Compare commits

..

34 Commits

Author SHA1 Message Date
Benson Wong
5d01670266 server : include speculative decoding stats when timings_per_token is enabled (#12603)
* Include speculative decoding stats when timings_per_token is true

New fields added to the `timings` object:

  - draft_n           : number of draft tokens generated
  - draft_accepted_n  : number of draft tokens accepted
  - draft_accept_ratio: ratio of accepted/generated

* Remove redundant draft_accept_ratio var

* add draft acceptance rate to server console output
2025-03-28 10:05:44 +02:00
Radoslav Gerganov
ef03229ff4 rpc : update README for cache usage (#12620) 2025-03-28 09:44:13 +02:00
amritahs-ibm
13731766db llamafile : ppc64le GEMV forwarding for FP32. (#12594)
This patch enables usage of MMA when one of the
dimensions of the matrix(ie either M or N) is 1. This
is useful in case of token generation where N < 2.

The concept of 'GEMV Forwarding' is used where when one
of the matrix has a single row/column, the elements are
broadcasted, instead of using packing routine to prepack
the matrix elements.

This change results in 5% - 15% improvement in total
speed(ie all tokens/total time), across various batch
sizes. This is in comparision with the corresponding
dot product implementation.

The patch is tested with FP32 models of Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf on a IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-28 09:43:22 +02:00
Radoslav Gerganov
ab6ab8f809 rpc : send hash when tensor data is above some fixed threshold (#12496)
* rpc : send hash when tensor data is above some fixed threshold

ref #10095

* rpc : put cache under $HOME/.cache/llama.cpp

* try to fix win32 build

* another try to fix win32 build

* remove llama as dependency
2025-03-28 08:18:04 +02:00
Piotr
2099a9d5db server : Support listening on a unix socket (#12613)
* server : Bump cpp-httplib to include AF_UNIX windows support

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

* server : Allow running the server example on a unix socket

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>

---------

Signed-off-by: Piotr Stankiewicz <piotr.stankiewicz@docker.com>
2025-03-27 23:41:04 +01:00
Georgi Gerganov
2969019837 media : add SVG logo [no ci] (#12616) 2025-03-27 23:09:05 +02:00
lhez
5dec47dcd4 opencl: add multi and vision rope, gelu_quick and im2col (#12600)
Some checks failed
Python check requirements.txt / check-requirements (push) Has been cancelled
flake8 Lint / Lint (push) Has been cancelled
Python Type-Check / pyright type-check (push) Has been cancelled
* opencl: add `im2col`

* opencl: add `gelu_quick`

* opencl: add mrope

* opencl: add vision rope
2025-03-27 08:08:08 -07:00
Si1w
f125b8dccf llama : add PLM GGUF Conversion & Inference Support (#12457)
* add edgellm model arch[conversation feature doesn't work]

* remove output.weight layer for edgellm arch

* [Model] update the name of the model

* update the name of model arch in convert gguf

* [Model] Refarctor the model arch into llama-model

* [Bug] Fix the bug in create attn kv

* [Code] Fix editorconfig erros

* [Code] Remove Trailing whitespace

* [Code] Remove Trailing whitespace

* [Code] Change the order of model arch in list

* [Code] Fix flake8 Lint errors

* Remove trailing white space

* [Code] Remove  call in model arch
2025-03-27 12:49:15 +02:00
HighDoping
953c2a62cf model : restore support for T5Encoder (#12590) 2025-03-27 11:43:33 +01:00
Csaba Kecskemeti
d5c6309d91 convert : Support Qwen2_5_VLForConditionalGeneration (#12595) 2025-03-27 11:11:23 +01:00
Georgi Gerganov
029c693fdc sync : ggml
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
771d84371c scripts : update sync + fix cmake merge
ggml-ci
2025-03-27 10:09:29 +02:00
Georgi Gerganov
df0665a483 sync : ggml
ggml-ci
2025-03-27 09:04:38 +02:00
Georgi Gerganov
0306aad1ca cmake : sync/merge PowerPC build commands (#0) 2025-03-27 09:04:38 +02:00
amritahs-ibm
c7b43ab608 llamafile : ppc64le MMA implementation for Q4_0. (#12489)
This change upstreams llamafile's cpu matrix
multiplication kernels for ppc64le ISA using MMA
builtins. This patch handles matrix multiplication
between quantised datatypes, block_q4_0 and
block_q8_0.

This change results in 5% - 50% improvement
in total speed(ie all tokens/total time), across
various batch sizes.

The patch is tested with Meta-Lllama-3-8B,
Mistral-7B, Llama-2-7B-chat-hf models on a
IBM POWER10 machine.

Signed-off-by: Amrita H S <amritahs@linux.vnet.ibm.com>
2025-03-27 08:51:47 +02:00
xctan
24feaec057 ggml : riscv: add 128-bit RVV support (#12530)
* ggml : add 128-bit RVV support

* ggml : revert to old RVV 256+ q2_K, q3_K, q4_K, q6_K impl

* remove trailing whitespaces

* restructure vector length selection code
2025-03-27 08:38:34 +02:00
Georgi Gerganov
f28bc4c286 llama : make loras compatible with repacking (#12593)
* llama : make loras compatible with repacking

ggml-ci

* cont : simplify

ggml-ci

* cont : add TODO [no ci]
2025-03-27 08:24:10 +02:00
Akarshan Biswas
f17a3bb4e8 SYCL: implement memset ggml backend buffer interface (#12580)
* SYCL: implement memset ggml backend buffer interface

* use GGML_ABORT macro

* Do not wait for all queues to finish for memset operation
2025-03-27 09:46:00 +08:00
Slobodan Josic
bd40678df7 HIP: Add support for RDNA4 targets (#12372) 2025-03-26 23:46:30 +01:00
Georgi Gerganov
b3298fa47a metal : refactor mat-vec code (#12569)
* metal : refactor mat-vec code

ggml-ci

* metal : rename all_sum -> sum_all

ggml-ci

* metal : fix comments [no ci]

* metal : fix nr constant [no ci]

* metal : mv q6_K support nr0 > 1

ggml-ci

* metal : reduce register pressure

ggml-ci

* metal : fix typo [no ci]

* metal : reduce register pressure

ggml-ci
2025-03-26 21:38:38 +02:00
Michał Moskal
2447ad8a98 upgrade to llguidance 0.7.10 (#12576) 2025-03-26 11:06:09 -07:00
Ivy233
02082f1519 clip: Fix llama-llava-clip-quantize-cli quantization error under CUDA backend (#12566)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* [Fix] Compiling clip-quantize-cli and running it in a CUDA environment will cause ggml_fp16_to_fp32 to report an error when trying to access video memory. You need to switch to the CPU backend to run quantize.
After the fix, it will automatically run in the CPU backend and will no longer be bound to CUDA.

* [Fix]Roll back the signature and implementation of clip_model_load, and change the call in clip_model_quantize to clip_init.
2025-03-26 15:06:04 +01:00
Georgi Gerganov
df4d20cd53 convert : fix squeeze for ssm_conv tensors (#12573)
* convert : fix squeeze for ssm_conv tensors

* convert : match ssm_conv tensors by type

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-03-26 08:21:05 -04:00
Georgi Gerganov
5ed38b6852 ggml : fix MUL_MAT_ID repack with Q8_K (#12544)
* ggml : fix MUL_MAT_ID repack with Q8_K

ggml-ci

* ggml : improve repack templates

ggml-ci
2025-03-26 13:02:00 +02:00
R0CKSTAR
fd7855f8f5 doc: [MUSA] minor changes (#12583)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-26 09:09:48 +02:00
Sigbjørn Skjæret
53af4dba42 convert: fix Mistral3/Gemma3 model hparams init (#12571)
Some checks are pending
Python check requirements.txt / check-requirements (push) Waiting to run
flake8 Lint / Lint (push) Waiting to run
Python Type-Check / pyright type-check (push) Waiting to run
* Fix Mistral3/Gemma3 model hparams init

* set positional args correctly

* use existing hparams if passed
2025-03-25 23:03:10 +01:00
Eric Curtin
ef19c71769 run: de-duplicate fmt and format functions and optimize (#11596) 2025-03-25 18:46:11 +01:00
Dan Johansson
053b3f9aae ggml-cpu : update KleidiAI to v1.5.0 (#12568)
ggml-cpu : bug fix related to KleidiAI LHS packing

Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 13:10:18 +02:00
Akarshan Biswas
e2f560175a SYCL: disable Q4_0 reorder optimization (#12560)
ggml-ci
2025-03-25 18:40:18 +08:00
Dan Johansson
36ee06dd2d docs : add build instructions for KleidiAI (#12563)
Signed-off-by: Dan Johansson <dan.johansson@arm.com>
2025-03-25 11:35:20 +02:00
R0CKSTAR
3cd3a39532 ci: [MUSA] add CI and update doc (#12562)
Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
2025-03-25 09:45:08 +02:00
Georgi Gerganov
2d77d88e70 context : fix worst-case reserve outputs (#12545)
ggml-ci
2025-03-25 09:19:23 +02:00
Akarshan Biswas
c95fa362b3 ci: [SYCL] ggml-ci Use main GPU and enable sysman (#12547) 2025-03-24 19:35:38 +02:00
lhez
2b65ae3029 opencl: simplify kernel embedding logic in cmakefile (#12503)
Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com>
2025-03-24 09:20:47 -07:00
50 changed files with 3567 additions and 1129 deletions

View File

@@ -26,4 +26,43 @@ GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with SYCL support
source /opt/intel/oneapi/setvars.sh
GG_BUILD_SYCL=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
# with MUSA support
GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
```
## Running MUSA CI in a Docker Container
Assuming `$PWD` is the root of the `llama.cpp` repository, follow these steps to set up and run MUSA CI in a Docker container:
### 1. Create a local directory to store cached models, configuration files and venv:
```bash
mkdir -p $HOME/llama.cpp/ci-cache
```
### 2. Create a local directory to store CI run results:
```bash
mkdir -p $HOME/llama.cpp/ci-results
```
### 3. Start a Docker container and run the CI:
```bash
docker run --privileged -it \
-v $HOME/llama.cpp/ci-cache:/ci-cache \
-v $HOME/llama.cpp/ci-results:/ci-results \
-v $PWD:/ws -w /ws \
mthreads/musa:rc3.1.1-devel-ubuntu22.04
```
Inside the container, execute the following commands:
```bash
apt update -y && apt install -y bc cmake git python3.10-venv time unzip wget
git config --global --add safe.directory /ws
GG_BUILD_MUSA=1 bash ./ci/run.sh /ci-results /ci-cache
```
This setup ensures that the CI runs within an isolated Docker environment while maintaining cached files and results across runs.

View File

@@ -16,6 +16,9 @@
# # with VULKAN support
# GG_BUILD_VULKAN=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
# # with MUSA support
# GG_BUILD_MUSA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
#
if [ -z "$2" ]; then
echo "usage: $0 <output-dir> <mnt-dir>"
@@ -52,13 +55,22 @@ if [ ! -z ${GG_BUILD_SYCL} ]; then
echo "source /opt/intel/oneapi/setvars.sh"
exit 1
fi
# Use only main GPU
export ONEAPI_DEVICE_SELECTOR="level_zero:0"
# Enable sysman for correct memory reporting
export ZES_ENABLE_SYSMAN=1
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_SYCL=1 -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON"
fi
if [ ! -z ${GG_BUILD_VULKAN} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_VULKAN=1"
fi
if [ ! -z ${GG_BUILD_MUSA} ]; then
# Use qy1 by default (MTT S80)
MUSA_ARCH=${MUSA_ARCH:-21}
CMAKE_EXTRA="-DGGML_MUSA=ON -DMUSA_ARCHITECTURES=${MUSA_ARCH}"
fi
## helpers
# download a file if it does not exist or if it is outdated
@@ -808,7 +820,7 @@ export LLAMA_LOG_PREFIX=1
export LLAMA_LOG_TIMESTAMPS=1
if [ -z ${GG_BUILD_LOW_PERF} ]; then
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models/models-mnt
# Create symlink: ./llama.cpp/models-mnt -> $MNT/models
rm -rf ${SRC}/models-mnt
mnt_models=${MNT}/models
mkdir -p ${mnt_models}

View File

@@ -114,8 +114,8 @@ if (LLAMA_LLGUIDANCE)
ExternalProject_Add(llguidance_ext
GIT_REPOSITORY https://github.com/guidance-ai/llguidance
# v0.6.12:
GIT_TAG ced1c9023d47ec194fa977932d35ce65c2ebfc09
# v0.7.10:
GIT_TAG 0309d2a6bf40abda35344a362edc71e06d5009f8
PREFIX ${CMAKE_BINARY_DIR}/llguidance
SOURCE_DIR ${LLGUIDANCE_SRC}
BUILD_IN_SOURCE TRUE

View File

@@ -1979,7 +1979,7 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
add_opt(common_arg(
{"--host"}, "HOST",
string_format("ip address to listen (default: %s)", params.hostname.c_str()),
string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
[](common_params & params, const std::string & value) {
params.hostname = value;
}

View File

@@ -11,25 +11,24 @@ struct llama_sampler_llg {
std::string grammar_kind;
std::string grammar_data;
LlgTokenizer * tokenizer;
LlgConstraint * grammar;
LlgMaskResult llg_res;
bool has_llg_res;
LlgMatcher * grammar;
};
static LlgConstraint * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
static LlgMatcher * llama_sampler_llg_new(LlgTokenizer * tokenizer, const char * grammar_kind,
const char * grammar_data) {
LlgConstraintInit cinit;
llg_constraint_init_set_defaults(&cinit, tokenizer);
const char * log_level = getenv("LLGUIDANCE_LOG_LEVEL");
if (log_level && *log_level) {
cinit.log_stderr_level = atoi(log_level);
}
auto c = llg_new_constraint_any(&cinit, grammar_kind, grammar_data);
if (llg_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_get_error(c));
llg_free_constraint(c);
auto c = llg_new_matcher(&cinit, grammar_kind, grammar_data);
if (llg_matcher_get_error(c)) {
LOG_ERR("llg error: %s\n", llg_matcher_get_error(c));
llg_free_matcher(c);
return nullptr;
}
return c;
}
@@ -40,39 +39,29 @@ static const char * llama_sampler_llg_name(const llama_sampler * /*smpl*/) {
static void llama_sampler_llg_accept_impl(llama_sampler * smpl, llama_token token) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
LlgCommitResult res;
llg_commit_token(ctx->grammar, token, &res);
ctx->has_llg_res = false;
llg_matcher_consume_token(ctx->grammar, token);
}
}
static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array * cur_p) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
if (!ctx->has_llg_res) {
if (llg_compute_mask(ctx->grammar, &ctx->llg_res) == 0) {
ctx->has_llg_res = true;
const uint32_t * mask = llg_matcher_get_mask(ctx->grammar);
if (mask == nullptr) {
if (llg_matcher_compute_mask(ctx->grammar) == 0) {
mask = llg_matcher_get_mask(ctx->grammar);
} else {
LOG_ERR("llg error: %s\n", llg_get_error(ctx->grammar));
llg_free_constraint(ctx->grammar);
LOG_ERR("llg error: %s\n", llg_matcher_get_error(ctx->grammar));
llg_free_matcher(ctx->grammar);
ctx->grammar = nullptr;
return;
}
}
if (ctx->has_llg_res) {
if (ctx->llg_res.is_stop) {
for (size_t i = 0; i < cur_p->size; ++i) {
if (!llama_vocab_is_eog(ctx->vocab, cur_p->data[i].id)) {
cur_p->data[i].logit = -INFINITY;
}
}
} else {
const uint32_t * mask = ctx->llg_res.sample_mask;
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
for (size_t i = 0; i < cur_p->size; ++i) {
auto token = cur_p->data[i].id;
if ((mask[token / 32] & (1 << (token % 32))) == 0) {
cur_p->data[i].logit = -INFINITY;
}
}
}
@@ -80,14 +69,9 @@ static void llama_sampler_llg_apply(llama_sampler * smpl, llama_token_data_array
static void llama_sampler_llg_reset(llama_sampler * smpl) {
auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (!ctx->grammar) {
return;
if (ctx->grammar) {
llg_matcher_reset(ctx->grammar);
}
auto * grammar_new = llama_sampler_llg_new(ctx->tokenizer, ctx->grammar_kind.c_str(), ctx->grammar_data.c_str());
llg_free_constraint(ctx->grammar);
ctx->grammar = grammar_new;
ctx->has_llg_res = false;
}
static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
@@ -102,7 +86,7 @@ static llama_sampler * llama_sampler_llg_clone(const llama_sampler * smpl) {
if (ctx->grammar) {
result_ctx->grammar_kind = ctx->grammar_kind;
result_ctx->grammar_data = ctx->grammar_data;
result_ctx->grammar = llg_clone_constraint(ctx->grammar);
result_ctx->grammar = llg_clone_matcher(ctx->grammar);
result_ctx->tokenizer = llg_clone_tokenizer(ctx->tokenizer);
}
}
@@ -114,7 +98,7 @@ static void llama_sampler_llg_free(llama_sampler * smpl) {
const auto * ctx = (llama_sampler_llg *) smpl->ctx;
if (ctx->grammar) {
llg_free_constraint(ctx->grammar);
llg_free_matcher(ctx->grammar);
llg_free_tokenizer(ctx->tokenizer);
}
@@ -239,9 +223,11 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ grammar_data,
/* .tokenizer = */ tokenizer,
/* .grammar = */ llama_sampler_llg_new(tokenizer, grammar_kind, grammar_data),
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
if (ctx->grammar) {
GGML_ASSERT(((size_t) llama_vocab_n_tokens(vocab) + 31) / 32 * 4 ==
llg_matcher_get_mask_byte_size(ctx->grammar));
}
} else {
*ctx = {
/* .vocab = */ vocab,
@@ -249,15 +235,12 @@ llama_sampler * llama_sampler_init_llg(const llama_vocab * vocab, const char * g
/* .grammar_data = */ {},
/* .tokenizer = */ nullptr,
/* .grammar = */ nullptr,
/* .llg_res = */ {},
/* .has_llg_res = */ false,
};
}
return llama_sampler_init(
/* .iface = */ &llama_sampler_llg_i,
/* .ctx = */ ctx
);
/* .ctx = */ ctx);
}
#else

View File

@@ -1752,7 +1752,7 @@ class Mistral3Model(LlamaModel):
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = Model.load_hparams(kwargs["dir_model"])
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
@@ -2269,7 +2269,7 @@ class Qwen2Model(Model):
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
@Model.register("Qwen2VLForConditionalGeneration")
@Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
class Qwen2VLModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2VL
@@ -3385,7 +3385,7 @@ class Gemma3Model(Model):
# we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = Model.load_hparams(kwargs["dir_model"])
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
@@ -3803,8 +3803,6 @@ class MambaModel(Model):
_tok_embd = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
@@ -3814,6 +3812,10 @@ class MambaModel(Model):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# [4 1 8192 1] -> [4 8192 1 1]
if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
data_torch = data_torch.squeeze()
# assuming token_embd.weight is seen before output.weight
if self._tok_embd is not None and new_name == output_name:
if torch.equal(self._tok_embd, data_torch):
@@ -4417,6 +4419,29 @@ class DeepseekV2Model(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("PLMForCausalLM")
class PLMModel(Model):
model_arch = gguf.MODEL_ARCH.PLM
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
return [(self.map_tensor_name(name), data_torch)]
def prepare_tensors(self):
super().prepare_tensors()
@Model.register("T5WithLMHeadModel")
@Model.register("T5ForConditionalGeneration")
@Model.register("MT5ForConditionalGeneration")
@@ -5358,7 +5383,7 @@ def main() -> None:
logger.error(f"Model {model_architecture} is not supported")
sys.exit(1)
model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
model_instance = model_class(dir_model, output_type, fname_out,
is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
eager=args.no_lazy,
metadata_override=args.metadata, model_name=args.model_name,

View File

@@ -191,7 +191,7 @@ The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, CDNA and RDNA3+). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
@@ -218,6 +218,7 @@ By default, all supported compute capabilities are enabled. To customize this be
```bash
cmake -B build -DGGML_MUSA=ON -DMUSA_ARCHITECTURES="21"
cmake --build build --config Release
```
This configuration enables only compute capability `2.1` (MTT S80) during compilation, which can help reduce compilation time.
@@ -435,6 +436,26 @@ llama_new_context_with_model: CANN compute buffer size = 1260.81 MiB
For detailed info, such as model/device supports, CANN install, please refer to [llama.cpp for CANN](./backend/CANN.md).
## Arm® KleidiAI™
KleidiAI is a library of optimized microkernels for AI workloads, specifically designed for Arm CPUs. These microkernels enhance performance and can be enabled for use by the CPU backend.
To enable KleidiAI, go to the llama.cpp directory and build using CMake
```bash
cmake -B build -DGGML_CPU_KLEIDIAI=ON
cmake --build build --config Release
```
You can verify that KleidiAI is being used by running
```bash
./build/bin/llama-cli -m PATH_TO_MODEL -p "What is a car?"
```
If KleidiAI is enabled, the ouput will contain a line similar to:
```
load_tensors: CPU_KLEIDIAI model buffer size = 3474.00 MiB
```
KleidiAI's microkernels implement optimized tensor operations using Arm CPU features such as dotprod, int8mm and SME. llama.cpp selects the most efficient kernel based on runtime CPU feature detection. However, on platforms that support SME, you must manually enable SME microkernels by setting the environment variable `GGML_KLEIDIAI_SME=1`.
Depending on your build target, other higher priority backends may be enabled by default. To ensure the CPU backend is used, you must disable the higher priority backends either at compile time, e.g. -DGGML_METAL=OFF, or during run-time using the command line option `--device none`.
## Android
To read documentation for how to build on Android, [click here](./android.md)

View File

@@ -2989,7 +2989,10 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
assert(itype < GGML_TYPE_COUNT);
ggml_type type = static_cast<ggml_type>(itype);
auto * ctx_clip = clip_model_load(fname_inp, 2);
auto * ctx_clip = clip_init(fname_inp, clip_context_params{
/* use_gpu */ false,
/* verbosity */ 2,
});
const auto & ctx_src = ctx_clip->ctx_gguf;
const auto & ctx_data = ctx_clip->ctx_data;

View File

@@ -1,2 +1,4 @@
add_executable(rpc-server rpc-server.cpp)
target_link_libraries(rpc-server PRIVATE ggml llama)
set(TARGET rpc-server)
add_executable(${TARGET} rpc-server.cpp)
target_link_libraries(${TARGET} PRIVATE ggml)
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@@ -72,3 +72,14 @@ $ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name
This way you can offload model layers to both local and remote devices.
### Local cache
The RPC server can use a local cache to store large tensors and avoid transferring them over the network.
This can speed up model loading significantly, especially when using large models.
To enable the cache, use the `-c` option:
```bash
$ bin/rpc-server -c
```
By default, the cache is stored in the `$HOME/.cache/llama.cpp/rpc` directory and can be controlled via the `LLAMA_CACHE` environment variable.

View File

@@ -1,3 +1,7 @@
#if defined(_MSC_VER)
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif
#include "ggml-cpu.h"
#ifdef GGML_USE_CUDA
@@ -18,26 +22,142 @@
#include "ggml-rpc.h"
#ifdef _WIN32
# define DIRECTORY_SEPARATOR '\\'
# include <locale>
# include <windows.h>
# include <fcntl.h>
# include <io.h>
#else
# define DIRECTORY_SEPARATOR '/'
# include <unistd.h>
# include <sys/stat.h>
#endif
#include <codecvt>
#include <string>
#include <stdio.h>
#include <vector>
#include <filesystem>
namespace fs = std::filesystem;
// NOTE: this is copied from common.cpp to avoid linking with libcommon
// returns true if successful, false otherwise
static bool fs_create_directory_with_parents(const std::string & path) {
#ifdef _WIN32
std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
std::wstring wpath = converter.from_bytes(path);
// if the path already exists, check whether it's a directory
const DWORD attributes = GetFileAttributesW(wpath.c_str());
if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return true;
}
size_t pos_slash = 0;
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
const std::wstring subpath = wpath.substr(0, pos_slash);
const wchar_t * test = subpath.c_str();
const bool success = CreateDirectoryW(test, NULL);
if (!success) {
const DWORD error = GetLastError();
// if the path already exists, ensure that it's a directory
if (error == ERROR_ALREADY_EXISTS) {
const DWORD attributes = GetFileAttributesW(subpath.c_str());
if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
return false;
}
} else {
return false;
}
}
pos_slash += 1;
}
return true;
#else
// if the path already exists, check whether it's a directory
struct stat info;
if (stat(path.c_str(), &info) == 0) {
return S_ISDIR(info.st_mode);
}
size_t pos_slash = 1; // skip leading slashes for directory creation
// process path from front to back, procedurally creating directories
while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
const std::string subpath = path.substr(0, pos_slash);
struct stat info;
// if the path already exists, ensure that it's a directory
if (stat(subpath.c_str(), &info) == 0) {
if (!S_ISDIR(info.st_mode)) {
return false;
}
} else {
// create parent directories
const int ret = mkdir(subpath.c_str(), 0755);
if (ret != 0) {
return false;
}
}
pos_slash += 1;
}
return true;
#endif // _WIN32
}
// NOTE: this is copied from common.cpp to avoid linking with libcommon
static std::string fs_get_cache_directory() {
std::string cache_directory = "";
auto ensure_trailing_slash = [](std::string p) {
// Make sure to add trailing slash
if (p.back() != DIRECTORY_SEPARATOR) {
p += DIRECTORY_SEPARATOR;
}
return p;
};
if (getenv("LLAMA_CACHE")) {
cache_directory = std::getenv("LLAMA_CACHE");
} else {
#ifdef __linux__
if (std::getenv("XDG_CACHE_HOME")) {
cache_directory = std::getenv("XDG_CACHE_HOME");
} else {
cache_directory = std::getenv("HOME") + std::string("/.cache/");
}
#elif defined(__APPLE__)
cache_directory = std::getenv("HOME") + std::string("/Library/Caches/");
#elif defined(_WIN32)
cache_directory = std::getenv("LOCALAPPDATA");
#endif // __linux__
cache_directory = ensure_trailing_slash(cache_directory);
cache_directory += "llama.cpp";
}
return ensure_trailing_slash(cache_directory);
}
struct rpc_server_params {
std::string host = "127.0.0.1";
int port = 50052;
size_t backend_mem = 0;
bool use_cache = false;
};
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
fprintf(stderr, " -c, --cache enable local file cache\n");
fprintf(stderr, "\n");
}
@@ -58,6 +178,8 @@ static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params &
if (params.port <= 0 || params.port > 65535) {
return false;
}
} else if (arg == "-c" || arg == "--cache") {
params.use_cache = true;
} else if (arg == "-m" || arg == "--mem") {
if (++i >= argc) {
return false;
@@ -164,8 +286,20 @@ int main(int argc, char * argv[]) {
} else {
get_backend_memory(&free_mem, &total_mem);
}
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), free_mem, total_mem);
const char * cache_dir = nullptr;
std::string cache_dir_str = fs_get_cache_directory() + "rpc/";
if (params.use_cache) {
if (!fs_create_directory_with_parents(cache_dir_str)) {
fprintf(stderr, "Failed to create cache directory: %s\n", cache_dir_str.c_str());
return 1;
}
cache_dir = cache_dir_str.c_str();
}
printf("Starting RPC server\n");
printf(" endpoint : %s\n", endpoint.c_str());
printf(" local cache : %s\n", cache_dir ? cache_dir : "n/a");
printf(" backend memory : %zu MB\n", free_mem / (1024 * 1024));
ggml_backend_rpc_start_server(backend, endpoint.c_str(), cache_dir, free_mem, total_mem);
ggml_backend_free(backend);
return 0;
}

View File

@@ -38,24 +38,6 @@
}
#endif
GGML_ATTRIBUTE_FORMAT(1, 2)
static std::string fmt(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
const int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::string buf;
buf.resize(size);
const int size2 = vsnprintf(const_cast<char *>(buf.data()), buf.size() + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return buf;
}
GGML_ATTRIBUTE_FORMAT(1, 2)
static int printe(const char * fmt, ...) {
va_list args;
@@ -525,11 +507,11 @@ class HttpClient {
int secs = static_cast<int>(seconds) % 60;
if (hrs > 0) {
return fmt("%dh %02dm %02ds", hrs, mins, secs);
return string_format("%dh %02dm %02ds", hrs, mins, secs);
} else if (mins > 0) {
return fmt("%dm %02ds", mins, secs);
return string_format("%dm %02ds", mins, secs);
} else {
return fmt("%ds", secs);
return string_format("%ds", secs);
}
}
@@ -544,7 +526,7 @@ class HttpClient {
}
}
return fmt("%.2f %s", dbl_size, suffix[i]);
return string_format("%.2f %s", dbl_size, suffix[i]);
}
static int update_progress(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
@@ -578,7 +560,9 @@ class HttpClient {
return (now_downloaded_plus_file_size * 100) / total_to_download;
}
static std::string generate_progress_prefix(curl_off_t percentage) { return fmt("%3ld%% |", static_cast<long int>(percentage)); }
static std::string generate_progress_prefix(curl_off_t percentage) {
return string_format("%3ld%% |", static_cast<long int>(percentage));
}
static double calculate_speed(curl_off_t now_downloaded, const std::chrono::steady_clock::time_point & start_time) {
const auto now = std::chrono::steady_clock::now();
@@ -589,9 +573,9 @@ class HttpClient {
static std::string generate_progress_suffix(curl_off_t now_downloaded_plus_file_size, curl_off_t total_to_download,
double speed, double estimated_time) {
const int width = 10;
return fmt("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(), width,
human_readable_size(total_to_download).c_str(), width, human_readable_size(speed).c_str(), width,
human_readable_time(estimated_time).c_str());
return string_format("%*s/%*s%*s/s%*s", width, human_readable_size(now_downloaded_plus_file_size).c_str(),
width, human_readable_size(total_to_download).c_str(), width,
human_readable_size(speed).c_str(), width, human_readable_time(estimated_time).c_str());
}
static int calculate_progress_bar_width(const std::string & progress_prefix, const std::string & progress_suffix) {

File diff suppressed because it is too large Load Diff

View File

@@ -489,8 +489,12 @@ struct result_timings {
double predicted_per_token_ms;
double predicted_per_second;
// Optional speculative metrics - only included when > 0
int32_t draft_n = 0;
int32_t draft_n_accepted = 0;
json to_json() const {
return {
json base = {
{"prompt_n", prompt_n},
{"prompt_ms", prompt_ms},
{"prompt_per_token_ms", prompt_per_token_ms},
@@ -501,6 +505,13 @@ struct result_timings {
{"predicted_per_token_ms", predicted_per_token_ms},
{"predicted_per_second", predicted_per_second},
};
if (draft_n > 0) {
base["draft_n"] = draft_n;
base["draft_n_accepted"] = draft_n_accepted;
}
return base;
}
};
@@ -1299,6 +1310,10 @@ struct server_slot {
std::function<void(int)> callback_on_release;
// Speculative decoding stats
int32_t n_draft_total = 0; // Total draft tokens generated
int32_t n_draft_accepted = 0; // Draft tokens actually accepted
void reset() {
SLT_DBG(*this, "%s", "\n");
@@ -1315,6 +1330,10 @@ struct server_slot {
generated_tokens.clear();
generated_token_probs.clear();
// clear speculative decoding stats
n_draft_total = 0;
n_draft_accepted = 0;
}
bool is_non_causal() const {
@@ -1381,6 +1400,12 @@ struct server_slot {
timings.predicted_per_token_ms = t_token_generation / n_decoded;
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
// Add speculative metrics
if (n_draft_total > 0) {
timings.draft_n = n_draft_total;
timings.draft_n_accepted = n_draft_accepted;
}
return timings;
}
@@ -1428,6 +1453,15 @@ struct server_slot {
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
if (n_draft_total > 0) {
const float draft_ratio = (float) n_draft_accepted / n_draft_total;
SLT_INF(*this,
"\n"
"draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
draft_ratio, n_draft_accepted, n_draft_total
);
}
}
json to_json() const {
@@ -3290,6 +3324,9 @@ struct server_context {
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
// keep track of total number of tokens generated in the draft
slot.n_draft_total += draft.size();
// ignore small drafts
if (slot.params.speculative.n_min > (int) draft.size()) {
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
@@ -3315,6 +3352,9 @@ struct server_context {
slot.n_past += ids.size();
slot.n_decoded += ids.size();
// update how many tokens out of draft was accepted
slot.n_draft_accepted += ids.size() - 1;
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
@@ -4459,15 +4499,24 @@ int main(int argc, char ** argv) {
llama_backend_free();
};
// bind HTTP listen port
bool was_bound = false;
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
if (string_ends_with(std::string(params.hostname), ".sock")) {
LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
svr->set_address_family(AF_UNIX);
// bind_to_port requires a second arg, any value other than 0 should
// simply get ignored
was_bound = svr->bind_to_port(params.hostname, 8080);
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
LOG_INF("%s: binding port with default address family\n", __func__);
// bind HTTP listen port
if (params.port == 0) {
int bound_port = svr->bind_to_any_port(params.hostname);
if ((was_bound = (bound_port >= 0))) {
params.port = bound_port;
}
} else {
was_bound = svr->bind_to_port(params.hostname, params.port);
}
}
if (!was_bound) {

View File

@@ -123,10 +123,12 @@ endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_RV_ZFH "ggml: enable riscv zfh" OFF)
option(GGML_VXE "ggml: enable vxe" ON)
option(GGML_CPU_ALL_VARIANTS "ggml: build all variants of the CPU backend (requires GGML_BACKEND_DL)" OFF)
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_ARM_ARCH "" CACHE STRING "ggml: CPU architecture for ARM")
set(GGML_CPU_POWERPC_CPUTYPE "" CACHE STRING "ggml: CPU type for PowerPC")
if (WIN32)

22
ggml/cmake/GitVars.cmake Normal file
View File

@@ -0,0 +1,22 @@
find_package(Git)
# the commit's SHA1
execute_process(COMMAND
"${GIT_EXECUTABLE}" describe --match=NeVeRmAtCh --always --abbrev=8
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_SHA1
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the date of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%ad --date=local
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_DATE
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
# the subject of the commit
execute_process(COMMAND
"${GIT_EXECUTABLE}" log -1 --format=%s
WORKING_DIRECTORY "${CMAKE_SOURCE_DIR}"
OUTPUT_VARIABLE GIT_COMMIT_SUBJECT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)

View File

@@ -5,7 +5,7 @@
set_and_check(GGML_INCLUDE_DIR "@PACKAGE_GGML_INCLUDE_INSTALL_DIR@")
set_and_check(GGML_LIB_DIR "@PACKAGE_GGML_LIB_INSTALL_DIR@")
set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
#set_and_check(GGML_BIN_DIR "@PACKAGE_GGML_BIN_INSTALL_DIR@")
find_package(Threads REQUIRED)

View File

@@ -17,7 +17,9 @@ GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const c
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);

View File

@@ -289,23 +289,29 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
endif()
elseif ("${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "ppc64le " OR "${CMAKE_SYSTEM_PROCESSOR} " STREQUAL "powerpc ")
message(STATUS "PowerPC detected")
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
file(READ "/proc/cpuinfo" POWER10_M)
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "powerpc")
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
endif()
if (GGML_NATIVE)
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
file(READ "/proc/cpuinfo" POWER10_M)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "powerpc")
execute_process(COMMAND bash -c "prtconf |grep 'Implementation' | head -n 1" OUTPUT_VARIABLE POWER10_M)
endif()
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
string(REGEX MATCHALL "POWER *([0-9]+)" MATCHED_STRING "${POWER10_M}")
string(REGEX REPLACE "POWER *([0-9]+)" "\\1" EXTRACTED_NUMBER "${MATCHED_STRING}")
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
list(APPEND ARCH_FLAGS -mcpu=power10 -mpowerpc64)
elseif (EXTRACTED_NUMBER EQUAL 9)
list(APPEND ARCH_FLAGS -mcpu=power9 -mpowerpc64)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
list(APPEND ARCH_FLAGS -mcpu=powerpc64le -mtune=native)
if (EXTRACTED_NUMBER GREATER_EQUAL 10)
list(APPEND ARCH_FLAGS -mcpu=power10 -mpowerpc64)
elseif (EXTRACTED_NUMBER EQUAL 9)
list(APPEND ARCH_FLAGS -mcpu=power9 -mpowerpc64)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
list(APPEND ARCH_FLAGS -mcpu=powerpc64le -mtune=native)
else()
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native -mpowerpc64)
endif()
else()
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native -mpowerpc64)
if (GGML_CPU_POWERPC_CPUTYPE)
list(APPEND ARCH_FLAGS -mcpu=${GGML_CPU_POWERPC_CPUTYPE})
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
message(STATUS "loongarch64 detected")
@@ -320,7 +326,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
message(STATUS "RISC-V detected")
if (GGML_RVV)
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
if (GGML_RV_ZFH)
list(APPEND ARCH_FLAGS -march=rv64gcv_zfhmin -DGGML_RV_ZFH -mabi=lp64d)
else()
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
message(STATUS "s390x detected")
@@ -359,9 +369,9 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.3.0")
set(KLEIDIAI_COMMIT_TAG "v1.5.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "060bd2dc64642b091f461cc8dd7426d9")
set(KLEIDIAI_ARCHIVE_MD5 "ea22e1aefb800e9bc8c74d91633cc58e")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)

View File

@@ -250,7 +250,7 @@ static inline __m256i mul_sum_i8_pairs_int32x8(const __m256i x, const __m256i y)
static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
static void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
static void ggml_quantize_mat_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
@@ -344,7 +344,7 @@ static void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRIC
#endif
}
static void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
static void ggml_quantize_mat_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
@@ -559,7 +559,7 @@ static void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRIC
#endif
}
static void quantize_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
static void ggml_quantize_mat_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
assert(QK_K == 256);
assert(k % QK_K == 0);
const int nb = k / QK_K;
@@ -811,7 +811,7 @@ static void quantize_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRIC
// i.e first four bsums from the first super block, followed by first four bsums from second super block and so on
for (int j = 0; j < QK_K * 4; j++) {
int src_offset = (j / (4 * blck_size_interleave)) * blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
int src_id = (j % (4 * blck_size_interleave)) / blck_size_interleave;
src_offset += (j % blck_size_interleave);
int index = (((j & 31) >> 3) << 2) + ((j >> 8) << 4) + ((j >> 6) & 3);
@@ -823,26 +823,25 @@ static void quantize_q8_K_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRIC
#endif
}
static void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row, int64_t blck_size_interleave) {
template <int64_t INTER_SIZE, ggml_type PARAM_TYPE>
void ggml_quantize_mat_t(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row);
template <> void ggml_quantize_mat_t<4, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
if (blck_size_interleave == 4) {
quantize_q8_0_4x4(x, vy, n_per_row);
} else if (blck_size_interleave == 8) {
quantize_q8_0_4x8(x, vy, n_per_row);
} else {
assert(false);
}
ggml_quantize_mat_q8_0_4x4(x, vy, n_per_row);
}
static void quantize_mat_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row, int64_t blck_size_interleave) {
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_0>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
if (blck_size_interleave == 8) {
quantize_q8_K_4x8(x, vy, n_per_row);
} else {
assert(false);
}
ggml_quantize_mat_q8_0_4x8(x, vy, n_per_row);
}
template <> void ggml_quantize_mat_t<8, GGML_TYPE_Q8_K>(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t nrow, int64_t n_per_row) {
assert(nrow == 4);
UNUSED(nrow);
ggml_quantize_mat_q8_K_4x8(x, vy, n_per_row);
}
static void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc) {
@@ -5276,52 +5275,50 @@ template <> int repack<block_iq4_nl, 4, 4>(struct ggml_tensor * t, const void *
//}
// gemv
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemv(int, float *, size_t, const void *, const void *, int, int);
template <> void gemv<block_q4_0, 4, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemv<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_0, 8, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemv<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_0, 8, 8>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemv<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemv<block_q4_K, 8, 8>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemv<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <>
void gemv<block_iq4_nl, 4, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemv<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemv_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
// gemm
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS>
template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PARAM_TYPE>
void gemm(int, float *, size_t, const void *, const void *, int, int);
template <> void gemm<block_q4_0, 4, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemm<block_q4_0, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemm<block_q4_0, 8, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_4x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_0, 8, 8>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemm<block_q4_0, 8, 8, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_0_8x8_q8_0(n, s, bs, vx, vy, nr, nc);
}
template <> void gemm<block_q4_K, 8, 8>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemm<block_q4_K, 8, 8, GGML_TYPE_Q8_K>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_q4_K_8x8_q8_K(n, s, bs, vx, vy, nr, nc);
}
template <>
void gemm<block_iq4_nl, 4, 4>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
template <> void gemm<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0>(int n, float * s, size_t bs, const void * vx, const void * vy, int nr, int nc) {
ggml_gemm_iq4_nl_4x4_q8_0(n, s, bs, vx, vy, nr, nc);
}
@@ -5335,32 +5332,32 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
bool work_size(int /* n_threads */, const struct ggml_tensor * op, size_t & size) override {
// not realy a GGML_TYPE_Q8_0 but same size.
switch (op->op) {
case GGML_OP_MUL_MAT:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
return true;
case GGML_OP_MUL_MAT_ID:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
size += sizeof(int64_t) * (1+op->src[0]->ne[2]) * op->src[1]->ne[2];
return true;
default:
// GGML_ABORT("fatal error");
break;
case GGML_OP_MUL_MAT:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
return true;
case GGML_OP_MUL_MAT_ID:
size = ggml_row_size(PARAM_TYPE, ggml_nelements(op->src[1]));
size = GGML_PAD(size, sizeof(int64_t)); // + padding for next bloc.
size += sizeof(int64_t) * (1+op->src[0]->ne[2]) * op->src[1]->ne[2];
return true;
default:
// GGML_ABORT("fatal error");
break;
}
return false;
}
bool compute_forward(struct ggml_compute_params * params, struct ggml_tensor * op) override {
switch (op->op) {
case GGML_OP_MUL_MAT:
forward_mul_mat(params, op);
return true;
case GGML_OP_MUL_MAT_ID:
forward_mul_mat_id(params, op);
return true;
default:
// GGML_ABORT("fatal error");
break;
case GGML_OP_MUL_MAT:
forward_mul_mat(params, op);
return true;
case GGML_OP_MUL_MAT_ID:
forward_mul_mat_id(params, op);
return true;
default:
// GGML_ABORT("fatal error");
break;
}
return false;
}
@@ -5399,17 +5396,10 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
int64_t i11_processed = 0;
if(PARAM_TYPE == GGML_TYPE_Q8_K) {
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
quantize_mat_q8_K((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10,
INTER_SIZE);
}
} else {
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
quantize_mat_q8_0((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10,
INTER_SIZE);
}
for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
ggml_quantize_mat_t<INTER_SIZE, PARAM_TYPE>((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), 4, ne10);
}
i11_processed = ne11 - ne11 % 4;
for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
from_float((float *) ((char *) src1->data + i11 * nb11), (void *) (wdata + i11 * nbw1), ne10);
@@ -5422,22 +5412,24 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
int64_t src0_start = (ith * ne01) / nth;
int64_t src0_end = ((ith + 1) * ne01) / nth;
src0_start = (src0_start % NB_COLS) ? src0_start + NB_COLS - (src0_start % NB_COLS) : src0_start;
src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
src0_end = (src0_end % NB_COLS) ? src0_end + NB_COLS - (src0_end % NB_COLS) : src0_end;
if (src0_start >= src0_end) {
return;
}
// If there are more than three rows in src1, use gemm; otherwise, use gemv.
if (ne11 > 3) {
gemm<BLOC_TYPE, INTER_SIZE, NB_COLS>(ne00, (float *) ((char *) dst->data) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
gemm<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *) ((char *) dst->data) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
}
for (int iter = ne11 - ne11 % 4; iter < ne11; iter++) {
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS>(ne00, (float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata + (src1_col_stride * iter), 1,
src0_end - src0_start);
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *) ((char *) dst->data + (iter * nb1)) + src0_start, ne01,
(const char *) src0->data + src0_start * nb01,
(const char *) src1_wdata + (src1_col_stride * iter), 1,
src0_end - src0_start);
}
}
@@ -5452,7 +5444,7 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
const int ith = params->ith;
const int nth = params->nth;
const ggml_from_float_t from_float = ggml_get_type_traits_cpu(GGML_TYPE_Q8_0)->from_float;
const ggml_from_float_t from_float = ggml_get_type_traits_cpu(PARAM_TYPE)->from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
@@ -5474,7 +5466,7 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
const int n_ids = ids->ne[0]; // n_expert_used
const int n_as = ne02; // n_expert
const size_t nbw1 = ggml_row_size(GGML_TYPE_Q8_0, ne10);
const size_t nbw1 = ggml_row_size(PARAM_TYPE, ne10);
const size_t nbw2 = nbw1*ne11;
const size_t nbw3 = nbw2*ne12;
@@ -5486,12 +5478,13 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
GGML_ASSERT(params->wsize >= (GGML_PAD(nbw3, sizeof(int64_t)) + n_as * sizeof(int64_t) +
n_as * ne12 * sizeof(mmid_row_mapping)));
auto wdata = (char *) params->wdata;
auto wdata_src1_end = (char *) wdata + GGML_PAD(nbw3, sizeof(int64_t));
int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
auto * wdata = (char *) params->wdata;
auto * wdata_src1_end = (char *) wdata + GGML_PAD(nbw3, sizeof(int64_t));
auto * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *) (matrix_row_counts + n_as); // [n_as][ne12]
// src1: float32 => block_q8_0
// src1: float32 => param type
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
from_float((float *)((char *) src1->data + i12 * nb12 + i11 * nb11),
@@ -5530,34 +5523,37 @@ template <typename BLOC_TYPE, int64_t INTER_SIZE, int64_t NB_COLS, ggml_type PAR
continue;
}
auto src0_cur = (const char *) src0->data + cur_a*nb02;
const auto * src0_cur = (const char *) src0->data + cur_a*nb02;
//const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = cne1; // src1 rows
int64_t src0_cur_start = (ith * ne01) / nth;
int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
src0_cur_start =
(src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
if (src0_cur_start >= src0_cur_end) return;
src0_cur_start = (src0_cur_start % NB_COLS) ? src0_cur_start + NB_COLS - (src0_cur_start % NB_COLS) : src0_cur_start;
src0_cur_end = (src0_cur_end % NB_COLS) ? src0_cur_end + NB_COLS - (src0_cur_end % NB_COLS) : src0_cur_end;
if (src0_cur_start >= src0_cur_end) {
return;
}
for (int ir1 = 0; ir1 < nr1; ir1++) {
struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
const int id = row_mapping.i1; // selected expert index
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
const int id = row_mapping.i1; // selected expert index
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
const int64_t i11 = id % ne11;
const int64_t i12 = row_mapping.i2; // row index in src1
auto src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2);
const int64_t i1 = id; // selected expert index
const int64_t i2 = i12; // row
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS>(
ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start,
ne01, src0_cur + src0_cur_start * nb01,
const auto * src1_col = (const char *) wdata + (i11 * nbw1 + i12 * nbw2);
gemv<BLOC_TYPE, INTER_SIZE, NB_COLS, PARAM_TYPE>(ne00,
(float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
src0_cur + src0_cur_start * nb01,
src1_col, 1, src0_cur_end - src0_cur_start);
}
}
@@ -5578,7 +5574,7 @@ static const tensor_traits<block_q4_0, 8, 8, GGML_TYPE_Q8_0> q4_0_8x8_q8_0;
static const tensor_traits<block_q4_K, 8, 8, GGML_TYPE_Q8_K> q4_K_8x8_q8_K;
// instance for IQ4
static const tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_IQ4_NL> iq4_nl_4x4_q8_0;
static const tensor_traits<block_iq4_nl, 4, 4, GGML_TYPE_Q8_0> iq4_nl_4x4_q8_0;
} // namespace ggml::cpu::aarch64

File diff suppressed because it is too large Load Diff

View File

@@ -51,11 +51,10 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .run_kernel = */ kai_run_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot,
},
/* .lhs_info = */ {
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .get_offset = */ kai_get_lhs_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32_neon,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32_neon,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32_neon,
/* .require_aligned_m_idx = */ true,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon,
@@ -100,7 +99,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .require_aligned_m_idx = */ false,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
@@ -144,7 +142,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .require_aligned_m_idx = */ false,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
@@ -189,7 +186,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .require_aligned_m_idx = */ false,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,
@@ -233,7 +229,6 @@ static ggml_kleidiai_kernels gemm_gemv_kernels[] = {
/* .get_packed_offset = */ kai_get_lhs_packed_offset_lhs_quant_pack_qsi8d32p_f32,
/* .packed_size = */ kai_get_lhs_packed_size_lhs_quant_pack_qsi8d32p_f32,
/* .pack_func = */ kai_run_lhs_quant_pack_qsi8d32p_f32,
/* .require_aligned_m_idx = */ false,
},
/* .rhs_info = */ {
/* .packed_size = */ kai_get_rhs_packed_size_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0,

View File

@@ -40,7 +40,6 @@ struct lhs_packing_info {
size_t (*packed_size)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr);
void (*pack_func)(size_t m, size_t k, size_t bl, size_t mr, size_t kr, size_t sr, size_t m_idx_start, const float* lhs,
size_t lhs_stride, void* lhs_packed);
bool require_aligned_m_idx;
};
struct rhs_packing_info {

View File

@@ -124,8 +124,7 @@ class tensor_traits : public ggml::cpu::tensor_traits {
size_t sr = kernel->get_sr();
// Calculate number of columns to be processed per thread
const bool use_multithread = lhs_info->require_aligned_m_idx && m <= mr ? false : true;
const size_t num_m_per_thread = use_multithread ? kai_roundup(m, nth) / nth : m;
const size_t num_m_per_thread = kai_roundup(m, mr * nth) / nth;
const size_t m_start = ith * num_m_per_thread;
size_t m_to_process = num_m_per_thread;
if ((m_start + m_to_process) > m) {
@@ -135,11 +134,11 @@ class tensor_traits : public ggml::cpu::tensor_traits {
if(m_start < m) {
// Transform LHS
const size_t src_stride = src1->nb[1];
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(0, dst->src[1]->nb[1]));
const float * src_ptr = reinterpret_cast<const float *>(lhs + lhs_info->get_offset(m_start, dst->src[1]->nb[1]));
const size_t lhs_packed_offset = lhs_info->get_packed_offset(m_start, k, QK4_0, mr, kr, sr);
void * lhs_packed_ptr = static_cast<void *>(lhs_packed + lhs_packed_offset);
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, m_start, src_ptr, src_stride, lhs_packed_ptr);
lhs_info->pack_func(m_to_process, k, QK4_0, mr, kr, sr, 0, src_ptr, src_stride, lhs_packed_ptr);
}
ggml_barrier(params->threadpool);

View File

@@ -55,6 +55,7 @@
#include <atomic>
#include <array>
#include <type_traits>
#ifdef _MSC_VER
#define NOINLINE __declspec(noinline)
@@ -1092,13 +1093,403 @@ class tinyBLAS_Q0_PPC {
}
}
template<typename VA, typename VB>
void packNormal(const TA* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
template<typename VA, typename VB, int size>
void packNormalInt4(const TA* a, int64_t lda, int rows, int cols, VA* vec, std::array<int, size>& comparray) {
int64_t i, j;
TA *aoffset = NULL;
VA *vecOffset = NULL;
TA *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TA *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
VB c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2] = {0};
VB c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2] = {0};
VB t1, t2, t3, t4, t5, t6, t7, t8;
const vector signed char lowMask = vec_splats((signed char)0xF);
const vector unsigned char v4 = vec_splats((unsigned char)0x4);
const vector signed char v8 = vec_splats((signed char)0x8);
aoffset = const_cast<TA*>(a);
vecOffset = vec;
vector unsigned char swiz1 = {0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23};
vector unsigned char swiz2 = {8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31};
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
vector signed int vsum = {0};
vector signed int vsum2 = {0};
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
i = (cols >> 2);
if (i > 0) {
do {
c1[1] = reinterpret_cast<VB>(vec_xl(0, aoffset1->qs));
c2[1] = reinterpret_cast<VB>(vec_xl(0, aoffset2->qs));
c3[1] = reinterpret_cast<VB>(vec_xl(0, aoffset3->qs));
c4[1] = reinterpret_cast<VB>(vec_xl(0, aoffset4->qs));
c5[1] = reinterpret_cast<VB>(vec_xl(0, aoffset5->qs));
c6[1] = reinterpret_cast<VB>(vec_xl(0, aoffset6->qs));
c7[1] = reinterpret_cast<VB>(vec_xl(0, aoffset7->qs));
c8[1] = reinterpret_cast<VB>(vec_xl(0, aoffset8->qs));
c1[0] = vec_and(c1[1], lowMask);
c1[1] = vec_sr(c1[1], v4);
c1[0] = vec_sub(c1[0], v8);
c1[1] = vec_sub(c1[1], v8);
vsum = vec_sum4s(c1[0], vsum);
vsum2 = vec_sum4s(c1[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[0] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c2[0] = vec_and(c2[1], lowMask);
c2[1] = vec_sr(c2[1], v4);
c2[0] = vec_sub(c2[0], v8);
c2[1] = vec_sub(c2[1], v8);
vsum = vec_sum4s(c2[0], vsum);
vsum2 = vec_sum4s(c2[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[1] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c3[0] = vec_and(c3[1], lowMask);
c3[1] = vec_sr(c3[1], v4);
c3[0] = vec_sub(c3[0], v8);
c3[1] = vec_sub(c3[1], v8);
vsum = vec_sum4s(c3[0], vsum);
vsum2 = vec_sum4s(c3[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[2] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c4[0] = vec_and(c4[1], lowMask);
c4[1] = vec_sr(c4[1], v4);
c4[0] = vec_sub(c4[0], v8);
c4[1] = vec_sub(c4[1], v8);
vsum = vec_sum4s(c4[0], vsum);
vsum2 = vec_sum4s(c4[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[3] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c5[0] = vec_and(c5[1], lowMask);
c5[1] = vec_sr(c5[1], v4);
c5[0] = vec_sub(c5[0], v8);
c5[1] = vec_sub(c5[1], v8);
vsum = vec_sum4s(c5[0], vsum);
vsum2 = vec_sum4s(c5[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[4] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c6[0] = vec_and(c6[1], lowMask);
c6[1] = vec_sr(c6[1], v4);
c6[0] = vec_sub(c6[0], v8);
c6[1] = vec_sub(c6[1], v8);
vsum = vec_sum4s(c6[0], vsum);
vsum2 = vec_sum4s(c6[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[5] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c7[0] = vec_and(c7[1], lowMask);
c7[1] = vec_sr(c7[1], v4);
c7[0] = vec_sub(c7[0], v8);
c7[1] = vec_sub(c7[1], v8);
vsum = vec_sum4s(c7[0], vsum);
vsum2 = vec_sum4s(c7[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[6] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c8[0] = vec_and(c8[1], lowMask);
c8[1] = vec_sr(c8[1], v4);
c8[0] = vec_sub(c8[0], v8);
c8[1] = vec_sub(c8[1], v8);
vsum = vec_sum4s(c8[0], vsum);
vsum2 = vec_sum4s(c8[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[7] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
t1 = vec_perm(c5[0], c6[0], swiz1);
t2 = vec_perm(c5[0], c6[0], swiz2);
t3 = vec_perm(c7[0], c8[0], swiz1);
t4 = vec_perm(c7[0], c8[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset+128);
vec_xst(t6, 0, vecOffset+144);
vec_xst(t7, 0, vecOffset+160);
vec_xst(t8, 0, vecOffset+176);
t1 = vec_perm(c5[1], c6[1], swiz1);
t2 = vec_perm(c5[1], c6[1], swiz2);
t3 = vec_perm(c7[1], c8[1], swiz1);
t4 = vec_perm(c7[1], c8[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset+192);
vec_xst(t6, 0, vecOffset+208);
vec_xst(t7, 0, vecOffset+224);
vec_xst(t8, 0, vecOffset+240);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
aoffset4 += lda;
aoffset5 += lda;
aoffset6 += lda;
aoffset7 += lda;
aoffset8 += lda;
vecOffset += 256;
i--;
} while (i > 0);
}
j--;
} while (j > 0);
}
if (rows & 4) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset += 4 * lda;
i = (cols >> 2);
if (i > 0) {
do {
c1[1] = reinterpret_cast<VB>(vec_xl(0, aoffset1->qs));
c2[1] = reinterpret_cast<VB>(vec_xl(0, aoffset2->qs));
c3[1] = reinterpret_cast<VB>(vec_xl(0, aoffset3->qs));
c4[1] = reinterpret_cast<VB>(vec_xl(0, aoffset4->qs));
c1[0] = vec_and(c1[1], lowMask);
c1[1] = vec_sr(c1[1], v4);
c1[0] = vec_sub(c1[0], v8);
c1[1] = vec_sub(c1[1], v8);
vsum = vec_sum4s(c1[0], vsum);
vsum2 = vec_sum4s(c1[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[0] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c2[0] = vec_and(c2[1], lowMask);
c2[1] = vec_sr(c2[1], v4);
c2[0] = vec_sub(c2[0], v8);
c2[1] = vec_sub(c2[1], v8);
vsum = vec_sum4s(c2[0], vsum);
vsum2 = vec_sum4s(c2[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[1] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c3[0] = vec_and(c3[1], lowMask);
c3[1] = vec_sr(c3[1], v4);
c3[0] = vec_sub(c3[0], v8);
c3[1] = vec_sub(c3[1], v8);
vsum = vec_sum4s(c3[0], vsum);
vsum2 = vec_sum4s(c3[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[2] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c4[0] = vec_and(c4[1], lowMask);
c4[1] = vec_sr(c4[1], v4);
c4[0] = vec_sub(c4[0], v8);
c4[1] = vec_sub(c4[1], v8);
vsum = vec_sum4s(c4[0], vsum);
vsum2 = vec_sum4s(c4[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[3] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats( 0);
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
aoffset4 += lda;
vecOffset += 128;
i--;
} while (i > 0);
}
}
if (rows & 3) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
i = (cols >> 2);
if (i > 0) {
do {
switch(rows) {
case 3: c3[1] = reinterpret_cast<VB>(vec_xl(0, aoffset3->qs));
case 2: c2[1] = reinterpret_cast<VB>(vec_xl(0, aoffset2->qs));
case 1: c1[1] = reinterpret_cast<VB>(vec_xl(0, aoffset1->qs));
break;
}
c1[0] = vec_and(c1[1], lowMask);
c1[1] = vec_sr(c1[1], v4);
c1[0] = vec_sub(c1[0], v8);
c1[1] = vec_sub(c1[1], v8);
vsum = vec_sum4s(c1[0], vsum);
vsum2 = vec_sum4s(c1[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[0] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c2[0] = vec_and(c2[1], lowMask);
c2[1] = vec_sr(c2[1], v4);
c2[0] = vec_sub(c2[0], v8);
c2[1] = vec_sub(c2[1], v8);
vsum = vec_sum4s(c2[0], vsum);
vsum2 = vec_sum4s(c2[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[1] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c3[0] = vec_and(c3[1], lowMask);
c3[1] = vec_sr(c3[1], v4);
c3[0] = vec_sub(c3[0], v8);
c3[1] = vec_sub(c3[1], v8);
vsum = vec_sum4s(c3[0], vsum);
vsum2 = vec_sum4s(c3[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[2] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
c4[0] = vec_and(c4[1], lowMask);
c4[1] = vec_sr(c4[1], v4);
c4[0] = vec_sub(c4[0], v8);
c4[1] = vec_sub(c4[1], v8);
vsum = vec_sum4s(c4[0], vsum);
vsum2 = vec_sum4s(c4[1], vsum2);
vsum = vec_add(vsum, vsum2);
comparray[3] = vsum[0] + vsum[1] + vsum[2] + vsum[3];
vsum = vec_splats(0);
vsum2 = vec_splats(0);
t1 = vec_perm(c1[0], c2[0], swiz1);
t2 = vec_perm(c1[0], c2[0], swiz2);
t3 = vec_perm(c3[0], c4[0], swiz1);
t4 = vec_perm(c3[0], c4[0], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
vec_xst(t7, 0, vecOffset+32);
vec_xst(t8, 0, vecOffset+48);
t1 = vec_perm(c1[1], c2[1], swiz1);
t2 = vec_perm(c1[1], c2[1], swiz2);
t3 = vec_perm(c3[1], c4[1], swiz1);
t4 = vec_perm(c3[1], c4[1], swiz2);
t5 = vec_perm(t1, t3, swiz3);
t6 = vec_perm(t1, t3, swiz4);
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
vec_xst(t7, 0, vecOffset+96);
vec_xst(t8, 0, vecOffset+112);
aoffset1 += lda;
aoffset2 += lda;
aoffset3 += lda;
vecOffset += 128;
i--;
} while(i > 0);
}
}
}
template<typename VA, typename VB>
void packNormal(const TB* a, int64_t lda, int rows, int cols, VA* vec, bool flip) {
int64_t i, j;
TB *aoffset = NULL;
VA *vecOffset = NULL;
TB *aoffset1 = NULL, *aoffset2 = NULL, *aoffset3 = NULL, *aoffset4 = NULL;
TB *aoffset5 = NULL, *aoffset6 = NULL, *aoffset7 = NULL, *aoffset8 = NULL;
__vector_pair C1, C2, C3, C4, C5, C6, C7, C8;
VB c1[2] = {0}, c2[2] = {0}, c3[2] = {0}, c4[2]={0};
VB c5[2] = {0}, c6[2] = {0}, c7[2] = {0}, c8[2]={0};
@@ -1111,24 +1502,24 @@ class tinyBLAS_Q0_PPC {
vector unsigned char swiz3 = {0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27};
vector unsigned char swiz4 = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31};
aoffset = const_cast<TA*>(a);
aoffset = const_cast<TB*>(a);
vecOffset = vec;
j = (rows >> 3);
if (j > 0) {
do {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset5 = aoffset4 + lda;
aoffset6 = aoffset5 + lda;
aoffset7 = aoffset6 + lda;
aoffset8 = aoffset7 + lda;
aoffset += 8 * lda;
i = (cols >> 3);
if (i > 0) {
do {
i = (cols >> 3);
if (i > 0) {
do {
C1 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset1->qs);
C2 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset2->qs);
C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs);
@@ -1156,10 +1547,10 @@ class tinyBLAS_Q0_PPC {
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset);
vec_xst(t6, 0, vecOffset+16);
@@ -1175,10 +1566,10 @@ class tinyBLAS_Q0_PPC {
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+64);
vec_xst(t6, 0, vecOffset+80);
@@ -1194,10 +1585,10 @@ class tinyBLAS_Q0_PPC {
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+128);
vec_xst(t6, 0, vecOffset+144);
@@ -1213,10 +1604,10 @@ class tinyBLAS_Q0_PPC {
t7 = vec_perm(t2, t4, swiz3);
t8 = vec_perm(t2, t4, swiz4);
if (flip == true) {
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
t5 = vec_xor(t5, xor_vector);
t6 = vec_xor(t6, xor_vector);
t7 = vec_xor(t7, xor_vector);
t8 = vec_xor(t8, xor_vector);
}
vec_xst(t5, 0, vecOffset+192);
vec_xst(t6, 0, vecOffset+208);
@@ -1240,11 +1631,11 @@ class tinyBLAS_Q0_PPC {
}
if (rows & 4) {
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset += 4 * lda;
aoffset1 = aoffset;
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
aoffset4 = aoffset3 + lda;
aoffset += 4 * lda;
i = (cols >> 3);
if (i > 0) {
@@ -1311,7 +1702,7 @@ class tinyBLAS_Q0_PPC {
aoffset2 = aoffset1 + lda;
aoffset3 = aoffset2 + lda;
i = (cols >> 3);
if (i > 0) {
if (i > 0) {
do {
switch(rows) {
case 3: C3 = __builtin_vsx_lxvp(0, (__vector_pair*)aoffset3->qs);
@@ -1527,13 +1918,18 @@ class tinyBLAS_Q0_PPC {
void KERNEL_4x8(int64_t ii, int64_t jj) {
vec_t vec_A[8], vec_B[16] = {0};
acc_t acc_0, acc_1;
std::array<int, 4> comparray;
std::array<int, 4> comparray {};
vector float fin_res[8] = {0};
vector float vs[8] = {0};
bool isAblock_q4 = std::is_same_v<TA, block_q4_0>;
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 4, 8, (int8_t*)vec_A, false);
if (std::is_same_v<TA, block_q4_0>) {
packNormalInt4<int8_t, vector signed char, 4>((A+(ii*lda)+l), lda, 4, 4, (int8_t*)vec_A, comparray);
} else {
packNormal<int8_t, vector signed char>((const TB*)(A+(ii*lda)+l), lda, 4, 8, (int8_t*)vec_A, false);
}
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
@@ -1545,15 +1941,17 @@ class tinyBLAS_Q0_PPC {
*((float*)&vs[I+4]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 4; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
if (!isAblock_q4) {
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 4; i++) {
comparray[i] = 0;
int ca = 0;
auto *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
}
compute<4>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<4>(&acc_1, 0, 4, comparray, vs, fin_res);
@@ -1565,13 +1963,18 @@ class tinyBLAS_Q0_PPC {
void KERNEL_8x4(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[8] = {0};
acc_t acc_0, acc_1;
std::array<int, 8> comparray;
std::array<int, 8> comparray {};
vector float fin_res[8] = {0};
vector float vs[8] = {0};
bool isAblock_q4 = std::is_same_v<TA, block_q4_0>;
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
if (std::is_same_v<TA, block_q4_0>) {
packNormalInt4<int8_t, vector signed char, 8>((A+(ii*lda)+l), lda, 8, 4, (int8_t*)vec_A, comparray);
} else {
packNormal<int8_t, vector signed char>((const TB*)(A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
}
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 4, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
@@ -1582,15 +1985,17 @@ class tinyBLAS_Q0_PPC {
*((float*)&vs[I]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
if (!isAblock_q4) {
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
auto *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
@@ -1602,15 +2007,20 @@ class tinyBLAS_Q0_PPC {
void KERNEL_8x8(int64_t ii, int64_t jj) {
vec_t vec_A[16], vec_B[16] = {0};
acc_t acc_0, acc_1, acc_2, acc_3;
std::array<int, 8> comparray;
std::array<int, 8> comparray {};
vector float fin_res[16] = {0};
vector float vs[16] = {0};
bool isAblock_q4 = std::is_same_v<TA, block_q4_0>;
for (int l = 0; l < k; l++) {
__builtin_mma_xxsetaccz(&acc_0);
__builtin_mma_xxsetaccz(&acc_1);
__builtin_mma_xxsetaccz(&acc_2);
__builtin_mma_xxsetaccz(&acc_3);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
if (std::is_same_v<TA, block_q4_0>) {
packNormalInt4<int8_t, vector signed char, 8>((A+(ii*lda)+l), lda, 8, 4, (int8_t*)vec_A, comparray);
} else {
packNormal<int8_t, vector signed char>((const TB*)(A+(ii*lda)+l), lda, 8, 8, (int8_t*)vec_A, false);
}
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, 8, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x++) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
@@ -1624,15 +2034,17 @@ class tinyBLAS_Q0_PPC {
*((float*)&vs[I+8]+J) = (unhalf((A+((ii+I)*lda)+l)->d) * unhalf((B+((jj+J+4)*ldb)+l)->d));
}
}
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
if (!isAblock_q4) {
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < 8; i++) {
comparray[i] = 0;
int ca = 0;
auto *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
}
compute<8>(&acc_0, 0, 0, comparray, vs, fin_res);
compute<8>(&acc_1, 4, 4, comparray, vs, fin_res);
@@ -1653,16 +2065,17 @@ class tinyBLAS_Q0_PPC {
int64_t duty = (tiles + nth - 1) / nth;
int64_t start = duty * ith;
int64_t end = start + duty;
vec_t vec_A[8], vec_B[8] = {0};
vec_t vec_A[8] = {0}, vec_B[8] = {0};
vector signed int vec_C[4];
acc_t acc_0;
bool isAblock_q4 = std::is_same_v<TA, block_q4_0>;
if (end > tiles)
end = tiles;
for (int64_t job = start; job < end; ++job) {
int64_t ii = m0 + job / xtiles * RM;
int64_t jj = n0 + job % xtiles * RN;
std::array<int, RM> comparray;
std::array<int, 4> comparray{};
vector float res[4] = {0};
vector float fin_res[4] = {0};
vector float vs[4] = {0};
@@ -1673,7 +2086,11 @@ class tinyBLAS_Q0_PPC {
__builtin_prefetch((A+(ii*lda)+(l+1))->qs, 0, 1); // prefetch one loop ahead
__builtin_prefetch((B+(jj*ldb)+(l+1))->qs, 0, 1); // prefetch one loop ahead
__builtin_mma_xxsetaccz(&acc_0);
packNormal<int8_t, vector signed char>((A+(ii*lda)+l), lda, RM, 8, (int8_t*)vec_A, false);
if (isAblock_q4) {
packNormalInt4<int8_t, vector signed char, 4>((A+(ii*lda)+l), lda, RM, 4, (int8_t*)vec_A, comparray);
} else {
packNormal<int8_t, vector signed char>((const TB*)(A+(ii*lda)+l), lda, RM, 8, (int8_t*)vec_A, false);
}
packNormal<uint8_t, vector unsigned char>((B+(jj*ldb)+l), ldb, RN, 8, (uint8_t*)vec_B, true);
for(int x = 0; x < 8; x+=4) {
__builtin_mma_xvi8ger4pp(&acc_0, vec_A[x], vec_B[x]);
@@ -1687,17 +2104,18 @@ class tinyBLAS_Q0_PPC {
}
}
__builtin_mma_disassemble_acc(vec_C, &acc_0);
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < RM; i++) {
comparray[i] = 0;
int ca = 0;
const int8_t *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
if (!isAblock_q4) {
auto aoffset = A+(ii*lda)+l;
for (int i = 0; i < RM; i++) {
comparray[i] = 0;
int ca = 0;
auto *at = aoffset->qs;
for (int j = 0; j < 32; j++)
ca += (int)*at++;
comparray[i] = ca;
aoffset += lda;
}
}
for (int i = 0; i < RM; i++) {
CA[i] = vec_splats((float)(((double)comparray[i]) * -128.0));
res[i] = vec_add(vec_ctf(vec_C[i], 0), CA[i]);
@@ -2013,6 +2431,7 @@ class tinyBLAS_PPC {
}
}
}
void KERNEL_4x4(int64_t ii, int64_t jj) {
vec_t vec_A[4], vec_B[4], vec_C[4];
acc_t acc_0;
@@ -2259,15 +2678,27 @@ class tinyBLAS_PPC {
vec_t vec_C[4];
acc_t acc_0;
__builtin_mma_xxsetaccz(&acc_0);
vec_t vec_A[4], vec_B[4];
vec_t vec_A[4] {0}, vec_B[4] = {0};
for (int l=0; l<k; l+=4) {
if (RN >= 4 && RM == 1) {
/* 'GEMV Forwarding' concept is used in first two conditional loops.
* when one of the matrix has a single row/column, the elements are
* broadcasted, instead of using packing routine to prepack the
* matrix elements.
*/
if (RM == 1) {
TA* a = const_cast<TA*>(A+(ii)*lda+l);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, 4, 4, (TA*)vec_B);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, RN, 4, (TA*)vec_B);
vec_A[0] = (vec_t)vec_xl(0,a);
vec_A[1] = (vec_t)vec_splats(*((TA*)&vec_A+1));
vec_A[2] = (vec_t)vec_splats(*((TA*)&vec_A+2));
vec_A[3] = (vec_t)vec_splats(*((TA*)&vec_A+3));
} else if (RN == 1) {
packTranspose<vector float>(A+(ii*lda)+l, lda, RM, 4, (TA*)vec_A);
TB* b = const_cast<TB*>(B+(jj)*ldb+l);
vec_B[0] = (vec_t)vec_xl(0,b);
vec_B[1] = (vec_t)vec_splats(*((TB*)&vec_B+1));
vec_B[2] = (vec_t)vec_splats(*((TB*)&vec_B+2));
vec_B[3] = (vec_t)vec_splats(*((TB*)&vec_B+3));
} else {
packTranspose<vector float>(A+(ii*lda)+l, lda, RM, 4, (TA*)vec_A);
packTranspose<vector float>(B+(jj*ldb)+l, ldb, RN, 4, (TA*)vec_B);
@@ -2371,8 +2802,10 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
assert(params->ith < params->nth);
// only enable sgemm for prompt processing
#if !defined(__MMA__)
if (n < 2)
return false;
#endif
if (Ctype != GGML_TYPE_F32)
return false;
@@ -2503,8 +2936,8 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
params->ith, params->nth};
tb.matmul(m, n);
return true;
#elif defined(__MMA__)
//TO-DO: Remove this condition once gemv forwarding is enabled.
if (n < 8 && n != 4)
return false;
if (m < 8 && m != 4)
@@ -2516,7 +2949,6 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif
@@ -2541,6 +2973,19 @@ bool llamafile_sgemm(const struct ggml_compute_params * params, int64_t m, int64
params->ith, params->nth};
tb.matmul(m, n);
return true;
#elif defined(__MMA__)
//TO-DO: Remove this condition once gemv forwarding is enabled.
if (n < 8 && n != 4)
return false;
if (m < 8 && m != 4)
return false;
tinyBLAS_Q0_PPC<block_q4_0, block_q8_0, float> tb{
k, (const block_q4_0 *)A, lda,
(const block_q8_0 *)B, ldb,
(float *)C, ldc,
params->ith, params->nth};
tb.matmul(m, n);
return true;
#else
return false;
#endif

View File

@@ -52,7 +52,7 @@
#define GGML_CUDA_CC_IS_NVIDIA(cc) (cc < GGML_CUDA_CC_OFFSET_MTHREADS)
// AMD
// GCN/CNDA, wave size is 64
// GCN/CDNA, wave size is 64
#define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
#define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
#define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
@@ -60,16 +60,18 @@
#define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
#define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
// RNDA removes MFMA, dp4a, xnack, acc registers, wave size is 32
// RDNA removes MFMA, dp4a, xnack, acc registers, wave size is 32
#define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
#define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
#define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
#define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
#define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
#define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
#define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
#define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3)
#define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
#define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
#define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
@@ -209,9 +211,9 @@ typedef float2 dfloat2;
#define FP16_MMA_AVAILABLE
#endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
#define FP16_MMA_AVAILABLE
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3))
#endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || defined(RDNA4))
#if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
#define NEW_MMA_AVAILABLE
@@ -244,14 +246,14 @@ static bool fp16_mma_available(const int cc) {
return false;
#else
return (GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc);
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc);
#endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
}
// To be used for feature selection of external libraries, e.g. cuBLAS.
static bool fp16_mma_hardware_available(const int cc) {
return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc);
GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc);
}
// Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
@@ -409,7 +411,7 @@ static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, i
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
c = __builtin_amdgcn_sdot4(a, b, c, false);
#elif defined(RDNA3)
#elif defined(RDNA3) || defined(RDNA4)
c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
#elif defined(RDNA1) || defined(__gfx900__)
int tmp1;

View File

@@ -1216,7 +1216,7 @@ static void ggml_cuda_op_mul_mat_cublas(
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
if (GGML_CUDA_CC_IS_CDNA(cc)) {
if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
const float alpha = 1.0f;
const float beta = 0.0f;
CUBLAS_CHECK(
@@ -1759,7 +1759,9 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
beta = &beta_f32;
}
if (GGML_CUDA_CC_IS_CDNA(ggml_cuda_info().devices[ctx.device].cc)) {
int id = ggml_cuda_get_device();
const int cc = ggml_cuda_info().devices[id].cc;
if (GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
cu_compute_type = CUBLAS_COMPUTE_32F;
alpha = &alpha_f32;
beta = &beta_f32;
@@ -1836,7 +1838,7 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
}
#endif
if (dst->op_params[0] == GGML_PREC_DEFAULT) {
if (dst->op_params[0] == GGML_PREC_DEFAULT && cu_data_type == CUDA_R_16F) {
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
}

View File

@@ -149,5 +149,5 @@ bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11) {
return !fp16_mma_hardware_available(cc) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}
return (!GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
return (!GGML_CUDA_CC_IS_RDNA4(cc) && !GGML_CUDA_CC_IS_RDNA3(cc) && !GGML_CUDA_CC_IS_CDNA(cc)) || ne11 < MMQ_DP4A_MAX_BATCH_SIZE;
}

View File

@@ -2577,9 +2577,9 @@ static __device__ void mul_mat_q_process_tile(
template <ggml_type type, int mmq_x, int nwarps, bool need_check>
#if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#if defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
__launch_bounds__(WARP_SIZE*nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#endif // defined(RDNA4) || defined(RDNA3) || defined(RDNA2) || defined(CDNA) || defined(GCN)
#else
#if __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
__launch_bounds__(WARP_SIZE*nwarps, 1)

View File

@@ -54,7 +54,7 @@ enum mmvq_parameter_table_id {
};
static constexpr __device__ mmvq_parameter_table_id get_device_table_id() {
#if defined(RDNA2) || defined(RDNA3)
#if defined(RDNA2) || defined(RDNA3) || defined(RDNA4)
return MMVQ_PARAMETERS_RDNA2;
#elif defined(GCN) || defined(CDNA)
return MMVQ_PARAMETERS_GCN;
@@ -64,7 +64,7 @@ static constexpr __device__ mmvq_parameter_table_id get_device_table_id() {
}
static __host__ mmvq_parameter_table_id get_device_table_id(int cc) {
if (GGML_CUDA_CC_IS_RDNA2(cc) || GGML_CUDA_CC_IS_RDNA3(cc)) {
if (GGML_CUDA_CC_IS_RDNA2(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc)) {
return MMVQ_PARAMETERS_RDNA2;
}
if (GGML_CUDA_CC_IS_GCN(cc) || GGML_CUDA_CC_IS_CDNA(cc)) {

View File

@@ -151,6 +151,10 @@
#define CDNA
#endif
#if defined(__GFX12__)
#define RDNA4
#endif
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
defined(__gfx1150__) || defined(__gfx1151__)
#define RDNA3

View File

@@ -381,6 +381,35 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
return r;
}
#elif defined(__riscv) && defined(GGML_RV_ZFH)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
float f;
__asm__(
"fmv.h.x %[f], %[h]\n\t"
"fcvt.s.h %[f], %[f]"
: [f] "=&f" (f)
: [h] "r" (h)
);
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
__asm__(
"fcvt.h.s %[f], %[f]\n\t"
"fmv.x.h %[h], %[f]"
: [h] "=&r" (res)
: [f] "f" (f)
);
return res;
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#else
// FP16 <-> FP32

View File

@@ -25,124 +25,47 @@ endif ()
if (GGML_OPENCL_EMBED_KERNELS)
add_compile_definitions(GGML_OPENCL_EMBED_KERNELS)
set(OPENCL_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl.cl.h")
set(OPENCL_MM_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mm.cl.h")
set(OPENCL_CVT_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_cvt.cl.h")
set(EMBED_KERNEL_SCRIPT "${CMAKE_CURRENT_SOURCE_DIR}/kernels/embed_kernel.py")
file(MAKE_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/autogenerated")
set(OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle.cl.h")
set(OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle_general.cl.h")
set(OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h")
set(OPENCL_TRANSPOSE_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_16.cl.h")
set(OPENCL_TRANSPOSE_32_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32.cl.h")
set(OPENCL_TRANSPOSE_32_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32_16.cl.h")
set(EMBED_KERNEL_SCRIPT "${CMAKE_CURRENT_SOURCE_DIR}/kernels/embed_kernel.py")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
include_directories("${CMAKE_BINARY_DIR}/autogenerated")
# Python must be accessible from command line
add_custom_command(
OUTPUT ${OPENCL_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl.cl
${OPENCL_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_MM_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mm.cl
${OPENCL_MM_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_mm.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_mm.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_CVT_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_cvt.cl
${OPENCL_CVT_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_cvt.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_cvt.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle.cl
${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_gemv_noshuffle.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_gemv_noshuffle.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle_general.cl
${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_gemv_noshuffle_general.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_gemv_noshuffle_general.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl
${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_mul_mat_Ab_Bi_8x4.cl.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_16.cl
${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_16.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_16.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32.cl
${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_32.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_32.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32_16.cl
${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_32_16.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_32_16.cl.h"
)
target_sources(${TARGET_NAME} PRIVATE
${OPENCL_CL_SOURCE_EMBED}
${OPENCL_MM_CL_SOURCE_EMBED}
${OPENCL_CVT_CL_SOURCE_EMBED}
${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED})
else ()
# copy ggml-opencl.cl to bin directory
configure_file(kernels/ggml-opencl.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl.cl COPYONLY)
configure_file(kernels/ggml-opencl_mm.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mm.cl COPYONLY)
configure_file(kernels/ggml-opencl_cvt.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_cvt.cl COPYONLY)
configure_file(kernels/ggml-opencl_gemv_noshuffle.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle.cl COPYONLY)
configure_file(kernels/ggml-opencl_gemv_noshuffle_general.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle_general.cl COPYONLY)
configure_file(kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mul_mat_Ab_Bi_8x4.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_16.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_32.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_32_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32_16.cl COPYONLY)
target_include_directories(${TARGET_NAME} PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/autogenerated")
endif ()
function(ggml_opencl_add_kernel KNAME)
set(KERN_HDR ${CMAKE_CURRENT_BINARY_DIR}/autogenerated/${KNAME}.cl.h)
set(KERN_SRC ${CMAKE_CURRENT_SOURCE_DIR}/kernels/${KNAME}.cl)
if (GGML_OPENCL_EMBED_KERNELS)
message(STATUS "opencl: embedding kernel ${KNAME}")
# Python must be accessible from command line
add_custom_command(
OUTPUT ${KERN_HDR}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT} ${KERN_SRC} ${KERN_HDR}
DEPENDS ${KERN_SRC} ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ${KERN_HDR}"
)
target_sources(${TARGET_NAME} PRIVATE ${KERN_HDR})
else ()
message(STATUS "opencl: adding kernel ${KNAME}")
configure_file(${KERN_SRC} ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/${KNAME}.cl COPYONLY)
endif ()
endfunction()
set(GGML_OPENCL_KERNELS
ggml-opencl
ggml-opencl_mm
ggml-opencl_cvt
ggml-opencl_gemv_noshuffle
ggml-opencl_gemv_noshuffle_general
ggml-opencl_mul_mat_Ab_Bi_8x4
ggml-opencl_transpose_16
ggml-opencl_transpose_32
ggml-opencl_transpose_32_16
ggml-opencl_im2col
)
foreach (K ${GGML_OPENCL_KERNELS})
ggml_opencl_add_kernel(${K})
endforeach()

View File

@@ -224,12 +224,14 @@ struct ggml_backend_opencl_context {
cl_program program;
cl_program program_1;
cl_program program_2;
cl_program program_im2col;
cl_kernel kernel_add, kernel_add_row;
cl_kernel kernel_mul, kernel_mul_row;
cl_kernel kernel_scale;
cl_kernel kernel_silu, kernel_silu_4;
cl_kernel kernel_gelu, kernel_gelu_4;
cl_kernel kernel_gelu_quick, kernel_gelu_quick_4;
cl_kernel kernel_relu;
cl_kernel kernel_clamp;
cl_kernel kernel_norm;
@@ -239,6 +241,7 @@ struct ggml_backend_opencl_context {
cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
cl_kernel kernel_rope_multi_f32, kernel_rope_multi_f16, kernel_rope_vision_f32, kernel_rope_vision_f16;
cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
cl_kernel kernel_mul_mat_f32_f32;
cl_kernel kernel_mul_mat_f16_f16;
@@ -252,6 +255,7 @@ struct ggml_backend_opencl_context {
kernel_mul_mat_q4_0_f32_flat_img_v0;
cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
cl_kernel kernel_mul_mv_q6_K_f32;
cl_kernel kernel_im2col_f32, kernel_im2col_f16;
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
// Transpose kernels
@@ -708,6 +712,8 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_quick = clCreateKernel(backend_ctx->program, "kernel_gelu_quick", &err), err));
CL_CHECK((backend_ctx->kernel_gelu_quick_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_quick_4", &err), err));
CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
@@ -722,6 +728,10 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_multi_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_multi_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_multi_f16", &err), err));
CL_CHECK((backend_ctx->kernel_rope_vision_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f32", &err), err));
CL_CHECK((backend_ctx->kernel_rope_vision_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_vision_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
@@ -769,6 +779,19 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
// im2col kernels
#ifdef GGML_OPENCL_EMBED_KERNELS
const std::string kernel_src_im2col {
#include "ggml-opencl_im2col.cl.h"
};
#else
const std::string kernel_src_im2col = read_file("ggml-opencl_im2col.cl");
#endif
backend_ctx->program_im2col = build_program_from_source(context, device, kernel_src_im2col.c_str(), compile_opts);
CL_CHECK((backend_ctx->kernel_im2col_f32 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f32", &err), err));
CL_CHECK((backend_ctx->kernel_im2col_f16 = clCreateKernel(backend_ctx->program_im2col, "kernel_im2col_f16", &err), err));
// Kernels for Adreno
#ifdef GGML_OPENCL_USE_ADRENO_KERNELS
#ifdef GGML_OPENCL_EMBED_KERNELS
@@ -1187,6 +1210,7 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_GELU_QUICK:
return ggml_is_contiguous(op->src[0]) && op->src[0]->type == GGML_TYPE_F32;
default:
return false;
@@ -1216,14 +1240,26 @@ static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_te
return op->ne[3] == 1;
case GGML_OP_ROPE: {
const int mode = ((const int32_t *) op->op_params)[2];
if (mode & GGML_ROPE_TYPE_MROPE) {
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope && !is_vision) {
if (op->src[0]->type == GGML_TYPE_F32 ||
op->src[0]->type == GGML_TYPE_F16) {
return true;
}
return false;
}
if (mode & GGML_ROPE_TYPE_VISION) {
if (is_vision) {
if (op->src[0]->type == GGML_TYPE_F32 ||
op->src[0]->type == GGML_TYPE_F16) {
return true;
}
return false;
}
return true;
}
case GGML_OP_IM2COL:
return true;
default:
return false;
}
@@ -2582,6 +2618,53 @@ static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const
#endif
}
static void ggml_cl_gelu_quick(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
UNUSED(src1);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset0 = extra0->offset + src0->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
cl_kernel kernel;
int n = ggml_nelements(dst);
if (n % 4 == 0) {
kernel = backend_ctx->kernel_gelu_quick_4;
n /= 4;
} else {
kernel = backend_ctx->kernel_gelu_quick;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
size_t global_work_size[] = {(size_t)n, 1, 1};
size_t local_work_size[] = {64, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
#endif
}
static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src0->extra);
@@ -3980,6 +4063,7 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
float attn_factor;
float beta_fast;
float beta_slow;
int32_t sections[4];
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
@@ -3987,23 +4071,23 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections, (int32_t *) dst->op_params + 11, sizeof(int32_t)*4);
const bool is_neox = mode & 2;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
cl_kernel kernel;
if (!is_neox) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_norm_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_norm_f16;
break;
default:
GGML_ASSERT(false);
};
} else {
if (is_neox) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_neox_f32;
@@ -4014,6 +4098,39 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
default:
GGML_ASSERT(false);
};
} else if (is_mrope && !is_vision) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_multi_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_multi_f16;
break;
default:
GGML_ASSERT(false);
};
} else if (is_vision) {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_vision_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_vision_f16;
break;
default:
GGML_ASSERT(false);
}
} else {
switch (src0->type) {
case GGML_TYPE_F32:
kernel = backend_ctx->kernel_rope_norm_f32;
break;
case GGML_TYPE_F16:
kernel = backend_ctx->kernel_rope_norm_f16;
break;
default:
GGML_ASSERT(false);
};
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
@@ -4049,6 +4166,9 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
if (is_mrope || is_vision) {
CL_CHECK(clSetKernelArg(kernel, 33, sizeof(int32_t)*4, &sections));
}
size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
size_t local_work_size[] = {(size_t)nth, 1, 1};
@@ -4064,6 +4184,98 @@ static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const
#endif
}
static void ggml_cl_im2col(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src0);
GGML_ASSERT(src1);
GGML_ASSERT(src1->extra);
GGML_ASSERT(dst);
GGML_ASSERT(dst->extra);
// src0 - filter, src1 - input
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
cl_command_queue queue = backend_ctx->queue;
ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
cl_ulong offset1 = extra1->offset + src1->view_offs;
cl_ulong offsetd = extrad->offset + dst->view_offs;
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const cl_long IC = src1->ne[is_2D ? 2 : 1];
const cl_long IH = is_2D ? src1->ne[1] : 1;
const cl_long IW = src1->ne[0];
const cl_long KH = is_2D ? src0->ne[1] : 1;
const cl_long KW = src0->ne[0];
const cl_long OH = is_2D ? dst->ne[2] : 1;
const cl_long OW = dst->ne[1];
// nb is byte offset, src is type float32
const cl_ulong delta_offset = src1->nb[is_2D ? 2 : 1]/4;
const cl_long batch = src1->ne[is_2D ? 3 : 2];
const cl_ulong batch_offset = src1->nb[is_2D ? 3 : 2]/4;
const cl_long pelements = OW*KW*KH;
const cl_long CHW = IC*KH*KW;
cl_kernel kernel;
if(dst->type == GGML_TYPE_F16) {
kernel = backend_ctx->kernel_im2col_f16;
} else {
kernel = backend_ctx->kernel_im2col_f32;
}
CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra1->data_device));
CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset1));
CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_ulong), &batch_offset));
CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &delta_offset));
CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_long), &IW));
CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_long), &IH));
CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_long), &IC));
CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_long), &OW));
CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_long), &OH));
CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_long), &KW));
CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_long), &KH));
CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_long), &pelements));
CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_long), &CHW));
CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &s0));
CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &s1));
CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &p0));
CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &p1));
CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &d0));
CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &d1));
const int num_blocks = (pelements + 256 - 1) / 256;
size_t global_work_size[] = {(size_t)num_blocks*256, (size_t)OH, (size_t)batch*IC};
size_t local_work_size[] = {256, 1, 1};
#ifdef GGML_OPENCL_PROFILING
cl_event evt;
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
g_profiling_info.emplace_back();
populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
#else
CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
#endif
}
//------------------------------------------------------------------------------
// Op offloading
//------------------------------------------------------------------------------
@@ -4122,6 +4334,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_gelu;
break;
case GGML_UNARY_OP_GELU_QUICK:
if (!any_on_device) {
return false;
}
func = ggml_cl_gelu_quick;
break;
case GGML_UNARY_OP_SILU:
if (!any_on_device) {
return false;
@@ -4194,6 +4412,12 @@ bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor
}
func = ggml_cl_rope;
break;
case GGML_OP_IM2COL:
if (!any_on_device) {
return false;
}
func = ggml_cl_im2col;
break;
default:
return false;
}

View File

@@ -404,6 +404,7 @@ kernel void kernel_scale(
// gelu
//------------------------------------------------------------------------------
#define GELU_COEF_A 0.044715f
#define GELU_QUICK_COEF -1.702f
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876f
kernel void kernel_gelu(
@@ -434,6 +435,32 @@ kernel void kernel_gelu_4(
dst[get_global_id(0)] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
kernel void kernel_gelu_quick(
global float * src0,
ulong offset0,
global float * dst,
ulong offsetd
) {
src0 = (global float*)((global char*)src0 + offset0);
dst = (global float*)((global char*)dst + offsetd);
float x = src0[get_global_id(0)];
dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
kernel void kernel_gelu_quick_4(
global float4 * src0,
ulong offset0,
global float4 * dst,
ulong offsetd
) {
src0 = (global float4*)((global char*)src0 + offset0);
dst = (global float4*)((global char*)dst + offsetd);
float4 x = src0[get_global_id(0)];
dst[get_global_id(0)] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
}
//------------------------------------------------------------------------------
// silu
//------------------------------------------------------------------------------
@@ -1325,6 +1352,368 @@ kernel void kernel_rope_neox_f16(
}
}
kernel void kernel_rope_multi_f32(
global void * src0,
ulong offset0,
global int * src1,
ulong offset1,
global float * src2,
ulong offset2,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
int ne1,
int ne2,
int ne3,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3,
int n_past,
int n_dims,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
int4 sections
) {
src0 = (global void*)((global char*)src0 + offset0);
src1 = (global int*)((global char*)src1 + offset1);
src2 = (global float*)((global char*)src2 + offset2);
dst = (global float*)((global char*)dst + offsetd);
int i3 = get_group_id(2);
int i2 = get_group_id(1);
int i1 = get_group_id(0);
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
global int * pos = src1;
const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
const int sec_w = sections.s1 + sections.s0;
float inv_ndims = -1.f/n_dims;
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
if (i0 < n_dims) {
int ic = i0/2;
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.s0) {
theta_base = pos[i2];
}
else if (sector >= sections.s0 && sector < sec_w) {
theta_base = pos[i2 + ne2 * 1];
}
else if (sector >= sec_w && sector < sec_w + sections.s2) {
theta_base = pos[i2 + ne2 * 2];
}
else if (sector >= sec_w + sections.s2) {
theta_base = pos[i2 + ne2 * 3];
}
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
} else {
global float * const src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
kernel void kernel_rope_multi_f16(
global void * src0,
ulong offset0,
global int * src1,
ulong offset1,
global float * src2,
ulong offset2,
global half * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
int ne1,
int ne2,
int ne3,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3,
int n_past,
int n_dims,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
int4 sections
) {
src0 = (global void*)((global char*)src0 + offset0);
src1 = (global int*)((global char*)src1 + offset1);
src2 = (global float*)((global char*)src2 + offset2);
dst = (global float*)((global char*)dst + offsetd);
int i3 = get_group_id(2);
int i2 = get_group_id(1);
int i1 = get_group_id(0);
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
global int * pos = src1;
const int sect_dims = sections.s0 + sections.s1 + sections.s2 + sections.s3;
const int sec_w = sections.s1 + sections.s0;
float inv_ndims = -1.f/n_dims;
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
if (i0 < n_dims) {
int ic = i0/2;
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.s0) {
theta_base = pos[i2];
}
else if (sector >= sections.s0 && sector < sec_w) {
theta_base = pos[i2 + ne2 * 1];
}
else if (sector >= sec_w && sector < sec_w + sections.s2) {
theta_base = pos[i2 + ne2 * 2];
}
else if (sector >= sec_w + sections.s2) {
theta_base = pos[i2 + ne2 * 3];
}
const float theta = theta_base * pow(freq_base, inv_ndims*i0);
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
float2 cos_sin_theta = rope_yarn(theta/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
dst_data[n_dims/2] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
} else {
global half * const src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
dst_data[0] = src[0];
dst_data[1] = src[1];
}
}
}
kernel void kernel_rope_vision_f32(
global void * src0,
ulong offset0,
global int * src1,
ulong offset1,
global float * src2,
ulong offset2,
global float * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
int ne1,
int ne2,
int ne3,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3,
int n_past,
int n_dims,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
int4 sections
) {
src0 = (global void*)((global char*)src0 + offset0);
src1 = (global int*)((global char*)src1 + offset1);
src2 = (global float*)((global char*)src2 + offset2);
dst = (global float*)((global char*)dst + offsetd);
int i3 = get_group_id(2);
int i2 = get_group_id(1);
int i1 = get_group_id(0);
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
global int * pos = src1;
const int sect_dims = sections.s0 + sections.s1;
const int sec_w = sections.s1 + sections.s0;
float inv_ndims = -1.f/n_dims;
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
int ic = i0/2;
const int sector = (i0/2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.s0) {
const int p = sector;
theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
} else if (sector >= sections.s0 && sector < sec_w) {
const int p = sector - sections.s0;
theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
}
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
global float * src = (global float *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
global float * dst_data = (global float *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims];
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
}
}
kernel void kernel_rope_vision_f16(
global void * src0,
ulong offset0,
global int * src1,
ulong offset1,
global float * src2,
ulong offset2,
global half * dst,
ulong offsetd,
int ne00,
int ne01,
int ne02,
int ne03,
ulong nb00,
ulong nb01,
ulong nb02,
ulong nb03,
int ne0,
int ne1,
int ne2,
int ne3,
ulong nb0,
ulong nb1,
ulong nb2,
ulong nb3,
int n_past,
int n_dims,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
int4 sections
) {
src0 = (global void*)((global char*)src0 + offset0);
src1 = (global int*)((global char*)src1 + offset1);
src2 = (global float*)((global char*)src2 + offset2);
dst = (global float*)((global char*)dst + offsetd);
int i3 = get_group_id(2);
int i2 = get_group_id(1);
int i1 = get_group_id(0);
float2 corr_dims = rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow);
global int * pos = src1;
const int sect_dims = sections.s0 + sections.s1;
const int sec_w = sections.s1 + sections.s0;
float inv_ndims = -1.f/n_dims;
for (int i0 = 2*get_local_id(0); i0 < ne0; i0 += 2*get_local_size(0)) {
int ic = i0/2;
const int sector = (i0/2) % sect_dims;
float theta_base = 0.0f;
if (sector < sections.s0) {
const int p = sector;
theta_base = pos[i2] * pow(freq_base, inv_ndims*2.0f*p);
} else if (sector >= sections.s0 && sector < sec_w) {
const int p = sector - sections.s0;
theta_base = pos[i2 + ne2] * pow(freq_base, inv_ndims*2.0f*p);
}
const float freq_factor = src2 != src0 ? src2[ic] : 1.0f;
float2 cos_sin_theta = rope_yarn(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor);
global half * src = (global half *)((global char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
global half * dst_data = (global half *)((global char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
const float x0 = src[0];
const float x1 = src[n_dims];
dst_data[0] = x0*cos_sin_theta.s0 - x1*cos_sin_theta.s1;
dst_data[n_dims] = x0*cos_sin_theta.s1 + x1*cos_sin_theta.s0;
}
}
//------------------------------------------------------------------------------
// cpy
//------------------------------------------------------------------------------

View File

@@ -0,0 +1,146 @@
#ifdef cl_khr_fp16
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#elif defined(cl_amd_fp16)
#pragma OPENCL EXTENSION cl_amd_fp16 : enable
#else
#error "Half precision floating point not supportedby OpenCL implementation on your device."
#endif
#ifdef cl_khr_subgroups
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#elif defined(cl_intel_subgroups)
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#error "Subgroup not supported on your device."
#endif
#ifdef cl_intel_required_subgroup_size
// Always use subgroup size of 32 on Intel.
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
// Always use subgroups size of 64 on Adreno.
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#else
// TODO: do not know how to choose subgroup size on other GPUs.
#error "Selecting subgroup size is not supported on your device."
#endif
kernel void kernel_im2col_f32(
global float * src1,
ulong offset1,
global float * dst,
ulong offsetd,
ulong batch_offset,
ulong delta_offset,
long IW,
long IH,
long IC,
long OW,
long OH,
long KW,
long KH,
long pelements,
long CHW,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1
) {
// threadIdx.x + blockIdx.x * blockDim.x
long i = get_global_id(0);
if (i >= pelements) {
return;
}
src1 = (global float*)((global char*)src1 + offset1);
dst = (global float*)((global char*)dst + offsetd);
long ksize = OW * (KH > 1 ? KW : 1);
long kx = i / ksize;
long kd = kx * ksize;
long ky = (i - kd) / OW;
long ix = i % OW;
long oh = get_group_id(1);
long batch = get_group_id(2) / IC;
long ic = get_group_id(2) % IC;
long iiw = ix * s0 + kx * d0 - p0;
long iih = oh * s1 + ky * d1 - p1;
long offset_dst =
((batch * OH + oh) * OW + ix) * CHW +
(ic * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
long offset_src = ic * delta_offset + batch * batch_offset;
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
}
}
kernel void kernel_im2col_f16(
global float * src1,
ulong offset1,
global half * dst,
ulong offsetd,
ulong batch_offset,
ulong delta_offset,
long IW,
long IH,
long IC,
long OW,
long OH,
long KW,
long KH,
long pelements,
long CHW,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1
) {
long i = get_global_id(0);
if (i >= pelements) {
return;
}
src1 = (global float*)((global char*)src1 + offset1);
dst = (global half*)((global char*)dst + offsetd);
long ksize = OW * (KH > 1 ? KW : 1);
long kx = i / ksize;
long kd = kx * ksize;
long ky = (i - kd) / OW;
long ix = i % OW;
long oh = get_group_id(1);
long batch = get_group_id(2) / IC;
long ic = get_group_id(2) % IC;
long iiw = ix * s0 + kx * d0 - p0;
long iih = oh * s1 + ky * d1 - p1;
long offset_dst =
((batch * OH + oh) * OW + ix) * CHW +
(ic * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
long offset_src = ic * delta_offset + batch * batch_offset;
dst[offset_dst] = src1[offset_src + iih * IW + iiw];
}
}

View File

@@ -26,6 +26,10 @@
# include <unistd.h>
#endif
#include <cstring>
#include <fstream>
#include <filesystem>
namespace fs = std::filesystem;
#ifdef _WIN32
typedef SOCKET sockfd_t;
@@ -80,6 +84,7 @@ enum rpc_cmd {
RPC_CMD_FREE_BUFFER,
RPC_CMD_BUFFER_CLEAR,
RPC_CMD_SET_TENSOR,
RPC_CMD_SET_TENSOR_HASH,
RPC_CMD_GET_TENSOR,
RPC_CMD_COPY_TENSOR,
RPC_CMD_GRAPH_COMPUTE,
@@ -89,6 +94,9 @@ enum rpc_cmd {
RPC_CMD_COUNT,
};
// Try RPC_CMD_SET_TENSOR_HASH first when data size is larger than this threshold
const size_t HASH_THRESHOLD = 10 * 1024 * 1024;
struct rpc_msg_get_alloc_size_req {
rpc_tensor tensor;
};
@@ -135,6 +143,10 @@ struct rpc_msg_buffer_clear_req {
uint8_t value;
};
struct rpc_msg_set_tensor_hash_rsp {
uint8_t result;
};
struct rpc_msg_get_tensor_req {
rpc_tensor tensor;
uint64_t offset;
@@ -187,6 +199,18 @@ struct ggml_backend_rpc_buffer_context {
// RPC helper functions
// Computes FNV-1a hash of the data
static uint64_t fnv_hash(const uint8_t * data, size_t len) {
const uint64_t fnv_prime = 0x100000001b3ULL;
uint64_t hash = 0xcbf29ce484222325ULL;
for (size_t i = 0; i < len; ++i) {
hash ^= data[i];
hash *= fnv_prime;
}
return hash;
}
static std::shared_ptr<socket_t> make_socket(sockfd_t fd) {
#ifdef _WIN32
if (fd == INVALID_SOCKET) {
@@ -483,10 +507,26 @@ static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_
static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
rpc_tensor rpc_tensor = serialize_tensor(tensor);
if (size > HASH_THRESHOLD) {
// input serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes)
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + sizeof(uint64_t);
std::vector<uint8_t> input(input_size, 0);
uint64_t hash = fnv_hash((const uint8_t*)data, size);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), &hash, sizeof(hash));
rpc_msg_set_tensor_hash_rsp response;
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_SET_TENSOR_HASH, input.data(), input.size(), &response, sizeof(response));
GGML_ASSERT(status);
if (response.result) {
// the server has the same data, no need to send it
return;
}
}
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes)
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
std::vector<uint8_t> input(input_size, 0);
rpc_tensor rpc_tensor = serialize_tensor(tensor);
memcpy(input.data(), &rpc_tensor, sizeof(rpc_tensor));
memcpy(input.data() + sizeof(rpc_tensor), &offset, sizeof(offset));
memcpy(input.data() + sizeof(rpc_tensor) + sizeof(offset), data, size);
@@ -772,7 +812,9 @@ void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, si
class rpc_server {
public:
rpc_server(ggml_backend_t backend) : backend(backend) {}
rpc_server(ggml_backend_t backend, const char * cache_dir)
: backend(backend), cache_dir(cache_dir) {
}
~rpc_server();
void alloc_buffer(const rpc_msg_alloc_buffer_req & request, rpc_msg_alloc_buffer_rsp & response);
@@ -782,6 +824,7 @@ public:
bool free_buffer(const rpc_msg_free_buffer_req & request);
bool buffer_clear(const rpc_msg_buffer_clear_req & request);
bool set_tensor(const std::vector<uint8_t> & input);
bool set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response);
bool get_tensor(const rpc_msg_get_tensor_req & request, std::vector<uint8_t> & response);
bool copy_tensor(const rpc_msg_copy_tensor_req & request, rpc_msg_copy_tensor_rsp & response);
bool graph_compute(const std::vector<uint8_t> & input, rpc_msg_graph_compute_rsp & response);
@@ -789,6 +832,7 @@ public:
bool get_alloc_size(const rpc_msg_get_alloc_size_req & request, rpc_msg_get_alloc_size_rsp & response);
private:
bool get_cached_file(uint64_t hash, std::vector<uint8_t> & data);
ggml_tensor * deserialize_tensor(struct ggml_context * ctx, const rpc_tensor * tensor);
ggml_tensor * create_node(uint64_t id,
struct ggml_context * ctx,
@@ -797,6 +841,7 @@ private:
ggml_backend_t backend;
const char * cache_dir;
std::unordered_set<ggml_backend_buffer_t> buffers;
};
@@ -960,11 +1005,85 @@ bool rpc_server::set_tensor(const std::vector<uint8_t> & input) {
}
const void * data = input.data() + sizeof(rpc_tensor) + sizeof(offset);
if (cache_dir && size > HASH_THRESHOLD) {
uint64_t hash = fnv_hash((const uint8_t*)data, size);
char hash_str[17];
snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
// save to cache_dir/hash_str
fs::path cache_file = fs::path(cache_dir) / hash_str;
std::ofstream ofs(cache_file, std::ios::binary);
ofs.write((const char *)data, size);
printf("[%s] saved to '%s'\n", __func__, cache_file.c_str());
}
ggml_backend_tensor_set(tensor, data, offset, size);
ggml_free(ctx);
return true;
}
bool rpc_server::get_cached_file(uint64_t hash, std::vector<uint8_t> & data) {
if (!cache_dir) {
return false;
}
char hash_str[17];
snprintf(hash_str, sizeof(hash_str), "%016" PRIx64, hash);
fs::path cache_file = fs::path(cache_dir) / hash_str;
if (!fs::exists(cache_file)) {
return false;
}
std::ifstream ifs(cache_file, std::ios::binary);
ifs.seekg(0, std::ios::end);
size_t size = ifs.tellg();
ifs.seekg(0, std::ios::beg);
data.resize(size);
ifs.read((char *)data.data(), size);
return true;
}
bool rpc_server::set_tensor_hash(const std::vector<uint8_t> & input, rpc_msg_set_tensor_hash_rsp & response)
{
// serialization format: | rpc_tensor | offset (8 bytes) | hash (8 bytes) |
if (input.size() != sizeof(rpc_tensor) + 16) {
return false;
}
const rpc_tensor * in_tensor = (const rpc_tensor *)input.data();
uint64_t offset;
memcpy(&offset, input.data() + sizeof(rpc_tensor), sizeof(offset));
const uint64_t * hash = (const uint64_t *)(input.data() + sizeof(rpc_tensor) + sizeof(offset));
std::vector<uint8_t> cached_file;
if (!get_cached_file(*hash, cached_file)) {
response.result = 0;
return true;
}
size_t size = cached_file.size();
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
ggml_tensor * tensor = deserialize_tensor(ctx, in_tensor);
if (tensor == nullptr) {
GGML_LOG_ERROR("[%s] error deserializing tensor\n", __func__);
ggml_free(ctx);
return false;
}
GGML_PRINT_DEBUG("[%s] buffer: %p, data: %p, offset: %" PRIu64 ", size: %zu, hash: %" PRIx64 "\n", __func__, (void*)tensor->buffer, tensor->data, offset, size, *hash);
// sanitize tensor->data
{
const size_t p0 = (size_t) ggml_backend_buffer_get_base(tensor->buffer);
const size_t p1 = p0 + ggml_backend_buffer_get_size(tensor->buffer);
if (in_tensor->data + offset < p0 || in_tensor->data + offset >= p1 || size > (p1 - in_tensor->data - offset)) {
GGML_ABORT("[%s] tensor->data out of bounds\n", __func__);
}
}
ggml_backend_tensor_set(tensor, cached_file.data(), offset, size);
response.result = 1;
ggml_free(ctx);
return true;
}
bool rpc_server::init_tensor(const rpc_msg_init_tensor_req & request) {
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead(),
@@ -1148,8 +1267,9 @@ rpc_server::~rpc_server() {
}
}
static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t free_mem, size_t total_mem) {
rpc_server server(backend);
static void rpc_serve_client(ggml_backend_t backend, const char * cache_dir,
sockfd_t sockfd, size_t free_mem, size_t total_mem) {
rpc_server server(backend, cache_dir);
while (true) {
uint8_t cmd;
if (!recv_data(sockfd, &cmd, 1)) {
@@ -1260,6 +1380,20 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
}
break;
}
case RPC_CMD_SET_TENSOR_HASH: {
std::vector<uint8_t> input;
if (!recv_msg(sockfd, input)) {
return;
}
rpc_msg_set_tensor_hash_rsp response;
if (!server.set_tensor_hash(input, response)) {
return;
}
if (!send_msg(sockfd, &response, sizeof(response))) {
return;
}
break;
}
case RPC_CMD_INIT_TENSOR: {
rpc_msg_init_tensor_req request;
if (!recv_msg(sockfd, &request,sizeof(request))) {
@@ -1335,7 +1469,9 @@ static void rpc_serve_client(ggml_backend_t backend, sockfd_t sockfd, size_t fre
}
}
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem) {
void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint,
const char * cache_dir,
size_t free_mem, size_t total_mem) {
std::string host;
int port;
if (!parse_endpoint(endpoint, host, port)) {
@@ -1364,7 +1500,7 @@ void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint
}
printf("Accepted client connection, free_mem=%zu, total_mem=%zu\n", free_mem, total_mem);
fflush(stdout);
rpc_serve_client(backend, client_socket->fd, free_mem, total_mem);
rpc_serve_client(backend, cache_dir, client_socket->fd, free_mem, total_mem);
printf("Client connection closed\n");
fflush(stdout);
}

View File

@@ -37,6 +37,7 @@
#include "ggml-backend-impl.h"
#include "ggml-sycl/backend.hpp"
#include "ggml-sycl/common.hpp"
#include "ggml-sycl/presets.hpp"
#include "ggml-sycl/gemm.hpp"
#include "ggml-sycl/sycl_hw.hpp"
@@ -191,7 +192,7 @@ static void ggml_check_sycl() try {
if (!initialized) {
g_ggml_sycl_debug = get_sycl_env("GGML_SYCL_DEBUG", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 0);
g_ggml_sycl_disable_optimize= get_sycl_env("GGML_SYCL_DISABLE_OPT", 1);
g_ggml_sycl_disable_graph = get_sycl_env("GGML_SYCL_DISABLE_GRAPH", 1);
GGML_SYCL_DEBUG("[SYCL] call ggml_check_sycl\n");
GGML_LOG_INFO("Running with Environment Variables:\n");
@@ -490,6 +491,23 @@ catch (sycl::exception const &exc) {
std::exit(1);
}
static void ggml_backend_sycl_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value,
size_t offset, size_t size) {
GGML_SYCL_DEBUG(" [SYCL] call %s\n", __func__);
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *) buffer->context;
SYCL_CHECK(ggml_sycl_set_device(ctx->device));
auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
if (size == 0) {
return; // Nothing to do
}
if (tensor->data == nullptr) {
GGML_ABORT("Error: Tensor data pointer is null.\n");
}
void * target_ptr = static_cast<char *>(tensor->data) + offset;
SYCL_CHECK(CHECK_TRY_ERROR((*stream).memset(target_ptr, value, size)));
SYCL_CHECK(CHECK_TRY_ERROR((*stream).wait()));
}
static void ggml_backend_sycl_buffer_reset(ggml_backend_buffer_t buffer) {
GGML_SYCL_DEBUG("[SYCL] call %s\n", __func__);
if (buffer == nullptr) {
@@ -510,7 +528,7 @@ static const ggml_backend_buffer_i ggml_backend_sycl_buffer_interface = {
/* .free_buffer = */ ggml_backend_sycl_buffer_free_buffer,
/* .get_base = */ ggml_backend_sycl_buffer_get_base,
/* .init_tensor = */ ggml_backend_sycl_buffer_init_tensor,
/* .memset_tensor = */ NULL,
/* .memset_tensor = */ ggml_backend_sycl_buffer_memset_tensor,
/* .set_tensor = */ ggml_backend_sycl_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_sycl_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_sycl_buffer_cpy_tensor,

View File

@@ -286,6 +286,7 @@ class MODEL_ARCH(IntEnum):
GRANITE_MOE = auto()
CHAMELEON = auto()
WAVTOKENIZER_DEC = auto()
PLM = auto()
class MODEL_TENSOR(IntEnum):
@@ -488,6 +489,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.GRANITE_MOE: "granitemoe",
MODEL_ARCH.CHAMELEON: "chameleon",
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.PLM: "plm",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@@ -1464,6 +1466,20 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_UP_SHEXP,
MODEL_TENSOR.FFN_EXP_PROBS_B,
],
MODEL_ARCH.PLM: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_KV_A_MQA,
MODEL_TENSOR.ATTN_KV_A_NORM,
MODEL_TENSOR.ATTN_KV_B,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_DOWN,
],
MODEL_ARCH.CHATGLM : [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.ROPE_FREQS,

34
media/llama1-logo.svg Normal file
View File

@@ -0,0 +1,34 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg id="Layer_1" xmlns="http://www.w3.org/2000/svg" version="1.1" viewBox="0 0 1500 500">
<!-- Generator: Adobe Illustrator 29.3.1, SVG Export Plug-In . SVG Version: 2.1.0 Build 151) -->
<defs>
<style>
.st0 {
fill: #ff8236;
}
.st1 {
fill: #fff;
}
.st2 {
fill: #1b1f20;
}
</style>
</defs>
<rect class="st2" width="1500" height="500" rx="16" ry="16"/>
<g>
<path class="st1" d="M749.4,353.8l5.4-204.1,20.4-.8,45.1,98.8,42.5-99h19l6.5,205h-38l-2-98-24.9,61.4c-1,1.3-8,1.3-9-1l-25.6-61.4-1.5,99h-38Z"/>
<path class="st1" d="M727.5,240.1c-10.8-27.1-53.1-24.5-75.3-14.7l3.1,28.4c9.2-1.9,30-8,37.5-1,.9.9,3.5,5.7,3.5,6.5v16.5c-31.8-17.2-54.5,6.1-54.4,38.5,0,36.5,28.4,57.3,56.4,27.5v12h32v-104.5c0-.5-2.4-8-2.8-9.2ZM696.4,327.8c-8.4,1.7-15.4,2.9-19.2-6.3-5.8-14,.6-37.9,19.2-27.2v33.5Z"/>
<path class="st1" d="M899.4,353.8l47.6-205.1h30.3c0,.1,47,205.1,47,205.1h-38l-7.9-33.6h-34.1l-7.9,33.6h-37ZM951.4,285.8h20l-10.5-56-9.5,56Z"/>
<polygon class="st1" points="490.4 148.8 490.4 317.3 491.9 318.8 534.4 318.8 534.4 353.8 451.4 353.8 451.4 150.3 452.9 148.8 490.4 148.8"/>
<polygon class="st1" points="589.4 148.8 589.4 318.8 633.4 318.8 633.4 353.8 550.4 353.8 550.4 148.8 589.4 148.8"/>
<g>
<path class="st0" d="M1163.3,226.8l-13.5,24c-17.8-13.7-44.2-15.7-62-1-28.7,23.7-26.7,78.5,18,78.8,12.5,0,23.1-5.9,34.5-9.8l6,23.9c-10.1,4.7-20.4,9.5-31.5,11-101.2,13.8-95.4-132.3-3.9-139.9,19.2-1.6,36.1,3.4,52.5,13Z"/>
<path class="st0" d="M1093.4,203.8c-15.4,4.6-29.7,13.1-40.5,25-2-24.2,3.4-73.1,30.3-82.7,4-1.4,17.7-4.9,17.3,2.2s-9.9,19.3-12.2,25.9c-4,11.6-.3,19.6,5.2,29.7Z"/>
<polygon class="st0" points="1131.4 258.8 1131.4 276.8 1147.4 276.8 1147.4 290.8 1131.4 290.8 1131.4 307.8 1116.4 307.8 1116.4 290.8 1099.4 290.8 1099.4 276.8 1114.9 276.8 1116.4 275.3 1116.4 258.8 1131.4 258.8"/>
<polygon class="st0" points="1186.4 258.8 1186.4 275.3 1187.9 276.8 1203.4 276.8 1203.4 290.8 1186.4 290.8 1186.4 307.8 1171.4 307.8 1171.4 290.8 1155.4 290.8 1155.4 276.8 1171.4 276.8 1171.4 258.8 1186.4 258.8"/>
<path class="st0" d="M1142.3,156.9c2,3-9.3,15.9-11.1,19.2-5.2,9.8-1.7,15.4,2.2,24.7-11.3-1.7-21.8-.3-33,1,2.5-21.5,14.6-52.8,41.9-44.9Z"/>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -69,7 +69,11 @@ while read c; do
git format-patch -U${ctx} -k $c~1..$c --stdout -- \
CMakeLists.txt \
src/CMakeLists.txt \
cmake/FindSIMD.cmake \
cmake/BuildTypes.cmake \
cmake/GitVars.cmake \
cmake/common.cmake \
cmake/ggml-config.cmake.in \
src/ggml-cpu/cmake/FindSIMD.cmake \
src/ggml*.h \
src/ggml*.c \
src/ggml*.cpp \
@@ -121,7 +125,12 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
#
# CMakelists.txt -> ggml/CMakeLists.txt
# src/CMakeLists.txt -> ggml/src/CMakeLists.txt
# cmake/FindSIMD.cmake -> ggml/cmake/FindSIMD.cmake
# cmake/BuildTypes.cmake -> ggml/cmake/BuildTypes.cmake
# cmake/GitVars.cmake -> ggml/cmake/GitVars.cmake
# cmake/common.cmake -> ggml/cmake/common.cmake
# cmake/ggml-config.cmake.in -> ggml/cmake/ggml-config.cmake.in
# src/ggml-cpu/cmake/FindSIMD.cmake -> ggml/src/ggml-cpu/cmake/FindSIMD.cmake
#
# src/ggml*.c -> ggml/src/ggml*.c
# src/ggml*.cpp -> ggml/src/ggml*.cpp
@@ -151,7 +160,11 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
cat ggml-src.patch | sed -E \
-e 's/(^[[:space:]]| [ab]\/)CMakeLists.txt/\1ggml\/CMakeLists.txt/g' \
-e 's/(^[[:space:]]| [ab]\/)src\/CMakeLists.txt/\1ggml\/src\/CMakeLists.txt/g' \
-e 's/(^[[:space:]]| [ab]\/)cmake\/FindSIMD.cmake/\1ggml\/cmake\/FindSIMD.cmake/g' \
-e 's/(^[[:space:]]| [ab]\/)cmake\/BuildTypes.cmake/\1ggml\/cmake\/BuildTypes.cmake/g' \
-e 's/(^[[:space:]]| [ab]\/)cmake\/GitVars.cmake/\1ggml\/cmake\/GitVars.cmake/g' \
-e 's/(^[[:space:]]| [ab]\/)cmake\/common.cmake/\1ggml\/cmake\/common.cmake/g' \
-e 's/(^[[:space:]]| [ab]\/)cmake\/ggml-config.cmake.in/\1ggml\/cmake\/ggml-config.cmake.in/g' \
-e 's/(^[[:space:]]| [ab]\/)src\/ggml-cpu\/cmake\/FindSIMD.cmake/\1ggml\/src\/ggml-cpu\/cmake\/FindSIMD.cmake/g' \
-e 's/([[:space:]]| [ab]\/)src\/ggml(.*)\.c/\1ggml\/src\/ggml\2.c/g' \
-e 's/([[:space:]]| [ab]\/)src\/ggml(.*)\.cpp/\1ggml\/src\/ggml\2.cpp/g' \
-e 's/([[:space:]]| [ab]\/)src\/ggml(.*)\.h/\1ggml\/src\/ggml\2.h/g' \

View File

@@ -1 +1 @@
c7dfe3d174f98b14801f9ed12f129179d3e7b638
660def06391b3d6c9eed9fed38d7dc025ee1b1ca

View File

@@ -2,7 +2,9 @@
cp -rpv ../ggml/CMakeLists.txt ./ggml/CMakeLists.txt
cp -rpv ../ggml/src/CMakeLists.txt ./ggml/src/CMakeLists.txt
cp -rpv ../ggml/cmake/FindSIMD.cmake ./ggml/cmake/FindSIMD.cmake
cp -rpv ../ggml/cmake/* ./ggml/cmake/
cp -rpv ../ggml/src/ggml-cpu/cmake/* ./ggml/src/ggml-cpu/cmake/
cp -rpv ../ggml/src/ggml*.c ./ggml/src/
cp -rpv ../ggml/src/ggml*.cpp ./ggml/src/

View File

@@ -247,6 +247,26 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
}
}
// get extra buffer types of the CPU
// TODO: a more general solution for non-CPU extra buft should be imlpemented in the future
// ref: https://github.com/ggml-org/llama.cpp/pull/12593#pullrequestreview-2718659948
std::vector<ggml_backend_buffer_type_t> buft_extra;
{
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
if (ggml_backend_dev_get_extra_bufts_fn) {
ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
while (extra_bufts && *extra_bufts) {
buft_extra.emplace_back(*extra_bufts);
++extra_bufts;
}
}
}
// add tensors
for (auto & it : ab_map) {
const std::string & name = it.first;
@@ -263,7 +283,23 @@ static void llama_adapter_lora_init_impl(llama_model & model, const char * path_
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
auto * buft = ggml_backend_buffer_get_type(model_tensor->buffer);
// do not load loras to extra buffer types (i.e. bufts for repacking) -> use the CPU in that case
for (auto & ex : buft_extra) {
if (ex == buft) {
LLAMA_LOG_WARN("%s: lora for '%s' cannot use buft '%s', fallback to CPU\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
buft = ggml_backend_dev_buffer_type(cpu_dev);
break;
}
}
LLAMA_LOG_DEBUG("%s: lora for '%s' -> '%s'\n", __func__, model_tensor->name, ggml_backend_buft_name(buft));
ggml_context * dev_ctx = ctx_for_buft(buft);
// validate tensor shape
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()

View File

@@ -65,6 +65,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_CHAMELEON, "chameleon" },
{ LLM_ARCH_WAVTOKENIZER_DEC, "wavtokenizer-dec" },
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1043,6 +1044,22 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_EXP_PROBS_B, "blk.%d.exp_probs_b" },
},
},
{
LLM_ARCH_PLM,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
{ LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_CHATGLM,
{

View File

@@ -69,6 +69,7 @@ enum llm_arch {
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_CHAMELEON,
LLM_ARCH_WAVTOKENIZER_DEC,
LLM_ARCH_PLM,
LLM_ARCH_UNKNOWN,
};

View File

@@ -294,10 +294,7 @@ llama_context::llama_context(
// TODO: something cleaner
const auto n_outputs_save = n_outputs;
// max number of outputs
n_outputs = n_tokens;
LLAMA_LOG_DEBUG("%s: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs);
LLAMA_LOG_DEBUG("%s: worst-case: n_tokens = %d, n_seqs = %d, n_outputs = %d\n", __func__, n_tokens, n_seqs, n_outputs);
int n_splits_pp = -1;
int n_nodes_pp = -1;
@@ -313,8 +310,15 @@ llama_context::llama_context(
// reserve pp graph first so that buffers are only allocated once
{
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
// max number of outputs
n_outputs = ubatch_pp.n_tokens;
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
auto * gf = graph_init();
graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
throw std::runtime_error("failed to allocate compute pp buffers");
}
@@ -326,11 +330,18 @@ llama_context::llama_context(
// reserve with tg graph to get the number of splits and nodes
{
llama_ubatch ubatch_tg = { true, 1, 1, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
n_outputs = ubatch_tg.n_tokens;
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_tg.n_tokens, ubatch_tg.n_seqs);
auto * gf = graph_init();
graph_build(ctx_compute.get(), gf, ubatch_tg, LLM_GRAPH_TYPE_DEFAULT);
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
throw std::runtime_error("failed to allocate compute tg buffers");
}
n_splits_tg = ggml_backend_sched_get_n_splits(sched.get());
n_nodes_tg = ggml_graph_n_nodes(gf);
}
@@ -338,8 +349,14 @@ llama_context::llama_context(
// reserve again with pp graph to avoid ggml-alloc reallocations during inference
{
llama_ubatch ubatch_pp = { true, n_tokens, n_tokens / n_seqs, n_seqs, &token, nullptr, nullptr, nullptr, nullptr, nullptr};
n_outputs = ubatch_pp.n_tokens;
LLAMA_LOG_DEBUG("%s: reserving graph for n_tokens = %d, n_seqs = %d\n", __func__, ubatch_pp.n_tokens, ubatch_pp.n_seqs);
auto * gf = graph_init();
graph_build(ctx_compute.get(), gf, ubatch_pp, LLM_GRAPH_TYPE_DEFAULT);
if (!ggml_backend_sched_reserve(sched.get(), gf)) {
throw std::runtime_error("failed to allocate compute pp buffers");
}

View File

@@ -47,6 +47,7 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_1_4B: return "1.4B";
case LLM_TYPE_1_5B: return "1.5B";
case LLM_TYPE_1_6B: return "1.6B";
case LLM_TYPE_1_8B: return "1.8B";
case LLM_TYPE_2B: return "2B";
case LLM_TYPE_2_8B: return "2.8B";
case LLM_TYPE_2_9B: return "2.9B";
@@ -1144,6 +1145,15 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_PLM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
switch (hparams.n_layer) {
case 32: type = LLM_TYPE_1_8B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_CHATGLM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -3068,6 +3078,35 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_PLM:
{
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const int64_t kv_lora_rank = hparams.n_lora_kv;
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
// output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
case LLM_ARCH_BITNET:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -11615,6 +11654,178 @@ struct llm_build_wavtokenizer_dec : public llm_graph_context {
}
};
struct llm_build_plm : public llm_graph_context {
llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
ggml_tensor * cur;
ggml_tensor * inpL;
// {n_embd, n_tokens}
inpL = build_inp_embd(model.tok_embd);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
auto * inp_attn = build_attn_inp_kv_unified();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);
// self_attention
{
ggml_tensor * q = NULL;
q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(q, "q", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
0);
cb(q_nope, "q_nope", il);
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
0);
cb(kv_compressed, "kv_compressed", il);
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// shared RoPE key
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
}
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
cb(cur, "ffn_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = build_cvec(cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);
cb(cur, "result_norm", -1);
res->t_embd = cur;
cur = build_lora_mm(model.output, cur);
cb(cur, "result_output", -1);
res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
}
};
llama_memory_i * llama_model::create_memory() const {
llama_memory_i * res;
@@ -11846,10 +12057,11 @@ llm_graph_result_ptr llama_model::build_graph(
GGML_ABORT("invalid graph type");
};
} break;
//case LLM_ARCH_T5ENCODER:
// {
// llm.build_t5_enc(gf);
// } break;
case LLM_ARCH_T5ENCODER:
{
llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
}
break;
case LLM_ARCH_JAIS:
{
llm = std::make_unique<llm_build_jais>(*this, params, gf);
@@ -11886,6 +12098,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
} break;
case LLM_ARCH_PLM:
{
llm = std::make_unique<llm_build_plm>(*this, params, gf);
} break;
default:
GGML_ABORT("fatal error");
}
@@ -12012,6 +12228,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_ARCTIC:
case LLM_ARCH_DEEPSEEK:
case LLM_ARCH_DEEPSEEK2:
case LLM_ARCH_PLM:
case LLM_ARCH_CHATGLM:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:

View File

@@ -44,6 +44,7 @@ enum llm_type {
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_1_8B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
LLM_TYPE_2_9B,

View File

@@ -1086,6 +1086,65 @@ static void test_json_schema() {
});
}
static void one_hot(llama_token_data_array & tok_arr, llama_token selected) {
auto n_vocab = tok_arr.size;
tok_arr.selected = -1;
tok_arr.sorted = false;
for (llama_token token_id = 0; token_id < (llama_token) n_vocab; token_id++) {
tok_arr.data[token_id].id = token_id;
tok_arr.data[token_id].logit = 0.0f;
}
tok_arr.data[selected].logit = 100.0f;
}
static void test_sampler_chain(void) {
auto sparams = llama_sampler_chain_default_params();
sparams.no_perf = false;
llama_sampler * sampler = llama_sampler_chain_init(sparams);
const auto grammar_data = R"(%llguidance {}
start: /[A-Z ]*/)";
llama_sampler_chain_add(sampler, llama_sampler_init_llg(vocab, "lark", grammar_data));
llama_sampler_chain_add(sampler, llama_sampler_init_dist(42));
auto input = "ALL YOUR BASE ARE BELONG TO US";
auto tokens = common_tokenize(vocab, input, false, false);
auto n_vocab = llama_vocab_n_tokens(vocab);
std::vector<llama_token_data> cur;
cur.reserve(n_vocab);
for (llama_token token_id = 0; token_id < (llama_token) n_vocab; token_id++) {
cur.emplace_back(llama_token_data{ token_id, 0.0f, 0.0f });
}
auto tok_arr = llama_token_data_array{ cur.data(), cur.size(), -1, false };
for (const auto token : tokens) {
one_hot(tok_arr, token);
fprintf(stderr, "applying token: %d\n", token);
llama_sampler_apply(sampler, &tok_arr);
auto idx = tok_arr.selected;
fprintf(stderr, " -> %d %f\n", cur[idx].id, cur[idx].logit);
assert(cur[tok_arr.selected].id == token);
llama_sampler_accept(sampler, token);
}
auto tok_eos = llama_vocab_eot(vocab);
if (tok_eos == LLAMA_TOKEN_NULL) {
tok_eos = llama_vocab_eos(vocab);
}
one_hot(tok_arr, tok_eos);
llama_sampler_apply(sampler, &tok_arr);
assert(cur[tok_arr.selected].id == tok_eos);
}
int main(int argc, const char ** argv) {
fprintf(stdout, "Running llguidance integration tests...\n");
@@ -1135,6 +1194,9 @@ int main(int argc, const char ** argv) {
test_special_chars();
test_quantifiers();
test_json_schema();
test_sampler_chain();
fprintf(stdout, "All tests passed.\n");
return 0;
}