a9fe9 ggml : portability fixes for VS 2017 (#12150)
* Add include files for std::min/max and std::toupper/tolower

* win32: move _USE_MATH_DEFINES before includes to ensure M_PI is defined

* Use GGML_RESTRICT instead of "restrict" keyword everywhere, and use "__restrict" in MSVC plain C mode

* win32: only use __restrict in MSVC if C11/C17 support is not enabled

---------

Co-authored-by: Marcus Groeber <Marcus.Groeber@cerence.com>
2025-03-04 18:53:26 +02:00
Georgi Gerganov
20a9b8f5e1 readme : fix roadmap link (#12185) 2025-03-04 18:42:44 +02:00
Sigbjørn Skjæret
56d7a9f812 main: allow preloading conversation with -p and add -st / --single-turn (#12145)
* Add chat template formatting to -no-cnv

* only enable prompt formatting if explicitly enabled

* add -st / --single-turn

* add --single-turn and -p in conversation mode

* fix -sys + -p

* reword warning

* small readability change and fix (long) outdated example usage

* only activate single turn in conversation mode
2025-03-04 12:19:39 -04:00
Olivier Chafik
1a24c4621f server: fix deadly typo in response_format.json_schema.schema handling (#12168)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-03-04 08:24:07 +02:00
David Huang
becade5de7 HIP: implement FlashAttention via rocWMMA for CDNA and RDNA3+ (#12032)
Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16

---

Signed-off-by: Carl Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Ben Jackson <ben@ben.com>
2025-03-03 22:10:54 +01:00
Georgi Gerganov
dfd6b2c0be sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
b64d7cc272 cuda: unary ops as float + de-duplicate (ggml/1130) 2025-03-03 18:18:11 +02:00
Georgi Gerganov
3d1cf3cf33 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
0cbee131ad cuda/vulkan: specify fp32-only support for some operations in supports_op (ggml/1129)
ggml-ci
2025-03-03 18:18:11 +02:00
Georgi Gerganov
8371d44595 sync : ggml
ggml-ci
2025-03-03 18:18:11 +02:00
cmdr2
87abb7e903 cuda/cpu: Increase support for fp16 unary operations (ggml/1125)
* Support fp16 unary operations in the CUDA backend

* cpu: increase fp16 support for unary operators in the CPU backend

* cuda: increase fp16 support for unary operators in the CUDA backend

* Add test cases for fp16 unary operators

* metal: update supports_op for unary operators that don't support fp16, to prevent test-backend-ops from failing

* metal: fix PR comments for unary op support after fp16 unary tests
2025-03-03 18:18:11 +02:00
Diego Devesa
6d4c23b81b whisper : support GGML_BACKEND_DL (whisper/2843)
* whisper : support GGML_BACKEND_DL

* fix DTW crash

* whisper.objc : fix build - add ggml-cpp.h

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 18:18:11 +02:00
midnight
6512a90037 cmake : fix compile assumptions for power9/etc (whisper/2777)
* Add small comment re: VSX to readme

Co-authored-by: midnight <midnight@example.com>
2025-03-03 18:18:11 +02:00
petterreinholdtsen
4512055792 Told cmake to install ggml-cpp.h as a public header file. (ggml/1126)
It is used by Whisper talk-llama example.

Co-authored-by: Petter Reinholdtsen <pere@debian.org>
2025-03-03 18:18:11 +02:00
cmdr2
f54a4ba11e Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121)
* Support float16-to-float16 add/sub/mul/div operations in the CUDA backend

* Add fp16 support for add/sub/mul/div on the CPU backend

* Add test cases for fp16 add/sub/mul/div
2025-03-03 18:18:11 +02:00
Georgi Gerganov
aede2074f6 scripts : sync-ggml-am.sh fix 2025-03-03 18:18:11 +02:00
Daniel Bevenius
2679c3b55d ci : set GITHUB_ACTION env var for server tests (#12162)
This commit tries to address/improve an issue with the server tests
which are failing with a timeout. Looking at the logs it seems like
they are timing out after 12 seconds:
```
FAILED unit/test_chat_completion.py::test_completion_with_json_schema[False-json_schema0-6-"42"] - TimeoutError: Server did not start within 12 seconds
```

This is somewhat strange as in utils.py we have the following values:
```python
DEFAULT_HTTP_TIMEOUT = 12

if "LLAMA_SANITIZE" in os.environ or "GITHUB_ACTION" in os.environ:
    DEFAULT_HTTP_TIMEOUT = 30

    def start(self, timeout_seconds: int | None = DEFAULT_HTTP_TIMEOUT) -> None:
```
It should be the case that a test running in a github action should have
a timeout of 30 seconds. However, it seems like this is not the case.
Inspecting the logs from the CI job we can see the following environment
variables:
```console
Run cd examples/server/tests
2 cd examples/server/tests
3 ./tests.sh
4 shell: /usr/bin/bash -e {0}
5 env:
6 LLAMA_LOG_COLORS: 1
7 LLAMA_LOG_PREFIX: 1
8 LLAMA_LOG_TIMESTAMPS: 1
9 LLAMA_LOG_VERBOSITY: 10
10 pythonLocation: /opt/hostedtoolcache/Python/3.11.11/x64
```

This probably does not address the underlying issue that the servers
that are providing the models to be downloaded occasionally take a
longer time to response but might improve these situations in some
cases.
2025-03-03 16:17:36 +01:00
dm4
c43af9276b tts: add speaker file support (#12048)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tts: add speaker file support

Signed-off-by: dm4 <sunrisedm4@gmail.com>

* tts: handle outetts-0.3

* tts : add new line in error message

---------

Signed-off-by: dm4 <sunrisedm4@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-03-03 15:09:29 +02:00
Diego Devesa
d5c63cd7f9 test-backend-ops : add option -p to filter by op params (#12155) 2025-03-03 14:00:46 +01:00
ag2s20150909
9660ffef58 ggml : fix kleidiai build (#12159)
The libggml API has changed, but this has not been updated.
2025-03-03 13:54:08 +01:00
Eric Curtin
c950a1f692 Adding UTF-8 support to llama.cpp (#12111)
For emojis, non-alpha characters, etc.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-03-03 12:44:56 +00:00
Xuan-Son Nguyen
7b69003af7 webui : add ?m=... and ?q=... params (#12148)
* webui : add ?m=... and ?q=... params

* also clear prefilledMessage variable

* better approach

* fix comment

* test: bump timeout on GITHUB_ACTION
2025-03-03 11:42:45 +01:00
Akarshan Biswas
ece9745bb8 SYCL: Move CPY kernels to a separate file and add few missing kernels (#12133)
* SYCL: refactor and move cpy kernels to a separate file

* Add few missing cpy kernels

* refactor and add debug logs
2025-03-03 11:07:22 +01:00
Diego Devesa
cc473cac7c ggml-backend : keep paths in native string type when possible (#12144) 2025-03-02 22:11:00 +01:00
Sigbjørn Skjæret
14dec0c2f2 main: use jinja chat template system prompt by default (#12118)
* Use jinja chat template system prompt by default

* faster conditional order

* remove nested ternary

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-02 14:53:48 +01:00
Sigbjørn Skjæret
1782cdfed6 main: update outdated system prompt message (followup to #12131) (#12132)
* Update outdated message

* wording

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 15:22:27 +01:00
Sigbjørn Skjæret
45a8e76745 common : add --system-prompt parameter, replace behavior of -p in conversation mode (#12131)
* Add --system-prompt parameter

* use user defined system prompt

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* add warning

* clarify

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-03-01 13:56:45 +01:00
Erik Scholz
80c41ddd8f CUDA: compress mode option and default to size (#12029)
cuda 12.8 added the option to specify stronger compression for binaries, so we now default to "size".
2025-03-01 12:57:22 +01:00
Vivian
2cc4a5e44a webui : minor typo fixes (#12116)
* fix typos and improve menu text clarity

* rename variable trimedValue to trimmedValue

* add updated index.html.gz

* rebuild

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-03-01 11:15:09 +01:00
Xuan-Son Nguyen
06c2b1561d convert : fix Norway problem when parsing YAML (#12114)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* convert : fix Norway problem when parsing YAML

* Update gguf-py/gguf/metadata.py

* add newline at correct place
2025-02-28 17:44:46 +01:00
William Tambellini
70680c48e5 ggml : upgrade init_tensor API to return a ggml_status (#11854)
* Upgrade init_tensor API to return a ggml_status

To prepare for an 'abort-free' ggml
(ggml not to abort on OOMs but return a OOM status),
as agreeed with Diego in the ggml repo,
upgrade the init_tensor() and view_init() APIs
to return a ggml_status.

* misc fixes

---------

Co-authored-by: slaren <slarengh@gmail.com>
2025-02-28 14:41:47 +01:00
Xuan-Son Nguyen
c43a3e7996 llama : add Phi-4-mini support (supersede #12099) (#12108)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
* Added Phi-4-mini-instruct support

* Update regex per ngxson

* Change the vocab base to Xenova/gpt-4o

* fix conversion update script

* no need to check longrope

* minor style fix

* fix python style

---------

Co-authored-by: Nicholas Sparks <nisparks@microsoft.com>
2025-02-28 12:44:11 +01:00
Alex Brooks
84d5f4bc19 Update granite vision docs for 3.2 model (#12105)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-28 11:31:47 +00:00
Rémy O
438a83926a vulkan: add specific MMV kernels for IQ2 and IQ3 quants + optimizations (#11595)
* vulkan: implement specialized MMV kernels for IQ2 quantizations

* vulkan: add MMV kernels for IQ3 quants

* vulkan: Increase MMV batch size and unroll IQ LUT setup

* vulkan: fix init_iq_shmem for WG sizes larger than tables

* vulkan: common batch size for all I-quants
2025-02-28 09:42:52 +01:00
Johannes Gäßler
9c42b1718c CUDA: fix logic for V100 + GGML_CUDA_FORCE_MMQ (#12098) 2025-02-28 09:26:43 +01:00
Prashant Vithule
05e6f5aad0 ggml: aarch64: implement SVE kernels for q2_k_q8_k vector dot (#12064)
* Added SVE Support for Q2_K Quantized Models

* Use 4-space indentation in the switch cases

* removed comments lines

* Remove the loop Retain the curly bracess for better understanding of code

* Remove the comment like added for q3_k_q8_k kernel

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
2025-02-28 09:36:12 +02:00
hipudding
673cfef9aa CANN: Fix build error with GCC 13 (#11990)
Remove unused header file that causes compilation failure on ARM
platform with GCC 13.
2025-02-28 15:23:47 +08:00
Eve
fbeda9002d vulkan: matmul dequantization improvements (#12015)
* faster dequant for old quants

* dont use unpack for iq4_nl

* vec2 unpack for q8
2025-02-28 08:20:08 +01:00
Daniele
581650b7ca vulkan: improve im2col (#11826)
* vulkan: improve im2col performance
2025-02-28 07:52:51 +01:00
Vladimir Vuksanovic
b95c8af37c cmake: Fix ggml backend dependencies and installation (#11818)
* Fix dependencies between ggml and backends

ggml backends link only to ggml-base and ggml links to all backends.

* Fix installation of ggml backends

Set up GNUInstallDirs before setting the installation directory of ggml backends
2025-02-27 09:42:48 +02:00
Ting Lou
a800ae46da llava : add struct for FFI bindgen (#12079)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* add struct for FFI bindgen

* Apply suggestions from code review

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-26 15:26:52 +01:00
Sigbjørn Skjæret
69050a11be Refactor gguf scripts to improve metadata handling (#11909)
* Refactor gguf scripts to improve metadata handling

Added contents method to ReaderField class
Added endianess property to GGUFReader class

* update scripts

* fix import

* remove unused import

* attempt to work around flake and pyright errors

* second attempt

* give up, ignore type

* bump version

* apply newbyteorder fixes
2025-02-26 08:04:48 -05:00
Aleksei Nikiforov
3567ee3a94 gguf-py: enable reading non-native endian files (#12081)
Currently self.byte_order is never used.
Actually use it to byteswap read data to
allow reading big endian files on little endian systems
and vice versa.

Now it's possible to convert little-endian model
into a big-endian model and back
on a little-endian system.
2025-02-26 11:39:27 +00:00
Kante Yin
53e4db1012 readme : update infra list (#9096)
Signed-off-by: kerthcet <kerthcet@gmail.com>
2025-02-26 09:49:36 +02:00
Olivier Chafik
d7cfe1ffe0 docs: add docs/function-calling.md to lighten server/README.md's plight (#12069) 2025-02-25 18:52:56 +00:00
Jeff Bolz
a82c9e7c23 vulkan: fix assertion when qy_needs_dequant (#12068)
Looks like a copy/paste bug from qx_needs_dequant.
2025-02-25 16:30:21 +01:00
rhjdvsgsgks
401af80b54 server: handle echo=false on /v1/completions (#12060) 2025-02-25 12:52:52 +01:00
Judd
c132239bfb add OP sigmoid (#12056)
Co-authored-by: Judd <foldl@boxvest.com>
2025-02-25 12:32:20 +01:00
Molly Sophia
393fca629e ggml-cpu: Fix build with sve (#12059)
* ggml-cpu: Fix build with sve

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

* ggml-cpu: Remove unused variable in sve q3_k vec dot

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>

---------

Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-02-25 19:28:22 +08:00
Rémy O
61d4f39dfe vulkan: implement more backpropagation operators (#11914)
* vulkan: implement GGML_OP_ROPE_BACK

* vulkan: implement GGML_OP_RMS_NORM_BACK

* vulkan: implement GGML_OP_SILU_BACK

* vulkan: implement GGML_OP_SOFTMAX_BACK
2025-02-25 12:04:45 +01:00
Olivier Chafik
0b52745649 server: support add_generation_prompt query param (#12062) 2025-02-25 10:40:22 +00:00
Alex Brooks
4d1051a40f Add Doc for Converting Granite Vision -> GGUF (#12006)
* Add example docs for granite vision

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-25 10:46:05 +01:00
Vitali Lovich
3e9a2860e9 llama : expose llama_model_n_head_kv in the API (#11997)
It's useful to be able to have this from the library layer as it's a key
parameter of the model (e.g. to figure out how much KV cache memory is
needed).
2025-02-25 11:29:33 +02:00
Gian-Carlo Pascutto
58d07a8043 metal : copy kernels for quant to F32/F16 conversions (#12017)
metal: use dequantize_q templates

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-25 11:27:58 +02:00
lhez
34a846b584 opencl: fix for small models (#11950)
* opencl: fix small shape gemv, remove unused extensions

* opencl: fix `transpose_16`, `dump_tensor`, enforce subgroup size

* opencl: fix for token length < 4

* opencl: use wave size of 64 for all Adreno GPUs

---------

Co-authored-by: Shawn Gu <quic_shawngu@quicinc.com>
Co-authored-by: Skyler Szot <quic_sszot@quicinc.com>
2025-02-24 14:47:07 -07:00
Alex Brooks
7a2c913e66 llava : Add Granite Vision Support (#11794)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Add super wip scripts for multimodal granite gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add example for converting mmgranite to gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* remove hardcoded path

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add vision feature layer to gguf params

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clean up llava surgery and remove name substitution hacks

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add transformers llava next tensor name mapping

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Make siglip / openclip mutuall exclusive

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix projector linear substitution

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix linear 2 substitution index

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Increase max flattened gridpoints to 64

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix hardcoded concat for multiple feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Pull vision feature layers out of gguf keys

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* fix num gridpoints and use all layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Avoid dropping last image encoder layer in llava models

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use 10 for max number of patches

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Standardize vision feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Cleanup logs

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update comment for vision feature layer init

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update notes for alternative to legacy llm conversion script

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix notes rendering

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add v prefix to vision feature layer log

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use current defaults for feature layer

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use constant for max gridpoints / feat layers, style fixes

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* clarify non-negative feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Remove CLIP_API from func signature

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* USE MAX_IMAGE_FEATURE_LAYERS const in layer calc

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clarify feature layers are non negative ints and not uint

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix condition for reading feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* pop last llava layer when feature layers are unset

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix unset vision layer 0

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update examples/llava/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Reenable assertion for out of bounds get_rows

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use std vector for gridpoints and feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Caculate max feature layer at load time

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Include base patch for granite vision allocation

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix trailing whitespace

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add max num patches = 10 back for minicpmv

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use unordered set to store feature layers

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use max feature layer for postnorm

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Apply suggestions from code review

---------

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-24 17:09:51 +01:00
Neo Zhang Jianyu
08d5986290 [SYCL] Optimize mul_mat for Q4_0 on Intel GPU (#12035)
* opt performance by reorder for Intel GPU

* detect hw type and save opt feature, and print opt feature

* correct name

* support optimize graph once when compute graph, record the opt status in tensor->extra, make CI passed

* add env variable GGML_SYCL_DISABLE_OPT for debug

* use syclex::architecture replace the custom hw define, update the guide for GGML_SYCL_DISABLE_OPT

* add performance data

* mv getrows functions to separeted files

* fix global variables

---------

Co-authored-by: arthw <14088817+arthw@users.noreply.github.com>
2025-02-24 22:33:23 +08:00
Aleksei Nikiforov
651adf4b66 gguf_convert_endian.py: implement byteswapping for q4_k and q6_k (#11349) 2025-02-24 11:27:01 +00:00
Akarshan Biswas
8303e8b0fb SYCL: Fix GGML_SYCL_DEBUG macro (#11995) 2025-02-24 10:18:25 +00:00
Florent BENOIT
7ad0779f5d run: allow to customize prompt by env var LLAMA_PROMPT_PREFIX (#12041)
Signed-off-by: Florent Benoit <fbenoit@redhat.com>
2025-02-23 17:15:51 +00:00
Eric Curtin
f777a73e18 Some llama-run cleanups (#11973)
Use consolidated open function call from File class. Change
read_all to to_string(). Remove exclusive locking, the intent for
that lock is to avoid multiple processes writing to the same file,
it's not an issue for readers, although we may want to consider
adding a shared lock. Remove passing nullptr as reference,
references are never supposed to be null. clang-format the code
for consistent styling.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-23 13:14:32 +00:00
Aaron Teo
af7747c95a ggml-cpu: Support s390x SIMD Instruction Set (#12019)
* ggml: add s390x ARCH_FLAGS for compilation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add SIMD for s390x using vector intrinsics

SIMD is activated for:
* ggml_vec_dot_f32
* ggml_vec_dot_f16
* ggml_vec_mad_f32
* ggml_vec_mad_f16
* ggml_vec_mad_f32_unroll
* ggml_vec_scale_f32
* ggml_vec_scale_f16

SIMD is NOT activated for:
* ggml_vec_dot_f16_unroll (pending bugfix)

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing escape character in GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add temporary patch for GGML_F32_ARR and GGML_F16_ARR

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix s390x GGML_F32x4_REDUCE

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: full SIMD activation for F32,F16 s390x

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add option to disable s390x VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change vecintrin.h include to ggml-cpu-impl

* add __VXE__ and __VXE2__ macros

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* cmake: add s390x target detection for VX/VXE/VXE2

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: move s390x vector intrinsics to ggml-cpu-impl.h

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x Q8_0 SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct documentation for Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x reduce code complexity Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x bugfix typo Q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activated for Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x inline vec_reve

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add VXE backend feature

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: remove test.py

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_0

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for quantize_row_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: bugfix iq4_xs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add float, double, and long vector data type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: clean up iq4_xs SIMD

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix improper use of restrict keyword

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update warning message for ggml_vec_tbl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: untested implementation of ggml_vec_dot_iq2_xxs_q8_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: update ggml_vec_dot_q4_1_q8_1 to use typedefs

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: switch to restrict for iq4_nl

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: slight dot product speed improvement for q4_1_q8_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for q6_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add missing `_t` to ggml_int8x16x4_t

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix missing `_t` for ggml_vec_xl_s8x4

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix more missing `_t`

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q8_0

increase of 3.86% for prompt processing and 32.22% for token generation

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: patch Q8_0 to use proper vector sizes

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: optimise Q8_0 dot prod compute kernel further

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: add unroll and prefetch to Q4_1

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: refactor Q6_K variable naming for readability

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q6_K typos

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q5_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix wrong char*x16_t naming

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: Q5_K y0 wrong signness

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q5_K invalid uchar type

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: s390x SIMD activation for Q4_K

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: fix Q4_K invalid vector intrinsics

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: simplify ggml_padd_s16 compute kernel

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: correct ggml-cpu vxe wording

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: change ggml_aligned_malloc alignment to 256

256 is the cache line size for s390x platforms

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: resolve pr merge via cherry-pick 225bbbf

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml : fix LoongArch compile error with 128-bit SIMD (#11701)

* ggml: resolve pr merge via cherry-pick 4571953

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

* ggml: cmake remove fork when determining s390x machine type

thank you @ericcurtin

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>

---------

Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
Co-authored-by: Jinyang He <hejinyang@loongson.cn>
Co-authored-by: junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
2025-02-22 21:39:24 +00:00
Johannes Gäßler
a28e0d5eb1 CUDA: app option to compile without FlashAttention (#12025) 2025-02-22 20:44:34 +01:00
Ting Lou
36c258ee92 llava: build clip image from pixels (#11999)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* llava: export function `clip_build_img_from_pixels` to build image from pixels decoded by other libraries instead of stb_image.h for better performance

* Apply suggestions from code review

---------

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
2025-02-22 15:28:28 +01:00
Georgi Gerganov
f3e64859ed ci : fix arm upload artifacts (#12024)
* ci : fix arm upload artifacts

* cont : fix archive name to use matrix
2025-02-22 15:03:00 +02:00
Johannes Gäßler
5fa07c2f93 CUDA: optimize FA for GQA + large batches (#12014) 2025-02-22 12:20:17 +01:00
Rohanjames1997
335eb04a91 ci : Build on Github-hosted arm64 runners (#12009) 2025-02-22 11:48:57 +01:00
Georgi Gerganov
cf756d6e0a server : disable Nagle's algorithm (#12020) 2025-02-22 11:46:31 +01:00
Gian-Carlo Pascutto
d70908421f cuda: Add Q5_1, Q5_0, Q4_1 and Q4_0 to F32 conversion support. (#12000) 2025-02-22 09:43:24 +01:00
Daniel Bevenius
de8b5a3624 llama.swiftui : add "Done" dismiss button to help view (#11998)
The commit updates the help view in the llama.swiftui example to use a
NavigationView and a Done button to dismiss the help view.

The motivation for this is that without this change there is now way to
dimiss the help view.
2025-02-22 06:33:29 +01:00
Georgi Gerganov
51f311e057 llama : skip loading unused tensors (#12004)
* llama : assign unknown/unused tensors to host buffer type

ggml-ci

* llama : skip unused tensors

ggml-ci
2025-02-21 18:33:18 +02:00
Johannes Gäßler
586d5fe6eb doc: update contributing guidelines [no ci] (#11969) 2025-02-21 12:51:25 +01:00
PureJourney
ecc8e3aeff CUDA: correct the lowest Maxwell supported by CUDA 12 (#11984)
* CUDA: correct the lowest Maxwell supported by CUDA 12

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-02-21 12:21:05 +01:00
Bodhi
0b3863ff95 MUSA: support ARM64 and enable dp4a .etc (#11843)
* MUSA:  support ARM64 and enable __dp4a .etc

* fix cross entropy loss op for musa

* update

* add cc info log for musa

* add comment for the MUSA .cc calculation block

---------

Co-authored-by: Bodhi Hu <huaishun.hu@mthreads.com>
2025-02-21 09:46:23 +02:00
Alex Brooks
ee02ad02c5 clip : fix visual encoders with no CLS (#11982)
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
2025-02-21 08:11:03 +02:00
momonga
c392e5094d server (webui): Fix Premature Submission During IME Conversion (#11971)
* fix skip ime composing

* fix npm rebuild

* fix warn

---------

Co-authored-by: momonga <115213907+mmnga@users.noreply.github.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-20 19:43:22 +01:00
Charles Xu
c5d91a7400 ggml-cpu: Add CPU backend support for KleidiAI library (#11390)
* ggml-cpu: Add CPU backend support for KleidiAI library

* Add environmental variable GGML_KLEIDIAI_SME

* Add support for multithread LHS conversion

* Switch kernel selection order to dotprod and i8mm

* updates for review comments

* More updates for review comments

* Reorganize and rename KleidiAI files

* Move ggml-cpu-traits.h to source file

* Update cmake for SME build and add alignment for SME

* Remove append GGML_USE_CPU_KLEIDIAI to the GGML_CDEF_PUBLIC list
2025-02-20 15:06:51 +02:00
Prashant Vithule
4806498bf1 ggml: aarch64: implement SVE kernels for q3_K_q8_K vector dot (#11917)
* Added SVE Implementation for Q3_K Kernel in ggml-cpu-quants.c file

* Improved Formating of code in  ggml-cpu-quants.c file

* style : minor fixes

* style : less whitespaces

* style : ptr spaceing

---------

Co-authored-by: vithulep <p.m.vithule1517@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-20 12:08:32 +02:00
Michael Engel
0d559580a0 run : add --chat-template-file (#11961)
Relates to: https://github.com/ggml-org/llama.cpp/issues/11178

Added --chat-template-file CLI option to llama-run. If specified, the file
will be read and the content passed for overwriting the chat template of
the model to common_chat_templates_from_model.

Signed-off-by: Michael Engel <mengel@redhat.com>
2025-02-20 10:35:11 +02:00
Johannes Gäßler
d04e7163c8 doc: add links to ggml examples [no ci] (#11958) 2025-02-19 20:45:17 +01:00
Daniel Bevenius
d07c621393 common : add llama.vim preset for Qwen2.5 Coder (#11945)
This commit adds a preset for llama.vim to use the default Qwen 2.5
Coder models.

The motivation for this change is to make it easier to start a server
suitable to be used with the llama.vim plugin. For example, the server
can be started with a command like the following:
```console
$ llama.vim --fim-qwen-1.5b-default
```

Refs: https://github.com/ggml-org/llama.cpp/issues/10932
2025-02-19 12:29:52 +01:00
Georgi Gerganov
abd4d0bc4f speculative : update default params (#11954)
* speculative : update default params

* speculative : do not discard the last drafted token
2025-02-19 13:29:42 +02:00
Daniel Bevenius
9626d9351a llama : fix indentation in llama-grammar [no ci] (#11943)
This commit adjusts the indentation for the functions `parse_sequence`
and `parse_rule` in src/llama-grammar.cpp.

The motivation is consistency and improve readability.
2025-02-19 06:16:23 +01:00
igardev
b58934c183 server : (webui) Enable communication with parent html (if webui is in iframe) (#11940)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* Webui: Enable communication with parent html (if webui is in iframe):
- Listens for "setText" command from parent with "text" and "context" fields. "text" is set in inputMsg, "context" is used as hidden context on the following requests to the llama.cpp server
- On pressing na Escape button sends command "escapePressed" to the parent

Example handling from the parent html side:
- Send command "setText" from parent html to webui in iframe:
const iframe = document.getElementById('askAiIframe');
if (iframe) {
	iframe.contentWindow.postMessage({ command: 'setText', text: text, context: context }, '*');
}

- Listen for Escape key from webui on parent html:
// Listen for escape key event in the iframe
window.addEventListener('keydown', (event) => {
	if (event.key === 'Escape') {
		// Process case when Escape is pressed inside webui
	}
});

* Move the extraContext from storage to app.context.

* Fix formatting.

* add Message.extra

* format + build

* MessageExtraContext

* build

* fix display

* rm console.log

---------

Co-authored-by: igardev <ivailo.gardev@akros.ch>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-18 23:01:44 +01:00
Olivier Chafik
63e489c025 tool-call: refactor common chat / tool-call api (+ tests / fixes) (#11900)
* tool-call refactoring: moved common_chat_* to chat.h, common_chat_templates_init return a unique_ptr to opaque type

* addressed clang-tidy lints in [test-]chat.*

* rm minja deps from util & common & move it to common/minja/

* add name & tool_call_id to common_chat_msg

* add common_chat_tool

* added json <-> tools, msgs conversions to chat.h

* fix double bos/eos jinja avoidance hack (was preventing inner bos/eos tokens)

* fix deepseek r1 slow test (no longer <think> opening w/ new template)

* allow empty tools w/ auto + grammar

* fix & test server grammar & json_schema params w/ & w/o --jinja
2025-02-18 18:03:23 +00:00
Xuan-Son Nguyen
63ac128563 server : add TEI API format for /rerank endpoint (#11942)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* server : add TEI API format for /rerank endpoint

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* fix

* also gitignore examples/server/*.gz.hpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-18 14:21:41 +01:00
MoonRide303
5137da7b8c scripts: corrected encoding when getting chat template (#11866) (#11907)
Signed-off-by: MoonRide303 <moonride303@gmail.com>
2025-02-18 10:30:16 +01:00
xiaobing318
09aaf4f1f5 docs : Fix duplicated file extension in test command (#11935)
This commit fixes an issue in the llama.cpp project where the command for testing the llama-server object contained a duplicated file extension. The original command was:
./tests.sh unit/test_chat_completion.py.py -v -x
It has been corrected to:
./tests.sh unit/test_chat_completion.py -v -x
This change ensures that the test script correctly locates and executes the intended test file, preventing test failures due to an incorrect file name.
2025-02-18 10:12:49 +01:00
Johannes Gäßler
73e2ed3ce3 CUDA: use async data loading for FlashAttention (#11894)
* CUDA: use async data loading for FlashAttention

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-17 14:03:24 +01:00
Eve
f7b1116af1 update release requirements (#11897) 2025-02-17 12:20:23 +01:00
Antoine Viallon
c4d29baf32 server : fix divide-by-zero in metrics reporting (#11915) 2025-02-17 11:25:12 +01:00
Rémy O
2eea03d86a vulkan: implement several ops relevant for ggml_opt (#11769)
* vulkan: support memset_tensor

* vulkan: support GGML_OP_SUM

* vulkan: implement GGML_OP_ARGMAX

* vulkan: implement GGML_OP_SUB

* vulkan: implement GGML_OP_COUNT_EQUAL

* vulkan: implement GGML_OP_OPT_STEP_ADAMW

* vulkan: fix check_results RWKV_WKV6 crash and memory leaks

* vulkan: implement GGML_OP_REPEAT_BACK

* tests: remove invalid test-backend-ops REPEAT_BACK tests

* vulkan: fix COUNT_EQUAL memset using a fillBuffer command
2025-02-17 07:55:57 +01:00
Xuan-Son Nguyen
0f2bbe6564 server : bump httplib to 0.19.0 (#11908) 2025-02-16 17:11:22 +00:00
standby24x7
fe163d5bf3 common : Fix a typo in help (#11899)
This patch fixes a typo in command help.
prefx -> prefix

Signed-off-by: Masanari Iida <standby24x7@gmail.com>
2025-02-16 10:51:13 +01:00
Xuan-Son Nguyen
818a340ea8 ci : fix (again) arm64 build fails (#11895)
* docker : attempt fixing arm64 build on ci

* qemu v7.0.0-28
2025-02-16 10:36:39 +01:00
Jeff Bolz
bf42a23d0a vulkan: support multi/vision rope, and noncontiguous rope (#11902) 2025-02-16 08:52:23 +01:00
Hale Chan
c2ea16f260 metal : fix the crash caused by the lack of residency set support on Intel Macs. (#11904) 2025-02-16 08:50:26 +02:00
Johannes Gäßler
6dde178248 scripts: fix compare-llama-bench commit hash logic (#11891)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
2025-02-15 20:23:22 +01:00
708-145
fc10c38ded examples: fix typo in imatrix/README.md (#11884)
* simple typo fixed

* Update examples/imatrix/README.md

---------

Co-authored-by: Tobias Bergmann <tobias.bergmann@gmx.de>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-15 21:03:30 +02:00
Adrian Kretz
22885105a6 metal : optimize dequant q6_K kernel (#11892) 2025-02-15 20:39:20 +02:00
Georgi Gerganov
c2cd24fbfd readme : add notice about new package registry (#11890)
* readme : add notice about new package registry

* cont : fix whitespace
2025-02-15 20:29:56 +02:00
Georgi Gerganov
68ff663a04 repo : update links to new url (#11886)
* repo : update links to new url

ggml-ci

* cont : more urls

ggml-ci
2025-02-15 16:40:57 +02:00
Olivier Chafik
f355229692 server: fix type promotion typo causing crashes w/ --jinja w/o tools (#11880) 2025-02-15 10:11:36 +00:00
Rémy O
fc1b0d0936 vulkan: initial support for IQ1_S and IQ1_M quantizations (#11528)
* vulkan: initial support for IQ1_S and IQ1_M quantizations

* vulkan: define MMV kernels for IQ1 quantizations

* devops: increase timeout of Vulkan tests again

* vulkan: simplify ifdef for init_iq_shmem
2025-02-15 09:01:40 +01:00
Michał Moskal
89daa2564f llguidance build fixes for Windows (#11664)
* setup windows linking for llguidance; thanks @phil-scott-78

* add build instructions for windows and update script link

* change VS Community link from DE to EN

* whitespace fix
2025-02-14 12:46:08 -08:00
lhez
300907b211 opencl: Fix rope and softmax (#11833)
* opencl: fix `ROPE`

* opencl: fix `SOFT_MAX`

* Add fp16 variant

* opencl: enforce subgroup size for `soft_max`
2025-02-14 12:12:23 -07:00
Diego Devesa
94b87f87b5 cuda : add ampere to the list of default architectures (#11870) 2025-02-14 15:33:52 +01:00
Georgi Gerganov
dbc2ec59b5 docker : drop to CUDA 12.4 (#11869)
* docker : drop to CUDA 12.4

* docker : update readme [no ci]
2025-02-14 14:48:40 +02:00
Daniel Bevenius
3d68f034da llama : add completion for --chat-template-file (#11860)
This commit adds completion for `--chat-template-file`, enabling only
`.jinja` files to be displayed as completions.

Example usage:
```console
$ ./build/bin/llama-cli --chat-template-file models/templates/<TAB>
models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
models/templates/CohereForAI-c4ai-command-r-plus-tool_use.jinja
models/templates/deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja
models/templates/deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja
models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
models/templates/google-gemma-2-2b-it.jinja
models/templates/llama-cpp-deepseek-r1.jinja
models/templates/meetkai-functionary-medium-v3.1.jinja
models/templates/meetkai-functionary-medium-v3.2.jinja
models/templates/meta-llama-Llama-3.1-8B-Instruct.jinja
models/templates/meta-llama-Llama-3.2-3B-Instruct.jinja
models/templates/meta-llama-Llama-3.3-70B-Instruct.jinja
models/templates/microsoft-Phi-3.5-mini-instruct.jinja
models/templates/mistralai-Mistral-Nemo-Instruct-2407.jinja
models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
models/templates/Qwen-Qwen2.5-7B-Instruct.jinja
```
This is not limited to the models/templates directory, it can be used
anywhere in the filesystem, the above is just an example.
2025-02-14 11:16:56 +01:00
Jinyang He
38e32eb6a0 ggml: optimize some vec dot functions for LoongArch ASX (#11842)
* Optimize ggml_vec_dot_q3_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q4_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q6_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q5_K_q8_K for LoongArch ASX

* Optimize ggml_vec_dot_q2_K_q8_K for LoongArch ASX

* Optimize mul_sum_i8_pairs_float for LoongArch ASX

* Optimize ggml_vec_dot_iq4_xs_q8_K for LoongArch ASX
2025-02-14 10:54:27 +02:00
Eve
a4f011e8d0 vulkan: linux builds + small subgroup size fixes (#11767)
* mm subgroup size

* upload vulkan x86 builds
2025-02-14 02:59:40 +00:00
theraininsky
a7b8ce2260 llama-bench : fix unexpected global variable initialize sequence issue (#11832)
* llama-bench : fix unexpected global variable initialize sequence issue

* Update examples/llama-bench/llama-bench.cpp

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-14 02:13:43 +01:00
Georgi Gerganov
04045bb842 readme : minor 2025-02-14 00:16:56 +02:00
Jeffrey Morgan
8a8c4ceb60 llamafile: use member variable instead of constant for iq4nlt (#11780) 2025-02-13 18:05:04 +01:00
Reza Rahemtola
c1f958c038 server : (docs) Update wrong tool calling example (#11809)
Call updated to match the tool used in the output just below, following the example in https://github.com/ggerganov/llama.cpp/pull/9639
2025-02-13 17:22:44 +01:00
Daniel Bevenius
c48f630d1c llama : add --completion-bash option (#11846)
This commit adds a new option `--completion-bash` to the llama.cpp which
outputs a source-able bash completion script.

The motivation for this change is to provide a more user-friendly
experience for users who use the command-line interface of llama.cpp.

This is currently only basic and all options are displayed for all llama
executables but this can be improved in the future if needed.

Example usage:
```console
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash

$ ./build/bin/llama-server --m<TAB>
--main-gpu         --mirostat         --mirostat-lr      --model            --multiline-input
--min-p            --mirostat-ent     --mlock            --model-url
```
2025-02-13 14:46:59 +01:00
R0CKSTAR
bd6e55bfd3 musa: bump MUSA SDK version to rc3.1.1 (#11822)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* musa: Update MUSA SDK version to rc3.1.1

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

* musa: Remove workaround in PR #10042

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>

---------

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-02-13 13:28:18 +01:00
Olivier Chafik
c7f460ab88 server: fix tool-call of DeepSeek R1 Qwen, return reasoning_content (Command 7RB & DeepSeek R1) unless --reasoning-format none (#11607)
* extract & return thoughts in reasoning_content field (unless --reasoning-format) for DeepSeek R1 & Command R7B

* tool-calls: add deepseek r1 template (models/templates/llama-cpp-deepseek-r1.jinja) + hackommodate broken official template

* tool-calls: accommodate variety of wrong tool call opening tags both R1 Qwen 32B and 7B distills like to spit out

* server/oai: ensure content is null when there are tool calls, and reasoning_content appears before content for readability

* tool-calls: add DeepSeek R1 Qwen distills to server/README.md & server tests

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 10:05:16 +00:00
Vinesh Janarthanan
27e8a23300 sampling: add Top-nσ sampler (#11223)
* initial sampling changes:

* completed top nsigma sampler implementation

* apply parameter to only llama-cli

* updated readme

* added tests and fixed nsigma impl

* cleaned up pr

* format

* format

* format

* removed commented tests

* cleanup pr and remove explicit floats

* added top-k sampler to improve performance

* changed sigma to float

* fixed string format to float

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update common/sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update src/llama-sampling.cpp

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* added llama_sampler_init

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-13 08:45:57 +02:00
Oleksandr Kuvshynov
e4376270d9 llama.cpp: fix warning message (#11839)
There was a typo-like error, which would print the same number twice if
request is received with n_predict > server-side config.

Before the fix:
```
slot launch_slot_: id  0 | task 0 | n_predict = 4096 exceeds server configuration, setting to 4096
```

After the fix:
```
slot launch_slot_: id  0 | task 0 | n_predict = 8192 exceeds server configuration, setting to 4096
```
2025-02-13 08:25:34 +02:00
Daniel Bevenius
3e69319772 llama : update llama_decode_internal ref [no ci] (#11840)
This commit updates the comment in llama_kv_cache.h to reflect the
change of the function name from llama_decode_internal to
llama_decode_impl.
2025-02-13 08:07:51 +02:00
Diego Devesa
a394039db0 ggml-cpu : add chunking support to mul_mat_id (#11666)
* ggml-cpu : add chunking support to mul_mat_id

* allocate chunk counter in wdata
parallelize src1 quantization by column to allows parallelization even when there is only one row

* disable for arm

* cleanup

* better way to disable for arm

* fix uninitialized counter when using 1 thread only

* revert test-backend-ops changes
2025-02-13 01:02:38 +01:00
Xuan-Son Nguyen
be3bbd6215 ggml : x2 speed for WASM by optimizing SIMD (#11453)
* ggml : x2 speed for WASM by optimizing SIMD

* fix bad merging

* rm trailing spaces

* rm redundant clamp

* better quantize_row_q8_K

Co-authored-by: camel-cdr <camel-cdr@protonmail.com>

* remove memset that causes buffer overflow
Co-authored-by: camel-cdr <camel-cdr@protonmail.com>

---------

Co-authored-by: camel-cdr <camel-cdr@protonmail.com>
2025-02-13 00:33:45 +01:00
Woof Dog
31afcbee0e server : (webui) Give copy button back to all message bubbles (#11814)
* All messages get the copy button

* Update index.html.gz
2025-02-12 23:47:11 +01:00
uvos
5c4284d57b HIP: Remove GCN from list of devices that avoid MMQ (#11831) 2025-02-12 22:25:28 +01:00
JC
bfd11a2344 Fix: Compile failure due to Microsoft STL breaking change (#11836) 2025-02-12 21:36:11 +01:00
Georgi Gerganov
0fb77f821f sync : ggml 2025-02-12 21:46:02 +02:00
uvos
e598697d63 HIP: Switch to std::vector in rocblas version check (#11820) 2025-02-12 17:25:03 +01:00
bandoti
fef0cbeadf cleanup: fix compile warnings associated with gnu_printf (#11811) 2025-02-12 10:06:53 -04:00
Richard
748ee9fe93 ggml : fix multi-threaded clamp_f32 (#11824)
* Bug fix for clamp_f32

When using tensors larger than 1d clamp operation does not work due to the restriction of returning if ith is not 0.

* Bug fix for clamp_f32

* Bug fix for clamp_f32
2025-02-12 15:57:33 +02:00
Weizhao Ouyang
198b1ec611 ggml-cpu: Fix duplicate MATMUL_INT8 (#11817)
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
2025-02-12 13:22:58 +01:00
Johannes Gäßler
c3d6af7cd2 CUDA: fix CUDART_VERSION checks (#11821) 2025-02-12 13:16:39 +01:00
Daniel Bevenius
369be5598a llama : fix typo in llama-grammar.h [no ci] (#11816) 2025-02-12 09:40:01 +02:00
lhez
4078c77f98 docs: add OpenCL (#11697) 2025-02-11 15:04:13 -07:00
Sheldon Robinson
90e4dba461 Fix #11802: Compile bug - RegQueryValueExA changed to RegQueryValueEx (#11803)
* Fix #11802: Compile bug - RegQueryValueExA changed to RegQueryValueEx

* Fix #11802: PR #11803 - keep RegQueryValueExA, remove TEXT macro, description needs to be ANSI string
2025-02-11 16:55:45 +01:00
Daniel Bevenius
a18f481f99 server : use common_token_to_piece instead of common_detokenize (#11740)
* server : use common_token_to_piece instead of common_detokenize

This commit replaces the call to common_detokenize with
common_token_to_piece in the populate_token_probs.

The motivation for this change is to avoid an issue where
common_detokenize would remove the word boundary character for tokens,
which caused a regression in the server generated token probabilities.

Resolves: https://github.com/ggerganov/llama.cpp/issues/11728

* squash! server : use common_token_to_piece instead of common_detokenize

Use common_token_to_piece for post_sampling_probs as well.
2025-02-11 14:06:45 +01:00
Johannes Gäßler
b9ab0a4d0b CUDA: use arch list for compatibility check (#11775)
* CUDA: use arch list for feature availability check

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-11 00:17:22 +01:00
Maxim Evtush
7b891bdc86 fix: typos in documentation files (#11791)
* Update ggml.c

* Update arg.cpp

* Update speculative.h
2025-02-10 23:21:31 +01:00
jason_w
81732619fd docs: utilize the forward slash (/) as the path separator for Unix-like systems (#11770) 2025-02-10 23:17:48 +01:00
Xuan-Son Nguyen
507f9174fe server : (webui) introduce conversation branching + idb storage (#11792)
* server : (webui) introduce conversation branching + idb storage

* mark old conv as "migrated" instead deleting them

* improve migration

* add more comments

* more clarification
2025-02-10 21:23:17 +01:00
Wilken Gottwalt
19b392d58d llama-mmap: fix missing include (#11796)
Technically the fixed width types come only from iostream and
cstdint/stdint.h headers. memory and vector headers should not provide
these. In GCC 15 the headers are cleaned up and you require the proper
header cstdint.

src/llama-mmap.h:26:5: error: ‘uint32_t’ does not name a type
   26 |     uint32_t read_u32() const;
      |     ^~~~~~~~
2025-02-10 20:58:18 +02:00
Xuan-Son Nguyen
0893e0114e server : correct signal handler (#11795) 2025-02-10 18:03:28 +01:00
Olivier Chafik
d7b31a9d84 sync: minja (a72057e519) (#11774) 2025-02-10 09:34:09 +00:00
pascal-lc
9ac3457b39 Update README.md [no ci] (#11781)
typo: `\` -> `/`
Change the UNIX path separator to` \`.
2025-02-10 09:05:57 +01:00
Danny Milosavljevic
c2a67efe38 vulkan: Make Vulkan optional at runtime (#11493). (#11494)
Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-02-10 07:17:21 +01:00
Wagner Bruna
b044a0fe3c vulkan: add environment variable GGML_VK_PREFER_HOST_MEMORY to avoid VRAM allocation (#11592) 2025-02-10 07:08:22 +01:00
Eric Curtin
19d3c8293b There's a better way of clearing lines (#11756)
Use the ANSI escape code for clearing a line.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-09 10:34:49 +00:00
Jeff Bolz
98f6b0fd1e vulkan: account for lookup tables when checking shared memory size (#11502) 2025-02-09 08:43:51 +01:00
Xuan-Son Nguyen
55ac8c7791 server : (webui) revamp Settings dialog, add Pyodide interpreter (#11759)
* redo Settings modal UI

* add python code interpreter

* fix auto scroll

* build

* fix overflow for long output lines

* bring back sticky copy button

* adapt layout on mobile view

* fix multiple lines output and color scheme

* handle python exception

* better state management

* add webworker

* add headers

* format code

* speed up by loading pyodide on page load

* (small tweak) add small animation to make it feels like claude
2025-02-08 21:54:50 +01:00
Woof Dog
e6e6583199 server : (webui) increase edit textarea size (#11763) 2025-02-08 20:09:55 +01:00
Georgi Gerganov
aaa5505307 server : minor log updates (#11760)
ggml-ci
2025-02-08 18:08:43 +02:00
Georgi Gerganov
bdcf8b6a56 cont : fix mmap flag print (#11699) 2025-02-08 16:49:38 +02:00
Karol Kontny
4d3465c5ae ggml: Fix data race in ggml threadpool (#11736)
After the barrier in last iteration is executed, still the loop termination
condition will be executed. However main thread can destroy the cgraph object
and its nodes already, then another thread will access it, but the thing is already gone.
Also trouble can happen when n_nodes == 0 or abort is called, but I'm not sure if the
prior situation is possible.

Last syncronization should be done after the loop to ensure the cgraph/cplan won't be
accessed after the main thread exits from the function.
2025-02-08 15:30:53 +01:00
Johannes Gäßler
d80be897ac CUDA: fix min. version for movmatrix (#11751) 2025-02-08 10:46:07 +01:00
Nikolaos Pothitos
3ab410f55f readme : update front-end framework (#11753)
After the migration to React with #11688
2025-02-08 10:43:04 +01:00
Xuan-Son Nguyen
0cf867160c server : (webui) fix numeric settings being saved as string (#11739)
* server : (webui) fix numeric settings being saved as string

* add some more comments
2025-02-08 10:42:34 +01:00
Eric Curtin
d2fe216fb2 Make logging more verbose (#11714)
Debugged an issue with a user who was on a read-only filesystem.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-07 14:42:46 +00:00
Georgi Gerganov
ed926d8833 llama : fix defrag logic (#11707)
* llama : fix defrag logic

ggml-ci

* cont : better logic

ggml-ci

* cont : clamp fragmentation to 0.0

ggml-ci
2025-02-07 16:05:34 +02:00
Christian Fillion
2d219b389e vocab : ignore invalid UTF-8 input in the BPE tokenizer (#11729)
Silently insert U+FFFD(s) (Unicode replacement character) instead until the
next valid codepoint can be found.

This fixes `llama_tokenize` throwing an exception across the C API boundary
or libllama's module boundary (the caller's runtime might be incompatible!)

Returing a proper error code might be desirable, however the signature
of `llama_tokenize` doesn't allow it as all return values already have
existing meaning.
2025-02-07 15:55:47 +02:00
magicse
333820d749 llama : fix progress dots (#11730)
* Update llama.cpp

For display progress dots in terminal.
Without this it didn't display dots progress during loading model from file.

* Update llama.cpp

removed trailing spaces
2025-02-07 15:48:47 +02:00
Jeff Bolz
c026ba3c23 vulkan: print shared memory size (#11719) 2025-02-07 11:26:03 +01:00
Christian Fillion
7ee953a64a llama : add llama_sampler_init for safe usage of llama_sampler_free (#11727)
The C API in llama.h claims users can implement `llama_sampler_i` to
create custom `llama_sampler`. The sampler chain takes ownership and
calls `llama_sampler_free` on them. However, `llama_sampler_free` is
hard-coded to use `delete`. This is undefined behavior if the object
wasn't also allocated via `new` from libllama's C++ runtime. Callers
in C and C-compatible languages do not use C++'s `new` operator. C++
callers may not be sharing the same heap as libllama.
2025-02-07 11:33:27 +02:00
Akarshan Biswas
ec3bc8270b SYCL: remove XMX info from print devices (#11712) 2025-02-07 09:27:53 +00:00
Daniel Bevenius
b7552cfcbc common : add default embeddings presets (#11677)
* common : add default embeddings presets

This commit adds default embeddings presets for the following models:
- bge-small-en-v1.5
- e5-small-v2
- gte-small

These can be used with llama-embedding and llama-server.

For example, with llama-embedding:
```console
./build/bin/llama-embedding --embd-gte-small-default -p "Hello, how are you?"
```

And with llama-server:
```console
./build/bin/llama-server --embd-gte-small-default
```
And the embeddings endpoint can then be called with a POST request:
```console
curl --request POST \
    --url http://localhost:8080/embeddings \
    --header "Content-Type: application/json" \
    --data '{"input": "Hello, how are you?"}'
```

I'm not sure if these are the most common embedding models but hopefully
this can be a good starting point for discussion and further
improvements.

Refs: https://github.com/ggerganov/llama.cpp/issues/10932
2025-02-07 09:15:22 +01:00
Jinyang He
225bbbfa39 ggml : optimize and build warning fix for LoongArch (#11709)
* ggml : optimize convert f32<->f16 for loongarch_asx

* ggml : optimize loongarch_asx extend i16,i8,u8 to i32,i16

* ggml : Fix warnings when run cpu CI locally on LoongArch
2025-02-07 09:38:31 +02:00
tv1wnd
855cd0734a llama : fix old glm4 models (#11670) 2025-02-06 22:48:51 +01:00
Georgi Gerganov
8a59053f63 sync : ggml 2025-02-06 21:23:03 +02:00
Patrick Peng
1d20e53c40 rpc: fix known RCE in rpc-server (ggml/1103)
Add bounds checking in `rpc_server::copy_tensor` to prevent out-of-bounds writes
+ Check if  `(uint8_t *)dst->data + ggml_nbytes(src)` remains within the destination buffer’s allocated region.
2025-02-06 21:22:54 +02:00
Xuan-Son Nguyen
2fb3c32a16 server : (webui) migrate project to ReactJS with typescript (#11688)
* init version

* fix auto scroll

* bring back copy btn

* bring back thought process

* add lint and format check on CI

* remove lang from html tag

* allow multiple generations at the same time

* lint and format combined

* fix unused var

* improve MarkdownDisplay

* fix more latex

* fix code block cannot be selected while generating
2025-02-06 17:32:29 +01:00
Tei Home
9ab42dc722 docs: update fedora cuda guide for 12.8 release (#11393)
* docs: update fedora cuda guide for 12.8 release

* docs: build cuda update
2025-02-06 12:16:15 +00:00
Akarshan Biswas
194b2e69f8 SYCL: Adjust support condition for norm operators (#11674)
SYCL does not support non contiguous tensors for norm operations
2025-02-06 11:42:35 +00:00
Georgi Gerganov
9dd7a0390f llama : add log about loading model tensors (#11699) 2025-02-06 13:41:37 +02:00
Adrien Gallouët
c0d4843225 build : fix llama.pc (#11658)
Signed-off-by: Adrien Gallouët <adrien@gallouet.fr>
2025-02-06 13:08:13 +02:00
junchao-zhao
8d4d2be143 ggml : fix LoongArch compile error with 128-bit SIMD (#11701) 2025-02-06 11:20:00 +02:00
Jeff Bolz
2c6c8df56d vulkan: optimize coopmat2 iq2/iq3 callbacks (#11521)
* vulkan: optimize coopmat2 iq2/iq3 callbacks

* build: trigger CI on GLSL compute shader changes
2025-02-06 07:15:30 +01:00
Rémy O
8a7e3bf17a vulkan: initial support for IQ4_XS quantization (#11501) 2025-02-06 07:09:59 +01:00
Jeff Bolz
1b598b3058 vulkan: use smaller combined allocations to avoid fragmentation (#11551) 2025-02-06 07:02:18 +01:00
Charles Duffy
902368a06b metal : avoid breaking build when metal API predates TARGET_OS_VISION (#11690)
Avoids breakage in nix flake build introduced by b0569130c5
2025-02-06 09:52:31 +08:00
Matvey Soloviev
c3db0480bb readme : add link to Autopen under UIs (#11684)
Autopen (https://github.com/blackhole89/autopen) is a graphical text editor that uses llama.cpp to tokenize the buffer on the fly, score the buffer, visualise token logits and allow you to switch back and forth between different possible completions at any point. It hopefully meets the criteria for inclusion, as the dependency on llama.cpp is stated prominently.
2025-02-06 01:55:25 +01:00
Georgi Gerganov
d774ab3acc metal : adjust support conditions for norm operators (#11671)
cont #11659

ggml-ci
2025-02-05 10:57:42 +02:00
Johannes Gäßler
fa62da9b2d CUDA: support for mat. mul. with ne03 != ne13 (#11656) 2025-02-05 08:58:31 +01:00
SAMI
1ec208083c llava: add quantization for the visual projector LLAVA, Qwen2VL (#11644)
* Added quantization for visual projector
* Added README
* Fixed the clip quantize implementation in the file

* Fixed the gcc warning regarding minor linting

* Removed trailing whitespace
2025-02-05 10:45:40 +03:00
Olivier Chafik
9f4cc8f8d3 sync: minja (#11641)
* `sync`: minja

182de30cda

https://github.com/google/minja/pull/46

https://github.com/google/minja/pull/45
2025-02-05 01:00:12 +00:00
Johannes Gäßler
fd08255d0d CUDA: non-contiguous (RMS) norm support (#11659)
* CUDA: non-contiguous (RMS) norm support

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-04 22:21:42 +01:00
fxzjshm
3ec9fd4b77 HIP: force max threads per block to be 1024 (#11621)
Some old/vendor forked version of llvm still use 256. Explicitly set it to 1024 to align with upstream llvm.

Signed-off-by: fxzjshm <fxzjshm@163.com>
2025-02-04 19:18:38 +01:00
Xuan-Son Nguyen
3962fc1a79 server : add try..catch to places not covered by set_exception_handler (#11620)
* server : add try..catch to places not covered by set_exception_handler

* log_server_request: rm try catch, add reminder
2025-02-04 18:25:42 +01:00
Radoslav Gerganov
1bef571f6a arg : list RPC devices first when using --list-devices (#11655)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
List devices in the same order as they appear when evaluating the model
and splitting tensors across devices, i.e. RPC devices come first in the
list.

ref #11435
2025-02-04 18:16:20 +02:00
Olivier Chafik
db288b60cb tool-call: command r7b fix for normal responses (#11608)
* fix command r7b normal response regex + add to server test

* test multiline non-tool-call responses in test-chat
2025-02-04 15:48:53 +00:00
Shelby Jenkins
106045e7bb readme : add llm_client Rust crate to readme bindings (#11628)
[This crate](https://github.com/ShelbyJenkins/llm_client) has been in a usable state for quite awhile, so I figured now is fair to add it.

It installs from crates.io, and automatically downloads the llama.cpp repo and builds it for the target platform - with the goal being the easiest user experience possible.

It also integrates model presets and choosing the largest quant given the target's available VRAM. So a user just has to specify one of the presets (I manually add the most popular models), and it will download from hugging face.

So, it's like a Rust Ollama, but it's not really for chatting. It makes heavy use of llama.cpp's grammar system to do structured output for decision making and control flow tasks.
2025-02-04 13:20:55 +02:00
Jhen-Jie Hong
f117d84b48 swift : fix llama-vocab api usage (#11645)
* swiftui : fix vocab api usage

* batched.swift : fix vocab api usage
2025-02-04 13:15:24 +02:00
Jhen-Jie Hong
534c46b53c metal : use residency set for other platforms (#11648) 2025-02-04 13:07:18 +02:00
Georgi Gerganov
387a1598ca authors : update 2025-02-04 13:04:10 +02:00
Georgi Gerganov
7c9e0ca520 sync : ggml 2025-02-04 12:59:21 +02:00
Christian Kastner
8f8290ada9 cmake: Add ability to pass in GGML_BUILD_NUMBER (ggml/1096)
This makes git as a dependency optional, and is useful in the case where
ggml is built not from git, but from a tarball, or a distribution source
package.

This conditional also affects GGML_BUILD_COMMIT. Nothing seems to be
using it, though, so there doesn't seem much value factor it out, or
even require it.
2025-02-04 12:59:15 +02:00
Georgi Gerganov
b34aedd558 ci : do not stale-close roadmap issues 2025-02-04 09:31:01 +02:00
Olivier Chafik
cde3833239 tool-call: allow --chat-template chatml w/ --jinja, default to chatml upon parsing issue, avoid double bos (#11616)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tool-call: allow `--jinja --chat-template chatml`

* fix double bos issue (drop bos/eos tokens from jinja template)

* add missing try catch around jinja parsing to default to chatml

* Simplify default chatml logic
2025-02-03 23:49:27 +00:00
Xuan-Son Nguyen
b3451785ac server : (webui) revert hacky solution from #11626 (#11634) 2025-02-04 00:10:52 +01:00
Woof Dog
1d1e6a90bc server : (webui) allow typing and submitting during llm response (#11626) 2025-02-03 23:16:27 +01:00
Daniel Bevenius
5598f475be server : remove CPPHTTPLIB_NO_EXCEPTIONS define (#11622)
This commit removes the CPPHTTPLIB_NO_EXCEPTIONS define from the server
code.

The motivation for this is that when using a debug build the server
would crash when an exception was throws and terminate the server
process, as it was unhandled. When CPPHTTPLIB_NO_EXCEPTIONS is set
cpp_httplib will not call the exception handler, which would normally
return a 500 error to the client. This caused tests to fail when using
a debug build.

Fixes: https://github.com/ggerganov/llama.cpp/issues/11613
2025-02-03 16:45:38 +01:00
Georgi Gerganov
8ec05832fa sync : ggml 2025-02-03 14:57:08 +02:00
Johannes Gäßler
21c84b5d2d CUDA: fix Volta FlashAttention logic (#11615) 2025-02-03 14:25:56 +02:00
mashdragon
d92cb67e37 server : (webui) Fix Shift+Enter handling (#11609)
* Fix Shift+Enter handling

`exact` on the Enter handler means the message is not sent when Shift+Enter is pressed anyway

* build index.html.gz

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-02-03 10:42:55 +01:00
Johannes Gäßler
6eecde3cc8 HIP: fix flash_attn_stream_k_fixup warning (#11604)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-02-02 23:48:29 +01:00
uvos
396856b400 CUDA/HIP: add support for selectable warp size to mmv (#11519)
CUDA/HIP: add support for selectable warp size to mmv
2025-02-02 22:40:09 +01:00
uvos
4d0598e144 HIP: add GGML_CUDA_CC_IS_* for amd familys as increasing cc archtectures for amd gpus are not supersets of eatch other (#11601)
This fixes a bug where RDNA1 gpus other than gfx1010 where not handled correctly
2025-02-02 22:08:05 +01:00
Olivier Chafik
90f9b88afb nit: more informative crash when grammar sampler fails (#11593) 2025-02-02 19:58:34 +00:00
Johannes Gäßler
864a0b67a6 CUDA: use mma PTX instructions for FlashAttention (#11583)
* CUDA: use mma PTX instructions for FlashAttention

* __shfl_sync workaround for movmatrix

* add __shfl_sync to HIP

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-02 19:31:09 +01:00
Eric Curtin
84ec8a58f7 Name colors (#11573)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
It's more descriptive, use #define's so we can use compile-time
concatenations.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-02 15:14:48 +00:00
Olivier Chafik
bfcce4d693 tool-call: support Command R7B (+ return tool_plan "thoughts" in API) (#11585)
* `tool-call`: support Command R7B (w/ tool_plan return)

* `tool-call`: cleaner preservation of tokens + warn when likely bad chat template override

* `tool-call`: test cleanup / handle lazy grammar triggers
2025-02-02 09:25:38 +00:00
Olivier Chafik
69804487e0 Fix exotic ci env that lacks ostringstream::str (#11581) 2025-02-02 09:10:15 +00:00
Michał Moskal
ff227703d6 sampling : support for llguidance grammars (#10224)
* initial porting of previous LLG patch

* update for new APIs

* build: integrate llguidance as an external project

* use '%llguidance' as marker to enable llg lark syntax

* add some docs

* clarify docs

* code style fixes

* remove llguidance.h from .gitignore

* fix tests when llg is enabled

* pass vocab not model to llama_sampler_init_llg()

* copy test-grammar-integration.cpp to test-llguidance.cpp

* clang fmt

* fix ref-count bug

* build and run test

* gbnf -> lark syntax

* conditionally include llguidance test based on LLAMA_LLGUIDANCE flag

* rename llguidance test file to test-grammar-llguidance.cpp

* add gh action for llg test

* align tests with LLG grammar syntax and JSON Schema spec

* llama_tokenizer() in fact requires valid utf8

* update llg

* format file

* add $LLGUIDANCE_LOG_LEVEL support

* fix whitespace

* fix warning

* include <cmath> for INFINITY

* add final newline

* fail llama_sampler_init_llg() at runtime

* Link gbnf_to_lark.py script; fix links; refer to llg docs for lexemes

* simplify #includes

* improve doc string for LLAMA_LLGUIDANCE

* typo in merge

* bump llguidance to 0.6.12
2025-02-02 09:55:32 +02:00
piDack
0cec062a63 llama : add support for GLM-Edge and GLM-Edge-V series models (#10573)
* add glm edge chat model

* use config partial_rotary_factor as rope ratio

* support for glm edge model

* vision model support

* remove debug info

* fix format

* llava.cpp trailing whitespace

* remove unused AutoTokenizer

* Update src/llama.cpp for not contain <|end|> or </s>

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* add edge template

* fix chat template

* fix confict

* fix confict

* fix ci err

* fix format err

* fix template err

* 9b hf chat support

* format

* format clip.cpp

* fix format

* Apply suggestions from code review

* Apply suggestions from code review

* Update examples/llava/clip.cpp

* fix format

* minor : style

---------

Co-authored-by: liyuhang <yuhang.li@zhipuai.cn>
Co-authored-by: piDack <pcdack@hotmail.co>
Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: liyuhang <yuhang.li@aminer.cn>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-02-02 09:48:46 +02:00
Olivier Chafik
53debe6f3c ci: use sccache on windows HIP jobs (#11553) 2025-02-01 18:22:38 +00:00
Olivier Chafik
cfd74c86db sync: minja (418a2364b5) (#11574) 2025-02-01 12:24:51 +00:00
Eric Curtin
ecef206ccb Implement s3:// protocol (#11511)
For those that want to pull from s3

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-02-01 10:30:54 +00:00
Olivier Chafik
5bbc7362cb ci: simplify cmake build commands (#11548) 2025-02-01 00:01:20 +00:00
Olivier Chafik
aa6fb13213 ci: use sccache on windows instead of ccache (#11545)
* Use sccache on ci for windows

* Detect sccache in cmake
2025-01-31 17:12:40 +00:00
Olivier Chafik
a83f528688 tool-call: fix llama 3.x and functionary 3.2, play nice w/ pydantic_ai package, update readme (#11539)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* An empty tool_call_id is better than none!

* sync: minja (tool call name optional https://github.com/google/minja/pull/36)

* Force-disable parallel_tool_calls if template doesn't support it

* More debug logs

* Llama 3.x tools: accept / trigger on more varied spaced outputs

* Fix empty content for functionary v3.2 tool call

* Add proper tool call docs to server README

* readme: function calling *is* supported now

* Apply suggestions from code review

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-31 14:15:25 +00:00
Olivier Chafik
b1bcd309fc fix stop regression (#11543) 2025-01-31 13:48:31 +00:00
Olivier Chafik
5783575c9d Fix chatml fallback for unsupported builtin templates (when --jinja not enabled) (#11533) 2025-01-31 08:24:29 +00:00
Olivier Chafik
4a2b196d03 server : fix --jinja when there's no tools or schema (typo was forcing JSON) (#11531) 2025-01-31 10:12:40 +02:00
Steve Grubb
1bd3047a93 common: Add missing va_end (#11529)
The va_copy man page states that va_end must be called to revert
whatever the copy did. For some implementaions, not calling va_end
has no consequences. For others it could leak memory.
2025-01-31 07:58:55 +02:00
Daniel Bevenius
a2df2787b3 server : update help metrics processing/deferred (#11512)
This commit updates the help text for the metrics `requests_processing`
and `requests_deferred` to be more grammatically correct.

Currently the returned metrics look like this:
```console
\# HELP llamacpp:requests_processing Number of request processing.
\# TYPE llamacpp:requests_processing gauge
llamacpp:requests_processing 0
\# HELP llamacpp:requests_deferred Number of request deferred.
\# TYPE llamacpp:requests_deferred gauge
llamacpp:requests_deferred 0
```

With this commit, the metrics will look like this:
```console
\# HELP llamacpp:requests_processing Number of requests processing.
\# TYPE llamacpp:requests_processing gauge
llamacpp:requests_processing 0
\# HELP llamacpp:requests_deferred Number of requests deferred.
\# TYPE llamacpp:requests_deferred gauge
llamacpp:requests_deferred 0
```
This is also consistent with the description of the metrics in the
server examples [README.md](https://github.com/ggerganov/llama.cpp/tree/master/examples/server#get-metrics-prometheus-compatible-metrics-exporter).
2025-01-31 06:04:53 +01:00
Olivier Chafik
553f1e46e9 ci: ccache for all github worfklows (#11516)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
2025-01-30 22:01:06 +00:00
Olivier Chafik
8b576b6c55 Tool call support (generic + native for Llama, Functionary, Hermes, Mistral, Firefunction, DeepSeek) w/ lazy grammars (#9639)
---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-30 19:13:58 +00:00
uvos
27d135c970 HIP: require at least HIP 5.5 2025-01-30 16:25:44 +01:00
uvos
6af1ca48cb HIP: Prepare reduction operators for wave 64 2025-01-30 16:25:44 +01:00
uvos
c300e68ef4 CUDA/HIP: add warp_size to cuda_device_info 2025-01-30 16:25:44 +01:00
Olivier Chafik
3d804dec76 sync: minja (#11499) 2025-01-30 10:30:27 +00:00
mgroeber9110
ffd0821c57 vocab : correctly identify LF token for GPT-2 style BPE tokenizer (#11496) 2025-01-30 12:10:59 +02:00
Daniel Bevenius
4314e56c4f server : use lambda instead of std::bind (#11507)
This commit replaces the two usages of `std::bind` in favor of lambdas for
the callback functions for `callback_new_task` and
`callback_update_slots`.

The motivation for this changes is consistency with the rest of the code
in server.cpp (lambdas are used for all other callbacks/handlers). Also
lambdas are more readable (perhaps this is subjective) but also they are
recommended over `std::bind` in modern C++.

Ref: https://github.com/LithoCoders/dailycpp/blob/master/EffectiveModernC%2B%2B/chapter6/Item34_Prefer_lambdas_to_std::bind.md
2025-01-30 11:05:00 +01:00
Isaac McFadyen
496e5bf46b server : (docs) added response format for /apply-template [no ci] (#11503) 2025-01-30 10:11:53 +01:00
Guspan Tanadi
7919256c57 readme : reference examples relative links (#11505) 2025-01-30 06:58:02 +01:00
Daniel Bevenius
e0449763a4 server : update json snippets in README.md [no ci] (#11492)
This commit updates some of JSON snippets in README.md file and
removes the `json` language tag from the code blocks.

The motivation for this changes is that if there is invalid json in a
code snippet these are highlighted in red which can make it somewhat
difficult to read and can be a little distracting.
2025-01-30 05:48:14 +01:00
Nigel Bosch
eb7cf15a80 server : add /apply-template endpoint for additional use cases of Minja functionality (#11489)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* add /apply-template endpoint to server

* remove unnecessary line

* add /apply-template documentation

* return only "prompt" field in /apply-template

* use suggested idea instead of my overly verbose way
2025-01-29 19:45:44 +01:00
Rémy Oudompheng
66ee4f297c vulkan: implement initial support for IQ2 and IQ3 quantizations (#11360)
* vulkan: initial support for IQ3_S

* vulkan: initial support for IQ3_XXS

* vulkan: initial support for IQ2_XXS

* vulkan: initial support for IQ2_XS

* vulkan: optimize Q3_K by removing branches

* vulkan: implement dequantize variants for coopmat2

* vulkan: initial support for IQ2_S

* vulkan: vertically realign code

* port failing dequant callbacks from mul_mm

* Fix array length mismatches

* vulkan: avoid using workgroup size before it is referenced

* tests: increase timeout for Vulkan llvmpipe backend

---------

Co-authored-by: Jeff Bolz <jbolz@nvidia.com>
2025-01-29 18:29:39 +01:00
Daniel Bevenius
e51c47b401 server : update auto gen files comments [no ci] (#11484)
* server : update auto gen files comments

This commit updates the 'auto generated files' comments in server.cpp
and removes `deps.sh` from the comment.

The motivation for this change is that `deps.sh` was removed in
Commit 91c36c269b ("server : (web ui)
Various improvements, now use vite as bundler (#10599)").

* squash! server : update auto gen files comments [no ci]

Move comments about file generation to README.md.

* squash! server : update auto gen files comments [no ci]

Remove the comments in server.cpp that mention that information
can be found in the README.md file.
2025-01-29 16:34:18 +01:00
Jeff Bolz
2711d0215f vulkan: Catch pipeline creation failure and print an error message (#11436)
* vulkan: Catch pipeline creation failure and print an error message

Also, fix some warnings from my on-demand compile change.

* vulkan: fix pipeline creation logging
2025-01-29 09:26:50 -06:00
Eric Curtin
f0d4b29edf Parse https://ollama.com/library/ syntax (#11480)
People search for ollama models using the web ui, this change
allows one to copy the url from the browser and for it to be
compatible with llama-run.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-29 11:23:10 +00:00
Georgi Gerganov
815857791d sync : ggml 2025-01-29 11:25:29 +02:00
William Tambellini
1a0e87d291 ggml : add option to not print stack on abort (ggml/1081)
* Add option to not print stack on abort

Add option/envvar to disable stack printing on abort.
Also link some unittests with Threads to fix link errors on
ubuntu/g++11.

* Update ggml/src/ggml.c

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-29 11:24:53 +02:00
issixx
d2e518e9b4 ggml-cpu : fix ggml_graph_compute_thread did not terminate on abort. (ggml/1065)
some threads kept looping and failed to terminate properly after an abort during CPU execution.

Co-authored-by: issi <issi@gmail.com>
2025-01-29 11:24:51 +02:00
Daniel Bevenius
b636228c0a embedding : enable --no-warmup option (#11475)
This commit enables the `--no-warmup` option for the llama-embeddings.

The motivation for this change is to allow the user to disable the
warmup when running the the program.
2025-01-29 10:38:54 +02:00
Molly Sophia
325afb370a llama: fix missing k_cache store for rwkv6qwen2 (#11445)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Signed-off-by: Molly Sophia <mollysophia379@gmail.com>
2025-01-29 12:07:21 +08:00
Emreerdog
794fe23f29 cmake: add hints for locating ggml on Windows using Llama find-package (#11466) 2025-01-28 19:22:06 -04:00
peidaqi
cf8cc856d7 server : Fixed wrong function name in llamacpp server unit test (#11473)
The test_completion_stream_with_openai_library() function is actually with stream=False by default, and test_completion_with_openai_library() with stream=True
2025-01-29 00:03:42 +01:00
Xuan-Son Nguyen
d0c08040b6 ci : fix build CPU arm64 (#11472)
* ci : fix build CPU arm64

* failed, trying ubuntu 22

* vulkan: ubuntu 24

* vulkan : jammy --> noble
2025-01-29 00:02:56 +01:00
uvos
be5ef7963f HIP: Supress transformation warning in softmax.cu
loops with bounds not known at compile time can not be unrolled.
when ncols_template == 0, the bounds of the loop are not constexpr, thus llvm cant unroll the loops here.
2025-01-28 23:06:32 +01:00
Nikita Sarychev
cae9fb4361 HIP: Only call rocblas_initialize on rocblas versions with the multiple instantation bug (#11080)
This disables the workaround on rocblas fixed versions (>=4.0.0) to eliminate the runtime cost and unnecessary VRAM allocation of loading all tensile objects.
2025-01-28 16:42:20 +01:00
Eric Curtin
7fee2889e6 Add github protocol pulling and http:// (#11465)
As pulling protocols to llama-run

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-28 14:45:41 +00:00
Nuno
d7d1eccacc docker: allow installing pip packages system-wide (#11437)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-28 14:17:25 +00:00
someone13574
4bf3119d61 cmake : don't fail on GGML_CPU=OFF (#11457) 2025-01-28 15:15:34 +01:00
Nuno
f643120bad docker: add perplexity and bench commands to full image (#11438)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-28 10:42:32 +00:00
Akarshan Biswas
6e84b0ab8e SYCL : SOFTMAX F16 mask support and other fixes (#11261)
Implemented ggml_sycl_op_soft_max() F16 src1(mask) support for which a pragma deprecation warning was added during #5021.
To do this, had to decouple it from ggml_sycl_op_flatten which always considered src1 to be of fp32 type(many OP functions are dependent on it).

* SYCL: SOFTMAX F16 mask support and other fixes

* test-backend-ops: Add F16 mask test cases
2025-01-28 09:56:58 +00:00
Michael Engel
2b8525d5c8 Handle missing model in CLI parameters for llama-run (#11399)
The HTTP client in llama-run only prints an error in case the download of
a resource failed. If the model name in the CLI parameter list is missing,
this causes the application to crash.
In order to prevent this, a check for the required model parameter has been
added and errors for resource downloads get propagated to the caller.

Signed-off-by: Michael Engel <mengel@redhat.com>
2025-01-28 08:32:40 +00:00
Eric Curtin
a4417ddda9 Add new hf protocol for ollama (#11449)
https://huggingface.co/docs/hub/en/ollama

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-27 19:36:10 +01:00
Haus1
d6d24cd9ed AMD: parse the architecture as supplied by gcnArchName (#11244)
The value provided by minor doesn't include stepping for AMD, parse the value returned by gcnArchName instead to retrieve an accurate ID.
2025-01-27 14:58:17 +01:00
lexasub
a5203b4465 llama : minor fixes for up llama load model speed (#11448)
* impl::load change map bpe_ranks to onordered map for reduce time of impl::load on 30%

* llama_model_loader::init_mapping - replace new llama_mmap to std::make_unique<llama_mmap> for clean code & reduce (/2) time of running init_mappings

* Update src/llama-vocab.cpp

---------

Co-authored-by: lexasub <empty@empty.ru>
Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-01-27 14:42:09 +01:00
Johannes Gäßler
df984e0147 llama: refactor llama_decode_impl (#11381) 2025-01-27 12:07:12 +01:00
Ihar Hrachyshka
acd38efee3 metal: Handle null returned from MTLCreateSystemDefaultDevice() (#11441)
This fixes segmentation fault error when running tests when no metal
devices are available (for example, when not linked with Core Graphics
framework or otherwise).
2025-01-27 09:41:59 +02:00
Xuan Son Nguyen
caf773f249 docker : fix ARM build and Vulkan build (#11434)
* ci : do not fail-fast for docker

* build arm64/amd64 separatedly

* fix pip

* no fast fail

* vulkan: try jammy
2025-01-26 22:45:32 +01:00
Georgi Gerganov
178a7eb952 metal : use residency sets (#11427)
* metal : use residency sets

ggml-ci

* metal : restore commandBufferWithUnretainedReferences calls [no ci]

* metal : release descriptors

ggml-ci

* metal : check env GGML_METAL_NO_RESIDENCY

ggml-ci

* metal : fix build + clean-up

ggml-ci
2025-01-26 20:06:16 +02:00
Nuno
6f53d8a6b4 docker: add missing vulkan library to base layer and update to 24.04 (#11422)
Signed-off-by: rare-magma <rare-magma@posteo.eu>
2025-01-26 18:22:43 +01:00
bandoti
19f65187cb cmake: add ggml find package (#11369)
* Add initial ggml cmake package

* Add build numbers to ggml find-package

* Expand variables with GGML_ prefix

* Guard against adding to cache variable twice

* Add git to msys2 workflow

* Handle ggml-cpu-* variants

* Link ggml/ggml-base libraries to their targets

* Replace main-cmake-pkg with simple-cmake-pkg

* Interface features require c_std_90

* Fix typo

* Removed unnecessary bracket from status message

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Update examples/simple-cmake-pkg/README.md

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-26 12:07:48 -04:00
Frank Mai
1d8ee06000 rpc: fix register position (#11424)
Signed-off-by: thxCode <thxcode0824@gmail.com>
2025-01-26 16:20:34 +01:00
Georgi Gerganov
2cc9b8c32c readme : update hot topics 2025-01-26 14:30:15 +02:00
Jeff Bolz
f35726c2fb build: apply MSVC /bigobj option to c/cpp files only (#11423) 2025-01-26 03:10:03 +01:00
Jeff Bolz
4a75d19376 vulkan: compile shaders on-demand (#11406)
Reduce first-run startup time and memory consumption.

Should fix #11339.
2025-01-25 22:29:57 +01:00
uvos
26771a1491 Hip: disable VMM on hip as it seams that it dosent work in some configurations (#11420) 2025-01-25 21:01:12 +01:00
Jeff Bolz
ca6baf76c1 build: add /bigobj to MSVC build (#11407) 2025-01-25 11:26:37 -06:00
Diego Devesa
6e264a905b docker : add GGML_CPU_ARM_ARCH arg to select ARM architecture to build for (#11419) 2025-01-25 17:22:41 +01:00
Xuan Son Nguyen
49b0e3cec4 server : fix cleaning up stream task (#11418)
* server : fix cleaning up stream task

* one more spot
2025-01-25 16:36:44 +01:00
Diego Devesa
20a758155b docker : fix CPU ARM build (#11403)
* docker : fix CPU ARM build

* add CURL to other builds
2025-01-25 15:22:29 +01:00
Georgi Gerganov
00c24acb2a ci : fix line breaks on windows builds (#11409)
* ci : fix line breaks on windows builds

* cont : another try

* ci : fix powershell line breaks
2025-01-25 13:36:48 +02:00
jiahao su
466ea66f33 CANN: Add Ascend CANN build ci (#10217)
* CANN: Add Ascend CANN build ci

* Update build.yml

* Modify cann image version

* Update build.yml

* Change to run on x86 system

* Update build.yml

* Update build.yml

* Modify format error

* Update build.yml

* Add 'Ascend NPU' label restrictions

* Exclude non PR event

Co-authored-by: Yuanhao Ji <jiyuanhao@apache.org>

* Update build.yml

---------

Co-authored-by: Yuanhao Ji <jiyuanhao@apache.org>
2025-01-25 00:26:01 +01:00
uvos
5f0db9522f hip : Add hipGraph and VMM support to ROCM (#11362)
* Add hipGraph support

* Enable VMM on rocm
2025-01-25 00:02:23 +01:00
Johannes Gäßler
c5d9effb49 CUDA: fix FP16 cuBLAS GEMM (#11396) 2025-01-24 21:02:43 +01:00
uvos
9fbadaef4f rocBLAS: Avoid fp32->fp16->fp32 conversion on cdna (#11356) 2025-01-24 17:50:49 +01:00
Georgi Gerganov
9755129c27 release : pack /lib in the packages (#11392)
* release : pack /lib and /include in the packages

* cmake : put libs in /bin

* TMP : push artifacts

* Revert "TMP : push artifacts"

This reverts commit 4decf2c4df.

* ci : fix HIP cmake compiler options to be on first line

* ci : restore the original HIP commands

* ci : change ubuntu build from latest to 20.04

* ci : try to fix macos build rpaths

* ci : remove obsolete MacOS build

* TMP : push artifacts

* ci : change back to ubuntu latest

* ci : macos set build rpath to "@loader_path"

* ci : fix typo

* ci : change ubuntu package to 22.04

* Revert "TMP : push artifacts"

This reverts commit 537b09e70f.
2025-01-24 18:41:30 +02:00
Jafar Uruç
a07c2c8a52 docs : Update readme to build targets for local docker build (#11368) 2025-01-24 14:30:13 +01:00
Johannes Gäßler
8137b4bb2b CPU/CUDA: fix (GQA) mul mat back, add CUDA support (#11380) 2025-01-24 12:38:31 +01:00
Bernhard M. Wiedemann
1af6945eb0 cmake : avoid -march=native when reproducible build is wanted (#11366)
See https://reproducible-builds.org/ for why this is good
and https://reproducible-builds.org/specs/source-date-epoch/
for the definition of this variable.

Without this patch, compiling on different machines produced different binaries, which made verification of results difficult.

Fixes: #11317

This patch was done while working on reproducible builds for openSUSE.
2025-01-24 13:21:35 +02:00
Eric Curtin
01f37edf1a Update llama-run README.md (#11386)
For consistency

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-24 09:39:24 +00:00
stduhpf
c07e87f38b server : (webui) put DeepSeek R1 CoT in a collapsible <details> element (#11364)
* webui : put DeepSeek R1 CoT in a collapsible <details> element

* webui: refactor split

* webui: don't use regex to split cot and response

* webui: format+qol

* webui: no loading icon if the model isn't generating

* ui fix, add configs

* add jsdoc types

* only filter </think> for assistant msg

* build

* update build

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-24 09:02:38 +01:00
Jeff Bolz
564804b79b tests: fix some mul_mat test gaps (#11375)
Now that we have batched mat-vec mul Vulkan shaders for up to n==8,
these tests weren't actually exercising the mat-mat mul path. Test
n==9 as well. Also, change to use all_types.
2025-01-23 14:51:24 -06:00
Eric Curtin
05f63cc9ee Update documentation (#11373)
To show -n, -ngl, --ngl is acceptable.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 20:04:31 +00:00
Eric Curtin
f7fb43cd0b Add -ngl (#11372)
Most other llama.cpp cli tools accept -ngl with a single dash.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 16:16:18 +00:00
Xuan Son Nguyen
5845661640 server : add more clean up when cancel_tasks is called (#11340)
* server : add more clean up when cancel_tasks is called

* fix recv_with_timeout

* std::remove_if

* fix std::remove_if
2025-01-23 13:56:05 +01:00
Eric Curtin
f211d1dc10 Treat hf.co/ prefix the same as hf:// (#11350)
ollama uses hf.co/ to specify huggingface prefix, like RamaLama
uses hf://

Treat them similarly.

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-23 10:38:20 +00:00
amd-dwang
955a6c2d91 Vulkan-run-test: fix mmq_wg_denoms (#11343)
There should be a copy-and-paste error here.

*mmq_wg_denoms should be used together with *warptile_mmq, instead of
wg_denoms.
2025-01-23 08:14:28 +01:00
Jeff Bolz
1971adf55e vulkan: sort shaders for more deterministic binary (#11315)
Fixes #11306.
2025-01-23 08:07:50 +01:00
Jeff Bolz
5245729e33 vulkan: fix diag_mask_inf (#11323)
With robustbufferaccess disabled, this shader was showing OOB stores. There
is a bounds check in the code, but the workgrouop dimensions were reversed vs
CUDA and it was running the wrong number of threads. So fix the workgroup
dimensions and disable robustness for this pipeline.
2025-01-23 08:01:17 +01:00
Diego Devesa
6152129d05 main : update README documentation for batch size (#11353)
* main : update README documentation for batch size

* fix formatting

* minor
2025-01-22 19:22:20 +01:00
Georgi Gerganov
16d3df7ab0 readme : add plugin links (#11355) 2025-01-22 19:44:26 +02:00
Diego Devesa
12c2bdf2de server : fix draft context not being released (#11354) 2025-01-22 17:44:40 +01:00
Olivier Chafik
c64d2becb1 minja: sync at 0f5f7f2b37 (#11352) 2025-01-22 16:16:27 +00:00
Jiří Podivín
96f4053934 Adding logprobs to /v1/completions (#11344)
Signed-off-by: Jiri Podivin <jpodivin@redhat.com>
2025-01-22 12:51:32 +01:00
Olivier Chafik
a94f3b2727 common: utils to split / join / repeat strings (from json converter) (#11342)
* Factor string_join, string_split, string_repeat into common

* json: refactor to surface a versatile builder

* Update common.cpp
2025-01-22 09:51:44 +00:00
tc-mb
3e3357fd77 llava : support Minicpm-omni (#11289)
Some checks failed
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* init

* add readme

* update readme

* no use make

* update readme

* update fix code

* fix editorconfig-checker

* no change convert py

* use clip_image_u8_free
2025-01-22 09:35:48 +02:00
Olivier Chafik
6171c9d258 Add Jinja template support (#11016)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Copy minja from 58f0ca6dd7

* Add --jinja and --chat-template-file flags

* Add missing <optional> include

* Avoid print in get_hf_chat_template.py

* No designated initializers yet

* Try and work around msvc++ non-macro max resolution quirk

* Update test_chat_completion.py

* Wire LLM_KV_TOKENIZER_CHAT_TEMPLATE_N in llama_model_chat_template

* Refactor test-chat-template

* Test templates w/ minja

* Fix deprecation

* Add --jinja to llama-run

* Update common_chat_format_example to use minja template wrapper

* Test chat_template in e2e test

* Update utils.py

* Update test_chat_completion.py

* Update run.cpp

* Update arg.cpp

* Refactor common_chat_* functions to accept minja template + use_jinja option

* Attempt to fix linkage of LLAMA_CHATML_TEMPLATE

* Revert LLAMA_CHATML_TEMPLATE refactor

* Normalize newlines in test-chat-templates for windows tests

* Forward decl minja::chat_template to avoid eager json dep

* Flush stdout in chat template before potential crash

* Fix copy elision warning

* Rm unused optional include

* Add missing optional include to server.cpp

* Disable jinja test that has a cryptic windows failure

* minja: fix vigogne (https://github.com/google/minja/pull/22)

* Apply suggestions from code review

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Finish suggested renamings

* Move chat_templates inside server_context + remove mutex

* Update --chat-template-file w/ recent change to --chat-template

* Refactor chat template validation

* Guard against missing eos/bos tokens (null token otherwise throws in llama_vocab::impl::token_get_attr)

* Warn against missing eos / bos tokens when jinja template references them

* rename: common_chat_template[s]

* reinstate assert on chat_templates.template_default

* Update minja to b8437df626

* Update minja to https://github.com/google/minja/pull/25

* Update minja from https://github.com/google/minja/pull/27

* rm unused optional header

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-21 13:18:51 +00:00
Xuan Son Nguyen
e28245f35f export-lora : fix tok_embd tensor (#11330) 2025-01-21 14:07:12 +01:00
Radoslav Gerganov
6da5bec81c rpc : better caching of the base buffer pointer (#11331)
There is no need to use map, just store the base pointer in the buffer
context.
2025-01-21 15:06:41 +02:00
Eric Curtin
2e2f8f093c linenoise.cpp refactoring (#11301)
More RAII mainly

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-21 09:32:35 +00:00
Georgi Gerganov
2139667ec4 metal : fix out-of-bounds write (#11314)
ggml-ci
2025-01-21 08:48:13 +02:00
Georgi Gerganov
80d0d6b4b7 common : add -hfd option for the draft model (#11318)
* common : add -hfd option for the draft model

* cont : fix env var

* cont : more fixes
2025-01-20 22:29:43 +02:00
Jeff Bolz
aea8ddd516 vulkan: fix coopmat2 validation failures (#11284)
mul mat and flash attention shaders were loading f32 types directly into
A/B matrices, which happens to work but is technically invalid usage.
For FA, we can load it as an Accumulator matrix and convert and this
is not in the inner loop and is cheap enough. For mul mat, it's more
efficient to do this conversion in a separate pass and have the input(s)
be f16.

coopmat2 requires SPIR-V 1.6 (related using to LocalSizeId). LocalSizeId
requires maintenance4 be enabled, and SPIR-V 1.6 requires Vulkan 1.3.
2025-01-20 10:38:32 -06:00
Georgi Gerganov
9f7add1cde examples : fix add_special conditions (#11311)
Some checks failed
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
Python check requirements.txt / check-requirements (push) Has been cancelled
2025-01-20 16:36:08 +02:00
Christopher Nielsen
90d987b105 mmap: add include for cerrno (#11296)
ggml-ci

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
2025-01-20 16:02:43 +02:00
Michael Podvitskiy
a4251edd6f cmake: fix shell command quoting in build-info script (#11309) 2025-01-20 16:02:15 +02:00
Xuan Son Nguyen
ec7f3ac9ab llama : add support for Deepseek-R1-Qwen distill model (#11310)
* llama : add support for Deepseek-R1-Qwen distill model

* coding style
2025-01-20 14:35:07 +01:00
Georgi Gerganov
ef6dada60c cont : fix whitespaces (#11305) 2025-01-20 09:29:32 +02:00
Kyle Bruene
ae3c1db2f9 llama : re-add LLM_ARCH_PHIMOE (#11305)
Phi 3.5 MoE was partially removed during a refactor. The code was originally in llama.cpp and should be in llama-model.cpp after the refactor.
2025-01-20 09:21:01 +02:00
Georgi Gerganov
92bc493917 tests : increase timeout when sanitizers are enabled (#11300)
Some checks are pending
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* tests : increase timeout when sanitizers are enabled

* tests : add DEFAULT_HTTP_TIMEOUT
2025-01-19 20:22:30 +02:00
Georgi Gerganov
b9daaffe02 simple-chat : fix BOS being added to each message (#11278) 2025-01-19 18:12:09 +02:00
Nicolò Scipione
99487b57d4 SYCL: Introducing memory host pool (#11251)
* Implement host pool for matrix_info

Creating a new memory pool on the host to store memory location for
matrix_info needed to launch gemm_batch from oneMKL/oneMath.
Removing complex support in gemm_batch since it is not used in llama.cpp

* Remove unnecessary headers and cast

* Reorder member variable to avoid warning on initialization

* Formatting

* Remove unused variable

* Address PR review feedback - remove warning

---------

Signed-off-by: nscipione <nicolo.scipione@codeplay.com>
2025-01-19 21:33:34 +08:00
Eric Curtin
a1649cc13f Adding linenoise.cpp to llama-run (#11252)
This is a fork of linenoise that is C++17 compatible. I intend on
adding it to llama-run so we can do things like traverse prompt
history via the up and down arrows:

https://github.com/ericcurtin/linenoise.cpp

Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-01-18 14:42:31 +00:00
Georgi Gerganov
4dd34ff831 cmake : add sanitizer flags for llama.cpp (#11279)
* cmake : add sanitizer flags for llama.cpp

ggml-ci

* tests : fix compile warnings

ggml-ci

* cmake : move sanitizer flags to llama_add_compile_flags

ggml-ci

* cmake : move llama.cpp compile flags to top level lists

ggml-ci

* cmake : apply only sanitizer flags at top level

ggml-ci

* tests : fix gguf context use in same_tensor_data

* gguf-test: tensor data comparison

* dummy : trigger ggml-ci

* unicode : silence gcc warnings

ggml-ci

* ci : use sanitizer builds only in Debug mode

ggml-ci

* cmake : add status messages [no ci]

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2025-01-18 16:18:15 +02:00
Xuan Son Nguyen
f30f099228 server : implement cancellable request (#11285)
* server : implement cancellable request

* fix typo

* httplib 0.18.5

* fix i underflow
2025-01-18 14:12:05 +01:00
Georgi Gerganov
f26c874179 scripts : restore hf.sh (#11288)
ggml-ci
2025-01-18 13:18:32 +02:00
LostRuins Concedo
6390a998bf tts : add guide tokens support (#11186)
* Added the ability to use guide tokens for OuteTTS, greatly improving TTS recitation accuracy over long input sequences.

* applied linting suggestions, updated to latest llama_vocab changes, added a safety check, added newline to guide token start
2025-01-18 12:20:57 +02:00
Jeff Bolz
44e18ef939 vulkan: fix coopmat2 flash attention for non-contiguous inputs (#11281)
Add code similar to mul_mm_cm2 to force alignment of strides, to avoid
a performance regression.

Add noncontiguous FA tests in test-backend-ops.

Fixes #11268.
2025-01-18 09:26:50 +01:00
codezjx
3edfa7d375 llama.android: add field formatChat to control whether to parse special tokens when send message (#11270) 2025-01-17 14:57:56 +02:00
Radoslav Gerganov
667d72846c rpc : early register backend devices (#11262)
Early register RPC devices and do not propagate RPC specifics in the
llama model structures.

ref: #10609
2025-01-17 10:57:09 +02:00
Georgi Gerganov
a133566d34 vocab : fix double-eos check (#11273)
ggml-ci
2025-01-17 09:28:00 +02:00
David Renshaw
960ec65273 llama : fix deprecation message: vocabable -> vocab (#11269) 2025-01-17 08:12:01 +01:00
musoles
7a689c415e README : added kalavai to infrastructure list (#11216) 2025-01-17 01:10:49 +01:00
Jeff Bolz
bd38ddea01 vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl (#11166)
* vulkan: support copy from f32 to q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl

Shaders are based on cpy.cu.

* vulkan: support copy from q4_0/q4_1/q5_0/q5_1/q8_0/iq4_nl to f32

* ggml: copy q->f32 assumes some contiguity in the destination
2025-01-16 22:47:10 +01:00
Jeff Bolz
466300fe14 vulkan: optimize coopmat2 q4_k/q5_k dequant functions. (#11206)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
Do masking on whole dwords, fetch all scales at once.
2025-01-16 22:23:49 +01:00
Jeff Bolz
206bc53422 vulkan: optimize coopmat2 q2_k dequant function (#11130) 2025-01-16 22:16:39 +01:00
RunningLeon
4dbc8b9cb7 llama : add internlm3 support (#11233)
* support internlm3

* fix lint
2025-01-16 20:10:38 +02:00
Johannes Gäßler
9c8dcefe17 CUDA: backwards pass for misc. ops, add tests (#11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-01-16 16:43:38 +01:00
Xuan Son Nguyen
681149ced2 llama : add llama_model_load_from_splits (#11255)
* llama : add `llama_model_load_from_splits`

* update
2025-01-16 13:54:08 +01:00
fj-y-saito
c67cc9837d ggml: aarch64: implement SVE kernels for q4_K_q8_K vector dot (#11227)
* Add SVE support for q4_K_q8_K

* Update ggml/src/ggml-cpu/ggml-cpu-quants.c

change to use K_SCALE_SIZE

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2025-01-16 11:11:49 +02:00
Eve
adc5dd92e8 vulkan: scale caching for k quants + misc fixes (#11081)
* q6_k scale caching

* 16 bit unpack

* q4_k test (slow)

* revert it

* q3_k

* q2_k

* little stuff

* try precalculating products of a and q2_k scales

* Revert "try precalculating products of a and q2_k scales"

This reverts commit 65110b81f23f66331a50c6e889a7c1ab9470a86b.

* unpack should be u16, add vim swap to gitignore (about time)

* better q4_k scales

* q5_k

* better q6_k with separate paths for all threads and partial threads in use, plus some more optimizations

* q2_k better dequant

* q3_k optimizations

* q3_k use hmask simd from cpu avx version

* make the caches happy

* q3_k separate out calculation

* q2_k separate out

* little stuff

* use calc_superblock everywhere

* q2_k optimize scale calculation

* more barriers
2025-01-15 19:50:13 +00:00
Georgi Gerganov
f11cfdfd7f ci : use -no-cnv in gguf-split tests (#11254)
* ci : use -no-cnv in gguf-split tests

ggml-ci

* ci : use -no-cnv in requantize tests

ggml-ci

* scripts : fix [no ci]
2025-01-15 18:28:35 +02:00
613 changed files with 105251 additions and 50852 deletions

View File

@@ -2,6 +2,10 @@ ARG UBUNTU_VERSION=22.04
FROM ubuntu:$UBUNTU_VERSION AS build
ARG TARGETARCH
ARG GGML_CPU_ARM_ARCH=armv8-a
RUN apt-get update && \
apt-get install -y build-essential git cmake libcurl4-openssl-dev
@@ -9,7 +13,14 @@ WORKDIR /app
COPY . .
RUN cmake -S . -B build -DGGML_BACKEND_DL=ON -DGGML_NATIVE=OFF -DGGML_CPU_ALL_VARIANTS=ON -DLLAMA_CURL=ON -DCMAKE_BUILD_TYPE=Release && \
RUN if [ "$TARGETARCH" = "amd64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON; \
elif [ "$TARGETARCH" = "arm64" ]; then \
cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DGGML_NATIVE=OFF -DGGML_CPU_ARM_ARCH=${GGML_CPU_ARM_ARCH}; \
else \
echo "Unsupported architecture"; \
exit 1; \
fi && \
cmake --build build -j $(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG CUDA_VERSION=12.6.0
ARG CUDA_VERSION=12.4.0
# Target the CUDA build image
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
@@ -21,7 +21,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -17,7 +17,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
&& export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -1,4 +1,4 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
FROM ascendai/cann:$ASCEND_VERSION AS build
@@ -6,7 +6,7 @@ WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make
RUN yum install -y gcc g++ cmake make libcurl-devel
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}

View File

@@ -17,10 +17,10 @@ Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
Requires: cuda-toolkit
URL: https://github.com/ggerganov/llama.cpp
URL: https://github.com/ggml-org/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0

View File

@@ -18,10 +18,10 @@ Version: %( date "+%%Y%%m%%d" )
Release: 1%{?dist}
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
License: MIT
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
Source0: https://github.com/ggml-org/llama.cpp/archive/refs/heads/master.tar.gz
BuildRequires: coreutils make gcc-c++ git libstdc++-devel
Requires: libstdc++
URL: https://github.com/ggerganov/llama.cpp
URL: https://github.com/ggml-org/llama.cpp
%define debug_package %{nil}
%define source_date_epoch_from_changelog 0

View File

@@ -1,6 +1,6 @@
ARG UBUNTU_VERSION=22.04
# This needs to generally match the container host's environment.
ARG MUSA_VERSION=rc3.1.0
ARG MUSA_VERSION=rc3.1.1
# Target the MUSA build image
ARG BASE_MUSA_DEV_CONTAINER=mthreads/musa:${MUSA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
@@ -35,7 +35,7 @@ COPY . .
RUN if [ "${MUSA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DMUSA_ARCHITECTURES=${MUSA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \

View File

@@ -133,12 +133,12 @@ effectiveStdenv.mkDerivation (finalAttrs: {
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
# With PR#6015 https://github.com/ggerganov/llama.cpp/pull/6015,
# With PR#6015 https://github.com/ggml-org/llama.cpp/pull/6015,
# `default.metallib` may be compiled with Metal compiler from XCode
# and we need to escape sandbox on MacOS to access Metal compiler.
# `xcrun` is used find the path of the Metal compiler, which is varible
# and not on $PATH
# see https://github.com/ggerganov/llama.cpp/pull/6118 for discussion
# see https://github.com/ggml-org/llama.cpp/pull/6118 for discussion
__noChroot = effectiveStdenv.isDarwin && useMetalKit && precompileMetalShaders;
nativeBuildInputs =
@@ -220,7 +220,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
broken = (useMetalKit && !effectiveStdenv.isDarwin);
description = "Inference of LLaMA model in pure C/C++${descriptionSuffix}";
homepage = "https://github.com/ggerganov/llama.cpp/";
homepage = "https://github.com/ggml-org/llama.cpp/";
license = lib.licenses.mit;
# Accommodates `nix run` and `lib.getExe`

View File

@@ -11,14 +11,14 @@ ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-co
FROM ${BASE_ROCM_DEV_CONTAINER} AS build
# Unless otherwise specified, we make a fat build.
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
# List from https://github.com/ggml-org/llama.cpp/pull/1087#issuecomment-1682807878
# This is mostly tied to rocBLAS supported archs.
# gfx803, gfx900, gfx1032, gfx1101, gfx1102,not officialy supported
# gfx906 is deprecated
#check https://rocm.docs.amd.com/projects/install-on-linux/en/docs-6.2.4/reference/system-requirements.html
#ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
ARG ROCM_DOCKER_ARCH=gfx1100
ARG ROCM_DOCKER_ARCH='gfx803,gfx900,gfx906,gfx908,gfx90a,gfx942,gfx1010,gfx1030,gfx1032,gfx1100,gfx1101,gfx1102'
#ARG ROCM_DOCKER_ARCH=gfx1100
# Set nvcc architectured
ENV AMDGPU_TARGETS=${ROCM_DOCKER_ARCH}
@@ -40,7 +40,7 @@ WORKDIR /app
COPY . .
RUN HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=$ROCM_DOCKER_ARCH -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_CURL=ON \
&& cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib \

View File

@@ -13,9 +13,13 @@ elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
exec ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
exec ./llama-cli "$@"
elif [[ "$arg1" == '--bench' || "$arg1" == '-b' ]]; then
exec ./llama-bench "$@"
elif [[ "$arg1" == '--perplexity' || "$arg1" == '-p' ]]; then
exec ./llama-perplexity "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
for i in $(ls $1/$2/ggml-model-f16.bin*); do
if [ -f "${i/f16/q4_0}" ]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
@@ -30,6 +34,10 @@ else
echo "Available commands: "
echo " --run (-r): Run a model previously converted into ggml"
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
echo " --bench (-b): Benchmark the performance of the inference for various parameters."
echo " ex: -m model.gguf"
echo " --perplexity (-p): Measure the perplexity of a model over a given text."
echo " ex: -m model.gguf -f file.txt"
echo " --convert (-c): Convert a llama model into ggml"
echo " ex: --outtype f16 \"/models/7B/\" "
echo " --quantize (-q): Optimize with quantization process ggml"

View File

@@ -1,4 +1,4 @@
ARG UBUNTU_VERSION=jammy
ARG UBUNTU_VERSION=24.04
FROM ubuntu:$UBUNTU_VERSION AS build
@@ -7,7 +7,7 @@ RUN apt update && apt install -y git build-essential cmake wget
# Install Vulkan SDK and cURL
RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key add - && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-jammy.list https://packages.lunarg.com/vulkan/lunarg-vulkan-jammy.list && \
wget -qO /etc/apt/sources.list.d/lunarg-vulkan-noble.list https://packages.lunarg.com/vulkan/lunarg-vulkan-noble.list && \
apt update -y && \
apt-get install -y vulkan-sdk libcurl4-openssl-dev curl
@@ -16,7 +16,7 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 -DGGML_BACKEND_DL=ON -DGGML_CPU_ALL_VARIANTS=ON && \
cmake --build build --config Release -j$(nproc)
RUN mkdir -p /app/lib && \
@@ -34,7 +34,7 @@ RUN mkdir -p /app/full \
FROM ubuntu:$UBUNTU_VERSION AS base
RUN apt-get update \
&& apt-get install -y libgomp1 curl\
&& apt-get install -y libgomp1 curl libvulkan-dev \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \
@@ -55,8 +55,9 @@ RUN apt-get update \
git \
python3 \
python3-pip \
&& pip install --upgrade pip setuptools wheel \
&& pip install -r requirements.txt \
python3-wheel \
&& pip install --break-system-packages --upgrade setuptools \
&& pip install --break-system-packages -r requirements.txt \
&& apt autoremove -y \
&& apt clean -y \
&& rm -rf /tmp/* /var/tmp/* \

View File

@@ -40,3 +40,11 @@ indent_style = tab
[examples/cvector-generator/*.txt]
trim_trailing_whitespace = unset
insert_final_newline = unset
[models/templates/*.jinja]
indent_style = unset
indent_size = unset
end_of_line = unset
charset = unset
trim_trailing_whitespace = unset
insert_final_newline = unset

View File

@@ -6,7 +6,7 @@ body:
- type: markdown
attributes:
value: |
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggerganov/llama.cpp/discussions/categories/ideas)
[Please post your idea first in Discussion if there is not yet a consensus for this enhancement request. This will help to keep this issue tracker focused on enhancements that the community has agreed needs to be implemented.](https://github.com/ggml-org/llama.cpp/discussions/categories/ideas)
- type: checkboxes
id: prerequisites
@@ -16,11 +16,11 @@ body:
options:
- label: I am running the latest code. Mention the version if possible as well.
required: true
- label: I carefully followed the [README.md](https://github.com/ggerganov/llama.cpp/blob/master/README.md).
- label: I carefully followed the [README.md](https://github.com/ggml-org/llama.cpp/blob/master/README.md).
required: true
- label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
required: true
- label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new and useful enhancement to share.
- label: I reviewed the [Discussions](https://github.com/ggml-org/llama.cpp/discussions), and have a new and useful enhancement to share.
required: true
- type: textarea

View File

@@ -6,7 +6,7 @@ body:
- type: markdown
attributes:
value: |
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
Don't forget to check for any [duplicate research issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
- type: checkboxes
id: research-stage

View File

@@ -6,8 +6,8 @@ body:
- type: markdown
attributes:
value: |
Don't forget to [check for existing refactor issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggerganov/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
Don't forget to [check for existing refactor issue tickets](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3Arefactoring) in case it's already covered.
Also you may want to check [Pull request refactor label as well](https://github.com/ggml-org/llama.cpp/pulls?q=is%3Aopen+is%3Apr+label%3Arefactoring) for duplicates too.
- type: textarea
id: background-description

View File

@@ -1,11 +1,11 @@
blank_issues_enabled: true
contact_links:
- name: Got an idea?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
url: https://github.com/ggml-org/llama.cpp/discussions/categories/ideas
about: Pop it there. It may then become an enhancement ticket.
- name: Got a question?
url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
url: https://github.com/ggml-org/llama.cpp/discussions/categories/q-a
about: Ask a question there!
- name: Want to contribute?
url: https://github.com/ggerganov/llama.cpp/wiki/contribute
url: https://github.com/ggml-org/llama.cpp/wiki/contribute
about: Head to the contribution guide page of the wiki for areas you can help with

View File

@@ -0,0 +1,25 @@
name: 'Windows - Setup CURL'
description: 'Composite action, to be reused in other workflow'
inputs:
curl_version:
description: 'CURL version'
required: false
default: '8.6.0_6'
outputs:
curl_path:
description: "Path to the downloaded libcurl"
value: ${{ steps.get_libcurl.outputs.curl_path }}
runs:
using: "composite"
steps:
- name: libCURL
id: get_libcurl
shell: powershell
env:
CURL_VERSION: ${{ inputs.curl_version }}
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
echo "curl_path=$env:RUNNER_TEMP/libcurl" >> $env:GITHUB_OUTPUT

View File

@@ -1 +1 @@
*Make sure to read the [contributing guidelines](https://github.com/ggerganov/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*
*Make sure to read the [contributing guidelines](https://github.com/ggml-org/llama.cpp/blob/master/CONTRIBUTING.md) before submitting a PR*

View File

@@ -1,5 +1,5 @@
# TODO: there have been some issues with the workflow, so disabling for now
# https://github.com/ggerganov/llama.cpp/issues/7893
# https://github.com/ggml-org/llama.cpp/issues/7893
#
# Benchmark
name: Benchmark
@@ -57,17 +57,7 @@ jobs:
if: |
inputs.gpu-series == 'Standard_NC4as_T4_v3'
|| (
github.event_name == 'schedule'
&& github.ref_name == 'master'
&& github.repository_owner == 'ggerganov'
)
|| github.event_name == 'pull_request_target'
|| (
github.event_name == 'push'
&& github.event.ref == 'refs/heads/master'
&& github.repository_owner == 'ggerganov'
)
steps:
- name: Clone
id: checkout
@@ -114,7 +104,6 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DLLAMA_CUBLAS=ON \
-DCUDAToolkit_ROOT=/usr/local/cuda \
-DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc \

124
.github/workflows/build-linux-cross.yml vendored Normal file
View File

@@ -0,0 +1,124 @@
name: Build on Linux using cross-compiler
on:
workflow_dispatch:
workflow_call:
jobs:
ubuntu-latest-riscv64-cpu-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-riscv64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Riscv
run: |
sudo dpkg --add-architecture riscv64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
gcc-14-riscv64-linux-gnu \
g++-14-riscv64-linux-gnu \
libvulkan-dev:riscv64 \
libcurl4-openssl-dev:riscv64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=riscv64 \
-DCMAKE_C_COMPILER=riscv64-linux-gnu-gcc-14 \
-DCMAKE_CXX_COMPILER=riscv64-linux-gnu-g++-14 \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/riscv64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)
ubuntu-latest-arm64-vulkan-cross:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Setup Arm64
run: |
sudo dpkg --add-architecture arm64
sudo sed -i 's|http://azure.archive.ubuntu.com/ubuntu|http://ports.ubuntu.com/ubuntu-ports|g' \
/etc/apt/sources.list /etc/apt/apt-mirrors.txt
sudo apt-get clean
sudo apt-get update
sudo apt-get install -y --no-install-recommends \
build-essential \
glslc \
crossbuild-essential-arm64 \
libvulkan-dev:arm64 \
libcurl4-openssl-dev:arm64
- name: Build
run: |
cmake -B build -DCMAKE_BUILD_TYPE=Release \
-DGGML_VULKAN=ON \
-DGGML_OPENMP=OFF \
-DLLAMA_BUILD_EXAMPLES=ON \
-DLLAMA_BUILD_TESTS=OFF \
-DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_SYSTEM_PROCESSOR=aarch64 \
-DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc \
-DCMAKE_CXX_COMPILER=aarch64-linux-gnu-g++ \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_FIND_ROOT_PATH=/usr/lib/aarch64-linux-gnu \
-DCMAKE_FIND_ROOT_PATH_MODE_PROGRAM=NEVER \
-DCMAKE_FIND_ROOT_PATH_MODE_LIBRARY=ONLY \
-DCMAKE_FIND_ROOT_PATH_MODE_INCLUDE=BOTH
cmake --build build --config Release -j $(nproc)

File diff suppressed because it is too large Load Diff

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- uses: actions/stale@v5
with:
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug"
exempt-issue-labels: "refactor,help wanted,good first issue,research,bug,roadmap"
days-before-issue-stale: 30
days-before-issue-close: 14
stale-issue-label: "stale"

View File

@@ -28,20 +28,21 @@ jobs:
push_to_registry:
name: Push Docker image to Docker Hub
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
env:
COMMIT_SHA: ${{ github.sha }}
strategy:
fail-fast: false
matrix:
config:
# Multi-stage build
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, freediskspace: false}
- { tag: "cpu", dockerfile: ".devops/cpu.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "cuda", dockerfile: ".devops/cuda.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "musa", dockerfile: ".devops/musa.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: true }
- { tag: "intel", dockerfile: ".devops/intel.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
- { tag: "vulkan", dockerfile: ".devops/vulkan.Dockerfile", platforms: "linux/amd64", full: true, light: true, server: true, free_disk_space: false }
# Note: the rocm images are failing due to a compiler error and are disabled until this is fixed to allow the workflow to complete
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, freediskspace: true }
#- {tag: "rocm", dockerfile: ".devops/rocm.Dockerfile", platforms: "linux/amd64,linux/arm64", full: true, light: true, server: true, free_disk_space: true }
steps:
- name: Check out the repo
uses: actions/checkout@v4
@@ -50,6 +51,8 @@ jobs:
- name: Set up QEMU
uses: docker/setup-qemu-action@v3
with:
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -11,7 +11,7 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
repository: "ggerganov/llama.cpp"
repository: "ggml-org/llama.cpp"
- uses: actions/labeler@v5
with:
configuration-path: '.github/labeler.yml'

View File

@@ -81,13 +81,36 @@ jobs:
with:
node-version: '22.11.0'
- name: WebUI - Install dependencies
id: webui_lint
run: |
cd examples/server/webui
npm ci
- name: WebUI - Check code format
id: webui_format
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
git status
npm run format
git status
modified_files="$(git status -s)"
echo "Modified files: ${modified_files}"
if [ -n "${modified_files}" ]; then
echo "Files do not follow coding style. To fix: npm run format"
echo "${modified_files}"
exit 1
fi
- name: Verify bundled index.html
id: verify_server_index_html
run: |
git config --global --add safe.directory $(realpath .)
cd examples/server/webui
git status
npm ci
npm run build
git status
modified_files="$(git status -s)"
@@ -106,30 +129,48 @@ jobs:
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON \
-DGGML_OPENMP=OFF ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build
id: cmake_build
if: ${{ matrix.sanitizer != 'THREAD' }}
- name: Build (sanitizers)
id: cmake_build_sanitizers
if: ${{ matrix.sanitizer != '' && matrix.sanitizer != 'THREAD' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DLLAMA_CURL=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} \
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Build (sanitizers)
id: cmake_build
if: ${{ matrix.sanitizer == '' }}
run: |
cmake -B build \
-DGGML_NATIVE=OFF \
-DLLAMA_BUILD_SERVER=ON \
-DCMAKE_BUILD_TYPE=${{ matrix.build_type }} ;
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target llama-server
- name: Tests
id: server_integration_tests
if: ${{ matrix.sanitizer == '' }}
env:
GITHUB_ACTIONS: "true"
run: |
cd examples/server/tests
./tests.sh
- name: Tests (sanitizers)
id: server_integration_tests_sanitizers
if: ${{ matrix.sanitizer != '' }}
run: |
cd examples/server/tests
LLAMA_SANITIZE=1 ./tests.sh
- name: Slow tests
id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
@@ -151,17 +192,14 @@ jobs:
- name: libCURL
id: get_libcurl
env:
CURL_VERSION: 8.6.0_6
run: |
curl.exe -o $env:RUNNER_TEMP/curl.zip -L "https://curl.se/windows/dl-${env:CURL_VERSION}/curl-${env:CURL_VERSION}-win64-mingw.zip"
mkdir $env:RUNNER_TEMP/libcurl
tar.exe -xvf $env:RUNNER_TEMP/curl.zip --strip-components=1 -C $env:RUNNER_TEMP/libcurl
uses: ./.github/actions/windows-setup-curl
- name: Build
id: cmake_build
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cmake -B build -DLLAMA_CURL=ON -DCURL_LIBRARY="$env:RUNNER_TEMP/libcurl/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:RUNNER_TEMP/libcurl/include"
cmake -B build -DCURL_LIBRARY="$env:CURL_PATH/lib/libcurl.dll.a" -DCURL_INCLUDE_DIR="$env:CURL_PATH/include"
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS} --target llama-server
- name: Python setup
@@ -177,8 +215,10 @@ jobs:
- name: Copy Libcurl
id: prepare_libcurl
env:
CURL_PATH: ${{ steps.get_libcurl.outputs.curl_path }}
run: |
cp $env:RUNNER_TEMP/libcurl/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
cp $env:CURL_PATH/bin/libcurl-x64.dll ./build/bin/Release/libcurl-x64.dll
- name: Tests
id: server_integration_tests
@@ -186,7 +226,7 @@ jobs:
run: |
cd examples/server/tests
$env:PYTHONIOENCODING = ":replace"
pytest -v -x
pytest -v -x -m "not slow"
- name: Slow tests
id: server_integration_tests_slow

4
.gitignore vendored
View File

@@ -18,6 +18,7 @@
*.metallib
*.o
*.so
*.swp
*.tmp
# IDE / OS
@@ -44,6 +45,8 @@ lcov-report/
tags
.build/
build*
release
debug
!build-info.cmake
!build-info.cpp.in
!build-info.sh
@@ -97,6 +100,7 @@ examples/server/*.css.hpp
examples/server/*.html.hpp
examples/server/*.js.hpp
examples/server/*.mjs.hpp
examples/server/*.gz.hpp
!build_64.sh
!examples/*.bat
!examples/*/*.kts

142
AUTHORS
View File

@@ -1,4 +1,4 @@
# date: Thu Nov 28 20:46:15 EET 2024
# date: Sat Mar 8 18:23:52 EET 2025
# this file is auto-generated by scripts/gen-authors.sh
0cc4m <picard12@live.de>
@@ -8,10 +8,12 @@
3ooabkhxtn <31479382+3ooabkhxtn@users.noreply.github.com>
44670 <44670@users.noreply.github.com>
65a <10104049+65a@users.noreply.github.com>
708-145 <40387547+708-145@users.noreply.github.com>
AN Long <aisk@users.noreply.github.com>
AT <manyoso@users.noreply.github.com>
Aarni Koskela <akx@iki.fi>
Aaron Miller <apage43@ninjawhale.com>
Aaron Teo <57927438+taronaeo@users.noreply.github.com>
Aaryaman Vasishta <aaryaman.vasishta@amd.com>
Abheek Gulati <abheekg@hotmail.com>
Abhilash Majumder <30946547+abhilash1910@users.noreply.github.com>
@@ -20,21 +22,27 @@ Adithya Balaji <adithya.b94@gmail.com>
AdithyanI <adithyan.i4internet@gmail.com>
Adrian <smith.adriane@gmail.com>
Adrian Hesketh <a-h@users.noreply.github.com>
Adrian Kretz <me@akretz.com>
Adrien Gallouët <adrien@gallouet.fr>
Adrien Gallouët <angt@huggingface.co>
Ahmad Tameem <113388789+Tameem-10xE@users.noreply.github.com>
Ahmet Zeer <ahmed.zeer@std.yildiz.edu.tr>
AidanBeltonS <87009434+AidanBeltonS@users.noreply.github.com>
AidanBeltonS <aidan.belton@codeplay.com>
Aisuko <urakiny@gmail.com>
Akarshan Biswas <akarshan.biswas@gmail.com>
Akarshan Biswas <akarshan@menlo.ai>
Akarshan Biswas <akarshanbiswas@fedoraproject.org>
Al Mochkin <14274697+amochkin@users.noreply.github.com>
Albert Jin <albert.jin@gmail.com>
Alberto <57916483+albbus-stack@users.noreply.github.com>
Alberto Cabrera Pérez <alberto.cabrera@codeplay.com>
Alberto Cabrera Pérez <alberto.cabrera@intel.com>
Aleksei Nikiforov <103434461+AlekseiNikiforovIBM@users.noreply.github.com>
Alex <awhill19@icloud.com>
Alex Azarov <alex@azarov.by>
Alex Azarov <alexander.azarov@mapbox.com>
Alex Brooks <alex.brooks@ibm.com>
Alex Klinkhamer <from.github.com.917@grencez.dev>
Alex Klinkhamer <git@grencez.dev>
Alex Nguyen <tiendung@users.noreply.github.com>
@@ -55,6 +63,7 @@ Ananta Bastola <anantarajbastola@gmail.com>
Anas Ahouzi <112881240+aahouzi@users.noreply.github.com>
András Salamon <ott2@users.noreply.github.com>
Andreas (Andi) Kunar <andreask@msn.com>
Andreas Kieslinger <47689530+aendk@users.noreply.github.com>
Andrei <abetlen@gmail.com>
Andrew Canis <andrew.canis@gmail.com>
Andrew Downing <andrew2085@gmail.com>
@@ -64,6 +73,7 @@ Andrew Minh Nguyen <40281306+amqdn@users.noreply.github.com>
Andy Salerno <andysalerno@gmail.com>
Andy Tai <andy-tai@users.noreply.github.com>
Anthony Van de Gejuchte <anthonyvdgent@gmail.com>
Antoine Viallon <antoine@lesviallon.fr>
Antonis Makropoulos <benuix@gmail.com>
Arik Poznanski <arikpoz@users.noreply.github.com>
Armen Kaleshian <kriation@users.noreply.github.com>
@@ -80,6 +90,7 @@ Atsushi Tatsuma <yoshoku@outlook.com>
Austin <77757836+teleprint-me@users.noreply.github.com>
AustinMroz <austinmroz@utexas.edu>
BADR <contact@pythops.com>
BB-fat <45072480+BB-fat@users.noreply.github.com>
Bach Le <bach@bullno1.com>
Bailey Chittle <39804642+bachittle@users.noreply.github.com>
BarfingLemurs <128182951+BarfingLemurs@users.noreply.github.com>
@@ -91,13 +102,18 @@ Ben Siraphob <bensiraphob@gmail.com>
Ben Williams <ben@719ben.com>
Benjamin Findley <39356821+Kartoffelsaft@users.noreply.github.com>
Benjamin Lecaillon <84293038+blecaillon@users.noreply.github.com>
Benson Wong <mostlygeek@gmail.com>
Bernat Vadell <hounter.caza@gmail.com>
Bernhard M. Wiedemann <githubbmwprimary@lsmod.de>
Bert Wagner <github@bertwagner.com>
Billel Mokeddem <billel.mokeddem.ml@gmail.com>
Bingan <70050083+binganao@users.noreply.github.com>
Bjarke Viksøe <164612031+bviksoe@users.noreply.github.com>
Bodhi <3882561+BodhiHu@users.noreply.github.com>
Bodo Graumann <mail@bodograumann.de>
Bono Lv <lvscar@users.noreply.github.com>
Borislav Stanimirov <b.stanimirov@abv.bg>
Borislav Stanimirov <b@ibob.bg>
Branden Butler <bwtbutler@hotmail.com>
Brandon Squizzato <35474886+bsquizz@users.noreply.github.com>
Brian <mofosyne@gmail.com>
@@ -117,9 +133,11 @@ Casey Primozic <casey@cprimozic.net>
Casey Primozic <me@ameo.link>
CausalLM <148736309+CausalLM@users.noreply.github.com>
Cebtenzzre <cebtenzzre@gmail.com>
CentricStorm <CentricStorm@users.noreply.github.com>
Chad Brewbaker <crb002@gmail.com>
Changyeon Kim <cyzero.kim@samsung.com>
Chao Jiang <jc19chaoj@zoho.com>
Charles Duffy <charles@dyfis.net>
Charles Xu <63788048+chaxu01@users.noreply.github.com>
Charles Xu <charles.xu@arm.com>
Chen Xi <xi2.chen@intel.com>
@@ -131,12 +149,17 @@ Chris Kuehl <ckuehl@ckuehl.me>
Christian Demsar <christian@github.email.demsar.us>
Christian Demsar <crasm@git.vczf.us>
Christian Falch <875252+chrfalch@users.noreply.github.com>
Christian Fillion <cfillion@users.noreply.github.com>
Christian Kastner <ckk@kvr.at>
Christian Kögler <ck3d@gmx.de>
Christian Köhnenkamp <cvk5@me.com>
Christian Zhou-Zheng <59622928+christianazinn@users.noreply.github.com>
Christopher Nielsen <62156882+mascguy@users.noreply.github.com>
Clark Saben <76020733+csaben@users.noreply.github.com>
Clauszy <zhangyub@uniontech.com>
Clint Herron <hanclinto@gmail.com>
Conrad Kramer <conrad@conradkramer.com>
Corentin REGAL <corentin.regal@gmail.com>
CrispStrobe <154636388+CrispStrobe@users.noreply.github.com>
Csaba Kecskemeti <csaba.kecskemeti@gmail.com>
Cuong Trinh Manh <nguoithichkhampha@gmail.com>
@@ -152,6 +175,7 @@ Daniel Hiltgen <dhiltgen@users.noreply.github.com>
Daniel Illescas Romero <illescas.daniel@protonmail.com>
Daniel Kleine <53251018+d-kleine@users.noreply.github.com>
Daniele <57776841+daniandtheweb@users.noreply.github.com>
Danny Milosavljevic <dannym@friendly-machines.com>
DannyDaemonic <DannyDaemonic@gmail.com>
Dat Quoc Nguyen <2412555+datquocnguyen@users.noreply.github.com>
Dave <dave-fl@users.noreply.github.com>
@@ -159,6 +183,7 @@ Dave Airlie <airlied@gmail.com>
Dave Airlie <airlied@redhat.com>
Dave Della Costa <ddellacosta+github@gmail.com>
David Friehs <david@friehs.info>
David Huang <1969802+hjc4869@users.noreply.github.com>
David Kennedy <dakennedyd@gmail.com>
David Pflug <david@pflug.email>
David Renshaw <dwrenshaw@gmail.com>
@@ -176,6 +201,7 @@ Dibakar Gope <dibakar.gope@arm.com>
Didzis Gosko <didzis@users.noreply.github.com>
Diego Devesa <slarengh@gmail.com>
Diogo Teles Sant'Anna <diogoteles@google.com>
Djip007 <3705339+Djip007@users.noreply.github.com>
Djip007 <djip.perois@free.fr>
Don Mahurin <dmahurin@users.noreply.github.com>
DooWoong Lee (David) <manics99@naver.com>
@@ -193,6 +219,7 @@ Edward Taylor <edeetee@gmail.com>
Elaine <elaine.zosa@gmail.com>
Elbios <141279586+Elbios@users.noreply.github.com>
Elton Kola <eltonkola@gmail.com>
Emreerdog <34742675+Emreerdog@users.noreply.github.com>
Engininja2 <139037756+Engininja2@users.noreply.github.com>
Equim <sayaka@ekyu.moe>
Eric Curtin <ecurtin@redhat.com>
@@ -223,6 +250,7 @@ Felix <stenbackfelix@gmail.com>
Finn Voorhees <finnvoorhees@gmail.com>
Firat <firatkiral@gmail.com>
FirstTimeEZ <179362031+FirstTimeEZ@users.noreply.github.com>
Florent BENOIT <fbenoit@redhat.com>
Folko-Ven <71110216+Folko-Ven@users.noreply.github.com>
Foul-Tarnished <107711110+Foul-Tarnished@users.noreply.github.com>
Francisco Melo <43780565+francis2tm@users.noreply.github.com>
@@ -233,6 +261,7 @@ Fred Douglas <43351173+fredlas@users.noreply.github.com>
Frederik Vogel <Schaltfehler@users.noreply.github.com>
Gabe Goodhart <gabe.l.hart@gmail.com>
Gabe Goodhart <ghart@us.ibm.com>
Gaetan Bisson <gaetan@fenua.org>
GainLee <perfecter.gen@gmail.com>
Galunid <karolek1231456@gmail.com>
Gary Linscott <glinscott@gmail.com>
@@ -240,6 +269,7 @@ Gary Mulder <gjmulder@gmail.com>
Gavin Zhao <gavinzhaojw@protonmail.com>
Genkagaku.GPT <hlhr202@163.com>
Georgi Gerganov <ggerganov@gmail.com>
Gian-Carlo Pascutto <gcp@sjeng.org>
Gilad S <giladgd@users.noreply.github.com>
Gilad S. <7817232+giladgd@users.noreply.github.com>
Giuseppe Scrivano <giuseppe@scrivano.org>
@@ -249,21 +279,27 @@ Guillaume "Vermeille" Sanchez <Guillaume.V.Sanchez@gmail.com>
Guillaume Wenzek <gwenzek@users.noreply.github.com>
Guoliang Hua <32868157+nbcsm@users.noreply.github.com>
Guoteng <32697156+SolenoidWGT@users.noreply.github.com>
Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
Gustavo Rocha Dias <91472747+gustrd@users.noreply.github.com>
Haggai Nuchi <h.nuchi@gmail.com>
Halalaluyafail3 <55773281+Halalaluyafail3@users.noreply.github.com>
Hale Chan <halechan@qq.com>
Hamdoud Hakem <90524568+hamdoudhakem@users.noreply.github.com>
Han Yin <han.yin@arm.com>
HanishKVC <hanishkvc@gmail.com>
Haohui Mai <ricetons@gmail.com>
Haoxiang Fei <tonyfettes@tonyfettes.com>
Harald Fernengel <harald.fernengel@here.com>
Hatsune Miku <129688334+at8u@users.noreply.github.com>
HatsuneMikuUwU33 <173229399+HatsuneMikuUwU33@users.noreply.github.com>
Haus1 <haus.xda@gmail.com>
Henk Poley <HenkPoley@gmail.com>
Henri Vasserman <henv@hot.ee>
Henrik Forstén <henrik.forsten@gmail.com>
Henry Linjamäki <henry.linjamaki@gmail.com>
Herman Semenov <GermanAizek@yandex.ru>
Hesen Peng <hesen.peng@gmail.com>
HimariO <dsfhe49854@gmail.com>
Hoang Nguyen <hugo53@users.noreply.github.com>
Hong Bo PENG <penghb@cn.ibm.com>
Hongyu Ouyang <96765450+casavaca@users.noreply.github.com>
@@ -280,6 +316,7 @@ Icecream95 <the.real.icecream95@gmail.com>
Ido S <ido.pluto@gmail.com>
IgnacioFDM <ignaciofdm@gmail.com>
Igor Okulist <okigan@gmail.com>
Ihar Hrachyshka <ihrachys@redhat.com>
Ikko Eltociear Ashimine <eltociear@gmail.com>
Ilya Kurdyukov <59548320+ilyakurdyukov@users.noreply.github.com>
Ionoclast Laboratories <brigham@ionoclast.com>
@@ -289,12 +326,15 @@ Ivan <nekotekina@gmail.com>
Ivan Filipov <159561759+vanaka11@users.noreply.github.com>
Ivan Komarov <Ivan.Komarov@dfyz.info>
Ivan Stepanov <ivanstepanovftw@gmail.com>
JC <43374599+MrSMlT@users.noreply.github.com>
JFLFY2255 <JFLFY2255@163.com>
JH23X <165871467+JH23X@users.noreply.github.com>
Jack Mousseau <jack@software.inc>
Jack Mousseau <jmousseau@users.noreply.github.com>
JackJollimore <130917767+JackJollimore@users.noreply.github.com>
Jaeden Amero <jaeden@patater.com>
Jaemin Son <woalsdnd@gmail.com>
Jafar Uruç <jafar.uruc@gmail.com>
Jag Chadha <jagtesh@gmail.com>
Jakub N <jakubniemczyk97@gmail.com>
James A Capozzoli <157492257+jac-jim@users.noreply.github.com>
@@ -305,6 +345,7 @@ Jan Ploski <jpl@plosquare.com>
Jannis Schönleber <joennlae@gmail.com>
Jared Van Bortel <cebtenzzre@gmail.com>
Jared Van Bortel <jared@nomic.ai>
Jason C.H <ctrysbita@outlook.com>
Jason McCartney <jmac@theroot.org>
Jason Stillerman <jason.t.stillerman@gmail.com>
Jean-Christophe Hoelt <hoelt@fovea.cc>
@@ -315,12 +356,14 @@ Jeffrey Morgan <jmorganca@gmail.com>
Jeffrey Quesnelle <emozilla@nousresearch.com>
Jeroen Mostert <jeroen.mostert@cm.com>
Jesse Jojo Johnson <williamsaintgeorge@gmail.com>
Jett Janiak <jettjaniak@gmail.com>
Jeximo <jeximo@gmail.com>
Jhen-Jie Hong <iainst0409@gmail.com>
Jiahao Li <liplus17@163.com>
Jian Liao <jianliao@users.noreply.github.com>
JidongZhang-THU <1119708529@qq.com>
Jinwoo Jeong <33892306+williamjeong2@users.noreply.github.com>
Jinyang He <hejinyang@loongson.cn>
Jiří Podivín <66251151+jpodivin@users.noreply.github.com>
Jiří Sejkora <Sejseloid@gmail.com>
Joan Fontanals <jfontanalsmartinez@gmail.com>
@@ -343,6 +386,7 @@ Josh Ramer <josh.ramer@icloud.com>
Joyce <joycebrum@google.com>
Juan Calderon-Perez <835733+gaby@users.noreply.github.com>
Judd <foldl@users.noreply.github.com>
Juk Armstrong <69222624+jukofyork@users.noreply.github.com>
Julius Arkenberg <arki05@users.noreply.github.com>
Jun Hee Yoo <contact.jhyoo@gmail.com>
Jun Jie <71215065+junnjiee16@users.noreply.github.com>
@@ -357,6 +401,8 @@ Justine Tunney <jtunney@mozilla.com>
Juuso Alasuutari <juuso.alasuutari@gmail.com>
KASR <karim.asrih@gmail.com>
Kamil Tomšík <info@tomsik.cz>
Kante Yin <kerthcet@gmail.com>
Karol Kontny <82021046+kkontny@users.noreply.github.com>
Karsten Weiss <knweiss@gmail.com>
Karthick <j.karthic2004@gmail.com>
Karthik Kumar Viswanathan <195178+guilt@users.noreply.github.com>
@@ -376,6 +422,7 @@ Kolen Cheung <ickc@users.noreply.github.com>
Konstantin Herud <konstantin.herud@denkbares.com>
Konstantin Zhuravlyov <konstantin.zhuravlyov@amd.com>
Kunshang Ji <kunshang.ji@intel.com>
Kyle Bruene <KyleBruene@users.noreply.github.com>
Kyle Liang <liangmanlai@gmail.com>
Kyle Mistele <kyle@mistele.com>
Kylin <56434533+KyL0N@users.noreply.github.com>
@@ -394,6 +441,8 @@ Liu Jia <jia3.liu@intel.com>
LoganDark <github@logandark.mozmail.com>
Loïc Carrère <loic.carrere@gmail.com>
LostRuins <39025047+LostRuins@users.noreply.github.com>
LostRuins Concedo <39025047+LostRuins@users.noreply.github.com>
Lucas Moura Belo <lucas.belo@live.com>
Luciano <lucianostrika44@gmail.com>
Luo Tian <lt@basecity.com>
Lyle Dean <dean@lyle.dev>
@@ -423,6 +472,7 @@ MasterYi1024 <39848311+MasterYi1024@users.noreply.github.com>
Mateusz Charytoniuk <mateusz.charytoniuk@protonmail.com>
Matheus C. França <matheus-catarino@hotmail.com>
Matheus Gabriel Alves Silva <matheusgasource@gmail.com>
Mathieu Baudier <mbaudier@argeo.org>
Mathieu Geli <mathieu.geli@gmail.com>
Mathieu Nayrolles <MathieuNls@users.noreply.github.com>
Mathijs Henquet <mathijs.henquet@gmail.com>
@@ -437,6 +487,7 @@ Matthew Tejo <matthew.tejo@gmail.com>
Matvey Soloviev <blackhole89@gmail.com>
Max Krasnyansky <max.krasnyansky@gmail.com>
Max Krasnyansky <quic_maxk@quicinc.com>
Maxim Evtush <154841002+maximevtush@users.noreply.github.com>
Maxime <672982+maximegmd@users.noreply.github.com>
Maximilian Winter <maximilian.winter.91@gmail.com>
Meng Zhang <meng@tabbyml.com>
@@ -444,6 +495,7 @@ Meng, Hengyu <hengyu.meng@intel.com>
Mengqing Cao <cmq0113@163.com>
Merrick Christensen <merrick.christensen@gmail.com>
Michael Coppola <m18coppola@gmail.com>
Michael Engel <mengel@redhat.com>
Michael Francis <edude03@gmail.com>
Michael Hueschen <m@mhueschen.dev>
Michael Kesper <mkesper@schokokeks.org>
@@ -452,7 +504,9 @@ Michael Podvitskiy <podvitskiymichael@gmail.com>
Michael Potter <NanoTekGuy@Gmail.com>
Michael de Gans <michael.john.degans@gmail.com>
Michaël de Vries <vriesdemichael@gmail.com>
Michał Moskal <michal@moskal.me>
Michał Tuszyński <srgtuszy@gmail.com>
Michelle Tan <41475767+MichelleTanPY@users.noreply.github.com>
Mihai <mihai.chirculescu@yahoo.com>
Mike <ytianhui2004@gmail.com>
Mikko Juola <mikjuo@gmail.com>
@@ -465,6 +519,7 @@ Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com>
Mohammadreza Hendiani <hendiani.mohammadreza@gmail.com>
Mohammadreza Hendiani <mohammad.r.hendiani@gmail.com>
Molly Sophia <mollysophia379@gmail.com>
MoonRide303 <130458190+MoonRide303@users.noreply.github.com>
MorganRO8 <47795945+MorganRO8@users.noreply.github.com>
Murilo Santana <mvrilo@gmail.com>
Musab Gultekin <musabgultekin@users.noreply.github.com>
@@ -477,6 +532,7 @@ Neo Zhang <14088817+arthw@users.noreply.github.com>
Neo Zhang <zhang.jianyu@outlook.com>
Neo Zhang Jianyu <jianyu.zhang@intel.com>
Neuman Vong <neuman.vong@gmail.com>
NeverLucky <92274250+nvrxq@users.noreply.github.com>
Nexes the Old <124105151+Nexesenex@users.noreply.github.com>
Nexesenex <124105151+Nexesenex@users.noreply.github.com>
Niall Coates <1349685+Niall-@users.noreply.github.com>
@@ -484,12 +540,17 @@ Nicholai Tukanov <nicholaitukanov@gmail.com>
Nico Bosshard <nico@bosshome.ch>
Nicolai Weitkemper <kontakt@nicolaiweitkemper.de>
Nicolás Pérez <nicolas_perez@brown.edu>
Nicolò Scipione <nicolo.scipione@codeplay.com>
Nigel Bosch <pnigelb@gmail.com>
Nikita Sarychev <42014488+sARY77@users.noreply.github.com>
Niklas Korz <niklas@niklaskorz.de>
NikolaiLyssogor <59844691+NikolaiLyssogor@users.noreply.github.com>
Nikolaos Pothitos <pothitos@di.uoa.gr>
Nikolas <127742645+nneubacher@users.noreply.github.com>
Nindaleth <Nindaleth@users.noreply.github.com>
Nuno <rare-magma@posteo.eu>
OSecret <135510162+OLSecret@users.noreply.github.com>
Oleksandr Kuvshynov <661042+okuvshynov@users.noreply.github.com>
Oleksandr Nikitin <oleksandr@tvori.info>
Oleksii Maryshchenko <oleksii.maryshchenko@gmail.com>
Olivier Chafik <ochafik@users.noreply.github.com>
@@ -499,11 +560,13 @@ PAB <pierreantoine.bannier@gmail.com>
Pablo Duboue <pablo.duboue@gmail.com>
Pascal Patry <ppatry@mtacitlabs.com>
Patrice Ferlet <metal3d@gmail.com>
Patrick Peng <retr0@retr0.blog>
Paul Tsochantaris <ptsochantaris@icloud.com>
Pavel Zloi <github.com@drteam.rocks>
Pavol Rusnak <pavol@rusnak.io>
Paweł Wodnicki <151604+32bitmicro@users.noreply.github.com>
Pedro Cuenca <pedro@huggingface.co>
Peter <peter277@users.noreply.github.com>
Peter Sugihara <peter@campsh.com>
Phil H <5756783+phiharri@users.noreply.github.com>
Philip Taron <philip.taron@gmail.com>
@@ -514,6 +577,7 @@ Pieter Ouwerkerk <pieter.ouwerkerk@gmail.com>
Plamen Minev <pacominev@gmail.com>
Prashant Vithule <119530321+Vithulep@users.noreply.github.com>
Przemysław Pawełczyk <przemoc@gmail.com>
PureJourney <edward.pong@qq.com>
Qin Yue Chen <71813199+chenqiny@users.noreply.github.com>
Qingyou Meng <meng.qingyou@gmail.com>
Qu Zongfu <43257352+yancaoweidaode@users.noreply.github.com>
@@ -529,11 +593,17 @@ Rand Xie <randxiexyy29@gmail.com>
Randall Fitzgerald <randall@dasaku.net>
Random Fly <renfei8@live.cn>
Reinforce-II <fate@eastal.com>
Rémy O <remyoudompheng@gmail.com>
Rémy Oudompheng <oudomphe@phare.normalesup.org>
Ren Xuancheng <jklj077@users.noreply.github.com>
Rene Leonhardt <65483435+reneleonhardt@users.noreply.github.com>
Reza Kakhki <rezakakhki.de@gmail.com>
Reza Rahemtola <49811529+RezaRahemtola@users.noreply.github.com>
RhinoDevel <RhinoDevel@users.noreply.github.com>
Riccardo Orlando <Riccorl@users.noreply.github.com>
Riceball LEE <snowyu.lee@gmail.com>
Rich Dougherty <rich@rd.nz>
Richard <r-burton@hotmail.co.uk>
Richard Kiss <him@richardkiss.com>
Richard Roberson <richardr1126@gmail.com>
Rick G <26732651+TheFlipbook@users.noreply.github.com>
@@ -544,10 +614,13 @@ Riley Stewart <ristew@users.noreply.github.com>
Rinne <AsakusaRinne@gmail.com>
Rinne <liu_yaohui1998@126.com>
Robert Brisita <986796+rbrisita@users.noreply.github.com>
Robert Collins <roberto.tomas.cuentas@gmail.com>
Robert Ormandi <52251610+ormandi@users.noreply.github.com>
Robert Sung-wook Shin <edp1096@users.noreply.github.com>
Robey Holderith <robey@flaminglunchbox.net>
Robyn <robyngraf@users.noreply.github.com>
Roger Meier <r.meier@siemens.com>
Rohanjames1997 <rohan.james4@gmail.com>
Roland <14355895+rbur0425@users.noreply.github.com>
Romain Biessy <romain.biessy@codeplay.com>
Romain D <90720+Artefact2@users.noreply.github.com>
@@ -559,7 +632,9 @@ Roni <sulpher@gmx.net>
Ronny Brendel <ronnybrendel@gmail.com>
Ronsor <ronsor@ronsor.pw>
Rowan Hart <rowanbhart@gmail.com>
Ruan <47767371+ruanych@users.noreply.github.com>
Ruchira Hasaranga <ruchira66@gmail.com>
Rudi Servo <rudiservo@gmail.com>
Ruixin Huang <18860020911@163.com>
Rune <43761327+Rune-AI@users.noreply.github.com>
RunningLeon <maningsheng@sensetime.com>
@@ -568,6 +643,7 @@ Ryan Landay <rlanday@gmail.com>
Ryder Wishart <ryderwishart@gmail.com>
Ryuei <louixs@users.noreply.github.com>
Rőczey Barnabás <31726601+An0nie@users.noreply.github.com>
SAMI <samuel.koesnadi@stud.uni-due.de>
SRHMorris <69468379+SRHMorris@users.noreply.github.com>
SXX <sxx1136965276@gmail.com>
SakuraUmi <yukinon244@gmail.com>
@@ -592,6 +668,8 @@ Shane A <shanea@allenai.org>
Shangning Xu <32517059+xushangning@users.noreply.github.com>
Shankar <gshankar.87@gmail.com>
Shanshan Shen <467638484@qq.com>
Shelby Jenkins <47464908+ShelbyJenkins@users.noreply.github.com>
Sheldon Robinson <sheldon.robinson@live.com>
Shijie <821898965@qq.com>
Shintarou Okada <kokuzen@gmail.com>
Shouzheng Liu <61452103+lshzh-ww@users.noreply.github.com>
@@ -623,12 +701,14 @@ Steven Roussey <sroussey@gmail.com>
Steward Garcia <57494570+FSSRepo@users.noreply.github.com>
StrangeBytesDev <141275258+StrangeBytesDev@users.noreply.github.com>
Suaj Carrot <72162667+SuajCarrot@users.noreply.github.com>
Sukriti Sharma <Ssukriti@users.noreply.github.com>
SuperUserNameMan <yoann@terminajones.com>
Sutou Kouhei <kou@cozmixng.org>
Tai Duc Nguyen <taiducnguyen.drexel@gmail.com>
Taikono-Himazin <kazu@po.harenet.ne.jp>
Tameem <113388789+AhmadTameem@users.noreply.github.com>
Tamotsu Takahashi <ttakah+github@gmail.com>
Tei Home <taiteitonghome@proton.me>
Thái Hoàng Tâm <75922889+RoyalHeart@users.noreply.github.com>
Thatcher Chamberlin <j.thatcher.c@gmail.com>
Theia Vogel <theia@vgel.me>
@@ -640,6 +720,7 @@ Tim Miller <drasticactions@users.noreply.github.com>
Tim Wang <overocean@gmail.com>
Timmy Knight <r2d2fish@gmail.com>
Timothy Cronin <40186632+4imothy@users.noreply.github.com>
Ting Lou <louting@189.cn>
Ting Lou <ting.lou@gmail.com>
Ting Sun <suntcrick@gmail.com>
Tobias Lütke <tobi@shopify.com>
@@ -661,25 +742,36 @@ Uzo Nweke <uzoechi@gmail.com>
Vaibhav Srivastav <vaibhavs10@gmail.com>
Val Kharitonov <mail@kharvd.com>
Valentin Konovalov <valle.ketsujin@gmail.com>
Valentin Mamedov <45292985+Inf1delis@users.noreply.github.com>
Valentyn Bezshapkin <61702053+valentynbez@users.noreply.github.com>
Vali Malinoiu <0x4139@gmail.com>
Victor Nogueira <felladrin@gmail.com>
Victor Z. Peng <ziliangdotme@gmail.com>
Viet-Anh NGUYEN (Andrew) <vietanh.dev@gmail.com>
Vinesh Janarthanan <36610342+VJHack@users.noreply.github.com>
Vitali Lovich <vlovich+github@gmail.com>
Vivian <vynride@gmail.com>
Vlad <spitfireage@gmail.com>
Vladimir <bogdad@gmail.com>
Vladimir Malyutin <first-leon@yandex.ru>
Vladimir Vuksanovic <109677816+vvuksanovic@users.noreply.github.com>
Vladimir Zorin <vladimir@deviant.guru>
VoidIsVoid <343750470@qq.com>
Volodymyr Vitvitskyi <72226+signalpillar@users.noreply.github.com>
Wagner Bruna <wbruna@users.noreply.github.com>
Wang Qin <37098874+wangqin0@users.noreply.github.com>
Wang Ran (汪然) <wangr@smail.nju.edu.cn>
WangHaoranRobin <56047610+WangHaoranRobin@users.noreply.github.com>
Weird Constructor <weirdconstructor@gmail.com>
Weizhao Ouyang <o451686892@gmail.com>
Welby Seely <welbyseely@gmail.com>
Wentai Zhang <rchardx@gmail.com>
Wilken Gottwalt <12194808+wgottwalt@users.noreply.github.com>
WillCorticesAI <150854901+WillCorticesAI@users.noreply.github.com>
William Tambellini <william.tambellini@gmail.com>
William Tambellini <wtambellini@sdl.com>
Willy Tarreau <w@1wt.eu>
Woof Dog <197125663+woof-dog@users.noreply.github.com>
Wouter <9594229+DifferentialityDevelopment@users.noreply.github.com>
Wu Jian Ping <wujjpp@hotmail.com>
Wu Jian Ping <wujp@greatld.com>
@@ -692,6 +784,7 @@ Xie Yanbo <xieyanbo@gmail.com>
Xingchen Song(宋星辰) <xingchensong1996@163.com>
Xinpeng Dou <81913537+Dou-Git@users.noreply.github.com>
Xuan Son Nguyen <thichthat@gmail.com>
Xuan-Son Nguyen <thichthat@gmail.com>
Yaiko <elyaiko@hotmail.com>
Yann Follet <131855179+YannFollet@users.noreply.github.com>
Yaroslav <yaroslav.yashin@me.com>
@@ -702,7 +795,9 @@ Yoshi Suhara <y.suhara@gmail.com>
Yoshi Suhara <ysuhara@nvidia.com>
Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
Yueh-Po Peng <94939112+y10ab1@users.noreply.github.com>
Yüg <eugeniosegalaweb@gmail.com>
Yui <dev@sleepyyui.com>
Yun Dou <dixyes@gmail.com>
Yuri Khrustalev <ykhrustalev@users.noreply.github.com>
Yusuf Kağan Hanoğlu <hanoglu@yahoo.com>
Yuval Peled <31162840+Yuval-Peled@users.noreply.github.com>
@@ -714,18 +809,23 @@ Zhang Peiyuan <a1286225768@gmail.com>
Zheng.Deng <32841220+dengzheng-cloud@users.noreply.github.com>
Zhenwei Jin <109658203+kylo5aby@users.noreply.github.com>
Zhiyuan Li <lizhiyuan@uniartisan.com>
Zhiyuan Li <uniartisan2017@gmail.com>
ZhouYuChen <zhouyuchen@naver.com>
Ziad Ben Hadj-Alouane <zied.benhadjalouane@gmail.com>
Ziang Wu <97337387+ZiangWu-77@users.noreply.github.com>
Zsapi <martin1.zsapka@gmail.com>
a-n-n-a-l-e-e <150648636+a-n-n-a-l-e-e@users.noreply.github.com>
a3sh <38979186+A3shTnT@users.noreply.github.com>
adel boussaken <netdur@gmail.com>
afrideva <95653597+afrideva@users.noreply.github.com>
ag2s20150909 <19373730+ag2s20150909@users.noreply.github.com>
agray3 <agray3@users.noreply.github.com>
akawrykow <142945436+akawrykow@users.noreply.github.com>
alek3y <44779186+alek3y@users.noreply.github.com>
alexpinel <93524949+alexpinel@users.noreply.github.com>
alonfaraj <alonfaraj@gmail.com>
alwqx <kenan3015@gmail.com>
amd-dwang <dong.wang@amd.com>
amd-lalithnc <lalithnc@amd.com>
amritahs-ibm <amritahs@linux.vnet.ibm.com>
andrijdavid <david@geek.mg>
@@ -737,6 +837,7 @@ arch-btw <57669023+arch-btw@users.noreply.github.com>
arcrank <arcrank@gmail.com>
ardfork <134447697+ardfork@users.noreply.github.com>
arlo-phoenix <140345165+arlo-phoenix@users.noreply.github.com>
aryantandon01 <80969509+aryantandon01@users.noreply.github.com>
at8u <129688334+at8u@users.noreply.github.com>
automaticcat <daogiatuank54@gmail.com>
awatuna <23447591+awatuna@users.noreply.github.com>
@@ -751,12 +852,16 @@ bryanSwk <93190252+bryanSwk@users.noreply.github.com>
bsilvereagle <bsilvereagle@users.noreply.github.com>
bssrdf <merlintiger@hotmail.com>
byte-6174 <88070277+byte-6174@users.noreply.github.com>
cduk <19917266+cduk@users.noreply.github.com>
cebtenzzre <cebtenzzre@gmail.com>
chaihahaha <chai836275709@gmail.com>
chiranko <96988916+chiranko@users.noreply.github.com>
clibdev <52199778+clibdev@users.noreply.github.com>
clyang <clyang@clyang.net>
cmdr2 <secondary.cmdr2@gmail.com>
cmdr2 <shashank.shekhar.global@gmail.com>
cocktailpeanut <121128867+cocktailpeanut@users.noreply.github.com>
codezjx <code.zjx@gmail.com>
coezbek <c.oezbek@gmail.com>
comex <comexk@gmail.com>
compilade <113953597+compilade@users.noreply.github.com>
@@ -774,20 +879,25 @@ deepdiffuser <112834445+deepdiffuser@users.noreply.github.com>
devojony <61173062+devojony@users.noreply.github.com>
ditsuke <ditsuke@protonmail.com>
divinity76 <divinity76@gmail.com>
dm4 <dm4@secondstate.io>
dm4 <sunrisedm4@gmail.com>
dotpy314 <33351922+dotpy314@users.noreply.github.com>
drbh <david.richard.holtz@gmail.com>
ds5t5 <145942675+ds5t5@users.noreply.github.com>
dylan <canardleteer@users.noreply.github.com>
eastriver <lee@eastriver.dev>
ebraminio <ebrahim@gnu.org>
ebraminio <ebraminio@gmail.com>
eiery <19350831+eiery@users.noreply.github.com>
eric8607242 <e0928021388@gmail.com>
fairydreaming <166155368+fairydreaming@users.noreply.github.com>
fengerhu1 <2748250768@qq.com>
fj-y-saito <85871716+fj-y-saito@users.noreply.github.com>
fraxy-v <65565042+fraxy-v@users.noreply.github.com>
fxzjshm <11426482+fxzjshm@users.noreply.github.com>
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
gliptic <gliptic@users.noreply.github.com>
gn64 <yukikaze.jp@gmail.com>
goerch <jhr.walter@t-online.de>
grahameth <96447521+grahameth@users.noreply.github.com>
gtygo <gtydoit@gmail.com>
@@ -809,13 +919,17 @@ hydai <z54981220@gmail.com>
iSma <ismail.senhaji@gmail.com>
iacore <74560659+iacore@users.noreply.github.com>
icppWorld <124377669+icppWorld@users.noreply.github.com>
igardev <49397134+igardev@users.noreply.github.com>
igarnier <igarnier@protonmail.com>
intelmatt <61025942+intelmatt@users.noreply.github.com>
iohub <rickyang.pro@gmail.com>
issixx <46835150+issixx@users.noreply.github.com>
jacobi petrucciani <8117202+jpetrucciani@users.noreply.github.com>
jaime-m-p <167997752+jaime-m-p@users.noreply.github.com>
jameswu2014 <545426914@qq.com>
jason_w <jason.wang@126.com>
jdomke <28772296+jdomke@users.noreply.github.com>
jiahao su <damow890@gmail.com>
jiez <373447296@qq.com>
jneem <joeneeman@gmail.com>
joecryptotoo <80373433+joecryptotoo@users.noreply.github.com>
@@ -825,9 +939,11 @@ jon-chuang <9093549+jon-chuang@users.noreply.github.com>
jp-x-g <jpxg-dev@protonmail.com>
jukofyork <69222624+jukofyork@users.noreply.github.com>
junchao-loongson <68935141+junchao-loongson@users.noreply.github.com>
junchao-zhao <68935141+junchao-loongson@users.noreply.github.com>
jwj7140 <32943891+jwj7140@users.noreply.github.com>
k.h.lai <adrian.k.h.lai@outlook.com>
kaizau <kaizau@users.noreply.github.com>
kallewoof <kalle.alm@gmail.com>
kalomaze <66376113+kalomaze@users.noreply.github.com>
kang <tpdns9032100@gmail.com>
katsu560 <118887472+katsu560@users.noreply.github.com>
@@ -835,6 +951,7 @@ kchro3 <62481661+kchro3@users.noreply.github.com>
khimaros <me@khimaros.com>
kiltyj <kiltyj@gmail.com>
klosax <131523366+klosax@users.noreply.github.com>
krystiancha <krystian@krystianch.com>
kunal-vaishnavi <115581922+kunal-vaishnavi@users.noreply.github.com>
kunnis <kunnis@users.noreply.github.com>
kuronekosaiko <EvanChanJ@163.com>
@@ -847,6 +964,8 @@ ldwang <ftgreat@163.com>
le.chang <cljs118@126.com>
leejet <leejet714@gmail.com>
leo-pony <nengjunma@outlook.com>
lexasub <lexakopp2212@gmail.com>
lhez <quic_lih@quicinc.com>
limitedAtonement <limitedAtonement@users.noreply.github.com>
liuwei-git <14815172+liuwei-git@users.noreply.github.com>
lon <114724657+longregen@users.noreply.github.com>
@@ -855,19 +974,25 @@ ltoniazzi <61414566+ltoniazzi@users.noreply.github.com>
luoyu-intel <yu.luo@intel.com>
m3ndax <adrian.goessl@outlook.com>
maddes8cht <55592906+maddes8cht@users.noreply.github.com>
magicse <magicse@users.noreply.github.com>
mahorozte <41834471+mahorozte@users.noreply.github.com>
makomk <makosoft@googlemail.com>
manikbhandari <mbbhandarimanik2@gmail.com>
maor-ps <154728172+maor-ps@users.noreply.github.com>
mashdragon <122402293+mashdragon@users.noreply.github.com>
matiaslin <45382001+matiaslin@users.noreply.github.com>
matt23654 <matthew.webber@protonmail.com>
matteo <matteogeniaccio@yahoo.it>
mdrokz <mohammadmunshi@gmail.com>
mgroeber9110 <45620825+mgroeber9110@users.noreply.github.com>
midnight <midnightmagic@users.noreply.github.com>
minarchist <minarchist@users.noreply.github.com>
mj-shifu <77107165+mj-shifu@users.noreply.github.com>
mmyjona <jonathan.gonse@gmail.com>
momonga <115213907+mmnga@users.noreply.github.com>
momonga <146910567+mmngays@users.noreply.github.com>
moritzbrantner <31051084+moritzbrantner@users.noreply.github.com>
musoles <135031143+musoles@users.noreply.github.com>
mzcu <milos.cubrilo@gmail.com>
nanahi <130121847+na-na-hi@users.noreply.github.com>
ngc92 <7938269+ngc92@users.noreply.github.com>
@@ -884,18 +1009,23 @@ omahs <73983677+omahs@users.noreply.github.com>
oobabooga <112222186+oobabooga@users.noreply.github.com>
opparco <parco.opaai@gmail.com>
ostix360 <55257054+ostix360@users.noreply.github.com>
pascal-lc <49066376+pascal-lc@users.noreply.github.com>
pculliton <phillipculliton@gmail.com>
peidaqi <peidaqi@gmail.com>
pengxin99 <pengxin.yuan@intel.com>
perserk <perserk@gmail.com>
petterreinholdtsen <pere-github@hungry.com>
piDack <104877312+piDack@users.noreply.github.com>
pmysl <piotr.myslinski@outlook.com>
postmasters <namnguyen@google.com>
pudepiedj <pudepiedj@gmail.com>
qingfengfenga <41416092+qingfengfenga@users.noreply.github.com>
qingy1337 <qxli2@students.everettcc.edu>
qouoq <qouoq@fastmail.com>
qunash <anzoria@gmail.com>
rabidcopy <rabidcopy@yahoo.com>
rankaiyx <rankaiyx@rankaiyx.com>
redbeard <bharrington@alticon.net>
rhjdvsgsgks <26178113+rhjdvsgsgks@users.noreply.github.com>
rhuddleston <ryan.huddleston@percona.com>
rimoliga <53384203+rimoliga@users.noreply.github.com>
@@ -906,12 +1036,14 @@ semidark <me@semidark.net>
serhii-nakon <57632032+serhii-nakon@users.noreply.github.com>
sharpHL <132747147+sharpHL@users.noreply.github.com>
shibe2 <shibe@tuta.io>
simon886212 <37953122+simon886212@users.noreply.github.com>
singularity <12184989+singularity-s0@users.noreply.github.com>
sjinzh <sjinzh@gmail.com>
sjxx <63994076+ylsdamxssjxxdd@users.noreply.github.com>
slaren <2141330+slaren@users.noreply.github.com>
slaren <slarengh@gmail.com>
snadampal <87143774+snadampal@users.noreply.github.com>
someone13574 <81528246+someone13574@users.noreply.github.com>
standby24x7 <standby24x7@gmail.com>
staviq <staviq@gmail.com>
stduhpf <stephduh@live.fr>
@@ -922,19 +1054,23 @@ tarcey <cey.tarik@gmail.com>
tc-mb <157115220+tc-mb@users.noreply.github.com>
texmex76 <40733439+texmex76@users.noreply.github.com>
thement <40525767+thement@users.noreply.github.com>
theraininsky <76763719+theraininsky@users.noreply.github.com>
thewh1teagle <61390950+thewh1teagle@users.noreply.github.com>
tjohnman <tjohnman@users.noreply.github.com>
toyer <2042519524@qq.com>
tslmy <tslmy@users.noreply.github.com>
tv1wnd <55383215+tv1wnd@users.noreply.github.com>
ubik2 <ubik2@users.noreply.github.com>
uint256_t <konndennsa@gmail.com>
uint256_t <maekawatoshiki1017@gmail.com>
unbounded <haakon@likedan.net>
uvos <devnull@uvos.xyz>
uvos <philipp@uvos.xyz>
valiray <133289098+valiray@users.noreply.github.com>
vb <vaibhavs10@gmail.com>
vik <vikhyatk@gmail.com>
viric <viric@viric.name>
vmobilis <75476228+vmobilis@users.noreply.github.com>
vodkaslime <646329483@qq.com>
vvhg1 <94630311+vvhg1@users.noreply.github.com>
vxiiduu <73044267+vxiiduu@users.noreply.github.com>
@@ -949,8 +1085,11 @@ wzy <32936898+Freed-Wu@users.noreply.github.com>
xaedes <xaedes@gmail.com>
xaedes <xaedes@googlemail.com>
xctan <axunlei@gmail.com>
xiaobing318 <71554036+xiaobing318@users.noreply.github.com>
xiaofei <hbuxiaofei@gmail.com>
xloem <0xloem@gmail.com>
yangli2 <yangli2@gmail.com>
ymcki <84055651+ymcki@users.noreply.github.com>
yuiseki <yuiseki@gmail.com>
yuri@FreeBSD <yurivict@users.noreply.github.com>
zakkor <edward.partenie@gmail.com>
@@ -963,4 +1102,5 @@ zrm <trustiosity.zrm@gmail.com>
杨朱 · Kiki <baofa.fan@daocloud.io>
源文雨 <41315874+fumiama@users.noreply.github.com>
蕭澧邦 <45505768+shou692199@users.noreply.github.com>
谢乃闻 <sienaiwun@users.noreply.github.com>
Нияз Гарифзянов <112617865+garrnizon@users.noreply.github.com>

View File

@@ -16,6 +16,7 @@ endif()
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin)
if (CMAKE_SOURCE_DIR STREQUAL CMAKE_CURRENT_SOURCE_DIR)
set(LLAMA_STANDALONE ON)
@@ -28,6 +29,8 @@ else()
set(LLAMA_STANDALONE OFF)
endif()
option(LLAMA_USE_SYSTEM_GGML "Use system libggml" OFF)
if (EMSCRIPTEN)
set(BUILD_SHARED_LIBS_DEFAULT OFF)
@@ -49,6 +52,8 @@ endif()
if (MSVC)
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/bigobj>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/bigobj>")
endif()
#
@@ -76,18 +81,16 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ${LLAMA_STANDALONE})
# 3rd party libs
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" ON)
option(LLAMA_LLGUIDANCE "llama-common: include LLGuidance library for structured output in common utils" OFF)
# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/build-info.cmake)
include(${CMAKE_CURRENT_SOURCE_DIR}/cmake/common.cmake)
# override ggml options
set(GGML_SANITIZE_THREAD ${LLAMA_SANITIZE_THREAD})
set(GGML_SANITIZE_ADDRESS ${LLAMA_SANITIZE_ADDRESS})
set(GGML_SANITIZE_UNDEFINED ${LLAMA_SANITIZE_UNDEFINED})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
set(GGML_ALL_WARNINGS ${LLAMA_ALL_WARNINGS})
set(GGML_FATAL_WARNINGS ${LLAMA_FATAL_WARNINGS})
# change the default for these ggml options
if (NOT DEFINED GGML_LLAMAFILE)
@@ -117,16 +120,73 @@ llama_option_depr(WARNING LLAMA_SYCL GGML_SYCL)
llama_option_depr(WARNING LLAMA_SYCL_F16 GGML_SYCL_F16)
llama_option_depr(WARNING LLAMA_CANN GGML_CANN)
if (NOT MSVC)
if (LLAMA_SANITIZE_THREAD)
message(STATUS "Using -fsanitize=thread")
add_compile_options(-fsanitize=thread)
link_libraries (-fsanitize=thread)
endif()
if (LLAMA_SANITIZE_ADDRESS)
message(STATUS "Using -fsanitize=address")
add_compile_options(-fsanitize=address -fno-omit-frame-pointer)
link_libraries (-fsanitize=address)
endif()
if (LLAMA_SANITIZE_UNDEFINED)
message(STATUS "Using -fsanitize=undefined")
add_compile_options(-fsanitize=undefined)
link_libraries (-fsanitize=undefined)
endif()
endif()
#
# 3rd-party
#
if (LLAMA_USE_SYSTEM_GGML)
message(STATUS "Using system-provided libggml, skipping ggml build")
find_package(ggml REQUIRED)
add_library(ggml ALIAS ggml::ggml)
endif()
if (NOT TARGET ggml AND NOT LLAMA_USE_SYSTEM_GGML)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
#
# build the library
#
if (NOT TARGET ggml)
add_subdirectory(ggml)
# ... otherwise assume ggml is added by a parent CMakeLists.txt
endif()
add_subdirectory(src)
#
# utils, programs, examples and tests
#
if (NOT LLAMA_BUILD_COMMON)
message(STATUS "LLAMA_BUILD_COMMON is OFF, disabling LLAMA_CURL")
set(LLAMA_CURL OFF)
endif()
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()
#
# install
#
@@ -142,27 +202,14 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
# At the moment some compile definitions are placed within the ggml/src
# directory but not exported on the `ggml` target. This could be improved by
# determining _precisely_ which defines are necessary for the llama-config
# package.
#
set(GGML_TRANSIENT_DEFINES)
get_target_property(GGML_DIRECTORY ggml SOURCE_DIR)
get_directory_property(GGML_DIR_DEFINES DIRECTORY ${GGML_DIRECTORY} COMPILE_DEFINITIONS)
if (GGML_DIR_DEFINES)
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_DIR_DEFINES})
endif()
get_target_property(GGML_TARGET_DEFINES ggml COMPILE_DEFINITIONS)
if (GGML_TARGET_DEFINES)
list(APPEND GGML_TRANSIENT_DEFINES ${GGML_TARGET_DEFINES})
endif()
get_target_property(GGML_LINK_LIBRARIES ggml LINK_LIBRARIES)
# all public headers
set(LLAMA_PUBLIC_HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/include/llama.h
${CMAKE_CURRENT_SOURCE_DIR}/include/llama-cpp.h)
set_target_properties(llama PROPERTIES PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
set_target_properties(llama
PROPERTIES
PUBLIC_HEADER "${LLAMA_PUBLIC_HEADERS}")
install(TARGETS llama LIBRARY PUBLIC_HEADER)
configure_package_config_file(
@@ -199,22 +246,21 @@ configure_file(cmake/llama.pc.in
@ONLY)
install(FILES "${CMAKE_CURRENT_BINARY_DIR}/llama.pc"
DESTINATION lib/pkgconfig)
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
#
# utils, programs, examples and tests
# copy the license files
#
if (LLAMA_BUILD_COMMON)
add_subdirectory(common)
# Check if running in GitHub Actions
if(DEFINED ENV{GITHUB_ACTIONS} AND "$ENV{GITHUB_ACTIONS}" STREQUAL "true")
message(STATUS "Running inside GitHub Actions - copying license files")
# Copy all files from licenses/ to build/bin/
file(GLOB LICENSE_FILES "${CMAKE_SOURCE_DIR}/licenses/*")
foreach(LICENSE_FILE ${LICENSE_FILES})
get_filename_component(FILENAME ${LICENSE_FILE} NAME)
configure_file(${LICENSE_FILE} "${CMAKE_BINARY_DIR}/bin/${FILENAME}" COPYONLY)
endforeach()
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
include(CTest)
add_subdirectory(tests)
endif()
if (LLAMA_BUILD_COMMON AND LLAMA_BUILD_EXAMPLES)
add_subdirectory(examples)
add_subdirectory(pocs)
endif()

View File

@@ -1,10 +1,12 @@
# Pull requests (for contributors)
- llama.cpp uses the ggml tensor library for model evaluation. If you are unfamiliar with ggml, consider taking a look at the [examples in the ggml repository](https://github.com/ggml-org/ggml/tree/master/examples/). [simple](https://github.com/ggml-org/ggml/tree/master/examples/simple) shows the bare minimum for using ggml. [gpt-2](https://github.com/ggml-org/ggml/tree/master/examples/gpt-2) has minimal implementations for language model inference using GPT-2. [mnist](https://github.com/ggml-org/ggml/tree/master/examples/mnist) demonstrates how to train and evaluate a simple image classifier
- Test your changes:
- Execute [the full CI locally on your machine](ci/README.md) before publishing
- Verify that the perplexity and the performance are not affected negatively by your changes (use `llama-perplexity` and `llama-bench`)
- If you modified the `ggml` source, run the `test-backend-ops` tool to check whether different backend implementations of the `ggml` operators produce consistent results (this requires access to at least two different `ggml` backends)
- If you modified a `ggml` operator or added a new one, add the corresponding test cases to `test-backend-ops`
- Create separate PRs for each feature or fix. Avoid combining unrelated changes in a single PR
- Consider allowing write access to your branch for faster reviews, as reviewers can push commits directly
- If your PR becomes stale, don't hesitate to ping the maintainers in the comments
@@ -12,7 +14,7 @@
- Squash-merge PRs
- Use the following format for the squashed commit title: `<module> : <commit title> (#<issue_number>)`. For example: `utils : fix typo in utils.py (#1234)`
- Optionally pick a `<module>` from here: https://github.com/ggerganov/llama.cpp/wiki/Modules
- Optionally pick a `<module>` from here: https://github.com/ggml-org/llama.cpp/wiki/Modules
- Consider adding yourself to [CODEOWNERS](CODEOWNERS)
# Coding guidelines
@@ -37,17 +39,17 @@
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggerganov/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
![matmul](media/matmul.png)
# Naming guidelines
- Use `snake_case` for function, variable and type names
- Naming usually optimizes for longest common prefix (see https://github.com/ggerganov/ggml/pull/302#discussion_r1243240963)
- Naming usually optimizes for longest common prefix (see https://github.com/ggml-org/ggml/pull/302#discussion_r1243240963)
```cpp
// not OK
@@ -122,4 +124,4 @@
The Github issues, PRs and discussions contain a lot of information that can be useful to get familiar with the codebase. For convenience, some of the more important information is referenced from Github projects:
https://github.com/ggerganov/llama.cpp/projects
https://github.com/ggml-org/llama.cpp/projects

View File

@@ -1,5 +1,5 @@
ifndef LLAMA_MAKEFILE
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md)
$(error The Makefile build is deprecated. Use the CMake build instead. For more details, see https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md)
endif
# Define the default target now so that it is always the first target
@@ -52,6 +52,7 @@ TEST_TARGETS = \
tests/test-arg-parser \
tests/test-autorelease \
tests/test-backend-ops \
tests/test-chat \
tests/test-chat-template \
tests/test-double-float \
tests/test-grammar-integration \
@@ -462,7 +463,7 @@ endif
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
# https://github.com/ggerganov/llama.cpp/issues/2922
# https://github.com/ggml-org/llama.cpp/issues/2922
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
@@ -595,7 +596,7 @@ ifdef GGML_RPC
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
endif # GGML_RPC
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-mma*.cu))
OBJ_CUDA_TMPL += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/mmq*.cu))
ifdef GGML_CUDA_FA_ALL_QUANTS
@@ -679,6 +680,10 @@ ifdef GGML_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(GGML_CUDA_CCBIN)
endif # GGML_CUDA_CCBIN
ifdef GGML_CUDA_NO_FA
MK_NVCCFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
ifdef GGML_CUDA_FA_ALL_QUANTS
MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
@@ -775,10 +780,6 @@ ifdef GGML_HIP
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
ifdef GGML_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # GGML_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
@@ -799,6 +800,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_NO_FA
HIPFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
@@ -827,7 +832,7 @@ ifdef GGML_MUSA
else
MUSA_PATH ?= /opt/musa
endif
MUSA_ARCHITECTURES ?= 21;22
MUSA_ARCHITECTURES ?= 21;22;31
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
@@ -846,7 +851,7 @@ ifdef GGML_MUSA
CXX := $(MUSA_PATH)/bin/clang++
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
MUSAFLAGS = -x musa -mtgpu
MUSAFLAGS = -fsigned-char -x musa -mtgpu
MUSAFLAGS += $(foreach arch,$(subst ;, ,$(MUSA_ARCHITECTURES)),--cuda-gpu-arch=mp_$(arch))
ifdef GGML_CUDA_FORCE_MMQ
@@ -875,6 +880,10 @@ ifdef GGML_CUDA_NO_PEER_COPY
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_NO_FA
MUSAFLAGS += -DGGML_CUDA_NO_FA
endif # GGML_CUDA_NO_FA
ifdef GGML_CUDA_FA_ALL_QUANTS
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
@@ -983,6 +992,7 @@ OBJ_COMMON = \
$(DIR_COMMON)/ngram-cache.o \
$(DIR_COMMON)/sampling.o \
$(DIR_COMMON)/speculative.o \
$(DIR_COMMON)/chat.o \
$(DIR_COMMON)/build-info.o \
$(DIR_COMMON)/json-schema-to-grammar.o
@@ -1076,8 +1086,8 @@ endif
ifdef REMOVE_WARNING
$(info !!! REMOVAL WARNING !!!)
$(info The following LLAMA_ options have been removed and are no longer supported)
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggerganov/llama.cpp/pull/9418))
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggerganov/llama.cpp/pull/9418))
$(info - LLAMA_DISABLE_LOGS (https://github.com/ggml-org/llama.cpp/pull/9418))
$(info - LLAMA_SERVER_VERBOSE (https://github.com/ggml-org/llama.cpp/pull/9418))
$(info )
endif
@@ -1361,7 +1371,11 @@ llama-server: \
examples/server/httplib.h \
examples/server/index.html.hpp \
examples/server/loading.html.hpp \
common/chat.cpp \
common/chat.h \
common/chat-template.hpp \
common/json.hpp \
common/minja.hpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h %.hpp $<,$^) -Iexamples/server $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS) $(LWINSOCK2)
@@ -1469,6 +1483,11 @@ tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-chat: tests/test-chat.cpp \
$(OBJ_ALL)
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View File

@@ -1,19 +0,0 @@
// swift-tools-version:5.5
import PackageDescription
let package = Package(
name: "llama",
platforms: [
.macOS(.v12),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
],
products: [
.library(name: "llama", targets: ["llama"]),
],
targets: [
.systemLibrary(name: "llama", pkgConfig: "llama"),
]
)

117
README.md
View File

@@ -3,22 +3,26 @@
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
[![Server](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
[![Server](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml/badge.svg)](https://github.com/ggml-org/llama.cpp/actions/workflows/server.yml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggml-org/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggml-org/llama.cpp/discussions/205) / [ggml](https://github.com/ggml-org/ggml)
Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others) in pure C/C++
## Recent API changes
- [Changelog for `libllama` API](https://github.com/ggerganov/llama.cpp/issues/9289)
- [Changelog for `llama-server` REST API](https://github.com/ggerganov/llama.cpp/issues/9291)
- [Changelog for `libllama` API](https://github.com/ggml-org/llama.cpp/issues/9289)
- [Changelog for `llama-server` REST API](https://github.com/ggml-org/llama.cpp/issues/9291)
## Hot topics
- **Introducing GGUF-my-LoRA** https://github.com/ggerganov/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggerganov/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggerganov/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
- **How to use [MTLResidencySet](https://developer.apple.com/documentation/metal/mtlresidencyset?language=objc) to keep the GPU memory active?** https://github.com/ggml-org/llama.cpp/pull/11427
- **VS Code extension for FIM completions:** https://github.com/ggml-org/llama.vscode
- Universal [tool call support](./docs/function-calling.md) in `llama-server` https://github.com/ggml-org/llama.cpp/pull/9639
- Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: [discussion](https://github.com/ggml-org/llama.cpp/discussions/9268) | [tool](https://huggingface.co/spaces/CISCai/gguf-editor)
----
@@ -35,7 +39,7 @@ range of hardware - locally and in the cloud.
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
The `llama.cpp` project is the main playground for developing new features for the [ggml](https://github.com/ggml-org/ggml) library.
<details>
<summary>Models</summary>
@@ -55,23 +59,23 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [X] [Falcon](https://huggingface.co/models?search=tiiuae/falcon)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [BERT](https://github.com/ggerganov/llama.cpp/pull/5423)
- [X] [BERT](https://github.com/ggml-org/llama.cpp/pull/5423)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
- [X] [Baichuan 1 & 2](https://huggingface.co/models?search=baichuan-inc/Baichuan) + [derivations](https://huggingface.co/hiyouga/baichuan-7b-sft)
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
- [X] [Starcoder models](https://github.com/ggml-org/llama.cpp/pull/3187)
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
- [X] [MPT](https://github.com/ggml-org/llama.cpp/pull/3417)
- [X] [Bloom](https://github.com/ggml-org/llama.cpp/pull/3553)
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
- [X] [StableLM models](https://huggingface.co/stabilityai)
- [x] [Deepseek models](https://huggingface.co/models?search=deepseek-ai/deepseek)
- [x] [Qwen models](https://huggingface.co/models?search=Qwen/Qwen)
- [x] [PLaMo-13B](https://github.com/ggerganov/llama.cpp/pull/3557)
- [x] [PLaMo-13B](https://github.com/ggml-org/llama.cpp/pull/3557)
- [x] [Phi models](https://huggingface.co/models?search=microsoft/phi)
- [x] [PhiMoE](https://github.com/ggerganov/llama.cpp/pull/11003)
- [x] [PhiMoE](https://github.com/ggml-org/llama.cpp/pull/11003)
- [x] [GPT-2](https://huggingface.co/gpt2)
- [x] [Orion 14B](https://github.com/ggerganov/llama.cpp/pull/5118)
- [x] [Orion 14B](https://github.com/ggml-org/llama.cpp/pull/5118)
- [x] [InternLM2](https://huggingface.co/models?search=internlm2)
- [x] [CodeShell](https://github.com/WisdomShell/codeshell)
- [x] [Gemma](https://ai.google.dev/gemma)
@@ -92,7 +96,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Bitnet b1.58 models](https://huggingface.co/1bitLLM)
- [x] [Flan T5](https://huggingface.co/models?search=flan-t5)
- [x] [Open Elm models](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b)
- [x] [ChatGLM3-6b](https://huggingface.co/THUDM/chatglm3-6b) + [ChatGLM4-9b](https://huggingface.co/THUDM/glm-4-9b) + [GLMEdge-1.5b](https://huggingface.co/THUDM/glm-edge-1.5b-chat) + [GLMEdge-4b](https://huggingface.co/THUDM/glm-edge-4b-chat)
- [x] [GLM-4-0414](https://huggingface.co/collections/THUDM/glm-4-0414-67f3cbcb34dd9d252707cb2e)
- [x] [SmolLM](https://huggingface.co/collections/HuggingFaceTB/smollm-6695016cad7167254ce15966)
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
@@ -101,6 +106,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [RWKV-6](https://github.com/BlinkDL/RWKV-LM)
- [x] [QRWKV-6](https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1)
- [x] [GigaChat-20B-A3B](https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct)
- [X] [Trillion-7B-preview](https://huggingface.co/trillionlabs/Trillion-7B-preview)
- [x] [Ling models](https://huggingface.co/collections/inclusionAI/ling-67c51c85b34a7ea0aba94c32)
#### Multimodal
@@ -113,6 +120,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
- [x] [GLM-EDGE](https://huggingface.co/models?search=glm-edge)
- [x] [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d)
</details>
@@ -131,6 +139,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Rust (more features): [edgenai/llama_cpp-rs](https://github.com/edgenai/llama_cpp-rs)
- Rust (nicer API): [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
- Rust (more direct bindings): [utilityai/llama-cpp-rs](https://github.com/utilityai/llama-cpp-rs)
- Rust (automated build from crates.io): [ShelbyJenkins/llm_client](https://github.com/ShelbyJenkins/llm_client)
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
- C#/VB.NET (more features - community license): [LM-Kit.NET](https://docs.lm-kit.com/lm-kit-net/index.html)
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
@@ -140,10 +149,11 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggml-org/llama.cpp/pull/6326)
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
- Swift [ShenghaiWang/SwiftLlama](https://github.com/ShenghaiWang/SwiftLlama)
- Delphi [Embarcadero/llama-cpp-delphi](https://github.com/Embarcadero/llama-cpp-delphi)
</details>
@@ -158,6 +168,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [iohub/collama](https://github.com/iohub/coLLaMA) (Apache-2.0)
- [janhq/jan](https://github.com/janhq/jan) (AGPL)
- [johnbean393/Sidekick](https://github.com/johnbean393/Sidekick) (MIT)
- [KanTV](https://github.com/zhouwg/kantv?tab=readme-ov-file) (Apache-2.0)
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [llama.vim](https://github.com/ggml-org/llama.vim) (MIT)
@@ -183,6 +194,7 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [ramalama](https://github.com/containers/ramalama) (MIT)
- [semperai/amica](https://github.com/semperai/amica) (MIT)
- [withcatai/catai](https://github.com/withcatai/catai) (MIT)
- [Autopen](https://github.com/blackhole89/autopen) (GPL)
</details>
@@ -204,7 +216,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
- [GPUStack](https://github.com/gpustack/gpustack) - Manage GPU clusters for running LLMs
- [llama_cpp_canister](https://github.com/onicai/llama_cpp_canister) - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- [llama-swap](https://github.com/mostlygeek/llama-swap) - transparent proxy that adds automatic model switching with llama-server
- [Kalavai](https://github.com/kalavai-net/kalavai-client) - Crowdsource end to end LLM deployment at any scale
- [llmaz](https://github.com/InftyAI/llmaz) - ☸️ Easy, advanced inference platform for large language models on Kubernetes.
</details>
<details>
@@ -227,6 +240,8 @@ Instructions for adding support for new models: [HOWTO-add-model.md](docs/develo
| [HIP](docs/build.md#hip) | AMD GPU |
| [Vulkan](docs/build.md#vulkan) | GPU |
| [CANN](docs/build.md#cann) | Ascend NPU |
| [OpenCL](docs/backend/OPENCL.md) | Adreno GPU |
| [RPC](https://github.com/ggml-org/llama.cpp/tree/master/examples/rpc) | All |
## Building the project
@@ -236,7 +251,7 @@ The project also includes many example programs and tools using the `llama` libr
- Clone this repository and build locally, see [how to build](docs/build.md)
- On MacOS or Linux, install `llama.cpp` via [brew, flox or nix](docs/install.md)
- Use a Docker image, see [documentation for Docker](docs/docker.md)
- Download pre-built binaries from [releases](https://github.com/ggerganov/llama.cpp/releases)
- Download pre-built binaries from [releases](https://github.com/ggml-org/llama.cpp/releases)
## Obtaining and quantizing models
@@ -245,18 +260,20 @@ The [Hugging Face](https://huggingface.co) platform hosts a [number of LLMs](htt
- [Trending](https://huggingface.co/models?library=gguf&sort=trending)
- [LLaMA](https://huggingface.co/models?sort=trending&search=llama+gguf)
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from Hugging Face by using this CLI argument: `-hf <user>/<model>[:quant]`
You can either manually download the GGUF file or directly use any `llama.cpp`-compatible models from [Hugging Face](https://huggingface.co/) or other model hosting sites, such as [ModelScope](https://modelscope.cn/), by using this CLI argument: `-hf <user>/<model>[:quant]`.
By default, the CLI would download from Hugging Face, you can switch to other options with the environment variable `MODEL_ENDPOINT`. For example, you may opt to downloading model checkpoints from ModelScope or other model sharing communities by setting the environment variable, e.g. `MODEL_ENDPOINT=https://www.modelscope.cn/`.
After downloading a model, use the CLI tools to run it locally - see below.
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
`llama.cpp` requires the model to be stored in the [GGUF](https://github.com/ggml-org/ggml/blob/master/docs/gguf.md) file format. Models in other data formats can be converted to GGUF using the `convert_*.py` Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with `llama.cpp`:
- Use the [GGUF-my-repo space](https://huggingface.co/spaces/ggml-org/gguf-my-repo) to convert to GGUF format and quantize model weights to smaller sizes
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggerganov/llama.cpp/discussions/10123)
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggerganov/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggerganov/llama.cpp/discussions/9669)
- Use the [GGUF-my-LoRA space](https://huggingface.co/spaces/ggml-org/gguf-my-lora) to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
- Use the [GGUF-editor space](https://huggingface.co/spaces/CISCai/gguf-editor) to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
- Use the [Inference Endpoints](https://ui.endpoints.huggingface.co/) to directly host `llama.cpp` in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
To learn more about model quantization, [read this documentation](examples/quantize/README.md)
@@ -418,7 +435,7 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
[^1]: [examples/perplexity/README.md](examples/perplexity/README.md)
[^1]: [examples/perplexity/README.md](./examples/perplexity/README.md)
[^2]: [https://huggingface.co/docs/transformers/perplexity](https://huggingface.co/docs/transformers/perplexity)
## [`llama-bench`](examples/llama-bench)
@@ -479,9 +496,9 @@ To learn more about model quantization, [read this documentation](examples/quant
- Collaborators can push to branches in the `llama.cpp` repo and merge PRs into the `master` branch
- Collaborators will be invited based on contributions
- Any help with managing issues, PRs and projects is very appreciated!
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- See [good first issues](https://github.com/ggml-org/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
- Read the [CONTRIBUTING.md](CONTRIBUTING.md) for more information
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
- Make sure to read this: [Inference at the edge](https://github.com/ggml-org/llama.cpp/discussions/205)
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
## Other documentation
@@ -496,7 +513,7 @@ To learn more about model quantization, [read this documentation](examples/quant
- [Running on Docker](docs/docker.md)
- [Build on Android](docs/android.md)
- [Performance troubleshooting](docs/development/token_generation_performance_tips.md)
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
- [GGML tips & tricks](https://github.com/ggml-org/llama.cpp/wiki/GGML-Tips-&-Tricks)
#### Seminal papers and background on the models
@@ -510,5 +527,47 @@ If your issue is with model generation quality, then please at least scan the fo
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
#### References
## XCFramework
The XCFramework is a precompiled version of the library for iOS, visionOS, tvOS,
and macOS. It can be used in Swift projects without the need to compile the
library from source. For example:
```swift
// swift-tools-version: 5.10
// The swift-tools-version declares the minimum version of Swift required to build this package.
import PackageDescription
let package = Package(
name: "MyLlamaPackage",
targets: [
.executableTarget(
name: "MyLlamaPackage",
dependencies: [
"LlamaFramework"
]),
.binaryTarget(
name: "LlamaFramework",
url: "https://github.com/ggml-org/llama.cpp/releases/download/b5046/llama-b5046-xcframework.zip",
checksum: "c19be78b5f00d8d29a25da41042cb7afa094cbf6280a225abe614b03b20029ab"
)
]
)
```
The above example is using an intermediate build `b5046` of the library. This can be modified
to use a different version by changing the URL and checksum.
## Completions
Command-line completion is available for some environments.
#### Bash Completion
```bash
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash
```
Optionally this can be added to your `.bashrc` or `.bash_profile` to load it
automatically. For example:
```console
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc
```
## References

View File

@@ -62,6 +62,6 @@ Beware that none of the topics under [Using llama.cpp securely](#using-llamacpp-
<!-- normal version -->
However, If you have discovered a security vulnerability in this project, please report it privately. **Do not disclose it as a public issue.** This gives us time to work with you to fix the issue before public exposure, reducing the chance that the exploit will be used before a patch is released.
Please disclose it as a private [security advisory](https://github.com/ggerganov/llama.cpp/security/advisories/new).
Please disclose it as a private [security advisory](https://github.com/ggml-org/llama.cpp/security/advisories/new).
A team of volunteers on a reasonable-effort basis maintains this project. As such, please give us at least 90 days to work on a fix before public exposure.

View File

@@ -1,4 +0,0 @@
#pragma once
#include <llama.h>

View File

@@ -1,5 +0,0 @@
module llama [system] {
header "llama.h"
link "llama"
export *
}

538
build-xcframework.sh Executable file
View File

@@ -0,0 +1,538 @@
#!/bin/bash
#
# Options
IOS_MIN_OS_VERSION=16.4
MACOS_MIN_OS_VERSION=13.3
VISIONOS_MIN_OS_VERSION=1.0
TVOS_MIN_OS_VERSION=16.4
BUILD_SHARED_LIBS=OFF
LLAMA_BUILD_EXAMPLES=OFF
LLAMA_BUILD_TESTS=OFF
LLAMA_BUILD_SERVER=OFF
GGML_METAL=ON
GGML_METAL_EMBED_LIBRARY=ON
GGML_BLAS_DEFAULT=ON
GGML_METAL_USE_BF16=ON
GGML_OPENMP=OFF
COMMON_C_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
COMMON_CXX_FLAGS="-Wno-macro-redefined -Wno-shorten-64-to-32 -Wno-unused-command-line-argument -g"
# Common options for all builds
COMMON_CMAKE_ARGS=(
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_REQUIRED=NO
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGN_IDENTITY=""
-DCMAKE_XCODE_ATTRIBUTE_CODE_SIGNING_ALLOWED=NO
-DCMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT="dwarf-with-dsym"
-DCMAKE_XCODE_ATTRIBUTE_GCC_GENERATE_DEBUGGING_SYMBOLS=YES
-DCMAKE_XCODE_ATTRIBUTE_COPY_PHASE_STRIP=NO
-DCMAKE_XCODE_ATTRIBUTE_STRIP_INSTALLED_PRODUCT=NO
-DCMAKE_XCODE_ATTRIBUTE_DEVELOPMENT_TEAM=ggml
-DBUILD_SHARED_LIBS=${BUILD_SHARED_LIBS}
-DLLAMA_BUILD_EXAMPLES=${LLAMA_BUILD_EXAMPLES}
-DLLAMA_BUILD_TESTS=${LLAMA_BUILD_TESTS}
-DLLAMA_BUILD_SERVER=${LLAMA_BUILD_SERVER}
-DGGML_METAL_EMBED_LIBRARY=${GGML_METAL_EMBED_LIBRARY}
-DGGML_BLAS_DEFAULT=${GGML_BLAS_DEFAULT}
-DGGML_METAL=${GGML_METAL}
-DGGML_METAL_USE_BF16=${GGML_METAL_USE_BF16}
-DGGML_NATIVE=OFF
-DGGML_OPENMP=${GGML_OPENMP}
)
XCODE_VERSION=$(xcodebuild -version 2>/dev/null | head -n1 | awk '{ print $2 }')
MAJOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f1)
MINOR_VERSION=$(echo $XCODE_VERSION | cut -d. -f2)
echo "Detected Xcode version: $XCODE_VERSION"
check_required_tool() {
local tool=$1
local install_message=$2
if ! command -v $tool &> /dev/null; then
echo "Error: $tool is required but not found."
echo "$install_message"
exit 1
fi
}
echo "Checking for required tools..."
check_required_tool "cmake" "Please install CMake 3.28.0 or later (brew install cmake)"
check_required_tool "xcodebuild" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
check_required_tool "libtool" "Please install libtool which should be available with Xcode Command Line Tools (CLT). Make sure Xcode CLT is installed (xcode-select --install)"
check_required_tool "dsymutil" "Please install Xcode and Xcode Command Line Tools (xcode-select --install)"
set -e
## Clean up previous builds
rm -rf build-apple
rm -rf build-ios-sim
rm -rf build-ios-device
rm -rf build-macos
rm -rf build-visionos
rm -rf build-visionos-sim
rm -rf build-tvos-sim
rm -rf build-tvos-device
# Setup the xcframework build directory structure
setup_framework_structure() {
local build_dir=$1
local min_os_version=$2
local platform=$3 # "ios", "macos", "visionos", or "tvos"
local framework_name="llama"
echo "Creating ${platform}-style framework structure for ${build_dir}"
if [[ "$platform" == "macos" ]]; then
# macOS versioned structure uses versioned directories
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Modules
mkdir -p ${build_dir}/framework/${framework_name}.framework/Versions/A/Resources
# Create symbolic links
ln -sf A ${build_dir}/framework/${framework_name}.framework/Versions/Current
ln -sf Versions/Current/Headers ${build_dir}/framework/${framework_name}.framework/Headers
ln -sf Versions/Current/Modules ${build_dir}/framework/${framework_name}.framework/Modules
ln -sf Versions/Current/Resources ${build_dir}/framework/${framework_name}.framework/Resources
ln -sf Versions/Current/${framework_name} ${build_dir}/framework/${framework_name}.framework/${framework_name}
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Versions/A/Modules/
else
# iOS/VisionOS/tvOS use a flat structure
mkdir -p ${build_dir}/framework/${framework_name}.framework/Headers
mkdir -p ${build_dir}/framework/${framework_name}.framework/Modules
# Remove any existing structure to ensure clean build
rm -rf ${build_dir}/framework/${framework_name}.framework/Versions
# Set header and module paths
local header_path=${build_dir}/framework/${framework_name}.framework/Headers/
local module_path=${build_dir}/framework/${framework_name}.framework/Modules/
fi
# Copy all required headers (common for all platforms)
cp include/llama.h ${header_path}
cp ggml/include/ggml.h ${header_path}
cp ggml/include/ggml-alloc.h ${header_path}
cp ggml/include/ggml-backend.h ${header_path}
cp ggml/include/ggml-metal.h ${header_path}
cp ggml/include/ggml-cpu.h ${header_path}
cp ggml/include/ggml-blas.h ${header_path}
cp ggml/include/gguf.h ${header_path}
# Create module map (common for all platforms)
cat > ${module_path}module.modulemap << EOF
framework module llama {
header "llama.h"
header "ggml.h"
header "ggml-alloc.h"
header "ggml-backend.h"
header "ggml-metal.h"
header "ggml-cpu.h"
header "ggml-blas.h"
header "gguf.h"
link "c++"
link framework "Accelerate"
link framework "Metal"
link framework "Foundation"
export *
}
EOF
# Platform-specific settings for Info.plist
local platform_name=""
local sdk_name=""
local supported_platform=""
case "$platform" in
"ios")
platform_name="iphoneos"
sdk_name="iphoneos${min_os_version}"
supported_platform="iPhoneOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>1</integer>
<integer>2</integer>
</array>'
;;
"macos")
platform_name="macosx"
sdk_name="macosx${min_os_version}"
supported_platform="MacOSX"
local plist_path="${build_dir}/framework/${framework_name}.framework/Versions/A/Resources/Info.plist"
local device_family=""
;;
"visionos")
platform_name="xros"
sdk_name="xros${min_os_version}"
supported_platform="XRPlatform"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=""
;;
"tvos")
platform_name="appletvos"
sdk_name="appletvos${min_os_version}"
supported_platform="AppleTVOS"
local plist_path="${build_dir}/framework/${framework_name}.framework/Info.plist"
local device_family=' <key>UIDeviceFamily</key>
<array>
<integer>3</integer>
</array>'
;;
esac
# Create Info.plist
cat > ${plist_path} << EOF
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en</string>
<key>CFBundleExecutable</key>
<string>llama</string>
<key>CFBundleIdentifier</key>
<string>org.ggml.llama</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleName</key>
<string>llama</string>
<key>CFBundlePackageType</key>
<string>FMWK</string>
<key>CFBundleShortVersionString</key>
<string>1.0</string>
<key>CFBundleVersion</key>
<string>1</string>
<key>MinimumOSVersion</key>
<string>${min_os_version}</string>
<key>CFBundleSupportedPlatforms</key>
<array>
<string>${supported_platform}</string>
</array>${device_family}
<key>DTPlatformName</key>
<string>${platform_name}</string>
<key>DTSDKName</key>
<string>${sdk_name}</string>
</dict>
</plist>
EOF
}
# Create dynamic libraries from static libraries.
combine_static_libraries() {
local build_dir="$1"
local release_dir="$2"
local platform="$3" # "ios", "macos", "visionos", or "tvos"
local is_simulator="$4"
local base_dir="$(pwd)"
local framework_name="llama"
# Determine output path based on platform
local output_lib=""
if [[ "$platform" == "macos" ]]; then
# macOS uses versioned structure
output_lib="${build_dir}/framework/${framework_name}.framework/Versions/A/${framework_name}"
else
# iOS, visionOS, and tvOS use a directory flat structure
output_lib="${build_dir}/framework/${framework_name}.framework/${framework_name}"
fi
local libs=(
"${base_dir}/${build_dir}/src/${release_dir}/libllama.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-base.a"
"${base_dir}/${build_dir}/ggml/src/${release_dir}/libggml-cpu.a"
"${base_dir}/${build_dir}/ggml/src/ggml-metal/${release_dir}/libggml-metal.a"
"${base_dir}/${build_dir}/ggml/src/ggml-blas/${release_dir}/libggml-blas.a"
)
# Create temporary directory for processing
local temp_dir="${base_dir}/${build_dir}/temp"
mkdir -p "${temp_dir}"
# Since we have multiple architectures libtool will find object files that do not
# match the target architecture. We suppress these warnings.
libtool -static -o "${temp_dir}/combined.a" "${libs[@]}" 2> /dev/null
# Determine SDK, architectures, and install_name based on platform and simulator flag.
local sdk=""
local archs=""
local min_version_flag=""
local install_name=""
case "$platform" in
"ios")
if [[ "$is_simulator" == "true" ]]; then
sdk="iphonesimulator"
archs="arm64 x86_64"
min_version_flag="-mios-simulator-version-min=${IOS_MIN_OS_VERSION}"
else
sdk="iphoneos"
archs="arm64"
min_version_flag="-mios-version-min=${IOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
"macos")
sdk="macosx"
archs="arm64 x86_64"
min_version_flag="-mmacosx-version-min=${MACOS_MIN_OS_VERSION}"
install_name="@rpath/llama.framework/Versions/Current/llama"
;;
"visionos")
if [[ "$is_simulator" == "true" ]]; then
sdk="xrsimulator"
archs="arm64 x86_64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}-simulator"
else
sdk="xros"
archs="arm64"
min_version_flag="-mtargetos=xros${VISIONOS_MIN_OS_VERSION}"
fi
# Use flat structure for visionOS, same as iOS
install_name="@rpath/llama.framework/llama"
;;
"tvos")
if [[ "$is_simulator" == "true" ]]; then
sdk="appletvsimulator"
archs="arm64 x86_64"
min_version_flag="-mtvos-simulator-version-min=${TVOS_MIN_OS_VERSION}"
else
sdk="appletvos"
archs="arm64"
min_version_flag="-mtvos-version-min=${TVOS_MIN_OS_VERSION}"
fi
install_name="@rpath/llama.framework/llama"
;;
esac
# Build architecture flags
local arch_flags=""
for arch in $archs; do
arch_flags+=" -arch $arch"
done
# Create dynamic library
echo "Creating dynamic library for ${platform}."
xcrun -sdk $sdk clang++ -dynamiclib \
-isysroot $(xcrun --sdk $sdk --show-sdk-path) \
$arch_flags \
$min_version_flag \
-Wl,-force_load,"${temp_dir}/combined.a" \
-framework Foundation -framework Metal -framework Accelerate \
-install_name "$install_name" \
-o "${base_dir}/${output_lib}"
# Platform-specific post-processing for device builds
if [[ "$is_simulator" == "false" ]]; then
if command -v xcrun vtool &>/dev/null; then
case "$platform" in
"ios")
echo "Marking binary as a framework binary for iOS..."
xcrun vtool -set-build-version ios ${IOS_MIN_OS_VERSION} ${IOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"visionos")
echo "Marking binary as a framework binary for visionOS..."
if [[ "$MAJOR_VERSION" -gt 16 ]] || [[ "$MAJOR_VERSION" -eq 16 && "$MINOR_VERSION" -gt 2 ]]; then
echo "Xcode version greater than 16.2, using visionOS."
VISION_OS_BUILD_VERSION="visionos"
else
echo "Xcode version less than or equal to 16.2, using xros."
VISION_OS_BUILD_VERSION="xros"
fi
xcrun vtool -set-build-version ${VISION_OS_BUILD_VERSION} ${VISIONOS_MIN_OS_VERSION} ${VISIONOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
"tvos")
echo "Marking binary as a framework binary for tvOS..."
xcrun vtool -set-build-version tvos ${TVOS_MIN_OS_VERSION} ${TVOS_MIN_OS_VERSION} -replace \
-output "${base_dir}/${output_lib}" "${base_dir}/${output_lib}"
;;
esac
else
echo "Warning: vtool not found. Binary may not pass App Store validation."
fi
fi
echo "Creating properly formatted dSYM..."
# Create a separate directory for dSYMs for all platforms
mkdir -p "${base_dir}/${build_dir}/dSYMs"
# iOS and visionOS style dSYM (flat structure)
if [[ "$platform" == "ios" || "$platform" == "visionos" || "$platform" == "tvos" ]]; then
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Create a copy of the binary that will be stripped
cp "${base_dir}/${output_lib}" "${temp_dir}/binary_to_strip"
# Strip debug symbols from the copy
xcrun strip -S "${temp_dir}/binary_to_strip" -o "${temp_dir}/stripped_lib"
# Replace the original with the stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
else
# macOS style dSYM
# First strip debug info to a separate file
xcrun strip -S "${base_dir}/${output_lib}" -o "${temp_dir}/stripped_lib"
# Generate dSYM in the dSYMs directory
xcrun dsymutil "${base_dir}/${output_lib}" -o "${base_dir}/${build_dir}/dSYMs/llama.dSYM"
# Replace original binary with stripped version
mv "${temp_dir}/stripped_lib" "${base_dir}/${output_lib}"
fi
# Remove any automatically generated dSYM files in the framework structure as they will
# otherwise case Invalid Bundle Structure validation errors.
if [ -d "${base_dir}/${output_lib}.dSYM" ]; then
echo "Removing generated dSYM file in framework structure: ${base_dir}/${output_lib}.dSYM"
rm -rf "${base_dir}/${output_lib}.dSYM"
fi
# Clean up
rm -rf "${temp_dir}"
}
echo "Building for iOS simulator..."
cmake -B build-ios-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DIOS=ON \
-DCMAKE_SYSTEM_NAME=iOS \
-DCMAKE_OSX_SYSROOT=iphonesimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphonesimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-sim --config Release -- -quiet
echo "Building for iOS devices..."
cmake -B build-ios-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${IOS_MIN_OS_VERSION} \
-DCMAKE_OSX_SYSROOT=iphoneos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=iphoneos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-ios-device --config Release -- -quiet
echo "Building for macOS..."
cmake -B build-macos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${MACOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-macos --config Release -- -quiet
echo "Building for visionOS..."
cmake -B build-visionos -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xros \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xros \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos --config Release -- -quiet
echo "Building for visionOS simulator..."
cmake -B build-visionos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${VISIONOS_MIN_OS_VERSION} \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DCMAKE_SYSTEM_NAME=visionOS \
-DCMAKE_OSX_SYSROOT=xrsimulator \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=xrsimulator \
-DCMAKE_C_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="-D_XOPEN_SOURCE=700 ${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-visionos-sim --config Release -- -quiet
# Add tvOS builds (might need the same u_int definitions as watchOS and visionOS)
echo "Building for tvOS simulator..."
cmake -B build-tvos-sim -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvsimulator \
-DCMAKE_OSX_ARCHITECTURES="arm64;x86_64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvsimulator \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-sim --config Release -- -quiet
echo "Building for tvOS devices..."
cmake -B build-tvos-device -G Xcode \
"${COMMON_CMAKE_ARGS[@]}" \
-DCMAKE_OSX_DEPLOYMENT_TARGET=${TVOS_MIN_OS_VERSION} \
-DCMAKE_SYSTEM_NAME=tvOS \
-DCMAKE_OSX_SYSROOT=appletvos \
-DCMAKE_OSX_ARCHITECTURES="arm64" \
-DGGML_METAL=ON \
-DCMAKE_XCODE_ATTRIBUTE_SUPPORTED_PLATFORMS=appletvos \
-DCMAKE_C_FLAGS="${COMMON_C_FLAGS}" \
-DCMAKE_CXX_FLAGS="${COMMON_CXX_FLAGS}" \
-DLLAMA_CURL=OFF \
-S .
cmake --build build-tvos-device --config Release -- -quiet
# Setup frameworks and copy binaries and headers
echo "Setting up framework structures..."
setup_framework_structure "build-ios-sim" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-ios-device" ${IOS_MIN_OS_VERSION} "ios"
setup_framework_structure "build-macos" ${MACOS_MIN_OS_VERSION} "macos"
setup_framework_structure "build-visionos" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-visionos-sim" ${VISIONOS_MIN_OS_VERSION} "visionos"
setup_framework_structure "build-tvos-sim" ${TVOS_MIN_OS_VERSION} "tvos"
setup_framework_structure "build-tvos-device" ${TVOS_MIN_OS_VERSION} "tvos"
# Create dynamic libraries from static libraries
echo "Creating dynamic libraries from static libraries..."
combine_static_libraries "build-ios-sim" "Release-iphonesimulator" "ios" "true"
combine_static_libraries "build-ios-device" "Release-iphoneos" "ios" "false"
combine_static_libraries "build-macos" "Release" "macos" "false"
combine_static_libraries "build-visionos" "Release-xros" "visionos" "false"
combine_static_libraries "build-visionos-sim" "Release-xrsimulator" "visionos" "true"
combine_static_libraries "build-tvos-sim" "Release-appletvsimulator" "tvos" "true"
combine_static_libraries "build-tvos-device" "Release-appletvos" "tvos" "false"
# Create XCFramework with correct debug symbols paths
echo "Creating XCFramework..."
xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-ios-device/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-macos/framework/llama.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
-framework $(pwd)/build-visionos/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos-sim/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-device/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-tvos-sim/framework/llama.framework \
-debug-symbols $(pwd)/build-tvos-sim/dSYMs/llama.dSYM \
-output $(pwd)/build-apple/llama.xcframework

View File

@@ -1,11 +1,11 @@
# CI
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
In addition to [Github Actions](https://github.com/ggml-org/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
https://github.com/ggml-org/ci
It monitors the `master` branch for new commits and runs the
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
[ci/run.sh](https://github.com/ggml-org/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
to cover various hardware architectures, including GPU and Apple Silicon instances.
@@ -26,4 +26,43 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake ccache git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -16,6 +16,9 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -36,7 +39,7 @@ sd=`dirname $0`
cd $sd/../
SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON -DLLAMA_CURL=OFF"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
@@ -52,13 +55,24 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
# Use only main GPU
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
# Enable sysman for correct memory reporting
export ZES_ENABLE_SYSMAN=1
# to circumvent precision issues on CPY operations
export SYCL_PROGRAM_COMPILE_OPTIONS="-cl-fp32-correctly-rounded-divide-sqrt"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -299,7 +313,7 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../examples/convert_legacy_llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -352,10 +366,10 @@ function gg_run_open_llama_7b_v2 {
(time ./bin/llama-imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 99 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state--model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 10 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/llama-save-load-state --model ${model_q4_0} -ngl 99 -c 0 -fa ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
@@ -433,7 +447,7 @@ function gg_run_pythia_1_4b {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -564,7 +578,7 @@ function gg_run_pythia_2_8b {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -699,7 +713,7 @@ function gg_run_embd_bge_small {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@@ -747,7 +761,7 @@ function gg_run_rerank_tiny {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j$(nproc) ) 2>&1 | tee -a $OUT/${ci}-make.log
python ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
python3 ../convert_hf_to_gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
@@ -808,14 +822,14 @@ export LLAMA_LOG_PREFIX=1
export LLAMA_LOG_TIMESTAMPS=1
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}
ln -sfn ${mnt_models} ${SRC}/models-mnt
# Create a fresh python venv and enter it
if ! python -m venv "$MNT/venv"; then
# Create a fresh python3 venv and enter it
if ! python3 -m venv "$MNT/venv"; then
echo "Error: Failed to create Python virtual environment at $MNT/venv."
exit 1
fi
@@ -826,8 +840,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
fi
ret=0
test $ret -eq 0 && gg_run ctest_debug
if [ -z ${GG_BUILD_SYCL} ]; then
# SYCL build breaks with debug build flags
test $ret -eq 0 && gg_run ctest_debug
fi
test $ret -eq 0 && gg_run ctest_release
if [ -z ${GG_BUILD_LOW_PERF} ]; then
@@ -835,7 +851,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run rerank_tiny
if [ -z ${GG_BUILD_CLOUD} ] || [ ${GG_BUILD_EXTRA_TESTS_0} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run test_scripts_debug
fi
test $ret -eq 0 && gg_run test_scripts_release
fi
@@ -846,7 +864,9 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
if [ -z ${GG_BUILD_SYCL} ]; then
test $ret -eq 0 && gg_run ctest_with_model_debug
fi
test $ret -eq 0 && gg_run ctest_with_model_release
fi
fi

View File

@@ -44,7 +44,7 @@ if(MSVC)
set(BUILD_TARGET ${CMAKE_VS_PLATFORM_NAME})
else()
execute_process(
COMMAND sh -c "$@ --version | head -1" _ ${CMAKE_C_COMPILER}
COMMAND sh -c "\"$@\" --version | head -1" _ ${CMAKE_C_COMPILER}
OUTPUT_VARIABLE OUT
OUTPUT_STRIP_TRAILING_WHITESPACE
)

View File

@@ -1,3 +1,5 @@
include("ggml/cmake/common.cmake")
function(llama_add_compile_flags)
if (LLAMA_FATAL_WARNINGS)
if (CMAKE_CXX_COMPILER_ID MATCHES "GNU" OR CMAKE_CXX_COMPILER_ID MATCHES "Clang")

View File

@@ -3,159 +3,13 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_STATIC @GGML_STATIC@)
set(GGML_NATIVE @GGML_NATIVE@)
set(GGML_LTO @GGML_LTO@)
set(GGML_CCACHE @GGML_CCACHE@)
set(GGML_AVX @GGML_AVX@)
set(GGML_AVX2 @GGML_AVX2@)
set(GGML_AVX512 @GGML_AVX512@)
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
set(GGML_AMX_TILE @GGML_AMX_TILE@)
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
set(GGML_FMA @GGML_FMA@)
set(GGML_LASX @GGML_LASX@)
set(GGML_LSX @GGML_LSX@)
set(GGML_RVV @GGML_RVV@)
set(GGML_SVE @GGML_SVE@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
set(GGML_OPENMP @GGML_OPENMP@)
set(GGML_CPU_HBM @GGML_CPU_HBM@)
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
set(GGML_HIP_UMA @GGML_HIP_UMA@)
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
set(GGML_METAL_STD @GGML_METAL_STD@)
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
@PACKAGE_INIT@
set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
find_package(Threads REQUIRED)
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
set(_llama_link_deps "")
set(_llama_link_opts "")
foreach(_ggml_lib ggml ggml-base)
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
find_library(${_ggml_lib_var} ${_ggml_lib}
REQUIRED
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
message(STATUS "Found ${${_ggml_lib_var}}")
endforeach()
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
string(TOUPPER "GGML_${backend}" backend_id)
set(_ggml_lib "ggml-${backend}")
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
find_library(${_ggml_lib_var} ${_ggml_lib}
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
if(${_ggml_lib_var})
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
set(${backend_id} ON)
message(STATUS "Found backend ${${_ggml_lib_var}}")
else()
set(${backend_id} OFF)
endif()
endforeach()
if (NOT LLAMA_SHARED_LIB)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
endif()
if (GGML_OPENMP)
find_package(OpenMP REQUIRED)
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
endif()
if (GGML_CPU_HBM)
find_library(memkind memkind REQUIRED)
list(APPEND _llama_link_deps memkind)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
endif()
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
endif()
if (GGML_VULKAN)
find_package(Vulkan REQUIRED)
list(APPEND _llama_link_deps Vulkan::Vulkan)
endif()
if (GGML_HIP)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
endif()
if (GGML_SYCL)
find_package(DNNL)
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
list(APPEND _llama_link_deps DNNL::dnnl)
endif()
if (WIN32)
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
endif()
endif()
endif()
find_package(ggml REQUIRED HINTS ${LLAMA_LIB_DIR}/cmake)
find_library(llama_LIBRARY llama
REQUIRED
@@ -167,12 +21,10 @@ add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
INTERFACE_LINK_LIBRARIES "ggml::ggml;ggml::ggml-base;"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"
INTERFACE_COMPILE_FEATURES cxx_std_11
POSITION_INDEPENDENT_CODE ON )
INTERFACE_COMPILE_FEATURES c_std_90
POSITION_INDEPENDENT_CODE ON)
check_required_components(Llama)

View File

@@ -1,10 +1,10 @@
prefix=@CMAKE_INSTALL_PREFIX@
exec_prefix=${prefix}
libdir=${exec_prefix}/lib
includedir=${prefix}/include
exec_prefix=@CMAKE_INSTALL_PREFIX@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@
Name: llama
Description: Port of Facebook's LLaMA model in C/C++
Version: @PROJECT_VERSION@
Libs: -L${libdir} -lggml -lggml-base -lllama
Version: @LLAMA_INSTALL_VERSION@
Libs: -L${libdir} -lggml -lggml-base -lllama
Cflags: -I${includedir}

View File

@@ -56,14 +56,19 @@ add_library(${TARGET} STATIC
arg.cpp
arg.h
base64.hpp
chat.cpp
chat.h
common.cpp
common.h
console.cpp
console.h
json-schema-to-grammar.cpp
json.hpp
llguidance.cpp
log.cpp
log.h
minja/chat-template.hpp
minja/minja.hpp
ngram-cache.cpp
ngram-cache.h
sampling.cpp
@@ -80,13 +85,60 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
find_package(CURL)
if (NOT CURL_FOUND)
message(FATAL_ERROR "Could NOT find CURL. Hint: to disable this feature, set -DLLAMA_CURL=OFF")
endif()
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})
endif ()
if (LLAMA_LLGUIDANCE)
include(ExternalProject)
set(LLGUIDANCE_SRC ${CMAKE_BINARY_DIR}/llguidance/source)
set(LLGUIDANCE_PATH ${LLGUIDANCE_SRC}/target/release)
# Set the correct library file extension based on platform
if (WIN32)
set(LLGUIDANCE_LIB_NAME "llguidance.lib")
# Add Windows-specific libraries
set(LLGUIDANCE_PLATFORM_LIBS
ws2_32 # Windows Sockets API
userenv # For GetUserProfileDirectoryW
ntdll # For NT functions
bcrypt # For BCryptGenRandom
)
else()
set(LLGUIDANCE_LIB_NAME "libllguidance.a")
set(LLGUIDANCE_PLATFORM_LIBS "")
endif()
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.7.10:
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE
CONFIGURE_COMMAND ""
BUILD_COMMAND cargo build --release
INSTALL_COMMAND ""
BUILD_BYPRODUCTS ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME} ${LLGUIDANCE_PATH}/llguidance.h
UPDATE_COMMAND ""
)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_LLGUIDANCE)
add_library(llguidance STATIC IMPORTED)
set_target_properties(llguidance PROPERTIES IMPORTED_LOCATION ${LLGUIDANCE_PATH}/${LLGUIDANCE_LIB_NAME})
add_dependencies(llguidance llguidance_ext)
target_include_directories(${TARGET} PRIVATE ${LLGUIDANCE_PATH})
# Add platform libraries to the main target
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} llguidance ${LLGUIDANCE_PLATFORM_LIBS})
endif ()
target_include_directories(${TARGET} PUBLIC .)
target_compile_features (${TARGET} PUBLIC cxx_std_17)
target_link_libraries (${TARGET} PRIVATE ${LLAMA_COMMON_EXTRA_LIBS} PUBLIC llama Threads::Threads)

File diff suppressed because it is too large Load Diff

1779
common/chat.cpp Normal file

File diff suppressed because it is too large Load Diff

135
common/chat.h Normal file
View File

@@ -0,0 +1,135 @@
// Chat support (incl. tool call grammar constraining & output parsing) w/ generic & custom template handlers.
#pragma once
#include "common.h"
#include <string>
#include <vector>
struct common_chat_templates;
struct common_chat_tool_call {
std::string name;
std::string arguments;
std::string id;
};
struct common_chat_msg_content_part {
std::string type;
std::string text;
};
struct common_chat_msg {
std::string role;
std::string content;
std::vector<common_chat_msg_content_part> content_parts = {};
std::vector<common_chat_tool_call> tool_calls = {};
std::string reasoning_content;
std::string tool_name;
std::string tool_call_id;
};
struct common_chat_tool {
std::string name;
std::string description;
std::string parameters;
};
enum common_chat_tool_choice {
COMMON_CHAT_TOOL_CHOICE_AUTO,
COMMON_CHAT_TOOL_CHOICE_REQUIRED,
COMMON_CHAT_TOOL_CHOICE_NONE,
};
enum common_chat_format {
COMMON_CHAT_FORMAT_CONTENT_ONLY,
COMMON_CHAT_FORMAT_GENERIC,
COMMON_CHAT_FORMAT_MISTRAL_NEMO,
COMMON_CHAT_FORMAT_LLAMA_3_X,
COMMON_CHAT_FORMAT_LLAMA_3_X_WITH_BUILTIN_TOOLS,
COMMON_CHAT_FORMAT_DEEPSEEK_R1,
COMMON_CHAT_FORMAT_DEEPSEEK_R1_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_FIREFUNCTION_V2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_2,
COMMON_CHAT_FORMAT_FUNCTIONARY_V3_1_LLAMA_3_1,
COMMON_CHAT_FORMAT_HERMES_2_PRO,
COMMON_CHAT_FORMAT_HERMES_2_PRO_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COMMAND_R7B,
COMMON_CHAT_FORMAT_COMMAND_R7B_EXTRACT_REASONING,
COMMON_CHAT_FORMAT_COUNT, // Not a format, just the # formats
};
struct common_chat_templates_inputs {
std::vector<common_chat_msg> messages;
std::string grammar;
std::string json_schema;
bool add_generation_prompt = true;
bool use_jinja = true;
// Parameters below only supported when use_jinja is true
std::vector<common_chat_tool> tools;
common_chat_tool_choice tool_choice = COMMON_CHAT_TOOL_CHOICE_AUTO;
bool parallel_tool_calls = false;
bool extract_reasoning = true;
};
struct common_chat_params {
common_chat_format format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
std::string prompt;
std::string grammar;
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers;
std::vector<std::string> preserved_tokens;
std::vector<std::string> additional_stops;
};
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl, bool use_jinja);
void common_chat_templates_free(struct common_chat_templates * tmpls);
struct common_chat_templates_deleter { void operator()(common_chat_templates * tmpls) { common_chat_templates_free(tmpls); } };
typedef std::unique_ptr<struct common_chat_templates, common_chat_templates_deleter> common_chat_templates_ptr;
common_chat_templates_ptr common_chat_templates_init(
const struct llama_model * model,
const std::string & chat_template_override,
const std::string & bos_token_override = "",
const std::string & eos_token_override = "");
bool common_chat_templates_was_explicit(const struct common_chat_templates * tmpls);
const char * common_chat_templates_source(const struct common_chat_templates * tmpls, const char * variant = nullptr);
struct common_chat_params common_chat_templates_apply(
const struct common_chat_templates * tmpls,
const struct common_chat_templates_inputs & inputs);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(
const struct common_chat_templates * tmpls,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass,
bool use_jinja);
// Returns an example of formatted chat
std::string common_chat_format_example(
const struct common_chat_templates * tmpls,
bool use_jinja);
std::string common_chat_format_name(common_chat_format format);
common_chat_msg common_chat_parse( const std::string & input, common_chat_format format);
common_chat_tool_choice common_chat_tool_choice_parse_oaicompat(const std::string & tool_choice);
// Parses a JSON array of messages in OpenAI's chat completion API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_msg> common_chat_msgs_parse_oaicompat(const T & messages);
template <class T> T common_chat_msgs_to_json_oaicompat(const std::vector<common_chat_msg> & msgs, bool concat_typed_text = false);
// Parses a JSON array of tools in OpenAI's chat completion tool call API format.
// T can be std::string containing JSON or nlohmann::ordered_json
template <class T> std::vector<common_chat_tool> common_chat_tools_parse_oaicompat(const T & tools);
template <class T> T common_chat_tools_to_json_oaicompat(const std::vector<common_chat_tool> & tools);

View File

@@ -7,10 +7,6 @@
#include "common.h"
#include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT:
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
#include "json-schema-to-grammar.h"
#include "llama.h"
#include <algorithm>
@@ -52,47 +48,11 @@
#include <sys/stat.h>
#include <unistd.h>
#endif
#if defined(LLAMA_USE_CURL)
#include <curl/curl.h>
#include <curl/easy.h>
#include <future>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#if defined(LLAMA_USE_CURL)
#ifdef __linux__
#include <linux/limits.h>
#elif defined(_WIN32)
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#else
#include <sys/syslimits.h>
#endif
#define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
//
// CURL utils
//
using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
// cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
struct curl_slist_ptr {
struct curl_slist * ptr = nullptr;
~curl_slist_ptr() {
if (ptr) {
curl_slist_free_all(ptr);
}
}
};
#endif // LLAMA_USE_CURL
using json = nlohmann::ordered_json;
//
// CPU utils
//
@@ -483,6 +443,53 @@ void string_replace_all(std::string & s, const std::string & search, const std::
s = std::move(builder);
}
std::string regex_escape(const std::string & s) {
static const std::regex special_chars("[.^$|()*+?\\[\\]{}\\\\]");
return std::regex_replace(s, special_chars, "\\$0");
}
std::string string_join(const std::vector<std::string> & values, const std::string & separator) {
std::ostringstream result;
for (size_t i = 0; i < values.size(); ++i) {
if (i > 0) {
result << separator;
}
result << values[i];
}
return result.str();
}
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> parts;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
parts.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
parts.push_back(str.substr(start));
return parts;
}
std::string string_repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
std::string string_from(bool value) {
return value ? "true" : "false";
}
@@ -823,7 +830,7 @@ std::string fs_get_cache_directory() {
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
#if defined(__linux__) || defined(__FreeBSD__) || defined(_AIX)
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
@@ -833,7 +840,9 @@ std::string fs_get_cache_directory() {
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
#else
# error Unknown architecture
#endif
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
@@ -854,22 +863,14 @@ std::string fs_get_cache_file(const std::string & filename) {
//
// Model utils
//
struct common_init_result common_init_from_params(common_params & params) {
common_init_result iparams;
auto mparams = common_model_params_to_llama(params);
llama_model * model = nullptr;
if (!params.hf_repo.empty() && !params.hf_file.empty()) {
model = common_load_model_from_hf(params.hf_repo, params.hf_file, params.model, params.hf_token, mparams);
} else if (!params.model_url.empty()) {
model = common_load_model_from_url(params.model_url, params.model, params.hf_token, mparams);
} else {
model = llama_model_load_from_file(params.model.c_str(), mparams);
}
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
if (model == NULL) {
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to load model '%s'\n", __func__, params.model.path.c_str());
return iparams;
}
@@ -904,13 +905,13 @@ struct common_init_result common_init_from_params(common_params & params) {
llama_context * lctx = llama_init_from_model(model, cparams);
if (lctx == NULL) {
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.c_str());
LOG_ERR("%s: failed to create context with model '%s'\n", __func__, params.model.path.c_str());
llama_model_free(model);
return iparams;
}
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@@ -987,6 +988,8 @@ struct common_init_result common_init_from_params(common_params & params) {
if (params.warmup) {
LOG_WRN("%s: warming up the model with an empty run - please wait ... (--no-warmup to disable)\n", __func__);
llama_set_warmup(lctx, true);
std::vector<llama_token> tmp;
llama_token bos = llama_vocab_bos(vocab);
llama_token eos = llama_vocab_eos(vocab);
@@ -1014,9 +1017,10 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_cache_clear(lctx);
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
llama_set_warmup(lctx, false);
}
iparams.model.reset(model);
@@ -1025,6 +1029,19 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
std::string get_model_endpoint() {
const char * model_endpoint_env = getenv("MODEL_ENDPOINT");
// We still respect the use of environment-variable "HF_ENDPOINT" for backward-compatibility.
const char * hf_endpoint_env = getenv("HF_ENDPOINT");
const char * endpoint_env = model_endpoint_env ? model_endpoint_env : hf_endpoint_env;
std::string model_endpoint = "https://huggingface.co/";
if (endpoint_env) {
model_endpoint = endpoint_env;
if (model_endpoint.back() != '/') model_endpoint += '/';
}
return model_endpoint;
}
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora) {
llama_clear_adapter_lora(ctx);
for (auto & la : lora) {
@@ -1040,16 +1057,18 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
if (!params.devices.empty()) {
mparams.devices = params.devices.data();
}
if (params.n_gpu_layers != -1) {
mparams.n_gpu_layers = params.n_gpu_layers;
}
mparams.rpc_servers = params.rpc_servers.c_str();
mparams.main_gpu = params.main_gpu;
mparams.split_mode = params.split_mode;
mparams.tensor_split = params.tensor_split;
mparams.use_mmap = params.use_mmap;
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
@@ -1057,6 +1076,13 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
mparams.kv_overrides = params.kv_overrides.data();
}
if (params.tensor_buft_overrides.empty()) {
mparams.tensor_buft_overrides = NULL;
} else {
GGML_ASSERT(params.tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
mparams.tensor_buft_overrides = params.tensor_buft_overrides.data();
}
return mparams;
}
@@ -1116,451 +1142,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
return tpp;
}
#ifdef LLAMA_USE_CURL
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;
while (remaining_attempts > 0) {
LOG_INF("%s: Trying to download from %s (attempt %d of %d)...\n", __func__ , url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
CURLcode res = curl_easy_perform(curl);
if (res == CURLE_OK) {
return true;
}
int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
remaining_attempts--;
std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
}
LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
return false;
}
static bool common_download_file(const std::string & url, const std::string & path, const std::string & hf_token) {
// Initialize libcurl
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
if (!curl) {
LOG_ERR("%s: error initializing libcurl\n", __func__);
return false;
}
bool force_download = false;
// Set the URL, allow to follow http redirection
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
// Check if hf-token or bearer-token was specified
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
}
#if defined(_WIN32)
// CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
// operating system. Currently implemented under MS-Windows.
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
// Check if the file already exists locally
auto file_exists = std::filesystem::exists(path);
// If the file exists, check its JSON metadata companion file.
std::string metadata_path = path + ".json";
nlohmann::json metadata;
std::string etag;
std::string last_modified;
if (file_exists) {
// Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
std::ifstream metadata_in(metadata_path);
if (metadata_in.good()) {
try {
metadata_in >> metadata;
LOG_INF("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
if (metadata.contains("url") && metadata.at("url").is_string()) {
auto previous_url = metadata.at("url").get<std::string>();
if (previous_url != url) {
LOG_ERR("%s: Model URL mismatch: %s != %s\n", __func__, url.c_str(), previous_url.c_str());
return false;
}
}
if (metadata.contains("etag") && metadata.at("etag").is_string()) {
etag = metadata.at("etag");
}
if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
last_modified = metadata.at("lastModified");
}
} catch (const nlohmann::json::exception & e) {
LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
return false;
}
}
} else {
LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
}
// Send a HEAD request to retrieve the etag and last-modified headers
struct common_load_model_from_url_headers {
std::string etag;
std::string last_modified;
};
common_load_model_from_url_headers headers;
{
typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
static std::regex header_regex("([^:]+): (.*)\r\n");
static std::regex etag_regex("ETag", std::regex_constants::icase);
static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
std::string header(buffer, n_items);
std::smatch match;
if (std::regex_match(header, match, header_regex)) {
const std::string & key = match[1];
const std::string & value = match[2];
if (std::regex_match(key, match, etag_regex)) {
headers->etag = value;
} else if (std::regex_match(key, match, last_modified_regex)) {
headers->last_modified = value;
}
}
return n_items;
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code != 200) {
// HEAD not supported, we don't know if the file has changed
// force trigger downloading
force_download = true;
LOG_ERR("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
}
}
bool should_download = !file_exists || force_download;
if (!should_download) {
if (!etag.empty() && etag != headers.etag) {
LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
should_download = true;
} else if (!last_modified.empty() && last_modified != headers.last_modified) {
LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
should_download = true;
}
}
if (should_download) {
std::string path_temporary = path + ".downloadInProgress";
if (file_exists) {
LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
if (remove(path.c_str()) != 0) {
LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
return false;
}
}
// Set the output file
struct FILE_deleter {
void operator()(FILE * f) const {
fclose(f);
}
};
std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
if (!outfile) {
LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
return false;
}
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
return fwrite(data, size, nmemb, (FILE *)fd);
};
curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
// display download progress
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
// helper function to hide password in URL
auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
std::size_t protocol_pos = url.find("://");
if (protocol_pos == std::string::npos) {
return url; // Malformed URL
}
std::size_t at_pos = url.find('@', protocol_pos + 3);
if (at_pos == std::string::npos) {
return url; // No password in URL
}
return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
};
// start the download
LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS);
if (!was_perform_successful) {
return false;
}
long http_code = 0;
curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
if (http_code < 200 || http_code >= 400) {
LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
return false;
}
// Causes file to be closed explicitly here before we rename it.
outfile.reset();
// Write the updated JSON metadata file.
metadata.update({
{"url", url},
{"etag", headers.etag},
{"lastModified", headers.last_modified}
});
std::ofstream(metadata_path) << metadata.dump(4);
LOG_INF("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
if (rename(path_temporary.c_str(), path.c_str()) != 0) {
LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
return false;
}
}
return true;
}
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// Basic validation of the model_url
if (model_url.empty()) {
LOG_ERR("%s: invalid model_url\n", __func__);
return NULL;
}
if (!common_download_file(model_url, local_path, hf_token)) {
return NULL;
}
// check for additional GGUFs split to download
int n_split = 0;
{
struct gguf_init_params gguf_params = {
/*.no_alloc = */ true,
/*.ctx = */ NULL,
};
auto * ctx_gguf = gguf_init_from_file(local_path.c_str(), gguf_params);
if (!ctx_gguf) {
LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, local_path.c_str());
return NULL;
}
auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
if (key_n_split >= 0) {
n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
}
gguf_free(ctx_gguf);
}
if (n_split > 1) {
char split_prefix[PATH_MAX] = {0};
char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
// Verify the first split file format
// and extract split URL and PATH prefixes
{
if (!llama_split_prefix(split_prefix, sizeof(split_prefix), local_path.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, local_path.c_str(), n_split);
return NULL;
}
if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model_url.c_str(), 0, n_split)) {
LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model_url.c_str(), n_split);
return NULL;
}
}
// Prepare download in parallel
std::vector<std::future<bool>> futures_download;
for (int idx = 1; idx < n_split; idx++) {
futures_download.push_back(std::async(std::launch::async, [&split_prefix, &split_url_prefix, &n_split, hf_token](int download_idx) -> bool {
char split_path[PATH_MAX] = {0};
llama_split_path(split_path, sizeof(split_path), split_prefix, download_idx, n_split);
char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
llama_split_path(split_url, sizeof(split_url), split_url_prefix, download_idx, n_split);
return common_download_file(split_url, split_path, hf_token);
}, idx));
}
// Wait for all downloads to complete
for (auto & f : futures_download) {
if (!f.get()) {
return NULL;
}
}
}
return llama_model_load_from_file(local_path.c_str(), params);
}
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params) {
// construct hugging face model url:
//
// --repo ggml-org/models --file tinyllama-1.1b/ggml-model-f16.gguf
// https://huggingface.co/ggml-org/models/resolve/main/tinyllama-1.1b/ggml-model-f16.gguf
//
// --repo TheBloke/Mixtral-8x7B-v0.1-GGUF --file mixtral-8x7b-v0.1.Q4_K_M.gguf
// https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF/resolve/main/mixtral-8x7b-v0.1.Q4_K_M.gguf
//
std::string model_url = "https://huggingface.co/";
model_url += repo;
model_url += "/resolve/main/";
model_url += remote_path;
return common_load_model_from_url(model_url, local_path, hf_token, params);
}
/**
* Allow getting the HF file from the HF repo with tag (like ollama), for example:
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
* - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
* - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
* Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
*
* Return pair of <repo, file> (with "repo" already having tag removed)
*
* Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
*/
std::pair<std::string, std::string> common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & hf_token) {
auto parts = string_split<std::string>(hf_repo_with_tag, ':');
std::string tag = parts.size() > 1 ? parts.back() : "latest";
std::string hf_repo = parts[0];
if (string_split<std::string>(hf_repo, '/').size() != 2) {
throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
}
// fetch model info from Hugging Face Hub API
json model_info;
curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
curl_slist_ptr http_headers;
std::string res_str;
std::string url = "https://huggingface.co/v2/" + hf_repo + "/manifests/" + tag;
curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
static_cast<std::string *>(data)->append((char * ) ptr, size * nmemb);
return size * nmemb;
};
curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_str);
#if defined(_WIN32)
curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
#endif
if (!hf_token.empty()) {
std::string auth_header = "Authorization: Bearer " + hf_token;
http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
}
// Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
http_headers.ptr = curl_slist_append(http_headers.ptr, "Accept: application/json");
curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
CURLcode res = curl_easy_perform(curl.get());
if (res != CURLE_OK) {
throw std::runtime_error("error: cannot make GET request to HF API");
}
long res_code;
curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
if (res_code == 200) {
model_info = json::parse(res_str);
} else if (res_code == 401) {
throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
} else {
throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
}
// check response
if (!model_info.contains("ggufFile")) {
throw std::runtime_error("error: model does not have ggufFile");
}
json & gguf_file = model_info.at("ggufFile");
if (!gguf_file.contains("rfilename")) {
throw std::runtime_error("error: ggufFile does not have rfilename");
}
return std::make_pair(hf_repo, gguf_file.at("rfilename"));
}
#else
struct llama_model * common_load_model_from_url(
const std::string & /*model_url*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return nullptr;
}
struct llama_model * common_load_model_from_hf(
const std::string & /*repo*/,
const std::string & /*remote_path*/,
const std::string & /*local_path*/,
const std::string & /*hf_token*/,
const struct llama_model_params & /*params*/) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return nullptr;
}
std::pair<std::string, std::string> common_get_hf_file(const std::string &, const std::string &) {
LOG_WRN("%s: llama.cpp built without libcurl, downloading from Hugging Face not supported.\n", __func__);
return std::make_pair("", "");
}
#endif // LLAMA_USE_CURL
//
// Batch utils
//
@@ -1725,95 +1306,6 @@ std::string common_detokenize(const struct llama_vocab * vocab, const std::vecto
return text;
}
//
// Chat template utils
//
std::string common_get_builtin_chat_template(const struct llama_model * model) {
const char * ptr_tmpl = llama_model_chat_template(model);
return ptr_tmpl == nullptr ? "" : ptr_tmpl;
}
bool common_chat_verify_template(const std::string & tmpl) {
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(tmpl.c_str(), chat, 1, true, nullptr, 0);
return res >= 0;
}
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & msgs,
bool add_ass) {
int alloc_size = 0;
bool fallback = false; // indicate if we must fallback to default chatml
std::vector<llama_chat_message> chat;
for (const auto & msg : msgs) {
chat.push_back({msg.role.c_str(), msg.content.c_str()});
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
}
const char * ptr_tmpl = tmpl.empty() ? llama_model_chat_template(model) : tmpl.c_str();
std::vector<char> buf(alloc_size);
// run the first time to get the total output length
int32_t res = llama_chat_apply_template(ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
// error: chat template is not supported
if (res < 0) {
if (ptr_tmpl != nullptr) {
// if the custom "tmpl" is not supported, we throw an error
// this is a bit redundant (for good), since we're not sure if user validated the custom template with llama_chat_verify_template()
throw std::runtime_error("this custom template is not supported");
}
// If the built-in template is not supported, we default to chatml
res = llama_chat_apply_template("chatml", chat.data(), chat.size(), add_ass, buf.data(), buf.size());
fallback = true;
}
// if it turns out that our buffer is too small, we resize it
if ((size_t) res > buf.size()) {
buf.resize(res);
res = llama_chat_apply_template(
fallback ? "chatml" : ptr_tmpl,
chat.data(), chat.size(), add_ass, buf.data(), buf.size());
}
std::string formatted_chat(buf.data(), res);
return formatted_chat;
}
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass) {
std::ostringstream ss;
auto fmt_past_msg = past_msg.empty() ? "" : common_chat_apply_template(model, tmpl, past_msg, false);
std::vector<common_chat_msg> chat_new(past_msg);
// if the past_msg ends with a newline, we must preserve it in the formatted version
if (add_ass && !fmt_past_msg.empty() && fmt_past_msg.back() == '\n') {
ss << "\n";
};
// format chat with new_msg
chat_new.push_back(new_msg);
auto fmt_new_msg = common_chat_apply_template(model, tmpl, chat_new, add_ass);
// get the diff part
ss << fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
return ss.str();
}
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl) {
std::vector<common_chat_msg> msgs = {
{"system", "You are a helpful assistant"},
{"user", "Hello"},
{"assistant", "Hi there"},
{"user", "How are you?"},
};
return common_chat_apply_template(model, tmpl, msgs, true);
}
//
// KV cache utils
//
@@ -2073,4 +1565,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}

View File

@@ -4,6 +4,7 @@
#include "llama-cpp.h"
#include <set>
#include <string>
#include <vector>
#include <sstream>
@@ -109,6 +110,19 @@ enum common_conversation_mode {
COMMON_CONVERSATION_MODE_AUTO = 2,
};
enum common_grammar_trigger_type {
COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START,
};
struct common_grammar_trigger {
common_grammar_trigger_type type;
std::string value;
llama_token token = LLAMA_TOKEN_NULL;
};
// sampling parameters
struct common_params_sampling {
uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
@@ -134,6 +148,7 @@ struct common_params_sampling {
int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
float top_n_sigma = -1.00f;// -1.0 = disabled
float mirostat_tau = 5.00f; // target entropy
float mirostat_eta = 0.10f; // learning rate
bool ignore_eos = false;
@@ -154,7 +169,10 @@ struct common_params_sampling {
COMMON_SAMPLER_TYPE_TEMPERATURE,
};
std::string grammar; // optional BNF-like grammar to constrain sampling
std::string grammar; // optional BNF-like grammar to constrain sampling
bool grammar_lazy = false;
std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
std::set<llama_token> preserved_tokens;
std::vector<llama_logit_bias> logit_bias; // logit biases to apply
@@ -162,28 +180,40 @@ struct common_params_sampling {
std::string print() const;
};
struct common_params_model {
std::string path = ""; // model local path // NOLINT
std::string url = ""; // model url to download // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
};
struct common_params_speculative {
std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
int32_t n_ctx = 0; // draft context size
int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
int32_t n_min = 5; // minimum number of draft tokens to use for speculative decoding
int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
float p_split = 0.1f; // speculative decoding split probability
float p_min = 0.9f; // minimum speculative decoding probability (greedy)
float p_min = 0.75f; // minimum speculative decoding probability (greedy)
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
std::string model = ""; // draft model for speculative decoding // NOLINT
struct common_params_model model;
};
struct common_params_vocoder {
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
struct common_params_model model;
std::string model = ""; // model path // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string speaker_file = ""; // speaker file path // NOLINT
bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
};
enum common_reasoning_format {
COMMON_REASONING_FORMAT_NONE,
COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`
};
struct common_params {
@@ -232,13 +262,12 @@ struct common_params {
struct common_params_speculative speculative;
struct common_params_vocoder vocoder;
std::string model = ""; // model path // NOLINT
struct common_params_model model;
std::string model_alias = ""; // model alias // NOLINT
std::string model_url = ""; // model url to download // NOLINT
std::string hf_token = ""; // HF token // NOLINT
std::string hf_repo = ""; // HF repo // NOLINT
std::string hf_file = ""; // HF file // NOLINT
std::string prompt = ""; // NOLINT
std::string system_prompt = ""; // NOLINT
std::string prompt_file = ""; // store the external prompt file name // NOLINT
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
@@ -246,11 +275,11 @@ struct common_params {
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
std::string rpc_servers = ""; // comma separated list of RPC servers // NOLINT
std::vector<std::string> in_files; // all input files
std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
std::vector<llama_model_kv_override> kv_overrides;
std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
@@ -277,6 +306,7 @@ struct common_params {
bool kl_divergence = false; // compute KL divergence
bool usage = false; // print usage
bool completion = false; // print source-able completion script
bool use_color = false; // use color to distinguish generations and inputs
bool special = false; // enable special token output
bool interactive = false; // interactive mode
@@ -303,13 +333,15 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool single_turn = false; // single turn chat conversation
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
struct common_params_model mmproj;
std::vector<std::string> image; // path to image file(s)
// embedding
@@ -329,7 +361,9 @@ struct common_params {
std::string hostname = "127.0.0.1";
std::string public_path = ""; // NOLINT
std::string chat_template = ""; // NOLINT
bool use_jinja = false; // NOLINT
bool enable_chat_template = true;
common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
std::vector<std::string> api_keys;
@@ -367,8 +401,6 @@ struct common_params {
int32_t i_pos = -1; // position of the passkey in the junk text
// imatrix params
std::string out_file = "imatrix.dat"; // save the resulting imatrix to this file
int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
int32_t i_chunk = 0; // start processing from this chunk
@@ -380,16 +412,16 @@ struct common_params {
int n_pca_batch = 100;
int n_pca_iterations = 1000;
dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
std::string cvector_outfile = "control_vector.gguf";
std::string cvector_positive_file = "examples/cvector-generator/positive.txt";
std::string cvector_negative_file = "examples/cvector-generator/negative.txt";
bool spm_infill = false; // suffix/prefix/middle pattern for infill
std::string lora_outfile = "ggml-lora-merged-f16.gguf";
// batched-bench params
bool batched_bench_output_jsonl = false;
// common params
std::string out_file; // output filename for all example programs
};
// call once at the start of a program if it uses libcommon
@@ -408,13 +440,13 @@ bool set_process_priority(enum ggml_sched_priority prio);
//
#ifdef __GNUC__
#ifdef __MINGW32__
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# if defined(__MINGW32__) && !defined(__clang__)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
# else
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
# endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#else
#define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
# define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
#endif
LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
@@ -423,8 +455,14 @@ std::string string_format(const char * fmt, ...);
std::string string_strip(const std::string & str);
std::string string_get_sortable_timestamp();
std::string string_join(const std::vector<std::string> & values, const std::string & separator);
std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
std::string string_repeat(const std::string & str, size_t n);
void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
std::string regex_escape(const std::string & s);
template<class T>
static std::vector<T> string_split(const std::string & str, char delim) {
static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
@@ -502,24 +540,11 @@ struct llama_model_params common_model_params_to_llama ( common_params
struct llama_context_params common_context_params_to_llama(const common_params & params);
struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
struct llama_model * common_load_model_from_url(
const std::string & model_url,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
struct llama_model * common_load_model_from_hf(
const std::string & repo,
const std::string & remote_path,
const std::string & local_path,
const std::string & hf_token,
const struct llama_model_params & params);
std::pair<std::string, std::string> common_get_hf_file(
const std::string & hf_repo_with_tag,
const std::string & hf_token);
// clear LoRA adapters from context, then apply new list of adapters
void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
std::string get_model_endpoint();
//
// Batch utils
//
@@ -586,41 +611,6 @@ std::string common_detokenize(
const std::vector<llama_token> & tokens,
bool special = true);
//
// Chat template utils
//
// same with llama_chat_message, but uses std::string
struct common_chat_msg {
std::string role;
std::string content;
};
// Get the built-in chat template for the model. Return empty string if not present.
std::string common_get_builtin_chat_template(const struct llama_model * model);
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
bool common_chat_verify_template(const std::string & tmpl);
// CPP wrapper for llama_chat_apply_template
// If the built-in template is not supported, we default to chatml
// If the custom "tmpl" is not supported, we throw an error
std::string common_chat_apply_template(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & chat,
bool add_ass);
// Format single message, while taking into account the position of that message in chat history
std::string common_chat_format_single(const struct llama_model * model,
const std::string & tmpl,
const std::vector<common_chat_msg> & past_msg,
const common_chat_msg & new_msg,
bool add_ass);
// Returns an example of formatted chat
std::string common_chat_format_example(const struct llama_model * model,
const std::string & tmpl);
//
// KV cache utils
//

View File

@@ -1,4 +1,6 @@
#include "json-schema-to-grammar.h"
#include "common.h"
#include <algorithm>
#include <fstream>
#include <map>
@@ -11,11 +13,6 @@
using json = nlohmann::ordered_json;
template <typename Iterator>
static std::string join(Iterator begin, Iterator end, const std::string & separator);
static std::string repeat(const std::string & str, size_t n);
static std::string build_repetition(const std::string & item_rule, int min_items, int max_items, const std::string & separator_rule = "") {
auto has_max = max_items != std::numeric_limits<int>::max();
@@ -128,8 +125,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
if (sub_len > 0) {
auto from_sub = from.substr(i + 1);
auto to_sub = to.substr(i + 1);
auto sub_zeros = repeat("0", sub_len);
auto sub_nines = repeat("9", sub_len);
auto sub_zeros = string_repeat("0", sub_len);
auto sub_nines = string_repeat("9", sub_len);
auto to_reached = false;
out << "(";
@@ -188,8 +185,8 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
auto max_digits = max_s.length();
for (auto digits = min_digits; digits < max_digits; digits++) {
uniform_range(min_s, repeat("9", digits));
min_s = "1" + repeat("0", digits);
uniform_range(min_s, string_repeat("9", digits));
min_s = "1" + string_repeat("0", digits);
out << " | ";
}
uniform_range(min_s, max_s);
@@ -267,7 +264,7 @@ static void _build_min_max_int(int min_value, int max_value, std::stringstream &
throw std::runtime_error("At least one of min_value or max_value must be set");
}
const std::string SPACE_RULE = "| \" \" | \"\\n\" [ \\t]{0,20}";
const std::string SPACE_RULE = "| \" \" | \"\\n\"{1,2} [ \\t]{0,20}";
struct BuiltinRule {
std::string content;
@@ -318,49 +315,6 @@ std::unordered_map<char, std::string> GRAMMAR_LITERAL_ESCAPES = {
std::unordered_set<char> NON_LITERAL_SET = {'|', '.', '(', ')', '[', ']', '{', '}', '*', '+', '?'};
std::unordered_set<char> ESCAPED_IN_REGEXPS_BUT_NOT_IN_LITERALS = {'^', '$', '.', '[', ']', '(', ')', '|', '{', '}', '*', '+', '?'};
template <typename Iterator>
std::string join(Iterator begin, Iterator end, const std::string & separator) {
std::ostringstream result;
if (begin != end) {
result << *begin;
for (Iterator it = begin + 1; it != end; ++it) {
result << separator << *it;
}
}
return result.str();
}
static std::vector<std::string> split(const std::string & str, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t start = 0;
size_t end = str.find(delimiter);
while (end != std::string::npos) {
tokens.push_back(str.substr(start, end - start));
start = end + delimiter.length();
end = str.find(delimiter, start);
}
tokens.push_back(str.substr(start));
return tokens;
}
static std::string repeat(const std::string & str, size_t n) {
if (n == 0) {
return "";
}
std::string result;
result.reserve(str.length() * n);
for (size_t i = 0; i < n; ++i) {
result += str;
}
return result;
}
static std::string replacePattern(const std::string & input, const std::regex & regex, const std::function<std::string(const std::smatch &)> & replacement) {
std::smatch match;
std::string result;
@@ -389,6 +343,7 @@ static std::string format_literal(const std::string & literal) {
class SchemaConverter {
private:
friend std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options);
std::function<json(const std::string &)> _fetch_json;
bool _dotall;
std::map<std::string, std::string> _rules;
@@ -418,7 +373,7 @@ private:
for (size_t i = 0; i < alt_schemas.size(); i++) {
rules.push_back(visit(alt_schemas[i], name + (name.empty() ? "alternative-" : "-") + std::to_string(i)));
}
return join(rules.begin(), rules.end(), " | ");
return string_join(rules, " | ");
}
std::string _visit_pattern(const std::string & pattern, const std::string & name) {
@@ -481,7 +436,7 @@ private:
for (const auto & item : ret) {
results.push_back(to_rule(item));
}
return std::make_pair(join(results.begin(), results.end(), " "), false);
return std::make_pair(string_join(results, " "), false);
};
while (i < length) {
@@ -539,7 +494,7 @@ private:
}
curly_brackets += '}';
i++;
auto nums = split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
auto nums = string_split(curly_brackets.substr(1, curly_brackets.length() - 2), ",");
int min_times = 0;
int max_times = std::numeric_limits<int>::max();
try {
@@ -854,7 +809,7 @@ public:
return;
}
std::string pointer = ref.substr(ref.find('#') + 1);
std::vector<std::string> tokens = split(pointer, "/");
std::vector<std::string> tokens = string_split(pointer, "/");
for (size_t i = 1; i < tokens.size(); ++i) {
std::string sel = tokens[i];
if (target.is_null() || !target.contains(sel)) {
@@ -905,7 +860,7 @@ public:
for (const auto & v : schema["enum"]) {
enum_values.push_back(_generate_constant_rule(v));
}
return _add_rule(rule_name, "(" + join(enum_values.begin(), enum_values.end(), " | ") + ") space");
return _add_rule(rule_name, "(" + string_join(enum_values, " | ") + ") space");
} else if ((schema_type.is_null() || schema_type == "object")
&& (schema.contains("properties") ||
(schema.contains("additionalProperties") && schema["additionalProperties"] != true))) {
@@ -1019,10 +974,10 @@ public:
void check_errors() {
if (!_errors.empty()) {
throw std::runtime_error("JSON schema conversion failed:\n" + join(_errors.begin(), _errors.end(), "\n"));
throw std::runtime_error("JSON schema conversion failed:\n" + string_join(_errors, "\n"));
}
if (!_warnings.empty()) {
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", join(_warnings.begin(), _warnings.end(), "; ").c_str());
fprintf(stderr, "WARNING: JSON schema conversion was incomplete: %s\n", string_join(_warnings, "; ").c_str());
}
}
@@ -1035,11 +990,35 @@ public:
}
};
std::string json_schema_to_grammar(const json & schema) {
SchemaConverter converter([](const std::string &) { return json::object(); }, /* dotall= */ false);
auto copy = schema;
converter.resolve_refs(copy, "input");
converter.visit(copy, "");
std::string json_schema_to_grammar(const json & schema, bool force_gbnf) {
#ifdef LLAMA_USE_LLGUIDANCE
if (!force_gbnf) {
return "%llguidance {}\nstart: %json " + schema.dump();
}
#else
(void)force_gbnf;
#endif // LLAMA_USE_LLGUIDANCE
return build_grammar([&](const common_grammar_builder & callbacks) {
auto copy = schema;
callbacks.resolve_refs(copy);
callbacks.add_schema("", copy);
});
}
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options) {
SchemaConverter converter([&](const std::string &) { return json(); }, options.dotall);
common_grammar_builder builder {
/* .add_rule = */ [&](const std::string & name, const std::string & rule) {
return converter._add_rule(name, rule);
},
/* .add_schema = */ [&](const std::string & name, const nlohmann::ordered_json & schema) {
return converter.visit(schema, name == "root" ? "" : name);
},
/* .resolve_refs = */ [&](nlohmann::ordered_json & schema) {
converter.resolve_refs(schema, "");
}
};
cb(builder);
converter.check_errors();
return converter.format_grammar();
}

View File

@@ -5,4 +5,17 @@
#define JSON_ASSERT GGML_ASSERT
#include "json.hpp"
std::string json_schema_to_grammar(const nlohmann::ordered_json& schema);
std::string json_schema_to_grammar(const nlohmann::ordered_json & schema,
bool force_gbnf = false);
struct common_grammar_builder {
std::function<std::string(const std::string &, const std::string &)> add_rule;
std::function<std::string(const std::string &, const nlohmann::ordered_json &)> add_schema;
std::function<void(nlohmann::ordered_json &)> resolve_refs;
};
struct common_grammar_options {
bool dotall = false;
};
std::string build_grammar(const std::function<void(const common_grammar_builder &)> & cb, const common_grammar_options & options = {});

253
common/llguidance.cpp Normal file
View File

@@ -0,0 +1,253 @@
#include "sampling.h"
#include "log.h"
#ifdef LLAMA_USE_LLGUIDANCE
# include "llguidance.h"
# include <cmath>
struct llama_sampler_llg {
const llama_vocab * vocab;
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgMatcher * grammar;
};
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
if (llg_matcher_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
llg_free_matcher(c);
return nullptr;
}
return c;
}
static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
return "llguidance";
}
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_matcher_consume_token(ctx->grammar, token);
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
if (mask == nullptr) {
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
mask = llg_matcher_get_mask(ctx->grammar);
} else {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
llg_free_matcher(ctx->grammar);
ctx->grammar = nullptr;
return;
}
}
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
}
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_matcher_reset(ctx->grammar);
}
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
const auto * ctx = (const llama_sampler_llg *) smpl->ctx;
auto * result = llama_sampler_init_llg(ctx->vocab, nullptr, nullptr);
// copy the state
{
auto * result_ctx = (llama_sampler_llg *) result->ctx;
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
return result;
}
static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_matcher(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
delete ctx;
}
static llama_sampler_i llama_sampler_llg_i = {
/* .name = */ llama_sampler_llg_name,
/* .accept = */ llama_sampler_llg_accept_impl,
/* .apply = */ llama_sampler_llg_apply,
/* .reset = */ llama_sampler_llg_reset,
/* .clone = */ llama_sampler_llg_clone,
/* .free = */ llama_sampler_llg_free,
};
static size_t llama_sampler_llg_tokenize_fn(const void * user_data, const uint8_t * bytes, size_t bytes_len,
uint32_t * output_tokens, size_t output_tokens_len) {
const llama_vocab * vocab = (const llama_vocab *) user_data;
int r = 0;
try {
r = llama_tokenize(vocab, (const char *) bytes, bytes_len, (int32_t *) output_tokens, output_tokens_len, false,
true);
} catch (const std::exception & e) {
GGML_ABORT("llama_tokenize failed: %s\n", e.what());
}
if (r < 0) {
return -r;
}
return r;
}
static LlgTokenizer * llama_sampler_llg_new_tokenizer(const llama_vocab * vocab) {
// TODO store the tokenizer in the vocab somehow
static const llama_vocab * vocab_cache;
static LlgTokenizer * tokenizer_cache;
if (vocab_cache == vocab) {
return llg_clone_tokenizer(tokenizer_cache);
}
auto tok_eos = llama_vocab_eot(vocab);
if (tok_eos == LLAMA_TOKEN_NULL) {
tok_eos = llama_vocab_eos(vocab);
}
size_t vocab_size = llama_vocab_n_tokens(vocab);
auto token_lens = new uint32_t[vocab_size];
// we typically have ~7 bytes per token; let's go on the safe side here
auto token_bytes_size = vocab_size * 16 + 1024 * 1024;
auto token_bytes = new uint8_t[token_bytes_size];
size_t offset = 0;
for (size_t i = 0; i < vocab_size; i++) {
size_t max_token = 1024;
if (token_bytes_size - offset < max_token) {
GGML_ABORT("token_bytes buffer too small\n");
}
llama_token token = i;
auto dp = (char *) token_bytes + offset;
auto size = llama_detokenize(vocab, &token, 1, dp, max_token, false, false);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size == 0) {
size = llama_detokenize(vocab, &token, 1, dp + 1, max_token - 1, false, true);
if (size < 0) {
GGML_ABORT("llama_detokenize failed\n");
}
if (size != 0) {
*dp = '\xff'; // special token prefix marker
size += 1;
}
}
token_lens[i] = size;
offset += size;
}
LlgTokenizerInit tinit = {
/* .vocab_size = */ (uint32_t) vocab_size,
/* .tok_eos = */ (uint32_t) tok_eos,
/* .token_lens = */ token_lens,
/* .token_bytes = */ token_bytes,
/* .tokenizer_json = */ nullptr,
/* .tokenize_assumes_string = */ true,
/* .tokenize_fn = */ llama_sampler_llg_tokenize_fn,
/* .use_approximate_greedy_tokenize_fn = */ false,
/* .tokenize_user_data = */ vocab,
};
char error_buffer[1024];
LlgTokenizer * tokenizer = llg_new_tokenizer(&tinit, error_buffer, sizeof(error_buffer));
delete[] token_bytes;
delete[] token_lens;
if (tokenizer == nullptr) {
LOG_ERR("llg tokenizer error: %s\n", error_buffer);
return tokenizer;
}
if (tokenizer_cache) {
llg_free_tokenizer(tokenizer_cache);
}
vocab_cache = vocab;
tokenizer_cache = tokenizer;
return llg_clone_tokenizer(tokenizer_cache);
}
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * grammar_kind,
const char * grammar_data) {
auto * ctx = new llama_sampler_llg;
if (grammar_kind != nullptr && grammar_kind[0] != '\0') {
auto tokenizer = llama_sampler_llg_new_tokenizer(vocab);
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ grammar_kind,
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
};
if (ctx->grammar) {
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
llg_matcher_get_mask_byte_size(ctx->grammar));
}
} else {
*ctx = {
/* .vocab = */ vocab,
/* .grammar_kind = */ {},
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx);
}
#else
llama_sampler * llama_sampler_init_llg(const llama_vocab *, const char *, const char *) {
LOG_WRN("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
return nullptr;
}
#endif // LLAMA_USE_LLGUIDANCE

View File

@@ -1,5 +1,6 @@
#include "log.h"
#include <chrono>
#include <condition_variable>
#include <cstdarg>
#include <cstdio>
@@ -14,16 +15,6 @@ void common_log_set_verbosity_thold(int verbosity) {
common_log_verbosity_thold = verbosity;
}
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
static int64_t t_us() {
return std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now().time_since_epoch()).count();
}
@@ -206,6 +197,7 @@ public:
vsnprintf(entry.msg.data(), entry.msg.size(), ss.str().c_str(), args_copy);
}
#endif
va_end(args_copy);
}
entry.level = level;

View File

@@ -2,9 +2,20 @@
#include "ggml.h" // for ggml_log_level
#define LOG_CLR_TO_EOL "\033[K\r"
#define LOG_COL_DEFAULT "\033[0m"
#define LOG_COL_BOLD "\033[1m"
#define LOG_COL_RED "\033[31m"
#define LOG_COL_GREEN "\033[32m"
#define LOG_COL_YELLOW "\033[33m"
#define LOG_COL_BLUE "\033[34m"
#define LOG_COL_MAGENTA "\033[35m"
#define LOG_COL_CYAN "\033[36m"
#define LOG_COL_WHITE "\033[37m"
#ifndef __GNUC__
# define LOG_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
#elif defined(__MINGW32__) && !defined(__clang__)
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define LOG_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))

View File

@@ -0,0 +1,537 @@
/*
Copyright 2024 Google LLC
Use of this source code is governed by an MIT-style
license that can be found in the LICENSE file or at
https://opensource.org/licenses/MIT.
*/
// SPDX-License-Identifier: MIT
#pragma once
#include "minja.hpp"
#include <chrono>
#include <cstddef>
#include <cstdio>
#include <exception>
#include <iomanip>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include <json.hpp>
using json = nlohmann::ordered_json;
namespace minja {
struct chat_template_caps {
bool supports_tools = false;
bool supports_tool_calls = false;
bool supports_tool_responses = false;
bool supports_system_role = false;
bool supports_parallel_tool_calls = false;
bool supports_tool_call_id = false;
// meta-llama/Llama-3.1-8B-Instruct expects arguments to be an object.
// Most other templates (and OpenAI's API) expect the arguments object to be stringified.
bool requires_object_arguments = false;
// CohereForAI/c4ai-command-r-plus simple variant
bool requires_non_null_content = false;
// MiniMaxAI/MiniMax-Text-01 special
bool requires_typed_content = false;
};
struct chat_template_inputs {
nlohmann::ordered_json messages;
nlohmann::ordered_json tools;
bool add_generation_prompt = true;
nlohmann::ordered_json extra_context;
std::chrono::system_clock::time_point now = std::chrono::system_clock::now();
};
struct chat_template_options {
bool apply_polyfills = true;
bool use_bos_token = true;
bool use_eos_token = true;
bool define_strftime_now = true;
bool polyfill_tools = true;
bool polyfill_tool_call_examples = true;
bool polyfill_tool_calls = true;
bool polyfill_tool_responses = true;
bool polyfill_system_role = true;
bool polyfill_object_arguments = true;
bool polyfill_typed_content = true;
};
class chat_template {
private:
chat_template_caps caps_;
std::string source_;
std::string bos_token_;
std::string eos_token_;
std::shared_ptr<minja::TemplateNode> template_root_;
std::string tool_call_example_;
std::string try_raw_render(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json()) const
{
try {
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
// Use fixed date for tests
inputs.now = std::chrono::system_clock::from_time_t(0);
chat_template_options opts;
opts.apply_polyfills = false;
auto prompt = apply(inputs, opts);
// fprintf(stderr, "try_raw_render: %s\n", prompt.c_str());
return prompt;
} catch (const std::exception & e) {
// fprintf(stderr, "try_raw_render error: %s\n", e.what());
return "";
}
}
public:
chat_template(const std::string & source, const std::string & bos_token, const std::string & eos_token)
: source_(source), bos_token_(bos_token), eos_token_(eos_token)
{
template_root_ = minja::Parser::parse(source_, {
/* .trim_blocks = */ true,
/* .lstrip_blocks = */ true,
/* .keep_trailing_newline = */ false,
});
auto contains = [](const std::string & haystack, const std::string & needle) {
return haystack.find(needle) != std::string::npos;
};
const std::string user_needle = "<User Needle>";
const std::string sys_needle = "<System Needle>";
const json dummy_str_user_msg = {{"role", "user"}, {"content", user_needle}};
const json dummy_typed_user_msg = {{"role", "user"}, {"content", json::array({{{"type", "text"}, {"text", user_needle}}})}};
caps_.requires_typed_content =
!contains(try_raw_render(json::array({dummy_str_user_msg}), {}, false), user_needle)
&& contains(try_raw_render(json::array({dummy_typed_user_msg}), {}, false), user_needle);
const auto dummy_user_msg = caps_.requires_typed_content
? dummy_typed_user_msg
: dummy_str_user_msg;
const json needle_system_msg = {
{"role", "system"},
{"content", caps_.requires_typed_content ? json::array({{{"type", "text"}, {"text", sys_needle}}}) : json(sys_needle)},
};
caps_.supports_system_role = contains(try_raw_render({needle_system_msg, dummy_user_msg,}, {}, false), sys_needle);
auto out = try_raw_render(json::array({
dummy_user_msg
}), json::array({
{
{"name", "some_tool"},
{"type", "function"},
{"function", {
{"name", "some_tool"},
{"description", "Some tool."},
{"parameters", {
{"type", "object"},
{"properties", {
{"arg", {
{"type", "string"},
{"description", "Some argument."},
}},
}},
{"required", json::array({ "arg" })},
}},
}},
},
}), false);
caps_.supports_tools = contains(out, "some_tool");
auto make_tool_calls_msg = [&](const json & tool_calls) {
return json {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", tool_calls},
};
};
auto make_tool_call = [](const std::string & tool_name, const json & arguments) {
return json {
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"arguments", arguments},
{"name", tool_name},
}},
};
};
const json dummy_args_obj {{"argument_needle", "print('Hello, World!')"}};
// Note: the arguments are rendered in both cases, but may be double-escaped, which we don't want.
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj.dump())})),
}), {}, false);
auto tool_call_renders_str_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({make_tool_call("ipython", dummy_args_obj)})),
}), {}, false);
auto tool_call_renders_obj_arguments = contains(out, "\"argument_needle\":") || contains(out, "'argument_needle':");
caps_.supports_tool_calls = tool_call_renders_str_arguments || tool_call_renders_obj_arguments;
caps_.requires_object_arguments = !tool_call_renders_str_arguments && tool_call_renders_obj_arguments;
auto out_empty = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", ""}}}), {}, false);
auto out_null = try_raw_render(json::array({dummy_user_msg, {{"role", "assistant"}, {"content", nullptr}}}), {}, false);
caps_.requires_non_null_content = contains(out_empty, user_needle) && !contains(out_null, user_needle);
if (caps_.supports_tool_calls) {
auto dummy_args = caps_.requires_object_arguments ? dummy_args_obj : json(dummy_args_obj.dump());
auto tc1 = make_tool_call("test_tool1", dummy_args);
auto tc2 = make_tool_call("test_tool2", dummy_args);
auto out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1, tc2})),
}), {}, false);
caps_.supports_parallel_tool_calls = contains(out, "test_tool1") && contains(out, "test_tool2");
out = try_raw_render(json::array({
dummy_user_msg,
make_tool_calls_msg(json::array({tc1})),
{
{"role", "tool"},
{"name", "test_tool1"},
{"content", "Some response!"},
{"tool_call_id", "call_911_"},
}
}), {}, false);
caps_.supports_tool_responses = contains(out, "Some response!");
caps_.supports_tool_call_id = contains(out, "call_911_");
}
try {
if (!caps_.supports_tools) {
const json user_msg {
{"role", "user"},
{"content", "Hey"},
};
const json args {
{"arg1", "some_value"},
};
const json tool_call_msg {
{"role", "assistant"},
{"content", nullptr},
{"tool_calls", json::array({
{
// TODO: detect if requires numerical id or fixed length == 6 like Nemo
{"id", "call_1___"},
{"type", "function"},
{"function", {
{"name", "tool_name"},
{"arguments", (caps_.requires_object_arguments ? args : json(minja::Value(args).dump(-1, /* to_json= */ true)))},
}},
},
})},
};
std::string prefix, full;
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg});
inputs.add_generation_prompt = true;
prefix = apply(inputs);
}
{
chat_template_inputs inputs;
inputs.messages = json::array({user_msg, tool_call_msg});
inputs.add_generation_prompt = false;
full = apply(inputs);
}
auto eos_pos_last = full.rfind(eos_token_);
if (eos_pos_last == prefix.size() - eos_token_.size() ||
(full[full.size() - 1] == '\n' && (eos_pos_last == full.size() - eos_token_.size() - 1))) {
full = full.substr(0, eos_pos_last);
}
size_t common_prefix_length = 0;
for (size_t i = 0; i < prefix.size() && i < full.size(); ++i) {
if (prefix[i] != full[i]) {
break;
}
if (prefix[i] == '<') {
// DeepSeek R1's template (as of 20250209) adds a trailing <think> if add_generation_prompt,
// but it removes thinking tags for past messages.
// The prefix and full strings diverge at <think> vs. <tool▁calls▁begin>, we avoid consuming the leading <.
continue;
}
common_prefix_length = i + 1;
}
auto example = full.substr(common_prefix_length);
if (example.find("tool_name") == std::string::npos && example.find("some_value") == std::string::npos) {
fprintf(stderr, "Failed to infer a tool call example (possible template bug)\n");
} else {
tool_call_example_ = example;
}
}
} catch (const std::exception & e) {
fprintf(stderr, "Failed to generate tool call example: %s\n", e.what());
}
}
const std::string & source() const { return source_; }
const std::string & bos_token() const { return bos_token_; }
const std::string & eos_token() const { return eos_token_; }
const chat_template_caps & original_caps() const { return caps_; }
// Deprecated, please use the form with chat_template_inputs and chat_template_options
std::string apply(
const nlohmann::ordered_json & messages,
const nlohmann::ordered_json & tools,
bool add_generation_prompt,
const nlohmann::ordered_json & extra_context = nlohmann::ordered_json(),
bool apply_polyfills = true)
{
fprintf(stderr, "[%s] Deprecated!\n", __func__);
chat_template_inputs inputs;
inputs.messages = messages;
inputs.tools = tools;
inputs.add_generation_prompt = add_generation_prompt;
inputs.extra_context = extra_context;
inputs.now = std::chrono::system_clock::now();
chat_template_options opts;
opts.apply_polyfills = apply_polyfills;
return apply(inputs, opts);
}
std::string apply(
const chat_template_inputs & inputs,
const chat_template_options & opts = chat_template_options()) const
{
json actual_messages;
auto has_tools = inputs.tools.is_array() && !inputs.tools.empty();
auto has_tool_calls = false;
auto has_tool_responses = false;
auto has_string_content = false;
for (const auto & message : inputs.messages) {
if (message.contains("tool_calls") && !message["tool_calls"].is_null()) {
has_tool_calls = true;
}
if (message.contains("role") && message["role"] == "tool") {
has_tool_responses = true;
}
if (message.contains("content") && message["content"].is_string()) {
has_string_content = true;
}
}
auto polyfill_system_role = opts.polyfill_system_role && !caps_.supports_system_role;
auto polyfill_tools = opts.polyfill_tools && has_tools && !caps_.supports_tools;
auto polyfill_tool_call_example = polyfill_tools && opts.polyfill_tool_call_examples;
auto polyfill_tool_calls = opts.polyfill_tool_calls && has_tool_calls && !caps_.supports_tool_calls;
auto polyfill_tool_responses = opts.polyfill_tool_responses && has_tool_responses && !caps_.supports_tool_responses;
auto polyfill_object_arguments = opts.polyfill_object_arguments && has_tool_calls && caps_.requires_object_arguments;
auto polyfill_typed_content = opts.polyfill_typed_content && has_string_content && caps_.requires_typed_content;
auto needs_polyfills = opts.apply_polyfills && (false
|| polyfill_system_role
|| polyfill_tools
|| polyfill_tool_calls
|| polyfill_tool_responses
|| polyfill_object_arguments
|| polyfill_typed_content
);
if (needs_polyfills) {
actual_messages = json::array();
auto add_message = [&](const json & msg) {
if (polyfill_typed_content && msg.contains("content") && !msg.at("content").is_null() && msg.at("content").is_string()) {
actual_messages.push_back({
{"role", msg.at("role")},
{"content", {{
{"type", "text"},
{"text", msg.at("content")},
}}},
});
} else {
actual_messages.push_back(msg);
}
};
std::string pending_system;
auto flush_sys = [&]() {
if (!pending_system.empty()) {
add_message({
{"role", "user"},
{"content", pending_system},
});
pending_system.clear();
}
};
json adjusted_messages;
if (polyfill_tools) {
adjusted_messages = add_system(inputs.messages,
"You can call any of the following tools to satisfy the user's requests: " + minja::Value(inputs.tools).dump(2, /* to_json= */ true) +
(!polyfill_tool_call_example || tool_call_example_.empty() ? "" : "\n\nExample tool call syntax:\n\n" + tool_call_example_ + "\n\n"));
} else {
adjusted_messages = inputs.messages;
}
for (const auto & message_ : adjusted_messages) {
auto message = message_;
if (!message.contains("role") || !message.contains("content")) {
throw std::runtime_error("message must have 'role' and 'content' fields: " + message.dump());
}
std::string role = message.at("role");
if (message.contains("tool_calls")) {
if (polyfill_object_arguments || polyfill_tool_calls) {
for (auto & tool_call : message.at("tool_calls")) {
if (tool_call["type"] == "function") {
auto & function = tool_call.at("function");
auto & arguments = function.at("arguments");
if (arguments.is_string()) {
try {
arguments = json::parse(arguments.get<std::string>());
} catch (const std::exception & ecvt) {
fprintf(stderr, "Failed to parse arguments: %s\n", ecvt.what());
}
}
}
}
}
if (polyfill_tool_calls) {
auto content = message.at("content");
auto tool_calls = json::array();
for (const auto & tool_call : message.at("tool_calls")) {
if (tool_call.at("type") != "function") {
continue;
}
const auto & function = tool_call.at("function");
auto tc = json {
{"name", function.at("name")},
{"arguments", function.at("arguments")},
};
if (tool_call.contains("id")) {
tc["id"] = tool_call["id"];
}
tool_calls.push_back(tc);
}
auto obj = json {
{"tool_calls", tool_calls},
};
if (!content.is_null() && !content.empty()) {
obj["content"] = content;
}
message["content"] = obj.dump(2);
message.erase("tool_calls");
}
}
if (polyfill_tool_responses && role == "tool") {
message["role"] = "user";
auto obj = json {
{"tool_response", json::object()},
};
if (message.contains("name")) {
obj["tool_response"]["tool"] = message.at("name");
}
obj["tool_response"]["content"] = message.at("content");
if (message.contains("tool_call_id")) {
obj["tool_response"]["tool_call_id"] = message.at("tool_call_id");
}
message["content"] = obj.dump(2);
message.erase("name");
}
if (!message["content"].is_null() && polyfill_system_role) {
std::string content = message.at("content");
if (role == "system") {
if (!pending_system.empty()) pending_system += "\n";
pending_system += content;
continue;
} else {
if (role == "user") {
if (!pending_system.empty()) {
message["content"] = pending_system + (content.empty() ? "" : "\n" + content);
pending_system.clear();
}
} else {
flush_sys();
}
}
}
add_message(message);
}
flush_sys();
} else {
actual_messages = inputs.messages;
}
auto context = minja::Context::make(json({
{"messages", actual_messages},
{"add_generation_prompt", inputs.add_generation_prompt},
}));
context->set("bos_token", opts.use_bos_token ? bos_token_ : "");
context->set("eos_token", opts.use_eos_token ? eos_token_ : "");
if (opts.define_strftime_now) {
auto now = inputs.now;
context->set("strftime_now", Value::callable([now](const std::shared_ptr<minja::Context> &, minja::ArgumentsValue & args) {
args.expectArgs("strftime_now", {1, 1}, {0, 0});
auto format = args.args[0].get<std::string>();
auto time = std::chrono::system_clock::to_time_t(now);
auto local_time = *std::localtime(&time);
std::ostringstream ss;
ss << std::put_time(&local_time, format.c_str());
return ss.str();
}));
}
if (!inputs.tools.is_null()) {
context->set("tools", minja::Value(inputs.tools));
}
if (!inputs.extra_context.is_null()) {
for (auto & kv : inputs.extra_context.items()) {
context->set(kv.key(), minja::Value(kv.value()));
}
}
auto ret = template_root_->render(context);
// fprintf(stderr, "actual_messages: %s\n", actual_messages.dump(2).c_str());
// fprintf(stderr, "apply: %s\n\n", ret.c_str());
return ret;
}
static nlohmann::ordered_json add_system(const nlohmann::ordered_json & messages, const std::string & system_prompt) {
json messages_with_system = messages;
if (!messages_with_system.empty() && messages_with_system[0].at("role") == "system") {
std::string existing_system = messages_with_system.at(0).at("content");
messages_with_system[0] = json {
{"role", "system"},
{"content", existing_system + "\n\n" + system_prompt},
};
} else {
messages_with_system.insert(messages_with_system.begin(), json {
{"role", "system"},
{"content", system_prompt},
});
}
return messages_with_system;
}
};
} // namespace minja

2941
common/minja/minja.hpp Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -7,6 +7,7 @@
#include <cstdio>
#include <fstream>
#include <thread>
#include <algorithm>
void common_ngram_cache_update(common_ngram_cache & ngram_cache, int ngram_min, int ngram_max,
std::vector<llama_token> & inp, int nnew, bool print_progress) {

View File

@@ -4,6 +4,7 @@
#include <cmath>
#include <unordered_map>
#include <algorithm>
// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
@@ -134,11 +135,11 @@ std::string common_params_sampling::print() const {
snprintf(result, sizeof(result),
"\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
"\tdry_multiplier = %.3f, dry_base = %.3f, dry_allowed_length = %d, dry_penalty_last_n = %d\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, temp = %.3f\n"
"\ttop_k = %d, top_p = %.3f, min_p = %.3f, xtc_probability = %.3f, xtc_threshold = %.3f, typical_p = %.3f, top_n_sigma = %.3f, temp = %.3f\n"
"\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, temp,
top_k, top_p, min_p, xtc_probability, xtc_threshold, typ_p, top_n_sigma, temp,
mirostat, mirostat_eta, mirostat_tau);
return std::string(result);
@@ -151,9 +152,70 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
lparams.no_perf = params.no_perf;
struct llama_sampler * grmr;
if (params.grammar.compare(0, 11, "%llguidance") == 0) {
#ifdef LLAMA_USE_LLGUIDANCE
grmr = llama_sampler_init_llg(vocab, "lark", params.grammar.c_str());
#else
GGML_ABORT("llguidance (cmake -DLLAMA_LLGUIDANCE=ON) is not enabled");
#endif // LLAMA_USE_LLGUIDANCE
} else {
std::vector<std::string> patterns_at_start;
std::vector<std::string> patterns_anywhere;
std::vector<llama_token> trigger_tokens;
for (const auto & trigger : params.grammar_triggers) {
switch (trigger.type) {
case COMMON_GRAMMAR_TRIGGER_TYPE_WORD:
{
const auto & word = trigger.value;
patterns_anywhere.push_back(regex_escape(word));
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN:
case COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START:
{
const auto & pattern = trigger.value;
(trigger.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_START ? patterns_at_start : patterns_anywhere).push_back(pattern);
break;
}
case COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN:
{
const auto token = trigger.token;
trigger_tokens.push_back(token);
break;
}
default:
GGML_ASSERT(false && "unknown trigger type");
}
}
std::vector<std::string> trigger_patterns;
if (!patterns_at_start.empty()) {
trigger_patterns.push_back("^(" + string_join(patterns_at_start, "|") + ")[\\s\\S]*");
}
if (!patterns_anywhere.empty()) {
trigger_patterns.push_back("^[\\s\\S]*?(" + string_join(patterns_anywhere, "|") + ")[\\s\\S]*");
}
std::vector<const char *> trigger_patterns_c;
trigger_patterns_c.reserve(trigger_patterns.size());
for (const auto & regex : trigger_patterns) {
trigger_patterns_c.push_back(regex.c_str());
}
grmr = params.grammar_lazy
? llama_sampler_init_grammar_lazy_patterns(vocab, params.grammar.c_str(), "root",
trigger_patterns_c.data(), trigger_patterns_c.size(),
trigger_tokens.data(), trigger_tokens.size())
: llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root");
if (!grmr) {
return nullptr;
}
}
auto * result = new common_sampler {
/* .params = */ params,
/* .grmr = */ llama_sampler_init_grammar(vocab, params.grammar.c_str(), "root"),
/* .grmr = */ grmr,
/* .chain = */ llama_sampler_chain_init(lparams),
/* .prev = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
/* .cur = */ {},
@@ -167,45 +229,51 @@ struct common_sampler * common_sampler_init(const struct llama_model * model, co
params.logit_bias.data()));
if (params.mirostat == 0) {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
if (params.top_n_sigma >= 0) {
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
llama_sampler_chain_add(result->chain, llama_sampler_init_temp (params.temp));
llama_sampler_chain_add(result->chain, llama_sampler_init_top_n_sigma (params.top_n_sigma));
} else {
for (const auto & cnstr : params.samplers) {
switch (cnstr) {
case COMMON_SAMPLER_TYPE_DRY:
{
std::vector<const char *> c_breakers;
c_breakers.reserve(params.dry_sequence_breakers.size());
for (const auto & str : params.dry_sequence_breakers) {
c_breakers.push_back(str.c_str());
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
llama_sampler_chain_add(result->chain, llama_sampler_init_dry (vocab, llama_model_n_ctx_train(model), params.dry_multiplier, params.dry_base, params.dry_allowed_length, params.dry_penalty_last_n, c_breakers.data(), c_breakers.size()));
}
break;
case COMMON_SAMPLER_TYPE_TOP_K:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k));
break;
case COMMON_SAMPLER_TYPE_TOP_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_MIN_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_XTC:
llama_sampler_chain_add(result->chain, llama_sampler_init_xtc (params.xtc_probability, params.xtc_threshold, params.min_keep, params.seed));
break;
case COMMON_SAMPLER_TYPE_TYPICAL_P:
llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep));
break;
case COMMON_SAMPLER_TYPE_TEMPERATURE:
llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
break;
case COMMON_SAMPLER_TYPE_INFILL:
llama_sampler_chain_add(result->chain, llama_sampler_init_infill (vocab));
break;
case COMMON_SAMPLER_TYPE_PENALTIES:
llama_sampler_chain_add(result->chain, llama_sampler_init_penalties(params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present));
break;
default:
GGML_ASSERT(false && "unknown sampler type");
}
}
}
llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));

View File

@@ -102,3 +102,6 @@ std::string common_sampler_type_to_str(enum common_sampler_type cnstr);
std::vector<enum common_sampler_type> common_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<enum common_sampler_type> common_sampler_types_from_chars(const std::string & chars);
llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab,
const char * grammar_kind, const char * grammar_data);

View File

@@ -5,6 +5,7 @@
#include "sampling.h"
#include <cstring>
#include <algorithm>
#define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 128
#define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
@@ -172,7 +173,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
prompt.clear();
} else {
@@ -191,14 +192,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}
@@ -252,11 +253,6 @@ llama_tokens common_speculative_gen_draft(
// add drafted token for each sequence
const llama_token id = cur_p->data[0].id;
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_sampler_accept(smpl, id, true);
result.push_back(id);
@@ -265,6 +261,11 @@ llama_tokens common_speculative_gen_draft(
break;
}
// only collect very high-confidence draft tokens
if (cur_p->data[0].p < params.p_min) {
break;
}
common_batch_add(batch, id, n_past + i + 1, { 0 }, true);
// evaluate the drafted tokens on the draft model

View File

@@ -9,7 +9,7 @@ struct common_speculative_params {
int n_draft = 16; // max drafted tokens
int n_reuse = 256;
float p_min = 0.9f; // min probabiliy required to accept a token in the draft
float p_min = 0.75f; // min probability required to accept a token in the draft
};
struct common_speculative * common_speculative_init(struct llama_context * ctx_dft);

File diff suppressed because it is too large Load Diff

View File

@@ -8,7 +8,7 @@
# provide the necessary information to llama.cpp via the GGUF header in order to implement
# the same pre-tokenizer.
#
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
# ref: https://github.com/ggml-org/llama.cpp/pull/6920
#
# Instructions:
#
@@ -65,49 +65,56 @@ else:
# TODO: add models here, base models preferred
models = [
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", },
{"name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", },
{"name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", },
{"name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", },
{"name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", },
{"name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", },
{"name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", },
{"name": "falcon3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/Falcon3-7B-Base", },
{"name": "bert-bge-large", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/BAAI/bge-large-zh-v1.5", },
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
{"name": "jina-v1-en", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-reranker-v1-tiny-en", },
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
{"name": "smaug-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct", },
{"name": "poro-chat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Poro-34B-chat", },
{"name": "jina-v2-code", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-code", },
{"name": "viking", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LumiOpen/Viking-7B", }, # Also used for Viking 13B and 33B
{"name": "gemma", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2b", },
{"name": "gemma-2", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/google/gemma-2-9b", },
{"name": "jais", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/core42/jais-13b", },
{"name": "t5", "tokt": TOKENIZER_TYPE.UGM, "repo": "https://huggingface.co/google-t5/t5-small", },
{"name": "codeshell", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/WisdomShell/CodeShell-7B", },
{"name": "tekken", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistralai/Mistral-Nemo-Base-2407", },
{"name": "smollm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/HuggingFaceTB/SmolLM-135M", },
{'name': "bloom", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigscience/bloom", },
{'name': "gpt3-finnish", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/TurkuNLP/gpt3-finnish-small", },
{"name": "exaone", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", },
{"name": "phi-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/microsoft/phi-2", },
{"name": "chameleon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/facebook/chameleon-7b", },
{"name": "minerva-7b", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0", },
{"name": "roberta-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/sentence-transformers/stsb-roberta-base"},
{"name": "gigachat", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct"},
{"name": "megrez", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Infinigence/Megrez-3B-Instruct"},
{"name": "deepseek-v3", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-V3"},
{"name": "deepseek-r1-qwen", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"},
{"name": "gpt-4o", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Xenova/gpt-4o", },
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "glm4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/THUDM/glm-4-9b-hf", },
]
@@ -130,6 +137,10 @@ def download_model(model):
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
if name == "gpt-4o":
# Xenova/gpt-4o is tokenizer-only, it does not contain config.json
files = ["tokenizer.json", "tokenizer_config.json"]
if tokt == TOKENIZER_TYPE.SPM:
files.append("tokenizer.model")
@@ -245,7 +256,7 @@ src_func = f"""
logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
logger.warning("** - the pre-tokenization config has changed upstream")
logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
logger.warning("**")
logger.warning(f"** chkhsh: {{chkhsh}}")
logger.warning("**************************************************************************************")

View File

@@ -395,7 +395,7 @@ if __name__ == '__main__':
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
logger.error("Please refer to https://github.com/ggerganov/llama.cpp/pull/9948")
logger.error("Please refer to https://github.com/ggml-org/llama.cpp/pull/9948")
sys.exit(1)
if base_name in tensor_map:
@@ -419,7 +419,7 @@ if __name__ == '__main__':
# some archs may have the same tensor for lm_head and output (tie word embeddings)
# in this case, adapters targeting lm_head will fail when using llama-export-lora
# therefore, we ignore them for now
# see: https://github.com/ggerganov/llama.cpp/issues/9065
# see: https://github.com/ggml-org/llama.cpp/issues/9065
if name == "lm_head.weight" and len(dest) == 0:
raise ValueError("lm_head is present in adapter, but is ignored in base model")
for dest_name, dest_data in dest:

View File

@@ -12,7 +12,7 @@ $ apt update && apt upgrade -y
$ apt install git cmake
```
Then, follow the [build instructions](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md), specifically for CMake.
Then, follow the [build instructions](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md), specifically for CMake.
Once the binaries are built, download your model of choice (e.g., from Hugging Face). It's recommended to place it in the `~/` directory for best performance:

View File

@@ -1,23 +1,20 @@
# Setting Up CUDA on Fedora
In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox container. This guide is applicable for:
- [Fedora Workstation](https://fedoraproject.org/workstation/)
- [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/)
- [Fedora Spins](https://fedoraproject.org/spins)
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.`, `Arch Linux`, and `Ubuntu`.
- [Other Distributions](https://containertoolbx.org/distros/), including `Red Hat Enterprise Linux >= 8.5`, `Arch Linux`, and `Ubuntu`.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Monitoring NVIDIA CUDA Repositories](#monitoring-nvidia-cuda-repositories)
- [Using the Fedora 39 CUDA Repository](#using-the-fedora-39-cuda-repository)
- [Using the Fedora 41 CUDA Repository](#using-the-fedora-41-cuda-repository)
- [Creating a Fedora Toolbox Environment](#creating-a-fedora-toolbox-environment)
- [Installing Essential Development Tools](#installing-essential-development-tools)
- [Adding the CUDA Repository](#adding-the-cuda-repository)
- [Installing `nvidia-driver-libs`](#installing-nvidia-driver-libs)
- [Manually Resolving Package Conflicts](#manually-resolving-package-conflicts)
- [Finalizing the Installation of `nvidia-driver-libs`](#finalizing-the-installation-of-nvidia-driver-libs)
- [Installing Nvidia Driver Libraries](#installing-nvidia-driver-libraries)
- [Installing the CUDA Meta-Package](#installing-the-cuda-meta-package)
- [Configuring the Environment](#configuring-the-environment)
- [Verifying the Installation](#verifying-the-installation)
@@ -29,44 +26,33 @@ In this guide we setup [Nvidia CUDA](https://docs.nvidia.com/cuda/) in a toolbox
## Prerequisites
- **Toolbox Installed on the Host System** `Fedora Silverblue` and `Fedora Workstation` both have toolbox by default, other distributions may need to install the [toolbox package](https://containertoolbx.org/install/).
- **NVIDIA Drivers and Graphics Card installed on Host System (optional)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
- **NVIDIA Drivers and Graphics Card installed on Host System (recommended)** To run CUDA program, such as `llama.cpp`, the host should be setup to access your NVIDIA hardware. Fedora Hosts can use the [RPM Fusion Repository](https://rpmfusion.org/Howto/NVIDIA).
- **Internet connectivity** to download packages.
### Monitoring NVIDIA CUDA Repositories
### Using the Fedora 41 CUDA Repository
Before proceeding, it is advisable to check if NVIDIA has updated their CUDA repositories for your Fedora version. NVIDIA's repositories can be found at:
The latest release is 41.
- [Fedora 40 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora40/x86_64/)
- [Fedora 41 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/)
As of the latest update, these repositories do not contain the `cuda` meta-package or are missing essential components.
### Using the Fedora 39 CUDA Repository
Since the newer repositories are incomplete, we'll use the Fedora 39 repository:
- [Fedora 39 CUDA Repository](https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/)
**Note:** Fedora 39 is no longer maintained, so we recommend using a toolbox environment to prevent system conflicts.
**Note:** We recommend using a toolbox environment to prevent system conflicts.
## Creating a Fedora Toolbox Environment
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using a Fedora 39 toolbox allows us to install the necessary packages without affecting the host system.
This guide focuses on Fedora hosts, but with small adjustments, it can work for other hosts. Using the Fedora Toolbox allows us to install the necessary packages without affecting the host system.
**Note:** Toolbox is available for other systems, and even without Toolbox, it is possible to use Podman or Docker.
We do not recommend installing on the host system, as Fedora 39 is out-of-maintenance, and instead you should upgrade to a maintained version of Fedora for your host.
1. **Create a Fedora 39 Toolbox:**
1. **Create a Fedora 41 Toolbox:**
```bash
toolbox create --image registry.fedoraproject.org/fedora-toolbox:39 --container fedora-toolbox-39-cuda
toolbox create --image registry.fedoraproject.org/fedora-toolbox:41 --container fedora-toolbox-41-cuda
```
2. **Enter the Toolbox:**
```bash
toolbox enter --container fedora-toolbox-39-cuda
toolbox enter --container fedora-toolbox-41-cuda
```
Inside the toolbox, you have root privileges and can install packages without affecting the host system.
@@ -79,13 +65,13 @@ We do not recommend installing on the host system, as Fedora 39 is out-of-mainte
sudo dnf distro-sync
```
2. **Install the Default Text Editor (Optional):**
2. **Install **Vim** the default text editor (Optional):**
```bash
sudo dnf install vim-default-editor --allowerasing
```
The `--allowerasing` flag resolves any package conflicts.
The `--allowerasing` flag will allow the removal of the conflicting `nano-default-editor` package.
3. **Install Development Tools and Libraries:**
@@ -100,7 +86,7 @@ We do not recommend installing on the host system, as Fedora 39 is out-of-mainte
Add the NVIDIA CUDA repository to your DNF configuration:
```bash
sudo dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/repos/fedora39/x86_64/cuda-fedora39.repo
sudo dnf config-manager addrepo --from-repofile=https://developer.download.nvidia.com/compute/cuda/repos/fedora41/x86_64/cuda-fedora41.repo
```
After adding the repository, synchronize the package manager again:
@@ -109,106 +95,77 @@ After adding the repository, synchronize the package manager again:
sudo dnf distro-sync
```
## Installing `nvidia-driver-libs`
## Installing Nvidia Driver Libraries
Attempt to install `nvidia-driver-libs`:
First, we need to detect if the host is supplying the [NVIDIA driver libraries into the toolbox](https://github.com/containers/toolbox/blob/main/src/pkg/nvidia/nvidia.go):
```bash
sudo dnf install nvidia-driver-libs
ls -la /usr/lib64/libcuda.so.1
```
### If *`libcuda.so.1`* is missing:
```
ls: cannot access '/usr/lib64/libcuda.so.1': No such file or directory
```
**Explanation:**
The host dose not supply the CUDA drivers, **install them now:**
- `nvidia-driver-libs` contains necessary NVIDIA driver libraries required by CUDA.
- This step might fail due to conflicts with existing NVIDIA drivers on the host system.
## Manually Resolving Package Conflicts
If the installation fails due to conflicts, we'll manually download and install the required packages, excluding conflicting files.
### 1. Download the `nvidia-driver-libs` RPM
#### Install the Nvidia Driver Libraries on Guest:
```bash
sudo dnf download --arch x86_64 nvidia-driver-libs
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
You should see a file similar to:
### If *`libcuda.so.1`* exists:
```
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
```
### 2. Attempt to Install the RPM
```bash
sudo dnf install nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
```
**Expected Error:**
Installation may fail with errors pointing to conflicts with `egl-gbm` and `egl-wayland`.
**Note: It is important to carefully read the error messages to identify the exact paths that need to be excluded.**
### 3. Download Dependencies
```bash
sudo dnf download --arch x86_64 egl-gbm egl-wayland
```
### 4. Install `egl-gbm` with Excluded Paths
Exclude conflicting files during installation:
```bash
sudo rpm --install --verbose --hash \
--excludepath=/usr/lib64/libnvidia-egl-gbm.so.1.1.2 \
--excludepath=/usr/share/egl/egl_external_platform.d/15_nvidia_gbm.json \
egl-gbm-1.1.2^20240919gitb24587d-3.fc39.x86_64.rpm
lrwxrwxrwx. 1 root root 21 Mar 24 11:26 /usr/lib64/libcuda.so.1 -> libcuda.so.570.133.07
```
**Explanation:**
The host is supply the CUDA drivers, **we need to update the guest RPM Database accordingly:**
- The `--excludepath` option skips installing files that conflict with existing files.
- Adjust the paths based on the error messages you receive.
#### Update the Toolbox RPM Database to include the Host-Supplied Libraries:
### 5. Install `egl-wayland` with Excluded Paths
Note: we do not actually install the libraries, we just update the DB so that the guest system knows they are supplied by the host.
##### 1. Download `nvidia-` parts that are supplied by the host RPM's (with dependencies)
```bash
sudo rpm --install --verbose --hash \
--excludepath=/usr/share/egl/egl_external_platform.d/10_nvidia_wayland.json \
egl-wayland-1.1.17^20241118giteeb29e1-5.fc39.x86_64.rpm
sudo dnf download --destdir=/tmp/nvidia-driver-libs --resolve --arch x86_64 nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
### 6. Install `nvidia-driver-libs` with Excluded Paths
##### 2. Update the RPM database to assume the installation of these packages.
```bash
sudo rpm --install --verbose --hash \
--excludepath=/usr/share/glvnd/egl_vendor.d/10_nvidia.json \
--excludepath=/usr/share/nvidia/nvoptix.bin \
nvidia-driver-libs-560.35.05-1.fc39.x86_64.rpm
sudo rpm --install --verbose --hash --justdb /tmp/nvidia-driver-libs/*
```
**Note:**
- Replace the paths with the ones causing conflicts in your installation if they differ.
- The `--verbose` and `--hash` options provide detailed output during installation.
- The `--justdb` option only updates the RPM database, without touching the filesystem elsewhere.
## Finalizing the Installation of `nvidia-driver-libs`
##### Check that the RPM Database has been correctly updated:
**Note:** This is the same command as in the *"Install the Nvidia Driver Libraries on Guest"* for if *`libcuda.so.1`* was missing.
After manually installing the dependencies, run:
```bash
sudo dnf install nvidia-driver-libs
sudo dnf install nvidia-driver-cuda nvidia-driver-libs nvidia-driver-cuda-libs nvidia-persistenced
```
You should receive a message indicating the package is already installed:
*(this time it will not install anything, as the database things that these packages are already installed)*
```
Package nvidia-driver-libs-3:560.35.05-1.fc39.x86_64 is already installed.
Dependencies resolved.
Updating and loading repositories:
Repositories loaded.
Package "nvidia-driver-cuda-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-driver-cuda-libs-3:570.124.06-1.fc41.x86_64" is already installed.
Package "nvidia-persistenced-3:570.124.06-1.fc41.x86_64" is already installed.
Nothing to do.
Complete!
```
## Installing the CUDA Meta-Package
@@ -233,7 +190,7 @@ To use CUDA, add its binary directory to your system's `PATH`.
**Explanation:**
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
- We add to `/etc/profile.d/` as the `/etc/` folder is unique to this particular container, and is not shared with other containers or the host system.
- The backslash `\` before `$PATH` ensures the variable is correctly written into the script.
2. **Make the Script Executable:**
@@ -262,26 +219,33 @@ You should see output similar to:
```
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Tue_Oct_29_23:50:19_PDT_2024
Cuda compilation tools, release 12.6, V12.6.85
Build cuda_12.6.r12.6/compiler.35059454_0
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Fri_Feb_21_20:23:50_PST_2025
Cuda compilation tools, release 12.8, V12.8.93
Build cuda_12.8.r12.8/compiler.35583870_0
```
This output confirms that the CUDA compiler is accessible and indicates the installed version.
## Conclusion
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 39 CUDA repository. By manually resolving package conflicts and configuring the environment, you can develop CUDA applications without affecting your host system.
You have successfully set up CUDA on Fedora within a toolbox environment using the Fedora 41 CUDA repository. By manually updating the RPM db and configuring the environment, you can develop CUDA applications without affecting your host system.
## Troubleshooting
- **Installation Failures:**
- If you encounter errors during installation, carefully read the error messages. They often indicate conflicting files or missing dependencies.
- Use the `--excludepath` option with `rpm` to exclude conflicting files during manual installations.
- **Driver Conflicts:**
- Since the host system may already have NVIDIA drivers installed, conflicts can arise. Using the toolbox environment helps isolate these issues.
- If you encounter errors during installation, carefully read the error messages. They often indicate conflicting files or missing dependencies.
- You may use the `--excludepath` option with `rpm` to exclude conflicting files during manual RPM installations.
- **Rebooting the Container:**
- Sometimes there may be a bug in the NVIDIA driver host passthrough (such as missing a shared library). Rebooting the container may solve this issue:
```bash
# on the host system
podman container restart --all
```
- **Environment Variables Not Set:**
- If `nvcc` is not found after installation, ensure that `/usr/local/cuda/bin` is in your `PATH`.
@@ -291,11 +255,13 @@ You have successfully set up CUDA on Fedora within a toolbox environment using t
## Additional Notes
- **Updating CUDA in the Future:**
- Keep an eye on the official NVIDIA repositories for updates to your Fedora version.
- When an updated repository becomes available, adjust your `dnf` configuration accordingly.
- **Building `llama.cpp`:**
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggerganov/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
- With CUDA installed, you can follow these [build instructions for `llama.cpp`](https://github.com/ggml-org/llama.cpp/blob/master/docs/build.md) to compile it with CUDA support.
- Ensure that any CUDA-specific build flags or paths are correctly set in your build configuration.
- **Using the Toolbox Environment:**

209
docs/backend/OPENCL.md Normal file
View File

@@ -0,0 +1,209 @@
# llama.cpp for OpenCL
- [Background](#background)
- [OS](#os)
- [Hardware](#hardware)
- [DataType Supports](#datatype-supports)
- [Model Preparation](#model-preparation)
- [CMake Options](#cmake-options)
- [Android](#android)
- [Windows 11 Arm64](#windows-11-arm64)
- [Known Issue](#known-issues)
- [TODO](#todo)
## Background
OpenCL (Open Computing Language) is an open, royalty-free standard for cross-platform, parallel programming of diverse accelerators found in supercomputers, cloud servers, personal computers, mobile devices and embedded platforms. OpenCL specifies a programming language (based on C99) for programming these devices and application programming interfaces (APIs) to control the platform and execute programs on the compute devices. Similar to CUDA, OpenCL has been widely used to program GPUs and is supported by most GPU vendors.
### Llama.cpp + OpenCL
The llama.cpp OpenCL backend is designed to enable llama.cpp on **Qualcomm Adreno GPU** firstly via OpenCL. Thanks to the portabilty of OpenCL, the OpenCL backend can also run on certain Intel GPUs although the performance is not optimal.
## OS
| OS | Status | Verified |
|---------|---------|------------------------------------------------|
| Android | Support | Snapdragon 8 Gen 3, Snapdragon 8 Elite |
| Windows | Support | Windows 11 Arm64 with Snapdragon X Elite |
| Linux | Support | Ubuntu 22.04 WSL2 with Intel 12700H |
## Hardware
### Adreno GPU
**Verified devices**
| Adreno GPU | Status |
|:------------------------------------:|:-------:|
| Adreno 750 (Snapdragon 8 Gen 3) | Support |
| Adreno 830 (Snapdragon 8 Elite) | Support |
| Adreno X85 (Snapdragon X Elite) | Support |
## DataType Supports
| DataType | Status |
|:----------------------:|:--------------------------:|
| Q4_0 | Support |
| Q6_K | Support, but not optimized |
## Model Preparation
You can refer to the general [*Prepare and Quantize*](README.md#prepare-and-quantize) guide for model prepration.
Currently we support `Q4_0` quantization and have optimize for it. To achieve best performance on Adreno GPU, add `--pure` to `llama-quantize`. For example,
```sh
./llama-quantize --pure ggml-model-qwen2.5-3b-f16.gguf ggml-model-qwen-3b-Q4_0.gguf Q4_0
```
Since `Q6_K` is also supported, `Q4_0` quantization without `--pure` will also work. However, the performance will be worse compared to pure `Q4_0` quantization.
## CMake Options
The OpenCL backend has the following CMake options that control the behavior of the backend.
| CMake options | Default value | Description |
|:---------------------------------:|:--------------:|:------------------------------------------|
| `GGML_OPENCL_EMBED_KERNELS` | `ON` | Embed OpenCL kernels into the executable. |
| `GGML_OPENCL_USE_ADRENO_KERNELS` | `ON` | Use kernels optimized for Adreno. |
## Android
Ubuntu 22.04 is used for targeting Android. Make sure the following tools are accessible from command line,
* Git
* CMake 3.29
* Ninja
* Python3
### I. Setup Environment
1. **Install NDK**
```sh
cd ~
wget https://dl.google.com/android/repository/commandlinetools-linux-8512546_latest.zip && \
unzip commandlinetools-linux-8512546_latest.zip && \
mkdir -p ~/android-sdk/cmdline-tools && \
mv cmdline-tools latest && \
mv latest ~/android-sdk/cmdline-tools/ && \
rm -rf commandlinetools-linux-8512546_latest.zip
yes | ~/android-sdk/cmdline-tools/latest/bin/sdkmanager "ndk;26.3.11579264"
```
2. **Install OpenCL Headers and Library**
```sh
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
cd OpenCL-Headers && \
cp -r CL ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
cd OpenCL-ICD-Loader && \
mkdir build_ndk26 && cd build_ndk26 && \
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=$HOME/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared && \
ninja && \
cp libOpenCL.so ~/android-sdk/ndk/26.3.11579264/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
```
### II. Build llama.cpp
```sh
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && \
cd llama.cpp && \
mkdir build-android && cd build-android
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=$HOME/android-sdk/ndk/26.3.11579264/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DBUILD_SHARED_LIBS=OFF \
-DGGML_OPENCL=ON
ninja
```
## Windows 11 Arm64
A Snapdragon X Elite device with Windows 11 Arm64 is used. Make sure the following tools are accessible from command line,
* Git
* CMake 3.29
* Clang 19
* Ninja
* Visual Studio 2022
* Powershell 7
Visual Studio provides necessary headers and libraries although it is not directly used for building.
Alternatively, Visual Studio Build Tools can be installed instead of the full Visual Studio.
Powershell 7 is used for the following commands.
If an older version of Powershell is used, these commands may not work as they are.
### I. Setup Environment
1. **Install OpenCL Headers and Library**
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
mkdir build && cd build
cmake .. -G Ninja `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
```
### II. Build llama.cpp
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && cd llama.cpp
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DBUILD_SHARED_LIBS=OFF `
-DGGML_OPENCL=ON
ninja
```
## Known Issues
- Currently OpenCL backend does not work on Adreno 6xx GPUs.
## TODO
- Optimization for Q6_K
- Support and optimization for Q4_K

View File

@@ -20,7 +20,7 @@
**oneAPI** is an open ecosystem and a standard-based specification, supporting multiple architectures including but not limited to intel CPUs, GPUs and FPGAs. The key components of the oneAPI ecosystem include:
- **DPCPP** *(Data Parallel C++)*: The primary oneAPI SYCL implementation, which includes the icpx/icx Compilers.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. oneMKL and oneDNN)*.
- **oneAPI Libraries**: A set of highly optimized libraries targeting multiple domains *(e.g. Intel oneMKL, oneMath and oneDNN)*.
- **oneAPI LevelZero**: A high performance low level interface for fine-grained control over intel iGPUs and dGPUs.
- **Nvidia & AMD Plugins**: These are plugins extending oneAPI's DPCPP support to SYCL on Nvidia and AMD GPU targets.
@@ -36,12 +36,22 @@ The following release is verified with good quality:
|Commit ID|Tag|Release|Verified Platform| Update date|
|-|-|-|-|-|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggml-org/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
## News
- 2025.2
- Optimize MUL_MAT Q4_0 on Intel GPU for all dGPUs and built-in GPUs since MTL. Increase the performance of LLM (llama-2-7b.Q4_0.gguf) 21%-87% on Intel GPUs (MTL, ARL-H, Arc, Flex, PVC).
|GPU|Base tokens/s|Increased tokens/s|Percent|
|-|-|-|-|
|PVC 1550|39|73|+87%|
|Flex 170|39|50|+28%|
|Arc770|42|55|+30%|
|MTL|13|16|+23%|
|ARL-H|14|17|+21%|
- 2024.11
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
@@ -58,7 +68,7 @@ The following release is verified with good quality:
- 2024.3
- Release binary files of Windows.
- A blog is published: **Run LLM on all Intel GPUs Using llama.cpp**: [intel.com](https://www.intel.com/content/www/us/en/developer/articles/technical/run-llm-on-all-gpus-using-llama-cpp-artical.html) or [medium.com](https://medium.com/@jianyu_neo/run-llm-on-all-intel-gpus-using-llama-cpp-fd2e2dcbd9bd).
- New base line is ready: [tag b2437](https://github.com/ggerganov/llama.cpp/tree/b2437).
- New base line is ready: [tag b2437](https://github.com/ggml-org/llama.cpp/tree/b2437).
- Support multiple cards: **--split-mode**: [none|layer]; not support [row], it's on developing.
- Support to assign main GPU by **--main-gpu**, replace $GGML_SYCL_DEVICE.
- Support detecting all GPUs with level-zero and same top **Max compute units**.
@@ -97,8 +107,8 @@ SYCL backend supports Intel GPU Family:
| Intel Data Center Max Series | Support | Max 1550, 1100 |
| Intel Data Center Flex Series | Support | Flex 170 |
| Intel Arc Series | Support | Arc 770, 730M, Arc A750 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake |
| Intel iGPU | Support | iGPU in 13700k, i5-1250P, i7-1260P, i7-1165G7 |
| Intel built-in Arc GPU | Support | built-in Arc GPU in Meteor Lake, Arrow Lake |
| Intel iGPU | Support | iGPU in 13700k,iGPU in 13400, i5-1250P, i7-1260P, i7-1165G7 |
*Notes:*
@@ -133,7 +143,7 @@ The docker build option is currently limited to *intel GPU* targets.
### Build image
```sh
# Using FP16
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" -f .devops/llama-cli-intel.Dockerfile .
docker build -t llama-cpp-sycl --build-arg="GGML_SYCL_F16=ON" --target light -f .devops/intel.Dockerfile .
```
*Notes*:
@@ -217,30 +227,19 @@ Upon a successful installation, SYCL is enabled for the available intel devices,
**oneAPI Plugin**: In order to enable SYCL support on Nvidia GPUs, please install the [Codeplay oneAPI Plugin for Nvidia GPUs](https://developer.codeplay.com/products/oneapi/nvidia/download). User should also make sure the plugin version matches the installed base toolkit one *(previous step)* for a seamless "oneAPI on Nvidia GPU" setup.
**oneMKL for cuBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* do not contain the cuBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *cuBLAS* backend enabled is thus required to run it on Nvidia GPUs.
**oneDNN**: The current oneDNN releases *(shipped with the oneAPI base-toolkit)* do not include the NVIDIA backend. Therefore, oneDNN must be compiled from source to enable the NVIDIA target:
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_CUBLAS_BACKEND=ON -DTARGET_DOMAINS=blas
cmake --build buildWithCublas --config Release
git clone https://github.com/oneapi-src/oneDNN.git
cd oneDNN
cmake -GNinja -Bbuild-nvidia -DDNNL_CPU_RUNTIME=DPCPP -DDNNL_GPU_RUNTIME=DPCPP -DDNNL_GPU_VENDOR=NVIDIA -DONEDNN_BUILD_GRAPH=OFF -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake --build build-nvidia --config Release
```
- **Adding support to AMD GPUs**
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
```sh
git clone https://github.com/oneapi-src/oneMKL
cd oneMKL
# Find your HIPTARGET with rocminfo, under the key 'Name:'
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
cmake --build buildWithrocBLAS --config Release
```
3. **Verify installation and environment**
In order to check the available SYCL devices on the machine, please use the `sycl-ls` command.
@@ -303,37 +302,39 @@ cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by setting the environment variable `SYCL_PROGRAM_COMPILE_OPTIONS`
as `-cl-fp32-correctly-rounded-divide-sqrt`
#### Nvidia GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_DIR
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON -DDNNL_DIR=/path/to/oneDNN/build-nvidia/install/lib/cmake/dnnl
# build all binary
cmake --build build --config Release -j -v
```
It is possible to come across some precision issues when running tests that stem from using faster
instructions, which can be circumvented by passing the `-fno-fast-math` flag to the compiler.
#### AMD GPU
```sh
# Export relevant ENV variables
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
The SYCL backend depends on [oneMath](https://github.com/uxlfoundation/oneMath) for Nvidia and AMD devices.
By default it is automatically built along with the project. A specific build can be provided by setting the CMake flag `-DoneMath_DIR=/path/to/oneMath/install/lib/cmake/oneMath`.
```sh
# Build LLAMA with rocBLAS acceleration through SYCL
## AMD
@@ -424,13 +425,13 @@ Examples:
- Use device 0:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm none -mg 0
```
- Use multiple devices:
```sh
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
ZES_ENABLE_SYSMAN=1 ./build/bin/llama-cli -no-cnv -m models/llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33 -sm layer
```
*Notes:*
@@ -474,6 +475,12 @@ b. Enable oneAPI running environment:
"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" intel64
```
- if you are using Powershell, enable the runtime environment with the following:
```
cmd.exe "/K" '"C:\Program Files (x86)\Intel\oneAPI\setvars.bat" && powershell'
```
c. Verify installation
In the oneAPI command line, run the following to print the available SYCL devices:
@@ -504,13 +511,13 @@ You could download the release package for Windows directly, which including bin
Choose one of following methods to build from source code.
1. Script
#### 1. Script
```sh
.\examples\sycl\win-build-sycl.bat
```
2. CMake
#### 2. CMake
On the oneAPI command line window, step into the llama.cpp main directory and run the following:
@@ -539,13 +546,84 @@ cmake --preset x64-windows-sycl-debug
cmake --build build-x64-windows-sycl-debug -j --target llama-cli
```
3. Visual Studio
#### 3. Visual Studio
You can use Visual Studio to open llama.cpp folder as a CMake project. Choose the sycl CMake presets (`x64-windows-sycl-release` or `x64-windows-sycl-debug`) before you compile the project.
You have two options to use Visual Studio to build llama.cpp:
- As CMake Project using CMake presets.
- Creating a Visual Studio solution to handle the project.
**Note**:
All following commands are executed in PowerShell.
##### - Open as a CMake Project
You can use Visual Studio to open the `llama.cpp` folder directly as a CMake project. Before compiling, select one of the SYCL CMake presets:
- `x64-windows-sycl-release`
- `x64-windows-sycl-debug`
*Notes:*
- For a minimal experimental setup, you can build only the inference executable using:
- In case of a minimal experimental setup, the user can build the inference executable only through `cmake --build build --config Release -j --target llama-cli`.
```Powershell
cmake --build build --config Release -j --target llama-cli
```
##### - Generating a Visual Studio Solution
You can use Visual Studio solution to build and work on llama.cpp on Windows. You need to convert the CMake Project into a `.sln` file.
If you want to use the Intel C++ Compiler for the entire `llama.cpp` project, run the following command:
```Powershell
cmake -B build -G "Visual Studio 17 2022" -T "Intel C++ Compiler 2025" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release
```
If you prefer to use the Intel C++ Compiler only for `ggml-sycl`, ensure that `ggml` and its backend libraries are built as shared libraries ( i.e. `-DBUILD_SHARED_LIBRARIES=ON`, this is default behaviour):
```Powershell
cmake -B build -G "Visual Studio 17 2022" -A x64 -DGGML_SYCL=ON -DCMAKE_BUILD_TYPE=Release \
-DSYCL_INCLUDE_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\include" \
-DSYCL_LIBRARY_DIR="C:\Program Files (x86)\Intel\oneAPI\compiler\latest\lib"
```
If successful the build files have been written to: *path/to/llama.cpp/build*
Open the project file **build/llama.cpp.sln** with Visual Studio.
Once the Visual Studio solution is created, follow these steps:
1. Open the solution in Visual Studio.
2. Right-click on `ggml-sycl` and select **Properties**.
3. In the left column, expand **C/C++** and select **DPC++**.
4. In the right panel, find **Enable SYCL Offload** and set it to `Yes`.
5. Apply the changes and save.
*Navigation Path:*
```
Properties -> C/C++ -> DPC++ -> Enable SYCL Offload (Yes)
```
Now, you can build `llama.cpp` with the SYCL backend as a Visual Studio project.
To do it from menu: `Build -> Build Solution`.
Once it is completed, final results will be in **build/Release/bin**
*Additional Note*
- You can avoid specifying `SYCL_INCLUDE_DIR` and `SYCL_LIBRARY_DIR` in the CMake command by setting the environment variables:
- `SYCL_INCLUDE_DIR_HINT`
- `SYCL_LIBRARY_DIR_HINT`
- Above instruction has been tested with Visual Studio 17 Community edition and oneAPI 2025.0. We expect them to work also with future version if the instructions are adapted accordingly.
### III. Run the inference
@@ -619,13 +697,13 @@ Examples:
- Use device 0:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm none -mg 0
```
- Use multiple devices:
```
build\bin\llama-cli.exe -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
build\bin\llama-cli.exe -no-cnv -m models\llama-2-7b.Q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e -ngl 33 -s 0 -sm layer
```
@@ -650,8 +728,9 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| GGML_SYCL_GRAPH | ON *(default)* \|OFF *(Optional)* | Enable build with [SYCL Graph extension](https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/experimental/sycl_ext_oneapi_graph.asciidoc). |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
@@ -660,8 +739,11 @@ use 1 SYCL GPUs: [0] with Max compute units:512
| Name | Value | Function |
|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------|
| GGML_SYCL_DEBUG | 0 (default) or 1 | Enable log function by macro: GGML_SYCL_DEBUG |
| GGML_SYCL_DISABLE_OPT | 0 (default) or 1 | Disable optimize features based on Intel GPU type, to compare the performance increase |
| GGML_SYCL_DISABLE_GRAPH | 0 or 1 (default) | Disable running computations through SYCL Graphs feature. Disabled by default because graph performance isn't yet better than non-graph performance. |
| ZES_ENABLE_SYSMAN | 0 (default) or 1 | Support to get free memory of GPU by sycl::aspect::ext_intel_free_memory.<br>Recommended to use when --split-mode = layer |
## Known Issues
- `Split-mode:[row]` is not supported.

View File

@@ -3,7 +3,7 @@
**To get the Code:**
```bash
git clone https://github.com/ggerganov/llama.cpp
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
```
@@ -46,7 +46,7 @@ cmake --build build --config Release
```
- Building for Windows (x86, x64 and arm64) with MSVC or clang as compilers:
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/de/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Install Visual Studio 2022, e.g. via the [Community Edition](https://visualstudio.microsoft.com/vs/community/). In the installer, select at least the following options (this also automatically installs the required additional tools like CMake,...):
- Tab Workload: Desktop-development with C++
- Tab Components (select quickly via search): C++-_CMake_ Tools for Windows, _Git_ for Windows, C++-_Clang_ Compiler for Windows, MS-Build Support for LLVM-Toolset (clang)
- Please remember to always use a Developer Command Prompt / PowerShell for VS2022 for git, build, test
@@ -125,26 +125,73 @@ For detailed info, please refer to [llama.cpp for SYCL](./backend/SYCL.md).
## CUDA
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from the [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
This provides GPU acceleration using an NVIDIA GPU. Make sure to have the [CUDA toolkit](https://developer.nvidia.com/cuda-toolkit) installed.
If you are using Fedora (using Fedora Workstation, or an 'Atomic' variant such as Silverblue), or would like to set up CUDA in a toolbox, please consider our [Fedora CUDA guide](./cuda-fedora.md). Unfortunately, the process is not as simple as one might expect.
#### Download directly from NVIDIA
You may find the official downloads here: [NVIDIA developer site](https://developer.nvidia.com/cuda-downloads).
- Using `CMake`:
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
#### Compile and run inside a Fedora Toolbox Container
We also have a [guide](./backend/CUDA-FEDORA.md) for setting up CUDA toolkit in a Fedora [toolbox container](https://containertoolbx.org/).
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used.
**Recommended for:**
- ***Necessary*** for users of [Atomic Desktops for Fedora](https://fedoraproject.org/atomic-desktops/); such as: [Silverblue](https://fedoraproject.org/atomic-desktops/silverblue/) and [Kinoite](https://fedoraproject.org/atomic-desktops/kinoite/).
- (there are no supported CUDA packages for these systems)
- ***Necessary*** for users that have a host that is not a: [Supported Nvidia CUDA Release Platform](https://developer.nvidia.com/cuda-downloads).
- (for example, you may have [Fedora 42 Beta](https://fedoramagazine.org/announcing-fedora-linux-42-beta/) as your your host operating system)
- ***Convenient*** For those running [Fedora Workstation](https://fedoraproject.org/workstation/) or [Fedora KDE Plasma Desktop](https://fedoraproject.org/spins/kde), and want to keep their host system clean.
- *Optionally* toolbox packages are available: [Arch Linux](https://archlinux.org/), [Red Hat Enterprise Linux >= 8.5](https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux), or [Ubuntu](https://ubuntu.com/download)
### Compilation
```bash
cmake -B build -DGGML_CUDA=ON
cmake --build build --config Release
```
### Override Compute Capability Specifications
If `nvcc` cannot detect your gpu, you may get compile-warnings such as:
```text
nvcc warning : Cannot find valid GPU for '-arch=native', default arch is used
```
To override the `native` GPU detection:
#### 1. Take note of the `Compute Capability` of your NVIDIA devices: ["CUDA: Your GPU Compute > Capability"](https://developer.nvidia.com/cuda-gpus).
```text
GeForce RTX 4090 8.9
GeForce RTX 3080 Ti 8.6
GeForce RTX 3070 8.6
```
#### 2. Manually list each varying `Compute Capability` in the `CMAKE_CUDA_ARCHITECTURES` list.
```bash
cmake -B build -DGGML_CUDA=ON -DCMAKE_CUDA_ARCHITECTURES="86;89"
```
### Runtime CUDA environmental variables
You may set the [cuda environmental variables](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) at runtime.
```bash
# Use `CUDA_VISIBLE_DEVICES` to hide the first compute device.
CUDA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
```
### Unified Memory
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted. In Windows this setting is available in the NVIDIA control panel as `System Memory Fallback`.
### Performance Tuning
The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
@@ -152,21 +199,54 @@ The following compilation options are also available to tweak performance:
## MUSA
This provides GPU acceleration using the MUSA cores of your Moore Threads MTT GPU. Make sure to have the MUSA SDK installed. You can download it from here: [MUSA SDK](https://developer.mthreads.com/sdk/download/musa).
This provides GPU acceleration using a Moore Threads GPU. Make sure to have the [MUSA SDK](https://developer.mthreads.com/musa/musa-sdk) installed.
- Using `CMake`:
#### Download directly from Moore Threads
```bash
cmake -B build -DGGML_MUSA=ON
You may find the official downloads here: [Moore Threads developer site](https://developer.mthreads.com/sdk/download/musa).
### Compilation
```bash
cmake -B build -DGGML_MUSA=ON
cmake --build build --config Release
```
#### Override Compute Capability Specifications
By default, all supported compute capabilities are enabled. To customize this behavior, you can specify the `MUSA_ARCHITECTURES` option in the CMake command:
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
cmake --build build --config Release
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
#### Compilation options
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
- For static builds, add `-DBUILD_SHARED_LIBS=OFF` and `-DCMAKE_POSITION_INDEPENDENT_CODE=ON`:
```
cmake -B build -DGGML_MUSA=ON \
-DBUILD_SHARED_LIBS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=ON
cmake --build build --config Release
```
The environment variable [`MUSA_VISIBLE_DEVICES`](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) can be used to specify which GPU(s) will be used.
### Runtime MUSA environmental variables
You may set the [musa environmental variables](https://docs.mthreads.com/musa-sdk/musa-sdk-doc-online/programming_guide/Z%E9%99%84%E5%BD%95/) at runtime.
```bash
# Use `MUSA_VISIBLE_DEVICES` to hide the first compute device.
MUSA_VISIBLE_DEVICES="-0" ./build/bin/llama-server --model /srv/models/llama.gguf
```
### Unified Memory
The environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1` can be used to enable unified memory in Linux. This allows swapping to system RAM instead of crashing when the GPU VRAM is exhausted.
Most of the compilation options available for CUDA should also be available for MUSA, though they haven't been thoroughly tested yet.
## HIP
This provides GPU acceleration on HIP-supported AMD GPUs.
@@ -179,8 +259,12 @@ You can download it from your Linux distro's package manager or from here: [ROCm
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
To enhance flash attention performance on RDNA3+ or CDNA architectures, you can utilize the rocWMMA library by enabling the `-DGGML_HIP_ROCWMMA_FATTN=ON` option. This requires rocWMMA headers to be installed on the build system.
The rocWMMA library is included by default when installing the ROCm SDK using the `rocm` meta package provided by AMD. Alternatively, if you are not using the meta package, you can install the library using the `rocwmma-dev` or `rocwmma-devel` package, depending on your system's package manager.
As an alternative, you can manually install the library by cloning it from the official [GitHub repository](https://github.com/ROCm/rocWMMA), checkout the corresponding version tag (e.g. `rocm-6.2.4`) and set `-DCMAKE_CXX_FLAGS="-I<path/to/rocwmma>/library/include/"` in CMake. This also works under Windows despite not officially supported by AMD.
Note that if you get the following error:
```
@@ -210,6 +294,10 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
### Unified Memory
On Linux it is possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting environment variable `GGML_CUDA_ENABLE_UNIFIED_MEMORY=1`. However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
## Vulkan
**Windows**
@@ -286,7 +374,7 @@ You don't need to install Vulkan SDK. It will be installed inside the container.
```sh
# Build the image
docker build -t llama-cpp-vulkan -f .devops/llama-cli-vulkan.Dockerfile .
docker build -t llama-cpp-vulkan --target light -f .devops/vulkan.Dockerfile .
# Then, use it:
docker run -it --rm -v "$(pwd):/app:Z" --device /dev/dri/renderD128:/dev/dri/renderD128 --device /dev/dri/card1:/dev/dri/card1 llama-cpp-vulkan -m "/app/models/YOUR_MODEL_FILE" -p "Building a website can be done in 10 simple steps:" -n 400 -e -ngl 33
@@ -350,6 +438,116 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
To enable KleidiAI, go to the llama.cpp directory and build using CMake
```bash
cmake -B build -DGGML_CPU_KLEIDIAI=ON
cmake --build build --config Release
```
You can verify that KleidiAI is being used by running
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
```
If KleidiAI is enabled, the ouput will contain a line similar to:
```
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
```
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
## OpenCL
This provides GPU acceleration through OpenCL on recent Adreno GPU.
More information about OpenCL backend can be found in [OPENCL.md](./backend/OPENCL.md) for more information.
### Android
Assume NDK is available in `$ANDROID_NDK`. First, install OpenCL headers and ICD loader library if not available,
```sh
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && \
cd OpenCL-Headers && \
cp -r CL $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && \
cd OpenCL-ICD-Loader && \
mkdir build_ndk && cd build_ndk && \
cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DOPENCL_ICD_LOADER_HEADERS_DIR=$ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/include \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=24 \
-DANDROID_STL=c++_shared && \
ninja && \
cp libOpenCL.so $ANDROID_NDK/toolchains/llvm/prebuilt/linux-x86_64/sysroot/usr/lib/aarch64-linux-android
```
Then build llama.cpp with OpenCL enabled,
```sh
cd ~/dev/llm
git clone https://github.com/ggml-org/llama.cpp && \
cd llama.cpp && \
mkdir build-android && cd build-android
cmake .. -G Ninja \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DANDROID_ABI=arm64-v8a \
-DANDROID_PLATFORM=android-28 \
-DBUILD_SHARED_LIBS=OFF \
-DGGML_OPENCL=ON
ninja
```
### Windows Arm64
First, install OpenCL headers and ICD loader library if not available,
```powershell
mkdir -p ~/dev/llm
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-Headers && cd OpenCL-Headers
mkdir build && cd build
cmake .. -G Ninja `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
cd ~/dev/llm
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader && cd OpenCL-ICD-Loader
mkdir build && cd build
cmake .. -G Ninja `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DCMAKE_INSTALL_PREFIX="$HOME/dev/llm/opencl"
cmake --build . --target install
```
Then build llama.cpp with OpenCL enabled,
```powershell
cmake .. -G Ninja `
-DCMAKE_TOOLCHAIN_FILE="$HOME/dev/llm/llama.cpp/cmake/arm64-windows-llvm.cmake" `
-DCMAKE_BUILD_TYPE=Release `
-DCMAKE_PREFIX_PATH="$HOME/dev/llm/opencl" `
-DBUILD_SHARED_LIBS=OFF `
-DGGML_OPENCL=ON
ninja
```
## Android
To read documentation for how to build on Android, [click here](./android.md)

View File

@@ -104,16 +104,16 @@ Note: to debug the inference graph: you can use [llama-eval-callback](/examples/
## GGUF specification
https://github.com/ggerganov/ggml/blob/master/docs/gguf.md
https://github.com/ggml-org/ggml/blob/master/docs/gguf.md
## Resources
- YaRN RoPE scaling https://github.com/ggerganov/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggerganov/llama.cpp/pull/3009
- support attention bias https://github.com/ggerganov/llama.cpp/pull/4283
- Mixtral support https://github.com/ggerganov/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggerganov/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggerganov/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggerganov/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggerganov/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggerganov/llama.cpp/discussions/2948
- YaRN RoPE scaling https://github.com/ggml-org/llama.cpp/pull/2268
- support Baichuan serial models https://github.com/ggml-org/llama.cpp/pull/3009
- support attention bias https://github.com/ggml-org/llama.cpp/pull/4283
- Mixtral support https://github.com/ggml-org/llama.cpp/pull/4406
- BERT embeddings https://github.com/ggml-org/llama.cpp/pull/5423
- Grok-1 support https://github.com/ggml-org/llama.cpp/pull/6204
- Command R Plus support https://github.com/ggml-org/llama.cpp/pull/6491
- support arch DBRX https://github.com/ggml-org/llama.cpp/pull/6515
- How to convert HuggingFace model to GGUF format https://github.com/ggml-org/llama.cpp/discussions/2948

View File

@@ -7,21 +7,21 @@
## Images
We have three Docker images available for this project:
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggerganov/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
1. `ghcr.io/ggml-org/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
2. `ghcr.io/ggml-org/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
3. `ghcr.io/ggml-org/llama.cpp:server`: This image only includes the server executable file. (platforms: `linux/amd64`, `linux/arm64`)
Additionally, there the following images, similar to the above:
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggerganov/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
- `ghcr.io/ggerganov/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-cuda`: Same as `server` but compiled with CUDA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggml-org/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggml-org/llama.cpp:server-rocm`: Same as `server` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
- `ghcr.io/ggml-org/llama.cpp:full-musa`: Same as `full` but compiled with MUSA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:light-musa`: Same as `light` but compiled with MUSA support. (platforms: `linux/amd64`)
- `ghcr.io/ggml-org/llama.cpp:server-musa`: Same as `server` but compiled with MUSA support. (platforms: `linux/amd64`)
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](../.devops/) and the GitHub Action defined in [.github/workflows/docker.yml](../.github/workflows/docker.yml). If you need different settings (for example, a different CUDA, ROCm or MUSA library, you'll need to build the images locally for now).
@@ -32,25 +32,25 @@ The easiest way to download the models, convert them to ggml and optimize them i
Replace `/path/to/models` below with the actual path where you downloaded the models.
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --all-in-one "/models/" 7B
```
On completion, you are ready to play!
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a light image:
```bash
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggml-org/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
```
or with a server image:
```bash
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggerganov/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
docker run -v /path/to/models:/models -p 8000:8000 ghcr.io/ggml-org/llama.cpp:server -m /models/7B/ggml-model-q4_0.gguf --port 8000 --host 0.0.0.0 -n 512
```
## Docker With CUDA
@@ -60,16 +60,16 @@ Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia
## Building Docker locally
```bash
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/llama-cli-cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda -f .devops/llama-server-cuda.Dockerfile .
docker build -t local/llama.cpp:full-cuda --target full -f .devops/cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda --target light -f .devops/cuda.Dockerfile .
docker build -t local/llama.cpp:server-cuda --target server -f .devops/cuda.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
The defaults are:
- `CUDA_VERSION` set to `12.6.0`
- `CUDA_VERSION` set to `12.4.0`
- `CUDA_DOCKER_ARCH` set to the cmake build default, which includes all the supported architectures
The resulting images, are essentially the same as the non-CUDA images:
@@ -95,16 +95,16 @@ Assuming one has the [mt-container-toolkit](https://developer.mthreads.com/musa/
## Building Docker locally
```bash
docker build -t local/llama.cpp:full-musa -f .devops/full-musa.Dockerfile .
docker build -t local/llama.cpp:light-musa -f .devops/llama-cli-musa.Dockerfile .
docker build -t local/llama.cpp:server-musa -f .devops/llama-server-musa.Dockerfile .
docker build -t local/llama.cpp:full-musa --target full -f .devops/musa.Dockerfile .
docker build -t local/llama.cpp:light-musa --target light -f .devops/musa.Dockerfile .
docker build -t local/llama.cpp:server-musa --target server -f .devops/musa.Dockerfile .
```
You may want to pass in some different `ARGS`, depending on the MUSA environment supported by your container host, as well as the GPU architecture.
The defaults are:
- `MUSA_VERSION` set to `rc3.1.0`
- `MUSA_VERSION` set to `rc3.1.1`
The resulting images, are essentially the same as the non-MUSA images:

394
docs/function-calling.md Normal file
View File

@@ -0,0 +1,394 @@
# Function Calling
[chat.h](../common/chat.h) (https://github.com/ggml-org/llama.cpp/pull/9639) adds support for [OpenAI-style function calling](https://platform.openai.com/docs/guides/function-calling) and is used in:
- `llama-server` when started w/ `--jinja` flag
- `llama-cli` (WIP: https://github.com/ggml-org/llama.cpp/pull/11556)
## Universal support w/ Native & Generic handlers
Function calling is supported for all models (see https://github.com/ggml-org/llama.cpp/pull/9639):
- Native tool call formats supported:
- Llama 3.1 / 3.3 (including builtin tools support - tool names for `wolfram_alpha`, `web_search` / `brave_search`, `code_interpreter`), Llama 3.2
- Functionary v3.1 / v3.2
- Hermes 2/3, Qwen 2.5
- Qwen 2.5 Coder (WIP: https://github.com/ggml-org/llama.cpp/pull/12034)
- Mistral Nemo
- Firefunction v2
- Command R7B
- DeepSeek R1 (WIP / seems reluctant to call any tools?)
- Generic tool call is supported when the template isn't recognized by native format handlers (you'll see `Chat format: Generic` in the logs).
- Use `--chat-template-file` to override the template when appropriate (see examples below)
- Generic support may consume more tokens and be less efficient than a model's native format.
<details>
<summary>Show some common templates and which format handler they use</summary>
| Template | Format |
|----------|--------|
| Almawave-Velvet-14B.jinja | Hermes 2 Pro |
| AtlaAI-Selene-1-Mini-Llama-3.1-8B.jinja | Llama 3.x |
| CohereForAI-aya-expanse-8b.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-default.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-rag.jinja | Generic |
| CohereForAI-c4ai-command-r-plus-tool_use.jinja | Generic |
| CohereForAI-c4ai-command-r7b-12-2024-default.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-rag.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja | Command R7B (extract reasoning) |
| CohereForAI-c4ai-command-r7b-12-2024.jinja | Generic |
| DavieLion-Llama-3.2-1B-SPIN-iter3.jinja | Generic |
| Delta-Vector-Rei-12B.jinja | Mistral Nemo |
| EpistemeAI-Mistral-Nemo-Instruct-12B-Philosophy-Math.jinja | Mistral Nemo |
| FlofloB-83k_continued_pretraining_Qwen2.5-0.5B-Instruct_Unsloth_merged_16bit.jinja | Hermes 2 Pro |
| FlofloB-test_continued_pretraining_Phi-3-mini-4k-instruct_Unsloth_merged_16bit.jinja | Generic |
| HelpingAI-HAI-SER.jinja | Generic |
| HuggingFaceTB-SmolLM2-1.7B-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-135M-Instruct.jinja | Generic |
| HuggingFaceTB-SmolLM2-360M-Instruct.jinja | Generic |
| INSAIT-Institute-BgGPT-Gemma-2-27B-IT-v1.0.jinja | Generic |
| Ihor-Text2Graph-R1-Qwen2.5-0.5b.jinja | Hermes 2 Pro |
| Infinigence-Megrez-3B-Instruct.jinja | Generic |
| Josephgflowers-TinyLlama_v1.1_math_code-world-test-1.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-2.4B-Instruct.jinja | Generic |
| LGAI-EXAONE-EXAONE-3.5-7.8B-Instruct.jinja | Generic |
| LatitudeGames-Wayfarer-12B.jinja | Generic |
| Magpie-Align-Llama-3-8B-Magpie-Align-v0.1.jinja | Generic |
| Magpie-Align-Llama-3.1-8B-Magpie-Align-v0.1.jinja | Generic |
| MaziyarPanahi-calme-3.2-instruct-78b.jinja | Generic |
| MiniMaxAI-MiniMax-Text-01.jinja | Generic |
| MiniMaxAI-MiniMax-VL-01.jinja | Generic |
| NaniDAO-deepseek-r1-qwen-2.5-32B-ablated.jinja | DeepSeek R1 (extract reasoning) |
| NexaAIDev-Octopus-v2.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-2-Pro-Mistral-7B-default.jinja | Generic |
| NousResearch-Hermes-2-Pro-Mistral-7B-tool_use.jinja | Hermes 2 Pro |
| NousResearch-Hermes-3-Llama-3.1-70B-default.jinja | Generic |
| NousResearch-Hermes-3-Llama-3.1-70B-tool_use.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Flash.jinja | Hermes 2 Pro |
| NovaSky-AI-Sky-T1-32B-Preview.jinja | Hermes 2 Pro |
| OnlyCheeini-greesychat-turbo.jinja | Generic |
| Orenguteng-Llama-3.1-8B-Lexi-Uncensored-V2.jinja | Llama 3.x |
| OrionStarAI-Orion-14B-Chat.jinja | Generic |
| PowerInfer-SmallThinker-3B-Preview.jinja | Generic |
| PrimeIntellect-INTELLECT-1-Instruct.jinja | Generic |
| Qwen-QVQ-72B-Preview.jinja | Generic |
| Qwen-QwQ-32B-Preview.jinja | Hermes 2 Pro |
| Qwen-Qwen1.5-7B-Chat.jinja | Generic |
| Qwen-Qwen2-7B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-72B-Instruct.jinja | Generic |
| Qwen-Qwen2-VL-7B-Instruct.jinja | Generic |
| Qwen-Qwen2.5-0.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-1.5B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-14B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-32B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct-1M.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-7B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-32B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Coder-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-1.5B.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-Math-7B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-3B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-72B-Instruct.jinja | Hermes 2 Pro |
| Qwen-Qwen2.5-VL-7B-Instruct.jinja | Hermes 2 Pro |
| RWKV-Red-Team-ARWKV-7B-Preview-0.1.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B-Instruct.jinja | Hermes 2 Pro |
| SakanaAI-TinySwallow-1.5B.jinja | Hermes 2 Pro |
| Sao10K-70B-L3.3-Cirrus-x1.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Leashed-Llama-3.1-8B.jinja | Llama 3.x |
| SentientAGI-Dobby-Mini-Unhinged-Llama-3.1-8B.jinja | Llama 3.x |
| Steelskull-L3.3-Damascus-R1.jinja | Llama 3.x |
| Steelskull-L3.3-MS-Nevoria-70b.jinja | Llama 3.x |
| Steelskull-L3.3-Nevoria-R1-70b.jinja | Llama 3.x |
| THUDM-glm-4-9b-chat.jinja | Generic |
| THUDM-glm-edge-1.5b-chat.jinja | Generic |
| Tarek07-Progenitor-V1.1-LLaMa-70B.jinja | Llama 3.x |
| TheBloke-FusionNet_34Bx2_MoE-AWQ.jinja | Generic |
| TinyLlama-TinyLlama-1.1B-Chat-v1.0.jinja | Generic |
| UCLA-AGI-Mistral7B-PairRM-SPPO-Iter3.jinja | Generic |
| ValiantLabs-Llama3.1-8B-Enigma.jinja | Llama 3.x |
| abacusai-Fewshot-Metamath-OrcaVicuna-Mistral.jinja | Generic |
| ai21labs-AI21-Jamba-1.5-Large.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B-SFT.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-405B.jinja | Generic |
| allenai-Llama-3.1-Tulu-3-8B.jinja | Generic |
| arcee-ai-Virtuoso-Lite.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Medium-v2.jinja | Hermes 2 Pro |
| arcee-ai-Virtuoso-Small-v2.jinja | Hermes 2 Pro |
| avemio-GRAG-NEMO-12B-ORPO-HESSIAN-AI.jinja | Generic |
| bespokelabs-Bespoke-Stratos-7B.jinja | Hermes 2 Pro |
| bfuzzy1-acheron-m1a-llama.jinja | Generic |
| bofenghuang-vigogne-2-70b-chat.jinja | Generic |
| bytedance-research-UI-TARS-72B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-DPO.jinja | Generic |
| bytedance-research-UI-TARS-7B-SFT.jinja | Generic |
| carsenk-phi3.5_mini_exp_825_uncensored.jinja | Generic |
| cyberagent-DeepSeek-R1-Distill-Qwen-14B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| cyberagent-DeepSeek-R1-Distill-Qwen-32B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| databricks-dbrx-instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Base.jinja | Generic |
| deepseek-ai-DeepSeek-Coder-V2-Lite-Instruct.jinja | Generic |
| deepseek-ai-DeepSeek-R1-Distill-Llama-70B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-1.5B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-14B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-32B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Distill-Qwen-7B.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1-Zero.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V2-Lite.jinja | Generic |
| deepseek-ai-DeepSeek-V2.5.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-DeepSeek-V3.jinja | DeepSeek R1 (extract reasoning) |
| deepseek-ai-deepseek-coder-33b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-6.7b-instruct.jinja | Generic |
| deepseek-ai-deepseek-coder-7b-instruct-v1.5.jinja | Generic |
| deepseek-ai-deepseek-llm-67b-chat.jinja | Generic |
| deepseek-ai-deepseek-llm-7b-chat.jinja | Generic |
| dicta-il-dictalm2.0-instruct.jinja | Generic |
| ehristoforu-Falcon3-8B-Franken-Basestruct.jinja | Hermes 2 Pro |
| fireworks-ai-llama-3-firefunction-v2.jinja | FireFunction v2 |
| godlikehhd-alpaca_data_sampled_ifd_new_5200.jinja | Hermes 2 Pro |
| godlikehhd-alpaca_data_score_max_0.7_2600.jinja | Hermes 2 Pro |
| google-gemma-2-27b-it.jinja | Generic |
| google-gemma-2-2b-it.jinja | Generic |
| google-gemma-2-2b-jpn-it.jinja | Generic |
| google-gemma-7b-it.jinja | Generic |
| huihui-ai-DeepSeek-R1-Distill-Llama-70B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Llama-8B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-14B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-32B-abliterated.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-DeepSeek-R1-Distill-Qwen-7B-abliterated-v2.jinja | DeepSeek R1 (extract reasoning) |
| huihui-ai-Qwen2.5-14B-Instruct-1M-abliterated.jinja | Hermes 2 Pro |
| ibm-granite-granite-3.1-8b-instruct.jinja | Generic |
| indischepartij-MiniCPM-3B-OpenHermes-2.5-v2.jinja | Generic |
| inflatebot-MN-12B-Mag-Mell-R1.jinja | Generic |
| jinaai-ReaderLM-v2.jinja | Generic |
| kms7530-chemeng_qwen-math-7b_24_1_100_1_nonmath.jinja | Hermes 2 Pro |
| knifeayumu-Cydonia-v1.3-Magnum-v4-22B.jinja | Mistral Nemo |
| langgptai-qwen1.5-7b-chat-sa-v0.1.jinja | Generic |
| lightblue-DeepSeek-R1-Distill-Qwen-7B-Japanese.jinja | DeepSeek R1 (extract reasoning) |
| mattshumer-Reflection-Llama-3.1-70B.jinja | Generic |
| meetkai-functionary-medium-v3.1.jinja | Functionary v3.1 Llama 3.1 |
| meetkai-functionary-medium-v3.2.jinja | Functionary v3.2 |
| meta-llama-Llama-2-7b-chat-hf.jinja | Generic |
| meta-llama-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-11B-Vision-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-1B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.2-3B-Instruct.jinja | Llama 3.x |
| meta-llama-Llama-3.3-70B-Instruct.jinja | Llama 3.x |
| meta-llama-Meta-Llama-3-8B-Instruct.jinja | Generic |
| meta-llama-Meta-Llama-3.1-8B-Instruct.jinja | Llama 3.x |
| microsoft-Phi-3-medium-4k-instruct.jinja | Generic |
| microsoft-Phi-3-mini-4k-instruct.jinja | Generic |
| microsoft-Phi-3-small-8k-instruct.jinja | Generic |
| microsoft-Phi-3.5-mini-instruct.jinja | Generic |
| microsoft-Phi-3.5-vision-instruct.jinja | Generic |
| microsoft-phi-4.jinja | Generic |
| migtissera-Tess-3-Mistral-Nemo-12B.jinja | Generic |
| ministral-Ministral-3b-instruct.jinja | Generic |
| mistralai-Codestral-22B-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.1.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.2.jinja | Generic |
| mistralai-Mistral-7B-Instruct-v0.3.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Large-Instruct-2411.jinja | Generic |
| mistralai-Mistral-Nemo-Instruct-2407.jinja | Mistral Nemo |
| mistralai-Mistral-Small-24B-Instruct-2501.jinja | Generic |
| mistralai-Mixtral-8x7B-Instruct-v0.1.jinja | Generic |
| mkurman-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| mlabonne-AlphaMonarch-7B.jinja | Generic |
| mlx-community-Josiefied-Qwen2.5-0.5B-Instruct-abliterated-v1-float32.jinja | Hermes 2 Pro |
| mlx-community-Qwen2.5-VL-7B-Instruct-8bit.jinja | Hermes 2 Pro |
| mobiuslabsgmbh-DeepSeek-R1-ReDistill-Qwen-1.5B-v1.1.jinja | DeepSeek R1 (extract reasoning) |
| netcat420-MFANNv0.20.jinja | Generic |
| netcat420-MFANNv0.24.jinja | Generic |
| netease-youdao-Confucius-o1-14B.jinja | Hermes 2 Pro |
| nvidia-AceMath-7B-RM.jinja | Hermes 2 Pro |
| nvidia-Eagle2-1B.jinja | Hermes 2 Pro |
| nvidia-Eagle2-9B.jinja | Hermes 2 Pro |
| nvidia-Llama-3.1-Nemotron-70B-Instruct-HF.jinja | Llama 3.x |
| onnx-community-DeepSeek-R1-Distill-Qwen-1.5B-ONNX.jinja | DeepSeek R1 (extract reasoning) |
| open-thoughts-OpenThinker-7B.jinja | Hermes 2 Pro |
| openchat-openchat-3.5-0106.jinja | Generic |
| pankajmathur-orca_mini_v6_8b.jinja | Generic |
| princeton-nlp-Mistral-7B-Base-SFT-RDPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-DPO.jinja | Generic |
| princeton-nlp-Mistral-7B-Instruct-RDPO.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-1.5B-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Bellatrix-Tiny-1B-R1.jinja | Llama 3.x |
| prithivMLmods-Bellatrix-Tiny-1B-v3.jinja | Generic |
| prithivMLmods-Bellatrix-Tiny-3B-R1.jinja | Llama 3.x |
| prithivMLmods-Blaze-14B-xElite.jinja | Generic |
| prithivMLmods-Calcium-Opus-14B-Elite2-R1.jinja | Hermes 2 Pro |
| prithivMLmods-Calme-Ties-78B.jinja | Generic |
| prithivMLmods-Calme-Ties2-78B.jinja | Generic |
| prithivMLmods-Calme-Ties3-78B.jinja | Generic |
| prithivMLmods-ChemQwen2-vL.jinja | Generic |
| prithivMLmods-GWQ2b.jinja | Generic |
| prithivMLmods-LatexMind-2B-Codec.jinja | Generic |
| prithivMLmods-Llama-3.2-6B-AlgoCode.jinja | Llama 3.x |
| prithivMLmods-Megatron-Opus-14B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-14B-Stock.jinja | Hermes 2 Pro |
| prithivMLmods-Megatron-Opus-7B-Exp.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Omni-Reasoner4-Merged.jinja | Hermes 2 Pro |
| prithivMLmods-Primal-Opus-14B-Optimus-v1.jinja | Hermes 2 Pro |
| prithivMLmods-QwQ-Math-IO-500M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen-7B-Distill-Reasoner.jinja | DeepSeek R1 (extract reasoning) |
| prithivMLmods-Qwen2.5-1.5B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-14B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-32B-DeepSeek-R1-Instruct.jinja | Hermes 2 Pro |
| prithivMLmods-Qwen2.5-7B-DeepSeek-R1-1M.jinja | Hermes 2 Pro |
| prithivMLmods-Triangulum-v2-10B.jinja | Hermes 2 Pro |
| qingy2024-Falcon3-2x10B-MoE-Instruct.jinja | Hermes 2 Pro |
| rubenroy-Zurich-14B-GCv2-5m.jinja | Hermes 2 Pro |
| rubenroy-Zurich-7B-GCv2-5m.jinja | Hermes 2 Pro |
| silma-ai-SILMA-Kashif-2B-Instruct-v1.0.jinja | Generic |
| simplescaling-s1-32B.jinja | Hermes 2 Pro |
| sometimesanotion-Lamarck-14B-v0.7.jinja | Hermes 2 Pro |
| sonthenguyen-zephyr-sft-bnb-4bit-DPO-mtbr-180steps.jinja | Generic |
| sthenno-tempesthenno-icy-0130.jinja | Generic |
| sumink-qwft.jinja | Hermes 2 Pro |
| teknium-OpenHermes-2.5-Mistral-7B.jinja | Generic |
| thirdeyeai-elevate360m.jinja | Generic |
| tiiuae-Falcon3-10B-Instruct.jinja | Hermes 2 Pro |
| unsloth-DeepSeek-R1-Distill-Llama-8B-unsloth-bnb-4bit.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1-Distill-Llama-8B.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-DeepSeek-R1.jinja | DeepSeek R1 (extract reasoning) |
| unsloth-Mistral-Small-24B-Instruct-2501-unsloth-bnb-4bit.jinja | Generic |
| upstage-solar-pro-preview-instruct.jinja | Generic |
| whyhow-ai-PatientSeek.jinja | Generic |
| xwen-team-Xwen-72B-Chat.jinja | Hermes 2 Pro |
| xwen-team-Xwen-7B-Chat.jinja | Hermes 2 Pro |
This table can be generated with:
```bash
./build/bin/test-chat ../minja/build/tests/*.jinja 2>/dev/null
```
</details>
# Usage - need tool-aware Jinja template
First, start a server with any model, but make sure it has a tools-enabled template: you can verify this by inspecting the `chat_template` or `chat_template_tool_use` properties in `http://localhost:8080/props`).
Here are some models known to work (w/ chat template override when needed):
```shell
# Native support:
llama-server --jinja -fa -hf bartowski/Qwen2.5-7B-Instruct-GGUF:Q4_K_M
llama-server --jinja -fa -hf bartowski/Mistral-Nemo-Instruct-2407-GGUF:Q6_K_L
llama-server --jinja -fa -hf bartowski/Llama-3.3-70B-Instruct-GGUF:Q4_K_M
# Native support for DeepSeek R1 works best w/ our template override (official template is buggy, although we do work around it)
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-7B-GGUF:Q6_K_L \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
llama-server --jinja -fa -hf bartowski/DeepSeek-R1-Distill-Qwen-32B-GGUF:Q4_K_M \
--chat-template-file models/templates/llama-cpp-deepseek-r1.jinja
# Native support requires the right template for these GGUFs:
llama-server --jinja -fa -hf bartowski/functionary-small-v3.2-GGUF:Q4_K_M
--chat-template-file models/templates/meetkai-functionary-medium-v3.2.jinja
llama-server --jinja -fa -hf bartowski/Hermes-2-Pro-Llama-3-8B-GGUF:Q4_K_M \
--chat-template-file models/templates/NousResearch-Hermes-2-Pro-Llama-3-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/Hermes-3-Llama-3.1-8B-GGUF:Q4_K_M \
--chat-template-file models/templates/NousResearch-Hermes-3-Llama-3.1-8B-tool_use.jinja
llama-server --jinja -fa -hf bartowski/firefunction-v2-GGUF -hff firefunction-v2-IQ1_M.gguf \
--chat-template-file models/templates/fireworks-ai-llama-3-firefunction-v2.jinja
llama-server --jinja -fa -hf bartowski/c4ai-command-r7b-12-2024-GGUF:Q6_K_L \
--chat-template-file models/templates/CohereForAI-c4ai-command-r7b-12-2024-tool_use.jinja
# Generic format support
llama-server --jinja -fa -hf bartowski/phi-4-GGUF:Q4_0
llama-server --jinja -fa -hf bartowski/gemma-2-2b-it-GGUF:Q8_0
llama-server --jinja -fa -hf bartowski/c4ai-command-r-v01-GGUF:Q2_K
```
To get the official template from original HuggingFace repos, you can use [scripts/get_chat_template.py](../scripts/get_chat_template.py) (see examples invocations in [models/templates/README.md](../models/templates/README.md))
> [!TIP]
> If there is no official `tool_use` Jinja template, you may want to set `--chat-template chatml` to use a default that works with many models (YMMV!), or write your own (e.g. we provide a custom [llama-cpp-deepseek-r1.jinja](../models/templates/llama-cpp-deepseek-r1.jinja) for DeepSeek R1 distills)
Test in CLI (or with any library / software that can use OpenAI-compatible API backends):
```bash
curl http://localhost:8080/v1/chat/completions -d '{
"model": "gpt-3.5-turbo",
"tools": [
{
"type":"function",
"function":{
"name":"python",
"description":"Runs code in an ipython interpreter and returns the result of the execution after 60 seconds.",
"parameters":{
"type":"object",
"properties":{
"code":{
"type":"string",
"description":"The code to run in the ipython interpreter."
}
},
"required":["code"]
}
}
}
],
"messages": [
{
"role": "user",
"content": "Print a hello world message with python."
}
]
}'
```
<details>
<summary>Show output</summary>
```json
{
"choices": [
{
"finish_reason": "tool",
"index": 0,
"message": {
"content": null,
"tool_calls": [
{
"name": "python",
"arguments": "{\"code\":\" \\nprint(\\\"Hello, World!\\\")\"}"
}
],
"role": "assistant"
}
}
],
"created": 1727287211,
"model": "gpt-3.5-turbo",
"object": "chat.completion",
"usage": {
"completion_tokens": 16,
"prompt_tokens": 44,
"total_tokens": 60
},
"id": "chatcmpl-Htbgh9feMmGM0LEH2hmQvwsCxq3c6Ni8"
}
```
</details>

View File

@@ -7,7 +7,14 @@ On Mac and Linux, the homebrew package manager can be used via
```sh
brew install llama.cpp
```
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggml-org/llama.cpp/discussions/7668
## MacPorts
```sh
sudo port install llama.cpp
```
see also: https://ports.macports.org/port/llama.cpp/details/
## Nix

53
docs/llguidance.md Normal file
View File

@@ -0,0 +1,53 @@
# LLGuidance Support in llama.cpp
[LLGuidance](https://github.com/guidance-ai/llguidance) is a library for constrained decoding (also called constrained sampling or structured outputs) for Large Language Models (LLMs). Initially developed as the backend for the [Guidance](https://github.com/guidance-ai/guidance) library, it can also be used independently.
LLGuidance supports JSON Schemas and arbitrary context-free grammars (CFGs) written in a [variant](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md) of Lark syntax. It is [very fast](https://github.com/guidance-ai/jsonschemabench/tree/main/maskbench) and has [excellent](https://github.com/guidance-ai/llguidance/blob/main/docs/json_schema.md) JSON Schema coverage but requires the Rust compiler, which complicates the llama.cpp build process.
## Building
To enable LLGuidance support, build llama.cpp with the `LLAMA_LLGUIDANCE` option:
```sh
cmake -B build -DLLAMA_LLGUIDANCE=ON
make -C build -j
```
For Windows use `cmake --build build --config Release` instead of `make`.
This requires the Rust compiler and the `cargo` tool to be [installed](https://www.rust-lang.org/tools/install).
## Interface
There are no new command-line arguments or modifications to `common_params`. When enabled, grammars starting with `%llguidance` are passed to LLGuidance instead of the [current](../grammars/README.md) llama.cpp grammars. Additionally, JSON Schema requests (e.g., using the `-j` argument in `llama-cli`) are also passed to LLGuidance.
For your existing GBNF grammars, you can use [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/python/llguidance/gbnf_to_lark.py) to convert them to LLGuidance Lark-like format.
## Performance
Computing a "token mask" (i.e., the set of allowed tokens) for a llama3 tokenizer with 128k tokens takes, on average, 50μs of single-core CPU time for the [JSON Schema Bench](https://github.com/guidance-ai/jsonschemabench). The p99 time is 0.5ms, and the p100 time is 20ms. These results are due to the lexer/parser split and several [optimizations](https://github.com/guidance-ai/llguidance/blob/main/docs/optimizations.md).
## JSON Schema
LLGuidance adheres closely to the JSON Schema specification. For example:
- `additionalProperties` defaults to `true`, unlike current grammars, though you can set `"additionalProperties": false` if needed.
- any whitespace is allowed.
- The definition order in the `"properties": {}` object is maintained, regardless of whether properties are required (current grammars always puts required properties first).
Unsupported schemas result in an error message—no keywords are silently ignored.
## Why Not Reuse GBNF Format?
GBNF lacks the concept of a lexer.
Most programming languages, including JSON, use a two-step process: a lexer (built with regular expressions) converts a byte stream into lexemes, which are then processed by a CFG parser. This approach is faster because lexers are cheaper to evaluate, and there is ~10x fewer lexemes than bytes.
LLM tokens often align with lexemes, so the parser is engaged in under 0.5% of tokens, with the lexer handling the rest.
However, the user has to provide the distinction between lexemes and CFG symbols. In [Lark](https://github.com/lark-parser/lark), lexeme names are uppercase, while CFG symbols are lowercase.
The [gbnf_to_lark.py script](https://github.com/guidance-ai/llguidance/blob/main/scripts/gbnf_to_lark.py) can often take care of this automatically.
See [LLGuidance syntax docs](https://github.com/guidance-ai/llguidance/blob/main/docs/syntax.md#terminals-vs-rules) for more details.
## Error Handling
Errors are currently printed to `stderr`, and generation continues. Improved error handling may be added in the future.

View File

@@ -38,7 +38,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
@@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
@@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
}

View File

@@ -31,6 +31,11 @@ defer {
llama_model_free(model)
}
guard let vocab = llama_model_get_vocab(model) else {
print("Failed to get vocab")
exit(1)
}
var tokens = tokenize(text: prompt, add_bos: true)
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
@@ -41,7 +46,7 @@ context_params.n_batch = UInt32(max(n_len, n_parallel))
context_params.n_threads = 8
context_params.n_threads_batch = 8
let context = llama_new_context_with_model(model, context_params)
let context = llama_init_from_model(model, context_params)
guard context != nil else {
print("Failed to initialize context")
exit(1)
@@ -111,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {
@@ -141,7 +146,7 @@ while n_cur <= n_len {
let new_token_id = llama_sampler_sample(smpl, context, i_batch[i])
// is it an end of stream? -> mark the stream as finished
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
i_batch[i] = -1
// print("")
if n_parallel > 1 {
@@ -207,7 +212,7 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0)
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
var swiftTokens: [llama_token] = []
for i in 0 ..< tokenCount {
swiftTokens.append(tokens[Int(i)])
@@ -218,12 +223,12 @@ private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
var result = [CChar](repeating: 0, count: 8)
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count), 0, false)
let nTokens = llama_token_to_piece(vocab, token, &result, Int32(result.count), 0, false)
if nTokens < 0 {
let actualTokensCount = -Int(nTokens)
result = .init(repeating: 0, count: actualTokensCount)
let check = llama_token_to_piece(
model,
vocab,
token,
&result,
Int32(result.count),

View File

@@ -41,7 +41,7 @@ int main(int argc, char ** argv) {
llama_model_params model_params = common_model_params_to_llama(params);
llama_model * model = llama_model_load_from_file(params.model.c_str(), model_params);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n" , __func__);

View File

@@ -3,9 +3,9 @@
This example demonstrates how to generate a control vector using gguf models.
Related PRs:
- [Add support for control vectors](https://github.com/ggerganov/llama.cpp/pull/5970)
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggerganov/llama.cpp/issues/6880)
- [Add cvector-generator example](https://github.com/ggerganov/llama.cpp/pull/7514)
- [Add support for control vectors](https://github.com/ggml-org/llama.cpp/pull/5970)
- (Issue) [Generate control vector using llama.cpp](https://github.com/ggml-org/llama.cpp/issues/6880)
- [Add cvector-generator example](https://github.com/ggml-org/llama.cpp/pull/7514)
## Examples

View File

@@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;
@@ -394,6 +394,8 @@ static int prepare_entries(common_params & params, train_context & ctx_train) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "control_vector.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_CVECTOR_GENERATOR, print_usage)) {
return 1;
}
@@ -498,7 +500,7 @@ int main(int argc, char ** argv) {
}
// write output vectors to gguf
export_gguf(ctx_train.v_final, params.cvector_outfile, model_hint);
export_gguf(ctx_train.v_final, params.out_file, model_hint);
llama_backend_free();

View File

@@ -4,6 +4,7 @@
#include "llama.h"
#include <ctime>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
@@ -37,7 +38,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@@ -345,8 +345,18 @@ struct lora_merge_ctx {
gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur = inp_base;
for (size_t i = 0; i < adapters.size(); ++i) {
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
struct ggml_tensor * delta;
bool is_tok_embd = string_starts_with(name_base, "token_embd");
if (is_tok_embd) {
printf("%s : detected token embeddings tensor\n", __func__);
delta = ggml_mul_mat(ctx0,
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32),
ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32));
} else {
delta = ggml_mul_mat(ctx0,
ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))),
ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
}
// scale
const float alpha = adapters[i]->alpha;
const float rank = (float) inp_b[i]->ne[0];
@@ -403,20 +413,22 @@ static void print_usage(int, char ** argv) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "ggml-lora-merged-f16.gguf";
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
printf("done, output file is %s\n", params.out_file.c_str());
return 0;
}

View File

@@ -76,7 +76,7 @@ int main(int argc, char** argv) {
grammar_str = buffer.str();
}
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root");
llama_grammar * grammar = llama_grammar_init_impl(nullptr, grammar_str.c_str(), "root", false, nullptr, 0, nullptr, 0);
if (grammar == nullptr) {
fprintf(stdout, "Failed to initialize llama_grammar\n");
return 1;

View File

@@ -408,8 +408,6 @@ static void gguf_merge(const split_params & split_params) {
exit(EXIT_FAILURE);
}
std::ofstream fout(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
auto * ctx_out = gguf_init_empty();
@@ -453,7 +451,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -466,7 +463,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -479,7 +475,6 @@ static void gguf_merge(const split_params & split_params) {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
gguf_free(ctx_out);
fout.close();
exit(EXIT_FAILURE);
}
@@ -500,9 +495,11 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
// placeholder for the meta data
{
std::ofstream fout;
if (!split_params.dry_run) {
fout.open(split_params.output.c_str(), std::ios::binary);
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
// placeholder for the meta data
auto meta_size = gguf_get_meta_size(ctx_out);
::zeros(fout, meta_size);
}
@@ -518,7 +515,9 @@ static void gguf_merge(const split_params & split_params) {
ggml_free(ctx_metas[i]);
}
gguf_free(ctx_out);
fout.close();
if (!split_params.dry_run) {
fout.close();
}
exit(EXIT_FAILURE);
}
fprintf(stderr, "%s: writing tensors %s ...", __func__, split_path);
@@ -540,10 +539,11 @@ static void gguf_merge(const split_params & split_params) {
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor);
f_input.seekg(offset);
f_input.read((char *)read_data.data(), n_bytes);
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
if (!split_params.dry_run) {
// write tensor data + padding
fout.write((const char *)read_data.data(), n_bytes);
zeros(fout, GGML_PAD(n_bytes, GGUF_DEFAULT_ALIGNMENT) - n_bytes);
}
}
gguf_free(ctx_gguf);
@@ -552,16 +552,15 @@ static void gguf_merge(const split_params & split_params) {
fprintf(stderr, "\033[3Ddone\n");
}
{
if (!split_params.dry_run) {
// go back to beginning of file and write the updated metadata
fout.seekp(0);
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.write((const char *)data.data(), data.size());
fout.close();
gguf_free(ctx_out);
}
gguf_free(ctx_out);
fprintf(stderr, "%s: %s merged from %d split with %d tensors.\n",
__func__, split_params.output.c_str(), n_split, total_tensors);

View File

@@ -41,7 +41,7 @@ echo PASS
echo
# 2b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-00001-of-00006.gguf --n-predict 32
echo PASS
echo
@@ -51,7 +51,7 @@ echo PASS
echo
# 3b. Test the merged model is loading properly
$MAIN --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge.gguf --n-predict 32
echo PASS
echo
@@ -61,7 +61,7 @@ echo PASS
echo
# 4b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-32-tensors-00001-of-00007.gguf --n-predict 32
echo PASS
echo
@@ -71,7 +71,7 @@ echo
#echo
# 5b. Test the merged model is loading properly
#$MAIN --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#$MAIN -no-cnv --model $WORK_PATH/ggml-model-merge-2.gguf --n-predict 32
#echo PASS
#echo
@@ -81,7 +81,7 @@ echo PASS
echo
# 6b. Test the sharded model is loading properly
$MAIN --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
$MAIN -no-cnv --model $WORK_PATH/ggml-model-split-2G-00001-of-00002.gguf --n-predict 32
echo PASS
echo

View File

@@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
@@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);
@@ -168,7 +168,7 @@ int main(int argc, char * argv[]) {
llama_backend_init();
llama_model * model = llama_model_load_from_file(params.model.c_str(), mparams);
llama_model * model = llama_model_load_from_file(params.model.path.c_str(), mparams);
// create generation context
llama_context * ctx = llama_init_from_model(model, cparams);

View File

@@ -1,7 +1,7 @@
# llama.cpp/examples/imatrix
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enchance the quality of the quantized models.
More information is available here: https://github.com/ggerganov/llama.cpp/pull/4861
Compute an importance matrix for a model and given text dataset. Can be used during quantization to enhance the quality of the quantized models.
More information is available here: https://github.com/ggml-org/llama.cpp/pull/4861
## Usage

View File

@@ -3,6 +3,7 @@
#include "log.h"
#include "llama.h"
#include <chrono>
#include <cmath>
#include <cstdio>
#include <cstring>
@@ -99,7 +100,7 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
const float * data = is_host ? (const float *) src1->data : m_src1_data.data();
// this has been adapted to the new format of storing merged experts in a single 3d tensor
// ref: https://github.com/ggerganov/llama.cpp/pull/6387
// ref: https://github.com/ggml-org/llama.cpp/pull/6387
if (t->op == GGML_OP_MUL_MAT_ID) {
// ids -> [n_experts_used, n_tokens]
// src1 -> [cols, n_expert_used, n_tokens]
@@ -205,9 +206,6 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void *
void IMatrixCollector::save_imatrix(int ncall) const {
auto fname = m_params.out_file;
if (fname.empty()) {
fname = "imatrix.dat";
}
if (ncall > 0) {
fname += ".at_";
@@ -497,7 +495,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
@@ -582,6 +580,8 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
int main(int argc, char ** argv) {
common_params params;
params.out_file = "imatrix.dat" ;
params.n_ctx = 512;
params.logits_all = true;
params.escape = false;

View File

@@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;

View File

@@ -195,7 +195,7 @@ class BuiltinRule:
self.deps = deps or []
# Constraining spaces to prevent model "running away".
SPACE_RULE = '| " " | "\\n" [ \\t]{0,20}'
SPACE_RULE = '| " " | "\\n"{1,2} [ \\t]{0,20}'
PRIMITIVE_RULES = {
'boolean' : BuiltinRule('("true" | "false") space', []),

View File

@@ -683,7 +683,7 @@ struct cmd_params_instance {
bool cpu_strict;
int poll;
int n_gpu_layers;
std::string rpc_servers;
std::string rpc_servers_str;
llama_split_mode split_mode;
int main_gpu;
bool no_kv_offload;
@@ -696,8 +696,37 @@ struct cmd_params_instance {
llama_model_params mparams = llama_model_default_params();
mparams.n_gpu_layers = n_gpu_layers;
if (!rpc_servers.empty()) {
mparams.rpc_servers = rpc_servers.c_str();
if (!rpc_servers_str.empty()) {
auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
// add RPC devices
if (!rpc_servers.empty()) {
ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
if (!rpc_reg) {
fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
exit(1);
}
typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
if (!ggml_backend_rpc_add_device_fn) {
fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
exit(1);
}
static std::vector<ggml_backend_dev_t> devices;
devices.clear();
for (const std::string & server : rpc_servers) {
ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
if (dev) {
devices.push_back(dev);
} else {
fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
exit(1);
}
}
devices.push_back(nullptr);
mparams.devices = devices.data();
}
}
mparams.split_mode = split_mode;
mparams.main_gpu = main_gpu;
@@ -708,7 +737,7 @@ struct cmd_params_instance {
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
}
@@ -847,8 +876,8 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
struct test {
static const std::string build_commit;
static const int build_number;
static const std::string cpu_info;
static const std::string gpu_info;
const std::string cpu_info;
const std::string gpu_info;
std::string model_filename;
std::string model_type;
uint64_t model_size;
@@ -874,7 +903,10 @@ struct test {
std::string test_time;
std::vector<uint64_t> samples_ns;
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
cpu_info(get_cpu_info()),
gpu_info(get_gpu_info()) {
model_filename = inst.model;
char buf[128];
llama_model_desc(lmodel, buf, sizeof(buf));
@@ -1029,8 +1061,6 @@ struct test {
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
struct printer {
virtual ~printer() {}
@@ -1548,7 +1578,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// cool off before the test
if (params.delay) {
@@ -1588,7 +1618,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
uint64_t t_start = get_time_ns();

View File

@@ -18,6 +18,7 @@ android {
}
externalNativeBuild {
cmake {
arguments += "-DLLAMA_CURL=OFF"
arguments += "-DLLAMA_BUILD_COMMON=ON"
arguments += "-DGGML_LLAMAFILE=OFF"
arguments += "-DCMAKE_BUILD_TYPE=Release"

View File

@@ -14,7 +14,7 @@ project("llama-android")
#include(FetchContent)
#FetchContent_Declare(
# llama
# GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
# GIT_REPOSITORY https://github.com/ggml-org/llama.cpp
# GIT_TAG master
#)

View File

@@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@@ -347,6 +347,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
jlong context_pointer,
jlong batch_pointer,
jstring jtext,
jboolean format_chat,
jint n_len
) {
@@ -356,10 +357,11 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
const auto context = reinterpret_cast<llama_context *>(context_pointer);
const auto batch = reinterpret_cast<llama_batch *>(batch_pointer);
const auto tokens_list = common_tokenize(context, text, 1);
bool parse_special = (format_chat == JNI_TRUE);
const auto tokens_list = common_tokenize(context, text, true, parse_special);
auto n_ctx = llama_n_ctx(context);
auto n_kv_req = tokens_list.size() + (n_len - tokens_list.size());
auto n_kv_req = tokens_list.size() + n_len;
LOGi("n_len = %d, n_ctx = %d, n_kv_req = %d", n_len, n_ctx, n_kv_req);
@@ -368,7 +370,7 @@ Java_android_llama_cpp_LLamaAndroid_completion_1init(
}
for (auto id : tokens_list) {
LOGi("%s", common_token_to_piece(context, id).c_str());
LOGi("token: `%s`-> %d ", common_token_to_piece(context, id).c_str(), id);
}
common_batch_clear(*batch);
@@ -446,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
}

View File

@@ -65,6 +65,7 @@ class LLamaAndroid {
context: Long,
batch: Long,
text: String,
formatChat: Boolean,
nLen: Int
): Int
@@ -115,10 +116,10 @@ class LLamaAndroid {
}
}
fun send(message: String): Flow<String> = flow {
fun send(message: String, formatChat: Boolean = false): Flow<String> = flow {
when (val state = threadLocalState.get()) {
is State.Loaded -> {
val ncur = IntVar(completion_init(state.context, state.batch, message, nlen))
val ncur = IntVar(completion_init(state.context, state.batch, message, formatChat, nlen))
while (ncur.value <= nlen) {
val str = completion_loop(state.context, state.batch, state.sampler, nlen, ncur)
if (str == null) {

View File

@@ -3,9 +3,24 @@
Local inference of llama.cpp on an iPhone. This is a sample app that can be used as a starting
point for more advanced projects.
For usage instructions and performance stats, check the following discussion: https://github.com/ggerganov/llama.cpp/discussions/4508
For usage instructions and performance stats, check the following discussion: https://github.com/ggml-org/llama.cpp/discussions/4508
![image](https://github.com/ggerganov/llama.cpp/assets/1991296/2b40284f-8421-47a2-b634-74eece09a299)
### Building
First llama.cpp need to be built and a XCFramework needs to be created. This can be done by running
the following script from the llama.cpp project root:
```console
$ ./build-xcframework.sh
```
Open `llama.swiftui.xcodeproj` project in Xcode and you should be able to build and run the app on
a simulator or a real device.
To use the framework with a different project, the XCFramework can be added to the project by
adding `build-apple/llama.xcframework` by dragging and dropping it into the project navigator, or
by manually selecting the framework in the "Frameworks, Libraries, and Embedded Content" section
of the project settings.
![image](https://github.com/ggml-org/llama.cpp/assets/1991296/2b40284f-8421-47a2-b634-74eece09a299)
Video demonstration:

View File

@@ -24,6 +24,7 @@ func llama_batch_add(_ batch: inout llama_batch, _ id: llama_token, _ pos: llama
actor LlamaContext {
private var model: OpaquePointer
private var context: OpaquePointer
private var vocab: OpaquePointer
private var sampling: UnsafeMutablePointer<llama_sampler>
private var batch: llama_batch
private var tokens_list: [llama_token]
@@ -47,6 +48,7 @@ actor LlamaContext {
self.sampling = llama_sampler_chain_init(sparams)
llama_sampler_chain_add(self.sampling, llama_sampler_init_temp(0.4))
llama_sampler_chain_add(self.sampling, llama_sampler_init_dist(1234))
vocab = llama_model_get_vocab(model)
}
deinit {
@@ -79,7 +81,7 @@ actor LlamaContext {
ctx_params.n_threads = Int32(n_threads)
ctx_params.n_threads_batch = Int32(n_threads)
let context = llama_new_context_with_model(model, ctx_params)
let context = llama_init_from_model(model, ctx_params)
guard let context else {
print("Could not load context!")
throw LlamaError.couldNotInitializeContext
@@ -151,7 +153,7 @@ actor LlamaContext {
new_token_id = llama_sampler_sample(sampling, context, batch.n_tokens - 1)
if llama_vocab_is_eog(model, new_token_id) || n_cur == n_len {
if llama_vocab_is_eog(vocab, new_token_id) || n_cur == n_len {
print("\n")
is_done = true
let new_token_str = String(cString: temporary_invalid_cchars + [0])
@@ -208,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -221,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@@ -240,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@@ -290,14 +292,14 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
let utf8Count = text.utf8.count
let n_tokens = utf8Count + (add_bos ? 1 : 0) + 1
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
let tokenCount = llama_tokenize(model, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
let tokenCount = llama_tokenize(vocab, text, Int32(utf8Count), tokens, Int32(n_tokens), add_bos, false)
var swiftTokens: [llama_token] = []
for i in 0..<tokenCount {
@@ -316,7 +318,7 @@ actor LlamaContext {
defer {
result.deallocate()
}
let nTokens = llama_token_to_piece(model, token, result, 8, 0, false)
let nTokens = llama_token_to_piece(vocab, token, result, 8, 0, false)
if nTokens < 0 {
let newResult = UnsafeMutablePointer<Int8>.allocate(capacity: Int(-nTokens))
@@ -324,7 +326,7 @@ actor LlamaContext {
defer {
newResult.deallocate()
}
let nNewTokens = llama_token_to_piece(model, token, newResult, -nTokens, 0, false)
let nNewTokens = llama_token_to_piece(vocab, token, newResult, -nTokens, 0, false)
let bufferPointer = UnsafeBufferPointer(start: newResult, count: Int(nNewTokens))
return Array(bufferPointer)
} else {

View File

@@ -7,7 +7,6 @@
objects = {
/* Begin PBXBuildFile section */
1809696D2D05A39F00400EE8 /* llama in Frameworks */ = {isa = PBXBuildFile; productRef = 1809696C2D05A39F00400EE8 /* llama */; };
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */ = {isa = PBXBuildFile; fileRef = 549479CA2AC9E16000E0F78B /* Metal.framework */; };
79E1D9CD2B4CD16E005F8E46 /* InputButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */; };
7FA3D2B32B2EA2F600543F92 /* DownloadButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = 7FA3D2B22B2EA2F600543F92 /* DownloadButton.swift */; };
@@ -18,9 +17,25 @@
8A3F84242AC4C891005E2EE8 /* models in Resources */ = {isa = PBXBuildFile; fileRef = 8A3F84232AC4C891005E2EE8 /* models */; };
8A907F332AC7138A006146EA /* LibLlama.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A907F322AC7134E006146EA /* LibLlama.swift */; };
8A9F7C4D2AC332EE008AE1EA /* LlamaState.swift in Sources */ = {isa = PBXBuildFile; fileRef = 8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */; };
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; };
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */ = {isa = PBXBuildFile; fileRef = DD84C9FC2D747FED007778EC /* llama.xcframework */; settings = {ATTRIBUTES = (CodeSignOnCopy, RemoveHeadersOnCopy, ); }; };
F1FE20E22B465ECA00B45541 /* LoadCustomButton.swift in Sources */ = {isa = PBXBuildFile; fileRef = F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */; };
/* End PBXBuildFile section */
/* Begin PBXCopyFilesBuildPhase section */
DD84C9FF2D747FED007778EC /* Embed Frameworks */ = {
isa = PBXCopyFilesBuildPhase;
buildActionMask = 2147483647;
dstPath = "";
dstSubfolderSpec = 10;
files = (
DD84C9FE2D747FED007778EC /* llama.xcframework in Embed Frameworks */,
);
name = "Embed Frameworks";
runOnlyForDeploymentPostprocessing = 0;
};
/* End PBXCopyFilesBuildPhase section */
/* Begin PBXFileReference section */
549479CA2AC9E16000E0F78B /* Metal.framework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.framework; name = Metal.framework; path = System/Library/Frameworks/Metal.framework; sourceTree = SDKROOT; };
79E1D9CC2B4CD16E005F8E46 /* InputButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = InputButton.swift; sourceTree = "<group>"; };
@@ -33,6 +48,7 @@
8A3F84232AC4C891005E2EE8 /* models */ = {isa = PBXFileReference; lastKnownFileType = folder; name = models; path = llama.swiftui/Resources/models; sourceTree = "<group>"; };
8A907F322AC7134E006146EA /* LibLlama.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LibLlama.swift; sourceTree = "<group>"; };
8A9F7C4C2AC332EE008AE1EA /* LlamaState.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LlamaState.swift; sourceTree = "<group>"; };
DD84C9FC2D747FED007778EC /* llama.xcframework */ = {isa = PBXFileReference; lastKnownFileType = wrapper.xcframework; name = llama.xcframework; path = "../../build-apple/llama.xcframework"; sourceTree = "<group>"; };
DF2D2FE72B4A59BE00FCB72D /* llama.cpp */ = {isa = PBXFileReference; lastKnownFileType = wrapper; name = llama.cpp; path = ../..; sourceTree = "<group>"; };
F1FE20E12B465EC900B45541 /* LoadCustomButton.swift */ = {isa = PBXFileReference; lastKnownFileType = sourcecode.swift; path = LoadCustomButton.swift; sourceTree = "<group>"; };
/* End PBXFileReference section */
@@ -42,9 +58,9 @@
isa = PBXFrameworksBuildPhase;
buildActionMask = 2147483647;
files = (
1809696D2D05A39F00400EE8 /* llama in Frameworks */,
549479CB2AC9E16000E0F78B /* Metal.framework in Frameworks */,
8A39BE0A2AC7601100BFEB40 /* Accelerate.framework in Frameworks */,
DD84C9FD2D747FED007778EC /* llama.xcframework in Frameworks */,
);
runOnlyForDeploymentPostprocessing = 0;
};
@@ -86,6 +102,7 @@
8A39BE082AC7601000BFEB40 /* Frameworks */ = {
isa = PBXGroup;
children = (
DD84C9FC2D747FED007778EC /* llama.xcframework */,
549479CA2AC9E16000E0F78B /* Metal.framework */,
8A39BE092AC7601000BFEB40 /* Accelerate.framework */,
);
@@ -144,6 +161,7 @@
8A1C836F2AC328BD0096AF73 /* Sources */,
8A1C83702AC328BD0096AF73 /* Frameworks */,
8A1C83712AC328BD0096AF73 /* Resources */,
DD84C9FF2D747FED007778EC /* Embed Frameworks */,
);
buildRules = (
);
@@ -151,7 +169,6 @@
);
name = llama.swiftui;
packageProductDependencies = (
1809696C2D05A39F00400EE8 /* llama */,
);
productName = llama.swiftui;
productReference = 8A1C83732AC328BD0096AF73 /* llama.swiftui.app */;
@@ -427,13 +444,6 @@
defaultConfigurationName = Release;
};
/* End XCConfigurationList section */
/* Begin XCSwiftPackageProductDependency section */
1809696C2D05A39F00400EE8 /* llama */ = {
isa = XCSwiftPackageProductDependency;
productName = llama;
};
/* End XCSwiftPackageProductDependency section */
};
rootObject = 8A1C836B2AC328BD0096AF73 /* Project object */;
}

View File

@@ -124,15 +124,26 @@ struct ContentView: View {
}
}
}.sheet(isPresented: $showingHelp) { // Sheet for help modal
VStack(alignment: .leading) {
NavigationView {
VStack(alignment: .leading) {
Text("1. Make sure the model is in GGUF Format")
.padding()
Text("2. Copy the download link of the quantized model")
.padding()
VStack(alignment: .leading) {
Text("1. Make sure the model is in GGUF Format")
.padding()
Text("2. Copy the download link of the quantized model")
.padding()
}
Spacer()
}
Spacer()
}
.navigationTitle("Help")
.navigationBarTitleDisplayMode(.inline)
.toolbar {
ToolbarItem(placement: .navigationBarTrailing) {
Button("Done") {
showingHelp = false
}
}
}
}
}
}
}

View File

@@ -39,7 +39,7 @@
"
" :call llama#init()
"
" more info: https://github.com/ggerganov/llama.cpp/pull/9787
" more info: https://github.com/ggml-org/llama.cpp/pull/9787
"
" colors (adjust to your liking)

View File

@@ -1,3 +1,5 @@
# llava (legacy)
add_library(llava OBJECT
llava.cpp
llava.h
@@ -22,12 +24,41 @@ if (BUILD_SHARED_LIBS)
install(TARGETS llava_shared LIBRARY)
endif()
# mtmd
add_library(mtmd OBJECT
mtmd.cpp
mtmd.h
clip.cpp
clip.h
clip-impl.h
)
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(mtmd PUBLIC .)
target_include_directories(mtmd PRIVATE ../..)
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
target_compile_features(mtmd PRIVATE cxx_std_17)
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
if (BUILD_SHARED_LIBS)
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS mtmd_shared LIBRARY)
endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
add_dependencies(mtmd BUILD_INFO)
endif()
set(TARGET llama-llava-cli)
@@ -50,3 +81,17 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-gemma3-cli)
add_executable(${TARGET} gemma3-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-gemma3-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)
add_executable(${TARGET} clip-quantize-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -0,0 +1,50 @@
# Gemma 3 vision
> [!IMPORTANT]
>
> This is very experimental, only used for demo purpose.
## Quick started
You can use pre-quantized model from [ggml-org](https://huggingface.co/ggml-org)'s Hugging Face account
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
```
## How to get mmproj.gguf?
```bash
cd gemma-3-4b-it
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
# output file is mmproj.gguf
```
## How to run it?
What you need:
- The text model GGUF, can be converted using `convert_hf_to_gguf.py`
- The mmproj file from step above
- An image file
```bash
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# run it
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg
```

Some files were not shown because too many files have changed in this diff Show More