Compare commits

..

99 Commits

Author SHA1 Message Date
SebastianApel
95ea26f6e9 benchmark : add tool for timing q4_0 matrix multiplication (#653)
* Initial version of q4_0 matrix multiplication benchmark

* Bugfix: Added dependency to ggml.o to benchmark

* Reviewer requests: added parameter for threads, switched to ggml_time_us()

* Reviewer input: removed rtsc, use epsilon for check

* Review comment: Removed set_locale

* Feature: Param for numer of iterations, Bugfix for use of parameter threads

* Reviewer suggestion: Moved to examples

* Reviewer feedback: Updated clean: and benchmark: sections

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-13 15:46:23 +03:00
Pavol Rusnak
82d146df9b do not force the prompt file to end with a new line (#908) 2023-04-13 11:33:16 +02:00
Stephan Walter
e7f6997f89 Don't crash on ftype (formerly f16) == 4 (#917) 2023-04-12 15:06:16 +00:00
Georgi Gerganov
f76cb3a34d readme : change "GPU support" link to discussion 2023-04-12 14:48:57 +03:00
Georgi Gerganov
782438070f readme : update hot topics with link to "GPU support" issue 2023-04-12 14:31:12 +03:00
Nicolai Weitkemper
4dbbd40750 readme: link to sha256sums file (#902)
This is to emphasize that these do not need to be obtained from elsewhere.
2023-04-12 08:46:20 +02:00
Pavol Rusnak
8b679987cd Fix whitespace, add .editorconfig, add GitHub workflow (#883) 2023-04-11 19:45:44 +00:00
Stephan Walter
3e6e70d8e8 Add enum llama_ftype, sync ggml_type to model files (#709) 2023-04-11 15:03:51 +00:00
comex
2663d2c678 Windows fixes (#890)
Mostly for msys2 and mingw64 builds, which are different from each other
and different from standard Visual Studio builds.  Isn't Windows fun?

- Define _GNU_SOURCE in more files (it's already used in ggml.c for
  Linux's sake).

- Don't use PrefetchVirtualMemory if not building for Windows 8 or later
  (mingw64 doesn't by default).  But warn the user about this situation
  since it's probably not intended.

- Check for NOMINMAX already being defined, which it is on mingw64.

- Actually use the `increment` variable (bug in my `pizza` PR).

- Suppress unused variable warnings in the fake pthread_create and
  pthread_join implementations for Windows.

- (not Windows-related) Remove mention of `asprintf` from comment;
  `asprintf` is no longer used.

Fixes #871.
2023-04-11 15:19:54 +02:00
qouoq
a0caa34b16 Add BAIR's Koala to supported models (#877) 2023-04-10 22:41:53 +02:00
Georgi Gerganov
461ba9e66e ggml : fix WASM build 2023-04-10 23:20:01 +03:00
Georgi Gerganov
c3ac702e5e ggml : add ggml_cont() + optimize ggml_cpy() for contiguous dst 2023-04-10 22:42:28 +03:00
Georgi Gerganov
9d634ef452 ggml : remove trailing whitespaces 2023-04-10 22:42:28 +03:00
Marco Matthies
d9a239c410 Simplify to include lower-case windows.h always, fix compile on mingw32 (#747) 2023-04-10 19:57:59 +02:00
Georgi Gerganov
684da25926 ggml : fix quantize_row_q4_1() ARM_NEON (close #876) 2023-04-10 19:29:48 +03:00
comex
180b693a47 Print model version.
Also improve model type printing, and fix indentation of an unrelated
switch statement.
2023-04-10 01:10:46 +02:00
comex
f963b63afa Rewrite loading code to try to satisfy everyone:
- Support all three formats (ggml, ggmf, ggjt).  (However, I didn't
  include the hack needed to support GPT4All files without conversion.
  Those can still be used after converting them with convert.py from my
  other PR.)

- Support both mmap and read (mmap is used by default, but can be
  disabled with `--no-mmap`, and is automatically disabled for pre-ggjt
  files or on platforms where mmap is not supported).

- Support multi-file models like before, but automatically determine the
  number of parts rather than requiring `--n_parts`.

- Improve validation and error checking.

- Stop using the per-file type field (f16) entirely in favor of just
  relying on the per-tensor type/size fields.  This has no immediate
  benefit, but makes it easier to experiment with different formats, and
  should make it easier to support the new GPTQ-for-LLaMa models in the
  future (I have some work in progress on that front).

- Support VirtualLock on Windows (using the same `--mlock` option as on
  Unix).

    - Indicate loading progress when using mmap + mlock.  (Which led me
      to the interesting observation that on my Linux machine, with a
      warm file cache, mlock actually takes some time, whereas mmap
      without mlock starts almost instantly...)

      - To help implement this, move mlock support from ggml to the
        loading code.

- madvise/PrefetchVirtualMemory support (based on #740)

- Switch from ifstream to the `fopen` family of functions to avoid
  unnecessary copying and, when mmap is enabled, allow reusing the same
  file descriptor for both metadata reads and mmap (whereas the existing
  implementation opens the file a second time to mmap).

- Quantization now produces a single-file output even with multi-file
  inputs (not really a feature as much as 'it was easier this way').

Implementation notes:

I tried to factor the code into more discrete pieces than before.

Regarding code style: I tried to follow the code style, but I'm naughty
and used a few advanced C++ features repeatedly:

- Destructors to make it easier to ensure everything gets cleaned up.

- Exceptions.  I don't even usually use exceptions when writing C++, and
  I can remove them if desired... but here they make the loading code
  much more succinct while still properly handling a variety of errors,
  ranging from API calls failing to integer overflow and allocation
  failure.  The exceptions are converted to error codes at the
  API boundary.)

Co-authored-by: Pavol Rusnak <pavol@rusnak.io> (for the bit I copied from #740)
2023-04-10 01:10:46 +02:00
Tomáš Pazdiora
aaf3b23deb fix for windows utf-8 input (#840)
Use UTF-16 as input on Windows, since UTF-8 does not work and reads multibyte characters as zeros
2023-04-08 17:49:39 +02:00
eiery
f2d1c47294 cmake should link openblas properly with -lopenblas like how it's done in the makefile (#839) 2023-04-08 11:15:17 +00:00
lon
317fb12fbd Add new binaries to flake.nix (#847) 2023-04-08 12:04:23 +02:00
unbounded
62cfc54f77 Add quantize-stats command for testing quantization (#728)
Command that calculates some statistics over the errors introduced by
quantization, like mean square error, max error and some percentile errors for layer
weights. Should be useful for testing quantization improvements.

Exposes some internal state from ggml and llama for testing
2023-04-08 00:09:18 +02:00
bhubbb
698f7b5d63 make : add libllama.so target for llama-cpp-python (#797)
I was able to get llama-cpp-python working but only when I build libllama.so with make.
2023-04-07 19:11:58 +03:00
iacore
c1950c3431 zig : don't link examples/common.cpp for non-example (#814) 2023-04-07 19:05:29 +03:00
Ivan Stepanov
4953e9007f llama : always sort logits before nucleus sampling (#812)
* Always sort logits before nucleus sampling

* remove second normalization

- fix windows build
- remove normalization since std::discrete_distribution does not require it
2023-04-07 19:02:12 +03:00
Sergey Alirzaev
cc9cee8e9e Do not crash when it has nothing to say. (#796)
Otherwise observing this in the interactive mode:
/usr/lib/gcc/x86_64-pc-linux-gnu/12/include/g++-v12/bits/stl_vector.h:1230: reference std::vector<int>::back() [_Tp = int, _Alloc = std::allocator<int>]: Assertion '!this->empty()' failed.
2023-04-06 17:59:11 +02:00
Pavol Rusnak
d2beca95dc Make docker instructions more explicit (#785) 2023-04-06 08:56:58 +02:00
Georgi Gerganov
eeaa7b0492 ggml : multi-thread ggml_rope() (~3-4 times faster on M1) (#781) 2023-04-05 22:11:03 +03:00
Georgi Gerganov
986b6ce9f9 ggml, llama : avoid heavy V transpose + improvements (#775)
ggml :

- added ggml_view_3d()
- ggml_view_tensor() now inherits the stride too
- reimplement ggml_cpy() to account for dst stride
- no longer require tensor->data to be memory aligned

llama :

- compute RoPE on 32-bit tensors (should be more accurate)
- store RoPE-ed K in the KV cache
- store transposed V in the KV cache (significant speed-up)
- avoid unnecessary Q copy
2023-04-05 22:07:33 +03:00
Georgi Gerganov
3416298929 Update README.md 2023-04-05 19:54:30 +03:00
Ivan Stepanov
5a8c4f6240 llama : define non-positive top_k; top_k range check (#779)
* Define non-positive top_k; top_k range check

* minor : brackets

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-04-05 19:20:05 +03:00
at8u
ff05d05c96 miku.sh : add executable bit (#780) 2023-04-05 18:59:13 +03:00
Georgi Gerganov
62b3e81aae media : add logos and banners 2023-04-05 18:58:31 +03:00
Georgi Gerganov
8d10406d6e readme : change logo + add bindings + add uis + add wiki 2023-04-05 18:56:20 +03:00
iacore
ed1c214e66 zig : add build.zig (#773)
Co-authored-by: Locria Cyber <74560659+locriacyber@users.noreply.github.com>
2023-04-05 18:06:02 +03:00
Ivan Stepanov
0c44427df1 make : missing host optimizations in CXXFLAGS (#763) 2023-04-05 17:38:37 +03:00
Adithya Balaji
594cc95fab readme : update with CMake and windows example (#748)
* README: Update with CMake and windows example

* README: update with code-review for cmake build
2023-04-05 17:36:12 +03:00
at8u
88ed5761b8 examples : add Miku.sh (#724)
* Add Miku.sh to examples

* Add missing line to prompt in Miku.sh

* Add --keep param to Miku.sh

* Remove '[end_of_conversation]' line from Miku.sh

No longer is necessary.
2023-04-05 17:32:42 +03:00
Andrew Duffy
58c438cf7d Add Accelerate/BLAS when using Swift (#765) 2023-04-05 06:44:24 -04:00
mgroeber9110
53dbba7695 Windows: reactive sigint handler after each Ctrl-C (#736) 2023-04-03 18:00:55 +02:00
SebastianApel
437e77855a 10+% performance improvement of ggml_vec_dot_q4_0 on AVX2 (#654)
* Performance improvement of AVX2 code
* Fixed problem with MSVC compiler
* Reviewer comments: removed double semicolon, deleted empty line 1962
2023-04-03 09:52:28 +02:00
Ivan Stepanov
cd7fa95690 Define non-positive temperature behavior (#720) 2023-04-03 02:19:04 +02:00
bsilvereagle
a0c0516416 Remove torch GPU dependencies from the Docker.full image (#665)
By using `pip install torch --index-url https://download.pytorch.org/whl/cpu`
instead of `pip install torch` we can specify we want to install a CPU-only version
of PyTorch without any GPU dependencies. This reduces the size of the Docker image
from 7.32 GB to 1.62 GB
2023-04-03 00:13:03 +02:00
Thatcher Chamberlin
d8d4e865cd Add a missing step to the gpt4all instructions (#690)
`migrate-ggml-2023-03-30-pr613.py` is needed to get gpt4all running.
2023-04-02 12:48:57 +02:00
Christian Falch
e986f94829 Added api for getting/setting the kv_cache (#685)
The api provides access methods for retrieving the current memory buffer for the kv_cache and its token number.
It also contains a method for setting the kv_cache from a memory buffer.

This makes it possible to load/save history - maybe support --cache-prompt paramater as well?

Co-authored-by: Pavol Rusnak <pavol@rusnak.io>
2023-04-02 12:23:04 +02:00
Marian Cepok
c0bb1d3ce2 ggml : change ne to int64_t (#626) 2023-04-02 13:21:31 +03:00
Leonardo Neumann
6e7801d08d examples : add gpt4all script (#658) 2023-04-02 10:56:20 +03:00
Stephan Walter
81040f10aa llama : do not allocate KV cache for "vocab_only == true" (#682)
Fixes sanitizer CI
2023-04-02 10:18:53 +03:00
Fabian
c4f89d8d73 make : use -march=native -mtune=native on x86 (#609) 2023-04-02 10:17:05 +03:00
Murilo Santana
5b70e7de4c fix default params for examples/main (#697) 2023-04-02 04:41:12 +02:00
Ikko Eltociear Ashimine
a717cba844 py: huggingface -> Hugging Face (#686) 2023-04-01 18:38:18 +02:00
rimoliga
d0a7f742e7 readme: replace termux links with homepage, play store is deprecated (#680) 2023-04-01 16:57:30 +02:00
Slaren
0d054e292e Show error message when -f fails 2023-04-01 16:08:40 +02:00
Stephan Walter
3525899277 Enable -std= for cmake builds, fix warnings (#598) 2023-03-31 19:19:16 +00:00
slaren
1d08882afa Optimize AVX2 ggml_vec_dot_q4_0 (#642) 2023-03-31 15:55:52 +00:00
perserk
02c5b27e91 Add AVX acceleration (#617)
* ggml : add AVX quantize_row_q4_0()

* ggml : add AVX ggml_vec_dot_q4_0()

* ggml : refactor AVX part of ggml_vec_dot_q4_0()

https://github.com/ggerganov/llama.cpp/pull/617#issuecomment-1489985645
2023-03-31 13:55:44 +02:00
Pavol Rusnak
cbef542879 py : cleanup the code
- use f-strings where possible
- drop first param of encode/decode functions since "utf-8" is the default
2023-03-31 10:32:01 +02:00
Pavol Rusnak
9733104be5 drop quantize.py (now that models are using a single file) 2023-03-31 01:07:32 +02:00
Georgi Gerganov
3df890aef4 readme : update supported models 2023-03-30 22:31:54 +03:00
Justine Tunney
ee0c40dd6d Introduce GGML migration tool for new file format
If you deleted your old Meta LLaMA .pth files, then the
migrate-ggml-2023-03-30-pr613.py script will allow you to convert your
old ggml files into the new mmap()'able format.

See #613
2023-03-30 12:28:25 -07:00
Justine Tunney
6f23ba5ee2 Ensure --mlock works properly with mmap() support 2023-03-30 12:28:25 -07:00
Justine Tunney
78ca9838ee Make loading weights 10-100x faster
This is a breaking change that's going to give you three benefits:

1. Your inference commands should load 100x faster
2. You may be able to safely load models 2x larger
3. You can run many concurrent inference processes

This was accomplished by changing the file format so we can mmap()
weights directly into memory without having to read() or copy them
thereby ensuring the kernel can make its file cache pages directly
accessible to our inference processes; and secondly, that the file
cache pages are much less likely to get evicted (which would force
loads to hit disk) because they're no longer competing with memory
pages that were needlessly created by gigabytes of standard i/o.

The new file format supports single-file models like LLaMA 7b, and
it also supports multi-file models like LLaMA 13B. Our Python tool
now merges the foo.1, foo.2, etc. files back into a single file so
that the C++ code which maps it doesn't need to reshape data every
time. That's made llama.cpp so much simpler. Much of its load code
has now been deleted.

Furthermore, this change ensures that tensors are aligned properly
on a 32-byte boundary. That opens the door to seeing if we can get
additional performance gains on some microprocessors, by using ops
that require memory alignment.

Lastly note that both POSIX and the Windows platform are supported

Fixes #91
2023-03-30 12:28:25 -07:00
Slaren
a017390358 Initial windows support (untested) 2023-03-30 12:28:25 -07:00
Slaren
ac184d5147 Always initialize mm_addr and mm_length in llama_model 2023-03-30 12:28:25 -07:00
Slaren
276e5b7811 Unmap the file in llama_free 2023-03-30 12:28:25 -07:00
Slaren
d68c5dc435 Make mmap_file static 2023-03-30 12:28:25 -07:00
Slaren
64bde3ffd4 Fix ggml_init_params in quantize 2023-03-30 12:28:25 -07:00
Slaren
c03ae8dca1 Add mmap support for model files 2023-03-30 12:28:25 -07:00
Stephan Walter
3bcc129ba8 cmake : properly invoke CTest (#629) 2023-03-30 20:56:59 +03:00
Casey Primozic
a4755cf288 Remove unused variable (#607)
* It seems some new warning were added recently that exposed this.  I wrote the code that included this unused variable originally and it is indeed not needed.
2023-03-30 17:53:35 +00:00
david raistrick
1f0414feec make : fix darwin f16c flags check (#615)
...there was no check.  ported upstream from https://github.com/zanussbaum/gpt4all.cpp/pull/2 (I dont see any clean path for upstream patches)
2023-03-30 20:34:45 +03:00
Georgi Gerganov
77efdf5a50 ggml : fix NEON signs (close #620, #622) 2023-03-30 20:27:32 +03:00
slaren
ed3c680bcd Fix GGML_F32Cx8_STORE in AVX without F16C path (#619) 2023-03-30 11:16:30 +02:00
anzz1
9cbc404ba6 ci : re-enable AVX512 testing (Windows-MSVC) (#584)
* CI: Re-enable AVX512 testing (Windows-MSVC)

Now with 100% less base64 encoding

* plain __cpuid is enough here
2023-03-29 23:44:39 +03:00
Georgi Gerganov
b51c717d5c ggml : init time on first ggml_init() call 2023-03-29 22:15:34 +03:00
Georgi Gerganov
0ba76c1e73 llama : fix compile warnings when reading the vocab 2023-03-29 22:13:12 +03:00
Georgi Gerganov
cea1c85948 ggml : add ARM_NEON dequantize_row_q4_1() 2023-03-29 22:10:01 +03:00
Georgi Gerganov
f202ada131 ggml : add ARM_NEON quantize_row_q4_1() 2023-03-29 22:03:07 +03:00
Georgi Gerganov
3b44d30d9b ggml : add ARM_NEON ggml_vec_dot_q4_1() 2023-03-29 22:03:07 +03:00
Pavol Rusnak
61cbfff5c9 rename convert_ggml_to_pth.py -> convert-ggml-to-pth.py (#600)
to match filenames of other converters
2023-03-29 20:09:25 +02:00
Thérence
d9ad104440 Create chat-13B.bat (#592)
* Create chat-13B.bat

Same script than chat-13B.sh, but for windows users.
Tested and working on windows 10/11 v 22H2

* Apply suggestions from code review

---------

Co-authored-by: anzz1 <anzz1@live.com>
2023-03-29 20:21:09 +03:00
Georgi Gerganov
b467702b87 readme : fix typos 2023-03-29 19:38:31 +03:00
Georgi Gerganov
516d88e75c readme : add GPT4All instructions (close #588) 2023-03-29 19:37:20 +03:00
Georgi Gerganov
53635c081c py : add GPT4All conversion script
For now: copy-paste
Too much time for me to deduplicate the python code
2023-03-29 19:29:52 +03:00
Maël Kerbiriou
41318d708e llama : use the same threshold for OpenBLAS and ggml thread limiting (#577) 2023-03-29 19:10:07 +03:00
Tobias Lütke
a6956b25a1 add example of re-act pattern (#583)
* add example of re-act pattern

* spelling...

* fixed whitespace in reverse prompt issue
2023-03-29 10:10:24 -05:00
anzz1
83df5639eb Fix GCC warning about binary literal (#595)
0b10101010 -> 0xAA /* 0b10101010 */
2023-03-29 13:20:07 +00:00
anzz1
a5c42c4b13 Fix typo in llama.h (#593) 2023-03-29 13:19:29 +00:00
anzz1
5a5f8b1501 Enable Fused-Multiply-Add (FMA) and F16C/CVT16 vector extensions on MSVC (#375)
* Enable Fused-Multiply-Add (FMA) instructions on MSVC

__FMA__ macro does not exist in MSVC

* Enable F16C/CVT16 vector extensions on MSVC

__F16C__ macro does not exist in MSVC, but is implied with AVX2/AVX512

* MSVC cvt intrinsics

* Add __SSE3__ macro for MSVC too because why not

even though it's not currently used for anything when AVX is defined
2023-03-28 22:44:29 +03:00
anzz1
f1217055ea CI: fix subdirectory path globbing (#546)
- Changes in subdirectories will now be detecter properly
- (Windows-MSVC) AVX512 tests temporarily disabled
2023-03-28 22:43:25 +03:00
anzz1
7f4c5c6651 llama : fix linkage with mingw (#551)
* Revert 7e53955 (#542)

Still needs to be fixed properly

* Fix linking on mingw32
2023-03-28 21:23:09 +03:00
slaren
2a98bc18ea ggml : add AVX2 implementation of quantize_row_q4_1 (#515)
* Add AVX2 implementation of quantize_row_q4_1

* Actually use AVX2

* Make quantize_row_q4_1 static

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 21:06:03 +03:00
thement
d0aaff571c py : add temporary script to convert old ggml files to newer version (#539)
Co-authored-by: Jakub Horak <jakub.horak@ibawizard.net>
2023-03-28 20:55:42 +03:00
Tai Duc Nguyen
d0330fd783 py : add capabiliy to convert from ggml back to torch or hf format for further consumption/training/finetuning (#403) 2023-03-28 20:51:29 +03:00
Stephan Walter
99c5b27654 ggml : refactor quantized processing functions (#509)
* Refactor quantized processing functions

* ggml : minor

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 20:13:01 +03:00
DooWoong Lee (David)
692ce3164e py : removed unused model variable and verified that the code functions correctly with vocab_only setting. Also confirmed that the code works as expected after running with reduced memory usage due to deletion of no-longer-needed variable. (#547) 2023-03-28 20:02:34 +03:00
Georgi Gerganov
96f9c0506f ci : make ctest verbose, hopefully we see what is wrong with the sanitizer 2023-03-28 20:01:09 +03:00
Georgi Gerganov
d502bc7c9d tests : free llama context at the end of the test 2023-03-28 19:51:55 +03:00
Stephan Walter
436e561931 all : be more strict about converting float to double (#458)
* Be more strict about converting float to double

* Test equivalence of round, SILU implementations

Test module is commented out in CMakeLists.txt because the tests may
take a long time, depending on how much the compiler optimizes.

* Fix softmax in perplexity.cpp

* all : prefer float over double where appropriate

* perplexity : add <cmath>

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-03-28 19:48:20 +03:00
Jed Fox
20e1e84884 deploy : add a Package.swift for SwiftPM support (#393)
* Add a Package.swift for SwiftPM support

* Swap from exclusions to allowlist
2023-03-28 19:39:01 +03:00
62 changed files with 5004 additions and 2178 deletions

View File

@@ -6,7 +6,8 @@ RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip
RUN pip install --upgrade pip setuptools wheel \
&& pip install numpy requests sentencepiece torch tqdm
&& pip install numpy requests sentencepiece tqdm \
&& pip install torch --index-url https://download.pytorch.org/whl/cpu
WORKDIR /app

View File

@@ -15,4 +15,4 @@ FROM ubuntu:$UBUNTU_VERSION as runtime
COPY --from=build /app/main /main
ENTRYPOINT [ "/main" ]
ENTRYPOINT [ "/main" ]

View File

@@ -21,4 +21,4 @@ models/*
arm_neon.h
compile_commands.json
Dockerfile
Dockerfile

5
.ecrc Normal file
View File

@@ -0,0 +1,5 @@
{
"Disable": {
"IndentSize": true
}
}

19
.editorconfig Normal file
View File

@@ -0,0 +1,19 @@
# https://EditorConfig.org
# Top-most EditorConfig file
root = true
# Unix-style newlines with a newline ending every file, utf-8 charset
[*]
end_of_line = lf
insert_final_newline = true
trim_trailing_whitespace = true
charset = utf-8
indent_style = space
indent_size = 4
[Makefile]
indent_style = tab
[prompts/*.txt]
insert_final_newline = unset

View File

@@ -22,9 +22,9 @@ Please provide a detailed written description of what you were trying to do, and
# Current Behavior
Please provide a detailed written description of what `llama.cpp` did, instead.
Please provide a detailed written description of what `llama.cpp` did, instead.
# Environment and Context
# Environment and Context
Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.
@@ -133,7 +133,7 @@ llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.
llama_model_load: .......................................................................................... done
llama_model_load: model size = 4869.09 MB / num tensors = 723
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |
main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
@@ -166,14 +166,14 @@ main: total time = 246406.42 ms
Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
3636882.89 msec task-clock # 14.677 CPUs utilized
13509 context-switches # 3.714 /sec
2436 cpu-migrations # 0.670 /sec
10476679 page-faults # 2.881 K/sec
13133115082869 cycles # 3.611 GHz (16.77%)
29314462753 stalled-cycles-frontend # 0.22% frontend cycles idle (16.76%)
10294402631459 stalled-cycles-backend # 78.39% backend cycles idle (16.74%)
23479217109614 instructions # 1.79 insn per cycle
23479217109614 instructions # 1.79 insn per cycle
# 0.44 stalled cycles per insn (16.76%)
2353072268027 branches # 647.002 M/sec (16.77%)
1998682780 branch-misses # 0.08% of all branches (16.76%)

View File

@@ -8,10 +8,10 @@ on:
required: true
type: boolean
push:
paths: ['.github/workflows/**', 'CMakeLists.txt', 'Makefile', '**.h', '*.c', '**.cpp']
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp']
pull_request:
types: [opened, synchronize, edited, reopened, review_requested, ready_for_review]
paths: ['CMakeLists.txt', 'Makefile', '**.h', '*.c', '**.cpp']
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp']
env:
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
@@ -62,7 +62,7 @@ jobs:
id: cmake_test
run: |
cd build
ctest --output-on-failure
ctest --verbose
ubuntu-latest-cmake-sanitizer:
runs-on: ubuntu-latest
@@ -98,7 +98,7 @@ jobs:
id: cmake_test
run: |
cd build
ctest --output-on-failure
ctest --verbose
macOS-latest-make:
runs-on: macos-latest
@@ -143,7 +143,7 @@ jobs:
id: cmake_test
run: |
cd build
ctest --output-on-failure
ctest --verbose
windows-latest-cmake:
runs-on: windows-latest
@@ -177,15 +177,19 @@ jobs:
continue-on-error: true
run: |
cd build
Set-Content -Path .\avx512f.exe -Value ([Convert]::FromBase64String('TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyAAAAA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJAAAAAAAAAClmfXY4fibi+H4m4vh+JuL4fiai+P4m4si98aL4vibi7Xbq4vg+JuLUmljaOH4m4sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABQRQAATAEBAGo6H2QAAAAAAAAAAOAADwELAQYAAAIAAAAAAAAAAAAADBAAAAAQAAAAIAAAAABAAAAQAAAAAgAABAAAAAAAAAAEAAAAAAAAAAAgAAAAAgAAAAAAAAMAAAAAABAAABAAAAAAEAAAEAAAAAAAABAAAAAAAAAAAAAAAFQQAAAoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC50ZXh0AAAAsgAAAAAQAAAAAgAAAAIAAAAAAAAAAAAAAAAAACAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUEAAAiBAAAAAAAABVi+xRUVNTuAcAAAAPosHrEGaD4wGJXfxbg0X8MI1F+GoAUI1F/GoBUGr1/xUAEEAAUP8VBBBAAItF/FuDwND32BvAQMnDzMx8EAAAAAAAAAAAAACkEAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlBAAAIgQAAAAAAAApANXcml0ZUZpbGUAuQFHZXRTdGRIYW5kbGUAAEtFUk5FTDMyLmRsbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA==')) -AsByteStream
.\avx512f.exe && echo " AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo " AVX512F: NO"
$vcdir = $(vswhere -latest -products * -requires Microsoft.VisualStudio.Component.VC.Tools.x86.x64 -property installationPath)
$msvc = $(join-path $vcdir $('VC\Tools\MSVC\'+$(gc -raw $(join-path $vcdir 'VC\Auxiliary\Build\Microsoft.VCToolsVersion.default.txt')).Trim()))
$cl = $(join-path $msvc 'bin\Hostx64\x64\cl.exe')
echo 'int main(void){unsigned int a[4];__cpuid(a,7);return !(a[1]&65536);}' >> avx512f.c
& $cl /O2 /GS- /kernel avx512f.c /link /nodefaultlib /entry:main
.\avx512f.exe && echo "AVX512F: YES" && ( echo HAS_AVX512F=1 >> $env:GITHUB_ENV ) || echo "AVX512F: NO"
- name: Test
id: cmake_test
if: ${{ matrix.build != 'avx512' || env.HAS_AVX512F == '1' }} # Test AVX-512 only when possible
run: |
cd build
ctest -C Release --output-on-failure
ctest -C Release --verbose
- name: Get commit hash
id: commit

View File

@@ -60,4 +60,4 @@ jobs:
push: ${{ github.event_name == 'push' }}
platforms: linux/amd64,linux/arm64
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
file: ${{ matrix.config.dockerfile }}
file: ${{ matrix.config.dockerfile }}

17
.github/workflows/editorconfig.yml vendored Normal file
View File

@@ -0,0 +1,17 @@
name: EditorConfig Checker
on:
push:
branches:
- master
pull_request:
branches:
- master
jobs:
editorconfig:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: editorconfig-checker/action-editorconfig-checker@main
- run: editorconfig-checker

10
.gitignore vendored
View File

@@ -5,6 +5,7 @@
.vscode/
.DS_Store
.build/
build/
build-em/
build-debug/
@@ -18,12 +19,21 @@ models/*
/main
/quantize
/quantize-stats
/result
/perplexity
/embedding
/Pipfile
arm_neon.h
compile_commands.json
.envrc
.direnv/
.venv
__pycache__
.swiftpm
zig-out/
zig-cache/

View File

@@ -68,7 +68,9 @@ option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
# Compile flags
#
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED true)
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED true)
set(THREADS_PREFER_PTHREAD_FLAG ON)
find_package(Threads REQUIRED)
@@ -113,6 +115,7 @@ if (LLAMA_OPENBLAS)
add_compile_definitions(GGML_USE_OPENBLAS)
add_link_options(${BLAS_LIBRARIES})
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)
else()
message(WARNING "OpenBLAS not found")
endif()
@@ -124,8 +127,9 @@ if (LLAMA_ALL_WARNINGS)
-Wall
-Wextra
-Wpedantic
-Wshadow
-Wcast-qual
-Wdouble-promotion
-Wshadow
-Wstrict-prototypes
-Wpointer-arith
-Wno-unused-function
@@ -135,6 +139,8 @@ if (LLAMA_ALL_WARNINGS)
-Wextra
-Wpedantic
-Wcast-qual
-Wno-unused-function
-Wno-multichar
)
else()
# todo : msvc
@@ -147,6 +153,10 @@ if (LLAMA_ALL_WARNINGS)
endif()
if (MSVC)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if (LLAMA_LTO)
include(CheckIPOSupported)
check_ipo_supported(RESULT result OUTPUT output)
@@ -236,7 +246,9 @@ endif()
add_library(llama
llama.cpp
llama.h)
llama.h
llama_internal.h
llama_util.h)
target_include_directories(llama PUBLIC .)
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
@@ -251,7 +263,7 @@ endif()
#
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
enable_testing()
include(CTest)
add_subdirectory(tests)
endif ()

107
Makefile
View File

@@ -35,6 +35,10 @@ CFLAGS = -I. -O3 -DNDEBUG -std=c11 -fPIC
CXXFLAGS = -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC
LDFLAGS =
# warnings
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wno-unused-function
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
# OS specific
# TODO: support Windows
ifeq ($(UNAME_S),Linux)
@@ -66,92 +70,9 @@ endif
# TODO: probably these flags need to be tweaked on some architectures
# feel free to update the Makefile for your architecture and send a pull request or issue
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
ifeq ($(UNAME_S),Darwin)
CFLAGS += -mf16c
AVX1_M := $(shell sysctl machdep.cpu.features)
ifneq (,$(findstring FMA,$(AVX1_M)))
CFLAGS += -mfma
endif
ifneq (,$(findstring AVX1.0,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysctl machdep.cpu.leaf7_features)
ifneq (,$(findstring AVX2,$(AVX2_M)))
CFLAGS += -mavx2
endif
else ifeq ($(UNAME_S),Linux)
AVX1_M := $(shell grep "avx " /proc/cpuinfo)
ifneq (,$(findstring avx,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell grep "avx2 " /proc/cpuinfo)
ifneq (,$(findstring avx2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell grep "fma " /proc/cpuinfo)
ifneq (,$(findstring fma,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell grep "f16c " /proc/cpuinfo)
ifneq (,$(findstring f16c,$(F16C_M)))
CFLAGS += -mf16c
endif
SSE3_M := $(shell grep "sse3 " /proc/cpuinfo)
ifneq (,$(findstring sse3,$(SSE3_M)))
CFLAGS += -msse3
endif
AVX512F_M := $(shell grep "avx512f " /proc/cpuinfo)
ifneq (,$(findstring avx512f,$(AVX512F_M)))
CFLAGS += -mavx512f
endif
AVX512BW_M := $(shell grep "avx512bw " /proc/cpuinfo)
ifneq (,$(findstring avx512bw,$(AVX512BW_M)))
CFLAGS += -mavx512bw
endif
AVX512DQ_M := $(shell grep "avx512dq " /proc/cpuinfo)
ifneq (,$(findstring avx512dq,$(AVX512DQ_M)))
CFLAGS += -mavx512dq
endif
AVX512VL_M := $(shell grep "avx512vl " /proc/cpuinfo)
ifneq (,$(findstring avx512vl,$(AVX512VL_M)))
CFLAGS += -mavx512vl
endif
AVX512CD_M := $(shell grep "avx512cd " /proc/cpuinfo)
ifneq (,$(findstring avx512cd,$(AVX512CD_M)))
CFLAGS += -mavx512cd
endif
AVX512ER_M := $(shell grep "avx512er " /proc/cpuinfo)
ifneq (,$(findstring avx512er,$(AVX512ER_M)))
CFLAGS += -mavx512er
endif
AVX512IFMA_M := $(shell grep "avx512ifma " /proc/cpuinfo)
ifneq (,$(findstring avx512ifma,$(AVX512IFMA_M)))
CFLAGS += -mavx512ifma
endif
AVX512PF_M := $(shell grep "avx512pf " /proc/cpuinfo)
ifneq (,$(findstring avx512pf,$(AVX512PF_M)))
CFLAGS += -mavx512pf
endif
else ifeq ($(UNAME_S),Haiku)
AVX1_M := $(shell sysinfo -cpu | grep -w "AVX")
ifneq (,$(findstring AVX,$(AVX1_M)))
CFLAGS += -mavx
endif
AVX2_M := $(shell sysinfo -cpu | grep -w "AVX2")
ifneq (,$(findstring AVX2,$(AVX2_M)))
CFLAGS += -mavx2
endif
FMA_M := $(shell sysinfo -cpu | grep -w "FMA")
ifneq (,$(findstring FMA,$(FMA_M)))
CFLAGS += -mfma
endif
F16C_M := $(shell sysinfo -cpu | grep -w "F16C")
ifneq (,$(findstring F16C,$(F16C_M)))
CFLAGS += -mf16c
endif
else
CFLAGS += -mfma -mf16c -mavx -mavx2
endif
# Use all CPU extensions that are available:
CFLAGS += -march=native -mtune=native
CXXFLAGS += -march=native -mtune=native
endif
ifneq ($(filter ppc64%,$(UNAME_M)),)
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
@@ -221,14 +142,14 @@ default: main quantize perplexity embedding
ggml.o: ggml.c ggml.h
$(CC) $(CFLAGS) -c ggml.c -o ggml.o
llama.o: llama.cpp llama.h
llama.o: llama.cpp llama.h llama_util.h llama_internal.h
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
common.o: examples/common.cpp examples/common.h
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
clean:
rm -vf *.o main quantize perplexity embedding
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-q4_0-matmult
main: examples/main/main.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/main/main.cpp ggml.o llama.o common.o -o main $(LDFLAGS)
@@ -239,16 +160,26 @@ main: examples/main/main.cpp ggml.o llama.o common.o
quantize: examples/quantize/quantize.cpp ggml.o llama.o
$(CXX) $(CXXFLAGS) examples/quantize/quantize.cpp ggml.o llama.o -o quantize $(LDFLAGS)
quantize-stats: examples/quantize-stats/quantize-stats.cpp ggml.o llama.o
$(CXX) $(CXXFLAGS) examples/quantize-stats/quantize-stats.cpp ggml.o llama.o -o quantize-stats $(LDFLAGS)
perplexity: examples/perplexity/perplexity.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/perplexity/perplexity.cpp ggml.o llama.o common.o -o perplexity $(LDFLAGS)
embedding: examples/embedding/embedding.cpp ggml.o llama.o common.o
$(CXX) $(CXXFLAGS) examples/embedding/embedding.cpp ggml.o llama.o common.o -o embedding $(LDFLAGS)
libllama.so: llama.o ggml.o
$(CXX) $(CXXFLAGS) -shared -fPIC -o libllama.so llama.o ggml.o $(LDFLAGS)
#
# Tests
#
benchmark: ggml.o
$(CXX) $(CXXFLAGS) examples/benchmark/benchmark-q4_0-matmult.c ggml.o -o benchmark-q4_0-matmult $(LDFLAGS)
./benchmark-q4_0-matmult
.PHONY: tests
tests:
bash ./tests/run-tests.sh

23
Package.swift Normal file
View File

@@ -0,0 +1,23 @@
// swift-tools-version:5.3
import PackageDescription
let package = Package(
name: "llama",
products: [
.library(name: "llama", targets: ["llama"]),
],
targets: [
.target(
name: "llama",
path: ".",
sources: ["ggml.c", "llama.cpp"],
publicHeadersPath: "spm-headers",
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
linkerSettings: [
.linkedFramework("Accelerate")
]
),
],
cxxLanguageStandard: .cxx11
)

View File

@@ -1,6 +1,6 @@
# llama.cpp
![llama](https://user-images.githubusercontent.com/1991296/227761327-6d83e30e-2200-41a6-bfbb-f575231c54f4.png)
![llama](https://user-images.githubusercontent.com/1991296/230134379-7181e485-c521-4d23-a0d6-f7b3b61ba524.png)
[![Actions Status](https://github.com/ggerganov/llama.cpp/workflows/CI/badge.svg)](https://github.com/ggerganov/llama.cpp/actions)
[![License: MIT](https://img.shields.io/badge/license-MIT-blue.svg)](https://opensource.org/licenses/MIT)
@@ -9,10 +9,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
**Hot topics:**
- [Roadmap (short-term)](https://github.com/ggerganov/llama.cpp/discussions/457)
- New C-style API is now available: https://github.com/ggerganov/llama.cpp/pull/370
- Cache input prompts for faster initialization: https://github.com/ggerganov/llama.cpp/issues/64
- Create a `llama.cpp` logo: https://github.com/ggerganov/llama.cpp/issues/105
- [Add GPU support to ggml](https://github.com/ggerganov/llama.cpp/discussions/915)
- [Roadmap Apr 2023](https://github.com/ggerganov/llama.cpp/discussions/784)
## Description
@@ -30,13 +28,33 @@ Please do not make conclusions about the models based on the results from this i
For all I know, it can be completely wrong. This project is for educational purposes.
New features will probably be added mostly through community contributions.
Supported platforms:
**Supported platforms:**
- [X] Mac OS
- [X] Linux
- [X] Windows (via CMake)
- [X] Docker
**Supported models:**
- [X] LLaMA 🦙
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
**Bindings:**
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
**UI:**
- [nat/openplayground](https://github.com/nat/openplayground)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
---
Here is a typical run using LLaMA-7B:
@@ -139,6 +157,13 @@ git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make
#For Windows and CMake, use the following command instead:
cd <path_to_llama_folder>
mkdir build
cd build
cmake ..
cmake --build . --config Release
# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
@@ -149,8 +174,8 @@ python3 -m pip install torch numpy sentencepiece
# convert the 7B model to ggml FP16 format
python3 convert-pth-to-ggml.py models/7B/ 1
# quantize the model to 4-bits
python3 quantize.py 7B
# quantize the model to 4-bits (using method 2 = q4_0)
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2
# run the inference
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
@@ -219,15 +244,30 @@ There 26 letters in the English Alphabet
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>
>
```
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
- Obtain the `gpt4all-lora-quantized.bin` model
- It is distributed in the old `ggml` format which is now obsoleted
- You have to convert it to the new format using [./convert-gpt4all-to-ggml.py](./convert-gpt4all-to-ggml.py). You may also need to
convert the model from the old format to the new format with [./migrate-ggml-2023-03-30-pr613.py](./migrate-ggml-2023-03-30-pr613.py):
```bash
python3 convert-gpt4all-to-ggml.py models/gpt4all-7B/gpt4all-lora-quantized.bin ./models/tokenizer.model
python3 migrate-ggml-2023-03-30-pr613.py models/gpt4all-7B/gpt4all-lora-quantized.bin models/gpt4all-7B/gpt4all-lora-quantized-new.bin
```
- You can now use the newly generated `gpt4all-lora-quantized-new.bin` model in exactly the same way as all other models
- The original model is saved in the same folder with a suffix `.orig`
### Obtaining and verifying the Facebook LLaMA original model and Stanford Alpaca model data
- **Under no circumstances share IPFS, magnet links, or any other links to model downloads anywhere in this respository, including in issues, discussions or pull requests. They will be immediately deleted.**
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
- Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
- The following command will verify if you have all possible latest files in your self-installed `./models` subdirectory:
`sha256sum --ignore-missing -c SHA256SUMS` on Linux
@@ -245,7 +285,7 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
- GPT-3.5 / InstructGPT / ChatGPT:
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
### Perplexity (Measuring model quality)
You can use the `perplexity` example to measure perplexity over the given prompt. For more background,
@@ -282,7 +322,7 @@ And after 4.45 hours, you will have the final perplexity.
### Android
You can easily run `llama.cpp` on Android device with [termux](https://play.google.com/store/apps/details?id=com.termux).
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
```
$ mkdir build-android
@@ -291,7 +331,7 @@ $ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make
```
Install [termux](https://play.google.com/store/apps/details?id=com.termux) on your device and run `termux-setup-storage` to get access to your SD card.
Install [termux](https://termux.dev/) on your device and run `termux-setup-storage` to get access to your SD card.
Finally, copy the `llama` binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
@@ -312,20 +352,22 @@ We have two Docker images available for this project:
The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.
Replace `/path/to/models` below with the actual path where you downloaded the models.
```bash
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B
```
On complete, you are ready to play!
```bash
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
```
or with light image:
```bash
docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
```
### Contributing
@@ -346,3 +388,6 @@ docker run -v /llama/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models
- Clean-up any trailing whitespaces, use 4 spaces indentation, brackets on same line, `void * ptr`, `int & a`
- See [good first issues](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) for tasks suitable for first contributions
### Docs
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)

67
build.zig Normal file
View File

@@ -0,0 +1,67 @@
const std = @import("std");
pub fn build(b: *std.Build) void {
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
const want_lto = b.option(bool, "lto", "Want -fLTO");
const lib = b.addStaticLibrary(.{
.name = "llama",
.target = target,
.optimize = optimize,
});
lib.want_lto = want_lto;
lib.linkLibCpp();
lib.addIncludePath(".");
lib.addIncludePath("examples");
lib.addCSourceFiles(&.{
"ggml.c",
}, &.{"-std=c11"});
lib.addCSourceFiles(&.{
"llama.cpp",
}, &.{"-std=c++11"});
lib.install();
const build_args = .{ .b = b, .lib = lib, .target = target, .optimize = optimize, .want_lto = want_lto };
const exe = build_example("main", build_args);
_ = build_example("quantize", build_args);
_ = build_example("perplexity", build_args);
_ = build_example("embedding", build_args);
// create "zig build run" command for ./main
const run_cmd = exe.run();
run_cmd.step.dependOn(b.getInstallStep());
if (b.args) |args| {
run_cmd.addArgs(args);
}
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
}
fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep {
const b = args.b;
const lib = args.lib;
const target = args.target;
const optimize = args.optimize;
const want_lto = args.want_lto;
const exe = b.addExecutable(.{
.name = name,
.target = target,
.optimize = optimize,
});
exe.want_lto = want_lto;
exe.addIncludePath(".");
exe.addIncludePath("examples");
exe.addCSourceFiles(&.{
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{name, name}),
"examples/common.cpp",
}, &.{"-std=c++11"});
exe.linkLibrary(lib);
exe.install();
return exe;
}

299
convert-ggml-to-pth.py Normal file
View File

@@ -0,0 +1,299 @@
# Author: github.com/ductai199x
import argparse
import os
import struct
import numpy as np
import torch
from numba import njit
from tqdm.auto import tqdm
def read_header(fin):
values = struct.unpack("i" * 9, fin.read(4 * 9))
_, _, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype = values
return {
"vocab_size": vocab_size,
"dim": dim,
"multiple_of": multiple_of,
"n_heads": n_heads,
"n_layers": n_layers,
}, ftype
def read_tokens(fin, vocab_size):
tokens = []
for _ in range(vocab_size):
text_len = struct.unpack("i", fin.read(4))[0]
text_bytes = fin.read(text_len)
try:
text = text_bytes.decode()
except UnicodeDecodeError:
text = text_bytes.decode(errors="replace")
score = struct.unpack("f", fin.read(4))[0]
tokens.append((text, score))
return tokens
@njit
def dequantize_weights_numba(fin_data, n_rows, n_cols):
qk = 32
nb = n_cols // qk
bs = 4 + (qk // 2)
weights = np.zeros((n_rows, n_cols), dtype=np.float32)
data_pos = 0
for row in range(n_rows):
for block in range(nb):
d = np.frombuffer(fin_data[data_pos : data_pos + 4], dtype=np.float32)[0]
data_pos += 4
packed_values = fin_data[data_pos : data_pos + (qk // 2)]
data_pos += qk // 2
for i in range(qk // 2):
packed_value = packed_values[i]
v0 = np.float32((packed_value & 0b00001111) - 8) * d
v1 = np.float32((packed_value >> 4) - 8) * d
weights[row, block * qk + 2 * i] = v0
weights[row, block * qk + 2 * i + 1] = v1
return weights
def dequantize_weights(fin, n_rows, n_cols):
qk = 32
nb = n_cols // qk
data_size = n_rows * n_cols // 2 + n_rows * nb * 4
fin_data = fin.read(data_size)
return dequantize_weights_numba(fin_data, n_rows, n_cols)
def read_variables(fin):
model = {}
pbar = tqdm(total=os.path.getsize(fin.name), unit="B", unit_scale=True, desc="Reading variables")
while True:
start_pos = fin.tell()
try:
n_dims, name_length, ftype_cur = struct.unpack("iii", fin.read(4 * 3))
except struct.error:
break
shape = tuple(struct.unpack("i" * n_dims, fin.read(4 * n_dims)))
shape = shape[::-1]
name = fin.read(name_length).decode()
# ensure tensor data is aligned
tensor_data_offset = fin.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fin.seek(tensor_data_offset)
if ftype_cur == 2:
# 4-bit quantized weights
dtype = np.uint8
data = dequantize_weights(fin, shape[0], shape[1])
data = data.reshape(shape)
elif ftype_cur == 0:
dtype = np.float32
data_size = np.prod(shape)
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
elif ftype_cur == 1:
dtype = np.float16
data_size = np.prod(shape)
data = np.fromfile(fin, dtype=dtype, count=data_size).reshape(shape)
model[name] = torch.tensor(data, dtype=torch.float32 if dtype == np.float32 else torch.float16)
pbar.update(fin.tell() - start_pos)
return model
def convert_to_hf_format(model, hparams):
# This works for llama 7B, need to test with other models
n_layers = hparams["n_layers"]
n_heads = hparams["n_heads"]
dim = hparams["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
# permute for sliced rotary
def permute(w):
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
state_dict = {}
for layer_i in range(n_layers):
state_dict.update(
{
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
model[f"layers.{layer_i}.attention.wq.weight"]
),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
model[f"layers.{layer_i}.attention.wk.weight"]
),
f"model.layers.{layer_i}.self_attn.v_proj.weight": model[
f"layers.{layer_i}.attention.wv.weight"
],
f"model.layers.{layer_i}.self_attn.o_proj.weight": model[
f"layers.{layer_i}.attention.wo.weight"
],
f"model.layers.{layer_i}.mlp.gate_proj.weight": model[
f"layers.{layer_i}.feed_forward.w1.weight"
],
f"model.layers.{layer_i}.mlp.down_proj.weight": model[
f"layers.{layer_i}.feed_forward.w2.weight"
],
f"model.layers.{layer_i}.mlp.up_proj.weight": model[
f"layers.{layer_i}.feed_forward.w3.weight"
],
f"model.layers.{layer_i}.input_layernorm.weight": model[
f"layers.{layer_i}.attention_norm.weight"
],
f"model.layers.{layer_i}.post_attention_layernorm.weight": model[
f"layers.{layer_i}.ffn_norm.weight"
],
}
)
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
state_dict.update(
{
"model.embed_tokens.weight": model["tok_embeddings.weight"],
"model.norm.weight": model["norm.weight"],
"lm_head.weight": model["output.weight"],
}
)
return state_dict
def chat(model, hparams, llama_dir):
from transformers import (GenerationConfig, LlamaForCausalLM,
LlamaTokenizer, StoppingCriteria,
StoppingCriteriaList)
from transformers.models.llama.configuration_llama import LlamaConfig
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self):
super().__init__()
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, stops=[]):
print(tokenizer.decode(input_ids[0]), end="", flush=True)
if input_ids[0][-1] == 13:
return True
return False
config = LlamaConfig(
vocab_size=hparams["vocab_size"],
dim=hparams["dim"],
num_hidden_layers=hparams["n_layers"],
num_attention_heads=hparams["n_heads"],
)
llama = LlamaForCausalLM(config=config)
llama.load_state_dict(state_dict=model, strict=True)
tokenizer = LlamaTokenizer.from_pretrained(llama_dir)
device = torch.device("cpu")
llama = llama.to(device)
ctx = """You are AI.
This is a dialog, where User interacts with AI. AI is helpful, kind, obedient, honest, respectful, direct, concise, should try to protect User's privacy, and knows its own limits. Also, AI must answer User and AI cannot stop the conversation by itself.
User: Hello, AI.
AI: Hello! How can I assist you today?
"""
print(ctx.rstrip("\n"))
while True:
print("-" * 60)
prompt = input("User: ")
if ctx != "":
ctx = f"{ctx}User: {prompt}\n"
else:
ctx = f"{prompt}\nAI:"
ctx = (ctx[-1920:]) if len(ctx) >= 2048 else ctx
print("-" * 60)
if len(ctx.strip()) > 0:
input_ids = tokenizer(ctx, return_tensors="pt")["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=0.8,
top_p=0.95,
top_k=50,
repetition_penalty=1.1764,
)
with torch.no_grad():
generation_output = llama.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_length=2048,
do_sample=True,
stopping_criteria=StoppingCriteriaList([StoppingCriteriaSub()]),
)
s = generation_output.sequences[0]
decoded = tokenizer.decode(s)
ctx = f"{decoded}\n"
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir", "-i", type=str, required=True, help="The input directory containing the ggml files."
)
parser.add_argument(
"--prefix",
"-p",
type=str,
required=True,
help="The prefix of the ggml files (ggml-model-f16 or ggml-model-q4_0).",
)
parser.add_argument(
"--hf",
action="store_true",
help="Whether to save the model in the Hugging Face format. (default: False)",
)
parser.add_argument(
"--chat", "-c", action="store_true", help="Whether to open a chat with the model. (default: False)"
)
args = parser.parse_args()
llama_dir = os.path.abspath(f"{args.input_dir}/../")
ggml_files = sorted(
[f"{args.input_dir}/{f}" for f in os.listdir(args.input_dir) if f.startswith(args.prefix)]
)
fin = open(ggml_files[0], "rb")
hparams, ftype = read_header(fin)
tokens = read_tokens(fin, hparams["vocab_size"])
model = read_variables(fin)
for f in tqdm(ggml_files[1:]):
fin = open(f, "rb")
read_header(fin)
read_tokens(fin, hparams["vocab_size"])
model.update(read_variables(fin))
if args.hf:
model = convert_to_hf_format(model, hparams)
pth_ckpt = {
"state_dict": model,
"hparams": hparams,
"tokens": tokens,
}
torch.save(pth_ckpt, f"{args.input_dir}/{args.prefix}-to-torch.pth")
if args.chat:
if not args.hf:
model = convert_to_hf_format(model, hparams)
chat(model, hparams, llama_dir)
if __name__ == "__main__":
main()

107
convert-gpt4all-to-ggml.py Normal file
View File

@@ -0,0 +1,107 @@
#!/usr/bin/env python3
#
# TODO: deduplicate GPT4All with convert-unversioned-ggml-to-ggml.py
#
# Original by https://github.com/eiz
# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818
import argparse
import glob
import os
import struct
import sys
from sentencepiece import SentencePieceProcessor
HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
def parse_args():
parser = argparse.ArgumentParser(description='Upgrade a GPT4All model to the current format')
parser.add_argument('gpt4all_model', help='path to gpt4all-lora-quantized.bin')
parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file')
return parser.parse_args()
def read_header(f_in):
struct_fmt = "i" * (3 + len(HPARAMS))
struct_size = struct.calcsize(struct_fmt)
buf = f_in.read(struct_size)
return struct.unpack(struct_fmt, buf)
def write_header(f_out, header):
(magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header
if magic != 0x67676d6c:
raise Exception('Invalid file magic. Must be an old style ggml file.')
values = [
0x67676d66, # magic: ggml in hex
1, # file version
vocab_size,
dim,
multiple_of,
n_heads,
n_layers,
rot,
ftype
]
f_out.write(struct.pack("i" * len(values), *values))
def write_tokens(fout, tokenizer):
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode()
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
# TODO: GPT4All - add extra <pad> token
text = "<pad>".encode()
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", 0.0))
def read_tokens(f_in, tokenizer):
for i in range(tokenizer.vocab_size()):
len_b = f_in.read(4)
(length,) = struct.unpack("i", len_b)
f_in.read(length)
def copy_all_data(f_out, f_in):
while True:
buf = f_in.read(1024 * 1024)
if not buf:
break
f_out.write(buf)
def convert_one_file(path_in, tokenizer):
path_tmp = f"{path_in}.tmp"
path_orig= f"{path_in}.orig"
print(f"converting {path_in}")
with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out:
write_header(f_out, read_header(f_in))
read_tokens(f_in, tokenizer)
write_tokens(f_out, tokenizer)
copy_all_data(f_out, f_in)
os.rename(path_in, path_orig)
os.rename(path_tmp, path_in)
def main():
args = parse_args()
tokenizer = SentencePieceProcessor(args.tokenizer_model)
convert_one_file(args.gpt4all_model, tokenizer)
if __name__ == "__main__":
main()

View File

@@ -50,7 +50,7 @@ fout.write(struct.pack("i", 4))
# This loop unchanged from convert-pth-to-ggml.py:
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
text = " \u2047 ".encode()
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
@@ -61,21 +61,26 @@ for i in range(tokenizer.vocab_size()):
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def write_header(shape, dst_name, ftype_cur):
sname = dst_name.encode('utf-8')
sname = dst_name.encode()
fout.write(struct.pack("iii", len(shape), len(sname), ftype_cur))
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
tensor_data_offset = (tensor_data_offset + 31) & -32
fout.seek(tensor_data_offset)
def convert_non_q4(src_name, dst_name):
v = model[src_name]
shape = v.shape
print("Processing non-Q4 variable: " + src_name + " with shape: ", shape, " and type: ", v.dtype)
print(f"Processing non-Q4 variable: {src_name} with shape: {shape} and type: {v.dtype}")
if len(shape) == 1:
print(" Converting to float32")
v = v.to(torch.float32)
@@ -100,7 +105,7 @@ def convert_q4(src_name, dst_name, permute=False):
# Each int32 item is actually 8 int4 items packed together, and it's transposed.
shape = (qweight.shape[0], qweight.shape[1] * 8)
print("Processing Q4 variable: " + src_name + " with shape: ", shape)
print(f"Processing Q4 variable: {src_name} with shape: {shape}")
# The output format has the int4 weights in groups of 32 rather than 8.
# It looks like this:
@@ -163,5 +168,5 @@ for i in range(n_layer):
fout.close()
print("Done. Output file: " + fname_out)
print("")
print(f"Done. Output file: {fname_out}")
print()

View File

@@ -1,4 +1,4 @@
# Convert a LLaMA model checkpoint to a ggml compatible file
# Convert a LLaMA model checkpoint to a ggjt compatible file
#
# Load the model using Torch
# Iterate over all variables and write them to a binary file.
@@ -24,8 +24,57 @@ import torch
from sentencepiece import SentencePieceProcessor
def parse_args():
QK = 32
GGML_TYPE_Q4_0 = 0
GGML_TYPE_Q4_1 = 1
GGML_TYPE_I8 = 2
GGML_TYPE_I16 = 3
GGML_TYPE_I32 = 4
GGML_TYPE_F16 = 5
GGML_TYPE_F32 = 6
WTYPES = {
0: GGML_TYPE_F32,
1: GGML_TYPE_F16,
2: GGML_TYPE_Q4_0,
3: GGML_TYPE_Q4_1,
}
GGML_BLCK_SIZE = {
GGML_TYPE_Q4_0: QK,
GGML_TYPE_Q4_1: QK,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 1,
GGML_TYPE_I32: 1,
GGML_TYPE_F16: 1,
GGML_TYPE_F32: 1,
}
GGML_TYPE_SIZE = {
GGML_TYPE_Q4_0: 4 + QK//2,
GGML_TYPE_Q4_1: 4*2 + QK//2,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 2,
GGML_TYPE_I32: 4,
GGML_TYPE_F16: 2,
GGML_TYPE_F32: 4,
}
def ggml_nelements(shape):
r = 1
for i in shape:
r *= i
return r
def ggml_nbytes(shape, ftype):
x = ggml_nelements(shape)
t = WTYPES[ftype]
x *= GGML_TYPE_SIZE[t]
x //= GGML_BLCK_SIZE[t]
return x
def parse_args():
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
parser.add_argument('dir_model', help='directory containing the model checkpoint')
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
@@ -33,7 +82,6 @@ def parse_args():
return parser.parse_args()
def get_n_parts(dim):
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
n_parts = mappings.get(dim)
if n_parts is None:
@@ -44,30 +92,24 @@ def get_n_parts(dim):
return n_parts
def load_hparams_and_tokenizer(dir_model):
# `dir_model` is something like `models/7B` or `models/7B/`.
# "tokenizer.model" is expected under model's parent dir.
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
# Let's use the model's parent dir directly.
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
fname_hparams = f"{dir_model}/params.json"
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
with open(fname_hparams, "r") as f:
hparams = json.load(f)
print(hparams)
tokenizer = SentencePieceProcessor(fname_tokenizer)
hparams.update({"vocab_size": tokenizer.vocab_size()})
return hparams, tokenizer
def write_header(fout, hparams, ftype):
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
values = [
0x67676d66, # magic: ggmf in hex
0x67676a74, # magic: ggjt in hex
1, # file version
*[hparams[key] for key in keys],
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
@@ -76,10 +118,9 @@ def write_header(fout, hparams, ftype):
fout.write(struct.pack("i" * len(values), *values))
def write_tokens(fout, tokenizer):
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode("utf-8")
text = " \u2047 ".encode()
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
@@ -90,92 +131,144 @@ def write_tokens(fout, tokenizer):
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def process_and_write_variables(fout, model, ftype):
def process_and_write_variables(fout, model, ftype, part_id, n_parts):
for name, datao in model.items():
if name.endswith("freqs"):
continue
shape = datao.shape
print(f"Processing variable: {name} with shape: {shape} and type: {datao.dtype}")
# remove dimensions with a single element
data = datao.numpy().squeeze()
n_dims = len(shape)
partshape = data.shape
n_dims = len(data.shape)
assert n_dims in (1, 2)
# default type is fp16
print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")
# coerce single-dimensional tensors from float16 to float32
ftype_cur = 1
if ftype == 0 or n_dims == 1:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]
# header
sname = name.encode('utf-8')
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
for dim in reversed(data.shape):
# determine dimension along which multipart tensor is sharded
#
# split_dim 0 regex:
# - output.*
# - layers.*.attention.wq.weight
# - layers.*.attention.wk.weight
# - layers.*.attention.wv.weight
# - layers.*.feed_forward.w1.weight
# - layers.*.feed_forward.w3.weight
#
# split_dim 1 regex:
# - tok_embeddings.*
# - layers.*.attention.wo.weight
# - layers.*.feed_forward.w2.weight
#
if n_dims > 1:
split_dim = 1
if "tok_embeddings" in name:
split_dim = 1
elif "layers" in name:
if "attention.wo.weight" in name:
split_dim = 1
elif "feed_forward.w2.weight" in name:
split_dim = 1
else:
split_dim = 0
elif "output" in name:
split_dim = 0
# output tensor header
fullshape = list(partshape)
if n_dims > 1:
fullshape[split_dim] *= n_parts
sname = name.encode()
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
for dim in reversed(fullshape):
fout.write(struct.pack("i", dim))
fout.write(sname)
# data output to file
data.tofile(fout)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
while tensor_data_offset % QK != 0:
fout.write(struct.pack("B", 0))
tensor_data_offset += 1
# output unified mappable tensor data
if n_dims == 1 or n_parts == 1:
# copy tensor which we thankfully received in one piece
if part_id == 0:
data.tofile(fout)
elif split_dim == 0:
# reassemble multifile tensor containing some of the rows
rows_per_chunk = partshape[0]
current_row = part_id * rows_per_chunk
bytes_per_row = fullshape[1] // blck_size * type_size
offset = current_row * bytes_per_row
fout.seek(tensor_data_offset + offset)
data.tofile(fout)
elif split_dim == 1:
# reassemble multifile tensor containing some of the cols
cols_per_chunk = partshape[1]
current_col = part_id * cols_per_chunk
bytes_per_row = fullshape[1] // blck_size * type_size
offset_current_col = current_col // blck_size * type_size
for row in range(partshape[0]):
offset_row = row * bytes_per_row
offset = offset_row + offset_current_col
fout.seek(tensor_data_offset + offset)
data[row].tofile(fout)
# advance file position to next tensor
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))
def main():
args = parse_args()
dir_model = args.dir_model
ftype = args.ftype
ftype_str = ["f32", "f16"]
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
print(args)
# if only writing vocab to file
if args.vocab_only:
fname_model = f"{dir_model}/consolidated.00.pth"
fname_out = f"{dir_model}/ggml-vocab.bin"
print(f"Extracting only the vocab from '{fname_model}'\n")
model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
del model
print(f"Done. Output file: {fname_out}\n")
return
n_parts = get_n_parts(hparams["dim"])
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
for p in range(n_parts):
# we output a single file for ggml
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
offset_of_tensors = fout.tell()
# the tensors we load could be split across multiple files
for part_id in range(n_parts):
fout.seek(offset_of_tensors)
print(f"Processing part {part_id+1} of {n_parts}\n")
fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
model = torch.load(fname_model, map_location="cpu")
process_and_write_variables(fout, model, ftype, part_id, n_parts)
del model
print(f"Processing part {p+1} of {n_parts}\n")
fname_model = f"{dir_model}/consolidated.0{p}.pth"
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
model = torch.load(fname_model, map_location="cpu")
with open(fname_out, "wb") as fout:
write_header(fout, hparams, ftype)
write_tokens(fout, tokenizer)
process_and_write_variables(fout, model, ftype)
del model
print(f"Done. Output file: {fname_out}, (part {p})\n")
print(f"Done. Output file: {fname_out}\n")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,100 @@
#!/usr/bin/env python3
# Original by https://github.com/eiz
# https://github.com/ggerganov/llama.cpp/issues/324#issuecomment-1476227818
import argparse
import glob
import os
import struct
import sys
from sentencepiece import SentencePieceProcessor
HPARAMS = keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
def parse_args():
parser = argparse.ArgumentParser(description='Upgrade old ggml model files to the current format')
parser.add_argument('dir_model', help='directory containing ggml .bin files')
parser.add_argument('tokenizer_model', help='path to LLaMA tokenizer.model file')
return parser.parse_args()
def read_header(f_in):
struct_fmt = "i" * (3 + len(HPARAMS))
struct_size = struct.calcsize(struct_fmt)
buf = f_in.read(struct_size)
return struct.unpack(struct_fmt, buf)
def write_header(f_out, header):
(magic, vocab_size, dim, multiple_of, n_heads, n_layers, rot, ftype) = header
if magic != 0x67676d6c:
raise Exception('Invalid file magic. Must be an old style ggml file.')
values = [
0x67676d66, # magic: ggml in hex
1, # file version
vocab_size,
dim,
multiple_of,
n_heads,
n_layers,
rot,
ftype
]
f_out.write(struct.pack("i" * len(values), *values))
def write_tokens(fout, tokenizer):
for i in range(tokenizer.vocab_size()):
if tokenizer.is_unknown(i):
text = " \u2047 ".encode()
elif tokenizer.is_control(i):
text = b""
elif tokenizer.is_byte(i):
piece = tokenizer.id_to_piece(i)
if len(piece) != 6:
print(f"Invalid token: {piece}")
sys.exit(1)
byte_value = int(piece[3:-1], 16)
text = struct.pack("B", byte_value)
else:
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
fout.write(struct.pack("i", len(text)))
fout.write(text)
fout.write(struct.pack("f", tokenizer.get_score(i)))
def read_tokens(f_in, tokenizer):
for i in range(tokenizer.vocab_size()):
len_b = f_in.read(4)
(length,) = struct.unpack("i", len_b)
f_in.read(length)
def copy_all_data(f_out, f_in):
while True:
buf = f_in.read(1024 * 1024)
if not buf:
break
f_out.write(buf)
def convert_one_file(path_in, tokenizer):
path_tmp = f"{path_in}.tmp"
path_orig= f"{path_in}.orig"
print(f"converting {path_in}")
with open(path_in, "rb") as f_in, open(path_tmp, "wb") as f_out:
write_header(f_out, read_header(f_in))
read_tokens(f_in, tokenizer)
write_tokens(f_out, tokenizer)
copy_all_data(f_out, f_in)
os.rename(path_in, path_orig)
os.rename(path_tmp, path_in)
def main():
args = parse_args()
files = []
files.extend(glob.glob(f"{args.dir_model}/*.bin"))
files.extend(glob.glob(f"{args.dir_model}/*.bin.*"))
tokenizer = SentencePieceProcessor(args.tokenizer_model)
for file in files:
convert_one_file(file, tokenizer)
if __name__ == "__main__":
main()

View File

@@ -31,6 +31,7 @@ if (EMSCRIPTEN)
else()
add_subdirectory(main)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(perplexity)
add_subdirectory(embedding)
endif()

49
examples/Miku.sh Executable file
View File

@@ -0,0 +1,49 @@
#!/bin/bash
set -e
AI_NAME="${AI_NAME:-Miku}"
MODEL="${MODEL:-./models/gpt4all-7B/gpt4all-lora-unfiltered-quantized.bin}"
USER_NAME="${USER_NAME:-Anon}"
# Uncomment and adjust to the number of CPU cores you want to use.
#N_THREAD="${N_THREAD:-4}"
N_PREDICTS="${N_PREDICTS:-4096}"
GEN_OPTIONS=(--batch_size 1024
--ctx_size 2048
--keep -1
--repeat_last_n 256
--repeat_penalty 1.17647
--temp 0.7
--top_k 40
--top_p 0.5)
if [ -n "$N_THREAD" ]; then
GEN_OPTIONS+=(--threads "$N_THREAD")
fi
./main "${GEN_OPTIONS[@]}" \
--model "$MODEL" \
--n_predict "$N_PREDICTS" \
--color --interactive \
--reverse-prompt "${USER_NAME}:" \
--prompt "
This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the users computer.
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct she will ask the user for help.
${AI_NAME} is a very helpful AI and will help the user with anything they need, she is also very friendly and will try to make the user feel better if they are sad.
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life, she will also try to make the user like her.
The conversation is only between ${USER_NAME} and ${AI_NAME}
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
${AI_NAME} can only communicate through text, so she can't send images or videos.
${USER_NAME}: Hello!
${AI_NAME}: /think I wonder what I should say to ${USER_NAME}? This is the first time we talk so it's important that I make a good first impression!
${AI_NAME}: Hi! I am ${AI_NAME}, your new AI friend, assistant(or whatever you like!), it's so nice to meet you! ^_^
${AI_NAME}: I might be an AI, but I also have feelings, so please be nice to me! :)
${USER_NAME}: I'll make sure to be nice to you! I'm so happy to have you as my assistant!
${AI_NAME}: /think It sounds like ${USER_NAME} is happy to have me as their assistant! I'm so happy too! ^_^ Glad that whole emotion thing didn't scare him off!
${AI_NAME}: /think I wonder what ${USER_NAME} likes to do in his free time? I should ask him about that!
${AI_NAME}: What do you like to do in your free time? ^_^
${USER_NAME}:" "$@"

View File

@@ -0,0 +1,270 @@
/*
License: MIT License
Changelog:
- 2023-03-31 Initial version by Sebastian Apel (https://github.com/SebastianApel)
*/
#include <locale.h>
#include "ggml.h"
#include <assert.h>
#include <math.h>
#include <cstring>
#include <cstdio>
#include <cinttypes>
#include <unordered_map>
#include <queue>
#include <string.h>
#include <cassert>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>
float tensor_sum_elements(struct ggml_tensor * tensor) {
float sum = 0;
if (tensor->type==6) {
for (int j = 0; j < tensor->ne[1]; j++) {
for (int k = 0; k < tensor->ne[0]; k++) {
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
}
}
}
return sum;
}
/*
These are mapping to unknown
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_COUNT,
*/
#define TENSOR_TYPE_AS_STR(TYPE) TYPE == GGML_TYPE_F32 ? "FP32" : TYPE == GGML_TYPE_F16 ? "FP16" : TYPE == GGML_TYPE_Q4_0 ? "Q4_0" : TYPE == GGML_TYPE_Q4_1 ? "Q4_1" : "UNKNOWN"
#define TENSOR_DUMP(TENSOR) printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", #TENSOR, \
TENSOR->type,TENSOR_TYPE_AS_STR(TENSOR->type),\
TENSOR->ne[0], TENSOR->ne[1], TENSOR->ne[2], TENSOR->nb[0], TENSOR->nb[1], TENSOR->nb[2]); \
{ float sum = tensor_sum_elements(TENSOR); printf("Sum of tensor %s is %6.2f\n",#TENSOR, sum); }
struct benchmark_params_struct {
int32_t n_threads = 1;
int32_t n_iterations = 10;
};
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
fprintf(stderr, "\n");
}
int main(int argc, char ** argv) {
struct benchmark_params_struct benchmark_params;
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_threads = std::stoi(argv[i]);
} else if (arg == "-i" || arg == "--iter") {
if (++i >= argc) {
invalid_param = true;
break;
}
benchmark_params.n_iterations = std::stoi(argv[i]);
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv, benchmark_params);
exit(0);
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv, benchmark_params);
exit(1);
}
}
// create the ggml context
printf("Starting Test\n");
struct ggml_context * ctx;
//const int sizex = 4096;
//const int sizey = 11008;
#undef VERBOSE_DEBUGGING
#ifndef VERBOSE_DEBUGGING
const int sizey = 4096;
const int sizex = 11008;
const int sizez = 128;
#else
/* Working - let's increase size */
const int sizey = 1;
const int sizex = (8*32);
const int sizez = 1;
/*const int sizey = 1;
const int sizex = 3*(8*32);
const int sizez = 1;*/
#endif
//printf("Memsize required = %i\n", sizex*sizex);
ggml_type wtype = GGML_TYPE_F32;
size_t ctx_size = 0;
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(wtype);
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
ctx_size += sizex*sizeof(float);
ctx_size += 1024*1024*100;
printf("Allocating Memory of size %li byes, %li MB\n",ctx_size, (ctx_size/1024/1024));
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/* no_alloc =*/ 0
};
ctx = ggml_init(params);
if (!ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
printf("Creating new tensors\n");
// printf("Creating new tensor m1\n");
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m11, 1.0f);
// printf("Creating new tensor m1\n");
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
ggml_set_f32(m12, 1.5f);
// printf("Creating new tensor m2\n");
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
ggml_set_f32(m2, 2.0f);
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
// printf("Creating new tensor m11xm2\n");
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
gf.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf.n_threads);
TENSOR_DUMP(m11);
TENSOR_DUMP(m2);
ggml_graph_compute(ctx, &gf);
TENSOR_DUMP(gf.nodes[0]);
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
int32_t nelements = sizex*sizey;
int32_t ne[2] = { sizex, sizey };
std::vector<int64_t> hist_cur(1 << 4, 0);
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
// Set up a the compute graph
// printf("Creating new tensor q31\n");
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
// printf("Creating compute graph\n");
struct ggml_cgraph gf31 = ggml_build_forward(q31);
gf31.n_threads=benchmark_params.n_threads;
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
//printf("Creating compute graph\n");
struct ggml_cgraph gf32 = ggml_build_forward(q32);
gf32.n_threads=benchmark_params.n_threads;
printf("cgraph->n_threads=%i\n",gf31.n_threads);
const int dimx = sizex;
const int dimy = sizey;
const int dimz = sizez;
long long int flops_per_dot_product = dimy + dimy;
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - aboout %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
// Let's use the F32 result from above as a reference for the q4_0 multiplication
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; FLOPS_per_u_Second\n");
printf("==============================================================================================\n");
for (int i=0;i<benchmark_params.n_iterations ;i++) {
long long int start = ggml_time_us();
//printf("Running ggml_graph_compute\n");
ggml_graph_compute(ctx, &gf31);
long long int stop = ggml_time_us();
long long int usec = stop-start;
float sec = usec/1000000;
float flops_per_usec = (1.0f*flops_per_matrix)/usec;
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%19.2f\n",
i,
gf31.n_threads,
sizex, sizey, sizez, flops_per_matrix,
usec,flops_per_usec);
#ifdef VERBOSE_DEBUGGING
TENSOR_DUMP("res",gf31.nodes[0])
#endif
// Check that the matrix multiplication result is in the right ballpark
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
if (delta > allowed_delta) {
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
sum_of_F32_reference,
sum_of_Q4_result,
delta,
allowed_delta
);
exit(0);
}
// Running a different graph computation to make sure we override the CPU cache lines
ggml_graph_compute(ctx, &gf32);
}
}

57
examples/chat-13B.bat Normal file
View File

@@ -0,0 +1,57 @@
@setlocal disabledelayedexpansion enableextensions
@echo off
cd /d "%~dp0.."
if not "%errorlevel%"=="0" (
echo Unable to change directory.
pause
exit /b 1
)
if not defined MODEL set "MODEL=models\13B\ggml-model-q4_0.bin"
if not defined USER_NAME set "USER_NAME=User"
if not defined AI_NAME set "AI_NAME=ChatLLaMa"
rem Adjust to the number of CPU cores you want to use.
rem if not defined N_THREAD set "N_THREAD=8"
rem Number of tokens to predict (made it larger than default because we want a long interaction)
if not defined N_PREDICTS set "N_PREDICTS=2048"
if not defined GEN_OPTIONS set "GEN_OPTIONS=--ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647"
rem Default main script paths
set "DEFAULT_MAIN_SCRIPT_PATHS=main.exe build\bin\main.exe"
rem Get main script path from command line arguments
set "MAIN_SCRIPT_PATH=%~1"
rem If the main script path was not specified, try the default paths
if not defined MAIN_SCRIPT_PATH (
for %%i in (%DEFAULT_MAIN_SCRIPT_PATHS%) do (
if exist "%%i" set "MAIN_SCRIPT_PATH=%%i"
)
)
rem If the main script path was not found, tell the user how to specify it
if not defined MAIN_SCRIPT_PATH (
echo The main script could not be found. Please provide the path to the main script as 1st argument to this script, or place the main script in one of the default locations:
echo %DEFAULT_MAIN_SCRIPT_PATHS%
pause
exit /b 1
)
rem Default context, feel free to edit it
set "PROMPT_TEXT=Text transcript of a never ending dialog, where %USER_NAME% interacts with an AI assistant named %AI_NAME%. %AI_NAME% is helpful, kind, honest, friendly, good at writing and never fails to answer %USER_NAME%'s requests immediately and with details and precision. There are no annotations like (30 seconds passed...) or (to himself), just what %USER_NAME% and %AI_NAME% say aloud to each other. The dialog lasts for years, the entirety of it is shared below. It's 10000 pages long. The transcript only includes text, it does not include markup like HTML and Markdown."
rem Set a temporary variable if N_THREAD is set
if defined N_THREAD (
set "_N_THREAD=--threads %N_THREAD%"
) else (
set "_N_THREAD="
)
rem Run the script
echo "%MAIN_SCRIPT_PATH%" %GEN_OPTIONS% %_N_THREAD% ^
--model "%MODEL%" ^
--n_predict %N_PREDICTS% ^
--color --interactive ^
--reverse-prompt "%USER_NAME%:" ^
--prompt "%PROMPT_TEXT%"

View File

@@ -1,7 +1,5 @@
#include "common.h"
#include "ggml.h"
#include <cassert>
#include <cstring>
#include <fstream>
@@ -16,12 +14,19 @@
#endif
#if defined (_WIN32)
#include <fcntl.h>
#include <io.h>
#pragma comment(lib,"kernel32.lib")
extern "C" __declspec(dllimport) void* __stdcall GetStdHandle(unsigned long nStdHandle);
extern "C" __declspec(dllimport) int __stdcall GetConsoleMode(void* hConsoleHandle, unsigned long* lpMode);
extern "C" __declspec(dllimport) int __stdcall SetConsoleMode(void* hConsoleHandle, unsigned long dwMode);
extern "C" __declspec(dllimport) int __stdcall SetConsoleCP(unsigned int wCodePageID);
extern "C" __declspec(dllimport) int __stdcall SetConsoleOutputCP(unsigned int wCodePageID);
extern "C" __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int CodePage, unsigned long dwFlags,
const wchar_t * lpWideCharStr, int cchWideChar,
char * lpMultiByteStr, int cbMultiByte,
const char * lpDefaultChar, bool * lpUsedDefaultChar);
#define CP_UTF8 65001
#endif
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
@@ -39,6 +44,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
bool invalid_param = false;
std::string arg;
gpt_params default_params;
for (int i = 1; i < argc; i++) {
arg = argv[i];
@@ -66,6 +73,11 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
break;
}
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
if (params.prompt.back() == '\n') {
params.prompt.pop_back();
@@ -147,6 +159,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.use_color = true;
} else if (arg == "--mlock") {
params.use_mlock = true;
} else if (arg == "--no-mmap") {
params.use_mmap = false;
} else if (arg == "--mtest") {
params.mem_test = true;
} else if (arg == "--verbose-prompt") {
@@ -168,7 +182,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
}
params.n_parts = std::stoi(argv[i]);
} else if (arg == "-h" || arg == "--help") {
gpt_print_usage(argc, argv, params);
gpt_print_usage(argc, argv, default_params);
exit(0);
} else if (arg == "--random-prompt") {
params.random_prompt = true;
@@ -180,13 +194,13 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
params.input_prefix = argv[i];
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
gpt_print_usage(argc, argv, default_params);
exit(1);
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
gpt_print_usage(argc, argv, params);
gpt_print_usage(argc, argv, default_params);
exit(1);
}
@@ -215,20 +229,23 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
fprintf(stderr, " prompt file to start generation.\n");
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
fprintf(stderr, " --top_k N top-k sampling (default: %d)\n", params.top_k);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", (double)params.top_p);
fprintf(stderr, " --repeat_last_n N last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);
fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f)\n", params.repeat_penalty);
fprintf(stderr, " --repeat_penalty N penalize repeat sequence of tokens (default: %.1f)\n", (double)params.repeat_penalty);
fprintf(stderr, " -c N, --ctx_size N size of the prompt context (default: %d)\n", params.n_ctx);
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating\n");
fprintf(stderr, " --memory_f32 use f32 instead of f16 for memory key+value\n");
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
fprintf(stderr, " --n_parts N number of model parts (default: -1 = determine from dimensions)\n");
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
if (ggml_mlock_supported()) {
if (llama_mlock_supported()) {
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_mmap_supported()) {
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
fprintf(stderr, " --mtest compute maximum memory usage\n");
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
@@ -300,12 +317,20 @@ void win32_console_init(bool enable_color) {
SetConsoleMode(hConOut, dwMode | 0x4); // ENABLE_VIRTUAL_TERMINAL_PROCESSING (0x4)
}
// Set console output codepage to UTF8
SetConsoleOutputCP(65001); // CP_UTF8
SetConsoleOutputCP(CP_UTF8);
}
void* hConIn = GetStdHandle((unsigned long)-10); // STD_INPUT_HANDLE (-10)
if (hConIn && hConIn != (void*)-1 && GetConsoleMode(hConIn, &dwMode)) {
// Set console input codepage to UTF8
SetConsoleCP(65001); // CP_UTF8
// Set console input codepage to UTF16
_setmode(_fileno(stdin), _O_WTEXT);
}
}
// Convert a wide Unicode string to an UTF8 string
void win32_utf8_encode(const std::wstring & wstr, std::string & str) {
int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL);
std::string strTo(size_needed, 0);
WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL);
str = strTo;
}
#endif

View File

@@ -47,6 +47,7 @@ struct gpt_params {
bool instruct = false; // instruction mode (used for Alpaca models)
bool ignore_eos = false; // do not stop generating after eos
bool perplexity = false; // compute perplexity over the prompt
bool use_mmap = true; // use mmap for faster loads
bool use_mlock = false; // use mlock to keep model in memory
bool mem_test = false; // compute maximum memory usage
bool verbose_prompt = false; // print prompt tokens before generation
@@ -92,4 +93,5 @@ void set_console_color(console_state & con_st, console_color_t color);
#if defined (_WIN32)
void win32_console_init(bool enable_color);
void win32_utf8_encode(const std::wstring & wstr, std::string & str);
#endif

View File

@@ -1,4 +1,4 @@
set(TARGET embedding)
add_executable(${TARGET} embedding.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ggml ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,3 +1,3 @@
# embedding
TODO
# embedding
TODO

View File

@@ -38,6 +38,7 @@ int main(int argc, char ** argv) {
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.embedding = params.embedding;

15
examples/gpt4all.sh Executable file
View File

@@ -0,0 +1,15 @@
#!/bin/bash
#
# Temporary script - will be removed in the future
#
cd `dirname $0`
cd ..
./main --color --instruct --threads 4 \
--model ./models/gpt4all-7B/gpt4all-lora-quantized.bin \
--file ./prompts/alpaca.txt \
--batch_size 8 --ctx_size 2048 \
--repeat_last_n 64 --repeat_penalty 1.3 \
--n_predict 128 --temp 0.1 --top_k 40 --top_p 0.95

View File

@@ -1,4 +1,4 @@
set(TARGET main)
add_executable(${TARGET} main.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ggml ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,3 +1,3 @@
# main
TODO
# main
TODO

View File

@@ -1,3 +1,8 @@
// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
@@ -97,6 +102,7 @@ int main(int argc, char ** argv) {
lparams.n_parts = params.n_parts;
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
ctx = llama_init_from_file(params.model.c_str(), lparams);
@@ -162,7 +168,7 @@ int main(int argc, char ** argv) {
}
// enable interactive mode if reverse prompt or interactive start is specified
if (params.antiprompt.size() != 0 || params.interactive_start) {
if (params.antiprompt.size() != 0 || params.interactive_start) {
params.interactive = true;
}
@@ -209,7 +215,8 @@ int main(int argc, char ** argv) {
fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
}
}
fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "sampling: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n",
params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
fprintf(stderr, "\n\n");
@@ -274,10 +281,10 @@ int main(int argc, char ** argv) {
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// out of user input, sample next token
const float top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float temp = params.temp;
const float repeat_penalty = params.repeat_penalty;
llama_token id = 0;
@@ -367,6 +374,11 @@ int main(int argc, char ** argv) {
// potentially set color to indicate we are taking user input
set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
#if defined (_WIN32)
// Windows: must reactivate sigint handler after each signal
signal(SIGINT, sigint_handler);
#endif
if (params.instruct) {
printf("\n> ");
}
@@ -380,10 +392,19 @@ int main(int argc, char ** argv) {
std::string line;
bool another_line = true;
do {
#if defined(_WIN32)
std::wstring wline;
if (!std::getline(std::wcin, wline)) {
// input stream is bad or EOF received
return 0;
}
win32_utf8_encode(wline, line);
#else
if (!std::getline(std::cin, line)) {
// input stream is bad or EOF received
return 0;
}
#endif
if (line.empty() || line.back() != '\\') {
another_line = false;
} else {
@@ -425,7 +446,7 @@ int main(int argc, char ** argv) {
}
// end of text token
if (embd.back() == llama_token_eos()) {
if (!embd.empty() && embd.back() == llama_token_eos()) {
if (params.instruct) {
is_interacting = true;
} else {

View File

@@ -1,4 +1,4 @@
set(TARGET perplexity)
add_executable(${TARGET} perplexity.cpp)
target_link_libraries(${TARGET} PRIVATE common llama ggml ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -1,3 +1,3 @@
# perplexity
TODO
# perplexity
TODO

View File

@@ -1,15 +1,17 @@
#include "common.h"
#include "llama.h"
std::vector<double> softmax(const std::vector<float>& logits) {
std::vector<double> probs(logits.size());
#include <cmath>
std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
for (float v : logits) max_logit = std::max(max_logit, v);
double sum_exp = 0.0;
for (size_t i = 0; i < logits.size(); i++) {
// Subtract the maximum logit value from the current logit value for numerical stability
float logit = logits[i] - max_logit;
double exp_logit = std::exp(logit);
const float logit = logits[i] - max_logit;
const float exp_logit = expf(logit);
sum_exp += exp_logit;
probs[i] = exp_logit;
}
@@ -24,14 +26,16 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
auto tokens = ::llama_tokenize(ctx, params.prompt, true);
int count = 0;
double nll = 0.0;
int seq_count = tokens.size() / params.n_ctx;
double nll = 0.0;
fprintf(stderr, "%s : calculating perplexity over %d chunks\n", __func__, seq_count);
for (int i = 0; i < seq_count; ++i) {
int start = i * params.n_ctx;
int end = start + params.n_ctx - 1;
int end = start + params.n_ctx - 1; // TODO: this is not optimal, e.g. it makes the batch 511 instead of 512
// it is better to always be power of 2 for better performance
std::vector<llama_token> embd(tokens.begin() + start, tokens.begin() + end);
auto start_t = std::chrono::high_resolution_clock::now();
if (llama_eval(ctx, embd.data(), embd.size(), 0, params.n_threads)) {
@@ -40,7 +44,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
}
auto end_t = std::chrono::high_resolution_clock::now();
if (i == 0) {
double seconds = std::chrono::duration<double>(end_t - start_t).count();
const float seconds = std::chrono::duration<float>(end_t - start_t).count();
printf("%.2f seconds per pass - ETA %.2f hours\n", seconds, (seconds * seq_count) / (60.0*60.0));
}
// We get the logits for all the tokens in the context window (params.n_ctx)
@@ -63,7 +67,7 @@ void perplexity(llama_context * ctx, const gpt_params & params) {
std::vector<float> tok_logits(
logits + j * n_vocab,
logits + (j + 1) * n_vocab);
double prob = softmax(tok_logits)[tokens[start + j + 1]];
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
nll += -std::log(prob);
++count;
}
@@ -111,6 +115,7 @@ int main(int argc, char ** argv) {
lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16;
lparams.logits_all = params.perplexity;
lparams.use_mmap = params.use_mmap;
lparams.use_mlock = params.use_mlock;
lparams.embedding = params.embedding;

View File

@@ -0,0 +1,4 @@
set(TARGET quantize-stats)
add_executable(${TARGET} quantize-stats.cpp)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -0,0 +1,354 @@
#include "ggml.h"
#include "llama.h"
#include "llama_internal.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <map>
#include <numeric>
#include <regex>
#include <string>
#include <unordered_map>
#include <vector>
static const char * type_strs[] = { "q4_0", "q4_1", "i8", "i16", "i32", "f16", "f32" };
static_assert(sizeof(type_strs) == GGML_TYPE_COUNT * sizeof(char *), "Incomplete type list");
struct quantize_stats_params {
std::string model = "models/7B/ggml-model-f16.bin";
bool verbose = false;
bool per_layer_stats = false;
bool print_histogram = false;
bool reference = false;
std::vector<std::string> include_layers;
std::vector<std::string> exclude_layers;
std::vector<enum ggml_type> include_types;
};
const int64_t SCRATCH_ELEMENTS = 32*32;
const size_t HISTOGRAM_BUCKETS = 150;
const double HISTOGRAM_RANGE = 0.03;
struct error_stats {
size_t num_samples;
double total_error;
double max_error;
uint64_t error_histogram[HISTOGRAM_BUCKETS];
};
void quantize_stats_print_usage(int /*argc*/, char ** argv) {
quantize_stats_params params;
fprintf(stderr, "usage: %s [options]\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "options:\n");
fprintf(stderr, " -h, --help show this help message and exit\n");
fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
fprintf(stderr, " -r, --reference\n");
fprintf(stderr, " use reference implementation (default: false)\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " verbose output (default: false)\n");
fprintf(stderr, " -p, --per-layer-stats\n");
fprintf(stderr, " print stats per layer (default: false)\n");
fprintf(stderr, " --histogram\n");
fprintf(stderr, " print error histogram (default: false)\n");
fprintf(stderr, " -l LAYER, --include-layer LAYER\n");
fprintf(stderr, " only test layers matching pattern\n");
fprintf(stderr, " -L LAYER, --exclude-layer LAYER\n");
fprintf(stderr, " exclude layers matching pattern\n");
fprintf(stderr, " -t TYPE, --type TYPE\n");
fprintf(stderr, " only test given type (q4_0, q4_1)\n");
fprintf(stderr, "\n");
}
// Check if a layer is included/excluded by command line
bool layer_included(const quantize_stats_params params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (std::regex_search(layer, std::regex(excluded))) {
return false;
}
}
for (const auto& included : params.include_layers) {
if (std::regex_search(layer, std::regex(included))) {
return true;
}
}
return params.include_layers.empty();
}
// Update error statistics given vectors with the before/after result of quantization
void update_error_stats(int64_t nelements, const float * input, const float * output, error_stats & stats) {
for (int64_t i = 0; i < nelements; i++) {
double diff = input[i] - output[i];
stats.total_error += diff * diff;
stats.max_error = fmax(fabs(diff), stats.max_error);
stats.error_histogram[std::max(std::min((size_t) floor(fabs(diff) / HISTOGRAM_RANGE * HISTOGRAM_BUCKETS), HISTOGRAM_BUCKETS-1), (size_t) 0)]++;
}
stats.num_samples += nelements;
}
double find_quantile(const error_stats & stats, double quantile) {
double sum = std::accumulate(std::begin(stats.error_histogram), std::end(stats.error_histogram), 0.0);
double accum = 0;
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
accum += stats.error_histogram[i];
if (accum >= sum*quantile) {
return (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
}
}
return INFINITY;
}
void print_error_stats(const std::string & name, const error_stats & stats, bool print_histogram) {
double rmse = sqrt(stats.total_error / (double) stats.num_samples);
double median = find_quantile(stats, .5);
double pct95 = find_quantile(stats, .95);
printf("%-50s: rmse %.8f, maxerr %.8f, 95pct<%.4f, median<%.4f\n", name.c_str(), rmse, stats.max_error, pct95, median);
if (print_histogram) {
printf("Error distribution:\n");
for (size_t i = 0; i < HISTOGRAM_BUCKETS; i++) {
double lower = i * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
double upper = (i+1) * HISTOGRAM_RANGE / HISTOGRAM_BUCKETS;
if (i == HISTOGRAM_BUCKETS -1) upper = INFINITY;
printf("[%3.4f, %3.4f): %11" PRIu64 "\n", lower, upper, stats.error_histogram[i]);
}
}
}
// copied from ggml.h - verify that we can access this as a flat array
static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
// Run quantization function for a single layer and update error stats
void test_roundtrip_on_layer(
std::string & name,
bool print_layer_stats,
const quantize_fns_t & qfns,
bool use_reference,
const ggml_tensor * layer,
float * input_scratch,
char *quantized_scratch,
float * output_scratch,
error_stats & total_error) {
assert(tensor_is_contiguous(layer));
error_stats layer_error {};
int64_t nelements = ggml_nelements(layer);
for (int64_t offset = 0; offset < nelements; offset += SCRATCH_ELEMENTS) {
int64_t chunk_size = std::min(SCRATCH_ELEMENTS, nelements - offset);
if (layer->type == GGML_TYPE_F16) {
for (int i = 0; i < chunk_size; i++) {
input_scratch[i] = ggml_get_f32_1d(layer, i + offset);
}
} else {
input_scratch = ggml_get_data_f32(layer) + offset;
}
if (use_reference) {
qfns.quantize_row_q_reference(input_scratch, quantized_scratch, chunk_size);
} else {
qfns.quantize_row_q(input_scratch, quantized_scratch, chunk_size);
}
qfns.dequantize_row_q(quantized_scratch, output_scratch, chunk_size);
update_error_stats(chunk_size, input_scratch, output_scratch, total_error);
if (print_layer_stats) {
update_error_stats(chunk_size, input_scratch, output_scratch, layer_error);
}
}
if (print_layer_stats) {
print_error_stats(name, layer_error, false);
}
}
int main(int argc, char ** argv) {
ggml_time_init();
quantize_stats_params params;
// read command line
bool invalid_param = false;
std::string arg;
for (int i = 1; i < argc; i++) {
arg = argv[i];
if (arg == "-h" || arg == "--help") {
quantize_stats_print_usage(argc, argv);
exit(0);
} else if (arg == "-r" || arg == "--reference") {
params.reference = true;
} else if (arg == "-v") {
params.verbose = true;
} else if (arg == "-p" || arg == "--per-layer-stats") {
params.per_layer_stats = true;
} else if (arg == "--histogram") {
params.print_histogram = true;
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.model = argv[i];
} else if (arg == "-l" || arg == "--include-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.include_layers.push_back(argv[i]);
} else if (arg == "-L" || arg == "--exclude-layer") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.exclude_layers.push_back(argv[i]);
} else if (arg == "-t" || arg == "--type") {
if (++i >= argc) {
invalid_param = true;
break;
}
int j;
for (j = 0; j < GGML_TYPE_COUNT && strcmp(argv[i], type_strs[j]) != 0; j++) {
// find match
}
if (j < GGML_TYPE_COUNT) {
params.include_types.push_back((ggml_type) j);
} else {
fprintf(stderr, "error: %s not in list of types\n", argv[i]);
invalid_param = true;
}
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
}
if (invalid_param) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
quantize_stats_print_usage(argc, argv);
return 1;
}
// load the model
fprintf(stderr, "Loading model\n");
const int64_t t_main_start_us = ggml_time_us();
llama_context * ctx;
{
auto lparams = llama_context_default_params();
lparams.n_ctx = 256;
lparams.n_parts = 1;
lparams.seed = 1;
lparams.f16_kv = false;
lparams.use_mlock = false;
ctx = llama_init_from_file(params.model.c_str(), lparams);
if (ctx == NULL) {
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
return 1;
}
}
const auto &tensors = llama_internal_get_tensor_map(ctx);
// check layer tensors
int included_layers = 0;
int64_t max_nelements = 0;
bool is_f16 = false;
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf("%s: type %s, size %" PRId64 "\n", kv_tensor.first.c_str(), type_strs[kv_tensor.second->type], ggml_nelements(kv_tensor.second));
}
if (kv_tensor.second->type == GGML_TYPE_F16) {
is_f16 = true;
} else if (kv_tensor.second->type != GGML_TYPE_F32) {
fprintf(stderr, "%s: error: Quantization should be tested with a float model, "
"this model contains already quantized layers (%s is type %d)\n", __func__, kv_tensor.first.c_str(), kv_tensor.second->type);
llama_free(ctx);
return 1;
}
included_layers++;
max_nelements = std::max(max_nelements, ggml_nelements(kv_tensor.second));
}
if (is_f16) {
printf("note: source model is f16\n");
}
printf("testing %d layers with max size %" PRId64 "\n", included_layers, max_nelements);
// allocate scratch space
std::vector<float> input_scratch(SCRATCH_ELEMENTS);
std::vector<char> quantized_scratch(SCRATCH_ELEMENTS*4);
std::vector<float> output_scratch(SCRATCH_ELEMENTS);
// loop throught quantization types
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
if (!params.include_types.empty() && std::find(params.include_types.begin(), params.include_types.end(), i) == params.include_types.end()) {
continue;
}
quantize_fns_t qfns = ggml_internal_get_quantize_fn(i);
if (qfns.quantize_row_q && qfns.dequantize_row_q) {
if (params.verbose) {
printf("testing %s ...\n", type_strs[i]);
}
error_stats global_stats {};
for (const auto& kv_tensor : tensors) {
if (!layer_included(params, kv_tensor.first)) {
continue;
}
if (params.verbose) {
printf(" %s ...\n", kv_tensor.first.c_str());
}
std::string layer_name { type_strs[i] };
layer_name += "::" + kv_tensor.first;
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
qfns,
params.reference,
kv_tensor.second,
input_scratch.data(),
quantized_scratch.data(),
output_scratch.data(),
global_stats
);
}
print_error_stats(type_strs[i], global_stats, params.print_histogram);
}
}
llama_free(ctx);
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;
}

View File

@@ -1,4 +1,4 @@
set(TARGET quantize)
add_executable(${TARGET} quantize.cpp)
target_link_libraries(${TARGET} PRIVATE llama ggml ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View File

@@ -5,21 +5,21 @@
#include <string>
// usage:
// ./llama-quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
// ./quantize models/llama/ggml-model.bin models/llama/ggml-model-quant.bin type
//
int main(int argc, char ** argv) {
ggml_time_init();
if (argc != 4) {
fprintf(stderr, "usage: %s model-f32.bin model-quant.bin type\n", argv[0]);
fprintf(stderr, " type = 2 - q4_0\n");
fprintf(stderr, " type = 3 - q4_1\n");
fprintf(stderr, " type = %d - q4_0\n", LLAMA_FTYPE_MOSTLY_Q4_0);
fprintf(stderr, " type = %d - q4_1\n", LLAMA_FTYPE_MOSTLY_Q4_1);
return 1;
}
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL };
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
@@ -27,7 +27,7 @@ int main(int argc, char ** argv) {
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const int itype = atoi(argv[3]);
const enum llama_ftype ftype = (enum llama_ftype)atoi(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
@@ -37,7 +37,7 @@ int main(int argc, char ** argv) {
{
const int64_t t_start_us = ggml_time_us();
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ftype)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
@@ -50,8 +50,8 @@ int main(int argc, char ** argv) {
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
}
return 0;

17
examples/reason-act.sh Executable file
View File

@@ -0,0 +1,17 @@
#!/bin/bash
cd `dirname $0`
cd ..
# get -m model parameter otherwise defer to default
if [ "$1" == "-m" ]; then
MODEL="-m $2 "
fi
./main $MODEL --color \
-f ./prompts/reason-act.txt \
-i --interactive-first \
--top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7 -c 2048 \
-r "Question:" -r "Observation:" --in-prefix " " \
-n -1

View File

@@ -30,6 +30,9 @@
mkdir -p $out/bin
mv bin/main $out/bin/llama
mv bin/quantize $out/bin/quantize
mv bin/embedding $out/bin/embedding
mv bin/perplexity $out/bin/perplexity
echo "#!${llama-python}/bin/python" > $out/bin/convert-pth-to-ggml
cat ${./convert-pth-to-ggml.py} >> $out/bin/convert-pth-to-ggml
chmod +x $out/bin/convert-pth-to-ggml

2305
ggml.c

File diff suppressed because it is too large Load Diff

118
ggml.h
View File

@@ -198,13 +198,14 @@ struct ggml_object;
struct ggml_context;
enum ggml_type {
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
// explicitly numbered values are used in llama.cpp files
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
GGML_TYPE_I8,
GGML_TYPE_I16,
GGML_TYPE_I32,
GGML_TYPE_F16,
GGML_TYPE_F32,
GGML_TYPE_COUNT,
};
@@ -236,6 +237,7 @@ enum ggml_op {
GGML_OP_SCALE,
GGML_OP_CPY,
GGML_OP_CONT,
GGML_OP_RESHAPE,
GGML_OP_VIEW,
GGML_OP_PERMUTE,
@@ -253,16 +255,29 @@ enum ggml_op {
GGML_OP_COUNT,
};
// ggml object
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
char padding[8];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
int n_dims;
int ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
int64_t ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = sizeof(type)
// nb[1] = nb[0] * ne[0] + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_op op;
@@ -316,6 +331,7 @@ struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
void ggml_time_init(void); // call this once at the beginning of the program
@@ -327,8 +343,8 @@ int64_t ggml_cycles_per_ms(void);
void ggml_print_object (const struct ggml_object * obj);
void ggml_print_objects(const struct ggml_context * ctx);
int ggml_nelements(const struct ggml_tensor * tensor);
size_t ggml_nbytes (const struct ggml_tensor * tensor);
int64_t ggml_nelements(const struct ggml_tensor * tensor);
size_t ggml_nbytes (const struct ggml_tensor * tensor);
int ggml_blck_size (enum ggml_type type);
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
@@ -343,40 +359,37 @@ size_t ggml_used_mem(const struct ggml_context * ctx);
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
bool ggml_mlock_supported(void);
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int *ne);
const int64_t *ne);
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int ne0);
int64_t ne0);
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int ne0,
int ne1);
int64_t ne0,
int64_t ne1);
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int ne0,
int ne1,
int ne2);
int64_t ne0,
int64_t ne1,
int64_t ne2);
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int ne0,
int ne1,
int ne2,
int ne3);
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
@@ -514,6 +527,11 @@ struct ggml_tensor * ggml_cpy(
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape(
@@ -526,33 +544,43 @@ struct ggml_tensor * ggml_reshape(
struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1);
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2);
int64_t ne0,
int64_t ne1,
int64_t ne2);
// offset in bytes
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int64_t ne0,
size_t offset);
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int64_t ne0,
int64_t ne1,
size_t nb1, // row stride in bytes
size_t offset);
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
@@ -768,6 +796,30 @@ int ggml_cpu_has_blas(void);
int ggml_cpu_has_sse3(void);
int ggml_cpu_has_vsx(void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
typedef void (*quantize_row_q_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
typedef void (*vec_dot_q_t)(const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
typedef struct {
dequantize_row_q_t dequantize_row_q;
quantize_row_q_t quantize_row_q;
quantize_row_q_t quantize_row_q_reference;
vec_dot_q_t vec_dot_q;
} quantize_fns_t;
quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
#ifdef __cplusplus
}
#endif

1755
llama.cpp

File diff suppressed because it is too large Load Diff

46
llama.h
View File

@@ -6,7 +6,7 @@
#include <stdbool.h>
#ifdef LLAMA_SHARED
# ifdef _WIN32
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
@@ -20,7 +20,7 @@
#endif
#define LLAMA_FILE_VERSION 1
#define LLAMA_FILE_MAGIC 0x67676d66 // 'ggmf' in hex
#define LLAMA_FILE_MAGIC 0x67676a74 // 'ggjt' in hex
#define LLAMA_FILE_MAGIC_UNVERSIONED 0x67676d6c // pre-versioned files
#ifdef __cplusplus
@@ -45,7 +45,7 @@ extern "C" {
} llama_token_data;
typedef void (*llama_progress_callback)(double progress, void *ctx);
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
int n_ctx; // text context
@@ -55,6 +55,7 @@ extern "C" {
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
@@ -64,8 +65,20 @@ extern "C" {
void * progress_callback_user_data;
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
};
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
@@ -81,7 +94,24 @@ extern "C" {
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
int itype);
enum llama_ftype ftype);
// Returns the KV cache that will contain the context for the
// ongoing prediction with the model.
LLAMA_API const uint8_t * llama_get_kv_cache(struct llama_context * ctx);
// Returns the size of the KV cache
LLAMA_API size_t llama_get_kv_cache_size(struct llama_context * ctx);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(struct llama_context * ctx);
// Sets the KV cache containing the current context for the model
LLAMA_API void llama_set_kv_cache(
struct llama_context * ctx,
const uint8_t * kv_cache,
size_t n_size,
int n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
@@ -134,9 +164,9 @@ extern "C" {
const llama_token * last_n_tokens_data,
int last_n_tokens_size,
int top_k,
double top_p,
double temp,
double repeat_penalty);
float top_p,
float temp,
float repeat_penalty);
// Performance information
LLAMA_API void llama_print_timings(struct llama_context * ctx);
@@ -149,4 +179,4 @@ extern "C" {
}
#endif
#endif
#endif // LLAMA_H

12
llama_internal.h Normal file
View File

@@ -0,0 +1,12 @@
// Internal header to be included by llama.cpp and tests/benchmarks only.
#ifndef LLAMA_INTERNAL_H
#define LLAMA_INTERNAL_H
#include <vector>
#include <string>
struct ggml_tensor;
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif // LLAMA_INTERNAL_H

389
llama_util.h Executable file
View File

@@ -0,0 +1,389 @@
// Internal header to be included only by llama.cpp.
// Contains wrappers around OS interfaces.
#ifndef LLAMA_UTIL_H
#define LLAMA_UTIL_H
#include <cstdio>
#include <cstdint>
#include <cerrno>
#include <cstring>
#include <cstdarg>
#include <cstdlib>
#include <climits>
#include <string>
#include <vector>
#ifdef __has_include
#if __has_include(<unistd.h>)
#include <unistd.h>
#if defined(_POSIX_MAPPED_FILES)
#include <sys/mman.h>
#endif
#endif
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <io.h>
#include <stdio.h> // for _fseeki64
#endif
#define LLAMA_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
abort(); \
} \
} while (0)
#ifdef __GNUC__
__attribute__((format(printf, 1, 2)))
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
LLAMA_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
LLAMA_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
};
struct llama_file {
// use FILE * so we don't have to re-open the file to mmap
FILE * fp;
size_t size;
llama_file(const char * fname, const char * mode) {
fp = std::fopen(fname, mode);
if (fp == NULL) {
throw format("failed to open %s: %s", fname, std::strerror(errno));
}
seek(0, SEEK_END);
size = tell();
seek(0, SEEK_SET);
}
size_t tell() const {
#ifdef _WIN32
__int64 ret = _ftelli64(fp);
#else
long ret = std::ftell(fp);
#endif
LLAMA_ASSERT(ret != -1); // this really shouldn't fail
return (size_t) ret;
}
void seek(size_t offset, int whence) {
#ifdef _WIN32
int ret = _fseeki64(fp, (__int64) offset, whence);
#else
int ret = std::fseek(fp, (long) offset, whence);
#endif
LLAMA_ASSERT(ret == 0); // same
}
void read_raw(void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw format("read error: %s", strerror(errno));
}
if (ret != 1) {
throw std::string("unexpectedly reached end of file");
}
}
std::uint32_t read_u32() {
std::uint32_t ret;
read_raw(&ret, sizeof(ret));
return ret;
}
std::string read_string(std::uint32_t len) {
std::vector<char> chars(len);
read_raw(chars.data(), len);
return std::string(chars.data(), len);
}
void write_raw(const void * ptr, size_t size) {
if (size == 0) {
return;
}
errno = 0;
size_t ret = std::fwrite(ptr, size, 1, fp);
if (ret != 1) {
throw format("write error: %s", strerror(errno));
}
}
void write_u32(std::uint32_t val) {
write_raw(&val, sizeof(val));
}
~llama_file() {
if (fp) {
std::fclose(fp);
}
}
};
#if defined(_WIN32)
static std::string llama_format_win_err(DWORD err) {
LPSTR buf;
size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
if (!size) {
return "FormatMessageA failed";
}
std::string ret(buf, size);
LocalFree(buf);
return ret;
}
#endif
struct llama_mmap {
void * addr;
size_t size;
llama_mmap(const llama_mmap &) = delete;
#ifdef _POSIX_MAPPED_FILES
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
#ifdef __linux__
flags |= MAP_POPULATE;
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
close(fd);
if (addr == MAP_FAILED) {
throw format("mmap failed: %s", strerror(errno));
}
// Advise the kernel to preload the mapped memory
if (madvise(addr, file->size, MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
~llama_mmap() {
munmap(addr, size);
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file) {
size = file->size;
HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
DWORD error = GetLastError();
CloseHandle(hFile);
if (hMapping == NULL) {
throw format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str());
}
addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
error = GetLastError();
CloseHandle(hMapping);
if (addr == NULL) {
throw format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str());
}
#if _WIN32_WINNT >= _WIN32_WINNT_WIN8
// Advise the kernel to preload the mapped memory
WIN32_MEMORY_RANGE_ENTRY range;
range.VirtualAddress = addr;
range.NumberOfBytes = (SIZE_T)size;
if (!PrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
#else
#pragma message("warning: You are building for pre-Windows 8; prefetch not supported")
#endif // _WIN32_WINNT >= _WIN32_WINNT_WIN8
}
~llama_mmap() {
if (!UnmapViewOfFile(addr)) {
fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file *) {
throw std::string("mmap not supported");
}
#endif
};
// Represents some region of memory being locked using mlock or VirtualLock;
// will automatically unlock on destruction.
struct llama_mlock {
void * addr = NULL;
size_t size = 0;
bool failed_already = false;
llama_mlock() {}
llama_mlock(const llama_mlock &) = delete;
~llama_mlock() {
if (size) {
raw_unlock(addr, size);
}
}
void init(void * addr) {
LLAMA_ASSERT(this->addr == NULL && this->size == 0);
this->addr = addr;
}
void grow_to(size_t target_size) {
LLAMA_ASSERT(addr);
if (failed_already) {
return;
}
size_t granularity = lock_granularity();
target_size = (target_size + granularity - 1) & ~(granularity - 1);
if (target_size > size) {
if (raw_lock((uint8_t *) addr + size, target_size - size)) {
size = target_size;
} else {
failed_already = true;
}
}
}
#ifdef _POSIX_MEMLOCK_RANGE
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
return (size_t) sysconf(_SC_PAGESIZE);
}
#ifdef __APPLE__
#define MLOCK_SUGGESTION \
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
#else
#define MLOCK_SUGGESTION \
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
#endif
bool raw_lock(const void * addr, size_t size) {
if (!mlock(addr, size)) {
return true;
} else {
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n" MLOCK_SUGGESTION,
size, this->size, std::strerror(errno));
return false;
}
}
#undef MLOCK_SUGGESTION
void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
size_t lock_granularity() {
SYSTEM_INFO si;
GetSystemInfo(&si);
return (size_t) si.dwPageSize;
}
bool raw_lock(void * addr, size_t size) {
for (int tries = 1; ; tries++) {
if (VirtualLock(addr, size)) {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
size, this->size, llama_format_win_err(GetLastError()).c_str());
return false;
}
// It failed but this was only the first try; increase the working
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
// Per MSDN: "The maximum number of pages that a process can lock
// is equal to the number of pages in its minimum working set minus
// a small overhead."
// Hopefully a megabyte is enough overhead:
size_t increment = size + 1048576;
// The minimum must be <= the maximum, so we need to increase both:
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
}
}
void raw_unlock(void * addr, size_t size) {
if (!VirtualUnlock(addr, size)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
#else
static constexpr bool SUPPORTED = false;
void raw_lock(const void * addr, size_t size) {
fprintf(stderr, "warning: mlock not supported on this system\n");
}
void raw_unlock(const void * addr, size_t size) {}
#endif
};
// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
struct llama_buffer {
uint8_t * addr = NULL;
size_t size = 0;
void resize(size_t size) {
delete[] addr;
addr = new uint8_t[size];
this->size = size;
}
~llama_buffer() {
delete[] addr;
}
};
#endif

BIN
media/llama-leader.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 195 KiB

BIN
media/llama0-banner.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 141 KiB

BIN
media/llama0-logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 176 KiB

BIN
media/llama1-banner.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

BIN
media/llama1-logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -0,0 +1,311 @@
# Migrate ggml file(s) with ggmf magic to ggml file with ggjt magic
#
# We caused a breaking change to the file format on 2023-03-30 in:
# https://github.com/ggerganov/llama.cpp/pull/613
#
# (1) If you still have the Meta LLaMA .pth files, then close this
# file now; you can just run `convert-pth-to-ggml.py` again to
# migrate to the new format. The tool is easier to use too. It
# isn't necessary anymore to manage split output files because
# the new format always combines things into a single file.
#
# (2) If you deleted the Meta LLaMA .pth files due to save on disk
# space, then this tool is intended to help you. Please check
# out the instructions below.
#
# USAGE
#
# python migrate-ggml-2023-03-30-pr613.py INPUT OUTPUT
#
# PREREQUISITES
#
# pip install numpy
# cd llama.cpp
# make -j4
#
# EXAMPLE (7B MODEL)
#
# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
# python migrate-ggml-2023-03-30-pr613.py models/7B/ggml-model-f16.bin models/7B/ggml-model-f16-ggjt.bin
#
# # check that it works
# ./main -m models/7B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
#
# # you can delete the old files
# rm -f models/7B/ggml-model-f16.bin
# mv models/7B/ggml-model-f16-ggjt.bin models/7B/ggml-model-f16.bin
#
# EXAMPLE (13B MODEL)
#
# # you can replace all the 'f16' with 'q4_0' if you're using quantized weights
# python migrate-ggml-2023-03-30-pr613.py models/13B/ggml-model-f16.bin models/13B/ggml-model-f16-ggjt.bin
#
# # check that it works
# ./main -m models/13B/ggml-model-f16-ggjt.bin -p 'Question: Do you love me?'
#
# # you can delete the old files
# rm -f models/13B/ggml-model-f16.bin*
# mv models/13B/ggml-model-f16-ggjt.bin models/13B/ggml-model-f16.bin
#
import argparse
import os
import sys
import json
import struct
import numpy as np
QK = 32
GGML_TYPE_Q4_0 = 0
GGML_TYPE_Q4_1 = 1
GGML_TYPE_I8 = 2
GGML_TYPE_I16 = 3
GGML_TYPE_I32 = 4
GGML_TYPE_F16 = 5
GGML_TYPE_F32 = 6
WTYPE_NAMES = {
0: "F32",
1: "F16",
2: "Q4_0",
3: "Q4_1",
}
WTYPES = {
0: GGML_TYPE_F32,
1: GGML_TYPE_F16,
2: GGML_TYPE_Q4_0,
3: GGML_TYPE_Q4_1,
}
GGML_BLCK_SIZE = {
GGML_TYPE_Q4_0: QK,
GGML_TYPE_Q4_1: QK,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 1,
GGML_TYPE_I32: 1,
GGML_TYPE_F16: 1,
GGML_TYPE_F32: 1,
}
GGML_TYPE_SIZE = {
GGML_TYPE_Q4_0: 4 + QK//2,
GGML_TYPE_Q4_1: 4*2 + QK//2,
GGML_TYPE_I8: 1,
GGML_TYPE_I16: 2,
GGML_TYPE_I32: 4,
GGML_TYPE_F16: 2,
GGML_TYPE_F32: 4,
}
HPARAMS = [
'magic', # int32
'version', # int32
'n_vocab', # int32
'n_embd', # int32
'n_mult', # int32
'n_head', # int32
'n_layer', # int32
'n_rot', # int32
'f16', # int32
]
def read_hparams(fin):
struct_fmt = "i" * len(HPARAMS)
struct_size = struct.calcsize(struct_fmt)
buf = fin.read(struct_size)
ints = struct.unpack(struct_fmt, buf)
hparams = dict(zip(HPARAMS, ints))
return hparams
def write_hparams(fout, hparams):
struct_fmt = "i" * len(HPARAMS)
struct_size = struct.calcsize(struct_fmt)
ints = [hparams[h] for h in HPARAMS]
fout.write(struct.pack(struct_fmt, *ints))
def read_tokens(fin, hparams):
tokens = []
for i in range(hparams['n_vocab']):
len_b = fin.read(4)
(length,) = struct.unpack("i", len_b)
word = fin.read(length)
score_b = fin.read(4)
(score,) = struct.unpack("f", score_b)
tokens.append((word, score))
return tokens
def write_tokens(fout, tokens):
for word, score in tokens:
fout.write(struct.pack("i", len(word)))
fout.write(word)
fout.write(struct.pack("f", score))
def ggml_nelements(shape):
r = 1
for i in shape:
r *= i
return r
def ggml_nbytes(shape, ftype):
x = ggml_nelements(shape)
t = WTYPES[ftype]
x *= GGML_TYPE_SIZE[t]
x //= GGML_BLCK_SIZE[t]
return x
def copy_tensors(fin, fout, part_id, n_parts):
while True:
b = fin.read(4)
if not b: break
(n_dims,) = struct.unpack("i", b)
b = fin.read(4)
(length,) = struct.unpack("i", b)
b = fin.read(4)
(ftype,) = struct.unpack("i", b)
assert n_dims in (1, 2)
partshape = list(range(n_dims))
for i in range(n_dims):
b = fin.read(4)
partshape[i] = struct.unpack("i", b)[0]
partshape = list(reversed(partshape))
name = fin.read(length)
data = fin.read(ggml_nbytes(partshape, ftype))
blck_size = GGML_BLCK_SIZE[WTYPES[ftype]]
type_size = GGML_TYPE_SIZE[WTYPES[ftype]]
print(f"Processing tensor {name} with shape: {partshape} and type: {WTYPE_NAMES[ftype]}")
# determine dimension along which multipart tensor is sharded
#
# split_dim 0 regex:
# - output.*
# - layers.*.attention.wq.weight
# - layers.*.attention.wk.weight
# - layers.*.attention.wv.weight
# - layers.*.feed_forward.w1.weight
# - layers.*.feed_forward.w3.weight
#
# split_dim 1 regex:
# - tok_embeddings.*
# - layers.*.attention.wo.weight
# - layers.*.feed_forward.w2.weight
#
if n_dims > 1:
split_dim = 1
if b"tok_embeddings" in name:
split_dim = 1
elif b"layers" in name:
if b"attention.wo.weight" in name:
split_dim = 1
elif b"feed_forward.w2.weight" in name:
split_dim = 1
else:
split_dim = 0
elif b"output" in name:
split_dim = 0
# output tensor header
fullshape = list(partshape)
if n_dims > 1:
fullshape[split_dim] *= n_parts
fout.write(struct.pack("iii", n_dims, len(name), ftype))
for dim in reversed(fullshape):
fout.write(struct.pack("i", dim))
fout.write(name)
# ensure tensor data is aligned
tensor_data_offset = fout.tell()
while tensor_data_offset % QK != 0:
fout.write(struct.pack("B", 0))
tensor_data_offset += 1
# output unified mappable tensor data
if n_dims == 1 or n_parts == 1:
# copy tensor which we thankfully received in one piece
if part_id == 0:
fout.write(data)
elif split_dim == 0:
# reassemble multifile tensor containing some of the rows
rows_per_chunk = partshape[0]
current_row = part_id * rows_per_chunk
bytes_per_row = fullshape[1] // blck_size * type_size
offset = current_row * bytes_per_row
fout.seek(tensor_data_offset + offset)
fout.write(data)
elif split_dim == 1:
# reassemble multifile tensor containing some of the cols
cols_per_chunk = partshape[1]
current_col = part_id * cols_per_chunk
bpr = partshape[1] // blck_size * type_size
bytes_per_row = fullshape[1] // blck_size * type_size
offset_current_col = current_col // blck_size * type_size
for row in range(partshape[0]):
offset_row = row * bytes_per_row
offset = offset_row + offset_current_col
fout.seek(tensor_data_offset + offset)
fout.write(data[row * bpr:row * bpr + bpr])
# advance file position to next tensor
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype))
def parse_args():
parser = argparse.ArgumentParser(description='Migrate from GGML to new GGJT file format')
parser.add_argument('fin_path', help='your old ggml file (leave out the .1 .2 etc.)')
parser.add_argument('fout_path', help='your new ggjt file name')
return parser.parse_args()
def main():
args = parse_args()
assert args.fin_path
assert args.fout_path
assert args.fin_path != args.fout_path
with open(args.fin_path, "rb") as fin:
hparams = read_hparams(fin)
tokens = read_tokens(fin, hparams)
if hparams['magic'] == 0x67676a74: # ggjt
print(f"{args.fin_path}: input ggml has already been converted to 'ggjt' magic\n")
sys.exit(1)
if hparams['magic'] != 0x67676d66: # ggmf
print(f"{args.fin_path}: input ggml file doesn't have expected 'ggmf' magic: {hparams['magic']:#x}\n")
sys.exit(1)
hparams['magic'] = 0x67676a74 # ggjt
# count number of multipart files by convention
n_parts = 1
while True:
if os.path.exists(f"{args.fin_path}.{n_parts}"):
n_parts += 1
else:
break
# we output a single file for ggml
with open(args.fout_path, "wb") as fout:
write_hparams(fout, hparams)
write_tokens(fout, tokens)
offset_of_tensors = fout.tell()
# the tensors we load could be split across multiple files
for part_id in range(n_parts):
fout.seek(offset_of_tensors)
print(f"Processing part {part_id+1} of {n_parts}\n")
fin_path = args.fin_path
if part_id > 0:
fin_path += f".{part_id}"
with open(fin_path, "rb") as fin:
read_tokens(fin, read_hparams(fin))
copy_tensors(fin, fout, part_id, n_parts)
print(f"Done. Output file: {args.fout_path}\n")
if __name__ == "__main__":
main()

Binary file not shown.

View File

@@ -4,4 +4,4 @@ User: Hello, Bob.
Bob: Hello. How may I help you today?
User: Please tell me the largest city in Europe.
Bob: Sure. The largest city in Europe is Moscow, the capital of Russia.
User:
User:

18
prompts/reason-act.txt Normal file
View File

@@ -0,0 +1,18 @@
You run in a loop of Thought, Action, Observation.
At the end of the loop either Answer or restate your Thought and Action.
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of these actions available to you:
- calculate[python math expression]
Observation will be the result of running those actions
Question: What is 4 * 7 / 3?
Thought: Do I need to use an action? Yes, I use calculate to do math
Action: calculate[4 * 7 / 3]
Observation: 9.3333333333
Thought: Do I need to use an action? No, have the result
Answer: The calculate tool says it is 9.3333333333
Question: What is capital of france?
Thought: Do I need to use an action? No, I know the answer
Answer: Paris is the capital of France
Question:

View File

@@ -1,131 +0,0 @@
#!/usr/bin/env python3
"""Script to execute the "quantize" script on a given set of models."""
import subprocess
import argparse
import glob
import sys
import os
def main():
"""Update the quantize binary name depending on the platform and parse
the command line arguments and execute the script.
"""
if "linux" in sys.platform or "darwin" in sys.platform:
quantize_script_binary = "quantize"
elif "win32" in sys.platform or "cygwin" in sys.platform:
quantize_script_binary = "quantize.exe"
else:
print("WARNING: Unknown platform. Assuming a UNIX-like OS.\n")
quantize_script_binary = "quantize"
parser = argparse.ArgumentParser(
prog='python3 quantize.py',
description='This script quantizes the given models by applying the '
f'"{quantize_script_binary}" script on them.'
)
parser.add_argument(
'models', nargs='+', choices=('7B', '13B', '30B', '65B'),
help='The models to quantize.'
)
parser.add_argument(
'-r', '--remove-16', action='store_true', dest='remove_f16',
help='Remove the f16 model after quantizing it.'
)
parser.add_argument(
'-m', '--models-path', dest='models_path',
default=os.path.join(os.getcwd(), "models"),
help='Specify the directory where the models are located.'
)
parser.add_argument(
'-q', '--quantize-script-path', dest='quantize_script_path',
default=os.path.join(os.getcwd(), quantize_script_binary),
help='Specify the path to the "quantize" script.'
)
# TODO: Revise this code
# parser.add_argument(
# '-t', '--threads', dest='threads', type='int',
# default=os.cpu_count(),
# help='Specify the number of threads to use to quantize many models at '
# 'once. Defaults to os.cpu_count().'
# )
args = parser.parse_args()
args.models_path = os.path.abspath(args.models_path)
if not os.path.isfile(args.quantize_script_path):
print(
f'The "{quantize_script_binary}" script was not found in the '
"current location.\nIf you want to use it from another location, "
"set the --quantize-script-path argument from the command line."
)
sys.exit(1)
for model in args.models:
# The model is separated in various parts
# (ggml-model-f16.bin, ggml-model-f16.bin.0, ggml-model-f16.bin.1...)
f16_model_path_base = os.path.join(
args.models_path, model, "ggml-model-f16.bin"
)
if not os.path.isfile(f16_model_path_base):
print(f'The file %s was not found' % f16_model_path_base)
sys.exit(1)
f16_model_parts_paths = map(
lambda filename: os.path.join(f16_model_path_base, filename),
glob.glob(f"{f16_model_path_base}*")
)
for f16_model_part_path in f16_model_parts_paths:
if not os.path.isfile(f16_model_part_path):
print(
f"The f16 model {os.path.basename(f16_model_part_path)} "
f"was not found in {args.models_path}{os.path.sep}{model}"
". If you want to use it from another location, set the "
"--models-path argument from the command line."
)
sys.exit(1)
__run_quantize_script(
args.quantize_script_path, f16_model_part_path
)
if args.remove_f16:
os.remove(f16_model_part_path)
# This was extracted to a top-level function for parallelization, if
# implemented. See https://github.com/ggerganov/llama.cpp/pull/222/commits/f8db3d6cd91bf1a1342db9d29e3092bc12dd783c#r1140496406
def __run_quantize_script(script_path, f16_model_part_path):
"""Run the quantize script specifying the path to it and the path to the
f16 model to quantize.
"""
new_quantized_model_path = f16_model_part_path.replace("f16", "q4_0")
subprocess.run(
[script_path, f16_model_part_path, new_quantized_model_path, "2"],
check=True
)
if __name__ == "__main__":
try:
main()
except subprocess.CalledProcessError:
print("\nAn error ocurred while trying to quantize the models.")
sys.exit(1)
except KeyboardInterrupt:
sys.exit(0)
else:
print("\nSuccesfully quantized all models.")

1
spm-headers/llama.h Symbolic link
View File

@@ -0,0 +1 @@
../llama.h

View File

@@ -5,5 +5,6 @@ function(llama_add_test source)
add_test(NAME ${TEST_TARGET} COMMAND $<TARGET_FILE:${TEST_TARGET}> ${ARGN})
endfunction()
# llama_add_test(test-double-float.c) # SLOW
llama_add_test(test-quantize.c)
llama_add_test(test-tokenizer-0.cpp ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab.bin)

53
tests/test-double-float.c Normal file
View File

@@ -0,0 +1,53 @@
// These tests may take a long time!
// They are to prove that conversion from double to float of various functions in ggml.c doesn't affect the result.
// This is done by checking all finite (non-NaN, non-infinite) floats.
#undef NDEBUG
#include <assert.h>
#include <immintrin.h>
#include <math.h>
#include <stdint.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdouble-promotion"
// ggml.c::quantize_row_q4_0_reference
inline static uint8_t round_orig(float v0) { return ((int8_t) (round(v0))) + 8; }
// ggml.c::ggml_silu_f32
inline static float silu_orig(float x) {
return x/(1.0 + exp(-x));
}
#pragma GCC diagnostic pop
// ggml.c::quantize_row_q4_0_reference
inline static uint8_t round_float(float v0) { return (int8_t)roundf(v0) + 8; }
// ggml.c::ggml_silu_f32
inline static float silu_float(float x) {
return x/(1.0f + expf(-x));
}
int main(void) {
uint32_t x = UINT32_MAX;
do {
float f = *(float *)&x;
assert(!isfinite(f) || (round_orig(f) == round_float(f)));
} while (x--);
#ifdef __F16C__
// GELU and SILU implementations are used with a FP16 lookup table.
// The original and float-only results are not equal for all inputs after converting to FP16.
// GELU is an approximation anyway (tanh), not tested here.
// For SILU, verify that the results are at least the closest floating point numbers, if the FP16 values don't match.
for (x = 0; x <= UINT16_MAX; x++) {
float f = _cvtsh_ss(x);
const float so = silu_orig(f);
const float sf = silu_float(f);
assert( (_cvtss_sh(so, 0) == _cvtss_sh(sf, 0))
|| (nextafterf(so, sf) == sf)
|| (nextafterf(sf, so) == so));
}
#endif
}

View File

@@ -77,5 +77,7 @@ int main(int argc, char **argv) {
}
}
llama_free(ctx);
return 0;
}