Compare commits

...

53 Commits

Author SHA1 Message Date
0cc4m
d411968e99 opencl : support k-quants (#1836)
* Porting q2_k kernel to OpenCL

* Set global and local sizes for kernel calls for dequantizing k-quants

* Added q6_k kernel

* Fix q4_k opencl struct order

* Replace uchar with uint8_t

* Finish dequant kernels

* Added OpenCL DMMV kernels

* Fix q2_k, improve code

* Fix q3_k

* Shorten switch statements

* Improve code formatting

---------

Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com>
2023-06-16 21:59:49 +03:00
SuperUserNameMan
b41b4cad6f examples : add "simple" (#1840)
* Create `simple.cpp`

* minimalist example `CMakeLists.txt`

* Update Makefile for minimalist example

* remove 273: Trailing whitespace

* removed trailing white spaces simple.cpp

* typo and comments simple.cpp

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-16 21:58:09 +03:00
Zenix
13fe9d2d84 cmake : add auto detection of BLAS_INCLUDE_DIRS (#1886) 2023-06-16 21:53:04 +03:00
Johannes Gäßler
ac3b886953 llama : fix embd when offloading non-repeating layers (#1891) 2023-06-16 21:25:51 +03:00
FrankHB
5b9ccaf104 Fixed possible macro redefinition (#1892)
MinGW libstdc++ may define `NOMINMAX` unconditionally. This fixes the case when it is already defined.
2023-06-16 21:25:01 +03:00
Borislav Stanimirov
9cbf50c041 build : fix and ignore MSVC warnings (#1889) 2023-06-16 21:23:53 +03:00
Kawrakow
3d01122610 CUDA : faster k-quant dot kernels (#1862)
* cuda : faster k-quant dot kernels

* Imrove Q2_K dot kernel on older GPUs

We now have a K_QUANTS_PER_ITERATION macro, which should be
set to 1 on older and to 2 on newer GPUs.
With this, we preserve the performance of the original
PR on RTX-4080, and are faster compared to master on
GTX-1660.

* Imrove Q6_K dot kernel on older GPUs

Using the same K_QUANTS_PER_ITERATION macro as last commit,
we preserve performance on RTX-4080 and speed up
Q6_K on a GTX-1660.

* Add LLAMA_CUDA_KQUANTS_ITER to CMakeLists.txt and Makefile

Allowed values are 1 or 2. 2 gives the best performance on
modern GPUs and is set as default. On older GPUs 1 may work
better.

* PR comments

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-16 20:08:44 +03:00
Borislav Stanimirov
602c748863 gitignore : add several entries specific to Visual Studio (#1888) 2023-06-16 09:58:11 +03:00
Johannes Gäßler
a09f9195be Fixed CUDA runtime version check (#1879) 2023-06-15 21:49:08 +02:00
Georgi Gerganov
bed9275617 cmake : remove whitespaces 2023-06-15 21:56:50 +03:00
yangli2
c36e81da62 examples : add chat-vicuna.sh (#1854)
Co-authored-by: Yang Li <yangliyl@google.com>
2023-06-15 21:05:53 +03:00
Igor Okulist
3559433fec cmake : set include path for OpenBlas (#1830) 2023-06-15 20:51:26 +03:00
Frederik Vogel
69b34a0e80 swift : Package compile breaks due to ggml-metal.metal (#1831)
* Ignore metal file in spm

* Add ggml.h to spm public Headers

---------

Co-authored-by: Vogel Frederik <vogel.frederik@linecorp.com>
2023-06-15 20:47:04 +03:00
daboe01
cf267d1c71 make : add train-text-from-scratch (#1850)
* make finetuning example accessible

* fixed: targed was in wrong line

* fixed: name of executable was wrong

* fixed: naming of binary

* fixed: model path was wrong

* fixed clean target

* Update examples/train-text-from-scratch/README.md

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-15 20:42:48 +03:00
Srinivas Billa
9dda13e5e1 readme : server compile flag (#1874)
Explicitly include the server make instructions for C++ noobsl like me ;)
2023-06-15 20:36:38 +03:00
sandyiscool
37e257c48e make : clean *.so files (#1857) 2023-06-15 20:36:06 +03:00
Howard Su
64cc19b4fe Fix the validation of main device (#1872) 2023-06-15 19:29:59 +02:00
Georgi Gerganov
4bfcc855ab metal : parallel command buffer encoding (#1860)
* metal : parallel command buffer encoding

* metal : determine number of command buffers based on gf->n_threads
2023-06-15 20:29:48 +03:00
Johannes Gäßler
6b8312e797 Better error when using both LoRA + GPU layers (#1861) 2023-06-15 19:06:46 +02:00
Johannes Gäßler
254a7a7a5f CUDA full GPU acceleration, KV cache in VRAM (#1827)
* Fixed CUDA RoPE

* ggml_cuda_mul_mat_vec_p021

* ggml_cuda_scale

* ggml_cuda_diag_mask_inf

* ggml_is_permuted

* ggml_cuda_cpy

* flatten rows for ggml_cuda_op

* Added a --low-vram option

* Fixed Windows performance

* Fixed LLAMA_CUDA_DMMV_Y > 1 for WizardLM
2023-06-14 19:47:19 +02:00
0xspringtime
9254920265 baby-llama : fix operator!= (#1821)
* Update baby-llama.cpp

Seems to be an error in the implementation of the operator!= function. It attempts to compare the this pointer (a llama_hparams_lora object) with the other pointer (a llama_hparams object) using memcmp. This can lead to incorrect results because the sizes of the objects being compared (sizeof(llama_hparams) and sizeof(llama_hparams_lora)) are different, should now be able to compare two llama_hparams_lora objects for inequality.

* Update baby-llama.cpp

* Update baby-llama.cpp
2023-06-13 22:37:54 +03:00
xaedes
e32089b2c2 train : improved training-from-scratch example (#1652)
* add python wrapper

https://gist.github.com/abetlen/2b90e5f153f6efd00931d098de5c73ce

* fix decoding error. adds errors=ignore parameter

* add python bindings for functions to get and set the whole llama state
(rng, logits, embedding and kv_cache)

* update python bindings

* add text generating baby-llama from scratch example

* fix race condition bug in ggml_compute_forward_diag_mask_f32

* implement ggml_soft_max_back for more performant backward pass of soft_max

avoids creating big intermediate matrices of size n_embd x n_embd for llama layers and n_vocab x n_vocab for cross entropy loss

* improve softmax backward pass

go from quadratic runtime to linear runtime by simplifying the formulas

* fix race condition bug in non-inplace ggml_compute_forward_diag_mask_f32

memcpy needs to be synchronized across threads to avoid race conditions.
=> do it in INIT phase

* fix bug in ggml_compute_forward_soft_max_back_f32 on DEBUG build

* improve performance of mul_mat backward pass

avoid transpose by using mul_mat with swapped arguments

* avoid printing too much newlines in baby-llama-text

* activate threading in baby-llama-text

* add ggml_out_prod and use it for mul_mat backward pass for improved performance

performance stats report improvement from 37 seconds to 16 seconds runtime during my training tests

* better weight initialization improves training convergence at start

* better weight initialization improves training convergence at start

* improve ggml_out_prod performance

- change iteration order (>15s -> 10s runtime)
- parallelize over one more dimension: over dst matrix rows (10s -> <5s runtime)

* add llama sampler, shuffle samples and constrain sampling to tokens occurring in train data

* fix get_samples call, add model tensor names, increase model size, start training samples after newline

* save train trained model to checkpoint and load model to be trained from checkpoint

* use inplace functions where possible

* initialize rng with srand

* use different arguments for input and output checkpoint

* ggml fixes to support backward pass on inplace operations

* remove duplicate include

* fix cross entropy loss

- add target probabilities for each sample which is then used in cross entropy loss

* print used memory before and after optimization

* sample with non-greedy sampling parameters at the end of training

* add cmake target for baby-llama-text

* add ggml_add1_inplace to header

* enable gradient propagation for inplace add1 and scale operations

those functions backward passes don't need the original src0, so they also work when forward is inplace

* implement AdamW in ggml_opt_adam by adding weight decay parameter (default 0.001f)

also add a schedule parameter (default 1.0f) that can be used to scale alpha and decay according to learning schedule.
setting the decay parameter to zero disables AdamW resulting in normal Adam optimizer.

since the difference between Adam and AdamW is minimal it is not implemented as another optimizer, but integrated into the existing Adam optimizer.

* use inplace operations in cross_entropy_loss

* fix random weight initialization scale

* add missing default parameters for adam optimizer

* add ggml_opt_context, so that we can properly resume training

otherwise the optimizer states, tracking statistics about the error function and its derivates,
will reset to zero each time ggml_opt is called, hindering convergence on resumed training.

now the optimizer context and all its memory is stored in a separate struct.

* fix bug in llama_sample_token_mirostat_v2

when all candidates are filtered out through mu threshold, the following soft_max operation will fail.
so keep at least one.

* add forward function without using cache, for more performant training

during training on whole samples no cache is required.
removing the cache and simplifying the remaining code results in performance and memory usage improvement.

* print suppressed newline tokens as string "\n"

printing too much actual newlines is suppressed to avoid flooding the console.

* store optimizer state in training checkpoint and add learning schedule

persistent optimizer state allows to resume training without resetting the optimizer
learning schedule consists of linear warmup ramp followed by cosine decay with restarts

* remove unused functions

* fix bug in get_samples which corrupted training targets

* save checkpoint only when it was trained

* simplify code

* remove trailing whitespace

* simplify backward pass for SQRT

* replace inefficient repeat backward pass with dedicated repeat_back operation

* add ggml_cross_entropy_loss with backward pass for faster training

cross entropy loss can also be implemented using softmax and log, but as dedicated operation it is faster and especially avoids unnecessary memory overhead.

* add tests for cross_entropy_loss backward pass

finite differences regularly results in estimated gradient of zero, despite the backward pass giving non zero gradient.
_probably_ the finite differences fails due to numerical issues

* use ggml_cross_entropy_loss in text training example

* remove trailing whitespace

* slightly improve how cross entropy loss is compute

btw: directly implemented cross entropy loss seems to have way lower magnitudes than when implemented with softmax and log.
probably the input to log gets closer to zero due to float numerics.
maybe the multiplication by (1.0-eps)/sum is more accurate..

* add llama_get_vocab to get the vocabulary as output parameters

* set default model.type for unknown models with few layers

* add export of training checkpoint to llama compatible model file

* get vocabulary for exporting training checkpoint to llama compatible model file

* implement backward pass of flash attention

* bugfixes for backward pass of flash attention

* test flash attention backward pass

need to set loose error bounds to pass.
the finitie differences are close to numeric limits and often return quite different values than the backward pass.
reducing eps further lets the gradients vanish completely.
likewise setting eps to big results in wronger values.
the softmax in the middle of the function is probably the most responsible for the numeric issues using finite differences.

* add option to train with flash attention and move options to the top of the main function

training from scratch also works with flash attention
training convergence and generation results after fix number of iterations are worse than when not using flash attention.
maybe there still lingers a bug in the flash attention backward pass?
but training works, just with slower convergence.

flash attention is still worth to use, because it requires way less memory and is faster with high n_ctx

* add train_params and command line option parser

* remove unnecessary comments

* add train params to specify memory size

* remove python bindings

* rename baby-llama-text to train-text-from-scratch

* replace auto parameters in lambda function

* add #include <climits>

* add explicit cast to fix compile error

"error: non-constant-expression cannot be narrowed from type 'int64_t' (aka 'long long') to 'uint32_t' (aka 'unsigned int') in initializer list [-Wc++11-narrowing]"

* remove trailing whitespace

* add ggml_opt_resume_g which accepts forward and backward cgraphs

* fix formulas in comments

* bug fix for ggml_compute_forward_get_rows_back_f32

the result should be set to zero, not to whatever data is in opt0

* improve training memory usage with scratch buffers

instead of relying on the automatic backward pass, we manually create the graph for the backward pass.
it turns out that all backward pass operations need only temporary memory which can be reused after each layer.

will compute backward pass for ALL model parameters

* add option to use scratch buffers in training or not

make it configurable because currently training with scratch buffers implies flash attention and optimization over all parameters.

* ci : disable temporary

* store view offset and permute axes in opt[0] instead of storing it in padding

use memcpy to store offset, because offset is of type size_t.
when storing it as int32_t offset would have to be smaller than 2^31 which is not necessarily true.

* minor : fix compile warnings + minor style changes

* fix bug in threaded indices calculation of ggml_compute_forward_flash_attn_back_f32

* store view offset like in master branch

* bug fix in forward_batch_wo_cache_flash_attn_train

* scratch buffer bug fixes in forward_batch_wo_cache_flash_attn_train

data of permute and reshape is the same as their input.
if we want to preserve the output of permute/reshape, we also need to preserve their inputs.

replace reshape(src0, src1) with reshape_nd calls so that we don't need src1.

replace (temporary) t03 with ggml_repeat(ctx0, layer.attention_norm, t02).
in the future we could also use the new broadcasting ggml_mul to avoid these repeat calls.
for this we need backward pass of broadcasting ggml_mul.

* remove unnecessary scratch buffer 0

buf 0 is persistent memory, so we can just disable scratch for this by using buf -1

* avoid creating unnecessary grad tensors

previously we need to create grads for model parameters, so that expand(..) correctly populates cgraph->leafs & cgraph->grads
this wasted memory, because unnecessary grad for each op were automatically created:
the automatically generated grad was unnecessary because we later manually set the grad (e.g. t35->grad = expand(gb, ...) ).
this discarded the automatically generated grad resulting in wasted memory.

improved this by changing expand(..) to not use ggml_build_forward_expand.
expand set cgraph->nodes but not the leafs.
cgraph->leafs & cgraph->grads are set in another pass after the last expand call.

* print used training seed

* zero initialize gfbuf and gbbuf

* ci : re-enable workflows + add README for training

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-06-13 22:04:40 +03:00
Georgi Gerganov
2347e45e7b llama : do a warm-up eval at start for better timings (#1824) 2023-06-13 20:20:07 +03:00
Kerfuffle
74d4cfa343 Allow "quantizing" to f16 and f32 (#1787)
* Allow "quantizing" to f16 and f32

Fix an issue where quantizing didn't respect LLAMA_NO_K_QUANTS

Add brief help to the list of quantization types in the quantize tool

Ignore case for quantization type arguments in the quantize tool
2023-06-13 04:23:23 -06:00
Kawrakow
74a6d922f1 Metal implementation for all k_quants (#1807)
* metal : improve q4_K

28.3 -> 26.0 ms/token by avoiding a branch in the
calculation of the scales.

* metal : small improvement for Q4_K

* metal : still optimizing Q4_K

This commit pushes it down to 25.3 ms / token.

The crazy idea of using 6 bits for the scales is really costly on
Metal: if I remove the bit fiddling necessary to make the block
scales, time goes almost to the Q4_0 23 ms/token.

Before pushing the k-quants upstream I had a Q4_K variant that
had used 8-bit scales. It wasn't more accurate, used 0.125 bits more per weight,
was running slightly slower on the CPU (due to the larger model size
and being memory bound there), and the difference was entirely
negligible under CUDA. So, I decided to publish the version with 6-bit
scales. Perhaps I should re-consider and change to 8-bit scales?

* metal : some more optimizations

Q2_K: 25.4 ms/token
Q6_K: 27.3 ms/token
Q4_0: 22.8 ms/token
Q4_1: 23.1 ms/token

* metal : Q3_K support

Something is not quite right yet.

* metal : Q5_K support

Initial version achieves 31.2 ms/token, 210 GB/s

* metal : still not able to figure out why q3_K does not work

* Minor

* metal : yet another failed attempt to make q3_K work

* metal : optimize Q5_K

31.2 ms -> 27.8 ms.
250 GB/s.

* metal : q3_K still not working

Adding a heavily commented q3_K metal kernel to explain
my obviously faulty logic. Perhaps someone could spot the issue?

* metal : q3_K finally working

Not optimized at all.

What was the issue? The scales are not 4-bytes aligned,
and I was accessing them with a uint32_t pointer.
When I tried that on CUDA, I got an error (illegal memory access)
and added a memcpy to a local array of 3 uint32_t's.
But on Metal it told me there is no memcpy, so I tried
accessing directly. There is no error, just garbage results.
At some point I did try accessing the scales with an uint16_t
pointer (the scales are for sure 2-byte aligned), but was
still getting garbage. I guess, there must have been another bug.

No access to scales is via a uint16_t pointer and, after starting
from scratch from the C dequantize function, it finally works.

* metal : Q3_K 1st optimization pass

* metal : Q3_K second optimization pass - 29.6 ms/token

* metal : Q3_K cleanup

* metal : fixed accidentally broken Q2_K

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 22:39:21 +03:00
slaren
e4caa8da59 ci : run when changing only the CUDA sources (#1800) 2023-06-12 20:12:47 +03:00
Howard Su
58970a4c39 Leverage mmap for offloading tensors to GPU (#1597)
* Rebase to latest

* Show progress

* Add assert to make sure we only allocate temp buffer for non-CPU backend tensor

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>

---------

Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
2023-06-12 14:44:16 +02:00
Kawrakow
8c0a10e64d metal : fix failure to load model (#1817)
The number of buffers in the ggml context was left unitialized.
This leads to sporadic failures to load the model on
startup. It is actually strange that the failure occurred so
infrequantly.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-12 14:31:36 +03:00
Kerfuffle
fa84c4b3e8 Fix issue where interactive mode crashes when input exceeds ctx size (#1789)
* Fix issue where interactive mode in the main example crashes when input exceeds ctx size

* Ensure the context size is at least 8 tokens in the main example.

Closes #1768
2023-06-11 08:19:17 -06:00
Kyle Liang
12b063f0ec Fixed WSL cuda's OOM error (#1594)
* In the function , add the cuda error bypass.

* remove excessive codes and prints

---------

Co-authored-by: liang <liangmanlai@126.com>
2023-06-11 15:20:52 +02:00
Ryan Landay
31d2b5f4a4 Update SHA256SUMS with current hashes for models quantized using q4_0 (#1798) 2023-06-11 12:38:53 +03:00
Georgi Gerganov
4de0334f5c cmake : fix Metal build (close #1791) 2023-06-10 22:56:53 +03:00
Artyom Lebedev
3f1223155a k-quants : GCC12 compilation fix (#1792) 2023-06-10 22:51:36 +03:00
Andrei
303f5809f1 metal : fix issue with ggml-metal.metal path. Closes #1769 (#1782)
* Fix issue with ggml-metal.metal path

* Add ggml-metal.metal as a resource for llama target

* Update flake.nix metal kernel substitution
2023-06-10 17:47:34 +03:00
Aisuko
059e99066d doc : fix wrong address of BLIS.md (#1772)
Signed-off-by: Aisuko <urakiny@gmail.com>
2023-06-10 17:08:11 +03:00
Georgi Gerganov
17c10acfb4 ggml : force no_alloc == false when creating opt tensors (close #1699)
This is needed to make operators like ggml_view() be able to store their
parameters in the ggml context's memory and not get discarded when
no_alloc is true
2023-06-10 12:08:15 +03:00
Kawrakow
e9b66ee982 metal : add Q4_1 implementation (#1785)
23.3 ms / token, so just ~1% slower than q4_0.
Achieves 290 GB/s memory throughput.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-10 11:28:11 +03:00
Kerfuffle
4f0154b0ba llama : support requantizing models instead of only allowing quantization from 16/32bit (#1691)
* Add support for quantizing already quantized models

* Threaded dequantizing and f16 to f32 conversion

* Clean up thread blocks with spares calculation a bit

* Use std::runtime_error exceptions.
2023-06-10 10:59:17 +03:00
Xingchen Song(宋星辰)
ef3171d162 ggml : workaround for missing _mm256_setr_m128i in GCC < 8 (#1638) 2023-06-10 10:49:40 +03:00
rankaiyx
555275a693 make : add SSSE3 compilation use case (#1659) 2023-06-10 09:41:59 +03:00
Robert Sung-wook Shin
98ed165574 OpenCL: Add release memory (#1741)
* Add opencl release memory

* Rename function name
2023-06-09 18:24:40 +02:00
Johannes Gäßler
ae9663f188 Windows nvcc workaround (#1753)
Fix gibberish output on Windows when using CUDA
2023-06-09 13:58:15 +02:00
Georgi Gerganov
b33dee282f metal : fix build "tanhf" -> "tanh" 2023-06-09 11:11:04 +03:00
AT
92f44ff7f7 metal : add GELU implementation (#1770)
Co-authored-by: Adam Treat <adam@nomic.ai>
2023-06-09 11:00:51 +03:00
Kawrakow
245fc3c37d metal : faster q4_0 (#1775)
* metal : 8% faster q4_0

Avoid copying into local uchar4 anf float4.

* metal : 17% faster Q4_0

Use 64 threads in a thread group.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-09 10:39:59 +03:00
Kawrakow
72ff5282bf metal : add Q2_K implementation (#1762)
* metal : add Q2_K implementation

27.1 ms / token on M2 Max 30-core GPU, so about the
same speed as Q4_0. Memory throughput is ~156 GB/s.

The access pattern used in the Q2_K
CUDA implementation resulted in significantly lower
performance (~31 ms/token).

* Fixing merge conflicts

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08 22:28:21 +03:00
Georgi Gerganov
0bf7cf1b29 Revert "ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)"
This reverts commit 8432d4d9f7.
2023-06-08 20:48:14 +03:00
le.chang
8432d4d9f7 ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738) 2023-06-08 19:47:56 +03:00
Kawrakow
0f291e1f65 metal : Q6_K implementation (#1752)
* Metal implementation for Q4_K

Very slow for now:
42 ms / token, Q4_0 runs in 28 ms/token on my
30-core M2 Max GPU.

* Optimizing Q4_K on metal

The first token always takes longer, I guess because
the metal kernel is being jit-compiled.
So, using n = 128 to measure time.

At this point Q4_K takes 29.5 ms / token
compared to 27.2 ms / token for Q4_0.
Quite a bit better than the initial attempt,
but still not good enough.

* Optimizing q4_K metal dot some more

For n = 256 it is now 28.1 ms/token compared to
27 ms/token for q4_0.

* Fix after merge with master

* Metal implementation for Q6_K

Similar to the CUDA implementation.
No idea if this is the optimum for Metal, but the few
alternative variants I tried all had a lower performance.

We get 36.5 ms / token on M2 Max with 30 GPU cores.
This corresponds to ~200 GB/second throughput.

* clang-tidy : add config back

* Much better Q6_K implementation for metal

28.3 ms / token for 7B. Subtracting ~9 ms that is spent in
other compute graph operations, we are left with ~19 ms
for the matrix multiplications. The model is ~5.5 GB,
so we are getting 1000 / 19 * 5.5 = 290 GB/s!

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08 19:46:22 +03:00
qingfengfenga
8fc8179919 Add llama.cpp docker support for non-latin languages (#1673)
* Modify Dockerfile default character set to improve compatibility (#1673)
2023-06-08 00:58:53 -07:00
Steven Roussey
b50b570ed9 ggml : fix fprintf warnings (#1720) 2023-06-08 10:12:28 +03:00
Georgi Gerganov
53aba3f393 clang-tidy : restore dot file from accidental deletion 2023-06-08 10:09:08 +03:00
Kawrakow
4161bdc04d metal : add Q4_K implementation (#1733)
* Metal implementation for Q4_K

Very slow for now:
42 ms / token, Q4_0 runs in 28 ms/token on my
30-core M2 Max GPU.

* Optimizing Q4_K on metal

The first token always takes longer, I guess because
the metal kernel is being jit-compiled.
So, using n = 128 to measure time.

At this point Q4_K takes 29.5 ms / token
compared to 27.2 ms / token for Q4_0.
Quite a bit better than the initial attempt,
but still not good enough.

* Optimizing q4_K metal dot some more

For n = 256 it is now 28.1 ms/token compared to
27 ms/token for q4_0.

* Fix after merge with master

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2023-06-08 10:08:23 +03:00
49 changed files with 9548 additions and 1328 deletions

View File

@@ -16,4 +16,6 @@ COPY . .
RUN make
ENV LC_ALL=C.utf8
ENTRYPOINT ["/app/.devops/tools.sh"]

View File

@@ -15,4 +15,6 @@ FROM ubuntu:$UBUNTU_VERSION as runtime
COPY --from=build /app/main /main
ENV LC_ALL=C.utf8
ENTRYPOINT [ "/main" ]

View File

@@ -10,10 +10,10 @@ on:
push:
branches:
- master
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp']
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
pull_request:
types: [opened, synchronize, reopened]
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp']
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu']
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}

3
.gitignore vendored
View File

@@ -22,6 +22,7 @@ build-metal/
build-no-accel/
build-sanitize-addr/
build-sanitize-thread/
out/
models/*
*.bin
@@ -32,6 +33,7 @@ models/*
/result
/perplexity
/embedding
/train-text-from-scratch
/benchmark-matmult
/vdot
/Pipfile
@@ -40,6 +42,7 @@ models/*
build-info.h
arm_neon.h
compile_commands.json
CMakeSettings.json
__pycache__

View File

@@ -70,6 +70,7 @@ set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
set(LLAMA_CUDA_DMMV_Y "1" CACHE STRING "llama: y block size for dmmv CUDA kernels")
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
option(LLAMA_METAL "llama: use Metal" OFF)
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
@@ -158,17 +159,64 @@ if (LLAMA_BLAS)
if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
set(BLA_SIZEOF_INTEGER 8)
endif()
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
if ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
find_package(PkgConfig REQUIRED)
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS REQUIRED blas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
pkg_check_modules(DepBLAS REQUIRED openblas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
pkg_check_modules(DepBLAS REQUIRED blis)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
pkg_check_modules(DepBLAS REQUIRED blas-atlas)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FlexiBLAS")
pkg_check_modules(DepBLAS REQUIRED flexiblas_api)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "Intel")
# all Intel* libraries share the same include path
pkg_check_modules(DepBLAS REQUIRED mkl-sdl)
elseif (${LLAMA_BLAS_VENDOR} MATCHES "NVHPC")
# this doesn't provide pkg-config
# suggest to assign BLAS_INCLUDE_DIRS on your own
if ("${NVHPC_VERSION}" STREQUAL "")
message(WARNING "Better to set NVHPC_VERSION")
else()
set(DepBLAS_FOUND ON)
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
endif()
endif()
if (DepBLAS_FOUND)
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
else()
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
" detected by pkgconfig, trying to find cblas.h from possible paths...")
find_path(BLAS_INCLUDE_DIRS
NAMES cblas.h
HINTS
/usr/include
/usr/local/include
/usr/include/openblas
/opt/homebrew/opt/openblas/include
/usr/local/opt/openblas/include
/usr/include/x86_64-linux-gnu/openblas/include
)
endif()
endif()
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
add_compile_options(${BLAS_LINKER_FLAGS})
add_compile_definitions(GGML_USE_OPENBLAS)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
message("${BLAS_LIBRARIES} ${BLAS_INCLUDE_DIRS}")
include_directories(${BLAS_INCLUDE_DIRS})
else()
message(WARNING "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
@@ -190,6 +238,7 @@ if (LLAMA_CUBLAS)
add_compile_definitions(GGML_USE_CUBLAS)
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_DMMV_Y=${LLAMA_CUDA_DMMV_Y})
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
if (LLAMA_STATIC)
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
@@ -408,7 +457,7 @@ add_library(ggml OBJECT
${GGML_SOURCES_EXTRA}
)
target_include_directories(ggml PUBLIC .)
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
target_compile_features(ggml PUBLIC c_std_11) # don't bump
target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
@@ -432,6 +481,9 @@ target_link_libraries(llama PRIVATE
if (BUILD_SHARED_LIBS)
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
if (LLAMA_METAL)
set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
endif()
endif()
if (GGML_SOURCES_CUDA)

View File

@@ -1,5 +1,5 @@
# Define the default target now so that it is always the first target
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch simple
ifdef LLAMA_BUILD_SERVER
BUILD_TARGETS += server
@@ -107,6 +107,10 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
# Usage AVX-only
#CFLAGS += -mfma -mf16c -mavx
#CXXFLAGS += -mfma -mf16c -mavx
# Usage SSSE3-only (Not is SSE3!)
#CFLAGS += -mssse3
#CXXFLAGS += -mssse3
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
@@ -123,6 +127,7 @@ endif
ifndef LLAMA_NO_K_QUANTS
CFLAGS += -DGGML_USE_K_QUANTS
CXXFLAGS += -DGGML_USE_K_QUANTS
OBJS += k_quants.o
endif
@@ -166,6 +171,11 @@ ifdef LLAMA_CUDA_DMMV_Y
else
NVCCFLAGS += -DGGML_CUDA_DMMV_Y=1
endif # LLAMA_CUDA_DMMV_Y
ifdef LLAMA_CUDA_KQUANTS_ITER
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
else
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
endif
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
endif # LLAMA_CUBLAS
@@ -254,7 +264,7 @@ libllama.so: llama.o ggml.o $(OBJS)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
clean:
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot build-info.h
rm -vf *.o *.so main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state server vdot train-text-from-scratch build-info.h
#
# Examples
@@ -266,6 +276,12 @@ main: examples/main/main.cpp build-info.h ggml.
@echo '==== Run ./main -h for help. ===='
@echo
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@echo
@echo '==== Run ./simple -h for help. ===='
@echo
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
@@ -284,6 +300,9 @@ save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp build-info.h ggml.o llama.o common.o $(OBJS)
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp build-info.h ggml.o llama.o $(OBJS)
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
build-info.h: $(wildcard .git/index) scripts/build-info.sh
@sh scripts/build-info.sh > $@.tmp
@if ! cmp -s $@.tmp $@; then \

View File

@@ -11,6 +11,7 @@ let package = Package(
.target(
name: "llama",
path: ".",
exclude: ["ggml-metal.metal"],
sources: ["ggml.c", "llama.cpp"],
publicHeadersPath: "spm-headers",
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],

View File

@@ -308,7 +308,7 @@ Building the program with BLAS support may lead to some performance improvements
- #### BLIS
Check [BLIS.md](BLIS.md) for more information.
Check [BLIS.md](docs/BLIS.md) for more information.
- #### Intel MKL

View File

@@ -1,6 +1,6 @@
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_0.bin
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
@@ -8,7 +8,7 @@ ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_0.bin
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
@@ -18,7 +18,7 @@ e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/con
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_0.bin
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
@@ -32,7 +32,7 @@ a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/con
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_0.bin
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin

View File

@@ -37,6 +37,7 @@ else()
add_subdirectory(save-load-state)
add_subdirectory(benchmark)
add_subdirectory(baby-llama)
add_subdirectory(train-text-from-scratch)
if (LLAMA_METAL)
add_subdirectory(metal)
endif()

View File

@@ -4,6 +4,10 @@
#include <random>
#include <cstring>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
float frand() {
return (float)rand()/(float)RAND_MAX;
}
@@ -79,34 +83,39 @@ struct ggml_tensor * randomize_tensor_normal(
int ndims,
const int64_t ne[],
struct random_normal_distribution * rnd) {
float scale = 1.0; // xavier
switch (ndims) {
case 1:
scale /= sqrtf(ne[0]);
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i0] = frand_normal(rnd);
((float *)tensor->data)[i0] = scale * frand_normal(rnd);
}
break;
case 2:
scale /= sqrtf(ne[0]+ne[1]);
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i1*ne[0] + i0] = frand_normal(rnd);
((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd);
}
}
break;
case 3:
scale /= sqrtf(ne[0]+ne[1]);
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
}
}
}
break;
case 4:
scale /= sqrtf(ne[0]+ne[1]);
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
}
}
}
@@ -148,8 +157,8 @@ struct llama_hparams_lora {
uint32_t n_rot = 64;
uint32_t n_lora = 64;
bool operator!=(const llama_hparams & other) const {
return memcmp(this, &other, sizeof(llama_hparams));
bool operator!=(const llama_hparams_lora & other) const {
return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0;
}
};
@@ -1465,7 +1474,7 @@ struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_te
}
struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
const float eps = 1e-3;
const float eps = 1e-3f;
return
ggml_sum(ctx,
ggml_neg(ctx,

View File

@@ -16,6 +16,10 @@
#include <iterator>
#include <algorithm>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
float tensor_sum_elements(const ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==GGML_TYPE_F32) {
@@ -29,9 +33,9 @@ float tensor_sum_elements(const ggml_tensor * tensor) {
}
void tensor_dump(const ggml_tensor * tensor, const char * name) {
printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name,
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
tensor->type, ggml_type_name(tensor->type),
(int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
float sum = tensor_sum_elements(tensor);
printf("Sum of tensor %s is %6.2f\n", name, sum);
}
@@ -120,7 +124,7 @@ int main(int argc, char ** argv) {
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
ctx_size += 1024*1024*16;
printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024));
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,

41
examples/chat-vicuna.sh Executable file
View File

@@ -0,0 +1,41 @@
#!/bin/bash
set -e
cd "$(dirname "$0")/.." || exit
MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}"
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
USER_NAME="### Human"
AI_NAME="### Assistant"
# Adjust to the number of CPU cores you want to use.
N_THREAD="${N_THREAD:-8}"
# Number of tokens to predict (made it larger than default because we want a long interaction)
N_PREDICTS="${N_PREDICTS:-2048}"
# Note: you can also override the generation options by specifying them on the command line:
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
DATE_TIME=$(date +%H:%M)
DATE_YEAR=$(date +%Y)
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
$PROMPT_TEMPLATE > $PROMPT_FILE
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
./bin/main $GEN_OPTIONS \
--model "$MODEL" \
--threads "$N_THREAD" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--file ${PROMPT_FILE} \
--reverse-prompt "### Human:" \
--in-prefix ' ' \
"$@"

View File

@@ -28,6 +28,10 @@
#include <wchar.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
@@ -331,6 +335,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--low-vram" || arg == "-lv") {
#ifdef GGML_USE_CUBLAS
params.low_vram = true;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--no-mmap") {
params.use_mmap = false;
@@ -367,7 +377,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
} else {
throw std::exception();
}
} catch (const std::exception &e) {
} catch (const std::exception&) {
invalid_param = true;
break;
}
@@ -406,6 +416,14 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
gpt_print_usage(argc, argv, default_params);
exit(1);
}
#ifdef GGML_USE_CUBLAS
if (!params.lora_adapter.empty() && params.n_gpu_layers > 0) {
fprintf(stderr, "%s: error: the simultaneous use of LoRAs and GPU acceleration is not supported", __func__);
exit(1);
}
#endif // GGML_USE_CUBLAS
if (escape_prompt) {
process_escapes(params.prompt);
}
@@ -479,6 +497,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
#endif
fprintf(stderr, " --mtest compute maximum memory usage\n");
fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n");
@@ -528,6 +547,7 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
lparams.n_gpu_layers = params.n_gpu_layers;
lparams.main_gpu = params.main_gpu;
memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float));
lparams.low_vram = params.low_vram;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
@@ -632,6 +652,9 @@ void console_set_color(console_state & con_st, console_color_t color) {
case CONSOLE_COLOR_USER_INPUT:
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_GREEN);
break;
case CONSOLE_COLOR_ERROR:
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_RED);
break;
}
con_st.color = color;
fflush(con_st.out);

View File

@@ -21,15 +21,16 @@
int32_t get_num_physical_cores();
struct gpt_params {
int32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
int32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores();
int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
bool low_vram = 0; // if true, reduce VRAM usage at the cost of performance
// sampling parameters
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
@@ -112,7 +113,8 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params);
enum console_color_t {
CONSOLE_COLOR_DEFAULT=0,
CONSOLE_COLOR_PROMPT,
CONSOLE_COLOR_USER_INPUT
CONSOLE_COLOR_USER_INPUT,
CONSOLE_COLOR_ERROR
};
struct console_state {

View File

@@ -4,6 +4,10 @@
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
int main(int argc, char ** argv) {
gpt_params params;

View File

@@ -288,5 +288,6 @@ These options provide extra functionality and customization when running the LLa
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.

View File

@@ -23,11 +23,17 @@
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static console_state con_st;
static llama_context ** g_ctx;
@@ -81,6 +87,9 @@ int main(int argc, char ** argv) {
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
} else if (params.n_ctx < 8) {
fprintf(stderr, "%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
@@ -328,9 +337,29 @@ int main(int argc, char ** argv) {
std::vector<llama_token> embd;
// do one empty run to warm up the model
{
const std::vector<llama_token> tmp = { llama_token_bos(), };
llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_reset_timings(ctx);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
if (embd.size() > 0) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
auto max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int)embd.size() > max_embd_size) {
auto skipped_tokens = embd.size() - max_embd_size;
console_set_color(con_st, CONSOLE_COLOR_ERROR);
printf("<<input too long: skipped %" PRIu64 " token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
fflush(stdout);
embd.resize(max_embd_size);
}
// infinite text generation via context swapping
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)

View File

@@ -5,6 +5,10 @@
#include <cmath>
#include <ctime>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];

View File

@@ -19,6 +19,10 @@
#include <thread>
#include <mutex>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin";
bool verbose = false;

View File

@@ -3,43 +3,136 @@
#include "llama.h"
#include <cstdio>
#include <map>
#include <cstring>
#include <vector>
#include <string>
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
{"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K},
{"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M},
{"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
{"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
{"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
{"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M},
{"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
{"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
{"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M},
{"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
{"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
{"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K},
struct quant_option {
std::string name;
llama_ftype ftype;
std::string desc;
};
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
if (it != LLAMA_FTYPE_MAP.end()) {
ftype = it->second;
ftype_str_out = it->first;
return true;
static const std::vector<struct quant_option> QUANT_OPTIONS = {
{
"Q4_0",
LLAMA_FTYPE_MOSTLY_Q4_0,
" 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
},
{
"Q4_1",
LLAMA_FTYPE_MOSTLY_Q4_1,
" 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
},
{
"Q5_0",
LLAMA_FTYPE_MOSTLY_Q5_0,
" 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
},
{
"Q5_1",
LLAMA_FTYPE_MOSTLY_Q5_1,
" 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
},
#ifdef GGML_USE_K_QUANTS
{
"Q2_K",
LLAMA_FTYPE_MOSTLY_Q2_K,
" 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
},
{
"Q3_K",
LLAMA_FTYPE_MOSTLY_Q3_K_M,
"alias for Q3_K_M"
},
{
"Q3_K_S",
LLAMA_FTYPE_MOSTLY_Q3_K_S,
" 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
},
{
"Q3_K_M",
LLAMA_FTYPE_MOSTLY_Q3_K_M,
" 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
},
{
"Q3_K_L",
LLAMA_FTYPE_MOSTLY_Q3_K_L,
" 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
},
{
"Q4_K",
LLAMA_FTYPE_MOSTLY_Q4_K_M,
"alias for Q4_K_M",
},
{
"Q4_K_S",
LLAMA_FTYPE_MOSTLY_Q4_K_S,
" 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
},
{
"Q4_K_M",
LLAMA_FTYPE_MOSTLY_Q4_K_M,
" 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
},
{
"Q5_K",
LLAMA_FTYPE_MOSTLY_Q5_K_M,
"alias for Q5_K_M",
},
{
"Q5_K_S",
LLAMA_FTYPE_MOSTLY_Q5_K_S,
" 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
},
{
"Q5_K_M",
LLAMA_FTYPE_MOSTLY_Q5_K_M,
" 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
},
{
"Q6_K",
LLAMA_FTYPE_MOSTLY_Q6_K,
" 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
},
#endif
{
"Q8_0",
LLAMA_FTYPE_MOSTLY_Q8_0,
" 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
},
{
"F16",
LLAMA_FTYPE_MOSTLY_F16,
"13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
},
{
"F32",
LLAMA_FTYPE_ALL_F32,
"26.00G @ 7B - absolutely huge, lossless - not recommended",
},
};
bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
std::string ftype_str;
for (auto ch : ftype_str_in) {
ftype_str.push_back(std::toupper(ch));
}
for (auto & it : QUANT_OPTIONS) {
if (it.name == ftype_str) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
// try to parse as an integer
try {
int ftype_int = std::stoi(ftype_str);
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
if (it->second == ftype_int) {
ftype = it->second;
ftype_str_out = it->first;
for (auto & it : QUANT_OPTIONS) {
if (it.ftype == ftype_int) {
ftype = it.ftype;
ftype_str_out = it.name;
return true;
}
}
@@ -51,29 +144,51 @@ bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::st
}
// usage:
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
//
void usage(const char * executable) {
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
fprintf(stderr, "\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
}
exit(1);
}
int main(int argc, char ** argv) {
if (argc < 3) {
fprintf(stderr, "usage: %s model-f32.bin [model-quant.bin] type [nthreads]\n", argv[0]);
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
usage(argv[0]);
}
llama_model_quantize_params params = llama_model_quantize_default_params();
int arg_idx = 1;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
params.quantize_output_tensor = false;
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
params.allow_requantize = true;
} else {
usage(argv[0]);
}
return 1;
}
if (argc - arg_idx < 3) {
usage(argv[0]);
}
llama_init_backend();
// parse command line arguments
const std::string fname_inp = argv[1];
const std::string fname_inp = argv[arg_idx];
arg_idx++;
std::string fname_out;
int nthread;
llama_ftype ftype;
int arg_idx = 2;
std::string ftype_str;
if (try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
// argv[2] is the ftype
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
std::string fpath;
const size_t pos = fname_inp.find_last_of('/');
if (pos != std::string::npos) {
@@ -84,7 +199,6 @@ int main(int argc, char ** argv) {
arg_idx++;
}
else {
// argv[2] is the output path
fname_out = argv[arg_idx];
arg_idx++;
@@ -92,8 +206,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s: missing ftype\n", __func__);
return 1;
}
// argv[3] is the ftype
if (!try_parse_ftype(argv[arg_idx], ftype, ftype_str)) {
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
}
@@ -103,21 +216,19 @@ int main(int argc, char ** argv) {
// parse nthreads
if (argc > arg_idx) {
try {
nthread = std::stoi(argv[arg_idx]);
params.nthread = std::stoi(argv[arg_idx]);
}
catch (const std::exception & e) {
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
return 1;
}
} else {
nthread = 0;
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
if (nthread > 0) {
fprintf(stderr, " using %d threads", nthread);
if (params.nthread > 0) {
fprintf(stderr, " using %d threads", params.nthread);
}
fprintf(stderr, "\n");
@@ -129,7 +240,7 @@ int main(int argc, char ** argv) {
{
const int64_t t_start_us = llama_time_us();
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype, nthread)) {
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), &params)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}

View File

@@ -37,7 +37,7 @@ int main(int argc, char ** argv) {
// init
auto ctx = llama_init_from_file(params.model.c_str(), lparams);
auto tokens = std::vector<llama_token>(params.n_ctx);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), int(tokens.size()), true);
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);

View File

@@ -16,6 +16,10 @@ This example allow you to have a llama.cpp http server to interact from a web pa
To get started right away, run the following command, making sure to use the correct path for the model you have:
#### Unix-based systems (Linux, macOS, etc.):
Make sure to build with the server option on
```bash
LLAMA_BUILD_SERVER=1 make
```
```bash
./server -m models/7B/ggml-model.bin --ctx_size 2048
@@ -289,6 +293,7 @@ Test();
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
- `--embedding`: Enable the embedding mode. **Completion function doesn't work in this mode**.
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`;
- `--port`: Set the port to listen. Default: `8080`.

View File

@@ -405,6 +405,7 @@ void server_print_usage(int /*argc*/, char **argv, const gpt_params &params)
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n" );
fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n" );
#endif
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
@@ -537,6 +538,14 @@ bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_para
}
#else
fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--low-vram" || arg == "-lv")
{
#ifdef GGML_USE_CUBLAS
params.low_vram = true;
#else
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")

View File

@@ -0,0 +1,7 @@
set(TARGET simple)
add_executable(${TARGET} simple.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
if(TARGET BUILD_INFO)
add_dependencies(${TARGET} BUILD_INFO)
endif()

177
examples/simple/simple.cpp Normal file
View File

@@ -0,0 +1,177 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
#include "build-info.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#include <signal.h>
#endif
int main(int argc, char ** argv)
{
gpt_params params;
//---------------------------------
// Print help :
//---------------------------------
if ( argc == 1 || argv[1][0] == '-' )
{
printf( "usage: %s MODEL_PATH [PROMPT]\n" , argv[0] );
return 1 ;
}
//---------------------------------
// Load parameters :
//---------------------------------
if ( argc >= 2 )
{
params.model = argv[1];
}
if ( argc >= 3 )
{
params.prompt = argv[2];
}
if ( params.prompt.empty() )
{
params.prompt = "Hello my name is";
}
//---------------------------------
// Init LLM :
//---------------------------------
llama_init_backend();
llama_context * ctx ;
ctx = llama_init_from_gpt_params( params );
if ( ctx == NULL )
{
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
return 1;
}
//---------------------------------
// Tokenize the prompt :
//---------------------------------
std::vector<llama_token> tokens_list;
tokens_list = ::llama_tokenize( ctx , params.prompt , true );
const int max_context_size = llama_n_ctx( ctx );
const int max_tokens_list_size = max_context_size - 4 ;
if ( (int)tokens_list.size() > max_tokens_list_size )
{
fprintf( stderr , "%s: error: prompt too long (%d tokens, max %d)\n" ,
__func__ , (int)tokens_list.size() , max_tokens_list_size );
return 1;
}
fprintf( stderr, "\n\n" );
// Print the tokens from the prompt :
for( auto id : tokens_list )
{
printf( "%s" , llama_token_to_str( ctx , id ) );
}
fflush(stdout);
//---------------------------------
// Main prediction loop :
//---------------------------------
// The LLM keeps a contextual cache memory of previous token evaluation.
// Usually, once this cache is full, it is required to recompute a compressed context based on previous
// tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
// example, we will just stop the loop once this cache is full or once an end of stream is detected.
while ( llama_get_kv_cache_token_count( ctx ) < max_context_size )
{
//---------------------------------
// Evaluate the tokens :
//---------------------------------
if ( llama_eval( ctx , tokens_list.data() , tokens_list.size() , llama_get_kv_cache_token_count( ctx ) , params.n_threads ) )
{
fprintf( stderr, "%s : failed to eval\n" , __func__ );
return 1;
}
tokens_list.clear();
//---------------------------------
// Select the best prediction :
//---------------------------------
llama_token new_token_id = 0;
auto logits = llama_get_logits( ctx );
auto n_vocab = llama_n_vocab( ctx ); // the size of the LLM vocabulary (in tokens)
std::vector<llama_token_data> candidates;
candidates.reserve( n_vocab );
for( llama_token token_id = 0 ; token_id < n_vocab ; token_id++ )
{
candidates.emplace_back( llama_token_data{ token_id , logits[ token_id ] , 0.0f } );
}
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
// Select it using the "Greedy sampling" method :
new_token_id = llama_sample_token_greedy( ctx , &candidates_p );
// is it an end of stream ?
if ( new_token_id == llama_token_eos() )
{
fprintf(stderr, " [end of text]\n");
break;
}
// Print the new token :
printf( "%s" , llama_token_to_str( ctx , new_token_id ) );
fflush( stdout );
// Push this new token for next evaluation :
tokens_list.push_back( new_token_id );
} // wend of main loop
llama_free( ctx );
return 0;
}
// EOF

View File

@@ -0,0 +1,4 @@
set(TARGET train-text-from-scratch)
add_executable(${TARGET} train-text-from-scratch.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -0,0 +1,22 @@
# train-text-from-scratch
Basic usage instructions:
```bash
# get training data
wget https://github.com/brunoklein99/deep-learning-notes/blob/master/shakespeare.txt
# train
./bin/train-text-from-scratch \
--vocab-model ../models/ggml-vocab.bin \
--ctx 64 --embd 256 --head 8 --layer 16 \
--checkpoint-in chk-shakespeare-256x16.bin \
--checkpoint-out chk-shakespeare-256x16.bin \
--model-out ggml-shakespeare-256x16-f32.bin \
--train-data "shakespeare.txt" \
-t 6 -b 16 -n 32 --seed 1 --adam-iter 16 \
--print-details-interval 0 --predict 16 --use-flash
# predict
./bin/main -m ggml-shakespeare-256x16-f32.bin
```

File diff suppressed because it is too large Load Diff

View File

@@ -28,7 +28,7 @@
postPatch =
if isM1 then ''
substituteInPlace ./ggml-metal.m \
--replace '[[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";"
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/ggml-metal.metal\";"
'' else "";
nativeBuildInputs = with pkgs; [ cmake ];
buildInputs = osSpecific;

File diff suppressed because it is too large Load Diff

View File

@@ -24,11 +24,14 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr);
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset);
void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
void ggml_cuda_free_data(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
void ggml_cuda_set_main_device(int main_device);
void ggml_cuda_set_scratch_size(size_t scratch_size);
void ggml_cuda_free_scratch(void);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef __cplusplus

View File

@@ -55,6 +55,7 @@ void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor *
void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
// same as ggml_graph_compute but uses Metal
// creates gf->n_threads command buffers in parallel
void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
#ifdef __cplusplus

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -15,7 +15,7 @@
#include "ggml.h"
#define CL_DMMV_BLOCK_SIZE 32;
#define CL_DMMV_BLOCK_SIZE 32
#define MULTILINE_QUOTE(...) #__VA_ARGS__
static std::string program_source = MULTILINE_QUOTE(
@@ -59,6 +59,46 @@ struct __attribute__ ((packed)) block_q8_0
int8_t qs[QK8_0];
};
struct __attribute__((packed)) block_q2_K
{
uint8_t scales[16];
uint8_t qs[64];
half d;
half dmin;
};
struct __attribute__((packed)) block_q3_K
{
uint8_t hmask[32];
uint8_t qs[64];
uint8_t scales[12];
half d;
};
struct __attribute__((packed)) block_q4_K
{
half d;
half dmin;
uint8_t scales[12];
uint8_t qs[128];
};
struct __attribute__((packed)) block_q5_K
{
half d;
half dmin;
uint8_t scales[12];
uint8_t qh[32];
uint8_t qs[128];
};
struct __attribute__((packed)) block_q6_K
{
uint8_t ql[128];
uint8_t qh[64];
int8_t scales[16];
half d;
};
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
const uint i = get_global_id(0);
@@ -131,8 +171,314 @@ void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float
*v0 = vload_half(0, &x[ib + 0]);
*v1 = vload_half(0, &x[ib + 1]);
}
inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
{
if (j < 4)
{
*d = q[j] & 63;
*m = q[j + 4] & 63;
}
else
{
*d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
*m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
}
}
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int tid = get_local_id(0);
const int n = tid / 32;
const int l = tid - 32 * n;
const int is = 8 * n + l / 16;
const uint8_t q = x[i].qs[32 * n + l];
__global float *y = yy + i * 256 + 128 * n;
const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
}
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
{
int r = get_local_id(0) / 4;
int i = get_group_id(0);
int tid = r / 2;
int is0 = r % 2;
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
int n = tid / 4;
int j = tid - 4 * n;
uint8_t m = 1 << (4 * n + j);
int is = 8 * n + 2 * j + is0;
int shift = 2 * j;
int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
: is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
: is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
: (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
float d_all = vload_half(0, &x[i].d);
float dl = d_all * (us - 32);
__global float *y = yy + i * 256 + 128 * n + 32 * j;
const __global uint8_t *q = x[i].qs + 32 * n;
const __global uint8_t *hm = x[i].hmask;
for (int l = l0; l < l0 + 4; ++l)
y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
}
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int tid = get_local_id(0);
const int il = tid / 8;
const int ir = tid % 8;
const int is = 2 * il;
const int n = 4;
__global float *y = yy + i * 256 + 64 * il + n * ir;
const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
__global const uint8_t *q = x[i].qs + 32 * il + n * ir;
uint8_t sc, m;
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
float d1 = dall * sc;
float m1 = dmin * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
float d2 = dall * sc;
float m2 = dmin * m;
for (int l = 0; l < n; ++l)
{
y[l + 0] = d1 * (q[l] & 0xF) - m1;
y[l + 32] = d2 * (q[l] >> 4) - m2;
}
}
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int tid = get_local_id(0);
const int il = tid / 16;
const int ir = tid % 16;
const int is = 2 * il;
__global float *y = yy + i * 256 + 64 * il + 2 * ir;
const float dall = vload_half(0, &x[i].d);
const float dmin = vload_half(0, &x[i].dmin);
__global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
__global const uint8_t *qh = x[i].qh + 2 * ir;
uint8_t sc, m;
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
const float d1 = dall * sc;
const float m1 = dmin * m;
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
const float d2 = dall * sc;
const float m2 = dmin * m;
uint8_t hm = 1 << (2 * il);
y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
hm <<= 1;
y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
}
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
{
const int i = get_group_id(0);
const int tid = get_local_id(0);
const int ip = tid / 32;
const int il = tid - 32 * ip;
const int is = 8 * ip + il / 16;
__global float *y = yy + i * 256 + 128 * ip + il;
const float d = vload_half(0, &x[i].d);
__global const uint8_t *ql = x[i].ql + 64 * ip + il;
const uint8_t qh = x[i].qh[32 * ip + il];
__global const int8_t *sc = x[i].scales + is;
y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
}
void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
int n = iqs / 128;
int r = iqs - 128 * n;
int l = r / 8;
__global const float *y = yy + 128 * n + l;
__global const uint8_t *q = x[ib].qs + 32 * n + l;
__global const uint8_t *s = x[ib].scales + 8 * n;
const float dall = vload_half(0, &x[ib].d);
const float dmin = vload_half(0, &x[ib].dmin);
float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4))
+ y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4))
+ y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4))
+ y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4))
+ y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4))
+ y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4))
+ y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4))
+ y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4));
*result = sum;
}
void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
const uint32_t kmask1 = 0x03030303;
const uint32_t kmask2 = 0x0f0f0f0f;
uint32_t aux[3];
uint32_t utmp[4];
int n = iqs/128;
int r = iqs - 128*n;
int l = r/8;
__global const float * y = yy + 128*n + l;
__global const uint8_t * q = x[ib].qs + 32*n + l;
__global const uint8_t * hm = x[ib].hmask + l;
const int8_t * s = (const int8_t *)utmp + 8*n;
aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24;
aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24;
aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24;
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
const float dall = vload_half(0, &x[ib].d);
const uint8_t m = 1 << (4*n);
float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4))
+ y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4))
+ y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4))
+ y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4))
+ y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4))
+ y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4))
+ y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4))
+ y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4));
*result = sum * dall;
}
void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
const int j = iqs / 64; // j is in 0...3
const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4
const int is = 2*j; // is is in 0...6 in steps of 2
__global const float * y = yy + 64*j + ir;
__global const uint8_t * q = x[ib].qs + 32*j + ir;
const float dall = vload_half(0, &x[ib].d);
const float dmin = vload_half(0, &x[ib].dmin);
uint8_t sc, m;
get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
const float d1 = dall * sc;
const float m1 = dmin * m;
get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
const float d2 = dall * sc;
const float m2 = dmin * m;
float sum = 0;
for (int k = 0; k < 4; ++k) {
sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1);
sum += y[k + 32] * (d2 * (q[k] >> 4) - m2);
}
*result = sum;
}
void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
const int j = iqs / 64;
const int ir = (iqs - 64*j)/2;
const int is = 2*j;
__global const float * y = yy + 64*j + ir;
__global const uint8_t * ql = x[ib].qs + 32*j + ir;
__global const uint8_t * qh = x[ib].qh + ir;
const float dall = vload_half(0, &x[ib].d);
const float dmin = vload_half(0, &x[ib].dmin);
uint8_t sc, m;
get_scale_min_k4(is + 0, x[ib].scales, &sc, &m);
const float d1 = dall * sc;
const float m1 = dmin * m;
get_scale_min_k4(is + 1, x[ib].scales, &sc, &m);
const float d2 = dall * sc;
const float m2 = dmin * m;
uint8_t hm = 1 << is;
float sum = 0;
for (int k = 0; k < 4; ++k) {
sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1);
}
hm <<= 1;
for (int k = 0; k < 4; ++k) {
sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2);
}
*result = sum;
}
void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) {
const int ip = iqs / 128; // 0 or 1
const int il = (iqs - 128*ip)/8; // 0...15
const int is = 8*ip;
__global const float * y = yy + 128*ip + il;
const float d = vload_half(0, &x[ib].d);
__global const uint8_t * ql = x[ib].ql + 64*ip + il;
__global const uint8_t * qh = x[ib].qh + 32*ip + il;
__global const int8_t * sc = x[ib].scales + is;
*result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32)
+ y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32)
+ y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32)
+ y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32)
+ y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32)
+ y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32)
+ y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32)
+ y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32);
}
);
std::string dequant_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
@@ -160,7 +506,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
const int block_size = get_local_size(0);
const int row = get_global_id(0) / block_size;
const int row = get_group_id(0);
const int tid = get_local_id(0);
const uint qk = QUANT_K;
@@ -199,6 +545,45 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
}
);
std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
const int block_size = get_local_size(0);
const int row = get_group_id(0);
const int tid = get_local_id(0);
const int iter_stride = 256;
const int vals_per_iter = iter_stride / block_size;
const int num_blocks_per_row = ncols / 256;
const int ib0 = row*num_blocks_per_row;
tmp[tid] = 0;
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int ib = ib0 + col/256; // x block index
const int iqs = col%256; // x quant index
const int iybs = col - col%256; // y block start index
// dequantize
float v;
DOT_KERNEL(x, ib, iqs, y + iybs, &v);
tmp[tid] += v;
}
// sum up partial sums and write back result
barrier(CLK_LOCAL_MEM_FENCE);
for (int s=block_size/2; s>0; s>>=1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (tid == 0) {
dst[row] = tmp[0];
}
}
);
std::string mul_template = MULTILINE_QUOTE(
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
@@ -260,6 +645,18 @@ std::array<std::string, 2> mul_str_values = {
"mul_f32", "float"
};
std::array<std::string, 3> dmmv_k_str_keys = {
"KERNEL_NAME", "X_TYPE", "DOT_KERNEL"
};
std::array<std::string, 15> dmmv_k_str_values = {
"dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K",
"dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K",
"dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K",
"dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K",
"dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K",
};
std::string& replace(std::string& s, const std::string& from, const std::string& to) {
size_t pos = 0;
while ((pos = s.find(from, pos)) != std::string::npos) {
@@ -289,6 +686,14 @@ std::string generate_kernels() {
}
src << mul_kernel << '\n';
}
for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) {
std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template;
for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) {
replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]);
}
src << dmmv_k_kernel << '\n';
}
return src.str();
}
@@ -300,6 +705,8 @@ static cl_program program;
static cl_kernel convert_row_f16_cl;
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
static cl_kernel mul_f32_cl;
static bool fp16_support;
@@ -529,6 +936,12 @@ void ggml_cl_init(void) {
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
// dequant mul mat kernel
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
@@ -537,6 +950,11 @@ void ggml_cl_init(void) {
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
// mul kernel
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
@@ -554,6 +972,16 @@ static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
return &dequantize_row_q5_1_cl;
case GGML_TYPE_Q8_0:
return &dequantize_row_q8_0_cl;
case GGML_TYPE_Q2_K:
return &dequantize_block_q2_k_cl;
case GGML_TYPE_Q3_K:
return &dequantize_block_q3_k_cl;
case GGML_TYPE_Q4_K:
return &dequantize_block_q4_k_cl;
case GGML_TYPE_Q5_K:
return &dequantize_block_q5_k_cl;
case GGML_TYPE_Q6_K:
return &dequantize_block_q6_k_cl;
case GGML_TYPE_F16:
return &convert_row_f16_cl;
default:
@@ -561,6 +989,50 @@ static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
}
}
static size_t ggml_cl_global_denom(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return 1;
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
return 4;
case GGML_TYPE_Q4_K:
return 8;
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
return 4;
case GGML_TYPE_F16:
default:
return 1;
}
}
static size_t ggml_cl_local_size(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return 0;
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
return 64;
case GGML_TYPE_Q4_K:
return 32;
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
return 64;
case GGML_TYPE_F16:
default:
return 0;
}
}
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
@@ -575,6 +1047,16 @@ static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
return &dequantize_mul_mat_vec_q8_0_cl;
case GGML_TYPE_F16:
return &convert_mul_mat_vec_f16_cl;
case GGML_TYPE_Q2_K:
return &dequantize_mul_mat_vec_q2_K_cl;
case GGML_TYPE_Q3_K:
return &dequantize_mul_mat_vec_q3_K_cl;
case GGML_TYPE_Q4_K:
return &dequantize_mul_mat_vec_q4_K_cl;
case GGML_TYPE_Q5_K:
return &dequantize_mul_mat_vec_q5_K_cl;
case GGML_TYPE_Q6_K:
return &dequantize_mul_mat_vec_q6_K_cl;
default:
return nullptr;
}
@@ -662,6 +1144,15 @@ static void ggml_cl_pool_free(cl_mem mem, size_t size) {
clReleaseMemObject(mem);
}
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
if (tensor->backend != GGML_BACKEND_GPU) {
return;
}
cl_mem mem = (cl_mem)tensor->data;
clReleaseMemObject(mem);
}
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
cl_int err;
const uint64_t ne0 = src->ne[0];
@@ -1008,6 +1499,9 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
GGML_ASSERT(to_fp32_cl != nullptr);
const size_t global_denom = ggml_cl_global_denom(type);
const size_t local = ggml_cl_local_size(type);
size_t ev_idx = 0;
std::vector<cl_event> events;
@@ -1040,10 +1534,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
// convert src0 to fp32 on device
const size_t global = x_ne;
const size_t global = x_ne / global_denom;
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
// copy src1 to device
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
@@ -1158,7 +1652,7 @@ size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct g
return 0;
}
void ggml_cl_transform_tensor(ggml_tensor * tensor) {
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
const int64_t ne0 = tensor->ne[0];
const int64_t ne1 = tensor->ne[1];
const int64_t ne2 = tensor->ne[2];
@@ -1170,6 +1664,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
size_t q_size;
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
tensor->data = data;
// copy tensor to device
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = 0; i2 < ne2; i2++) {
@@ -1181,35 +1676,5 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
CL_CHECK(clFinish(queue));
tensor->data = dst;
tensor->backend = GGML_BACKEND_GPU;
}
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {
cl_int err;
FILE * fp = fopen(fname, "rb");
const size_t size = ggml_nbytes(tensor);
cl_mem dst;
CL_CHECK((dst = clCreateBuffer(context, CL_MEM_READ_ONLY, size, nullptr, &err), err));
void * buf_host = malloc(size);
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, SEEK_SET);
#else
int ret = fseek(fp, (long) offset, SEEK_SET);
#endif
GGML_ASSERT(ret == 0); // same
size_t ret2 = fread(buf_host, size, 1, fp);
if (ret2 != 1) {
fprintf(stderr, "unexpectedly reached end of file");
exit(1);
}
clEnqueueWriteBuffer(queue, dst, CL_TRUE, 0, size, buf_host, 0, nullptr, nullptr);
tensor->data = dst;
free(buf_host);
fclose(fp);
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
}

View File

@@ -16,8 +16,9 @@ void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor
void * ggml_cl_host_malloc(size_t size);
void ggml_cl_host_free(void * ptr);
void ggml_cl_transform_tensor(struct ggml_tensor * tensor);
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, size_t offset);
void ggml_cl_free_data(const struct ggml_tensor* tensor);
void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
#ifdef __cplusplus
}

2168
ggml.c

File diff suppressed because it is too large Load Diff

128
ggml.h
View File

@@ -296,6 +296,7 @@ extern "C" {
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK,
GGML_OP_ABS,
GGML_OP_SGN,
GGML_OP_NEG,
@@ -309,6 +310,7 @@ extern "C" {
GGML_OP_RMS_NORM_BACK,
GGML_OP_MUL_MAT,
GGML_OP_OUT_PROD,
GGML_OP_SCALE,
GGML_OP_SET,
@@ -324,6 +326,7 @@ extern "C" {
GGML_OP_DIAG_MASK_INF,
GGML_OP_DIAG_MASK_ZERO,
GGML_OP_SOFT_MAX,
GGML_OP_SOFT_MAX_BACK,
GGML_OP_ROPE,
GGML_OP_ROPE_BACK,
GGML_OP_ALIBI,
@@ -333,10 +336,14 @@ extern "C" {
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_COUNT,
};
@@ -478,6 +485,7 @@ extern "C" {
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
@@ -574,6 +582,11 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_acc(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -645,6 +658,11 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a);
@@ -698,14 +716,22 @@ extern "C" {
struct ggml_tensor * a,
struct ggml_tensor * b);
// A: m rows, n columns
// B: p rows, n columns (i.e. we transpose it internally)
// A: n columns, m rows
// B: n columns, p rows (i.e. we transpose it internally)
// result is m columns, p rows
GGML_API struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// A: m columns, n rows,
// B: p columns, n rows,
// result is m columns, p rows
GGML_API struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
//
// operations on tensors without backpropagation
//
@@ -916,6 +942,17 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// rotary position embedding
// if mode & 1 == 1, skip n_past elements
// if mode & 2 == 1, GPT-NeoX style
@@ -982,6 +1019,14 @@ extern "C" {
struct ggml_tensor * v,
bool masked);
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked);
GGML_API struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -1005,6 +1050,19 @@ extern "C" {
struct ggml_tensor * b,
ggml_binary_op_f32_t fun);
// loss function
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c);
//
// automatic differentiation
//
@@ -1099,6 +1157,8 @@ extern "C" {
struct {
int n_iter;
float sched; // schedule multiplier (fixed, decay or warmup)
float decay; // weight decay for AdamW, use 0.0f to disable
float alpha; // learning rate
float beta1;
float beta2;
@@ -1123,6 +1183,49 @@ extern "C" {
} lbfgs;
};
struct ggml_opt_context {
struct ggml_context * ctx;
struct ggml_opt_params params;
int iter;
int64_t nx; // number of parameter elements
bool just_initialized;
struct {
struct ggml_tensor * x; // view of the parameters
struct ggml_tensor * g1; // gradient
struct ggml_tensor * g2; // gradient squared
struct ggml_tensor * m; // first moment
struct ggml_tensor * v; // second moment
struct ggml_tensor * mh; // first moment hat
struct ggml_tensor * vh; // second moment hat
struct ggml_tensor * pf; // past function values
float fx_best;
float fx_prev;
int n_no_improvement;
} adam;
struct {
struct ggml_tensor * x; // current parameters
struct ggml_tensor * xp; // previous parameters
struct ggml_tensor * g; // current gradient
struct ggml_tensor * gp; // previous gradient
struct ggml_tensor * d; // search direction
struct ggml_tensor * pf; // past function values
struct ggml_tensor * lmal; // the L-BFGS memory alpha
struct ggml_tensor * lmys; // the L-BFGS memory ys
struct ggml_tensor * lms; // the L-BFGS memory s
struct ggml_tensor * lmy; // the L-BFGS memory y
float fx_best;
float step;
int j;
int k;
int end;
int n_no_improvement;
} lbfgs;
};
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
@@ -1131,6 +1234,27 @@ extern "C" {
struct ggml_opt_params params,
struct ggml_tensor * f);
// initialize optimizer context
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb);
//
// quantization
//

View File

@@ -1519,7 +1519,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const uint8x16_t m4b = vdupq_n_u8(0xf);
#ifdef __ARM_FEATURE_DOTPROD
const uint32x4_t mzero = vdupq_n_s32(0);
const int32x4_t mzero = vdupq_n_s32(0);
#endif
int8x16x2_t q4bytes;
@@ -1745,7 +1745,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
#ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint32x4_t mzero = vdupq_n_u32(0);
const int32x4_t mzero = vdupq_n_s32(0);
const uint8x16_t mone = vdupq_n_u8(1);
const uint8x16_t mtwo = vdupq_n_u8(2);
@@ -2242,5 +2242,3 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
*s = sumf;
#endif
}

427
llama.cpp
View File

@@ -40,6 +40,10 @@
#include <sstream>
#include <numeric>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
@@ -165,6 +169,11 @@ struct llama_kv_cache {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
ggml_cuda_free_data(k);
ggml_cuda_free_data(v);
#endif // GGML_USE_CUBLAS
}
};
@@ -210,7 +219,12 @@ struct llama_model {
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
#endif // GGML_USE_CUBLAS
ggml_cuda_free_scratch();
#elif defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
#endif
}
};
@@ -703,6 +717,9 @@ struct llama_model_loader {
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor;
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, true);
}
if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else {
@@ -712,6 +729,9 @@ struct llama_model_loader {
ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, use_mmap);
}
tensor->backend = backend;
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
@@ -727,6 +747,7 @@ struct llama_model_loader {
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0;
size_t prefetch_size = 0;
size_t lock_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
@@ -736,11 +757,6 @@ struct llama_model_loader {
if (use_mmap) {
mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
if (!lmlock) {
// Don't call the callback since the actual loading will be lazy
// and we can't measure it.
progress_callback = NULL;
}
if (lmlock) {
lmlock->init(mapping->addr);
}
@@ -748,20 +764,49 @@ struct llama_model_loader {
size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
lt.data = (uint8_t *) lt.ggml_tensor->data;
load_data_for(lt);
lt.ggml_tensor->data = lt.data;
done_size += lt.size;
if (use_mmap && lmlock) {
lmlock->grow_to(done_size);
// allocate temp buffer if not using mmap
if (!use_mmap && lt.data == NULL) {
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
}
load_data_for(lt);
switch(lt.ggml_tensor->backend) {
case GGML_BACKEND_CPU:
lt.ggml_tensor->data = lt.data;
if (use_mmap && lmlock) {
lock_size += lt.size;
lmlock->grow_to(lock_size);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#endif
default:
continue;
}
done_size += lt.size;
}
}
@@ -832,7 +877,8 @@ static bool kv_cache_init(
const struct llama_hparams & hparams,
struct llama_kv_cache & cache,
ggml_type wtype,
int n_ctx) {
int n_ctx,
int n_gpu_layers) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
@@ -858,6 +904,15 @@ static bool kv_cache_init(
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.v);
}
if (n_gpu_layers > n_layer + 2) {
ggml_cuda_assign_buffers_no_scratch(cache.k);
}
#endif // GGML_USE_CUBLAS
return true;
}
@@ -868,6 +923,7 @@ struct llama_context_params llama_context_default_params() {
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ {0},
/*.low_vram =*/ false,
/*.seed =*/ -1,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
@@ -882,6 +938,17 @@ struct llama_context_params llama_context_default_params() {
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
};
return result;
}
bool llama_mmap_supported() {
return llama_mmap::SUPPORTED;
}
@@ -965,6 +1032,7 @@ static void llama_model_load_internal(
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
@@ -990,6 +1058,12 @@ static void llama_model_load_internal(
case 40: model.type = e_model::MODEL_13B; break;
case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = e_model::MODEL_65B; break;
default:
{
if (hparams.n_layer < 32) {
model.type = e_model::MODEL_7B;
}
} break;
}
hparams.n_ctx = n_ctx;
@@ -1085,18 +1159,34 @@ static void llama_model_load_internal(
ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
// "output" tensor
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) { // NOLINT
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
@@ -1126,7 +1216,7 @@ static void llama_model_load_internal(
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
@@ -1154,23 +1244,49 @@ static void llama_model_load_internal(
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
(void) vram_scratch;
(void) n_batch;
#ifdef GGML_USE_CUBLAS
vram_scratch = n_batch * MB;
ggml_cuda_set_scratch_size(vram_scratch);
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n",
__func__, vram_scratch / MB);
if (low_vram) {
fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
ggml_cuda_set_scratch_size(0); // disable scratch
} else {
vram_scratch = n_batch * MB;
ggml_cuda_set_scratch_size(vram_scratch);
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: allocating batch_size x 1 MB = %ld MB VRAM for the scratch buffer\n",
__func__, vram_scratch / MB);
}
}
#endif // GGML_USE_CUBLAS
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: offloading %d layers to GPU\n", __func__, n_gpu);
fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: offloading output layer to GPU\n", __func__);
fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
}
size_t vram_kv_cache = 0;
if (n_gpu_layers > (int) hparams.n_layer + 1) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
} else {
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
if (n_gpu_layers > (int) hparams.n_layer + 2) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
} else {
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
__func__, std::min(n_gpu_layers, max_offloadable_layers), hparams.n_layer + 3);
fprintf(stderr, "%s: total VRAM used: %zu MB\n",
__func__, (vram_weights + vram_scratch + MB - 1) / MB); // round up
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
#else
(void) n_gpu_layers;
#endif
@@ -1181,58 +1297,15 @@ static void llama_model_load_internal(
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
}
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
(void) tensor_split;
#if defined(GGML_USE_CUBLAS)
{
ggml_cuda_set_tensor_split(tensor_split);
size_t done_size = 0;
size_t data_size = 0;
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
}
}
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
ggml_backend backend = lt.ggml_tensor->backend;
if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
}
}
#elif defined(GGML_USE_CLBLAST)
{
size_t done_size = 0;
size_t data_size = 0;
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
done_size += lt.size;
}
}
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) {
continue;
}
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
ggml_cl_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
done_size += lt.size;
}
}
#else
(void) n_batch;
(void) tensor_split;
#endif
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
@@ -1252,6 +1325,7 @@ static bool llama_model_load(
int n_gpu_layers,
int main_gpu,
float * tensor_split,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
@@ -1259,7 +1333,7 @@ static bool llama_model_load(
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, memory_type,
llama_model_load_internal(fname, lctx, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
@@ -1335,12 +1409,33 @@ static bool llama_eval_internal(
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers;
}
#endif // GGML_USE_CUBLAS
for (int il = 0; il < n_layer; ++il) {
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU
offload_func = ggml_cuda_assign_buffers;
}
#endif // GGML_USE_CUBLAS
@@ -1363,31 +1458,42 @@ static bool llama_eval_internal(
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
// offload_func(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
// offload_func(tmpk);
offload_func_kq(tmpk);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0);
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0);
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
@@ -1399,6 +1505,7 @@ static bool llama_eval_internal(
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
@@ -1407,10 +1514,12 @@ static bool llama_eval_internal(
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
offload_func_kq(K);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
@@ -1419,14 +1528,17 @@ static bool llama_eval_internal(
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
offload_func_kq(KQ_masked);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
@@ -1436,10 +1548,12 @@ static bool llama_eval_internal(
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
offload_func_v(V);
ggml_set_name(V, "V");
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
@@ -1451,12 +1565,14 @@ static bool llama_eval_internal(
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
@@ -1468,7 +1584,6 @@ static bool llama_eval_internal(
}
lctx.use_buf(ctx0, 1);
//ggml_cuda_set_scratch(1);
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
offload_func(inpFF);
@@ -1526,32 +1641,24 @@ static bool llama_eval_internal(
}
lctx.use_buf(ctx0, 0);
//ggml_cuda_set_scratch(0);
// used at the end to optionally extract the embeddings
struct ggml_tensor * embeddings = NULL;
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func = ggml_cuda_assign_buffers; // sets the output backend to GPU
}
#endif // GGML_USE_CUBLAS
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
offload_func(cur);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_inpL");
cur = ggml_rms_norm(ctx0, cur);
offload_func(cur);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_after");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.norm);
offload_func(cur);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
embeddings = cur;
@@ -2159,6 +2266,10 @@ llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_tok
return -log2f(candidate.p) > *mu;
}));
if (candidates->size == 0) {
candidates->size = 1;
}
// Normalize the probabilities of the remaining words
llama_sample_softmax(ctx, candidates);
@@ -2227,15 +2338,79 @@ llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_arra
// quantization
//
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
if (output.size < nelements * sizeof(float)) {
output.resize(nelements * sizeof(float));
}
float * f32_output = (float *) output.addr;
quantize_fns_t qtype;
if (ggml_is_quantized(tensor.type)) {
qtype = ggml_internal_get_quantize_fn(tensor.type);
if (qtype.dequantize_row_q == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
}
} else if (tensor.type != GGML_TYPE_F16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
}
if (nthread < 2) {
if (tensor.type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
} else if (ggml_is_quantized(tensor.type)) {
qtype.dequantize_row_q(tensor.data, f32_output, nelements);
} else {
LLAMA_ASSERT(false); // unreachable
}
return;
}
auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
auto block_size_bytes = ggml_type_size(tensor.type);
LLAMA_ASSERT(nelements % block_size == 0);
auto nblocks = nelements / block_size;
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
std::vector<std::thread> workers;
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else {
qtype.dequantize_row_q(inbuf, outbuf, nels);
}
};
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & worker : workers) {
worker.join();
}
}
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
switch (ftype) {
llama_ftype ftype = params->ftype;
int nthread = params->nthread;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
@@ -2246,6 +2421,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
@@ -2255,8 +2431,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
/*vocab_only*/ false));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), params->ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (auto& tensor : model_loader->tensors_map.tensors) {
@@ -2270,6 +2447,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
@@ -2295,11 +2473,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
// uncomment this to keep the output layer in FP16
//if (tensor.name == "output.weight") {
// quantize = false;
//}
quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
quantize &= quantized_type != tensor.type;
enum ggml_type new_type;
void * new_data;
@@ -2313,46 +2488,40 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
// TODO: temporary disabled until Metal / OpenCL support is available
// ref: https://github.com/ggerganov/llama.cpp/issues/1711
//if (tensor.name == "output.weight") {
// new_type = GGML_TYPE_Q6_K;
//}
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
#ifdef GGML_USE_K_QUANTS
if (tensor.name == "output.weight") {
new_type = GGML_TYPE_Q6_K;
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8 ||
(i_attention_wv - n_attention_wv/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_attention_wv;
}
if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
(i_feed_forward_w2 < n_feed_forward_w2/8 || i_feed_forward_w2 >= 7*n_feed_forward_w2/8 ||
(i_feed_forward_w2 - n_feed_forward_w2/8)%3 == 2)) new_type = GGML_TYPE_Q6_K;
++i_feed_forward_w2;
}
if (tensor.name.find("attention.wo.weight") != std::string::npos) {
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
}
#endif
float * f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
llama_buffer f32_conv_buf;
if (tensor.type == GGML_TYPE_F32) {
f32_data = (float *) tensor.data;
} else if (tensor.type == GGML_TYPE_F16) {
f32_conv_buf.resize(nelements * sizeof(float));
f32_data = (float *) f32_conv_buf.addr;
const auto * f16_data = (const ggml_fp16_t *) tensor.data;
for (size_t i = 0; i < nelements; i++) {
f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
}
} else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
} else {
throw std::runtime_error(format("type %s unsupported for integer quantization", ggml_type_name(tensor.type)));
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
f32_data = (float *) f32_conv_buf.addr;
}
printf("quantizing .. ");
@@ -2480,8 +2649,8 @@ struct llama_context * llama_init_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, memory_type, params.use_mmap, params.use_mlock,
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_batch, params.n_gpu_layers, params.main_gpu,
params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx);
@@ -2490,7 +2659,7 @@ struct llama_context * llama_init_from_file(
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
@@ -2562,10 +2731,9 @@ void llama_free(struct llama_context * ctx) {
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_ftype ftype,
int nthread) {
const llama_model_quantize_params *params) {
try {
llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
llama_model_quantize_internal(fname_inp, fname_out, params);
return 0;
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
@@ -3228,6 +3396,19 @@ int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd;
}
int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity) {
int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
for (int i = 0; i<n; ++i) {
strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
scores[i] = ctx->vocab.id_to_token[i].score;
}
return n;
}
float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data();
}

29
llama.h
View File

@@ -77,6 +77,7 @@ extern "C" {
int n_gpu_layers; // number of layers to store in VRAM
int main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
bool low_vram; // if true, reduce VRAM usage at the cost of performance
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache
@@ -115,7 +116,16 @@ extern "C" {
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
@@ -137,14 +147,11 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// TODO: not great API - very likely to change
// Returns 0 on success
// nthread - how many threads to use. If <=0, will use std::thread::hardware_concurrency(), else the number given
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
enum llama_ftype ftype,
int nthread);
const llama_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
@@ -214,6 +221,14 @@ extern "C" {
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
@@ -229,9 +244,9 @@ extern "C" {
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos();
LLAMA_API llama_token llama_token_eos();
LLAMA_API llama_token llama_token_nl();
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line
// Sampling functions

View File

@@ -10,6 +10,10 @@
#include <ggml.h>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
constexpr int kVecSize = 1 << 18;
float drawFromGaussianPdf(std::mt19937& rndm) {

1
spm-headers/ggml.h Symbolic link
View File

@@ -0,0 +1 @@
../ggml.h

View File

@@ -5,7 +5,7 @@
#include <stdlib.h>
#include <assert.h>
#define MAX_NARGS 2
#define MAX_NARGS 3
#undef MIN
#undef MAX
@@ -1090,6 +1090,25 @@ int main(int argc, const char ** argv) {
}
}
// cross_entropy_loss
{
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne2, 0.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1]));
check_gradient("cross_entropy_loss", ctx0, x, f, ndims, nargs, 1e-1f, 1e-2f, INFINITY);
// finite differences regularly fails!
}
}
// rope
{
const int nargs = 1;
@@ -1124,6 +1143,45 @@ int main(int argc, const char ** argv) {
}
}
// flash_attn
{
const int nargs = 3;
int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int64_t neq[4] = { D, N, B, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
}
}
}
ggml_free(ctx0);
}

View File

@@ -9,12 +9,15 @@
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001;
const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002;
const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075;
const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040;
const float MAX_DOT_PRODUCT_ERROR = 0.02;
const float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
const float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
const float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
const float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
const float MAX_DOT_PRODUCT_ERROR = 0.02f;
const char* RESULT_STR[] = {"ok", "FAILED"};

View File

@@ -13,6 +13,10 @@
#include <string>
#include <vector>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define MAX_ALIGNMENT 64
#define QK 32
#define WARMUP 5

View File

@@ -176,27 +176,27 @@ void test_frequency_presence_penalty(
int main(void) {
ggml_time_init();
test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1);
test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4}, 0);
test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3}, 0.7);
test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2, 0.1}, 1);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1);
test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3}, 0.25);
test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.75);
test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.99);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f);
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f);
test_typical({0.97, 0.01, 0.01, 0.01}, {0.97}, 0.5);
test_typical({0.4, 0.2, 0.2, 0.2}, {0.2, 0.2, 0.2}, 0.5);
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f);
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f);
test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.25, 0.25, 0.25, 0.25, 0}, 50.0);
test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.5, 0.5, 0, 0, 0}, 50.0);
test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.5, 0.5, 0, 0, 0}, 50.0);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f);
test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.249997, 0.249997, 0.249997, 0.249997, 0.000011}, 5.0, 5.0);
test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0);
test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f);
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f);
printf("OK\n");
}

View File

@@ -53,7 +53,7 @@ int main(int argc, char **argv) {
for (const auto & test_kv : k_tests()) {
std::vector<llama_token> res(test_kv.first.size());
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), res.size(), true);
const int n = llama_tokenize(ctx, test_kv.first.c_str(), res.data(), int(res.size()), true);
res.resize(n);
bool correct = res.size() == test_kv.second.size();