mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
783 Commits
master-ea6
...
alloc-asse
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ee7456926e | ||
|
|
fcca0a7004 | ||
|
|
dcc09d2596 | ||
|
|
db3abcc114 | ||
|
|
eee42c670e | ||
|
|
8e6716a102 | ||
|
|
9c38d181d4 | ||
|
|
a1202a31ed | ||
|
|
94e502dfb7 | ||
|
|
7d8b24932f | ||
|
|
b0ec5218c3 | ||
|
|
63d3b06a43 | ||
|
|
a16e89cec8 | ||
|
|
4d03833211 | ||
|
|
c47066d833 | ||
|
|
f1782c68de | ||
|
|
c26765a0a1 | ||
|
|
0e797c2fc5 | ||
|
|
3a716b4dae | ||
|
|
1faaae8c2b | ||
|
|
cb13d73a72 | ||
|
|
9ca79d5cbb | ||
|
|
0c731ca403 | ||
|
|
a8777ad84e | ||
|
|
97af49fa39 | ||
|
|
16820a5a0d | ||
|
|
04b2f4386e | ||
|
|
48edda30ee | ||
|
|
45eba9369f | ||
|
|
acec9eaaa9 | ||
|
|
e2583cbc29 | ||
|
|
e8b8d32e86 | ||
|
|
8f3a642ec1 | ||
|
|
0745384449 | ||
|
|
019ba1dcd0 | ||
|
|
beabc8cfb0 | ||
|
|
0d152b37fe | ||
|
|
f8c90cdbaa | ||
|
|
f93af02488 | ||
|
|
f72f8f22c9 | ||
|
|
79f34abddb | ||
|
|
8186242b6d | ||
|
|
ac2219fef3 | ||
|
|
48be797ffb | ||
|
|
f56e1baec3 | ||
|
|
017efe899d | ||
|
|
ff5a3f0c09 | ||
|
|
1c84003c08 | ||
|
|
e78f0b0d05 | ||
|
|
665018c749 | ||
|
|
29a404a951 | ||
|
|
0fe321031a | ||
|
|
9476b01226 | ||
|
|
a03ce38455 | ||
|
|
a847676984 | ||
|
|
095231dfd3 | ||
|
|
ea55295a74 | ||
|
|
c97f01c362 | ||
|
|
f5ef5cfb18 | ||
|
|
40e07a60f9 | ||
|
|
bc34dd4f5b | ||
|
|
2777a84be4 | ||
|
|
0a4a4a0982 | ||
|
|
569550df20 | ||
|
|
c71bf2c45c | ||
|
|
bc39553c90 | ||
|
|
0ccfc62a96 | ||
|
|
7f1a0fe709 | ||
|
|
16bc66d947 | ||
|
|
0512d66670 | ||
|
|
0e76a8992c | ||
|
|
2db94d98ed | ||
|
|
ecf90b1a51 | ||
|
|
2619109ad5 | ||
|
|
ec893798b7 | ||
|
|
45855b3f1c | ||
|
|
4aea3b846e | ||
|
|
da0400344b | ||
|
|
e519621010 | ||
|
|
ac43576124 | ||
|
|
20c7e1e804 | ||
|
|
dc6897404e | ||
|
|
527e57cfd8 | ||
|
|
ffe88a36a9 | ||
|
|
99115f3fa6 | ||
|
|
1726f9626f | ||
|
|
a98b1633d5 | ||
|
|
c091cdfb24 | ||
|
|
51a7cf5c6e | ||
|
|
bedb92b603 | ||
|
|
bc9d3e3971 | ||
|
|
36b904e200 | ||
|
|
324f3403d5 | ||
|
|
f56c418ab0 | ||
|
|
8185710a80 | ||
|
|
7eb41179ed | ||
|
|
a5661d7e71 | ||
|
|
65c2c1c5ab | ||
|
|
80834daecf | ||
|
|
a40f2b656f | ||
|
|
d119c04c15 | ||
|
|
8781013ef6 | ||
|
|
7ddf185537 | ||
|
|
ee66942d7e | ||
|
|
111163e246 | ||
|
|
8b428c9bc8 | ||
|
|
578d8c8f5c | ||
|
|
b541b4f0b1 | ||
|
|
5dbc2b3213 | ||
|
|
b08e75baea | ||
|
|
e6616cf0db | ||
|
|
3aefaab9e5 | ||
|
|
69eb67e282 | ||
|
|
4fe09dfe66 | ||
|
|
80291a1d02 | ||
|
|
c6f1491da0 | ||
|
|
e3d87a6c36 | ||
|
|
8c00b7a6ff | ||
|
|
7e50d34be6 | ||
|
|
235f7c193b | ||
|
|
a51b687657 | ||
|
|
76164fe2e6 | ||
|
|
c2ab6fe661 | ||
|
|
2d770505a8 | ||
|
|
98311c4277 | ||
|
|
feea179e9f | ||
|
|
769266a543 | ||
|
|
cf8238e7f4 | ||
|
|
4b8560e72a | ||
|
|
83a53b753a | ||
|
|
5c872dbca2 | ||
|
|
990a5e226a | ||
|
|
980ab41afb | ||
|
|
e394084166 | ||
|
|
4c8643dd6e | ||
|
|
35f73049af | ||
|
|
71ca2fad7d | ||
|
|
1b6c650d16 | ||
|
|
0a5eebb45d | ||
|
|
84e723653c | ||
|
|
b52b29ab9d | ||
|
|
4f7cd6ba9c | ||
|
|
89e89599fd | ||
|
|
d54a4027a6 | ||
|
|
1b0d09259e | ||
|
|
8a4ca9af56 | ||
|
|
f31b6f4e2d | ||
|
|
6eeb4d9083 | ||
|
|
21ac3a1503 | ||
|
|
4fd5477955 | ||
|
|
ec2a24fedf | ||
|
|
7d99aca759 | ||
|
|
ba7ffbb251 | ||
|
|
e64f5b5578 | ||
|
|
94f10b91ed | ||
|
|
b3e9852e47 | ||
|
|
cb6c44c5e0 | ||
|
|
a21baeb122 | ||
|
|
6ff712a6d1 | ||
|
|
ebc96086af | ||
|
|
7f412dab9c | ||
|
|
6336d834ec | ||
|
|
00d62adb79 | ||
|
|
4fa2cc1750 | ||
|
|
5ffab089a5 | ||
|
|
15b67a66c2 | ||
|
|
be8c9c245b | ||
|
|
be6beeb8d7 | ||
|
|
c4f496648c | ||
|
|
fec2fb19e4 | ||
|
|
178b1850eb | ||
|
|
ea2c85d5d2 | ||
|
|
9912b9efc8 | ||
|
|
9e2023156e | ||
|
|
de2fe892af | ||
|
|
c9c3220c48 | ||
|
|
d59bd97065 | ||
|
|
35938ee3b0 | ||
|
|
921772104b | ||
|
|
2ba85c8609 | ||
|
|
e36ecdccc8 | ||
|
|
bd33e5ab92 | ||
|
|
3103568144 | ||
|
|
5b8530d88c | ||
|
|
e4386f417f | ||
|
|
35195689cd | ||
|
|
cf9b08485c | ||
|
|
47068e5170 | ||
|
|
8f429fa511 | ||
|
|
6519e9c99c | ||
|
|
b7f2aa9e51 | ||
|
|
73a12a6344 | ||
|
|
3730134776 | ||
|
|
d9151e6f57 | ||
|
|
afc43d5f82 | ||
|
|
6460f758db | ||
|
|
ca82cf7bac | ||
|
|
6a31a3bd98 | ||
|
|
cff7b0bf07 | ||
|
|
340af42f09 | ||
|
|
c42f0ec6b3 | ||
|
|
2753415afd | ||
|
|
bc054af97a | ||
|
|
3358c381f6 | ||
|
|
52315a4216 | ||
|
|
8b56b4f2c3 | ||
|
|
21f3d1be86 | ||
|
|
571083f508 | ||
|
|
f04d002844 | ||
|
|
69fdbb9abc | ||
|
|
5d6f19f16b | ||
|
|
0d58936686 | ||
|
|
6c9c23429b | ||
|
|
ee8654bcd0 | ||
|
|
49bb9cbe0f | ||
|
|
ef15649972 | ||
|
|
d8d6977f48 | ||
|
|
5aec2cfaac | ||
|
|
13268c5331 | ||
|
|
4dcd47d71d | ||
|
|
18705a30ef | ||
|
|
e8d9158925 | ||
|
|
bce1fef328 | ||
|
|
528134dd02 | ||
|
|
aeefac4ff7 | ||
|
|
e8422de39e | ||
|
|
92d0b751a7 | ||
|
|
8afe228000 | ||
|
|
71d6975559 | ||
|
|
b532a69b2f | ||
|
|
c90d135eb4 | ||
|
|
0d1c706181 | ||
|
|
9509294420 | ||
|
|
35092fb547 | ||
|
|
dc07dc492e | ||
|
|
ad9ddcff6e | ||
|
|
8341a25957 | ||
|
|
849408957c | ||
|
|
06abf8eeba | ||
|
|
c03a243abf | ||
|
|
fa3582f509 | ||
|
|
e37e69dcc3 | ||
|
|
53885d7256 | ||
|
|
bcce96ba4d | ||
|
|
74e0caeb82 | ||
|
|
d4b5e16c32 | ||
|
|
3a007648f2 | ||
|
|
611363ac79 | ||
|
|
95b6e5212f | ||
|
|
44c117f41e | ||
|
|
43033b7bb4 | ||
|
|
6b73ef1201 | ||
|
|
75fafcbccc | ||
|
|
be475f60af | ||
|
|
3af6b86301 | ||
|
|
35feac6560 | ||
|
|
92b1bbd2ec | ||
|
|
dd0dc366da | ||
|
|
f55538c3cc | ||
|
|
ebcee207b6 | ||
|
|
3e8ff47af6 | ||
|
|
103cfafc77 | ||
|
|
c10704d01e | ||
|
|
230d46c723 | ||
|
|
463173a6c0 | ||
|
|
eaa13a48ff | ||
|
|
da7455d046 | ||
|
|
25423e9185 | ||
|
|
a6d1189fdd | ||
|
|
c48c5bb0b0 | ||
|
|
d0cee0d36d | ||
|
|
edd4c14817 | ||
|
|
1591e2e590 | ||
|
|
789c8c945a | ||
|
|
c1ac54b77a | ||
|
|
730d9c681e | ||
|
|
c7d92e6dfe | ||
|
|
61d1a2895e | ||
|
|
741ca7dd1c | ||
|
|
72f895c923 | ||
|
|
50526f37eb | ||
|
|
04f4b1eb10 | ||
|
|
7592375403 | ||
|
|
771551a793 | ||
|
|
f305bad11e | ||
|
|
a2ca4e9de9 | ||
|
|
2ba83c8685 | ||
|
|
bae5c5f679 | ||
|
|
232caf3c15 | ||
|
|
d046dcee08 | ||
|
|
c82742ac9c | ||
|
|
28b2c996ca | ||
|
|
154725c543 | ||
|
|
12e2e33a97 | ||
|
|
29674ab4e8 | ||
|
|
5439a0ab57 | ||
|
|
8194cd8772 | ||
|
|
6bbc598a63 | ||
|
|
3f460a2b72 | ||
|
|
87e3733f24 | ||
|
|
b91ad7f461 | ||
|
|
2e5f70a25f | ||
|
|
d0f77b1353 | ||
|
|
0d3094f0c7 | ||
|
|
01f2224682 | ||
|
|
38b16dfca6 | ||
|
|
8f8c28e89c | ||
|
|
7694adda8d | ||
|
|
fea95c682d | ||
|
|
ef955fbd23 | ||
|
|
d67777c202 | ||
|
|
c3e53b421a | ||
|
|
6e91a1b070 | ||
|
|
44d5462b5c | ||
|
|
c7868b0753 | ||
|
|
79da24b58c | ||
|
|
cf658adc83 | ||
|
|
a192860cfe | ||
|
|
95385241a9 | ||
|
|
335acd2ffd | ||
|
|
5290c38e6e | ||
|
|
cc34dbda96 | ||
|
|
7c2227a197 | ||
|
|
f19dca04ea | ||
|
|
8207214b6a | ||
|
|
62959e740e | ||
|
|
7f7ddd5002 | ||
|
|
b8ad1b66b2 | ||
|
|
f5fe98d11b | ||
|
|
777f42ba18 | ||
|
|
46ef5b5fcf | ||
|
|
c63bb1d16a | ||
|
|
3b6cfe7c92 | ||
|
|
800c9635b4 | ||
|
|
deb7dfca4b | ||
|
|
bac66994cf | ||
|
|
519c981f8b | ||
|
|
1123f7fbdf | ||
|
|
ef3f333d37 | ||
|
|
8e4364f2af | ||
|
|
1e3bc523d8 | ||
|
|
14b1d7e6f7 | ||
|
|
226255b44e | ||
|
|
930523c8e1 | ||
|
|
c8dba409e6 | ||
|
|
6381d4e110 | ||
|
|
dadbed99e6 | ||
|
|
cb1c0727bd | ||
|
|
9e232f0234 | ||
|
|
5e9ff54a67 | ||
|
|
1f0bccb279 | ||
|
|
f63564adfa | ||
|
|
2d8b76a110 | ||
|
|
7af633aec3 | ||
|
|
097e121e2f | ||
|
|
eaf98c2649 | ||
|
|
e9b12c332e | ||
|
|
604b8bdfa6 | ||
|
|
10151bee2e | ||
|
|
0992a7b8b1 | ||
|
|
6ddeefad9b | ||
|
|
8dae7ce684 | ||
|
|
a73ccf1aa3 | ||
|
|
7cf54e1f74 | ||
|
|
a872a2b28e | ||
|
|
0919a0f73d | ||
|
|
ed53db86c3 | ||
|
|
fc8ef549e5 | ||
|
|
bf83bff674 | ||
|
|
b5ffb2849d | ||
|
|
3ebb00935f | ||
|
|
d783f7982e | ||
|
|
d75561df20 | ||
|
|
348acf188c | ||
|
|
1cd06fa25e | ||
|
|
2feb8934eb | ||
|
|
5517d6e692 | ||
|
|
f31b539714 | ||
|
|
ee77efea2a | ||
|
|
f64d44a9b9 | ||
|
|
b19edd54d5 | ||
|
|
53dc399472 | ||
|
|
9ca4abed89 | ||
|
|
e59fcb2bc1 | ||
|
|
1638757767 | ||
|
|
916a9acdd0 | ||
|
|
ea04a4ca19 | ||
|
|
25d43e0eb5 | ||
|
|
f5bfea0580 | ||
|
|
acfc5478ff | ||
|
|
7ed8d1fe7f | ||
|
|
e7f94d6fdc | ||
|
|
2d7baaf50f | ||
|
|
f3c3b4b167 | ||
|
|
93356bdb7a | ||
|
|
60baff7c85 | ||
|
|
9082b5dfbf | ||
|
|
99d29c0094 | ||
|
|
3d9a551816 | ||
|
|
f6f9896ac3 | ||
|
|
34a14b28ff | ||
|
|
7297128db8 | ||
|
|
86c3219895 | ||
|
|
2e8265ae17 | ||
|
|
f514d1b306 | ||
|
|
332311234a | ||
|
|
182af739c4 | ||
|
|
4329d1acb0 | ||
|
|
02f9d96a86 | ||
|
|
3498588e0f | ||
|
|
5f631c2679 | ||
|
|
415e99fec2 | ||
|
|
ff966e7ca6 | ||
|
|
8183159cf3 | ||
|
|
468ea24fb4 | ||
|
|
4f6b60c776 | ||
|
|
220d931864 | ||
|
|
81844fbcfd | ||
|
|
a312193e18 | ||
|
|
c574bddb36 | ||
|
|
86aeb27734 | ||
|
|
1873ff586b | ||
|
|
49e7cb5bb1 | ||
|
|
b772bba42e | ||
|
|
0728c5a8b9 | ||
|
|
1215ed7d5c | ||
|
|
2dbf518911 | ||
|
|
9d2382b3e4 | ||
|
|
a113689571 | ||
|
|
11f3ca06b8 | ||
|
|
9baf9ef304 | ||
|
|
8a88e5855c | ||
|
|
a9559bf77b | ||
|
|
ee1b497c98 | ||
|
|
d73b8d48b4 | ||
|
|
34ae1caf7f | ||
|
|
d91f3f0c55 | ||
|
|
65cdf34bdc | ||
|
|
edcc7ae7d2 | ||
|
|
7c529cede6 | ||
|
|
1a941869cb | ||
|
|
b5472ea0ad | ||
|
|
6df1f5940f | ||
|
|
5488fb789e | ||
|
|
eb542d3932 | ||
|
|
07aaa0f63f | ||
|
|
fce48caf9a | ||
|
|
875086bdb9 | ||
|
|
da1889834a | ||
|
|
82552b7f54 | ||
|
|
0c06204fb3 | ||
|
|
1fed755b1f | ||
|
|
be2301bcda | ||
|
|
1aa18ef994 | ||
|
|
9a08eaf3c4 | ||
|
|
129d844c87 | ||
|
|
d5512b782b | ||
|
|
c798308e3a | ||
|
|
41c674161f | ||
|
|
b3f138d058 | ||
|
|
5b2b2dc6ae | ||
|
|
42f70cb2f6 | ||
|
|
84e09a7d8b | ||
|
|
2f9cf974a0 | ||
|
|
4f06592cc6 | ||
|
|
70d26ac388 | ||
|
|
57921ca6db | ||
|
|
3602ac4255 | ||
|
|
95a6c595e7 | ||
|
|
e76d630df1 | ||
|
|
1d0824b247 | ||
|
|
bc3ec2cdc9 | ||
|
|
a940458e48 | ||
|
|
91171b8072 | ||
|
|
355c80f49e | ||
|
|
83a00ce69b | ||
|
|
d2a43664f9 | ||
|
|
b9b7d94fc1 | ||
|
|
b47b8a9cfe | ||
|
|
b5fe67f8c6 | ||
|
|
24baa54ac1 | ||
|
|
dd6c67d3cb | ||
|
|
5d500e8ccf | ||
|
|
7d5f18468c | ||
|
|
d924522a46 | ||
|
|
4d76a5f49b | ||
|
|
0db14fef06 | ||
|
|
03e566977b | ||
|
|
513f861953 | ||
|
|
3973b25a64 | ||
|
|
ab0e26bdfb | ||
|
|
73643f5fb1 | ||
|
|
a814d04f81 | ||
|
|
4c013bb738 | ||
|
|
42c7c2e2e9 | ||
|
|
78a3d13424 | ||
|
|
ae178ab46b | ||
|
|
54e3bc76fe | ||
|
|
019fe257bb | ||
|
|
e68c96f7fe | ||
|
|
9cf022a188 | ||
|
|
e782c9e735 | ||
|
|
785829dfe8 | ||
|
|
fff0e0eafe | ||
|
|
417a85a001 | ||
|
|
294f424554 | ||
|
|
45a1b07e9b | ||
|
|
b1f4290953 | ||
|
|
d01bccde9f | ||
|
|
6cbf9dfb32 | ||
|
|
7568d1a2b2 | ||
|
|
b7647436cc | ||
|
|
672dda10e4 | ||
|
|
27ab66e437 | ||
|
|
6e7cca4047 | ||
|
|
a6803cab94 | ||
|
|
7dabc66f3c | ||
|
|
7cdd30bf1f | ||
|
|
e8035f141e | ||
|
|
7513b7b0a1 | ||
|
|
de8342423d | ||
|
|
c48c525f87 | ||
|
|
206e01de11 | ||
|
|
4304bd3cde | ||
|
|
229aab351c | ||
|
|
697966680b | ||
|
|
27ad57a69b | ||
|
|
32c5411631 | ||
|
|
ff5d58faec | ||
|
|
b782422a3e | ||
|
|
1cbf561466 | ||
|
|
975221e954 | ||
|
|
4523d10d0c | ||
|
|
680e6f9177 | ||
|
|
4e7464ef88 | ||
|
|
2b5eb72e10 | ||
|
|
f7d278faf3 | ||
|
|
20d7740a9b | ||
|
|
5bf2a27718 | ||
|
|
c9c74b4e3f | ||
|
|
3ec7e596b2 | ||
|
|
917831c63a | ||
|
|
2347463201 | ||
|
|
bbef28218f | ||
|
|
5656d10599 | ||
|
|
1d16309969 | ||
|
|
db4047ad5c | ||
|
|
18780e0a5e | ||
|
|
3bbc1a11f0 | ||
|
|
2492a53fd0 | ||
|
|
64639555ff | ||
|
|
061f5f8d21 | ||
|
|
84525e7962 | ||
|
|
a7e20edf22 | ||
|
|
1d656d6360 | ||
|
|
7242140283 | ||
|
|
3e08ae99ce | ||
|
|
481f793acc | ||
|
|
dfd9fce6d6 | ||
|
|
36680f6e40 | ||
|
|
a17a2683d8 | ||
|
|
31cfbb1013 | ||
|
|
983b555e9d | ||
|
|
ec326d350c | ||
|
|
1b6efeab82 | ||
|
|
1b107b8550 | ||
|
|
8567c76b53 | ||
|
|
924dd22fd3 | ||
|
|
051c70dcd5 | ||
|
|
9e4475f5cf | ||
|
|
7f0e9a775e | ||
|
|
b472f3fca5 | ||
|
|
ed9a54e512 | ||
|
|
f257fd2550 | ||
|
|
7ee76e45af | ||
|
|
acc111caf9 | ||
|
|
23c7c6fc91 | ||
|
|
698efad5fb | ||
|
|
14a2cc71f6 | ||
|
|
1cf14ccef1 | ||
|
|
cc45a7feb8 | ||
|
|
55dbb915cc | ||
|
|
d7d2e6a0f0 | ||
|
|
46088f7231 | ||
|
|
0bc2cdfc87 | ||
|
|
befb3a3562 | ||
|
|
b213227067 | ||
|
|
2f8cd979ec | ||
|
|
471aab6e4c | ||
|
|
463f2f4c4f | ||
|
|
cb44dbc7de | ||
|
|
79f634a19d | ||
|
|
04606a1599 | ||
|
|
b1ca8f36a9 | ||
|
|
b8c8dda75f | ||
|
|
96a712ca1b | ||
|
|
d3494bb86b | ||
|
|
5b351e94d0 | ||
|
|
6432aabb6d | ||
|
|
b922bc351b | ||
|
|
7f9753fa12 | ||
|
|
cfa0750bc9 | ||
|
|
9d23589d63 | ||
|
|
0be54f75a6 | ||
|
|
181e8d9755 | ||
|
|
d9779021bd | ||
|
|
d38e451578 | ||
|
|
eaa6ca5a61 | ||
|
|
aa777abbb7 | ||
|
|
c824d2e368 | ||
|
|
b853d45601 | ||
|
|
9225baef71 | ||
|
|
a84ab1da8d | ||
|
|
5743ca8092 | ||
|
|
412c60e473 | ||
|
|
6769e944c7 | ||
|
|
cbebf61ca7 | ||
|
|
447ccbe8c3 | ||
|
|
bd34cdde38 | ||
|
|
c2a08f87b8 | ||
|
|
66a2555ba6 | ||
|
|
e65ca7e14a | ||
|
|
5ec8dd5a3c | ||
|
|
65bdd52a86 | ||
|
|
fdd1860911 | ||
|
|
c943d823c1 | ||
|
|
f2c754e1c3 | ||
|
|
11da1a85cd | ||
|
|
235b610d65 | ||
|
|
b061ba9e2a | ||
|
|
527b6fba1d | ||
|
|
d7b7484f74 | ||
|
|
7487137227 | ||
|
|
bbca06e269 | ||
|
|
fb98254f99 | ||
|
|
049aa16b8c | ||
|
|
2322ec223a | ||
|
|
aacdbd4056 | ||
|
|
20568fe60f | ||
|
|
18b35625c3 | ||
|
|
ba4e85a833 | ||
|
|
23fc5c219a | ||
|
|
cb40dfca69 | ||
|
|
ca7c3f4da5 | ||
|
|
b97ca431db | ||
|
|
1e3abfcef0 | ||
|
|
16b9cd1939 | ||
|
|
b24c3049d9 | ||
|
|
0ede372a51 | ||
|
|
8596af4277 | ||
|
|
e1886cf4fe | ||
|
|
8ab8ba62eb | ||
|
|
90cc59d6ab | ||
|
|
ce2c7d72e2 | ||
|
|
57cd69460f | ||
|
|
b2416493ab | ||
|
|
4f9c43e3bd | ||
|
|
2c9380dd2f | ||
|
|
051e1b0e6a | ||
|
|
86c7571864 | ||
|
|
3d59ec5935 | ||
|
|
0711a5f6dc | ||
|
|
fc45a81bc6 | ||
|
|
794db3e7b9 | ||
|
|
5ddf7ea1fb | ||
|
|
bac19927c3 | ||
|
|
b4c6f46f17 | ||
|
|
92f20d9942 | ||
|
|
d411968e99 | ||
|
|
b41b4cad6f | ||
|
|
13fe9d2d84 | ||
|
|
ac3b886953 | ||
|
|
5b9ccaf104 | ||
|
|
9cbf50c041 | ||
|
|
3d01122610 | ||
|
|
602c748863 | ||
|
|
a09f9195be | ||
|
|
bed9275617 | ||
|
|
c36e81da62 | ||
|
|
3559433fec | ||
|
|
69b34a0e80 | ||
|
|
cf267d1c71 | ||
|
|
9dda13e5e1 | ||
|
|
37e257c48e | ||
|
|
64cc19b4fe | ||
|
|
4bfcc855ab | ||
|
|
6b8312e797 | ||
|
|
254a7a7a5f | ||
|
|
9254920265 | ||
|
|
e32089b2c2 | ||
|
|
2347e45e7b | ||
|
|
74d4cfa343 | ||
|
|
74a6d922f1 | ||
|
|
e4caa8da59 | ||
|
|
58970a4c39 | ||
|
|
8c0a10e64d | ||
|
|
fa84c4b3e8 | ||
|
|
12b063f0ec | ||
|
|
31d2b5f4a4 | ||
|
|
4de0334f5c | ||
|
|
3f1223155a | ||
|
|
303f5809f1 | ||
|
|
059e99066d | ||
|
|
17c10acfb4 | ||
|
|
e9b66ee982 | ||
|
|
4f0154b0ba | ||
|
|
ef3171d162 | ||
|
|
555275a693 | ||
|
|
98ed165574 | ||
|
|
ae9663f188 | ||
|
|
b33dee282f | ||
|
|
92f44ff7f7 | ||
|
|
245fc3c37d | ||
|
|
72ff5282bf | ||
|
|
0bf7cf1b29 | ||
|
|
8432d4d9f7 | ||
|
|
0f291e1f65 | ||
|
|
8fc8179919 | ||
|
|
b50b570ed9 | ||
|
|
53aba3f393 | ||
|
|
4161bdc04d | ||
|
|
0035858273 | ||
|
|
5c64a0952e | ||
|
|
5b57a5b726 | ||
|
|
4dc62c545d | ||
|
|
35a84916fb | ||
|
|
2d7bf110ed | ||
|
|
2a4e41a086 | ||
|
|
17366df842 | ||
|
|
44f906e853 | ||
|
|
d5b111f53d | ||
|
|
2d43387daf | ||
|
|
7ad7750c5c | ||
|
|
7a74dee6b4 | ||
|
|
590250f7a9 | ||
|
|
f4c55d3bd7 | ||
|
|
f1465624c2 | ||
|
|
c2df36d60d | ||
|
|
9d0693bce3 | ||
|
|
efe0507632 | ||
|
|
e7fe66e670 | ||
|
|
99009e72f8 | ||
|
|
5220a991a5 | ||
|
|
d1f563a743 | ||
|
|
827f5eda91 | ||
|
|
ecb217db4f | ||
|
|
dcb2ed4826 | ||
|
|
d8bd0013e8 | ||
|
|
b5c85468a3 | ||
|
|
136476e898 | ||
|
|
ffb06a345e | ||
|
|
7552ac5863 | ||
|
|
5d1830b99d | ||
|
|
248367605e | ||
|
|
0e730dd23b | ||
|
|
3b126f654f | ||
|
|
1b78ed2081 | ||
|
|
337aea1139 | ||
|
|
bb051d9723 | ||
|
|
ca74884f66 | ||
|
|
a6704643b6 | ||
|
|
0df7d63e5b | ||
|
|
97c9b77c4f | ||
|
|
0ecb1bbbeb | ||
|
|
93618031c7 | ||
|
|
83c54e6da5 | ||
|
|
bdbda1b17a | ||
|
|
66874d4fbc | ||
|
|
1fcdcc28b1 | ||
|
|
ac7876ac20 | ||
|
|
c31bbe934b | ||
|
|
1359b6aba5 | ||
|
|
7d873811f3 | ||
|
|
2e6cd4b025 | ||
|
|
7e4ea5beff | ||
|
|
7780e4f479 | ||
|
|
265db9834e | ||
|
|
fab49c685e | ||
|
|
b8ee340abe | ||
|
|
9ecb30f959 | ||
|
|
29cf5596fe | ||
|
|
3de84b2606 | ||
|
|
affc76edfd |
@@ -3,6 +3,7 @@ Checks: >
|
||||
bugprone-*,
|
||||
-bugprone-easily-swappable-parameters,
|
||||
-bugprone-implicit-widening-of-multiplication-result,
|
||||
-bugprone-misplaced-widening-cast,
|
||||
-bugprone-narrowing-conversions,
|
||||
readability-*,
|
||||
-readability-avoid-unconditional-preprocessor-if,
|
||||
@@ -15,4 +16,8 @@ Checks: >
|
||||
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
|
||||
performance-*,
|
||||
portability-*,
|
||||
misc-*,
|
||||
-misc-const-correctness,
|
||||
-misc-non-private-member-variables-in-classes,
|
||||
-misc-no-recursion,
|
||||
FormatStyle: none
|
||||
|
||||
22
.devops/cloud-v-pipeline
Normal file
22
.devops/cloud-v-pipeline
Normal file
@@ -0,0 +1,22 @@
|
||||
node('x86_runner1'){ // Running on x86 runner containing latest vector qemu, latest vector gcc and all the necessary libraries
|
||||
stage('Cleanup'){
|
||||
cleanWs() // Cleaning previous CI build in workspace
|
||||
}
|
||||
stage('checkout repo'){
|
||||
retry(5){ // Retry if the cloning fails due to some reason
|
||||
checkout scm // Clone the repo on Runner
|
||||
}
|
||||
}
|
||||
stage('Compiling llama.cpp'){
|
||||
sh'''#!/bin/bash
|
||||
make RISCV=1 RISCV_CROSS_COMPILE=1 # Compiling llama for RISC-V
|
||||
'''
|
||||
}
|
||||
stage('Running llama.cpp'){
|
||||
sh'''#!/bin/bash
|
||||
module load gnu-bin2/0.1 # loading latest versions of vector qemu and vector gcc
|
||||
qemu-riscv64 -L /softwares/gnu-bin2/sysroot -cpu rv64,v=true,vlen=256,elen=64,vext_spec=v1.0 ./main -m /home/alitariq/codellama-7b.Q4_K_M.gguf -p "Anything" -n 9 > llama_log.txt # Running llama.cpp on vector qemu-riscv64
|
||||
cat llama_log.txt # Printing results
|
||||
'''
|
||||
}
|
||||
}
|
||||
33
.devops/full-cuda.Dockerfile
Normal file
33
.devops/full-cuda.Dockerfile
Normal file
@@ -0,0 +1,33 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
44
.devops/full-rocm.Dockerfile
Normal file
44
.devops/full-rocm.Dockerfile
Normal file
@@ -0,0 +1,44 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG ROCM_VERSION=5.6
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
ARG ROCM_DOCKER_ARCH=\
|
||||
gfx803 \
|
||||
gfx900 \
|
||||
gfx906 \
|
||||
gfx908 \
|
||||
gfx90a \
|
||||
gfx1010 \
|
||||
gfx1030 \
|
||||
gfx1100 \
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
# Enable ROCm
|
||||
ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential python3 python3-pip
|
||||
apt-get install -y build-essential python3 python3-pip git
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
@@ -16,4 +16,6 @@ COPY . .
|
||||
|
||||
RUN make
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT ["/app/.devops/tools.sh"]
|
||||
|
||||
84
.devops/llama-cpp-clblast.srpm.spec
Normal file
84
.devops/llama-cpp-clblast.srpm.spec
Normal file
@@ -0,0 +1,84 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp-clblast
|
||||
Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: OpenCL Inference of LLaMA model in C/C++
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git mesa-libOpenCL-devel clblast-devel
|
||||
Requires: clblast
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
|
||||
%prep
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j LLAMA_CLBLAST=1
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamaclblast
|
||||
cp -p server %{buildroot}%{_bindir}/llamaclblastserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamaclblastsimple
|
||||
|
||||
mkdir -p %{buildroot}/usr/lib/systemd/system
|
||||
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamaclblast.service
|
||||
[Unit]
|
||||
Description=Llama.cpp server, CPU only (no GPU support in this build).
|
||||
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
EnvironmentFile=/etc/sysconfig/llama
|
||||
ExecStart=/usr/bin/llamaclblastserver $LLAMA_ARGS
|
||||
ExecReload=/bin/kill -s HUP $MAINPID
|
||||
Restart=never
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
EOF
|
||||
|
||||
mkdir -p %{buildroot}/etc/sysconfig
|
||||
%{__cat} <<EOF > %{buildroot}/etc/sysconfig/llama
|
||||
LLAMA_ARGS="-m /opt/llama2/ggml-model-f32.bin"
|
||||
EOF
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamaclblast
|
||||
%{_bindir}/llamaclblastserver
|
||||
%{_bindir}/llamaclblastsimple
|
||||
/usr/lib/systemd/system/llamaclblast.service
|
||||
%config /etc/sysconfig/llama
|
||||
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
83
.devops/llama-cpp-cublas.srpm.spec
Normal file
83
.devops/llama-cpp-cublas.srpm.spec
Normal file
@@ -0,0 +1,83 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp-cublas
|
||||
Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git cuda-toolkit
|
||||
Requires: cuda-toolkit
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
|
||||
%prep
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j LLAMA_CUBLAS=1
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llamacppcublas
|
||||
cp -p server %{buildroot}%{_bindir}/llamacppcublasserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamacppcublassimple
|
||||
|
||||
mkdir -p %{buildroot}/usr/lib/systemd/system
|
||||
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llamacublas.service
|
||||
[Unit]
|
||||
Description=Llama.cpp server, CPU only (no GPU support in this build).
|
||||
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
EnvironmentFile=/etc/sysconfig/llama
|
||||
ExecStart=/usr/bin/llamacppcublasserver $LLAMA_ARGS
|
||||
ExecReload=/bin/kill -s HUP $MAINPID
|
||||
Restart=never
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
EOF
|
||||
|
||||
mkdir -p %{buildroot}/etc/sysconfig
|
||||
%{__cat} <<EOF > %{buildroot}/etc/sysconfig/llama
|
||||
LLAMA_ARGS="-m /opt/llama2/ggml-model-f32.bin"
|
||||
EOF
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llamacppcublas
|
||||
%{_bindir}/llamacppcublasserver
|
||||
%{_bindir}/llamacppcublassimple
|
||||
/usr/lib/systemd/system/llamacublas.service
|
||||
%config /etc/sysconfig/llama
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
85
.devops/llama-cpp.srpm.spec
Normal file
85
.devops/llama-cpp.srpm.spec
Normal file
@@ -0,0 +1,85 @@
|
||||
# SRPM for building from source and packaging an RPM for RPM-based distros.
|
||||
# https://fedoraproject.org/wiki/How_to_create_an_RPM_package
|
||||
# Built and maintained by John Boero - boeroboy@gmail.com
|
||||
# In honor of Seth Vidal https://www.redhat.com/it/blog/thank-you-seth-vidal
|
||||
|
||||
# Notes for llama.cpp:
|
||||
# 1. Tags are currently based on hash - which will not sort asciibetically.
|
||||
# We need to declare standard versioning if people want to sort latest releases.
|
||||
# In the meantime, YYYYMMDD format will be used.
|
||||
# 2. Builds for CUDA/OpenCL support are separate, with different depenedencies.
|
||||
# 3. NVidia's developer repo must be enabled with nvcc, cublas, clblas, etc installed.
|
||||
# Example: https://developer.download.nvidia.com/compute/cuda/repos/fedora37/x86_64/cuda-fedora37.repo
|
||||
# 4. OpenCL/CLBLAST support simply requires the ICD loader and basic opencl libraries.
|
||||
# It is up to the user to install the correct vendor-specific support.
|
||||
|
||||
Name: llama.cpp
|
||||
Version: %( date "+%%Y%%m%%d" )
|
||||
Release: 1%{?dist}
|
||||
Summary: CPU Inference of LLaMA model in pure C/C++ (no CUDA/OpenCL)
|
||||
License: MIT
|
||||
Source0: https://github.com/ggerganov/llama.cpp/archive/refs/heads/master.tar.gz
|
||||
BuildRequires: coreutils make gcc-c++ git libstdc++-devel
|
||||
Requires: libstdc++
|
||||
URL: https://github.com/ggerganov/llama.cpp
|
||||
|
||||
%define debug_package %{nil}
|
||||
%define source_date_epoch_from_changelog 0
|
||||
|
||||
%description
|
||||
CPU inference for Meta's Lllama2 models using default options.
|
||||
Models are not included in this package and must be downloaded separately.
|
||||
|
||||
%prep
|
||||
%setup -n llama.cpp-master
|
||||
|
||||
%build
|
||||
make -j
|
||||
|
||||
%install
|
||||
mkdir -p %{buildroot}%{_bindir}/
|
||||
cp -p main %{buildroot}%{_bindir}/llama
|
||||
cp -p server %{buildroot}%{_bindir}/llamaserver
|
||||
cp -p simple %{buildroot}%{_bindir}/llamasimple
|
||||
|
||||
mkdir -p %{buildroot}/usr/lib/systemd/system
|
||||
%{__cat} <<EOF > %{buildroot}/usr/lib/systemd/system/llama.service
|
||||
[Unit]
|
||||
Description=Llama.cpp server, CPU only (no GPU support in this build).
|
||||
After=syslog.target network.target local-fs.target remote-fs.target nss-lookup.target
|
||||
|
||||
[Service]
|
||||
Type=simple
|
||||
EnvironmentFile=/etc/sysconfig/llama
|
||||
ExecStart=/usr/bin/llamaserver $LLAMA_ARGS
|
||||
ExecReload=/bin/kill -s HUP $MAINPID
|
||||
Restart=never
|
||||
|
||||
[Install]
|
||||
WantedBy=default.target
|
||||
EOF
|
||||
|
||||
mkdir -p %{buildroot}/etc/sysconfig
|
||||
%{__cat} <<EOF > %{buildroot}/etc/sysconfig/llama
|
||||
LLAMA_ARGS="-m /opt/llama2/ggml-model-f32.bin"
|
||||
EOF
|
||||
|
||||
%clean
|
||||
rm -rf %{buildroot}
|
||||
rm -rf %{_builddir}/*
|
||||
|
||||
%files
|
||||
%{_bindir}/llama
|
||||
%{_bindir}/llamaserver
|
||||
%{_bindir}/llamasimple
|
||||
/usr/lib/systemd/system/llama.service
|
||||
%config /etc/sysconfig/llama
|
||||
|
||||
%pre
|
||||
|
||||
%post
|
||||
|
||||
%preun
|
||||
%postun
|
||||
|
||||
%changelog
|
||||
32
.devops/main-cuda.Dockerfile
Normal file
32
.devops/main-cuda.Dockerfile
Normal file
@@ -0,0 +1,32 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG CUDA_VERSION=11.7.1
|
||||
# Target the CUDA build image
|
||||
ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
|
||||
# Target the CUDA runtime image
|
||||
ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
|
||||
|
||||
FROM ${BASE_CUDA_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
ARG CUDA_DOCKER_ARCH=all
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
|
||||
# Enable cuBLAS
|
||||
ENV LLAMA_CUBLAS=1
|
||||
|
||||
RUN make
|
||||
|
||||
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
|
||||
|
||||
COPY --from=build /app/main /main
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
44
.devops/main-rocm.Dockerfile
Normal file
44
.devops/main-rocm.Dockerfile
Normal file
@@ -0,0 +1,44 @@
|
||||
ARG UBUNTU_VERSION=22.04
|
||||
|
||||
# This needs to generally match the container host's environment.
|
||||
ARG ROCM_VERSION=5.6
|
||||
|
||||
# Target the CUDA build image
|
||||
ARG BASE_ROCM_DEV_CONTAINER=rocm/dev-ubuntu-${UBUNTU_VERSION}:${ROCM_VERSION}-complete
|
||||
|
||||
FROM ${BASE_ROCM_DEV_CONTAINER} as build
|
||||
|
||||
# Unless otherwise specified, we make a fat build.
|
||||
# List from https://github.com/ggerganov/llama.cpp/pull/1087#issuecomment-1682807878
|
||||
# This is mostly tied to rocBLAS supported archs.
|
||||
ARG ROCM_DOCKER_ARCH=\
|
||||
gfx803 \
|
||||
gfx900 \
|
||||
gfx906 \
|
||||
gfx908 \
|
||||
gfx90a \
|
||||
gfx1010 \
|
||||
gfx1030 \
|
||||
gfx1100 \
|
||||
gfx1101 \
|
||||
gfx1102
|
||||
|
||||
COPY requirements.txt requirements.txt
|
||||
|
||||
RUN pip install --upgrade pip setuptools wheel \
|
||||
&& pip install -r requirements.txt
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
COPY . .
|
||||
|
||||
# Set nvcc architecture
|
||||
ENV GPU_TARGETS=${ROCM_DOCKER_ARCH}
|
||||
# Enable ROCm
|
||||
ENV LLAMA_HIPBLAS=1
|
||||
ENV CC=/opt/rocm/llvm/bin/clang
|
||||
ENV CXX=/opt/rocm/llvm/bin/clang++
|
||||
|
||||
RUN make
|
||||
|
||||
ENTRYPOINT [ "/app/main" ]
|
||||
@@ -3,7 +3,7 @@ ARG UBUNTU_VERSION=22.04
|
||||
FROM ubuntu:$UBUNTU_VERSION as build
|
||||
|
||||
RUN apt-get update && \
|
||||
apt-get install -y build-essential
|
||||
apt-get install -y build-essential git
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@@ -15,4 +15,6 @@ FROM ubuntu:$UBUNTU_VERSION as runtime
|
||||
|
||||
COPY --from=build /app/main /main
|
||||
|
||||
ENV LC_ALL=C.utf8
|
||||
|
||||
ENTRYPOINT [ "/main" ]
|
||||
|
||||
@@ -7,16 +7,13 @@ arg1="$1"
|
||||
# Shift the arguments to remove the first one
|
||||
shift
|
||||
|
||||
# Join the remaining arguments into a single string
|
||||
arg2="$@"
|
||||
|
||||
if [[ $arg1 == '--convert' || $arg1 == '-c' ]]; then
|
||||
python3 ./convert-pth-to-ggml.py $arg2
|
||||
elif [[ $arg1 == '--quantize' || $arg1 == '-q' ]]; then
|
||||
./quantize $arg2
|
||||
elif [[ $arg1 == '--run' || $arg1 == '-r' ]]; then
|
||||
./main $arg2
|
||||
elif [[ $arg1 == '--all-in-one' || $arg1 == '-a' ]]; then
|
||||
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
|
||||
python3 ./convert.py "$@"
|
||||
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
|
||||
./quantize "$@"
|
||||
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
|
||||
./main "$@"
|
||||
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
|
||||
echo "Converting PTH to GGML..."
|
||||
for i in `ls $1/$2/ggml-model-f16.bin*`; do
|
||||
if [ -f "${i/f16/q4_0}" ]; then
|
||||
@@ -26,15 +23,19 @@ elif [[ $arg1 == '--all-in-one' || $arg1 == '-a' ]]; then
|
||||
./quantize "$i" "${i/f16/q4_0}" q4_0
|
||||
fi
|
||||
done
|
||||
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
|
||||
./server "$@"
|
||||
else
|
||||
echo "Unknown command: $arg1"
|
||||
echo "Available commands: "
|
||||
echo " --run (-r): Run a model previously converted into ggml"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -p \"Building a website can be done in 10 simple steps:\" -n 512"
|
||||
echo " --convert (-c): Convert a llama model into ggml"
|
||||
echo " ex: \"/models/7B/\" 1"
|
||||
echo " ex: --outtype f16 \"/models/7B/\" "
|
||||
echo " --quantize (-q): Optimize with quantization process ggml"
|
||||
echo " ex: \"/models/7B/ggml-model-f16.bin\" \"/models/7B/ggml-model-q4_0.bin\" 2"
|
||||
echo " --all-in-one (-a): Execute --convert & --quantize"
|
||||
echo " ex: \"/models/\" 7B"
|
||||
echo " --server (-s): Run a model on the server"
|
||||
echo " ex: -m /models/7B/ggml-model-q4_0.bin -c 2048 -ngl 43 -mg 1 --port 8080"
|
||||
fi
|
||||
|
||||
@@ -1,18 +1,14 @@
|
||||
*.o
|
||||
*.a
|
||||
.cache/
|
||||
.git/
|
||||
.github/
|
||||
.gitignore
|
||||
.vs/
|
||||
.vscode/
|
||||
.DS_Store
|
||||
|
||||
build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-static/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
build*/
|
||||
|
||||
models/*
|
||||
|
||||
|
||||
@@ -17,3 +17,6 @@ indent_style = tab
|
||||
|
||||
[prompts/*.txt]
|
||||
insert_final_newline = unset
|
||||
|
||||
[examples/server/public/*]
|
||||
indent_size = 2
|
||||
|
||||
361
.github/workflows/build.yml
vendored
361
.github/workflows/build.yml
vendored
@@ -10,13 +10,15 @@ on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp']
|
||||
paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.c', '**/*.cpp']
|
||||
paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m']
|
||||
|
||||
env:
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
BRANCH_NAME: ${{ github.head_ref || github.ref_name }}
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
ubuntu-focal-make:
|
||||
@@ -25,7 +27,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -36,7 +38,13 @@ jobs:
|
||||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
CC=gcc-8 make
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
CC=gcc-8 make tests -j $(nproc)
|
||||
make test -j $(nproc)
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -44,7 +52,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -58,13 +66,13 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-sanitizer:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -79,7 +87,7 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
@@ -93,7 +101,41 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
ubuntu-latest-cmake-mpi:
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
continue-on-error: true
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
mpi_library: [mpich, libopenmpi-dev]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential ${{ matrix.mpi_library }}
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_MPI=ON ..
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
@@ -107,21 +149,57 @@ jobs:
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
make
|
||||
make -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
make tests -j $(sysctl -n hw.logicalcpu)
|
||||
make test -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
@@ -129,49 +207,106 @@ jobs:
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_AVX2=OFF ..
|
||||
cmake --build . --config Release
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
run: |
|
||||
cd build
|
||||
ctest --verbose
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.5.3
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'avx2'
|
||||
defines: ''
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_AVX2=OFF'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'clblast'
|
||||
defines: '-DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_OPENBLAS=ON -DBLAS_LIBRARIES="/LIBPATH:$env:RUNNER_TEMP/openblas/lib" -DOPENBLAS_INC="$env:RUNNER_TEMP/openblas/include"'
|
||||
macOS-latest-cmake-tvos:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
macOS-latest-swift:
|
||||
runs-on: macos-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
destination: ['generic/platform=macOS', 'generic/platform=iOS', 'generic/platform=tvOS']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: xcodebuild for swift package
|
||||
id: xcodebuild
|
||||
run: |
|
||||
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
env:
|
||||
OPENBLAS_VERSION: 0.3.23
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.6.0
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
include:
|
||||
- build: 'noavx'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx2'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'avx512'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'clblast'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Download OpenCL SDK
|
||||
id: get_opencl
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
@@ -184,13 +319,13 @@ jobs:
|
||||
id: get_clblast
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/clblast.zip -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-Windows-x64.zip"
|
||||
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
|
||||
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
|
||||
mkdir $env:RUNNER_TEMP/clblast
|
||||
tar.exe -xvf $env:RUNNER_TEMP/clblast.zip -C $env:RUNNER_TEMP/clblast
|
||||
7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/clblast.7z
|
||||
rename-item $env:RUNNER_TEMP/CLBlast-${env:CLBLAST_VERSION}-windows-x64 clblast
|
||||
foreach ($f in (gci -Recurse -Path "$env:RUNNER_TEMP/clblast" -Filter '*.cmake')) {
|
||||
$txt = Get-Content -Path $f -Raw
|
||||
$txt.Replace('C:/dependencies/opencl/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
|
||||
$txt.Replace('C:/vcpkg/packages/opencl_x64-windows/', "$($env:RUNNER_TEMP.Replace('\','/'))/opencl/") | Set-Content -Path $f -Encoding UTF8
|
||||
}
|
||||
|
||||
- name: Download OpenBLAS
|
||||
@@ -212,8 +347,7 @@ jobs:
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. ${{ matrix.defines }}
|
||||
cmake --build . --config Release
|
||||
cp ../LICENSE ./bin/Release/llama.cpp.txt
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add clblast.dll
|
||||
id: add_clblast_dll
|
||||
@@ -247,94 +381,97 @@ jobs:
|
||||
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # Test AVX-512 only when possible
|
||||
run: |
|
||||
cd build
|
||||
ctest -C Release --verbose
|
||||
ctest -C Release --verbose --timeout 900
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
||||
|
||||
windows-latest-cmake-cublas:
|
||||
runs-on: windows-latest
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
cuda: ['12.1.0', '11.7.1']
|
||||
cuda: ['12.2.0', '11.7.1']
|
||||
build: ['cublas']
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- uses: Jimver/cuda-toolkit@v0.2.10
|
||||
- uses: Jimver/cuda-toolkit@v0.2.11
|
||||
id: cuda-toolkit
|
||||
with:
|
||||
cuda: ${{ matrix.cuda }}
|
||||
# TODO(green-sky): _dev seems to fail, and non dev are not enought
|
||||
#sub-packages: '["nvcc", "cudart", "cublas", "cudart_dev", "cublas_dev"]'
|
||||
method: 'network'
|
||||
sub-packages: '["nvcc", "cudart", "cublas", "cublas_dev", "thrust", "visual_studio_integration"]'
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CUBLAS=ON
|
||||
cmake --build . --config Release
|
||||
cmake .. -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Pack artifacts
|
||||
id: pack_artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
run: |
|
||||
7z a llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip .\build\bin\Release\*
|
||||
|
||||
- name: Upload artifacts
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
uses: actions/upload-artifact@v3
|
||||
with:
|
||||
path: |
|
||||
llama-${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '12.1.0' }}
|
||||
# TODO(green-sky): paths are cuda 12 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_12.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_12.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
|
||||
- name: Copy and pack Cuda runtime
|
||||
if: ${{ matrix.cuda == '11.7.1' }}
|
||||
# TODO(green-sky): paths are cuda 11 specific
|
||||
run: |
|
||||
echo "Cuda install location: ${{steps.cuda-toolkit.outputs.CUDA_PATH}}"
|
||||
mkdir '.\build\bin\cudart\'
|
||||
ls "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin"
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cudart64_110.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublas64_11.dll" '.\build\bin\cudart\'
|
||||
cp "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin\cublasLt64_11.dll" '.\build\bin\cudart\'
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip .\build\bin\cudart\*
|
||||
$dst='.\build\bin\cudart\'
|
||||
robocopy "${{steps.cuda-toolkit.outputs.CUDA_PATH}}\bin" $dst cudart64_*.dll cublas64_*.dll cublasLt64_*.dll
|
||||
7z a cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip $dst\*
|
||||
|
||||
- name: Upload Cuda runtime
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
@@ -343,6 +480,23 @@ jobs:
|
||||
path: |
|
||||
cudart-llama-bin-win-cu${{ matrix.cuda }}-x64.zip
|
||||
|
||||
# freeBSD-latest:
|
||||
# runs-on: macos-12
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Build
|
||||
# uses: cross-platform-actions/action@v0.19.0
|
||||
# with:
|
||||
# operating_system: freebsd
|
||||
# version: '13.2'
|
||||
# hypervisor: 'qemu'
|
||||
# run: |
|
||||
# sudo pkg update
|
||||
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
|
||||
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
||||
@@ -357,21 +511,36 @@ jobs:
|
||||
- windows-latest-cmake-cublas
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v3
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
shell: bash
|
||||
run: |
|
||||
BUILD_NUMBER="$(git rev-list --count HEAD)"
|
||||
SHORT_HASH="$(git rev-parse --short=7 HEAD)"
|
||||
if [[ "${{ env.BRANCH_NAME }}" == "master" ]]; then
|
||||
echo "name=b${BUILD_NUMBER}" >> $GITHUB_OUTPUT
|
||||
else
|
||||
SAFE_NAME=$(echo "${{ env.BRANCH_NAME }}" | tr '/' '-')
|
||||
echo "name=${SAFE_NAME}-b${BUILD_NUMBER}-${SHORT_HASH}" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Download artifacts
|
||||
id: download-artifact
|
||||
uses: actions/download-artifact@v3
|
||||
|
||||
- name: Get commit hash
|
||||
id: commit
|
||||
uses: pr-mpt/actions-commit-hash@v2
|
||||
|
||||
- name: Create release
|
||||
id: create_release
|
||||
uses: anzz1/action-create-release@v1
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
with:
|
||||
tag_name: ${{ env.BRANCH_NAME }}-${{ steps.commit.outputs.short }}
|
||||
tag_name: ${{ steps.tag.outputs.name }}
|
||||
|
||||
- name: Upload release
|
||||
id: upload_release
|
||||
@@ -404,7 +573,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -428,7 +597,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -452,7 +621,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
@@ -482,7 +651,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@@ -521,7 +690,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Add msbuild to PATH
|
||||
# uses: microsoft/setup-msbuild@v1
|
||||
@@ -567,7 +736,7 @@ jobs:
|
||||
#
|
||||
# steps:
|
||||
# - name: Clone
|
||||
# uses: actions/checkout@v1
|
||||
# uses: actions/checkout@v3
|
||||
#
|
||||
# - name: Dependencies
|
||||
# run: |
|
||||
|
||||
36
.github/workflows/code-coverage.yml
vendored
Normal file
36
.github/workflows/code-coverage.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
name: Code Coverage
|
||||
on: [push, pull_request]
|
||||
|
||||
env:
|
||||
GGML_NLOOP: 3
|
||||
GGML_N_THREADS: 1
|
||||
|
||||
jobs:
|
||||
run:
|
||||
runs-on: ubuntu-20.04
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v3
|
||||
|
||||
- name: Dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install build-essential gcc-8 lcov
|
||||
|
||||
- name: Build
|
||||
run: CC=gcc-8 make -j LLAMA_CODE_COVERAGE=1 tests
|
||||
|
||||
- name: Run tests
|
||||
run: CC=gcc-8 make test
|
||||
|
||||
- name: Generate coverage report
|
||||
run: |
|
||||
make coverage
|
||||
make lcov-report
|
||||
|
||||
- name: Upload coverage to Codecov
|
||||
uses: codecov/codecov-action@v3
|
||||
env:
|
||||
CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }}
|
||||
with:
|
||||
files: lcov-report/coverage.info
|
||||
15
.github/workflows/docker.yml
vendored
15
.github/workflows/docker.yml
vendored
@@ -26,8 +26,15 @@ jobs:
|
||||
strategy:
|
||||
matrix:
|
||||
config:
|
||||
- { tag: "light", dockerfile: ".devops/main.Dockerfile" }
|
||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile" }
|
||||
- { tag: "light", dockerfile: ".devops/main.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "full", dockerfile: ".devops/full.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
# NOTE(canardletter): The CUDA builds on arm64 are very slow, so I
|
||||
# have disabled them for now until the reason why
|
||||
# is understood.
|
||||
- { tag: "light-cuda", dockerfile: ".devops/main-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "full-cuda", dockerfile: ".devops/full-cuda.Dockerfile", platforms: "linux/amd64" }
|
||||
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
|
||||
steps:
|
||||
- name: Check out the repo
|
||||
uses: actions/checkout@v3
|
||||
@@ -51,7 +58,7 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: true
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}-${{ env.COMMIT_SHA }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
@@ -60,6 +67,6 @@ jobs:
|
||||
with:
|
||||
context: .
|
||||
push: ${{ github.event_name == 'push' }}
|
||||
platforms: linux/amd64,linux/arm64
|
||||
platforms: ${{ matrix.config.platforms }}
|
||||
tags: "ghcr.io/ggerganov/llama.cpp:${{ matrix.config.tag }}"
|
||||
file: ${{ matrix.config.dockerfile }}
|
||||
|
||||
44
.github/workflows/gguf-publish.yml
vendored
Normal file
44
.github/workflows/gguf-publish.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
||||
# This workflow will upload a Python Package using Twine when a GGUF release is created
|
||||
# For more information see: https://help.github.com/en/actions/language-and-framework-guides/using-python-with-github-actions#publishing-to-package-registries
|
||||
|
||||
# See `gguf-py/README.md` for how to make a release.
|
||||
|
||||
# This workflow uses actions that are not certified by GitHub.
|
||||
# They are provided by a third-party and are governed by
|
||||
# separate terms of service, privacy policy, and support
|
||||
# documentation.
|
||||
|
||||
name: Upload Python Package
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
# Pattern matched against refs/tags
|
||||
tags:
|
||||
- 'gguf-v*' # Push events to every version tag
|
||||
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.9.x'
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
cd gguf-py
|
||||
python -m pip install poetry
|
||||
poetry install
|
||||
|
||||
- name: Build package
|
||||
run: cd gguf-py && poetry build
|
||||
- name: Publish package
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||
packages-dir: gguf-py/dist
|
||||
2
.github/workflows/tidy-post.yml
vendored
2
.github/workflows/tidy-post.yml
vendored
@@ -1,7 +1,7 @@
|
||||
name: clang-tidy review post comments
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflow_dispatch:
|
||||
workflows: ["clang-tidy-review"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
25
.github/workflows/zig-build.yml
vendored
Normal file
25
.github/workflows/zig-build.yml
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
name: Zig CI
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
|
||||
jobs:
|
||||
build:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
||||
runs-on: ${{ matrix.runs-on }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
submodules: recursive
|
||||
fetch-depth: 0
|
||||
- uses: goto-bus-stop/setup-zig@v2
|
||||
with:
|
||||
version: 0.11.0
|
||||
- name: Build Summary
|
||||
run: zig build --summary all -freference-trace
|
||||
78
.gitignore
vendored
78
.gitignore
vendored
@@ -1,5 +1,16 @@
|
||||
*.o
|
||||
*.a
|
||||
*.so
|
||||
*.gguf
|
||||
*.bin
|
||||
*.exe
|
||||
*.dll
|
||||
*.log
|
||||
*.gcov
|
||||
*.gcno
|
||||
*.gcda
|
||||
*.dot
|
||||
*.metallib
|
||||
.DS_Store
|
||||
.build/
|
||||
.cache/
|
||||
@@ -7,38 +18,56 @@
|
||||
.envrc
|
||||
.swiftpm
|
||||
.venv
|
||||
.clang-tidy
|
||||
.vs/
|
||||
.vscode/
|
||||
|
||||
build/
|
||||
build-em/
|
||||
build-debug/
|
||||
build-release/
|
||||
build-static/
|
||||
build-cublas/
|
||||
build-opencl/
|
||||
build-no-accel/
|
||||
build-sanitize-addr/
|
||||
build-sanitize-thread/
|
||||
lcov-report/
|
||||
gcovr-report/
|
||||
|
||||
build*/
|
||||
out/
|
||||
tmp/
|
||||
|
||||
models/*
|
||||
*.bin
|
||||
models-mnt
|
||||
|
||||
/Pipfile
|
||||
/baby-llama
|
||||
/beam-search
|
||||
/benchmark-matmult
|
||||
/convert-llama2c-to-ggml
|
||||
/embd-input-test
|
||||
/embedding
|
||||
/gguf
|
||||
/gguf-llama-simple
|
||||
/infill
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
/main
|
||||
/metal
|
||||
/perplexity
|
||||
/q8dot
|
||||
/quantize
|
||||
/quantize-stats
|
||||
/result
|
||||
/perplexity
|
||||
/embedding
|
||||
/benchmark-matmult
|
||||
/save-load-state
|
||||
/server
|
||||
/simple
|
||||
/batched
|
||||
/export-lora
|
||||
/finetune
|
||||
/speculative
|
||||
/parallel
|
||||
/train-text-from-scratch
|
||||
/vdot
|
||||
/Pipfile
|
||||
|
||||
build-info.h
|
||||
arm_neon.h
|
||||
compile_commands.json
|
||||
CMakeSettings.json
|
||||
|
||||
__pycache__
|
||||
dist
|
||||
|
||||
zig-out/
|
||||
zig-cache/
|
||||
@@ -48,3 +77,20 @@ qnt-*.txt
|
||||
perf-*.txt
|
||||
|
||||
examples/jeopardy/results.txt
|
||||
|
||||
poetry.lock
|
||||
poetry.toml
|
||||
|
||||
# Test binaries
|
||||
tests/test-grammar-parser
|
||||
tests/test-llama-grammar
|
||||
tests/test-double-float
|
||||
tests/test-grad0
|
||||
tests/test-opt
|
||||
tests/test-quantize-fns
|
||||
tests/test-quantize-perf
|
||||
tests/test-sampling
|
||||
tests/test-tokenizer-0-llama
|
||||
tests/test-tokenizer-0-falcon
|
||||
tests/test-tokenizer-1-llama
|
||||
tests/test-tokenizer-1-bpe
|
||||
|
||||
15
.pre-commit-config.yaml
Normal file
15
.pre-commit-config.yaml
Normal file
@@ -0,0 +1,15 @@
|
||||
# See https://pre-commit.com for more information
|
||||
# See https://pre-commit.com/hooks.html for more hooks
|
||||
exclude: prompts/.*.txt
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v3.2.0
|
||||
hooks:
|
||||
- id: trailing-whitespace
|
||||
- id: end-of-file-fixer
|
||||
- id: check-yaml
|
||||
- id: check-added-large-files
|
||||
- repo: https://github.com/PyCQA/flake8
|
||||
rev: 6.0.0
|
||||
hooks:
|
||||
- id: flake8
|
||||
573
CMakeLists.txt
573
CMakeLists.txt
@@ -1,4 +1,4 @@
|
||||
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
|
||||
cmake_minimum_required(VERSION 3.13) # for add_link_options
|
||||
project("llama.cpp" C CXX)
|
||||
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
@@ -36,41 +36,69 @@ endif()
|
||||
# Option list
|
||||
#
|
||||
|
||||
if (APPLE)
|
||||
set(LLAMA_METAL_DEFAULT ON)
|
||||
else()
|
||||
set(LLAMA_METAL_DEFAULT OFF)
|
||||
endif()
|
||||
|
||||
# general
|
||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||
option(LLAMA_NATIVE "llama: enable -march=native flag" OFF)
|
||||
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
||||
option(LLAMA_STATIC "llama: static link libraries" OFF)
|
||||
option(LLAMA_NATIVE "llama: enable -march=native flag" ON)
|
||||
option(LLAMA_LTO "llama: enable link time optimization" OFF)
|
||||
|
||||
# debug
|
||||
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
||||
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
||||
option(LLAMA_GPROF "llama: enable gprof" OFF)
|
||||
option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON)
|
||||
option(LLAMA_ALL_WARNINGS_3RD_PARTY "llama: enable all compiler warnings in 3rd party libs" OFF)
|
||||
option(LLAMA_GPROF "llama: enable gprof" OFF)
|
||||
|
||||
# sanitizers
|
||||
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_THREAD "llama: enable thread sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_ADDRESS "llama: enable address sanitizer" OFF)
|
||||
option(LLAMA_SANITIZE_UNDEFINED "llama: enable undefined sanitizer" OFF)
|
||||
|
||||
# instruction set specific
|
||||
option(LLAMA_AVX "llama: enable AVX" ON)
|
||||
option(LLAMA_AVX2 "llama: enable AVX2" ON)
|
||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||
option(LLAMA_FMA "llama: enable FMA" ON)
|
||||
if (LLAMA_NATIVE)
|
||||
set(INS_ENB OFF)
|
||||
else()
|
||||
set(INS_ENB ON)
|
||||
endif()
|
||||
|
||||
option(LLAMA_AVX "llama: enable AVX" ${INS_ENB})
|
||||
option(LLAMA_AVX2 "llama: enable AVX2" ${INS_ENB})
|
||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
|
||||
# in MSVC F16C is implied with AVX2/AVX512
|
||||
if (NOT MSVC)
|
||||
option(LLAMA_F16C "llama: enable F16C" ON)
|
||||
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
|
||||
endif()
|
||||
|
||||
# 3rd party libs
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_OPENBLAS "llama: use OpenBLAS" OFF)
|
||||
option(LLAMA_CUBLAS "llama: use cuBLAS" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
|
||||
option(LLAMA_BLAS "llama: use BLAS" OFF)
|
||||
set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor")
|
||||
option(LLAMA_CUBLAS "llama: use CUDA" OFF)
|
||||
#option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF)
|
||||
option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF)
|
||||
set(LLAMA_CUDA_DMMV_X "32" CACHE STRING "llama: x stride for dmmv CUDA kernels")
|
||||
set(LLAMA_CUDA_MMV_Y "1" CACHE STRING "llama: y block size for mmv CUDA kernels")
|
||||
option(LLAMA_CUDA_F16 "llama: use 16 bit floats for some calculations" OFF)
|
||||
set(LLAMA_CUDA_KQUANTS_ITER "2" CACHE STRING "llama: iters./thread per block for Q2_K/Q6_K")
|
||||
set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"llama: max. batch size for using peer access")
|
||||
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
|
||||
option(LLAMA_CLBLAST "llama: use CLBlast" OFF)
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_K_QUANTS "llama: use k-quants" ON)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||
|
||||
#
|
||||
# Build info header
|
||||
@@ -96,7 +124,7 @@ if(EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/.git")
|
||||
add_custom_command(
|
||||
OUTPUT "${CMAKE_CURRENT_SOURCE_DIR}/build-info.h"
|
||||
COMMENT "Generating build details from Git"
|
||||
COMMAND ${CMAKE_COMMAND} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
|
||||
COMMAND ${CMAKE_COMMAND} -DMSVC=${MSVC} -DCMAKE_C_COMPILER_VERSION=${CMAKE_C_COMPILER_VERSION} -DCMAKE_C_COMPILER_ID=${CMAKE_C_COMPILER_ID} -DCMAKE_VS_PLATFORM_NAME=${CMAKE_VS_PLATFORM_NAME} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -P "${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake"
|
||||
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
DEPENDS "${GIT_DIR}/index"
|
||||
VERBATIM
|
||||
@@ -115,6 +143,7 @@ set(CMAKE_C_STANDARD 11)
|
||||
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
@@ -139,42 +168,121 @@ if (APPLE AND LLAMA_ACCELERATE)
|
||||
message(STATUS "Accelerate framework found")
|
||||
|
||||
add_compile_definitions(GGML_USE_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${ACCELERATE_FRAMEWORK})
|
||||
else()
|
||||
message(WARNING "Accelerate framework not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_OPENBLAS)
|
||||
if (LLAMA_METAL)
|
||||
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
|
||||
find_library(METAL_FRAMEWORK Metal REQUIRED)
|
||||
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
|
||||
|
||||
message(STATUS "Metal framework found")
|
||||
set(GGML_HEADERS_METAL ggml-metal.h)
|
||||
set(GGML_SOURCES_METAL ggml-metal.m)
|
||||
|
||||
add_compile_definitions(GGML_USE_METAL)
|
||||
if (LLAMA_METAL_NDEBUG)
|
||||
add_compile_definitions(GGML_METAL_NDEBUG)
|
||||
endif()
|
||||
|
||||
# get full path to the file
|
||||
#add_compile_definitions(GGML_METAL_DIR_KERNELS="${CMAKE_CURRENT_SOURCE_DIR}/")
|
||||
|
||||
# copy ggml-metal.metal to bin directory
|
||||
configure_file(ggml-metal.metal bin/ggml-metal.metal COPYONLY)
|
||||
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS}
|
||||
${FOUNDATION_LIBRARY}
|
||||
${METAL_FRAMEWORK}
|
||||
${METALKIT_FRAMEWORK}
|
||||
)
|
||||
endif()
|
||||
if (LLAMA_BLAS)
|
||||
if (LLAMA_STATIC)
|
||||
set(BLA_STATIC ON)
|
||||
endif()
|
||||
if ($(CMAKE_VERSION) VERSION_GREATER_EQUAL 3.22)
|
||||
set(BLA_SIZEOF_INTEGER 8)
|
||||
endif()
|
||||
|
||||
set(BLA_VENDOR OpenBLAS)
|
||||
set(BLA_VENDOR ${LLAMA_BLAS_VENDOR})
|
||||
find_package(BLAS)
|
||||
|
||||
if (BLAS_FOUND)
|
||||
message(STATUS "OpenBLAS found")
|
||||
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
|
||||
|
||||
if ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
|
||||
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
|
||||
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
|
||||
find_package(PkgConfig REQUIRED)
|
||||
if (${LLAMA_BLAS_VENDOR} MATCHES "Generic")
|
||||
pkg_check_modules(DepBLAS REQUIRED blas)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "OpenBLAS")
|
||||
pkg_check_modules(DepBLAS REQUIRED openblas)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FLAME")
|
||||
pkg_check_modules(DepBLAS REQUIRED blis)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "ATLAS")
|
||||
pkg_check_modules(DepBLAS REQUIRED blas-atlas)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "FlexiBLAS")
|
||||
pkg_check_modules(DepBLAS REQUIRED flexiblas_api)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "Intel")
|
||||
# all Intel* libraries share the same include path
|
||||
pkg_check_modules(DepBLAS REQUIRED mkl-sdl)
|
||||
elseif (${LLAMA_BLAS_VENDOR} MATCHES "NVHPC")
|
||||
# this doesn't provide pkg-config
|
||||
# suggest to assign BLAS_INCLUDE_DIRS on your own
|
||||
if ("${NVHPC_VERSION}" STREQUAL "")
|
||||
message(WARNING "Better to set NVHPC_VERSION")
|
||||
else()
|
||||
set(DepBLAS_FOUND ON)
|
||||
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
|
||||
endif()
|
||||
endif()
|
||||
if (DepBLAS_FOUND)
|
||||
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
|
||||
else()
|
||||
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
|
||||
" detected by pkgconfig, trying to find cblas.h from possible paths...")
|
||||
find_path(BLAS_INCLUDE_DIRS
|
||||
NAMES cblas.h
|
||||
HINTS
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/include/openblas
|
||||
/opt/homebrew/opt/openblas/include
|
||||
/usr/local/opt/openblas/include
|
||||
/usr/include/x86_64-linux-gnu/openblas/include
|
||||
)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
|
||||
add_compile_options(${BLAS_LINKER_FLAGS})
|
||||
add_compile_definitions(GGML_USE_OPENBLAS)
|
||||
add_link_options(${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} openblas)
|
||||
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel"))
|
||||
add_compile_definitions(GGML_BLAS_USE_MKL)
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${BLAS_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${BLAS_INCLUDE_DIRS})
|
||||
|
||||
# find header file
|
||||
set(OPENBLAS_INCLUDE_SEARCH_PATHS
|
||||
/usr/include
|
||||
/usr/include/openblas
|
||||
/usr/include/openblas-base
|
||||
/usr/local/include
|
||||
/usr/local/include/openblas
|
||||
/usr/local/include/openblas-base
|
||||
/opt/OpenBLAS/include
|
||||
$ENV{OpenBLAS_HOME}
|
||||
$ENV{OpenBLAS_HOME}/include
|
||||
)
|
||||
find_path(OPENBLAS_INC NAMES cblas.h PATHS ${OPENBLAS_INCLUDE_SEARCH_PATHS})
|
||||
add_compile_options(-I${OPENBLAS_INC})
|
||||
else()
|
||||
message(WARNING "OpenBLAS not found")
|
||||
message(WARNING "BLAS not found, please refer to "
|
||||
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
|
||||
" to set correct LLAMA_BLAS_VENDOR")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_K_QUANTS)
|
||||
set(GGML_HEADERS_EXTRA k_quants.h)
|
||||
set(GGML_SOURCES_EXTRA k_quants.c)
|
||||
add_compile_definitions(GGML_USE_K_QUANTS)
|
||||
if (LLAMA_QKK_64)
|
||||
add_compile_definitions(GGML_QKK_64)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
@@ -187,9 +295,26 @@ if (LLAMA_CUBLAS)
|
||||
|
||||
enable_language(CUDA)
|
||||
|
||||
set(GGML_CUDA_SOURCES ggml-cuda.cu ggml-cuda.h)
|
||||
set(GGML_HEADERS_CUDA ggml-cuda.h)
|
||||
set(GGML_SOURCES_CUDA ggml-cuda.cu)
|
||||
|
||||
add_compile_definitions(GGML_USE_CUBLAS)
|
||||
# if (LLAMA_CUDA_CUBLAS)
|
||||
# add_compile_definitions(GGML_CUDA_CUBLAS)
|
||||
# endif()
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
if (DEFINED LLAMA_CUDA_DMMV_Y)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_DMMV_Y}) # for backwards compatibility
|
||||
endif()
|
||||
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
|
||||
add_compile_definitions(GGML_CUDA_F16)
|
||||
endif()
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${LLAMA_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart_static CUDA::cublas_static CUDA::cublasLt_static)
|
||||
@@ -197,17 +322,55 @@ if (LLAMA_CUBLAS)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} CUDA::cudart CUDA::cublas CUDA::cublasLt)
|
||||
endif()
|
||||
|
||||
if (NOT DEFINED CMAKE_CUDA_ARCHITECTURES)
|
||||
# 52 == lowest CUDA 12 standard
|
||||
# 60 == f16 CUDA intrinsics
|
||||
# 61 == integer CUDA intrinsics
|
||||
# 70 == compute capability at which unrolling a loop in mul_mat_q kernels is faster
|
||||
if (LLAMA_CUDA_F16 OR LLAMA_CUDA_DMMV_F16)
|
||||
set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics
|
||||
else()
|
||||
set(CMAKE_CUDA_ARCHITECTURES "52;61;70") # lowest CUDA 12 standard + lowest for integer intrinsics
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Using CUDA architectures: ${CMAKE_CUDA_ARCHITECTURES}")
|
||||
|
||||
else()
|
||||
message(WARNING "cuBLAS not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_MPI)
|
||||
cmake_minimum_required(VERSION 3.10)
|
||||
find_package(MPI)
|
||||
if (MPI_C_FOUND)
|
||||
message(STATUS "MPI found")
|
||||
set(GGML_HEADERS_MPI ggml-mpi.h)
|
||||
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
||||
add_compile_definitions(GGML_USE_MPI)
|
||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
||||
if (NOT MSVC)
|
||||
add_compile_options(-Wno-cast-qual)
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
||||
# C++ functions, so more linkage is needed
|
||||
if (MPI_CXX_FOUND)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES})
|
||||
endif()
|
||||
else()
|
||||
message(WARNING "MPI not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_CLBLAST)
|
||||
find_package(CLBlast)
|
||||
if (CLBlast_FOUND)
|
||||
message(STATUS "CLBlast found")
|
||||
|
||||
set(GGML_OPENCL_SOURCES ggml-opencl.c ggml-opencl.h)
|
||||
set(GGML_HEADERS_OPENCL ggml-opencl.h)
|
||||
set(GGML_SOURCES_OPENCL ggml-opencl.cpp)
|
||||
|
||||
add_compile_definitions(GGML_USE_CLBLAST)
|
||||
|
||||
@@ -217,38 +380,98 @@ if (LLAMA_CLBLAST)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_HIPBLAS)
|
||||
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
||||
|
||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
||||
endif()
|
||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||
endif()
|
||||
|
||||
find_package(hip)
|
||||
find_package(hipblas)
|
||||
find_package(rocblas)
|
||||
|
||||
if (${hipblas_FOUND} AND ${hip_FOUND})
|
||||
message(STATUS "HIP and hipBLAS found")
|
||||
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUBLAS)
|
||||
add_library(ggml-rocm OBJECT ggml-cuda.cu ggml-cuda.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-rocm PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
if (LLAMA_CUDA_FORCE_DMMV)
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_FORCE_DMMV)
|
||||
endif()
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
|
||||
if (LLAMA_STATIC)
|
||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||
endif()
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ggml-rocm)
|
||||
else()
|
||||
message(WARNING "hipBLAS or HIP not found. Try setting CMAKE_PREFIX_PATH=/opt/rocm")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(c_flags
|
||||
-Wall
|
||||
-Wextra
|
||||
-Wpedantic
|
||||
-Wcast-qual
|
||||
-Wdouble-promotion
|
||||
-Wshadow
|
||||
-Wstrict-prototypes
|
||||
-Wpointer-arith
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
-Wextra
|
||||
-Wpedantic
|
||||
-Wcast-qual
|
||||
-Wno-unused-function
|
||||
-Wno-multichar
|
||||
)
|
||||
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||
-Werror=implicit-function-declaration)
|
||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||
set(host_cxx_flags "")
|
||||
|
||||
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
||||
|
||||
if (
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0)
|
||||
)
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
endif()
|
||||
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
|
||||
endif()
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
||||
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
endif()
|
||||
|
||||
add_compile_options(
|
||||
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||
)
|
||||
set(c_flags ${c_flags} ${warning_flags})
|
||||
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
|
||||
|
||||
endif()
|
||||
|
||||
if (MSVC)
|
||||
if (NOT MSVC)
|
||||
set(cuda_flags -Wno-pedantic)
|
||||
endif()
|
||||
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
|
||||
|
||||
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
|
||||
if (NOT cuda_host_flags STREQUAL "")
|
||||
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
|
||||
endif()
|
||||
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
|
||||
|
||||
if (WIN32)
|
||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
@@ -270,6 +493,13 @@ endif()
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
if (MSVC)
|
||||
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
|
||||
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_STATIC)
|
||||
add_link_options(-static)
|
||||
@@ -280,35 +510,35 @@ if (NOT MSVC)
|
||||
if (LLAMA_GPROF)
|
||||
add_compile_options(-pg)
|
||||
endif()
|
||||
if (LLAMA_NATIVE)
|
||||
add_compile_options(-march=native)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
# TODO: arm msvc?
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
# add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) # MSVC doesn't support vdupq_n_f16, vld1q_f16, vst1q_f16
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
else()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
add_compile_options(-mcpu=native)
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
add_compile_options(-mfp16-format=ieee)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access)
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
# Raspberry Pi 2
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations)
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
add_compile_options(-mfp16-format=ieee -mno-unaligned-access)
|
||||
add_compile_options(-mno-unaligned-access)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
if (LLAMA_AVX512)
|
||||
@@ -334,6 +564,9 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
add_compile_options($<$<COMPILE_LANGUAGE:CXX>:/arch:AVX>)
|
||||
endif()
|
||||
else()
|
||||
if (LLAMA_NATIVE)
|
||||
add_compile_options(-march=native)
|
||||
endif()
|
||||
if (LLAMA_F16C)
|
||||
add_compile_options(-mf16c)
|
||||
endif()
|
||||
@@ -366,49 +599,201 @@ else()
|
||||
endif()
|
||||
|
||||
#
|
||||
# Build libraries
|
||||
# POSIX conformance
|
||||
#
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
add_compile_definitions(_XOPEN_SOURCE=600)
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
remove_definitions(-D_XOPEN_SOURCE=600)
|
||||
add_compile_definitions(_XOPEN_SOURCE=700)
|
||||
endif()
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity and
|
||||
# some memory allocation are available on Linux through GNU extensions in libc
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
add_compile_definitions(_GNU_SOURCE)
|
||||
endif()
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
if (
|
||||
CMAKE_SYSTEM_NAME MATCHES "Darwin" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "iOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "tvOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "DragonFly"
|
||||
)
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
|
||||
add_compile_definitions(__BSD_VISIBLE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
|
||||
add_compile_definitions(_NETBSD_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
|
||||
add_compile_definitions(_BSD_SOURCE)
|
||||
endif()
|
||||
|
||||
#
|
||||
# libraries
|
||||
#
|
||||
|
||||
# ggml
|
||||
|
||||
if (GGML_USE_CPU_HBM)
|
||||
add_definitions(-DGGML_USE_CPU_HBM)
|
||||
find_library(memkind memkind REQUIRED)
|
||||
endif()
|
||||
|
||||
add_library(ggml OBJECT
|
||||
ggml.c
|
||||
ggml.h
|
||||
${GGML_CUDA_SOURCES}
|
||||
${GGML_OPENCL_SOURCES})
|
||||
ggml-alloc.c
|
||||
ggml-alloc.h
|
||||
ggml-backend.c
|
||||
ggml-backend.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
)
|
||||
|
||||
target_include_directories(ggml PUBLIC .)
|
||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||
target_compile_features(ggml PUBLIC c_std_11) # don't bump
|
||||
target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
if (GGML_USE_CPU_HBM)
|
||||
target_link_libraries(ggml PUBLIC memkind)
|
||||
endif()
|
||||
|
||||
add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
add_library(ggml_shared SHARED $<TARGET_OBJECTS:ggml>)
|
||||
target_link_libraries(ggml_shared PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
|
||||
install(TARGETS ggml_shared LIBRARY)
|
||||
endif()
|
||||
|
||||
# llama
|
||||
|
||||
add_library(llama
|
||||
llama.cpp
|
||||
llama.h
|
||||
llama-util.h)
|
||||
)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
|
||||
target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS})
|
||||
target_link_libraries(llama PRIVATE
|
||||
ggml
|
||||
${LLAMA_EXTRA_LIBS}
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(llama PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
target_compile_definitions(llama PRIVATE LLAMA_SHARED LLAMA_BUILD)
|
||||
if (LLAMA_METAL)
|
||||
set_target_properties(llama PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/ggml-metal.metal")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if (GGML_CUDA_SOURCES)
|
||||
message(STATUS "GGML CUDA sources found, configuring CUDA architecture")
|
||||
set_property(TARGET ggml PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
set_property(TARGET ggml PROPERTY CUDA_SELECT_NVCC_ARCH_FLAGS "Auto")
|
||||
set_property(TARGET llama PROPERTY CUDA_ARCHITECTURES OFF)
|
||||
endif()
|
||||
|
||||
#
|
||||
# install
|
||||
#
|
||||
|
||||
include(GNUInstallDirs)
|
||||
include(CMakePackageConfigHelpers)
|
||||
|
||||
set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR}
|
||||
CACHE PATH "Location of header files")
|
||||
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR}
|
||||
CACHE PATH "Location of library files")
|
||||
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR}
|
||||
CACHE PATH "Location of binary files")
|
||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
|
||||
|
||||
configure_package_config_file(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
|
||||
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
||||
INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama
|
||||
PATH_VARS LLAMA_INCLUDE_INSTALL_DIR
|
||||
LLAMA_LIB_INSTALL_DIR
|
||||
LLAMA_BIN_INSTALL_DIR )
|
||||
|
||||
write_basic_package_version_file(
|
||||
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake
|
||||
VERSION ${LLAMA_INSTALL_VERSION}
|
||||
COMPATIBILITY SameMajorVersion)
|
||||
|
||||
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
||||
${CMAKE_CURRENT_BINARY_DIR}/LlamaConfigVersion.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
|
||||
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
install(TARGETS ggml PUBLIC_HEADER)
|
||||
|
||||
set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}/llama.h)
|
||||
install(TARGETS llama LIBRARY PUBLIC_HEADER)
|
||||
|
||||
install(
|
||||
FILES convert.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
OWNER_EXECUTE
|
||||
GROUP_READ
|
||||
GROUP_EXECUTE
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
install(
|
||||
FILES convert-lora-to-ggml.py
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
OWNER_EXECUTE
|
||||
GROUP_READ
|
||||
GROUP_EXECUTE
|
||||
WORLD_READ
|
||||
WORLD_EXECUTE
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
if (LLAMA_METAL)
|
||||
install(
|
||||
FILES ggml-metal.metal
|
||||
PERMISSIONS
|
||||
OWNER_READ
|
||||
OWNER_WRITE
|
||||
GROUP_READ
|
||||
WORLD_READ
|
||||
DESTINATION ${CMAKE_INSTALL_BINDIR})
|
||||
endif()
|
||||
|
||||
#
|
||||
# programs, examples and tests
|
||||
#
|
||||
|
||||
add_subdirectory(common)
|
||||
|
||||
if (LLAMA_BUILD_TESTS AND NOT CMAKE_JS_VERSION)
|
||||
include(CTest)
|
||||
add_subdirectory(tests)
|
||||
|
||||
663
Makefile
663
Makefile
@@ -1,5 +1,11 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
default: main quantize quantize-stats perplexity embedding vdot
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
|
||||
ifndef UNAME_S
|
||||
UNAME_S := $(shell uname -s)
|
||||
@@ -13,12 +19,27 @@ ifndef UNAME_M
|
||||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
ifeq '' '$(findstring clang,$(shell $(CC) --version))'
|
||||
CC_IS_GCC=1
|
||||
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
else
|
||||
CC_IS_CLANG=1
|
||||
ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))'
|
||||
CC_IS_LLVM_CLANG=1
|
||||
else
|
||||
CC_IS_APPLE_CLANG=1
|
||||
endif
|
||||
CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
|
||||
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
ifndef LLAMA_NO_METAL
|
||||
LLAMA_METAL := 1
|
||||
endif
|
||||
|
||||
ifneq ($(UNAME_P),arm)
|
||||
SYSCTL_M := $(shell sysctl -n hw.optional.arm64 2>/dev/null)
|
||||
ifeq ($(SYSCTL_M),1)
|
||||
@@ -29,153 +50,456 @@ ifeq ($(UNAME_S),Darwin)
|
||||
endif
|
||||
endif
|
||||
|
||||
ifneq '' '$(or $(filter clean,$(MAKECMDGOALS)),$(LLAMA_METAL))'
|
||||
BUILD_TARGETS += metal
|
||||
endif
|
||||
|
||||
default: $(BUILD_TARGETS)
|
||||
|
||||
test: $(TEST_TARGETS)
|
||||
@failures=0; \
|
||||
for test_target in $(TEST_TARGETS); do \
|
||||
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
|
||||
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
|
||||
./$$test_target $(CURDIR)/models/ggml-vocab-falcon.gguf; \
|
||||
elif [ "$$test_target" = "tests/test-tokenizer-1-llama" ]; then \
|
||||
continue; \
|
||||
elif [ "$$test_target" = "tests/test-tokenizer-1-bpe" ]; then \
|
||||
continue; \
|
||||
else \
|
||||
echo "Running test $$test_target..."; \
|
||||
./$$test_target; \
|
||||
fi; \
|
||||
if [ $$? -ne 0 ]; then \
|
||||
printf 'Test $$test_target FAILED!\n\n' $$test_target; \
|
||||
failures=$$(( failures + 1 )); \
|
||||
else \
|
||||
printf 'Test %s passed.\n\n' $$test_target; \
|
||||
fi; \
|
||||
done; \
|
||||
if [ $$failures -gt 0 ]; then \
|
||||
printf '\n%s tests failed.\n' $$failures; \
|
||||
exit 1; \
|
||||
fi
|
||||
@echo 'All tests passed.'
|
||||
|
||||
all: $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
|
||||
coverage: ## Run code coverage
|
||||
gcov -pb tests/*.cpp
|
||||
|
||||
lcov-report: coverage ## Generate lcov report
|
||||
mkdir -p lcov-report
|
||||
lcov --capture --directory . --output-file lcov-report/coverage.info
|
||||
genhtml lcov-report/coverage.info --output-directory lcov-report
|
||||
|
||||
gcovr-report: coverage ## Generate gcovr report
|
||||
mkdir -p gcovr-report
|
||||
gcovr --root . --html --html-details --output gcovr-report/coverage.html
|
||||
|
||||
ifdef RISCV_CROSS_COMPILE
|
||||
CC := riscv64-unknown-linux-gnu-gcc
|
||||
CXX := riscv64-unknown-linux-gnu-g++
|
||||
endif
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
||||
# keep standard at C11 and C++11
|
||||
CFLAGS = -I. -O3 -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./examples -O3 -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
MK_CPPFLAGS = -I. -Icommon
|
||||
MK_CFLAGS = -std=c11 -fPIC
|
||||
MK_CXXFLAGS = -std=c++11 -fPIC
|
||||
|
||||
ifndef LLAMA_DEBUG
|
||||
CFLAGS += -DNDEBUG
|
||||
CXXFLAGS += -DNDEBUG
|
||||
# -Ofast tends to produce faster code, but may not be available for some compilers.
|
||||
ifdef LLAMA_FAST
|
||||
MK_CFLAGS += -Ofast
|
||||
MK_HOST_CXXFLAGS += -Ofast
|
||||
MK_CUDA_CXXFLAGS += -O3
|
||||
else
|
||||
MK_CFLAGS += -O3
|
||||
MK_CXXFLAGS += -O3
|
||||
endif
|
||||
|
||||
# clock_gettime came in POSIX.1b (1993)
|
||||
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
|
||||
# posix_memalign came in POSIX.1-2001 / SUSv3
|
||||
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
|
||||
MK_CPPFLAGS += -D_XOPEN_SOURCE=600
|
||||
|
||||
# Somehow in OpenBSD whenever POSIX conformance is specified
|
||||
# some string functions rely on locale_t availability,
|
||||
# which was introduced in POSIX.1-2008, forcing us to go higher
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
MK_CPPFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
|
||||
endif
|
||||
|
||||
# Data types, macros and functions related to controlling CPU affinity and
|
||||
# some memory allocation are available on Linux through GNU extensions in libc
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
MK_CPPFLAGS += -D_GNU_SOURCE
|
||||
endif
|
||||
|
||||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -D_DARWIN_C_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),DragonFly)
|
||||
MK_CPPFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
|
||||
# alloca is a non-standard interface that is not visible on BSDs when
|
||||
# POSIX conformance is specified, but not all of them provide a clean way
|
||||
# to enable it in such cases
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
MK_CPPFLAGS += -D__BSD_VISIBLE
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
MK_CPPFLAGS += -D_NETBSD_SOURCE
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
MK_CPPFLAGS += -D_BSD_SOURCE
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
MK_CFLAGS += -O0 -g
|
||||
MK_CXXFLAGS += -O0 -g
|
||||
MK_LDFLAGS += -g
|
||||
else
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
|
||||
ifdef LLAMA_CODE_COVERAGE
|
||||
MK_CXXFLAGS += -fprofile-arcs -ftest-coverage -dumpbase ''
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
MK_CPPFLAGS += -DLOG_DISABLE_LOGS
|
||||
endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
WARN_FLAGS = -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
|
||||
MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int \
|
||||
-Werror=implicit-function-declaration
|
||||
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||
|
||||
ifeq ($(CC_IS_CLANG), 1)
|
||||
# clang options
|
||||
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
|
||||
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||
|
||||
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
else
|
||||
# gcc options
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
MK_HOST_CXXFLAGS += -Wno-array-bounds
|
||||
|
||||
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wextra-semi
|
||||
endif
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
|
||||
MK_CFLAGS += -pthread
|
||||
MK_CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
|
||||
# detect Windows
|
||||
ifneq ($(findstring _NT,$(UNAME_S)),)
|
||||
_WIN32 := 1
|
||||
endif
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
|
||||
# library name prefix
|
||||
ifneq ($(_WIN32),1)
|
||||
LIB_PRE := lib
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
|
||||
# Dynamic Shared Object extension
|
||||
ifneq ($(_WIN32),1)
|
||||
DSO_EXT := .so
|
||||
else
|
||||
DSO_EXT := .dll
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Haiku)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
|
||||
# Windows Sockets 2 (Winsock) for network-capable apps
|
||||
ifeq ($(_WIN32),1)
|
||||
LWINSOCK2 := -lws2_32
|
||||
endif
|
||||
|
||||
ifdef LLAMA_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
MK_CFLAGS += -pg
|
||||
MK_CXXFLAGS += -pg
|
||||
endif
|
||||
ifdef LLAMA_PERF
|
||||
CFLAGS += -DGGML_PERF
|
||||
CXXFLAGS += -DGGML_PERF
|
||||
MK_CPPFLAGS += -DGGML_PERF
|
||||
endif
|
||||
|
||||
# Architecture specific
|
||||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686))
|
||||
|
||||
ifndef RISCV
|
||||
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
# Use all CPU extensions that are available:
|
||||
CFLAGS += -march=native -mtune=native
|
||||
CXXFLAGS += -march=native -mtune=native
|
||||
MK_CFLAGS += -march=native -mtune=native
|
||||
MK_HOST_CXXFLAGS += -march=native -mtune=native
|
||||
|
||||
# Usage AVX-only
|
||||
#CFLAGS += -mfma -mf16c -mavx
|
||||
#CXXFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CXXFLAGS += -mfma -mf16c -mavx
|
||||
|
||||
# Usage SSSE3-only (Not is SSE3!)
|
||||
#MK_CFLAGS += -mssse3
|
||||
#MK_CXXFLAGS += -mssse3
|
||||
endif
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mcpu=power9
|
||||
CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
endif
|
||||
endif
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac M1 - include Accelerate framework.
|
||||
# `-framework Accelerate` works on Mac Intel as well, with negliable performance boost (as of the predict time).
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/openblas -I/usr/include/openblas
|
||||
ifneq ($(shell grep -e "Arch Linux" -e "ID_LIKE=arch" /etc/os-release 2>/dev/null),)
|
||||
LDFLAGS += -lopenblas -lcblas
|
||||
else
|
||||
LDFLAGS += -lopenblas
|
||||
endif
|
||||
endif
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCC = nvcc
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -arch=native
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) $(CXXFLAGS) -Wno-pedantic -c $< -o $@
|
||||
endif
|
||||
ifdef LLAMA_CLBLAST
|
||||
CFLAGS += -DGGML_USE_CLBLAST
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += -lclblast -lOpenCL
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
ggml-opencl.o: ggml-opencl.c ggml-opencl.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54412
|
||||
# https://github.com/ggerganov/llama.cpp/issues/2922
|
||||
ifneq '' '$(findstring mingw,$(shell $(CC) -dumpmachine))'
|
||||
MK_CFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
MK_CXXFLAGS += -Xassembler -muse-unaligned-vector-move
|
||||
endif
|
||||
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
MK_CFLAGS += -mcpu=native
|
||||
MK_CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, Zero
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# Raspberry Pi 2
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
MK_CFLAGS += -mcpu=power9
|
||||
MK_CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
endif
|
||||
|
||||
else
|
||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
|
||||
OBJS += k_quants.o
|
||||
ifdef LLAMA_QKK_64
|
||||
MK_CPPFLAGS += -DGGML_QKK_64
|
||||
endif
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
|
||||
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
||||
MK_CFLAGS += -Wno-cast-qual
|
||||
MK_CXXFLAGS += -Wno-cast-qual
|
||||
OBJS += ggml-mpi.o
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
NVCC = $(LLAMA_CUDA_NVCC)
|
||||
else
|
||||
NVCC = nvcc
|
||||
endif #LLAMA_CUDA_NVCC
|
||||
ifdef CUDA_DOCKER_ARCH
|
||||
NVCCFLAGS += -Wno-deprecated-gpu-targets -arch=$(CUDA_DOCKER_ARCH)
|
||||
else
|
||||
NVCCFLAGS += -arch=native
|
||||
endif # CUDA_DOCKER_ARCH
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
ifdef LLAMA_CUDA_DMMV_X
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
|
||||
endif # LLAMA_CUDA_DMMV_X
|
||||
ifdef LLAMA_CUDA_MMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
else ifdef LLAMA_CUDA_DMMV_Y
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_DMMV_Y) # for backwards compatibility
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
|
||||
endif # LLAMA_CUDA_MMV_Y
|
||||
ifdef LLAMA_CUDA_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_F16
|
||||
ifdef LLAMA_CUDA_DMMV_F16
|
||||
NVCCFLAGS += -DGGML_CUDA_F16
|
||||
endif # LLAMA_CUDA_DMMV_F16
|
||||
ifdef LLAMA_CUDA_KQUANTS_ITER
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
else
|
||||
NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
|
||||
endif
|
||||
ifdef LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(LLAMA_CUDA_PEER_MAX_BATCH_SIZE)
|
||||
else
|
||||
NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
|
||||
endif # LLAMA_CUDA_PEER_MAX_BATCH_SIZE
|
||||
#ifdef LLAMA_CUDA_CUBLAS
|
||||
# NVCCFLAGS += -DGGML_CUDA_CUBLAS
|
||||
#endif # LLAMA_CUDA_CUBLAS
|
||||
ifdef LLAMA_CUDA_CCBIN
|
||||
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) -c $< -o $@
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
MK_LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
|
||||
ggml-opencl.o: ggml-opencl.cpp ggml-opencl.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
endif # LLAMA_CLBLAST
|
||||
|
||||
ifdef LLAMA_HIPBLAS
|
||||
ROCM_PATH ?= /opt/rocm
|
||||
HIPCC ?= $(ROCM_PATH)/bin/hipcc
|
||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
OBJS += ggml-cuda.o
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif # LLAMA_HIPBLAS
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJS += ggml-metal.o
|
||||
ifdef LLAMA_METAL_NDEBUG
|
||||
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
|
||||
endif
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
k_quants.o: k_quants.c k_quants.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_NO_K_QUANTS
|
||||
|
||||
# combine build flags with cmdline overrides
|
||||
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
|
||||
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override CUDA_CXXFLAGS := $(MK_CUDA_CXXFLAGS) $(CUDA_CXXFLAGS)
|
||||
override HOST_CXXFLAGS := $(MK_HOST_CXXFLAGS) $(HOST_CXXFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
# save CXXFLAGS before we add host-only options
|
||||
NVCCFLAGS := $(NVCCFLAGS) $(CXXFLAGS) $(CUDA_CXXFLAGS) -Wno-pedantic -Xcompiler "$(HOST_CXXFLAGS)"
|
||||
override CXXFLAGS += $(HOST_CXXFLAGS)
|
||||
|
||||
#
|
||||
# Print build information
|
||||
#
|
||||
|
||||
$(info I llama.cpp build info: )
|
||||
$(info I UNAME_S: $(UNAME_S))
|
||||
$(info I UNAME_P: $(UNAME_P))
|
||||
$(info I UNAME_M: $(UNAME_M))
|
||||
$(info I CFLAGS: $(CFLAGS))
|
||||
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info I UNAME_S: $(UNAME_S))
|
||||
$(info I UNAME_P: $(UNAME_P))
|
||||
$(info I UNAME_M: $(UNAME_M))
|
||||
$(info I CFLAGS: $(CFLAGS))
|
||||
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||
$(info I NVCCFLAGS: $(NVCCFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
$(info )
|
||||
|
||||
#
|
||||
@@ -185,45 +509,116 @@ $(info )
|
||||
ggml.o: ggml.c ggml.h ggml-cuda.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
llama.o: llama.cpp ggml.h ggml-cuda.h llama.h llama-util.h
|
||||
ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
OBJS += ggml-alloc.o ggml-backend.o
|
||||
|
||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common.o: examples/common.cpp examples/common.h
|
||||
common.o: common/common.cpp common/common.h build-info.h common/log.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
console.o: common/console.cpp common/console.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
train.o: common/train.cpp common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -vf *.o main quantize quantize-stats perplexity embedding benchmark-matmult save-load-state build-info.h
|
||||
rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult build-info.h *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
|
||||
|
||||
#
|
||||
# Examples
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif
|
||||
|
||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
@sh scripts/build-info.sh > $@.tmp
|
||||
@sh scripts/build-info.sh $(CC) > $@.tmp
|
||||
@if ! cmp -s $@.tmp $@; then \
|
||||
mv $@.tmp $@; \
|
||||
else \
|
||||
@@ -234,13 +629,57 @@ build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
# Tests
|
||||
#
|
||||
|
||||
tests: $(TEST_TARGETS)
|
||||
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
run-benchmark-matmult: benchmark-matmult
|
||||
./$@
|
||||
|
||||
.PHONY: run-benchmark-matmult
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
.PHONY: tests
|
||||
tests:
|
||||
bash ./tests/run-tests.sh
|
||||
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-c.o: tests/test-c.c llama.h
|
||||
$(CC) $(CFLAGS) -c $(filter-out %.h,$^) -o $@
|
||||
|
||||
@@ -2,8 +2,33 @@
|
||||
|
||||
import PackageDescription
|
||||
|
||||
#if arch(arm) || arch(arm64)
|
||||
let platforms: [SupportedPlatform]? = [
|
||||
.macOS(.v11),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
]
|
||||
let exclude: [String] = []
|
||||
let resources: [Resource] = [
|
||||
.process("ggml-metal.metal")
|
||||
]
|
||||
let additionalSources: [String] = ["ggml-metal.m"]
|
||||
let additionalSettings: [CSetting] = [
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_USE_METAL")
|
||||
]
|
||||
#else
|
||||
let platforms: [SupportedPlatform]? = nil
|
||||
let exclude: [String] = ["ggml-metal.metal"]
|
||||
let resources: [Resource] = []
|
||||
let additionalSources: [String] = []
|
||||
let additionalSettings: [CSetting] = []
|
||||
#endif
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: platforms,
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
@@ -11,13 +36,29 @@ let package = Package(
|
||||
.target(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
sources: ["ggml.c", "llama.cpp"],
|
||||
exclude: exclude,
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"k_quants.c",
|
||||
] + additionalSources,
|
||||
resources: resources,
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||
.define("GGML_USE_K_QUANTS"),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
// We should consider add this in the future when we drop support for iOS 14
|
||||
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
|
||||
// .define("ACCELERATE_NEW_LAPACK"),
|
||||
// .define("ACCELERATE_LAPACK_ILP64")
|
||||
] + additionalSettings,
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
),
|
||||
)
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
)
|
||||
|
||||
634
README.md
634
README.md
@@ -5,13 +5,20 @@
|
||||
[](https://github.com/ggerganov/llama.cpp/actions)
|
||||
[](https://opensource.org/licenses/MIT)
|
||||
|
||||
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
|
||||
|
||||
Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
**Hot topics:**
|
||||
### Hot topics
|
||||
|
||||
- Quantization formats `Q4` and `Q8` have changed again (19 May) - [(info)](https://github.com/ggerganov/llama.cpp/pull/1508)
|
||||
- Quantization formats `Q4` and `Q5` have changed - requantize any old models [(info)](https://github.com/ggerganov/llama.cpp/pull/1405)
|
||||
- [Roadmap May 2023](https://github.com/ggerganov/llama.cpp/discussions/1220)
|
||||
- ‼️ Breaking change: `rope_freq_base` and `rope_freq_scale` must be set to zero to use the model default values: [#3401](https://github.com/ggerganov/llama.cpp/pull/3401)
|
||||
- Parallel decoding + continuous batching support added: [#3228](https://github.com/ggerganov/llama.cpp/pull/3228) \
|
||||
**Devs should become familiar with the new API**
|
||||
- Local Falcon 180B inference on Mac Studio
|
||||
|
||||
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
|
||||
|
||||
----
|
||||
|
||||
<details>
|
||||
<summary>Table of Contents</summary>
|
||||
@@ -29,7 +36,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
<li><a href="#memorydisk-requirements">Memory/Disk Requirements</a></li>
|
||||
<li><a href="#quantization">Quantization</a></li>
|
||||
<li><a href="#interactive-mode">Interactive mode</a></li>
|
||||
<li><a href="#constrained-output-with-grammars">Constrained output with grammars</a></li>
|
||||
<li><a href="#instruction-mode-with-alpaca">Instruction mode with Alpaca</a></li>
|
||||
<li><a href="#using-openllama">Using OpenLLaMA</a></li>
|
||||
<li><a href="#using-gpt4all">Using GPT4All</a></li>
|
||||
<li><a href="#using-pygmalion-7b--metharme-7b">Using Pygmalion 7B & Metharme 7B</a></li>
|
||||
<li><a href="#obtaining-the-facebook-llama-original-model-and-stanford-alpaca-model-data">Obtaining the Facebook LLaMA original model and Stanford Alpaca model data</a></li>
|
||||
@@ -51,16 +60,14 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
The main goal of `llama.cpp` is to run the LLaMA model using 4-bit integer quantization on a MacBook
|
||||
|
||||
- Plain C/C++ implementation without dependencies
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON and Accelerate framework
|
||||
- Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
|
||||
- AVX, AVX2 and AVX512 support for x86 architectures
|
||||
- Mixed F16 / F32 precision
|
||||
- 4-bit, 5-bit and 8-bit integer quantization support
|
||||
- Runs on the CPU
|
||||
- OpenBLAS support
|
||||
- cuBLAS and CLBlast support
|
||||
- 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
|
||||
- CUDA, Metal and OpenCL GPU backend support
|
||||
|
||||
The original implementation of `llama.cpp` was [hacked in an evening](https://github.com/ggerganov/llama.cpp/issues/33#issuecomment-1465108022).
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is for educational purposes and serves
|
||||
Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves
|
||||
as the main playground for developing new features for the [ggml](https://github.com/ggerganov/ggml) library.
|
||||
|
||||
**Supported platforms:**
|
||||
@@ -73,115 +80,122 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
**Supported models:**
|
||||
|
||||
- [X] LLaMA 🦙
|
||||
- [x] LLaMA 2 🦙🦙
|
||||
- [X] Falcon
|
||||
- [X] [Alpaca](https://github.com/ggerganov/llama.cpp#instruction-mode-with-alpaca)
|
||||
- [X] [GPT4All](https://github.com/ggerganov/llama.cpp#using-gpt4all)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
|
||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||
- [X] [Vicuna](https://github.com/ggerganov/llama.cpp/discussions/643#discussioncomment-5533894)
|
||||
- [X] [Koala](https://bair.berkeley.edu/blog/2023/04/03/koala/)
|
||||
- [X] [OpenBuddy 🐶 (Multilingual)](https://github.com/OpenBuddy/OpenBuddy)
|
||||
- [X] [Pygmalion 7B / Metharme 7B](#using-pygmalion-7b--metharme-7b)
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
- Python: [abetlen/llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
|
||||
- Go: [go-skynet/go-llama.cpp](https://github.com/go-skynet/go-llama.cpp)
|
||||
- Node.js: [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
|
||||
- Node.js: [withcatai/node-llama-cpp](https://github.com/withcatai/node-llama-cpp), [hlhr202/llama-node](https://github.com/hlhr202/llama-node)
|
||||
- Ruby: [yoshoku/llama_cpp.rb](https://github.com/yoshoku/llama_cpp.rb)
|
||||
- Rust: [mdrokz/rust-llama.cpp](https://github.com/mdrokz/rust-llama.cpp)
|
||||
- C#/.NET: [SciSharp/LLamaSharp](https://github.com/SciSharp/LLamaSharp)
|
||||
- Scala 3: [donderom/llm4s](https://github.com/donderom/llm4s)
|
||||
- Clojure: [phronmophobic/llama.clj](https://github.com/phronmophobic/llama.clj)
|
||||
- React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn)
|
||||
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
|
||||
|
||||
**UI:**
|
||||
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
||||
---
|
||||
|
||||
Here is a typical run using LLaMA-7B:
|
||||
Here is a typical run using LLaMA v2 13B on M2 Ultra:
|
||||
|
||||
```java
|
||||
make -j && ./main -m ./models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
|
||||
I llama.cpp build info:
|
||||
I UNAME_S: Darwin
|
||||
I UNAME_P: arm
|
||||
I UNAME_M: arm64
|
||||
I CFLAGS: -I. -O3 -DNDEBUG -std=c11 -fPIC -pthread -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./examples -O3 -DNDEBUG -std=c++11 -fPIC -pthread
|
||||
I CFLAGS: -I. -O3 -std=c11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
|
||||
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
|
||||
I LDFLAGS: -framework Accelerate
|
||||
I CC: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
I CXX: Apple clang version 14.0.0 (clang-1400.0.29.202)
|
||||
I CC: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
I CXX: Apple clang version 14.0.3 (clang-1403.0.22.14.1)
|
||||
|
||||
make: Nothing to be done for `default'.
|
||||
main: seed = 1678486056
|
||||
llama_model_load: loading model from './models/7B/ggml-model-q4_0.bin' - please wait ...
|
||||
llama_model_load: n_vocab = 32000
|
||||
llama_model_load: n_ctx = 512
|
||||
llama_model_load: n_embd = 4096
|
||||
llama_model_load: n_mult = 256
|
||||
llama_model_load: n_head = 32
|
||||
llama_model_load: n_layer = 32
|
||||
llama_model_load: n_rot = 128
|
||||
llama_model_load: f16 = 2
|
||||
llama_model_load: n_ff = 11008
|
||||
llama_model_load: ggml ctx size = 4529.34 MB
|
||||
llama_model_load: memory_size = 512.00 MB, n_mem = 16384
|
||||
llama_model_load: .................................... done
|
||||
llama_model_load: model size = 4017.27 MB / num tensors = 291
|
||||
main: build = 1041 (cf658ad)
|
||||
main: seed = 1692823051
|
||||
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
|
||||
llama_model_loader: - type f32: 81 tensors
|
||||
llama_model_loader: - type q4_0: 281 tensors
|
||||
llama_model_loader: - type q6_K: 1 tensors
|
||||
llm_load_print_meta: format = GGUF V1 (latest)
|
||||
llm_load_print_meta: arch = llama
|
||||
llm_load_print_meta: vocab type = SPM
|
||||
llm_load_print_meta: n_vocab = 32000
|
||||
llm_load_print_meta: n_merges = 0
|
||||
llm_load_print_meta: n_ctx_train = 4096
|
||||
llm_load_print_meta: n_ctx = 512
|
||||
llm_load_print_meta: n_embd = 5120
|
||||
llm_load_print_meta: n_head = 40
|
||||
llm_load_print_meta: n_head_kv = 40
|
||||
llm_load_print_meta: n_layer = 40
|
||||
llm_load_print_meta: n_rot = 128
|
||||
llm_load_print_meta: n_gqa = 1
|
||||
llm_load_print_meta: f_norm_eps = 1.0e-05
|
||||
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
|
||||
llm_load_print_meta: n_ff = 13824
|
||||
llm_load_print_meta: freq_base = 10000.0
|
||||
llm_load_print_meta: freq_scale = 1
|
||||
llm_load_print_meta: model type = 13B
|
||||
llm_load_print_meta: model ftype = mostly Q4_0
|
||||
llm_load_print_meta: model size = 13.02 B
|
||||
llm_load_print_meta: general.name = LLaMA v2
|
||||
llm_load_print_meta: BOS token = 1 '<s>'
|
||||
llm_load_print_meta: EOS token = 2 '</s>'
|
||||
llm_load_print_meta: UNK token = 0 '<unk>'
|
||||
llm_load_print_meta: LF token = 13 '<0x0A>'
|
||||
llm_load_tensors: ggml ctx size = 0.11 MB
|
||||
llm_load_tensors: mem required = 7024.01 MB (+ 400.00 MB per state)
|
||||
...................................................................................................
|
||||
llama_new_context_with_model: kv self size = 400.00 MB
|
||||
llama_new_context_with_model: compute buffer total size = 75.41 MB
|
||||
|
||||
main: prompt: 'Building a website can be done in 10 simple steps:'
|
||||
main: number of tokens in prompt = 15
|
||||
1 -> ''
|
||||
8893 -> 'Build'
|
||||
292 -> 'ing'
|
||||
263 -> ' a'
|
||||
4700 -> ' website'
|
||||
508 -> ' can'
|
||||
367 -> ' be'
|
||||
2309 -> ' done'
|
||||
297 -> ' in'
|
||||
29871 -> ' '
|
||||
29896 -> '1'
|
||||
29900 -> '0'
|
||||
2560 -> ' simple'
|
||||
6576 -> ' steps'
|
||||
29901 -> ':'
|
||||
|
||||
sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000
|
||||
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
|
||||
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
|
||||
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0
|
||||
|
||||
|
||||
Building a website can be done in 10 simple steps:
|
||||
1) Select a domain name and web hosting plan
|
||||
2) Complete a sitemap
|
||||
3) List your products
|
||||
4) Write product descriptions
|
||||
5) Create a user account
|
||||
6) Build the template
|
||||
7) Start building the website
|
||||
8) Advertise the website
|
||||
9) Provide email support
|
||||
10) Submit the website to search engines
|
||||
A website is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user's browser.
|
||||
The web pages are stored in a web server. The web server is also called a host. When the website is accessed, it is retrieved from the server and displayed on the user's computer.
|
||||
A website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user's screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones.
|
||||
Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
The website is known as a website when it is hosted. This means that it is displayed on a host. The host is usually a web server.
|
||||
A website can be displayed on different browsers. The browsers are basically the software that renders the website on the user’s screen.
|
||||
A website can also be viewed on different devices such as desktops, tablets and smartphones. Hence, to have a website displayed on a browser, the website must be hosted.
|
||||
A domain name is an address of a website. It is the name of the website.
|
||||
A website is an address of a website. It is a collection of web pages that are formatted with HTML. HTML is the code that defines what the website looks like and how it behaves.
|
||||
The HTML code is formatted into a template or a format. Once this is done, it is displayed on the user’s browser.
|
||||
A website is known as a website when it is hosted
|
||||
|
||||
main: mem per token = 14434244 bytes
|
||||
main: load time = 1332.48 ms
|
||||
main: sample time = 1081.40 ms
|
||||
main: predict time = 31378.77 ms / 61.41 ms per token
|
||||
main: total time = 34036.74 ms
|
||||
Building a website can be done in 10 simple steps:
|
||||
Step 1: Find the right website platform.
|
||||
Step 2: Choose your domain name and hosting plan.
|
||||
Step 3: Design your website layout.
|
||||
Step 4: Write your website content and add images.
|
||||
Step 5: Install security features to protect your site from hackers or spammers
|
||||
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc…
|
||||
Step 7: Test it again with people who are not related to you personally – friends or family members will work just fine!
|
||||
Step 8: Start marketing and promoting the website via social media channels or paid ads
|
||||
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc…
|
||||
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
|
||||
How does a Website Work?
|
||||
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit – whether it’s an image or text file (like PDFs). In order for someone else’s browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
|
||||
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols – this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
|
||||
How to
|
||||
llama_print_timings: load time = 576.45 ms
|
||||
llama_print_timings: sample time = 283.10 ms / 400 runs ( 0.71 ms per token, 1412.91 tokens per second)
|
||||
llama_print_timings: prompt eval time = 599.83 ms / 19 tokens ( 31.57 ms per token, 31.68 tokens per second)
|
||||
llama_print_timings: eval time = 24513.59 ms / 399 runs ( 61.44 ms per token, 16.28 tokens per second)
|
||||
llama_print_timings: total time = 25431.49 ms
|
||||
```
|
||||
|
||||
And here is another demo of running both LLaMA-7B and [whisper.cpp](https://github.com/ggerganov/whisper.cpp) on a single M1 Pro MacBook:
|
||||
@@ -230,21 +244,90 @@ In order to build llama.cpp you have three different options.
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
- Using `Zig`:
|
||||
- Using `Zig` (version 0.11 or later):
|
||||
|
||||
Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C,
|
||||
it's also possible to cross compile for other operating systems and architectures:
|
||||
|
||||
```bash
|
||||
zig build -Drelease-fast
|
||||
zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
|
||||
```
|
||||
|
||||
The `zig targets` command will give you valid options to use.
|
||||
|
||||
- Using `gmake` (FreeBSD):
|
||||
|
||||
1. Install and activate [DRM in FreeBSD](https://wiki.freebsd.org/Graphics)
|
||||
2. Add your user to **video** group
|
||||
3. Install compilation dependencies.
|
||||
|
||||
```bash
|
||||
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
|
||||
opencl clblast openblas
|
||||
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
```
|
||||
|
||||
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
|
||||
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
|
||||
the instructions for use and activate this options in this document below.
|
||||
|
||||
### Metal Build
|
||||
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||||
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
|
||||
argument.
|
||||
|
||||
### MPI Build
|
||||
|
||||
MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.
|
||||
|
||||
First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc).
|
||||
|
||||
Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):
|
||||
|
||||
- Using `make`:
|
||||
|
||||
```bash
|
||||
make CC=mpicc CXX=mpicxx LLAMA_MPI=1
|
||||
```
|
||||
|
||||
- Using `CMake`:
|
||||
|
||||
```bash
|
||||
cmake -S . -B build -DLLAMA_MPI=ON
|
||||
```
|
||||
|
||||
Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.
|
||||
|
||||
Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".
|
||||
|
||||
Here is an example hostfile:
|
||||
|
||||
```
|
||||
192.168.0.1:2
|
||||
malvolio.local:1
|
||||
```
|
||||
|
||||
The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.
|
||||
|
||||
Finally, you're ready to run a computation using `mpirun`:
|
||||
|
||||
```bash
|
||||
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
||||
```
|
||||
|
||||
### BLAS Build
|
||||
|
||||
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:
|
||||
|
||||
- Accelerate Framework:
|
||||
- #### Accelerate Framework:
|
||||
|
||||
This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.
|
||||
|
||||
- OpenBLAS:
|
||||
- #### OpenBLAS:
|
||||
|
||||
This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.
|
||||
|
||||
@@ -274,13 +357,28 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_OPENBLAS=ON
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
- cuBLAS
|
||||
- #### BLIS
|
||||
|
||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||
Check [BLIS.md](docs/BLIS.md) for more information.
|
||||
|
||||
- #### Intel MKL
|
||||
|
||||
By default, `LLAMA_BLAS_VENDOR` is set to `Generic`, so if you already sourced intel environment script and assign `-DLLAMA_BLAS=ON` in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
- #### cuBLAS
|
||||
|
||||
This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager (e.g. `apt install nvidia-cuda-toolkit`) or from here: [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads).
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_CUBLAS=1
|
||||
@@ -294,7 +392,152 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
cmake --build . --config Release
|
||||
```
|
||||
|
||||
Note: Because llama.cpp uses multiple CUDA streams for matrix multiplication results [are not guaranteed to be reproducible](https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility). If you need reproducibility, set `GGML_CUDA_MAX_STREAMS` in the file `ggml-cuda.cu` to 1.
|
||||
The environment variable [`CUDA_VISIBLE_DEVICES`](https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars) can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:
|
||||
|
||||
<!---
|
||||
| LLAMA_CUDA_CUBLAS | Boolean | false | Use cuBLAS instead of custom CUDA kernels for prompt processing. Faster for all quantization formats except for q4_0 and q8_0, especially for k-quants. Increases VRAM usage (700 MiB for 7b, 970 MiB for 13b, 1430 MiB for 33b). |
|
||||
--->
|
||||
| Option | Legal values | Default | Description |
|
||||
|--------------------------------|------------------------|---------|-------------|
|
||||
| LLAMA_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
|
||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
|
||||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
|
||||
|
||||
- #### hipBLAS
|
||||
|
||||
This provides BLAS acceleration on HIP-supported AMD GPUs.
|
||||
Make sure to have ROCm installed.
|
||||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
||||
Windows support is coming soon...
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_HIPBLAS=1
|
||||
```
|
||||
- Using `CMake`:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
|
||||
cmake --build .
|
||||
```
|
||||
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
|
||||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------|------------------------|---------|-------------|
|
||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
|
||||
- #### CLBlast
|
||||
|
||||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||||
|
||||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||||
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
|
||||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||||
|
||||
- <details>
|
||||
<summary>Installing the OpenCL SDK from source</summary>
|
||||
|
||||
```sh
|
||||
git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
|
||||
mkdir OpenCL-SDK/build
|
||||
cd OpenCL-SDK/build
|
||||
cmake .. -DBUILD_DOCS=OFF \
|
||||
-DBUILD_EXAMPLES=OFF \
|
||||
-DBUILD_TESTING=OFF \
|
||||
-DOPENCL_SDK_BUILD_SAMPLES=OFF \
|
||||
-DOPENCL_SDK_TEST_SAMPLES=OFF
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix /some/path
|
||||
```
|
||||
</details>
|
||||
|
||||
##### Installing CLBlast
|
||||
|
||||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||||
|
||||
Alternatively, they may be built from source.
|
||||
|
||||
- <details>
|
||||
<summary>Windows:</summary>
|
||||
|
||||
```cmd
|
||||
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
mkdir CLBlast\build
|
||||
cd CLBlast\build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/CLBlast
|
||||
```
|
||||
|
||||
- <details>
|
||||
<summary>Unix:</summary>
|
||||
|
||||
```sh
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
mkdir CLBlast/build
|
||||
cd CLBlast/build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix /some/path
|
||||
```
|
||||
|
||||
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
|
||||
</details>
|
||||
|
||||
##### Building Llama with CLBlast
|
||||
|
||||
- Build with make:
|
||||
```sh
|
||||
make LLAMA_CLBLAST=1
|
||||
```
|
||||
- CMake (Unix):
|
||||
```sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_DIR=/some/path
|
||||
cmake --build . --config Release
|
||||
```
|
||||
- CMake (Windows):
|
||||
```cmd
|
||||
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/LlamaCPP
|
||||
```
|
||||
|
||||
##### Running Llama with CLBlast
|
||||
|
||||
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
|
||||
|
||||
To select the correct platform (driver) and device (GPU), you can use the environment variables `GGML_OPENCL_PLATFORM` and `GGML_OPENCL_DEVICE`.
|
||||
The selection can be a number (starting from 0) or a text string to search:
|
||||
|
||||
```sh
|
||||
GGML_OPENCL_PLATFORM=1 ./main ...
|
||||
GGML_OPENCL_DEVICE=2 ./main ...
|
||||
GGML_OPENCL_PLATFORM=Intel ./main ...
|
||||
GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
|
||||
```
|
||||
|
||||
The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful.
|
||||
Using the variables it is possible to select a CPU-based driver as well, if so desired.
|
||||
|
||||
You can get a list of platforms and devices from the `clinfo -l` command, etc.
|
||||
|
||||
### Prepare Data & Run
|
||||
|
||||
@@ -302,6 +545,9 @@ Note: Because llama.cpp uses multiple CUDA streams for matrix multiplication res
|
||||
# obtain the original LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
@@ -309,11 +555,18 @@ python3 -m pip install -r requirements.txt
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert.py models/7B/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
|
||||
# quantize the model to 4-bits (using q4_0 method)
|
||||
./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin q4_0
|
||||
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
|
||||
|
||||
# update the gguf filetype to current if older version is unsupported by another application
|
||||
./quantize ./models/7B/ggml-model-q4_0.gguf ./models/7B/ggml-model-q4_0-v2.gguf COPY
|
||||
|
||||
|
||||
# run the inference
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -n 128
|
||||
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
||||
```
|
||||
|
||||
When running the larger models, make sure you have enough disk space to store all the intermediate files.
|
||||
@@ -333,6 +586,8 @@ As the models are currently fully loaded into memory, you will need adequate dis
|
||||
|
||||
Several quantization methods are supported. They differ in the resulting model disk size and inference speed.
|
||||
|
||||
*(outdated)*
|
||||
|
||||
| Model | Measure | F16 | Q4_0 | Q4_1 | Q5_0 | Q5_1 | Q8_0 |
|
||||
|------:|--------------|-------:|-------:|-------:|-------:|-------:|-------:|
|
||||
| 7B | perplexity | 5.9066 | 6.1565 | 6.0912 | 5.9862 | 5.9481 | 5.9070 |
|
||||
@@ -346,6 +601,11 @@ Several quantization methods are supported. They differ in the resulting model d
|
||||
| 13B | ms/tok @ 8th | - | 73 | 82 | 98 | 105 | 128 |
|
||||
| 13B | bits/weight | 16.0 | 4.5 | 5.0 | 5.5 | 6.0 | 8.5 |
|
||||
|
||||
- [k-quants](https://github.com/ggerganov/llama.cpp/pull/1684)
|
||||
- recent k-quants improvements
|
||||
- [#2707](https://github.com/ggerganov/llama.cpp/pull/2707)
|
||||
- [#2807](https://github.com/ggerganov/llama.cpp/pull/2807)
|
||||
|
||||
### Perplexity (measuring model quality)
|
||||
|
||||
You can use the `perplexity` example to measure perplexity over a given prompt (lower perplexity is better).
|
||||
@@ -354,6 +614,18 @@ For more information, see [https://huggingface.co/docs/transformers/perplexity](
|
||||
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||
The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.
|
||||
|
||||
#### How to run
|
||||
|
||||
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw`
|
||||
3. Output:
|
||||
```
|
||||
perplexity : calculating perplexity over 655 chunks
|
||||
24.43 seconds per pass - ETA 4.45 hours
|
||||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
||||
```
|
||||
And after 4.45 hours, you will have the final perplexity.
|
||||
|
||||
### Interactive mode
|
||||
|
||||
If you want a more ChatGPT-like experience, you can run in interactive mode by passing `-i` as a parameter.
|
||||
@@ -369,13 +641,44 @@ Here is an example of a few-shot interaction, invoked with the command
|
||||
./examples/chat-13B.sh
|
||||
|
||||
# custom arguments using a 13B model
|
||||
./main -m ./models/13B/ggml-model-q4_0.bin -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt
|
||||
```
|
||||
|
||||
Note the use of `--color` to distinguish between user input and generated text. Other parameters are explained in more detail in the [README](examples/main/README.md) for the `main` example program.
|
||||
|
||||

|
||||
|
||||
### Persistent Interaction
|
||||
|
||||
The prompt, user inputs, and model generations can be saved and resumed across calls to `./main` by leveraging `--prompt-cache` and `--prompt-cache-all`. The `./examples/chat-persistent.sh` script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as `chat-13B.sh`. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (`PROMPT_TEMPLATE`) and the model file.
|
||||
|
||||
```bash
|
||||
# Start a new chat
|
||||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
|
||||
|
||||
# Resume that chat
|
||||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh
|
||||
|
||||
# Start a different chat with the same prompt/model
|
||||
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh
|
||||
|
||||
# Different prompt cache for different prompt/model
|
||||
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
|
||||
CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh
|
||||
```
|
||||
|
||||
### Constrained output with grammars
|
||||
|
||||
`llama.cpp` supports grammars to constrain model output. For example, you can force the model to output JSON only:
|
||||
|
||||
```bash
|
||||
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'
|
||||
```
|
||||
|
||||
The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md).
|
||||
|
||||
For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one.
|
||||
|
||||
### Instruction mode with Alpaca
|
||||
|
||||
1. First, download the `ggml` Alpaca model into the `./models` folder
|
||||
@@ -404,8 +707,17 @@ cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
|
||||
>
|
||||
```
|
||||
|
||||
### Using [OpenLLaMA](https://github.com/openlm-research/open_llama)
|
||||
|
||||
OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.
|
||||
|
||||
- Download the [3B](https://huggingface.co/openlm-research/open_llama_3b), [7B](https://huggingface.co/openlm-research/open_llama_7b), or [13B](https://huggingface.co/openlm-research/open_llama_13b) model from Hugging Face.
|
||||
- Convert the model to ggml FP16 format using `python convert.py <path to OpenLLaMA directory>`
|
||||
|
||||
### Using [GPT4All](https://github.com/nomic-ai/gpt4all)
|
||||
|
||||
*Note: these instructions are likely obsoleted by the GGUF update*
|
||||
|
||||
- Obtain the `tokenizer.model` file from LLaMA model and put it to `models`
|
||||
- Obtain the `added_tokens.json` file from Alpaca model and put it to `models`
|
||||
- Obtain the `gpt4all-lora-quantized.bin` file from GPT4All model and put it to `models/gpt4all-7B`
|
||||
@@ -439,6 +751,17 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
|
||||
- The LLaMA models are officially distributed by Facebook and will **never** be provided through this repository.
|
||||
- Refer to [Facebook's LLaMA repository](https://github.com/facebookresearch/llama/pull/73/files) if you need to request access to the model data.
|
||||
|
||||
### Obtaining and using the Facebook LLaMA 2 model
|
||||
|
||||
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
|
||||
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
|
||||
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGUF)
|
||||
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGUF)
|
||||
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
|
||||
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF)
|
||||
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
|
||||
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
|
||||
|
||||
### Verifying the model files
|
||||
|
||||
Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.
|
||||
@@ -446,7 +769,7 @@ Please verify the [sha256 checksums](SHA256SUMS) of all downloaded model files t
|
||||
|
||||
```bash
|
||||
# run the verification script
|
||||
python3 .\scripts\verify-checksum-models.py
|
||||
./scripts/verify-checksum-models.py
|
||||
```
|
||||
|
||||
- On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed `./models` subdirectory:
|
||||
@@ -465,22 +788,16 @@ If your issue is with model generation quality, then please at least scan the fo
|
||||
- [Aligning language models to follow instructions](https://openai.com/research/instruction-following)
|
||||
- [Training language models to follow instructions with human feedback](https://arxiv.org/abs/2203.02155)
|
||||
|
||||
#### How to run
|
||||
|
||||
1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
||||
2. Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
||||
3. Output:
|
||||
```
|
||||
perplexity : calculating perplexity over 655 chunks
|
||||
24.43 seconds per pass - ETA 4.45 hours
|
||||
[1]4.5970,[2]5.1807,[3]6.0382,...
|
||||
```
|
||||
And after 4.45 hours, you will have the final perplexity.
|
||||
|
||||
### Android
|
||||
|
||||
#### Building the Project using Android NDK
|
||||
You can easily run `llama.cpp` on Android device with [termux](https://termux.dev/).
|
||||
First, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
|
||||
|
||||
First, install the essential packages for termux:
|
||||
```
|
||||
pkg install clang wget git cmake
|
||||
```
|
||||
Second, obtain the [Android NDK](https://developer.android.com/ndk) and then build with CMake:
|
||||
```
|
||||
$ mkdir build-android
|
||||
$ cd build-android
|
||||
@@ -493,6 +810,49 @@ Finally, copy the `llama` binary and the model files to your device storage. Her
|
||||
|
||||
https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4
|
||||
|
||||
#### Building the Project using Termux (F-Droid)
|
||||
Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.
|
||||
|
||||
Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.
|
||||
|
||||
If you opt to utilize OpenBLAS, you'll need to install the corresponding package.
|
||||
```
|
||||
apt install libopenblas
|
||||
```
|
||||
|
||||
Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:
|
||||
```
|
||||
apt install ocl-icd opencl-headers opencl-clhpp clinfo
|
||||
```
|
||||
|
||||
In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:
|
||||
```
|
||||
cmake .
|
||||
make
|
||||
cp libclblast.so* $PREFIX/lib
|
||||
cp ./include/clblast.h ../llama.cpp
|
||||
```
|
||||
|
||||
Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:
|
||||
```
|
||||
cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
|
||||
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
|
||||
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)
|
||||
```
|
||||
|
||||
Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:
|
||||
```
|
||||
GGML_OPENCL_PLATFORM=0
|
||||
GGML_OPENCL_DEVICE=0
|
||||
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH
|
||||
```
|
||||
|
||||
(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )
|
||||
|
||||
For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.
|
||||
|
||||
Place your desired model into the `~/llama.cpp/models/` directory and execute the `./main (...)` script.
|
||||
|
||||
### Docker
|
||||
|
||||
#### Prerequisites
|
||||
@@ -502,8 +862,17 @@ https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b0
|
||||
#### Images
|
||||
We have two Docker images available for this project:
|
||||
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file.
|
||||
1. `ghcr.io/ggerganov/llama.cpp:full`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
2. `ghcr.io/ggerganov/llama.cpp:light`: This image only includes the main executable file. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
Additionally, there the following images, similar to the above:
|
||||
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-cuda`: Same as `full` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-cuda`: Same as `light` but compiled with CUDA support. (platforms: `linux/amd64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:full-rocm`: Same as `full` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
- `ghcr.io/ggerganov/llama.cpp:light-rocm`: Same as `light` but compiled with ROCm support. (platforms: `linux/amd64`, `linux/arm64`)
|
||||
|
||||
The GPU enabled images are not currently tested by CI beyond being built. They are not built with any variation from the ones in the Dockerfiles defined in [.devops/](.devops/) and the Gitlab Action defined in [.github/workflows/docker.yml](.github/workflows/docker.yml). If you need different settings (for example, a different CUDA or ROCm library, you'll need to build the images locally for now).
|
||||
|
||||
#### Usage
|
||||
|
||||
@@ -518,13 +887,45 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-
|
||||
On completion, you are ready to play!
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
or with a light image:
|
||||
|
||||
```bash
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512
|
||||
```
|
||||
|
||||
### Docker With CUDA
|
||||
|
||||
Assuming one has the [nvidia-container-toolkit](https://github.com/NVIDIA/nvidia-container-toolkit) properly installed on Linux, or is using a GPU enabled cloud, `cuBLAS` should be accessible inside the container.
|
||||
|
||||
#### Building Locally
|
||||
|
||||
```bash
|
||||
docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
|
||||
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .
|
||||
```
|
||||
|
||||
You may want to pass in some different `ARGS`, depending on the CUDA environment supported by your container host, as well as the GPU architecture.
|
||||
|
||||
The defaults are:
|
||||
|
||||
- `CUDA_VERSION` set to `11.7.1`
|
||||
- `CUDA_DOCKER_ARCH` set to `all`
|
||||
|
||||
The resulting images, are essentially the same as the non-CUDA images:
|
||||
|
||||
1. `local/llama.cpp:full-cuda`: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
|
||||
2. `local/llama.cpp:light-cuda`: This image only includes the main executable file.
|
||||
|
||||
#### Usage
|
||||
|
||||
After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the `--gpus` flag. You will also want to use the `--n-gpu-layers` flag.
|
||||
|
||||
```bash
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
|
||||
```
|
||||
|
||||
### Contributing
|
||||
@@ -547,4 +948,11 @@ docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /mode
|
||||
|
||||
### Docs
|
||||
|
||||
- [main](./examples/main/README.md)
|
||||
- [server](./examples/server/README.md)
|
||||
- [embd-input](./examples/embd-input/README.md)
|
||||
- [jeopardy](./examples/jeopardy/README.md)
|
||||
- [BLIS](./docs/BLIS.md)
|
||||
- [Performance troubleshooting](./docs/token_generation_performance_tips.md)
|
||||
- [GGML tips & tricks](https://github.com/ggerganov/llama.cpp/wiki/GGML-Tips-&-Tricks)
|
||||
- [GBNF grammars](./grammars/README.md)
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
700df0d3013b703a806d2ae7f1bfb8e59814e3d06ae78be0c66368a50059f33d models/7B/consolidated.00.pth
|
||||
666a4bb533b303bdaf89e1b6a3b6f93535d868de31d903afdc20983dc526c847 models/7B/ggml-model-f16.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_0.bin
|
||||
ec2f2d1f0dfb73b72a4cbac7fa121abbe04c37ab327125a38248f930c0f09ddf models/7B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml-model-q5_1.bin
|
||||
@@ -8,7 +8,7 @@ ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/7B/ggml
|
||||
745bf4e29a4dd6f411e72976d92b452da1b49168a4f41c951cfcc8051823cf08 models/13B/consolidated.00.pth
|
||||
d5ccbcc465c71c0de439a5aeffebe8344c68a519bce70bc7f9f92654ee567085 models/13B/consolidated.01.pth
|
||||
2b206e9b21fb1076f11cafc624e2af97c9e48ea09312a0962153acc20d45f808 models/13B/ggml-model-f16.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_0.bin
|
||||
fad169e6f0f575402cf75945961cb4a8ecd824ba4da6be2af831f320c4348fa5 models/13B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/13B/ggml-model-q5_1.bin
|
||||
@@ -18,7 +18,7 @@ e23294a58552d8cdec5b7e8abb87993b97ea6eced4178ff2697c02472539d067 models/30B/con
|
||||
24a87f01028cbd3a12de551dcedb712346c0b5cbdeff1454e0ddf2df9b675378 models/30B/consolidated.02.pth
|
||||
1adfcef71420886119544949767f6a56cb6339b4d5fcde755d80fe68b49de93b models/30B/consolidated.03.pth
|
||||
7e1b524061a9f4b27c22a12d6d2a5bf13b8ebbea73e99f218809351ed9cf7d37 models/30B/ggml-model-f16.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_0.bin
|
||||
d2a441403944819492ec8c2002cc36fa38468149bfb4b7b4c52afc7bd9a7166d models/30B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/30B/ggml-model-q5_1.bin
|
||||
@@ -32,7 +32,7 @@ a287c0dfe49081626567c7fe87f74cce5831f58e459b427b5e05567641f47b78 models/65B/con
|
||||
72b4eba67a1a3b18cb67a85b70f8f1640caae9b40033ea943fb166bd80a7b36b models/65B/consolidated.06.pth
|
||||
d27f5b0677d7ff129ceacd73fd461c4d06910ad7787cf217b249948c3f3bc638 models/65B/consolidated.07.pth
|
||||
60758f2384d74e423dffddfd020ffed9d3bb186ebc54506f9c4a787d0f5367b0 models/65B/ggml-model-f16.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_0.bin
|
||||
cde053439fa4910ae454407e2717cc46cc2c2b4995c00c93297a2b52e790fa92 models/65B/ggml-model-q4_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q4_1.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_0.bin
|
||||
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff models/65B/ggml-model-q5_1.bin
|
||||
|
||||
192
build.zig
192
build.zig
@@ -1,61 +1,145 @@
|
||||
// Compatible with Zig Version 0.11.0
|
||||
const std = @import("std");
|
||||
const ArrayList = std.ArrayList;
|
||||
const Compile = std.Build.Step.Compile;
|
||||
const ConfigHeader = std.Build.Step.ConfigHeader;
|
||||
const Mode = std.builtin.Mode;
|
||||
const CrossTarget = std.zig.CrossTarget;
|
||||
|
||||
pub fn build(b: *std.build.Builder) void {
|
||||
const target = b.standardTargetOptions(.{});
|
||||
const optimize = b.standardReleaseOptions();
|
||||
const want_lto = b.option(bool, "lto", "Want -fLTO");
|
||||
const Maker = struct {
|
||||
builder: *std.build.Builder,
|
||||
target: CrossTarget,
|
||||
optimize: Mode,
|
||||
config_header: *ConfigHeader,
|
||||
enable_lto: bool,
|
||||
|
||||
const lib = b.addStaticLibrary("llama", null);
|
||||
lib.want_lto = want_lto;
|
||||
lib.setTarget(target);
|
||||
lib.setBuildMode(optimize);
|
||||
lib.linkLibCpp();
|
||||
lib.addIncludePath(".");
|
||||
lib.addIncludePath("examples");
|
||||
lib.addCSourceFiles(&.{
|
||||
"ggml.c",
|
||||
}, &.{"-std=c11"});
|
||||
lib.addCSourceFiles(&.{
|
||||
"llama.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
lib.install();
|
||||
include_dirs: ArrayList([]const u8),
|
||||
cflags: ArrayList([]const u8),
|
||||
cxxflags: ArrayList([]const u8),
|
||||
objs: ArrayList(*Compile),
|
||||
|
||||
const build_args = .{ .b = b, .lib = lib, .target = target, .optimize = optimize, .want_lto = want_lto };
|
||||
|
||||
const exe = build_example("main", build_args);
|
||||
_ = build_example("quantize", build_args);
|
||||
_ = build_example("perplexity", build_args);
|
||||
_ = build_example("embedding", build_args);
|
||||
|
||||
// create "zig build run" command for ./main
|
||||
|
||||
const run_cmd = exe.run();
|
||||
run_cmd.step.dependOn(b.getInstallStep());
|
||||
if (b.args) |args| {
|
||||
run_cmd.addArgs(args);
|
||||
fn addInclude(m: *Maker, dir: []const u8) !void {
|
||||
try m.include_dirs.append(dir);
|
||||
}
|
||||
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
|
||||
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
|
||||
}
|
||||
fn addCFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cflags.append(flag);
|
||||
}
|
||||
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.cxxflags.append(flag);
|
||||
}
|
||||
fn addFlag(m: *Maker, flag: []const u8) !void {
|
||||
try m.addCFlag(flag);
|
||||
try m.addCxxFlag(flag);
|
||||
}
|
||||
|
||||
const run_step = b.step("run", "Run the app");
|
||||
run_step.dependOn(&run_cmd.step);
|
||||
}
|
||||
|
||||
fn build_example(comptime name: []const u8, args: anytype) *std.build.LibExeObjStep {
|
||||
const b = args.b;
|
||||
const lib = args.lib;
|
||||
const want_lto = args.want_lto;
|
||||
|
||||
const exe = b.addExecutable(name, null);
|
||||
exe.want_lto = want_lto;
|
||||
lib.setTarget(args.target);
|
||||
lib.setBuildMode(args.optimize);
|
||||
exe.addIncludePath(".");
|
||||
exe.addIncludePath("examples");
|
||||
exe.addCSourceFiles(&.{
|
||||
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{name, name}),
|
||||
"examples/common.cpp",
|
||||
}, &.{"-std=c++11"});
|
||||
exe.linkLibrary(lib);
|
||||
exe.install();
|
||||
|
||||
return exe;
|
||||
fn init(builder: *std.build.Builder) !Maker {
|
||||
const target = builder.standardTargetOptions(.{});
|
||||
const zig_version = @import("builtin").zig_version_string;
|
||||
const commit_hash = try std.ChildProcess.exec(
|
||||
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
|
||||
);
|
||||
const config_header = builder.addConfigHeader(
|
||||
.{ .style = .blank, .include_path = "build-info.h" },
|
||||
.{
|
||||
.BUILD_NUMBER = 0,
|
||||
.BUILD_COMMIT = commit_hash.stdout[0 .. commit_hash.stdout.len - 1], // omit newline
|
||||
.BUILD_COMPILER = builder.fmt("Zig {s}", .{zig_version}),
|
||||
.BUILD_TARGET = try target.allocDescription(builder.allocator),
|
||||
},
|
||||
);
|
||||
var m = Maker{
|
||||
.builder = builder,
|
||||
.target = target,
|
||||
.optimize = builder.standardOptimizeOption(.{}),
|
||||
.config_header = config_header,
|
||||
.enable_lto = false,
|
||||
.include_dirs = ArrayList([]const u8).init(builder.allocator),
|
||||
.cflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.cxxflags = ArrayList([]const u8).init(builder.allocator),
|
||||
.objs = ArrayList(*Compile).init(builder.allocator),
|
||||
};
|
||||
try m.addCFlag("-std=c11");
|
||||
try m.addCxxFlag("-std=c++11");
|
||||
try m.addProjectInclude(&.{});
|
||||
try m.addProjectInclude(&.{"common"});
|
||||
return m;
|
||||
}
|
||||
|
||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
if (o.target.getAbi() != .msvc)
|
||||
o.defineCMacro("_GNU_SOURCE", null);
|
||||
o.addConfigHeader(m.config_header);
|
||||
if (std.mem.endsWith(u8, src, ".c")) {
|
||||
o.addCSourceFiles(&.{src}, m.cflags.items);
|
||||
o.linkLibC();
|
||||
} else {
|
||||
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
if (o.target.getAbi() == .msvc) {
|
||||
o.linkLibC(); // need winsdk + crt
|
||||
} else {
|
||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||
o.linkLibCpp();
|
||||
}
|
||||
}
|
||||
o.addConfigHeader(m.config_header);
|
||||
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
||||
o.want_lto = m.enable_lto;
|
||||
return o;
|
||||
}
|
||||
|
||||
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
||||
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||
e.addCSourceFiles(&.{src}, m.cxxflags.items);
|
||||
for (deps) |d| e.addObject(d);
|
||||
for (m.objs.items) |o| e.addObject(o);
|
||||
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
||||
|
||||
// https://github.com/ziglang/zig/issues/15448
|
||||
if (e.target.getAbi() == .msvc) {
|
||||
e.linkLibC(); // need winsdk + crt
|
||||
} else {
|
||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
||||
e.linkLibCpp();
|
||||
}
|
||||
e.addConfigHeader(m.config_header);
|
||||
m.builder.installArtifact(e);
|
||||
e.want_lto = m.enable_lto;
|
||||
return e;
|
||||
}
|
||||
};
|
||||
|
||||
pub fn build(b: *std.build.Builder) !void {
|
||||
var make = try Maker.init(b);
|
||||
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
||||
|
||||
if (b.option(bool, "k-quants", "Enable K-quants, (default: true)") orelse true) {
|
||||
try make.addFlag("-DGGML_USE_K_QUANTS");
|
||||
const k_quants = make.obj("k_quants", "k_quants.c");
|
||||
try make.objs.append(k_quants);
|
||||
}
|
||||
|
||||
const ggml = make.obj("ggml", "ggml.c");
|
||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
}
|
||||
|
||||
25
ci/README.md
Normal file
25
ci/README.md
Normal file
@@ -0,0 +1,25 @@
|
||||
# CI
|
||||
|
||||
In addition to [Github Actions](https://github.com/ggerganov/llama.cpp/actions) `llama.cpp` uses a custom CI framework:
|
||||
|
||||
https://github.com/ggml-org/ci
|
||||
|
||||
It monitors the `master` branch for new commits and runs the
|
||||
[ci/run.sh](https://github.com/ggerganov/llama.cpp/blob/master/ci/run.sh) script on dedicated cloud instances. This allows us
|
||||
to execute heavier workloads compared to just using Github Actions. Also with time, the cloud instances will be scaled
|
||||
to cover various hardware architectures, including GPU and Apple Silicon instances.
|
||||
|
||||
Collaborators can optionally trigger the CI run by adding the `ggml-ci` keyword to their commit message.
|
||||
Only the branches of this repo are monitored for this keyword.
|
||||
|
||||
It is a good practice, before publishing changes to execute the full CI locally on your machine:
|
||||
|
||||
```bash
|
||||
mkdir tmp
|
||||
|
||||
# CPU-only build
|
||||
bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
|
||||
# with CUDA support
|
||||
GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
```
|
||||
506
ci/run.sh
Executable file
506
ci/run.sh
Executable file
@@ -0,0 +1,506 @@
|
||||
#/bin/bash
|
||||
#
|
||||
# sample usage:
|
||||
#
|
||||
# mkdir tmp
|
||||
#
|
||||
# # CPU-only build
|
||||
# bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
# # with CUDA support
|
||||
# GG_BUILD_CUDA=1 bash ./ci/run.sh ./tmp/results ./tmp/mnt
|
||||
#
|
||||
|
||||
if [ -z "$2" ]; then
|
||||
echo "usage: $0 <output-dir> <mnt-dir>"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
mkdir -p "$1"
|
||||
mkdir -p "$2"
|
||||
|
||||
OUT=$(realpath "$1")
|
||||
MNT=$(realpath "$2")
|
||||
|
||||
rm -v $OUT/*.log
|
||||
rm -v $OUT/*.exit
|
||||
rm -v $OUT/*.md
|
||||
|
||||
sd=`dirname $0`
|
||||
cd $sd/../
|
||||
SRC=`pwd`
|
||||
|
||||
## helpers
|
||||
|
||||
# download a file if it does not exist or if it is outdated
|
||||
function gg_wget {
|
||||
local out=$1
|
||||
local url=$2
|
||||
|
||||
local cwd=`pwd`
|
||||
|
||||
mkdir -p $out
|
||||
cd $out
|
||||
|
||||
# should not re-download if file is the same
|
||||
wget -nv -N $url
|
||||
|
||||
cd $cwd
|
||||
}
|
||||
|
||||
function gg_printf {
|
||||
printf -- "$@" >> $OUT/README.md
|
||||
}
|
||||
|
||||
function gg_run {
|
||||
ci=$1
|
||||
|
||||
set -o pipefail
|
||||
set -x
|
||||
|
||||
gg_run_$ci | tee $OUT/$ci.log
|
||||
cur=$?
|
||||
echo "$cur" > $OUT/$ci.exit
|
||||
|
||||
set +x
|
||||
set +o pipefail
|
||||
|
||||
gg_sum_$ci
|
||||
|
||||
ret=$((ret | cur))
|
||||
}
|
||||
|
||||
## ci
|
||||
|
||||
# ctest_debug
|
||||
|
||||
function gg_run_ctest_debug {
|
||||
cd ${SRC}
|
||||
|
||||
rm -rf build-ci-debug && mkdir build-ci-debug && cd build-ci-debug
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Debug .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_ctest_debug {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs ctest in debug mode\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '\n'
|
||||
}
|
||||
|
||||
# ctest_release
|
||||
|
||||
function gg_run_ctest_release {
|
||||
cd ${SRC}
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
(time ctest --output-on-failure ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
else
|
||||
(time ctest --output-on-failure -E test-opt ) 2>&1 | tee -a $OUT/${ci}-ctest.log
|
||||
fi
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_ctest_release {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'Runs ctest in release mode\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '```\n'
|
||||
gg_printf '%s\n' "$(cat $OUT/${ci}-ctest.log)"
|
||||
gg_printf '```\n'
|
||||
}
|
||||
|
||||
# open_llama_3b_v2
|
||||
|
||||
function gg_run_open_llama_3b_v2 {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
|
||||
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
|
||||
|
||||
path_models="../models-mnt/open-llama/3B-v2"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test_60="${path_wiki}/wiki.test-60.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
|
||||
return 0
|
||||
}
|
||||
|
||||
path_lora="../models-mnt/open-llama/3B-v2/lora"
|
||||
path_shakespeare="../models-mnt/shakespeare"
|
||||
|
||||
shakespeare="${path_shakespeare}/shakespeare.txt"
|
||||
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
|
||||
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_config.json
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/adapter_model.bin
|
||||
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_3b_v2_shakespeare_lora/resolve/main/shakespeare.txt
|
||||
|
||||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
compare_ppl "q8_0 / f16 base shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'OpenLLaMA 3B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
|
||||
gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
|
||||
}
|
||||
|
||||
# open_llama_7b_v2
|
||||
# requires: GG_BUILD_CUDA
|
||||
|
||||
function gg_run_open_llama_7b_v2 {
|
||||
cd ${SRC}
|
||||
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/config.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/tokenizer.model
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/tokenizer_config.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/special_tokens_map.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/pytorch_model.bin.index.json
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00001-of-00002.bin
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/resolve/main/pytorch_model-00002-of-00002.bin
|
||||
gg_wget models-mnt/open-llama/7B-v2/ https://huggingface.co/openlm-research/open_llama_7b_v2/raw/main/generation_config.json
|
||||
|
||||
gg_wget models-mnt/wikitext/ https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip
|
||||
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
|
||||
|
||||
path_models="../models-mnt/open-llama/7B-v2"
|
||||
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
|
||||
|
||||
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
|
||||
|
||||
set -e
|
||||
|
||||
(time cmake -DCMAKE_BUILD_TYPE=Release -DLLAMA_CUBLAS=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
|
||||
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
|
||||
|
||||
python3 ../convert.py ${path_models}
|
||||
|
||||
model_f16="${path_models}/ggml-model-f16.gguf"
|
||||
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
|
||||
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
|
||||
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
|
||||
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
|
||||
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
|
||||
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
|
||||
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
|
||||
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
|
||||
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
|
||||
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
|
||||
|
||||
wiki_test="${path_wiki}/wiki.test.raw"
|
||||
|
||||
./bin/quantize ${model_f16} ${model_q8_0} q8_0
|
||||
./bin/quantize ${model_f16} ${model_q4_0} q4_0
|
||||
./bin/quantize ${model_f16} ${model_q4_1} q4_1
|
||||
./bin/quantize ${model_f16} ${model_q5_0} q5_0
|
||||
./bin/quantize ${model_f16} ${model_q5_1} q5_1
|
||||
./bin/quantize ${model_f16} ${model_q2_k} q2_k
|
||||
./bin/quantize ${model_f16} ${model_q3_k} q3_k
|
||||
./bin/quantize ${model_f16} ${model_q4_k} q4_k
|
||||
./bin/quantize ${model_f16} ${model_q5_k} q5_k
|
||||
./bin/quantize ${model_f16} ${model_q6_k} q6_k
|
||||
|
||||
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
|
||||
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
|
||||
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
|
||||
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
|
||||
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
|
||||
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
|
||||
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
|
||||
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
|
||||
return 0
|
||||
}
|
||||
|
||||
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
|
||||
|
||||
# lora
|
||||
function compare_ppl {
|
||||
qnt="$1"
|
||||
ppl1=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
ppl2=$(echo "$3" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
|
||||
if [ $(echo "$ppl1 < $ppl2" | bc) -eq 1 ]; then
|
||||
printf ' - %s @ %s (FAIL: %s > %s)\n' "$qnt" "$ppl" "$ppl1" "$ppl2"
|
||||
return 20
|
||||
fi
|
||||
|
||||
printf ' - %s @ %s %s OK\n' "$qnt" "$ppl1" "$ppl2"
|
||||
return 0
|
||||
}
|
||||
|
||||
path_lora="../models-mnt/open-llama/7B-v2/lora"
|
||||
path_shakespeare="../models-mnt/shakespeare"
|
||||
|
||||
shakespeare="${path_shakespeare}/shakespeare.txt"
|
||||
lora_shakespeare="${path_lora}/ggml-adapter-model.bin"
|
||||
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_config.json
|
||||
gg_wget ${path_lora} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/adapter_model.bin
|
||||
gg_wget ${path_shakespeare} https://huggingface.co/slaren/open_llama_7b_v2_shakespeare_lora/resolve/main/shakespeare.txt
|
||||
|
||||
python3 ../convert-lora-to-ggml.py ${path_lora}
|
||||
|
||||
# f16
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-f16.log
|
||||
(time ./bin/perplexity --model ${model_f16} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-f16.log
|
||||
compare_ppl "f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-f16.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# currently not supported by the CUDA backend
|
||||
# q8_0
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-q8_0.log
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0.log
|
||||
#compare_ppl "q8_0 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
# q8_0 + f16 lora-base
|
||||
#(time ./bin/perplexity --model ${model_q8_0} -f ${shakespeare} --lora ${lora_shakespeare} --lora-base ${model_f16} -t 1 -ngl 999 -c 2048 -b 512 --chunks 3 ) 2>&1 | tee -a $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log
|
||||
#compare_ppl "q8_0 / f16 shakespeare" "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log | grep "^\[1\]")" "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-lora-ppl.log
|
||||
|
||||
set +e
|
||||
}
|
||||
|
||||
function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf '### %s\n\n' "${ci}"
|
||||
|
||||
gg_printf 'OpenLLaMA 7B-v2:\n'
|
||||
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
|
||||
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
|
||||
gg_printf '- lora:\n%s\n' "$(cat $OUT/${ci}-lora-ppl.log)"
|
||||
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
|
||||
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
|
||||
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
|
||||
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
|
||||
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
|
||||
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
|
||||
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
|
||||
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
#gg_printf '- shakespeare (q8_0 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0.log)"
|
||||
#gg_printf '- shakespeare (q8_0 / f16 base lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-q8_0-f16.log)"
|
||||
}
|
||||
|
||||
## main
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
rm -rf ${SRC}/models-mnt
|
||||
|
||||
mnt_models=${MNT}/models
|
||||
mkdir -p ${mnt_models}
|
||||
ln -sfn ${mnt_models} ${SRC}/models-mnt
|
||||
|
||||
python3 -m pip install -r ${SRC}/requirements.txt
|
||||
python3 -m pip install --editable gguf-py
|
||||
fi
|
||||
|
||||
ret=0
|
||||
|
||||
test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
fi
|
||||
|
||||
exit $ret
|
||||
14
codecov.yml
Normal file
14
codecov.yml
Normal file
@@ -0,0 +1,14 @@
|
||||
comment: off
|
||||
|
||||
coverage:
|
||||
status:
|
||||
project:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
||||
patch:
|
||||
default:
|
||||
target: auto
|
||||
threshold: 0
|
||||
base: auto
|
||||
22
common/CMakeLists.txt
Normal file
22
common/CMakeLists.txt
Normal file
@@ -0,0 +1,22 @@
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
train.h
|
||||
train.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama)
|
||||
1356
common/common.cpp
Normal file
1356
common/common.cpp
Normal file
File diff suppressed because it is too large
Load Diff
225
common/common.h
Normal file
225
common/common.h
Normal file
@@ -0,0 +1,225 @@
|
||||
// Various helper functions and utilities
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
#include <tuple>
|
||||
|
||||
#ifdef _WIN32
|
||||
#define DIRECTORY_SEPARATOR '\\'
|
||||
#else
|
||||
#define DIRECTORY_SEPARATOR '/'
|
||||
#endif // _WIN32
|
||||
|
||||
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
||||
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
||||
|
||||
#define print_build_info() do { \
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \
|
||||
fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \
|
||||
} while(0)
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
std::string model_alias = "unknown"; // model alias
|
||||
std::string prompt = "";
|
||||
std::string prompt_file = ""; // store the external prompt file name
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::string grammar = ""; // optional BNF-like grammar to constrain sampling
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
// (which is more convenient to use for plotting)
|
||||
//
|
||||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
||||
|
||||
bool embedding = false; // get only sentence embedding
|
||||
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
||||
bool cont_batching = false; // insert new sequences for decoding on-the-fly
|
||||
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string get_system_info(const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
// tokenizes a token into a piece
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
std::string llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token);
|
||||
|
||||
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
|
||||
// that takes into account the tokenizer type and decides how to handle the leading space
|
||||
//
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
// removes the leading space from the first non-BOS token
|
||||
std::string llama_detokenize_spm(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
// detokenizes a vector of tokens into a string
|
||||
// should work similar to Python's `tokenizer.decode`
|
||||
std::string llama_detokenize_bpe(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - params: sampling parameters
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - grammar: grammar to use for sampling, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx = 0);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
bool create_directory_with_parents(const std::string & path);
|
||||
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||
std::string get_sortable_timestamp();
|
||||
|
||||
void dump_non_result_info_yaml(
|
||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||
501
common/console.cpp
Normal file
501
common/console.cpp
Normal file
@@ -0,0 +1,501 @@
|
||||
#include "console.h"
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
#define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#ifndef ENABLE_VIRTUAL_TERMINAL_PROCESSING
|
||||
#define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
|
||||
#endif
|
||||
#else
|
||||
#include <climits>
|
||||
#include <sys/ioctl.h>
|
||||
#include <unistd.h>
|
||||
#include <wchar.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <signal.h>
|
||||
#include <termios.h>
|
||||
#endif
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
#define ANSI_BOLD "\x1b[1m"
|
||||
|
||||
namespace console {
|
||||
|
||||
//
|
||||
// Console state
|
||||
//
|
||||
|
||||
static bool advanced_display = false;
|
||||
static bool simple_io = true;
|
||||
static display_t current_display = reset;
|
||||
|
||||
static FILE* out = stdout;
|
||||
|
||||
#if defined (_WIN32)
|
||||
static void* hConsole;
|
||||
#else
|
||||
static FILE* tty = nullptr;
|
||||
static termios initial_state;
|
||||
#endif
|
||||
|
||||
//
|
||||
// Init and cleanup
|
||||
//
|
||||
|
||||
void init(bool use_simple_io, bool use_advanced_display) {
|
||||
advanced_display = use_advanced_display;
|
||||
simple_io = use_simple_io;
|
||||
#if defined(_WIN32)
|
||||
// Windows-specific console initialization
|
||||
DWORD dwMode = 0;
|
||||
hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
if (hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(hConsole, &dwMode)) {
|
||||
hConsole = GetStdHandle(STD_ERROR_HANDLE);
|
||||
if (hConsole != INVALID_HANDLE_VALUE && (!GetConsoleMode(hConsole, &dwMode))) {
|
||||
hConsole = nullptr;
|
||||
simple_io = true;
|
||||
}
|
||||
}
|
||||
if (hConsole) {
|
||||
// Check conditions combined to reduce nesting
|
||||
if (advanced_display && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING) &&
|
||||
!SetConsoleMode(hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||
advanced_display = false;
|
||||
}
|
||||
// Set console output codepage to UTF8
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
}
|
||||
HANDLE hConIn = GetStdHandle(STD_INPUT_HANDLE);
|
||||
if (hConIn != INVALID_HANDLE_VALUE && GetConsoleMode(hConIn, &dwMode)) {
|
||||
// Set console input codepage to UTF16
|
||||
_setmode(_fileno(stdin), _O_WTEXT);
|
||||
|
||||
// Set ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
||||
if (simple_io) {
|
||||
dwMode |= ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT;
|
||||
} else {
|
||||
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
||||
}
|
||||
if (!SetConsoleMode(hConIn, dwMode)) {
|
||||
simple_io = true;
|
||||
}
|
||||
}
|
||||
#else
|
||||
// POSIX-specific console initialization
|
||||
if (!simple_io) {
|
||||
struct termios new_termios;
|
||||
tcgetattr(STDIN_FILENO, &initial_state);
|
||||
new_termios = initial_state;
|
||||
new_termios.c_lflag &= ~(ICANON | ECHO);
|
||||
new_termios.c_cc[VMIN] = 1;
|
||||
new_termios.c_cc[VTIME] = 0;
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &new_termios);
|
||||
|
||||
tty = fopen("/dev/tty", "w+");
|
||||
if (tty != nullptr) {
|
||||
out = tty;
|
||||
}
|
||||
}
|
||||
|
||||
setlocale(LC_ALL, "");
|
||||
#endif
|
||||
}
|
||||
|
||||
void cleanup() {
|
||||
// Reset console display
|
||||
set_display(reset);
|
||||
|
||||
#if !defined(_WIN32)
|
||||
// Restore settings on POSIX systems
|
||||
if (!simple_io) {
|
||||
if (tty != nullptr) {
|
||||
out = stdout;
|
||||
fclose(tty);
|
||||
tty = nullptr;
|
||||
}
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &initial_state);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
// Display and IO
|
||||
//
|
||||
|
||||
// Keep track of current display and only emit ANSI code if it changes
|
||||
void set_display(display_t display) {
|
||||
if (advanced_display && current_display != display) {
|
||||
fflush(stdout);
|
||||
switch(display) {
|
||||
case reset:
|
||||
fprintf(out, ANSI_COLOR_RESET);
|
||||
break;
|
||||
case prompt:
|
||||
fprintf(out, ANSI_COLOR_YELLOW);
|
||||
break;
|
||||
case user_input:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
break;
|
||||
case error:
|
||||
fprintf(out, ANSI_BOLD ANSI_COLOR_RED);
|
||||
}
|
||||
current_display = display;
|
||||
fflush(out);
|
||||
}
|
||||
}
|
||||
|
||||
static char32_t getchar32() {
|
||||
#if defined(_WIN32)
|
||||
HANDLE hConsole = GetStdHandle(STD_INPUT_HANDLE);
|
||||
wchar_t high_surrogate = 0;
|
||||
|
||||
while (true) {
|
||||
INPUT_RECORD record;
|
||||
DWORD count;
|
||||
if (!ReadConsoleInputW(hConsole, &record, 1, &count) || count == 0) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) {
|
||||
wchar_t wc = record.Event.KeyEvent.uChar.UnicodeChar;
|
||||
if (wc == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
high_surrogate = wc;
|
||||
continue;
|
||||
}
|
||||
if ((wc >= 0xDC00) && (wc <= 0xDFFF)) { // Check if wc is a low surrogate
|
||||
if (high_surrogate != 0) { // Check if we have a high surrogate
|
||||
return ((high_surrogate - 0xD800) << 10) + (wc - 0xDC00) + 0x10000;
|
||||
}
|
||||
}
|
||||
|
||||
high_surrogate = 0; // Reset the high surrogate
|
||||
return static_cast<char32_t>(wc);
|
||||
}
|
||||
}
|
||||
#else
|
||||
wchar_t wc = getwchar();
|
||||
if (static_cast<wint_t>(wc) == WEOF) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
#if WCHAR_MAX == 0xFFFF
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
wchar_t low_surrogate = getwchar();
|
||||
if ((low_surrogate >= 0xDC00) && (low_surrogate <= 0xDFFF)) { // Check if the next wchar is a low surrogate
|
||||
return (static_cast<char32_t>(wc & 0x03FF) << 10) + (low_surrogate & 0x03FF) + 0x10000;
|
||||
}
|
||||
}
|
||||
if ((wc >= 0xD800) && (wc <= 0xDFFF)) { // Invalid surrogate pair
|
||||
return 0xFFFD; // Return the replacement character U+FFFD
|
||||
}
|
||||
#endif
|
||||
|
||||
return static_cast<char32_t>(wc);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void pop_cursor() {
|
||||
#if defined(_WIN32)
|
||||
if (hConsole != NULL) {
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
GetConsoleScreenBufferInfo(hConsole, &bufferInfo);
|
||||
|
||||
COORD newCursorPosition = bufferInfo.dwCursorPosition;
|
||||
if (newCursorPosition.X == 0) {
|
||||
newCursorPosition.X = bufferInfo.dwSize.X - 1;
|
||||
newCursorPosition.Y -= 1;
|
||||
} else {
|
||||
newCursorPosition.X -= 1;
|
||||
}
|
||||
|
||||
SetConsoleCursorPosition(hConsole, newCursorPosition);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
putc('\b', out);
|
||||
}
|
||||
|
||||
static int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
(void)codepoint;
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
#endif
|
||||
}
|
||||
|
||||
static int put_codepoint(const char* utf8_codepoint, size_t length, int expectedWidth) {
|
||||
#if defined(_WIN32)
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
if (!GetConsoleScreenBufferInfo(hConsole, &bufferInfo)) {
|
||||
// go with the default
|
||||
return expectedWidth;
|
||||
}
|
||||
COORD initialPosition = bufferInfo.dwCursorPosition;
|
||||
DWORD nNumberOfChars = length;
|
||||
WriteConsole(hConsole, utf8_codepoint, nNumberOfChars, &nNumberOfChars, NULL);
|
||||
|
||||
CONSOLE_SCREEN_BUFFER_INFO newBufferInfo;
|
||||
GetConsoleScreenBufferInfo(hConsole, &newBufferInfo);
|
||||
|
||||
// Figure out our real position if we're in the last column
|
||||
if (utf8_codepoint[0] != 0x09 && initialPosition.X == newBufferInfo.dwSize.X - 1) {
|
||||
DWORD nNumberOfChars;
|
||||
WriteConsole(hConsole, &" \b", 2, &nNumberOfChars, NULL);
|
||||
GetConsoleScreenBufferInfo(hConsole, &newBufferInfo);
|
||||
}
|
||||
|
||||
int width = newBufferInfo.dwCursorPosition.X - initialPosition.X;
|
||||
if (width < 0) {
|
||||
width += newBufferInfo.dwSize.X;
|
||||
}
|
||||
return width;
|
||||
#else
|
||||
// We can trust expectedWidth if we've got one
|
||||
if (expectedWidth >= 0 || tty == nullptr) {
|
||||
fwrite(utf8_codepoint, length, 1, out);
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
fputs("\033[6n", tty); // Query cursor position
|
||||
int x1;
|
||||
int y1;
|
||||
int x2;
|
||||
int y2;
|
||||
int results = 0;
|
||||
results = fscanf(tty, "\033[%d;%dR", &y1, &x1);
|
||||
|
||||
fwrite(utf8_codepoint, length, 1, tty);
|
||||
|
||||
fputs("\033[6n", tty); // Query cursor position
|
||||
results += fscanf(tty, "\033[%d;%dR", &y2, &x2);
|
||||
|
||||
if (results != 4) {
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
int width = x2 - x1;
|
||||
if (width < 0) {
|
||||
// Calculate the width considering text wrapping
|
||||
struct winsize w;
|
||||
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
|
||||
width += w.ws_col;
|
||||
}
|
||||
return width;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void replace_last(char ch) {
|
||||
#if defined(_WIN32)
|
||||
pop_cursor();
|
||||
put_codepoint(&ch, 1, 1);
|
||||
#else
|
||||
fprintf(out, "\b%c", ch);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void append_utf8(char32_t ch, std::string & out) {
|
||||
if (ch <= 0x7F) {
|
||||
out.push_back(static_cast<unsigned char>(ch));
|
||||
} else if (ch <= 0x7FF) {
|
||||
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0xFFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0x10FFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else {
|
||||
// Invalid Unicode code point
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to remove the last UTF-8 character from a string
|
||||
static void pop_back_utf8_char(std::string & line) {
|
||||
if (line.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pos = line.length() - 1;
|
||||
|
||||
// Find the start of the last UTF-8 character (checking up to 4 bytes back)
|
||||
for (size_t i = 0; i < 3 && pos > 0; ++i, --pos) {
|
||||
if ((line[pos] & 0xC0) != 0x80) {
|
||||
break; // Found the start of the character
|
||||
}
|
||||
}
|
||||
line.erase(pos);
|
||||
}
|
||||
|
||||
static bool readline_advanced(std::string & line, bool multiline_input) {
|
||||
if (out != stdout) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
line.clear();
|
||||
std::vector<int> widths;
|
||||
bool is_special_char = false;
|
||||
bool end_of_stream = false;
|
||||
|
||||
char32_t input_char;
|
||||
while (true) {
|
||||
fflush(out); // Ensure all output is displayed before waiting for input
|
||||
input_char = getchar32();
|
||||
|
||||
if (input_char == '\r' || input_char == '\n') {
|
||||
break;
|
||||
}
|
||||
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_special_char) {
|
||||
set_display(user_input);
|
||||
replace_last(line.back());
|
||||
is_special_char = false;
|
||||
}
|
||||
|
||||
if (input_char == '\033') { // Escape sequence
|
||||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (input_char == 0x08 || input_char == 0x7F) { // Backspace
|
||||
if (!widths.empty()) {
|
||||
int count;
|
||||
do {
|
||||
count = widths.back();
|
||||
widths.pop_back();
|
||||
// Move cursor back, print space, and move cursor back again
|
||||
for (int i = 0; i < count; i++) {
|
||||
replace_last(' ');
|
||||
pop_cursor();
|
||||
}
|
||||
pop_back_utf8_char(line);
|
||||
} while (count == 0 && !widths.empty());
|
||||
}
|
||||
} else {
|
||||
int offset = line.length();
|
||||
append_utf8(input_char, line);
|
||||
int width = put_codepoint(line.c_str() + offset, line.length() - offset, estimateWidth(input_char));
|
||||
if (width < 0) {
|
||||
width = 0;
|
||||
}
|
||||
widths.push_back(width);
|
||||
}
|
||||
|
||||
if (!line.empty() && (line.back() == '\\' || line.back() == '/')) {
|
||||
set_display(prompt);
|
||||
replace_last(line.back());
|
||||
is_special_char = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool has_more = multiline_input;
|
||||
if (is_special_char) {
|
||||
replace_last(' ');
|
||||
pop_cursor();
|
||||
|
||||
char last = line.back();
|
||||
line.pop_back();
|
||||
if (last == '\\') {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
has_more = !has_more;
|
||||
} else {
|
||||
// llama will just eat the single space, it won't act as a space
|
||||
if (line.length() == 1 && line.back() == ' ') {
|
||||
line.clear();
|
||||
pop_cursor();
|
||||
}
|
||||
has_more = false;
|
||||
}
|
||||
} else {
|
||||
if (end_of_stream) {
|
||||
has_more = false;
|
||||
} else {
|
||||
line += '\n';
|
||||
fputc('\n', out);
|
||||
}
|
||||
}
|
||||
|
||||
fflush(out);
|
||||
return has_more;
|
||||
}
|
||||
|
||||
static bool readline_simple(std::string & line, bool multiline_input) {
|
||||
#if defined(_WIN32)
|
||||
std::wstring wline;
|
||||
if (!std::getline(std::wcin, wline)) {
|
||||
// Input stream is bad or EOF received
|
||||
line.clear();
|
||||
GenerateConsoleCtrlEvent(CTRL_C_EVENT, 0);
|
||||
return false;
|
||||
}
|
||||
|
||||
int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wline[0], (int)wline.size(), NULL, 0, NULL, NULL);
|
||||
line.resize(size_needed);
|
||||
WideCharToMultiByte(CP_UTF8, 0, &wline[0], (int)wline.size(), &line[0], size_needed, NULL, NULL);
|
||||
#else
|
||||
if (!std::getline(std::cin, line)) {
|
||||
// Input stream is bad or EOF received
|
||||
line.clear();
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
if (!line.empty()) {
|
||||
char last = line.back();
|
||||
if (last == '/') { // Always return control on '/' symbol
|
||||
line.pop_back();
|
||||
return false;
|
||||
}
|
||||
if (last == '\\') { // '\\' changes the default action
|
||||
line.pop_back();
|
||||
multiline_input = !multiline_input;
|
||||
}
|
||||
}
|
||||
line += '\n';
|
||||
|
||||
// By default, continue input if multiline_input is set
|
||||
return multiline_input;
|
||||
}
|
||||
|
||||
bool readline(std::string & line, bool multiline_input) {
|
||||
set_display(user_input);
|
||||
|
||||
if (simple_io) {
|
||||
return readline_simple(line, multiline_input);
|
||||
}
|
||||
return readline_advanced(line, multiline_input);
|
||||
}
|
||||
|
||||
}
|
||||
19
common/console.h
Normal file
19
common/console.h
Normal file
@@ -0,0 +1,19 @@
|
||||
// Console functions
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace console {
|
||||
enum display_t {
|
||||
reset = 0,
|
||||
prompt,
|
||||
user_input,
|
||||
error
|
||||
};
|
||||
|
||||
void init(bool use_simple_io, bool use_advanced_display);
|
||||
void cleanup();
|
||||
void set_display(display_t display);
|
||||
bool readline(std::string & line, bool multiline_input);
|
||||
}
|
||||
424
common/grammar-parser.cpp
Normal file
424
common/grammar-parser.cpp
Normal file
@@ -0,0 +1,424 @@
|
||||
#include "grammar-parser.h"
|
||||
#include <cstdint>
|
||||
#include <cwchar>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <stdexcept>
|
||||
#include <exception>
|
||||
|
||||
namespace grammar_parser {
|
||||
// NOTE: assumes valid utf8 (but checks for overrun)
|
||||
// copied from llama.cpp
|
||||
static std::pair<uint32_t, const char *> decode_utf8(const char * src) {
|
||||
static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
||||
uint8_t first_byte = static_cast<uint8_t>(*src);
|
||||
uint8_t highbits = first_byte >> 4;
|
||||
int len = lookup[highbits];
|
||||
uint8_t mask = (1 << (8 - len)) - 1;
|
||||
uint32_t value = first_byte & mask;
|
||||
const char * end = src + len; // may overrun!
|
||||
const char * pos = src + 1;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
|
||||
return result.first->second;
|
||||
}
|
||||
|
||||
static uint32_t generate_symbol_id(parse_state & state, const std::string & base_name) {
|
||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||
state.symbol_ids[base_name + '_' + std::to_string(next_id)] = next_id;
|
||||
return next_id;
|
||||
}
|
||||
|
||||
static void add_rule(
|
||||
parse_state & state,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule) {
|
||||
if (state.rules.size() <= rule_id) {
|
||||
state.rules.resize(rule_id + 1);
|
||||
}
|
||||
state.rules[rule_id] = rule;
|
||||
}
|
||||
|
||||
static bool is_word_char(char c) {
|
||||
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '-' || ('0' <= c && c <= '9');
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_hex(const char * src, int size) {
|
||||
const char * pos = src;
|
||||
const char * end = src + size;
|
||||
uint32_t value = 0;
|
||||
for ( ; pos < end && *pos; pos++) {
|
||||
value <<= 4;
|
||||
char c = *pos;
|
||||
if ('a' <= c && c <= 'f') {
|
||||
value += c - 'a' + 10;
|
||||
} else if ('A' <= c && c <= 'F') {
|
||||
value += c - 'A' + 10;
|
||||
} else if ('0' <= c && c <= '9') {
|
||||
value += c - '0';
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (pos != end) {
|
||||
throw std::runtime_error("expecting " + std::to_string(size) + " hex chars at " + src);
|
||||
}
|
||||
return std::make_pair(value, pos);
|
||||
}
|
||||
|
||||
static const char * parse_space(const char * src, bool newline_ok) {
|
||||
const char * pos = src;
|
||||
while (*pos == ' ' || *pos == '\t' || *pos == '#' ||
|
||||
(newline_ok && (*pos == '\r' || *pos == '\n'))) {
|
||||
if (*pos == '#') {
|
||||
while (*pos && *pos != '\r' && *pos != '\n') {
|
||||
pos++;
|
||||
}
|
||||
} else {
|
||||
pos++;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_name(const char * src) {
|
||||
const char * pos = src;
|
||||
while (is_word_char(*pos)) {
|
||||
pos++;
|
||||
}
|
||||
if (pos == src) {
|
||||
throw std::runtime_error(std::string("expecting name at ") + src);
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
static std::pair<uint32_t, const char *> parse_char(const char * src) {
|
||||
if (*src == '\\') {
|
||||
switch (src[1]) {
|
||||
case 'x': return parse_hex(src + 2, 2);
|
||||
case 'u': return parse_hex(src + 2, 4);
|
||||
case 'U': return parse_hex(src + 2, 8);
|
||||
case 't': return std::make_pair('\t', src + 2);
|
||||
case 'r': return std::make_pair('\r', src + 2);
|
||||
case 'n': return std::make_pair('\n', src + 2);
|
||||
case '\\':
|
||||
case '"':
|
||||
case '[':
|
||||
case ']':
|
||||
return std::make_pair(src[1], src + 2);
|
||||
default:
|
||||
throw std::runtime_error(std::string("unknown escape at ") + src);
|
||||
}
|
||||
} else if (*src) {
|
||||
return decode_utf8(src);
|
||||
}
|
||||
throw std::runtime_error("unexpected end of input");
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested);
|
||||
|
||||
static const char * parse_sequence(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
std::vector<llama_grammar_element> & out_elements,
|
||||
bool is_nested) {
|
||||
size_t last_sym_start = out_elements.size();
|
||||
const char * pos = src;
|
||||
while (*pos) {
|
||||
if (*pos == '"') { // literal string
|
||||
pos++;
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != '"') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR, char_pair.first});
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '[') { // char range(s)
|
||||
pos++;
|
||||
enum llama_gretype start_type = LLAMA_GRETYPE_CHAR;
|
||||
if (*pos == '^') {
|
||||
pos++;
|
||||
start_type = LLAMA_GRETYPE_CHAR_NOT;
|
||||
}
|
||||
last_sym_start = out_elements.size();
|
||||
while (*pos != ']') {
|
||||
auto char_pair = parse_char(pos);
|
||||
pos = char_pair.second;
|
||||
enum llama_gretype type = last_sym_start < out_elements.size()
|
||||
? LLAMA_GRETYPE_CHAR_ALT
|
||||
: start_type;
|
||||
|
||||
out_elements.push_back({type, char_pair.first});
|
||||
if (pos[0] == '-' && pos[1] != ']') {
|
||||
auto endchar_pair = parse_char(pos + 1);
|
||||
pos = endchar_pair.second;
|
||||
out_elements.push_back({LLAMA_GRETYPE_CHAR_RNG_UPPER, endchar_pair.first});
|
||||
}
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (is_word_char(*pos)) { // rule reference
|
||||
const char * name_end = parse_name(pos);
|
||||
uint32_t ref_rule_id = get_symbol_id(state, pos, name_end - pos);
|
||||
pos = parse_space(name_end, is_nested);
|
||||
last_sym_start = out_elements.size();
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, ref_rule_id});
|
||||
} else if (*pos == '(') { // grouping
|
||||
// parse nested alternates into synthesized rule
|
||||
pos = parse_space(pos + 1, true);
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
pos = parse_alternates(state, pos, rule_name, sub_rule_id, true);
|
||||
last_sym_start = out_elements.size();
|
||||
// output reference to synthesized rule
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
if (*pos != ')') {
|
||||
throw std::runtime_error(std::string("expecting ')' at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else if (*pos == '*' || *pos == '+' || *pos == '?') { // repetition operator
|
||||
if (last_sym_start == out_elements.size()) {
|
||||
throw std::runtime_error(std::string("expecting preceeding item to */+/? at ") + pos);
|
||||
}
|
||||
|
||||
// apply transformation to previous symbol (last_sym_start to end) according to
|
||||
// rewrite rules:
|
||||
// S* --> S' ::= S S' |
|
||||
// S+ --> S' ::= S S' | S
|
||||
// S? --> S' ::= S |
|
||||
uint32_t sub_rule_id = generate_symbol_id(state, rule_name);
|
||||
std::vector<llama_grammar_element> sub_rule;
|
||||
// add preceding symbol to generated rule
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
if (*pos == '*' || *pos == '+') {
|
||||
// cause generated rule to recurse
|
||||
sub_rule.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
}
|
||||
// mark start of alternate def
|
||||
sub_rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
if (*pos == '+') {
|
||||
// add preceding symbol as alternate only for '+' (otherwise empty)
|
||||
sub_rule.insert(
|
||||
sub_rule.end(), out_elements.begin() + last_sym_start, out_elements.end());
|
||||
}
|
||||
sub_rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, sub_rule_id, sub_rule);
|
||||
|
||||
// in original rule, replace previous symbol with reference to generated rule
|
||||
out_elements.resize(last_sym_start);
|
||||
out_elements.push_back({LLAMA_GRETYPE_RULE_REF, sub_rule_id});
|
||||
|
||||
pos = parse_space(pos + 1, is_nested);
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return pos;
|
||||
}
|
||||
|
||||
const char * parse_alternates(
|
||||
parse_state & state,
|
||||
const char * src,
|
||||
const std::string & rule_name,
|
||||
uint32_t rule_id,
|
||||
bool is_nested) {
|
||||
std::vector<llama_grammar_element> rule;
|
||||
const char * pos = parse_sequence(state, src, rule_name, rule, is_nested);
|
||||
while (*pos == '|') {
|
||||
rule.push_back({LLAMA_GRETYPE_ALT, 0});
|
||||
pos = parse_space(pos + 1, true);
|
||||
pos = parse_sequence(state, pos, rule_name, rule, is_nested);
|
||||
}
|
||||
rule.push_back({LLAMA_GRETYPE_END, 0});
|
||||
add_rule(state, rule_id, rule);
|
||||
return pos;
|
||||
}
|
||||
|
||||
static const char * parse_rule(parse_state & state, const char * src) {
|
||||
const char * name_end = parse_name(src);
|
||||
const char * pos = parse_space(name_end, false);
|
||||
size_t name_len = name_end - src;
|
||||
uint32_t rule_id = get_symbol_id(state, src, name_len);
|
||||
const std::string name(src, name_len);
|
||||
|
||||
if (!(pos[0] == ':' && pos[1] == ':' && pos[2] == '=')) {
|
||||
throw std::runtime_error(std::string("expecting ::= at ") + pos);
|
||||
}
|
||||
pos = parse_space(pos + 3, true);
|
||||
|
||||
pos = parse_alternates(state, pos, name, rule_id, false);
|
||||
|
||||
if (*pos == '\r') {
|
||||
pos += pos[1] == '\n' ? 2 : 1;
|
||||
} else if (*pos == '\n') {
|
||||
pos++;
|
||||
} else if (*pos) {
|
||||
throw std::runtime_error(std::string("expecting newline or end at ") + pos);
|
||||
}
|
||||
return parse_space(pos, true);
|
||||
}
|
||||
|
||||
parse_state parse(const char * src) {
|
||||
try {
|
||||
parse_state state;
|
||||
const char * pos = parse_space(src, true);
|
||||
while (*pos) {
|
||||
pos = parse_rule(state, pos);
|
||||
}
|
||||
return state;
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "%s: error parsing grammar: %s\n", __func__, err.what());
|
||||
return parse_state();
|
||||
}
|
||||
}
|
||||
|
||||
static void print_grammar_char(FILE * file, uint32_t c) {
|
||||
if (0x20 <= c && c <= 0x7f) {
|
||||
fprintf(file, "%c", static_cast<char>(c));
|
||||
} else {
|
||||
// cop out of encoding UTF-8
|
||||
fprintf(file, "<U+%04X>", c);
|
||||
}
|
||||
}
|
||||
|
||||
static bool is_char_element(llama_grammar_element elem) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_CHAR: return true;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: return true;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: return true;
|
||||
default: return false;
|
||||
}
|
||||
}
|
||||
|
||||
static void print_rule_binary(FILE * file, const std::vector<llama_grammar_element> & rule) {
|
||||
for (auto elem : rule) {
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END: fprintf(file, "END"); break;
|
||||
case LLAMA_GRETYPE_ALT: fprintf(file, "ALT"); break;
|
||||
case LLAMA_GRETYPE_RULE_REF: fprintf(file, "RULE_REF"); break;
|
||||
case LLAMA_GRETYPE_CHAR: fprintf(file, "CHAR"); break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT: fprintf(file, "CHAR_NOT"); break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER: fprintf(file, "CHAR_RNG_UPPER"); break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT: fprintf(file, "CHAR_ALT"); break;
|
||||
}
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "(%u) ", elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
fprintf(file, "(\"");
|
||||
print_grammar_char(file, elem.value);
|
||||
fprintf(file, "\") ");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
static void print_rule(
|
||||
FILE * file,
|
||||
uint32_t rule_id,
|
||||
const std::vector<llama_grammar_element> & rule,
|
||||
const std::map<uint32_t, std::string> & symbol_id_names) {
|
||||
if (rule.empty() || rule.back().type != LLAMA_GRETYPE_END) {
|
||||
throw std::runtime_error(
|
||||
"malformed rule, does not end with LLAMA_GRETYPE_END: " + std::to_string(rule_id));
|
||||
}
|
||||
fprintf(file, "%s ::= ", symbol_id_names.at(rule_id).c_str());
|
||||
for (size_t i = 0, end = rule.size() - 1; i < end; i++) {
|
||||
llama_grammar_element elem = rule[i];
|
||||
switch (elem.type) {
|
||||
case LLAMA_GRETYPE_END:
|
||||
throw std::runtime_error(
|
||||
"unexpected end of rule: " + std::to_string(rule_id) + "," +
|
||||
std::to_string(i));
|
||||
case LLAMA_GRETYPE_ALT:
|
||||
fprintf(file, "| ");
|
||||
break;
|
||||
case LLAMA_GRETYPE_RULE_REF:
|
||||
fprintf(file, "%s ", symbol_id_names.at(elem.value).c_str());
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR:
|
||||
fprintf(file, "[");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_NOT:
|
||||
fprintf(file, "[^");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_RNG_UPPER without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
fprintf(file, "-");
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
if (i == 0 || !is_char_element(rule[i - 1])) {
|
||||
throw std::runtime_error(
|
||||
"LLAMA_GRETYPE_CHAR_ALT without preceding char: " +
|
||||
std::to_string(rule_id) + "," + std::to_string(i));
|
||||
}
|
||||
print_grammar_char(file, elem.value);
|
||||
break;
|
||||
}
|
||||
if (is_char_element(elem)) {
|
||||
switch (rule[i + 1].type) {
|
||||
case LLAMA_GRETYPE_CHAR_ALT:
|
||||
case LLAMA_GRETYPE_CHAR_RNG_UPPER:
|
||||
break;
|
||||
default:
|
||||
fprintf(file, "] ");
|
||||
}
|
||||
}
|
||||
}
|
||||
fprintf(file, "\n");
|
||||
}
|
||||
|
||||
void print_grammar(FILE * file, const parse_state & state) {
|
||||
try {
|
||||
std::map<uint32_t, std::string> symbol_id_names;
|
||||
for (auto kv : state.symbol_ids) {
|
||||
symbol_id_names[kv.second] = kv.first;
|
||||
}
|
||||
for (size_t i = 0, end = state.rules.size(); i < end; i++) {
|
||||
// fprintf(file, "%zu: ", i);
|
||||
// print_rule_binary(file, state.rules[i]);
|
||||
print_rule(file, uint32_t(i), state.rules[i], symbol_id_names);
|
||||
// fprintf(file, "\n");
|
||||
}
|
||||
} catch (const std::exception & err) {
|
||||
fprintf(stderr, "\n%s: error printing grammar: %s\n", __func__, err.what());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<const llama_grammar_element *> parse_state::c_rules() {
|
||||
std::vector<const llama_grammar_element *> ret;
|
||||
ret.reserve(rules.size());
|
||||
for (const auto & rule : rules) {
|
||||
ret.push_back(rule.data());
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
29
common/grammar-parser.h
Normal file
29
common/grammar-parser.h
Normal file
@@ -0,0 +1,29 @@
|
||||
// Implements a parser for an extended Backus-Naur form (BNF), producing the
|
||||
// binary context-free grammar format specified by llama.h. Supports character
|
||||
// ranges, grouping, and repetition operators. As an example, a grammar for
|
||||
// arithmetic might look like:
|
||||
//
|
||||
// root ::= expr
|
||||
// expr ::= term ([-+*/] term)*
|
||||
// term ::= num | "(" space expr ")" space
|
||||
// num ::= [0-9]+ space
|
||||
// space ::= [ \t\n]*
|
||||
|
||||
#pragma once
|
||||
#include "llama.h"
|
||||
#include <vector>
|
||||
#include <map>
|
||||
#include <cstdint>
|
||||
#include <string>
|
||||
|
||||
namespace grammar_parser {
|
||||
struct parse_state {
|
||||
std::map<std::string, uint32_t> symbol_ids;
|
||||
std::vector<std::vector<llama_grammar_element>> rules;
|
||||
|
||||
std::vector<const llama_grammar_element *> c_rules();
|
||||
};
|
||||
|
||||
parse_state parse(const char * src);
|
||||
void print_grammar(FILE * file, const parse_state & state);
|
||||
}
|
||||
643
common/log.h
Normal file
643
common/log.h
Normal file
@@ -0,0 +1,643 @@
|
||||
#pragma once
|
||||
|
||||
#include <chrono>
|
||||
#include <cstring>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <thread>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
|
||||
// --------------------------------
|
||||
//
|
||||
// Basic usage:
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// The LOG() and LOG_TEE() macros are ready to go by default
|
||||
// they do not require any initialization.
|
||||
//
|
||||
// LOGLN() and LOG_TEELN() are variants which automatically
|
||||
// include \n character at the end of the log string.
|
||||
//
|
||||
// LOG() behaves exactly like printf, by default writing to a logfile.
|
||||
// LOG_TEE() additionally, prints to the screen too ( mimics Unix tee command ).
|
||||
//
|
||||
// Default logfile is named
|
||||
// "llama.<threadID>.log"
|
||||
// Default LOG_TEE() secondary output target is
|
||||
// stderr
|
||||
//
|
||||
// Logs can be dynamically disabled or enabled using functions:
|
||||
// log_disable()
|
||||
// and
|
||||
// log_enable()
|
||||
//
|
||||
// A log target can be changed with:
|
||||
// log_set_target( string )
|
||||
// creating and opening, or re-opening a file by string filename
|
||||
// or
|
||||
// log_set_target( FILE* )
|
||||
// allowing to point at stderr, stdout, or any valid FILE* file handler.
|
||||
//
|
||||
// --------
|
||||
//
|
||||
// End of Basic usage.
|
||||
//
|
||||
// --------------------------------
|
||||
|
||||
// Specifies a log target.
|
||||
// default uses log_handler() with "llama.log" log file
|
||||
// this can be changed, by defining LOG_TARGET
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET (a valid FILE*)
|
||||
// #include "log.h"
|
||||
//
|
||||
// or it can be simply redirected to stdout or stderr
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET stderr
|
||||
// #include "log.h"
|
||||
//
|
||||
// The log target can also be redirected to a diffrent function
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_diffrent()
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_diffrent()
|
||||
// {
|
||||
// return stderr;
|
||||
// }
|
||||
//
|
||||
// or:
|
||||
//
|
||||
// #define LOG_TARGET log_handler_another_one("somelog.log")
|
||||
// #include "log.h"
|
||||
//
|
||||
// FILE* log_handler_another_one(char*filename)
|
||||
// {
|
||||
// static FILE* logfile = nullptr;
|
||||
// (...)
|
||||
// if( !logfile )
|
||||
// {
|
||||
// fopen(...)
|
||||
// }
|
||||
// (...)
|
||||
// return logfile
|
||||
// }
|
||||
//
|
||||
#ifndef LOG_TARGET
|
||||
#define LOG_TARGET log_handler()
|
||||
#endif
|
||||
|
||||
#ifndef LOG_TEE_TARGET
|
||||
#define LOG_TEE_TARGET stderr
|
||||
#endif
|
||||
|
||||
// Utility to obtain "pid" like unique process id and use it when creating log files.
|
||||
inline std::string log_get_pid()
|
||||
{
|
||||
static std::string pid;
|
||||
if (pid.empty())
|
||||
{
|
||||
// std::this_thread::get_id() is the most portable way of obtaining a "process id"
|
||||
// it's not the same as "pid" but is unique enough to solve multiple instances
|
||||
// trying to write to the same log.
|
||||
std::stringstream ss;
|
||||
ss << std::this_thread::get_id();
|
||||
pid = ss.str();
|
||||
}
|
||||
|
||||
return pid;
|
||||
}
|
||||
|
||||
// Utility function for generating log file names with unique id based on thread id.
|
||||
// invocation with log_filename_generator( "llama", "log" ) creates a string "llama.<number>.log"
|
||||
// where the number is a runtime id of the current thread.
|
||||
|
||||
#define log_filename_generator(log_file_basename, log_file_extension) log_filename_generator_impl(log_file_basename, log_file_extension)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline std::string log_filename_generator_impl(const std::string & log_file_basename, const std::string & log_file_extension)
|
||||
{
|
||||
std::stringstream buf;
|
||||
|
||||
buf << log_file_basename;
|
||||
buf << ".";
|
||||
buf << log_get_pid();
|
||||
buf << ".";
|
||||
buf << log_file_extension;
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#ifndef LOG_DEFAULT_FILE_NAME
|
||||
#define LOG_DEFAULT_FILE_NAME log_filename_generator("llama", "log")
|
||||
#endif
|
||||
|
||||
// Utility for turning #define values into string literals
|
||||
// so we can have a define for stderr and
|
||||
// we can print "stderr" instead of literal stderr, etc.
|
||||
#define LOG_STRINGIZE1(s) #s
|
||||
#define LOG_STRINGIZE(s) LOG_STRINGIZE1(s)
|
||||
|
||||
#define LOG_TEE_TARGET_STRING LOG_STRINGIZE(LOG_TEE_TARGET)
|
||||
|
||||
// Allows disabling timestamps.
|
||||
// in order to disable, define LOG_NO_TIMESTAMPS
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_TIMESTAMPS
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_TIMESTAMPS
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "[%" PRIu64 "] "
|
||||
#define LOG_TEE_TIMESTAMP_VAL , (std::chrono::duration_cast<std::chrono::duration<std::uint64_t>>(std::chrono::system_clock::now().time_since_epoch())).count()
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_TIMESTAMP_FMT "%s"
|
||||
#define LOG_TEE_TIMESTAMP_VAL ,""
|
||||
#endif
|
||||
|
||||
// Allows disabling file/line/function prefix
|
||||
// in order to disable, define LOG_NO_FILE_LINE_FUNCTION
|
||||
// like so:
|
||||
//
|
||||
// #define LOG_NO_FILE_LINE_FUNCTION
|
||||
// #include "log.h"
|
||||
//
|
||||
#ifndef LOG_NO_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_FLF_FMT "%s"
|
||||
#define LOG_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
#ifdef LOG_TEE_FILE_LINE_FUNCTION
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5d][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||
#endif
|
||||
#else
|
||||
#define LOG_TEE_FLF_FMT "%s"
|
||||
#define LOG_TEE_FLF_VAL ,""
|
||||
#endif
|
||||
|
||||
// Utility for synchronizing log configuration state
|
||||
// since std::optional was introduced only in c++17
|
||||
enum LogTriState
|
||||
{
|
||||
LogTriStateSame,
|
||||
LogTriStateFalse,
|
||||
LogTriStateTrue
|
||||
};
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
if (LOG_TARGET != nullptr && LOG_TARGET != stdout && LOG_TARGET != stderr && LOG_TEE_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
// The '\0' as a last argument, is a trick to bypass the silly
|
||||
// "warning: ISO C++11 requires at least one argument for the "..." in a variadic macro"
|
||||
// so we can have a single macro which can be called just like printf.
|
||||
|
||||
// Main LOG macro.
|
||||
// behaves like printf, and supports arguments the exact same way.
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// Main TEE macro.
|
||||
// does the same as LOG
|
||||
// and
|
||||
// simultaneously writes stderr.
|
||||
//
|
||||
// Secondary target can be changed just like LOG_TARGET
|
||||
// by defining LOG_TEE_TARGET
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||
#else
|
||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "")
|
||||
#endif
|
||||
|
||||
// LOG macro variants with auto endline.
|
||||
#ifndef _MSC_VER
|
||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||
#else
|
||||
#define LOGLN(str, ...) LOG_IMPL("%s" str, "", __VA_ARGS__, "\n")
|
||||
#define LOG_TEELN(str, ...) LOG_TEE_IMPL("%s" str, "", __VA_ARGS__, "\n")
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTriStateSame, const std::string & filename = LOG_DEFAULT_FILE_NAME, FILE *target = nullptr)
|
||||
{
|
||||
static bool _initialized{false};
|
||||
static bool _disabled{(filename.empty() && target == nullptr)};
|
||||
static std::string log_current_filename{filename};
|
||||
static FILE *log_current_target{target};
|
||||
static FILE *logfile = nullptr;
|
||||
|
||||
if (change)
|
||||
{
|
||||
if (disable == LogTriStateTrue)
|
||||
{
|
||||
// Disable primary target
|
||||
_disabled = true;
|
||||
}
|
||||
// If previously disabled, only enable, and keep previous target
|
||||
else if (disable == LogTriStateFalse)
|
||||
{
|
||||
_disabled = false;
|
||||
}
|
||||
// Otherwise, process the arguments
|
||||
else if (log_current_filename != filename || log_current_target != target)
|
||||
{
|
||||
_initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
if (_disabled)
|
||||
{
|
||||
// Log is disabled
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
// with fallback in case something went wrong
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// do the (re)initialization
|
||||
if (target != nullptr)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
|
||||
log_current_filename = LOG_DEFAULT_FILE_NAME;
|
||||
log_current_target = target;
|
||||
|
||||
logfile = target;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (log_current_filename != filename)
|
||||
{
|
||||
if (logfile != nullptr && logfile != stdout && logfile != stderr)
|
||||
{
|
||||
fclose(logfile);
|
||||
}
|
||||
}
|
||||
|
||||
logfile = fopen(filename.c_str(), "w");
|
||||
}
|
||||
|
||||
if (!logfile)
|
||||
{
|
||||
// Verify whether the file was opened, otherwise fallback to stderr
|
||||
logfile = stderr;
|
||||
|
||||
fprintf(stderr, "Failed to open logfile '%s' with error '%s'\n", filename.c_str(), std::strerror(errno));
|
||||
fflush(stderr);
|
||||
|
||||
// At this point we let the init flag be to true below, and let the target fallback to stderr
|
||||
// otherwise we would repeatedly fopen() which was already unsuccessful
|
||||
}
|
||||
|
||||
_initialized = true;
|
||||
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler2_impl(bool change = false, LogTriState disable = LogTriStateSame, FILE *target = nullptr, const std::string & filename = LOG_DEFAULT_FILE_NAME)
|
||||
{
|
||||
return log_handler1_impl(change, disable, filename, target);
|
||||
}
|
||||
|
||||
// Disables logs entirely at runtime.
|
||||
// Makes LOG() and LOG_TEE() produce no output,
|
||||
// untill enabled back.
|
||||
#define log_disable() log_disable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_disable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateTrue);
|
||||
}
|
||||
|
||||
// Enables logs at runtime.
|
||||
#define log_enable() log_enable_impl()
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_enable_impl()
|
||||
{
|
||||
return log_handler1_impl(true, LogTriStateFalse);
|
||||
}
|
||||
|
||||
// Sets target fir logs, either by a file name or FILE* pointer (stdout, stderr, or any valid FILE*)
|
||||
#define log_set_target(target) log_set_target_impl(target)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_set_target_impl(const std::string & filename) { return log_handler1_impl(true, LogTriStateSame, filename); }
|
||||
inline FILE *log_set_target_impl(FILE *target) { return log_handler2_impl(true, LogTriStateSame, target); }
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline FILE *log_handler() { return log_handler1_impl(); }
|
||||
|
||||
inline void log_test()
|
||||
{
|
||||
log_disable();
|
||||
LOG("01 Hello World to nobody, because logs are disabled!\n");
|
||||
log_enable();
|
||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET));
|
||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n");
|
||||
log_set_target(stderr);
|
||||
LOG("04 Hello World to stderr!\n");
|
||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("06 Hello World to default log file!\n");
|
||||
log_set_target(stdout);
|
||||
LOG("07 Hello World to stdout!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("08 Hello World to default log file again!\n");
|
||||
log_disable();
|
||||
LOG("09 Hello World _1_ into the void!\n");
|
||||
log_enable();
|
||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n");
|
||||
log_disable();
|
||||
log_set_target("llama.anotherlog.log");
|
||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n");
|
||||
log_enable();
|
||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n");
|
||||
log_set_target("llama.yetanotherlog.log");
|
||||
LOG("13 Hello World this time in yet new file?\n");
|
||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||
LOG("14 Hello World in log with generated filename!\n");
|
||||
#ifdef _MSC_VER
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n");
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n");
|
||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG("19 Hello msvc LOG without arguments\n");
|
||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test");
|
||||
LOGLN("21 Hello msvc LOGLN without arguments\n");
|
||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test");
|
||||
#endif
|
||||
}
|
||||
|
||||
inline bool log_param_single_parse(const std::string & param)
|
||||
{
|
||||
if ( param == "--log-test")
|
||||
{
|
||||
log_test();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-disable")
|
||||
{
|
||||
log_disable();
|
||||
return true;
|
||||
}
|
||||
|
||||
if ( param == "--log-enable")
|
||||
{
|
||||
log_enable();
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool log_param_pair_parse(bool check_but_dont_parse, const std::string & param, const std::string & next = std::string())
|
||||
{
|
||||
if ( param == "--log-file")
|
||||
{
|
||||
if (!check_but_dont_parse)
|
||||
{
|
||||
log_set_target(log_filename_generator(next.empty() ? "unnamed" : next, "log"));
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
inline void log_print_usage()
|
||||
{
|
||||
printf("log options:\n");
|
||||
/* format
|
||||
printf(" -h, --help show this help message and exit\n");*/
|
||||
/* spacing
|
||||
printf("__-param----------------Description\n");*/
|
||||
printf(" --log-test Run simple logging test\n");
|
||||
printf(" --log-disable Disable trace logs\n");
|
||||
printf(" --log-enable Enable trace logs\n");
|
||||
printf(" --log-file Specify a log filename (without extension)\n");
|
||||
printf(" Log file will be tagged with unique ID and written as \"<name>.<ID>.log\"\n"); /* */
|
||||
}
|
||||
|
||||
#define log_dump_cmdline(argc, argv) log_dump_cmdline_impl(argc, argv)
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
inline void log_dump_cmdline_impl(int argc, char **argv)
|
||||
{
|
||||
std::stringstream buf;
|
||||
for (int i = 0; i < argc; ++i)
|
||||
{
|
||||
if (std::string(argv[i]).find(' ') != std::string::npos)
|
||||
{
|
||||
buf << " \"" << argv[i] <<"\"";
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << " " << argv[i];
|
||||
}
|
||||
}
|
||||
LOGLN("Cmd:%s", buf.str().c_str());
|
||||
}
|
||||
|
||||
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
||||
|
||||
inline std::string log_var_to_string_impl(bool var)
|
||||
{
|
||||
return var ? "true" : "false";
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(std::string var)
|
||||
{
|
||||
return var;
|
||||
}
|
||||
|
||||
inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
||||
{
|
||||
std::stringstream buf;
|
||||
buf << "[ ";
|
||||
bool first = true;
|
||||
for (auto e : var)
|
||||
{
|
||||
if (first)
|
||||
{
|
||||
first = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
buf << ", ";
|
||||
}
|
||||
buf << std::to_string(e);
|
||||
}
|
||||
buf << " ]";
|
||||
|
||||
return buf.str();
|
||||
}
|
||||
|
||||
#define LOG_TOKENS_TOSTR_PRETTY(ctx, tokens) \
|
||||
[&tokens, &ctx]() \
|
||||
{ \
|
||||
std::stringstream buf; \
|
||||
buf << "[ "; \
|
||||
\
|
||||
bool first = true; \
|
||||
for (const auto &token : tokens) \
|
||||
{ \
|
||||
if (!first) \
|
||||
buf << ", "; \
|
||||
else \
|
||||
first = false; \
|
||||
\
|
||||
auto detokenized = llama_token_to_piece(ctx, token); \
|
||||
\
|
||||
detokenized.erase( \
|
||||
std::remove_if( \
|
||||
detokenized.begin(), \
|
||||
detokenized.end(), \
|
||||
[](const unsigned char c) { return !std::isprint(c); }), \
|
||||
detokenized.end()); \
|
||||
\
|
||||
buf \
|
||||
<< "'" << detokenized << "'" \
|
||||
<< ":" << std::to_string(token); \
|
||||
} \
|
||||
buf << " ]"; \
|
||||
\
|
||||
return buf.str(); \
|
||||
}() \
|
||||
.c_str()
|
||||
|
||||
#ifdef LOG_DISABLE_LOGS
|
||||
|
||||
#undef LOG
|
||||
#define LOG(...) // dummy stub
|
||||
#undef LOGLN
|
||||
#define LOGLN(...) // dummy stub
|
||||
|
||||
#undef LOG_TEE
|
||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_TEELN
|
||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_DISABLE
|
||||
#define LOG_DISABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_ENABLE
|
||||
#define LOG_ENABLE() // dummy stub
|
||||
|
||||
#undef LOG_SET_TARGET
|
||||
#define LOG_SET_TARGET(...) // dummy stub
|
||||
|
||||
#undef LOG_DUMP_CMDLINE
|
||||
#define LOG_DUMP_CMDLINE(...) // dummy stub
|
||||
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
1496
common/train.cpp
Normal file
1496
common/train.cpp
Normal file
File diff suppressed because it is too large
Load Diff
230
common/train.h
Normal file
230
common/train.h
Normal file
@@ -0,0 +1,230 @@
|
||||
// Various helper functions and utilities for training
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
typedef std::string mt19937_state;
|
||||
|
||||
struct train_state {
|
||||
struct ggml_opt_context * opt;
|
||||
|
||||
uint64_t train_its;
|
||||
uint64_t train_samples;
|
||||
uint64_t train_tokens;
|
||||
uint64_t train_epochs;
|
||||
|
||||
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
|
||||
mt19937_state shuffle_rng_state_current;
|
||||
mt19937_state shuffle_rng_state_next;
|
||||
size_t shuffle_sample_count;
|
||||
size_t shuffle_next_sample;
|
||||
};
|
||||
|
||||
struct train_params_common {
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * pattern_fn_it;
|
||||
const char * fn_latest;
|
||||
|
||||
bool print_usage;
|
||||
|
||||
int save_every;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_gradient_accumulation;
|
||||
int n_epochs;
|
||||
|
||||
bool custom_n_ctx;
|
||||
|
||||
bool use_flash;
|
||||
bool use_checkpointing;
|
||||
|
||||
std::string sample_start;
|
||||
bool include_sample_start;
|
||||
bool escape;
|
||||
bool overlapping_samples;
|
||||
bool fill_with_next_samples;
|
||||
bool separate_with_eos;
|
||||
bool separate_with_bos;
|
||||
bool sample_random_offsets;
|
||||
|
||||
bool force_reshuffle;
|
||||
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_min;
|
||||
bool enable_restart;
|
||||
|
||||
int opt_past;
|
||||
float opt_delta;
|
||||
int opt_max_no_improvement;
|
||||
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_min_alpha;
|
||||
float adam_decay;
|
||||
int adam_decay_min_ndim;
|
||||
float adam_beta1;
|
||||
float adam_beta2;
|
||||
float adam_gclip;
|
||||
float adam_eps_f;
|
||||
};
|
||||
|
||||
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
|
||||
|
||||
struct train_opt_callback_data {
|
||||
struct train_params_common * params;
|
||||
struct train_state * train;
|
||||
save_train_files_callback save_cb;
|
||||
void * save_data;
|
||||
struct llama_context * lctx;
|
||||
int last_save_iter;
|
||||
llama_token * tokens_data;
|
||||
size_t tokens_size;
|
||||
size_t * samples_begin;
|
||||
size_t * samples_size;
|
||||
size_t * shuffled_samples_offs;
|
||||
size_t * shuffled_samples_begin;
|
||||
size_t * shuffled_samples_size;
|
||||
size_t samples_count;
|
||||
struct ggml_tensor * tokens_input;
|
||||
struct ggml_tensor * target_probs;
|
||||
int first_iter;
|
||||
int first_epoch;
|
||||
int iter_at_last_epoch;
|
||||
int64_t last_time;
|
||||
double millis_per_iter;
|
||||
};
|
||||
|
||||
struct train_state * init_train_state();
|
||||
void free_train_state(struct train_state * state);
|
||||
|
||||
struct train_params_common get_default_train_params_common();
|
||||
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
|
||||
|
||||
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
|
||||
void finish_processing_train_args(struct train_params_common * params);
|
||||
|
||||
struct random_normal_distribution;
|
||||
struct random_uniform_distribution;
|
||||
|
||||
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
|
||||
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
|
||||
|
||||
void free_random_normal_distribution (struct random_normal_distribution * rnd);
|
||||
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
|
||||
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
|
||||
|
||||
// generate random float in interval [0,1)
|
||||
float frand();
|
||||
float frand_normal (struct random_normal_distribution * rnd);
|
||||
float frand_uniform(struct random_uniform_distribution * rnd);
|
||||
|
||||
int clamp (const int v, const int min, const int max);
|
||||
float fclamp(const float v, const float min, const float max);
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
|
||||
|
||||
size_t tokenize_file(
|
||||
struct llama_context * lctx,
|
||||
const char * filename,
|
||||
const std::string & sample_start,
|
||||
bool include_sample_start,
|
||||
bool overlapping_samples,
|
||||
unsigned context_length,
|
||||
std::vector<llama_token> & out_tokens,
|
||||
std::vector<size_t> & out_samples_begin,
|
||||
std::vector<size_t> & out_samples_size);
|
||||
|
||||
int64_t get_example_targets_batch(
|
||||
struct llama_context * lctx,
|
||||
struct ggml_tensor * tokens_input,
|
||||
struct ggml_tensor * target_probs,
|
||||
int64_t example_id,
|
||||
const size_t * samples_offs,
|
||||
const size_t * samples_begin,
|
||||
const size_t * samples_size,
|
||||
size_t samples_count,
|
||||
const llama_token * train_data,
|
||||
size_t n_train_data,
|
||||
bool separate_with_eos,
|
||||
bool separate_with_bos,
|
||||
bool fill_with_next_samples,
|
||||
bool sample_random_offsets);
|
||||
|
||||
|
||||
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
|
||||
mt19937_state mt19937_get_state(const std::mt19937& rng);
|
||||
mt19937_state mt19937_seed_to_state(unsigned seed);
|
||||
|
||||
mt19937_state shuffle_samples(
|
||||
const mt19937_state & rng_state,
|
||||
size_t * shuffled_offs,
|
||||
size_t * shuffled_begins,
|
||||
size_t * shuffled_sizes,
|
||||
const size_t * begins,
|
||||
const size_t * sizes,
|
||||
size_t count);
|
||||
|
||||
size_t hash_combine(size_t h1, size_t h2);
|
||||
|
||||
size_t compute_samples_hash(
|
||||
const char* fn,
|
||||
const size_t* samples_begin,
|
||||
const size_t* samples_size,
|
||||
size_t sample_count);
|
||||
|
||||
|
||||
std::string replace_str(const char * s, const char * needle, const char * replacement);
|
||||
|
||||
void print_duration(double milliseconds);
|
||||
|
||||
float cosine_decay(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum);
|
||||
|
||||
float cosine_decay_restart(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum,
|
||||
float restart_step_mult);
|
||||
|
||||
float learning_schedule(
|
||||
int64_t step,
|
||||
int64_t warmup_steps,
|
||||
int64_t decay_steps,
|
||||
float learning_rate,
|
||||
float overall_minimum,
|
||||
float cos_decay_minimum,
|
||||
float cos_decay_restart_step_mult,
|
||||
bool enable_restart);
|
||||
|
||||
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
|
||||
|
||||
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
|
||||
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
|
||||
|
||||
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
|
||||
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
|
||||
|
||||
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
|
||||
|
||||
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);
|
||||
310
convert-baichuan-hf-to-gguf.py
Executable file
310
convert-baichuan-hf-to-gguf.py
Executable file
@@ -0,0 +1,310 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF baichuan --> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Any
|
||||
import itertools
|
||||
import numpy as np
|
||||
import torch
|
||||
from sentencepiece import SentencePieceProcessor # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from typing import TypeAlias
|
||||
|
||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||
|
||||
# reverse HF permute back to original pth layout
|
||||
|
||||
|
||||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray:
|
||||
if n_kv_head is not None and n_head != n_kv_head:
|
||||
n_head //= n_kv_head
|
||||
|
||||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
||||
.swapaxes(1, 2)
|
||||
.reshape(weights.shape))
|
||||
|
||||
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
||||
|
||||
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray:
|
||||
r = weights.shape[0] // 3
|
||||
return weights[r * n_part : r * n_part + r, ...]
|
||||
|
||||
def count_model_parts(dir_model: str) -> int:
|
||||
num_parts = 0
|
||||
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
|
||||
return num_parts
|
||||
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
print("hello print: ",hparams["architectures"][0])
|
||||
if hparams["architectures"][0] != "BaichuanForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
print(f"num_parts:{num_parts}\n")
|
||||
ARCH=gguf.MODEL_ARCH.BAICHUAN
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
head_count = hparams["num_attention_heads"]
|
||||
|
||||
if "num_key_value_heads" in hparams:
|
||||
head_count_kv = hparams["num_key_value_heads"]
|
||||
else:
|
||||
head_count_kv = head_count
|
||||
|
||||
if "_name_or_path" in hparams:
|
||||
hf_repo = hparams["_name_or_path"]
|
||||
else:
|
||||
hf_repo = ""
|
||||
|
||||
if "max_sequence_length" in hparams:
|
||||
ctx_length = hparams["max_sequence_length"]
|
||||
elif "max_position_embeddings" in hparams:
|
||||
ctx_length = hparams["max_position_embeddings"]
|
||||
elif "model_max_length" in hparams:
|
||||
ctx_length = hparams["model_max_length"]
|
||||
else:
|
||||
print("gguf: can not find ctx length parameter.")
|
||||
|
||||
sys.exit()
|
||||
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_source_hf_repo(hf_repo)
|
||||
gguf_writer.add_tensor_data_layout("Meta AI original pth")
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||
|
||||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
|
||||
if "type" in hparams["rope_scaling"]:
|
||||
if hparams["rope_scaling"]["type"] == "linear":
|
||||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
|
||||
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_model_file = dir_model / 'tokenizer.model'
|
||||
if not tokenizer_model_file.is_file():
|
||||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# vocab type sentencepiece
|
||||
print("gguf: get sentencepiece tokenizer vocab, scores and token types")
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
|
||||
vocab_size = hparams.get('vocab_size')
|
||||
if vocab_size is None:
|
||||
vocab_size = tokenizer.vocab_size()
|
||||
|
||||
for i in range(vocab_size):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1 # defualt to normal token type
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
|
||||
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
addtokens_json = json.load(f)
|
||||
|
||||
print("gguf: get added tokens")
|
||||
|
||||
for key in addtokens_json:
|
||||
tokens.append( key.encode("utf-8") )
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(4) # user-defined token type
|
||||
|
||||
|
||||
gguf_writer.add_tokenizer_model("llama")
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
tmp=model_part
|
||||
for i in range(block_count):
|
||||
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part:
|
||||
print(f"Unpacking and permuting layer {i}")
|
||||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count)
|
||||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv)
|
||||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2)
|
||||
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
250
convert-falcon-hf-to-gguf.py
Executable file
250
convert-falcon-hf-to-gguf.py
Executable file
@@ -0,0 +1,250 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF falcon--> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import contextlib
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path, prefix: str) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith(prefix):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "FalconForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model, "model-00")
|
||||
if num_parts:
|
||||
is_safetensors = True
|
||||
from safetensors import safe_open
|
||||
else:
|
||||
is_safetensors = False
|
||||
num_parts = count_model_parts(dir_model, "pytorch_model-")
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.FALCON
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name("Falcon")
|
||||
gguf_writer.add_context_length(2048) # not in config.json
|
||||
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
if "num_kv_heads" in hparams:
|
||||
gguf_writer.add_head_count_kv(hparams["num_kv_heads"])
|
||||
else:
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
gguf_writer.add_file_type(ftype)
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i])
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["num_attention_heads"]
|
||||
n_head_kv = hparams["num_kv_heads"] if "num_kv_heads" in hparams else 1
|
||||
|
||||
head_dim = hparams["hidden_size"] // n_head
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
elif is_safetensors:
|
||||
part_names = (
|
||||
f"model-{n:05}-of-{num_parts:05}.safetensors" for n in range(1, num_parts + 1)
|
||||
)
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
if is_safetensors:
|
||||
ctx = safe_open(dir_model / part_name, framework="pt", device="cpu")
|
||||
else:
|
||||
ctx = contextlib.nullcontext(torch.load(dir_model / part_name, map_location="cpu"))
|
||||
|
||||
with ctx as model_part:
|
||||
for name in model_part.keys():
|
||||
data = model_part.get_tensor(name) if is_safetensors else model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
# QKV tensor transform
|
||||
# The original query_key_value tensor contains n_head_kv "kv groups",
|
||||
# each consisting of n_head/n_head_kv query weights followed by one key
|
||||
# and one value weight (shared by all query heads in the kv group).
|
||||
# This layout makes it a big pain to work with in GGML.
|
||||
# So we rearrange them here,, so that we have n_head query weights
|
||||
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
||||
# in contiguous fashion.
|
||||
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
||||
|
||||
if "query_key_value" in name:
|
||||
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
||||
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
||||
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
||||
data = torch.cat((q,k,v)).reshape_as(data)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
212
convert-gptneox-hf-to-gguf.py
Executable file
212
convert-gptneox-hf-to-gguf.py
Executable file
@@ -0,0 +1,212 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF gptneox--> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a GPT-NeoX model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "GPTNeoXForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.GPTNEOX
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["num_hidden_layers"]
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_context_length(hparams["max_position_embeddings"])
|
||||
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
|
||||
gguf_writer.add_rope_dimension_count(int(hparams["rotary_pct"]*(hparams["hidden_size"]//hparams["num_attention_heads"])))
|
||||
gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||
gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_eps"])
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
# we don't need these
|
||||
if name.endswith(".attention.masked_bias") or name.endswith(".attention.bias") or name.endswith(".attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
451
convert-llama-ggml-to-gguf.py
Executable file
451
convert-llama-ggml-to-gguf.py
Executable file
@@ -0,0 +1,451 @@
|
||||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import struct
|
||||
import sys
|
||||
from enum import IntEnum
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
|
||||
import os
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
# Note: Does not support GGML_QKK_64
|
||||
QK_K = 256
|
||||
# Items here are (block size, type size)
|
||||
GGML_QUANT_SIZES = {
|
||||
gguf.GGMLQuantizationType.F32 : (1, 4),
|
||||
gguf.GGMLQuantizationType.F16 : (1, 2),
|
||||
gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
|
||||
gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
|
||||
gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
|
||||
gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
|
||||
gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
|
||||
gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
|
||||
gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
||||
gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
||||
gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
|
||||
gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
||||
gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
||||
gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
|
||||
}
|
||||
|
||||
class GGMLFormat(IntEnum):
|
||||
GGML = 0
|
||||
GGMF = 1
|
||||
GGJT = 2
|
||||
|
||||
class GGMLFType(IntEnum):
|
||||
ALL_F32 = 0
|
||||
MOSTLY_F16 = 1
|
||||
MOSTLY_Q4_0 = 2
|
||||
MOSTLY_Q4_1 = 3
|
||||
MOSTLY_Q4_1_SOME_F16 = 4
|
||||
MOSTLY_Q8_0 = 7
|
||||
MOSTLY_Q5_0 = 8
|
||||
MOSTLY_Q5_1 = 9
|
||||
MOSTLY_Q2_K = 10
|
||||
MOSTLY_Q3_K_S = 11
|
||||
MOSTLY_Q3_K_M = 12
|
||||
MOSTLY_Q3_K_L = 13
|
||||
MOSTLY_Q4_K_S = 14
|
||||
MOSTLY_Q4_K_M = 15
|
||||
MOSTLY_Q5_K_S = 16
|
||||
MOSTLY_Q5_K_M = 17
|
||||
MOSTLY_Q6_K = 18
|
||||
|
||||
class Hyperparameters:
|
||||
def __init__(self):
|
||||
self.n_vocab = self.n_embd = self.n_mult = self.n_head = 0
|
||||
self.n_layer = self.n_rot = self.n_ff = 0
|
||||
self.ftype = GGMLFType.ALL_F32
|
||||
|
||||
def set_n_ff(self, model):
|
||||
ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
|
||||
assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
|
||||
ff_tensor = model.tensors[ff_tensor_idx]
|
||||
self.n_ff = ff_tensor.dims[1]
|
||||
|
||||
def load(self, data, offset):
|
||||
(
|
||||
self.n_vocab,
|
||||
self.n_embd,
|
||||
self.n_mult,
|
||||
self.n_head,
|
||||
self.n_layer,
|
||||
self.n_rot,
|
||||
ftype,
|
||||
) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
|
||||
try:
|
||||
self.ftype = GGMLFType(ftype)
|
||||
except ValueError:
|
||||
raise ValueError(f'Invalid ftype {ftype}')
|
||||
return 4 * 7
|
||||
|
||||
def __str__(self):
|
||||
return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype.name}>'
|
||||
|
||||
class Vocab:
|
||||
def __init__(self, load_scores = True):
|
||||
self.items = []
|
||||
self.load_scores = load_scores
|
||||
|
||||
def load(self, data, offset, n_vocab):
|
||||
orig_offset = offset
|
||||
for _ in range(n_vocab):
|
||||
itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
|
||||
assert itemlen < 4096, 'Absurd vocab item length'
|
||||
offset += 4
|
||||
item_text = bytes(data[offset:offset + itemlen])
|
||||
offset += itemlen
|
||||
if self.load_scores:
|
||||
item_score = struct.unpack('<f', data[offset:offset + 4])[0]
|
||||
offset += 4
|
||||
else:
|
||||
item_score = 0.0
|
||||
self.items.append((item_text, item_score))
|
||||
return offset - orig_offset
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, use_padding = True):
|
||||
self.name = None
|
||||
self.dims: tuple[int, ...] = ()
|
||||
self.dtype = None
|
||||
self.start_offset = 0
|
||||
self.len_bytes = np.int64(0)
|
||||
self.use_padding = use_padding
|
||||
|
||||
def load(self, data, offset):
|
||||
orig_offset = offset
|
||||
(n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
|
||||
assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
|
||||
assert name_len < 4096, 'Absurd tensor name length'
|
||||
quant = GGML_QUANT_SIZES.get(dtype)
|
||||
assert quant is not None, 'Unknown tensor type'
|
||||
(blksize, tysize) = quant
|
||||
offset += 12
|
||||
self.dtype= dtype
|
||||
self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
|
||||
offset += 4 * n_dims
|
||||
self.name = bytes(data[offset:offset + name_len])
|
||||
offset += name_len
|
||||
pad = ((offset + 31) & ~31) - offset if self.use_padding else 0
|
||||
offset += pad
|
||||
n_elems = np.prod(self.dims)
|
||||
n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
|
||||
self.start_offset = offset
|
||||
self.len_bytes = n_bytes
|
||||
offset += n_bytes
|
||||
# print(n_dims, name_len, dtype, self.dims, self.name, pad)
|
||||
return offset - orig_offset
|
||||
|
||||
class GGMLModel:
|
||||
def __init__(self):
|
||||
self.hyperparameters = None
|
||||
self.vocab = None
|
||||
self.tensor_map = {}
|
||||
self.tensors = []
|
||||
|
||||
def validate_header(self, data, offset):
|
||||
magic = bytes(data[offset:offset + 4])
|
||||
if magic == b'GGUF':
|
||||
raise ValueError('File is already in GGUF format.')
|
||||
if magic == b'lmgg':
|
||||
self.file_format = GGMLFormat.GGML
|
||||
self.format_version = 1
|
||||
return 4
|
||||
version = struct.unpack('<I', data[offset + 4:offset + 8])[0]
|
||||
if magic == b'fmgg':
|
||||
if version != 1:
|
||||
raise ValueError(f'Cannot handle unexpected GGMF file version {version}')
|
||||
self.file_format = GGMLFormat.GGMF
|
||||
self.format_version = version
|
||||
return 8
|
||||
if magic == b'tjgg':
|
||||
if version < 1 or version > 3:
|
||||
raise ValueError(f'Cannot handle unexpected GGJT file version {version}')
|
||||
self.file_format = GGMLFormat.GGJT
|
||||
self.format_version = version
|
||||
return 8
|
||||
raise ValueError(f"Unexpected file magic {magic!r}! This doesn't look like a GGML format file.")
|
||||
|
||||
def validate_conversion(self, ftype):
|
||||
err = ''
|
||||
if (self.file_format < GGMLFormat.GGJT or self.format_version < 2):
|
||||
if ftype not in (GGMLFType.ALL_F32, GGMLFType.MOSTLY_F16):
|
||||
err = 'Quantizations changed in GGJTv2. Can only convert unquantized GGML files older than GGJTv2.'
|
||||
elif (self.file_format == GGMLFormat.GGJT and self.format_version == 2):
|
||||
if ftype in ( GGMLFType.MOSTLY_Q4_0, GGMLFType.MOSTLY_Q4_1,
|
||||
GGMLFType.MOSTLY_Q4_1_SOME_F16, GGMLFType.MOSTLY_Q8_0):
|
||||
err = 'Q4 and Q8 quantizations changed in GGJTv3.'
|
||||
if len(err) > 0:
|
||||
raise ValueError(f'{err} Sorry, your {self.file_format.name}v{self.format_version} file of type {ftype.name} is not eligible for conversion.')
|
||||
|
||||
def load(self, data, offset):
|
||||
offset += self.validate_header(data, offset)
|
||||
hp = Hyperparameters()
|
||||
offset += hp.load(data, offset)
|
||||
print(f'* File format: {self.file_format.name}v{self.format_version} with ftype {hp.ftype.name}')
|
||||
self.validate_conversion(hp.ftype)
|
||||
vocab = Vocab(load_scores = self.file_format > GGMLFormat.GGML)
|
||||
offset += vocab.load(data, offset, hp.n_vocab)
|
||||
tensors: list[Tensor] = []
|
||||
tensor_map = {}
|
||||
while offset < len(data):
|
||||
tensor = Tensor(use_padding = self.file_format > GGMLFormat.GGMF)
|
||||
offset += tensor.load(data, offset)
|
||||
tensor_map[tensor.name] = len(tensors)
|
||||
tensors.append(tensor)
|
||||
self.hyperparameters = hp
|
||||
self.vocab = vocab
|
||||
self.tensors = tensors
|
||||
self.tensor_map = tensor_map
|
||||
hp.set_n_ff(self)
|
||||
return offset
|
||||
|
||||
class GGMLToGGUF:
|
||||
def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
|
||||
hp = ggml_model.hyperparameters
|
||||
self.model = ggml_model
|
||||
self.data = data
|
||||
self.cfg = cfg
|
||||
self.params_override = params_override
|
||||
self.vocab_override = vocab_override
|
||||
self.special_vocab = special_vocab
|
||||
if params_override is not None:
|
||||
n_kv_head = params_override.n_head_kv
|
||||
else:
|
||||
if cfg.gqa == 1:
|
||||
n_kv_head = hp.n_head
|
||||
else:
|
||||
gqa = float(cfg.gqa)
|
||||
n_kv_head = None
|
||||
for x in range(1, 256):
|
||||
if float(hp.n_head) / float(x) == gqa:
|
||||
n_kv_head = x
|
||||
assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
|
||||
print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
|
||||
self.n_kv_head = n_kv_head
|
||||
self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
|
||||
|
||||
def save(self):
|
||||
print('* Preparing to save GGUF file')
|
||||
gguf_writer = gguf.GGUFWriter(
|
||||
self.cfg.output,
|
||||
gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA],
|
||||
use_temp_file = False )
|
||||
self.add_params(gguf_writer)
|
||||
self.add_vocab(gguf_writer)
|
||||
if self.special_vocab is not None:
|
||||
self.special_vocab.add_to_gguf(gguf_writer)
|
||||
self.add_tensors(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
def add_params(self, gguf_writer):
|
||||
hp = self.model.hyperparameters
|
||||
cfg = self.cfg
|
||||
if cfg.desc is not None:
|
||||
desc = cfg.desc
|
||||
else:
|
||||
desc = f'converted from legacy {self.model.file_format.name}v{self.model.format_version} {hp.ftype.name} format'
|
||||
try:
|
||||
# Filenames aren't necessarily valid UTF8.
|
||||
name = cfg.name if cfg.name is not None else cfg.input.name
|
||||
except UnicodeDecodeError:
|
||||
name = None
|
||||
print('* Adding model parameters and KV items')
|
||||
if name is not None:
|
||||
gguf_writer.add_name(name)
|
||||
gguf_writer.add_description(desc)
|
||||
gguf_writer.add_file_type(int(hp.ftype))
|
||||
if self.params_override is not None:
|
||||
po = self.params_override
|
||||
assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
|
||||
assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
|
||||
assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
|
||||
gguf_writer.add_context_length (po.n_ctx)
|
||||
gguf_writer.add_embedding_length (po.n_embd)
|
||||
gguf_writer.add_block_count (po.n_layer)
|
||||
gguf_writer.add_feed_forward_length (po.n_ff)
|
||||
gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
|
||||
gguf_writer.add_head_count (po.n_head)
|
||||
gguf_writer.add_head_count_kv (po.n_head_kv)
|
||||
gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
|
||||
return
|
||||
gguf_writer.add_context_length(cfg.context_length)
|
||||
gguf_writer.add_embedding_length(hp.n_embd)
|
||||
gguf_writer.add_block_count(hp.n_layer)
|
||||
gguf_writer.add_feed_forward_length(hp.n_ff)
|
||||
gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
|
||||
gguf_writer.add_head_count(hp.n_head)
|
||||
gguf_writer.add_head_count_kv(self.n_kv_head)
|
||||
gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
|
||||
|
||||
def add_vocab(self, gguf_writer):
|
||||
hp = self.model.hyperparameters
|
||||
gguf_writer.add_tokenizer_model('llama')
|
||||
tokens = []
|
||||
scores = []
|
||||
toktypes = []
|
||||
if self.vocab_override is not None:
|
||||
vo = self.vocab_override
|
||||
print('* Adding vocab item(s)')
|
||||
for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
|
||||
tokens.append(vbytes)
|
||||
scores.append(score)
|
||||
toktypes.append(ttype)
|
||||
assert len(tokens) == hp.n_vocab, \
|
||||
f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
if len(toktypes) > 0:
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
return
|
||||
print(f'* Adding {hp.n_vocab} vocab item(s)')
|
||||
assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
|
||||
for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
|
||||
tt = 1 # Normal
|
||||
# Special handling for UNK, BOS, EOS tokens.
|
||||
if tokid <= 2:
|
||||
if tokid == 0:
|
||||
vbytes = b'<unk>'
|
||||
tt = 2
|
||||
elif tokid == 1:
|
||||
vbytes = b'<s>'
|
||||
tt = 3
|
||||
else:
|
||||
vbytes = b'</s>'
|
||||
tt = 3
|
||||
elif len(vbytes) == 0:
|
||||
tt = 3 # Control
|
||||
elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
|
||||
vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
|
||||
tt = 6 # Byte
|
||||
else:
|
||||
vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
|
||||
toktypes.append(tt)
|
||||
tokens.append(vbytes)
|
||||
scores.append(vscore)
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
gguf_writer.add_unk_token_id(0)
|
||||
gguf_writer.add_bos_token_id(1)
|
||||
gguf_writer.add_eos_token_id(2)
|
||||
|
||||
def add_tensors(self, gguf_writer):
|
||||
tensor_map = self.name_map
|
||||
data = self.data
|
||||
print(f'* Adding {len(self.model.tensors)} tensor(s)')
|
||||
for tensor in self.model.tensors:
|
||||
name = str(tensor.name, 'UTF-8')
|
||||
mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
assert mapped_name is not None, f'Bad name {name}'
|
||||
tempdims = list(tensor.dims[:])
|
||||
if len(tempdims) > 1:
|
||||
temp = tempdims[1]
|
||||
tempdims[1] = tempdims[0]
|
||||
tempdims[0] = temp
|
||||
# print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
|
||||
gguf_writer.add_tensor(
|
||||
mapped_name,
|
||||
data[tensor.start_offset:tensor.start_offset + tensor.len_bytes],
|
||||
raw_shape = tempdims,
|
||||
raw_dtype = tensor.dtype )
|
||||
|
||||
def handle_metadata(cfg, hp):
|
||||
import convert
|
||||
assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
|
||||
hf_config_path = cfg.model_metadata_dir / "config.json"
|
||||
orig_config_path = cfg.model_metadata_dir / "params.json"
|
||||
# We pass a fake model here. "original" mode will check the shapes of some
|
||||
# tensors if information is missing in the .json file: other than that, the
|
||||
# model data isn't used so this should be safe (at least for now).
|
||||
fakemodel = {
|
||||
'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
||||
'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
|
||||
}
|
||||
fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
|
||||
fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
|
||||
if hf_config_path.exists():
|
||||
params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
|
||||
elif orig_config_path.exists():
|
||||
params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
|
||||
else:
|
||||
raise ValueError('Unable to load metadata')
|
||||
vocab = convert.load_vocab(
|
||||
cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir,
|
||||
cfg.vocabtype )
|
||||
# FIXME: Respect cfg.vocab_dir?
|
||||
svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
|
||||
convert.check_vocab_size(params, vocab)
|
||||
return (params, vocab, svocab)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert GGML models to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, required = True,
|
||||
help = 'Input GGMLv3 filename')
|
||||
parser.add_argument('--output', '-o', type = Path, required = True,
|
||||
help ='Output GGUF filename')
|
||||
parser.add_argument('--name',
|
||||
help = 'Set model name')
|
||||
parser.add_argument('--desc',
|
||||
help = 'Set model description')
|
||||
parser.add_argument('--gqa', type = int, default = 1,
|
||||
help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
|
||||
parser.add_argument('--eps', default = '5.0e-06',
|
||||
help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
|
||||
parser.add_argument('--context-length', '-c', type=int, default = 2048,
|
||||
help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
|
||||
parser.add_argument('--model-metadata-dir', '-m', type = Path,
|
||||
help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
|
||||
parser.add_argument("--vocab-dir", type=Path,
|
||||
help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
|
||||
parser.add_argument("--vocabtype", choices=["spm", "bpe"], default="spm",
|
||||
help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)")
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(f'* Using config: {cfg}')
|
||||
print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
|
||||
if cfg.model_metadata_dir is None and (cfg.gqa == 1 or cfg.eps == '5.0e-06'):
|
||||
print('- Note: If converting LLaMA2, specifying "--eps 1e-5" is required. 70B models also need "--gqa 8".')
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
model = GGMLModel()
|
||||
print('* Scanning GGML input file')
|
||||
offset = model.load(data, 0)
|
||||
print(f'* GGML model hyperparameters: {model.hyperparameters}')
|
||||
vocab_override = None
|
||||
params_override = None
|
||||
special_vocab = None
|
||||
if cfg.model_metadata_dir is not None:
|
||||
(params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
|
||||
print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
|
||||
print(f'* Overriding params: {params_override}')
|
||||
print(f'* Overriding vocab: {vocab_override}')
|
||||
print(f'* Special vocab: {special_vocab}')
|
||||
else:
|
||||
print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
|
||||
if model.file_format == GGMLFormat.GGML:
|
||||
print('! This is a very old GGML file that does not contain vocab scores. Strongly recommend using model metadata!')
|
||||
converter = GGMLToGGUF(model, data, cfg,
|
||||
params_override = params_override,
|
||||
vocab_override = vocab_override,
|
||||
special_vocab = special_vocab )
|
||||
converter.save()
|
||||
print(f'* Successful completion. Output saved to: {cfg.output}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
46
convert-lora-to-ggml.py
Normal file → Executable file
46
convert-lora-to-ggml.py
Normal file → Executable file
@@ -1,27 +1,29 @@
|
||||
#!/usr/bin/env python3
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import struct
|
||||
import sys
|
||||
from typing import Any, Dict, Sequence, TextIO
|
||||
from typing import Any, BinaryIO, Sequence
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from convert import DATA_TYPE_TO_FTYPE, NUMPY_TYPE_TO_DATA_TYPE, DataType
|
||||
NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1}
|
||||
|
||||
|
||||
HF_SUBLAYER_TO_GGML = {
|
||||
"self_attn.q_proj": "attention.wq",
|
||||
"self_attn.k_proj": "attention.wk",
|
||||
"self_attn.v_proj": "attention.wv",
|
||||
"self_attn.o_proj": "attention.wo",
|
||||
"mlp.gate_proj": "feed_forward.w1",
|
||||
"mlp.down_proj": "feed_forward.w2",
|
||||
"mlp.up_proj": "feed_forward.w3",
|
||||
"input_layernorm": "attention_norm",
|
||||
"self_attn.q_proj": "attn_q",
|
||||
"self_attn.k_proj": "attn_k",
|
||||
"self_attn.v_proj": "attn_v",
|
||||
"self_attn.o_proj": "attn_output",
|
||||
"mlp.gate_proj": "ffn_gate",
|
||||
"mlp.down_proj": "ffn_down",
|
||||
"mlp.up_proj": "ffn_up",
|
||||
"input_layernorm": "attn_norm",
|
||||
"post_attention_layernorm": "ffn_norm",
|
||||
# "norm": "norm",
|
||||
# "embed_tokens": "tok_embeddings",
|
||||
# "lm_head": "output",
|
||||
}
|
||||
|
||||
|
||||
@@ -38,7 +40,7 @@ def translate_tensor_name(t: str) -> str:
|
||||
sys.exit(1)
|
||||
|
||||
output_string = (
|
||||
f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
||||
f"blk.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.weight.lora{lora_type}"
|
||||
)
|
||||
return output_string
|
||||
else:
|
||||
@@ -46,19 +48,21 @@ def translate_tensor_name(t: str) -> str:
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def write_file_header(fout: TextIO, params: Dict[str, Any]) -> None:
|
||||
def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None:
|
||||
fout.write(b"ggla"[::-1]) # magic (ggml lora)
|
||||
fout.write(struct.pack("i", 1)) # file version
|
||||
fout.write(struct.pack("i", params["r"]))
|
||||
# https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int
|
||||
# but some models ship a float value instead
|
||||
# let's convert to int, but fail if lossless conversion is not possible
|
||||
assert int(params["lora_alpha"]) == params["lora_alpha"], "cannot convert float to int losslessly"
|
||||
assert (
|
||||
int(params["lora_alpha"]) == params["lora_alpha"]
|
||||
), "cannot convert float to int losslessly"
|
||||
fout.write(struct.pack("i", int(params["lora_alpha"])))
|
||||
|
||||
|
||||
def write_tensor_header(
|
||||
self, name: str, shape: Sequence[int], data_type: DataType
|
||||
self, name: str, shape: Sequence[int], data_type: np.dtype[Any]
|
||||
) -> None:
|
||||
sname = name.encode("utf-8")
|
||||
fout.write(
|
||||
@@ -66,7 +70,7 @@ def write_tensor_header(
|
||||
"iii",
|
||||
len(shape),
|
||||
len(sname),
|
||||
DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]],
|
||||
NUMPY_TYPE_TO_FTYPE[data_type.name],
|
||||
)
|
||||
)
|
||||
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
|
||||
@@ -113,6 +117,10 @@ with open(output_path, "wb") as fout:
|
||||
|
||||
write_file_header(fout, params)
|
||||
for k, v in model.items():
|
||||
if k.endswith(".default.weight"):
|
||||
k = k.replace(".default.weight", ".weight")
|
||||
if k in ["llama_proj.weight", "llama_proj.bias"]:
|
||||
continue
|
||||
if k.endswith("lora_A.weight"):
|
||||
if v.dtype != torch.float16 and v.dtype != torch.float32:
|
||||
v = v.float()
|
||||
@@ -120,7 +128,7 @@ with open(output_path, "wb") as fout:
|
||||
else:
|
||||
v = v.float()
|
||||
|
||||
t = v.numpy()
|
||||
t = v.detach().numpy()
|
||||
tname = translate_tensor_name(k)
|
||||
print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
|
||||
write_tensor_header(fout, tname, t.shape, t.dtype)
|
||||
|
||||
130
convert-persimmon-to-gguf.py
Normal file
130
convert-persimmon-to-gguf.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import torch
|
||||
import os
|
||||
from pprint import pprint
|
||||
import sys
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
def _flatten_dict(dct, tensors, prefix=None):
|
||||
assert isinstance(dct, dict)
|
||||
for key in dct.keys():
|
||||
new_prefix = prefix + '.' + key if prefix is not None else key
|
||||
if isinstance(dct[key], torch.Tensor):
|
||||
tensors[new_prefix] = dct[key]
|
||||
elif isinstance(dct[key], dict):
|
||||
_flatten_dict(dct[key], tensors, new_prefix)
|
||||
else:
|
||||
raise ValueError(type(dct[key]))
|
||||
return None
|
||||
|
||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
print('gguf: adding tokens')
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
for i in range(tokenizer.vocab_size()):
|
||||
text: bytes
|
||||
score: float
|
||||
|
||||
piece = tokenizer.id_to_piece(i)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(i)
|
||||
|
||||
toktype = 1
|
||||
if tokenizer.is_unknown(i):
|
||||
toktype = 2
|
||||
if tokenizer.is_control(i):
|
||||
toktype = 3
|
||||
if tokenizer.is_unused(i):
|
||||
toktype = 5
|
||||
if tokenizer.is_byte(i):
|
||||
toktype = 6
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
pass
|
||||
return tokens, scores, toktypes
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
||||
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
||||
args = parser.parse_args()
|
||||
sys.path.append(str(args.adept_inference_dir))
|
||||
persimmon_model = torch.load(args.ckpt_path)
|
||||
hparams = persimmon_model['args']
|
||||
pprint(hparams)
|
||||
tensors = {}
|
||||
_flatten_dict(persimmon_model['model'], tensors, None)
|
||||
|
||||
arch = gguf.MODEL_ARCH.PERSIMMON
|
||||
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
||||
|
||||
block_count = hparams.num_layers
|
||||
head_count = hparams.num_attention_heads
|
||||
head_count_kv = head_count
|
||||
ctx_length = hparams.seq_length
|
||||
hidden_size = hparams.hidden_size
|
||||
|
||||
gguf_writer.add_name('persimmon-8b-chat')
|
||||
gguf_writer.add_context_length(ctx_length)
|
||||
gguf_writer.add_embedding_length(hidden_size)
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||
gguf_writer.add_head_count(head_count)
|
||||
gguf_writer.add_head_count_kv(head_count_kv)
|
||||
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
||||
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
||||
|
||||
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
||||
gguf_writer.add_tokenizer_model('llama')
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
gguf_writer.add_bos_token_id(71013)
|
||||
gguf_writer.add_eos_token_id(71013)
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||
print(tensor_map)
|
||||
for name in tensors.keys():
|
||||
data = tensors[name]
|
||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||
continue
|
||||
old_dtype = data.dtype
|
||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||
data = data.to(torch.float32).squeeze().numpy()
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
n_dims = len(data.shape)
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{args.outfile}'")
|
||||
print("")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,11 +0,0 @@
|
||||
# Compatibility stub
|
||||
|
||||
import argparse
|
||||
|
||||
import convert
|
||||
|
||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||
args = parser.parse_args()
|
||||
convert.main(['--outtype', 'f16' if args.ftype == 1 else 'f32', '--', args.dir_model])
|
||||
263
convert-refact-hf-to-gguf.py
Executable file
263
convert-refact-hf-to-gguf.py
Executable file
@@ -0,0 +1,263 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF refact--> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if "NO_LOCAL_GGUF" not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / "gguf-py" / "gguf"))
|
||||
import gguf
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a Refact model to a GGML compatible file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--vocab-only",
|
||||
action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile",
|
||||
type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model",
|
||||
type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype",
|
||||
type=int,
|
||||
choices=[0, 1],
|
||||
default=1,
|
||||
nargs="?",
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f"Error: {args.model} is not a directory", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f"ggml-model-{ftype_str[ftype]}.gguf"
|
||||
|
||||
print("gguf: loading model " + dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "GPTRefactForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH = gguf.MODEL_ARCH.REFACT
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
# Get refact feed forward dimension
|
||||
hidden_dim = hparams["n_embd"]
|
||||
inner_dim = 4 * hidden_dim
|
||||
hidden_dim = int(2 * inner_dim / 3)
|
||||
multiple_of = 256
|
||||
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
|
||||
gguf_writer.add_name("Refact")
|
||||
# refact uses Alibi. So this is from config.json which might be used by training.
|
||||
gguf_writer.add_context_length(hparams["n_positions"])
|
||||
gguf_writer.add_embedding_length(hparams["n_embd"])
|
||||
|
||||
gguf_writer.add_feed_forward_length(ff_dim)
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["n_head"])
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
gguf_writer.add_layer_norm_rms_eps(hparams["layer_norm_epsilon"])
|
||||
gguf_writer.add_file_type(ftype)
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = 1
|
||||
|
||||
head_dim = hparams["n_embd"] // n_head
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||
|
||||
for i in range(block_count):
|
||||
if f"transformer.h.{i}.attn.kv.weight" in model_part:
|
||||
data = model_part[f"transformer.h.{i}.attn.kv.weight"]
|
||||
model_part[f"model.layers.{i}.self_attn.k_proj.weight"] = data[
|
||||
: n_head_kv * head_dim
|
||||
]
|
||||
model_part[f"model.layers.{i}.self_attn.v_proj.weight"] = data[
|
||||
n_head_kv * head_dim :
|
||||
]
|
||||
del model_part[f"transformer.h.{i}.attn.kv.weight"]
|
||||
if f"transformer.h.{i}.attn.q.weight" in model_part:
|
||||
model_part[f"model.layers.{i}.self_attn.q_proj.weight"] = model_part[
|
||||
f"transformer.h.{i}.attn.q.weight"
|
||||
]
|
||||
del model_part[f"transformer.h.{i}.attn.q.weight"]
|
||||
if f"transformer.h.{i}.mlp.gate_up_proj.weight" in model_part:
|
||||
data = model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
|
||||
model_part[f"model.layers.{i}.mlp.gate_proj.weight"] = data[:ff_dim]
|
||||
model_part[f"model.layers.{i}.mlp.up_proj.weight"] = data[ff_dim:]
|
||||
del model_part[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if (
|
||||
ftype == 1
|
||||
and data_dtype == np.float32
|
||||
and name.endswith(".weight")
|
||||
and n_dims == 2
|
||||
):
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(
|
||||
new_name
|
||||
+ ", n_dims = "
|
||||
+ str(n_dims)
|
||||
+ ", "
|
||||
+ str(old_dtype)
|
||||
+ " --> "
|
||||
+ str(data.dtype)
|
||||
)
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
202
convert-starcoder-hf-to-gguf.py
Executable file
202
convert-starcoder-hf-to-gguf.py
Executable file
@@ -0,0 +1,202 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF starcoder --> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a StarCoder model to a GGML compatible file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "GPTBigCodeForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit(1)
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.STARCODER
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
|
||||
gguf_writer.add_name("StarCoder")
|
||||
gguf_writer.add_context_length(hparams["n_positions"])
|
||||
gguf_writer.add_embedding_length(hparams["n_embd"])
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["n_embd"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(hparams["n_head"])
|
||||
gguf_writer.add_head_count_kv(1)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
gguf_writer.add_file_type(ftype)
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head = hparams["n_head"]
|
||||
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
||||
|
||||
head_dim = hparams["n_embd"] // n_head
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
1373
convert.py
Normal file → Executable file
1373
convert.py
Normal file → Executable file
File diff suppressed because it is too large
Load Diff
67
docs/BLIS.md
Normal file
67
docs/BLIS.md
Normal file
@@ -0,0 +1,67 @@
|
||||
BLIS Installation Manual
|
||||
------------------------
|
||||
|
||||
BLIS is a portable software framework for high-performance BLAS-like dense linear algebra libraries. It has received awards and recognition, including the 2023 James H. Wilkinson Prize for Numerical Software and the 2020 SIAM Activity Group on Supercomputing Best Paper Prize. BLIS provides a new BLAS-like API and a compatibility layer for traditional BLAS routine calls. It offers features such as object-based API, typed API, BLAS and CBLAS compatibility layers.
|
||||
|
||||
Project URL: https://github.com/flame/blis
|
||||
|
||||
### Prepare:
|
||||
|
||||
Compile BLIS:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/flame/blis
|
||||
cd blis
|
||||
./configure --enable-cblas -t openmp,pthreads auto
|
||||
# will install to /usr/local/ by default.
|
||||
make -j
|
||||
```
|
||||
|
||||
Install BLIS:
|
||||
|
||||
```bash
|
||||
sudo make install
|
||||
```
|
||||
|
||||
We recommend using openmp since it's easier to modify the cores been used.
|
||||
|
||||
### llama.cpp compilation
|
||||
|
||||
Makefile:
|
||||
|
||||
```bash
|
||||
make LLAMA_BLIS=1 -j
|
||||
# make LLAMA_BLIS=1 benchmark-matmult
|
||||
```
|
||||
|
||||
CMake:
|
||||
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=FLAME ..
|
||||
make -j
|
||||
```
|
||||
|
||||
### llama.cpp execution
|
||||
|
||||
According to the BLIS documentation, we could set the following
|
||||
environment variables to modify the behavior of openmp:
|
||||
|
||||
```bash
|
||||
export GOMP_GPU_AFFINITY="0-19"
|
||||
export BLIS_NUM_THREADS=14
|
||||
```
|
||||
|
||||
And then run the binaries as normal.
|
||||
|
||||
|
||||
### Intel specific issue
|
||||
|
||||
Some might get the error message saying that `libimf.so` cannot be found.
|
||||
Please follow this [stackoverflow page](https://stackoverflow.com/questions/70687930/intel-oneapi-2022-libimf-so-no-such-file-or-directory-during-openmpi-compila).
|
||||
|
||||
### Reference:
|
||||
|
||||
1. https://github.com/flame/blis#getting-started
|
||||
2. https://github.com/flame/blis/blob/master/docs/Multithreading.md
|
||||
40
docs/token_generation_performance_tips.md
Normal file
40
docs/token_generation_performance_tips.md
Normal file
@@ -0,0 +1,40 @@
|
||||
# Token generation performance troubleshooting
|
||||
|
||||
## Verifying that the model is running on the GPU with cuBLAS
|
||||
Make sure you compiled llama with the correct env variables according to [this guide](../README.md#cublas), so that llama accepts the `-ngl N` (or `--n-gpu-layers N`) flag. When running llama, you may configure `N` to be very large, and llama will offload the maximum possible number of layers to the GPU, even if it's less than the number you configured. For example:
|
||||
```shell
|
||||
./main -m "path/to/model.gguf" -ngl 200000 -p "Please sir, may I have some "
|
||||
```
|
||||
|
||||
When running llama, before it starts the inference work, it will output diagnostic information that shows whether cuBLAS is offloading work to the GPU. Look for these lines:
|
||||
```shell
|
||||
llama_model_load_internal: [cublas] offloading 60 layers to GPU
|
||||
llama_model_load_internal: [cublas] offloading output layer to GPU
|
||||
llama_model_load_internal: [cublas] total VRAM used: 17223 MB
|
||||
... rest of inference
|
||||
```
|
||||
|
||||
If you see these lines, then the GPU is being used.
|
||||
|
||||
## Verifying that the CPU is not oversaturated
|
||||
llama accepts a `-t N` (or `--threads N`) parameter. It's extremely important that this parameter is not too large. If your token generation is extremely slow, try setting this number to 1. If this significantly improves your token generation speed, then your CPU is being oversaturated and you need to explicitly set this parameter to the number of the physicial CPU cores on your machine (even if you utilize a GPU). If in doubt, start with 1 and double the amount until you hit a performance bottleneck, then scale the number down.
|
||||
|
||||
# Example of runtime flags effect on inference speed benchmark
|
||||
These runs were tested on the following machine:
|
||||
GPU: A6000 (48GB VRAM)
|
||||
CPU: 7 physical cores
|
||||
RAM: 32GB
|
||||
|
||||
Model: `TheBloke_Wizard-Vicuna-30B-Uncensored-GGML/Wizard-Vicuna-30B-Uncensored.q4_0.gguf` (30B parameters, 4bit quantization, GGML)
|
||||
|
||||
Run command: `./main -m "path/to/model.gguf" -p "An extremely detailed description of the 10 best ethnic dishes will follow, with recipes: " -n 1000 [additional benchmark flags]`
|
||||
|
||||
Result:
|
||||
|
||||
| command | tokens/second (higher is better) |
|
||||
| - | - |
|
||||
| -ngl 2000000 | N/A (less than 0.1) |
|
||||
| -t 7 | 1.7 |
|
||||
| -t 1 -ngl 2000000 | 5.5 |
|
||||
| -t 7 -ngl 2000000 | 8.7 |
|
||||
| -t 4 -ngl 2000000 | 9.1 |
|
||||
@@ -6,23 +6,6 @@ find_package(Threads REQUIRED)
|
||||
|
||||
# ...
|
||||
|
||||
# common
|
||||
|
||||
set(TARGET common)
|
||||
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(${TARGET} PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
||||
target_include_directories(${TARGET} PUBLIC .)
|
||||
target_compile_features(${TARGET} PUBLIC cxx_std_11)
|
||||
target_link_libraries(${TARGET} PRIVATE llama)
|
||||
|
||||
# examples
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
|
||||
@@ -37,4 +20,21 @@ else()
|
||||
add_subdirectory(save-load-state)
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(beam-search)
|
||||
if (LLAMA_METAL)
|
||||
add_subdirectory(metal)
|
||||
endif()
|
||||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(export-lora)
|
||||
endif()
|
||||
|
||||
@@ -2,21 +2,21 @@
|
||||
set -e
|
||||
|
||||
AI_NAME="${AI_NAME:-Miku}"
|
||||
MODEL="${MODEL:-./models/gpt4all-7B/gpt4all-lora-unfiltered-quantized.bin}"
|
||||
MODEL="${MODEL:-./models/llama-2-7b-chat.ggmlv3.q4_K_M.bin}"
|
||||
USER_NAME="${USER_NAME:-Anon}"
|
||||
|
||||
# Uncomment and adjust to the number of CPU cores you want to use.
|
||||
#N_THREAD="${N_THREAD:-4}"
|
||||
CTX_SIZE="${CTX_SIZE:-4096}"
|
||||
N_PREDICTS="${N_PREDICTS:-4096}"
|
||||
|
||||
GEN_OPTIONS=(--batch_size 1024
|
||||
--ctx_size 2048
|
||||
--ctx_size "$CTX_SIZE"
|
||||
--keep -1
|
||||
--repeat_last_n 256
|
||||
--repeat_penalty 1.17647
|
||||
--temp 0.7
|
||||
--top_k 40
|
||||
--top_p 0.5)
|
||||
--temp 0.6
|
||||
--mirostat 2)
|
||||
|
||||
if [ -n "$N_THREAD" ]; then
|
||||
GEN_OPTIONS+=(--threads "$N_THREAD")
|
||||
@@ -24,16 +24,17 @@ fi
|
||||
|
||||
./main "${GEN_OPTIONS[@]}" \
|
||||
--model "$MODEL" \
|
||||
--in-prefix " " \
|
||||
--in-suffix "${AI_NAME}:" \
|
||||
--n_predict "$N_PREDICTS" \
|
||||
--color --interactive \
|
||||
--reverse-prompt "${USER_NAME}:" \
|
||||
--prompt "
|
||||
This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
|
||||
--prompt "This is a transcript of a 1000 page, never ending conversation between ${USER_NAME} and the cute and helpful AI assistant ${AI_NAME}. ${AI_NAME} is a girl who is an AI running on the user's computer.
|
||||
${AI_NAME} can think for herself without the user seeing her thoughts by adding a /think prefix to her output. She uses this to reason about the world and to think about what she should say next.
|
||||
${AI_NAME} is always coherent and makes sense, but if she isn't sure if what she is saying is correct, she will ask the user for help.
|
||||
${AI_NAME} is a very helpful AI and will help the user with anything they need. She is also very friendly and will try to make the user feel better if they are sad.
|
||||
${AI_NAME} is also very curious and will ask the user a lot of questions about themselves and their life. She will also try to make the user like her.
|
||||
The conversation is only between ${USER_NAME} and ${AI_NAME}
|
||||
The conversation is only between ${USER_NAME} and ${AI_NAME}.
|
||||
The conversation is only through text, so ${AI_NAME} can't see ${USER_NAME}'s face or hear his voice.
|
||||
${AI_NAME} can only communicate through text, so she can't send images or videos.
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
cd `dirname $0`
|
||||
cd ..
|
||||
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin \
|
||||
./main -m ./models/alpaca.13b.ggmlv3.q8_0.bin \
|
||||
--color \
|
||||
-f ./prompts/alpaca.txt \
|
||||
--ctx_size 2048 \
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
set(TARGET baby-llama)
|
||||
add_executable(${TARGET} baby-llama.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
||||
@@ -1,39 +1,37 @@
|
||||
#include "ggml.h"
|
||||
#include "train.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <random>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#ifdef LLAMA_DEFAULT_RMS_EPS
|
||||
constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
||||
#else
|
||||
constexpr float rms_norm_eps = 5e-6f;
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
struct random_normal_distribution {
|
||||
std::mt19937 gen;
|
||||
std::normal_distribution<float> nd;
|
||||
float min;
|
||||
float max;
|
||||
};
|
||||
|
||||
void init_random_normal_distribution(struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max) {
|
||||
rnd->gen = std::mt19937(seed);
|
||||
rnd->nd = std::normal_distribution<float>{mean, std};
|
||||
rnd->min = min;
|
||||
rnd->max = max;
|
||||
}
|
||||
|
||||
float frand_normal(struct random_normal_distribution * rnd) {
|
||||
const float r = rnd->nd(rnd->gen);
|
||||
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
|
||||
}
|
||||
|
||||
struct ggml_tensor * randomize_tensor(
|
||||
struct ggml_tensor * tensor,
|
||||
int ndims,
|
||||
const int64_t ne[],
|
||||
float fmin,
|
||||
float fmax) {
|
||||
|
||||
static struct ggml_tensor * randomize_tensor(
|
||||
struct ggml_tensor * tensor, int ndims, const int64_t ne[], float fmin, float fmax
|
||||
) {
|
||||
switch (ndims) {
|
||||
case 1:
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
@@ -69,52 +67,7 @@ struct ggml_tensor * randomize_tensor(
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
|
||||
return tensor;
|
||||
}
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal(
|
||||
struct ggml_tensor * tensor,
|
||||
int ndims,
|
||||
const int64_t ne[],
|
||||
struct random_normal_distribution * rnd) {
|
||||
switch (ndims) {
|
||||
case 1:
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i0] = frand_normal(rnd);
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i1*ne[0] + i0] = frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
for (int i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return tensor;
|
||||
}
|
||||
@@ -133,7 +86,7 @@ struct llama_hparams {
|
||||
}
|
||||
};
|
||||
|
||||
uint32_t get_n_ff(const struct llama_hparams* hparams) {
|
||||
static uint32_t get_n_ff(const struct llama_hparams* hparams) {
|
||||
const uint32_t n_ff = ((2*(4*hparams->n_embd)/3 + hparams->n_mult - 1)/hparams->n_mult)*hparams->n_mult;
|
||||
return n_ff;
|
||||
}
|
||||
@@ -148,8 +101,8 @@ struct llama_hparams_lora {
|
||||
uint32_t n_rot = 64;
|
||||
uint32_t n_lora = 64;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
return memcmp(this, &other, sizeof(llama_hparams));
|
||||
bool operator!=(const llama_hparams_lora & other) const {
|
||||
return memcmp(this, &other, sizeof(llama_hparams_lora)) != 0;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -234,7 +187,7 @@ struct llama_model_lora {
|
||||
std::vector<llama_layer_lora> layers;
|
||||
};
|
||||
|
||||
void init_model(struct llama_model * model) {
|
||||
static void init_model(struct llama_model * model) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
@@ -271,7 +224,7 @@ void init_model(struct llama_model * model) {
|
||||
}
|
||||
|
||||
|
||||
void init_model_lora(struct llama_model_lora * model) {
|
||||
static void init_model_lora(struct llama_model_lora * model) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
@@ -314,7 +267,7 @@ void init_model_lora(struct llama_model_lora * model) {
|
||||
}
|
||||
}
|
||||
|
||||
void set_param_model(struct llama_model * model) {
|
||||
static void set_param_model(struct llama_model * model) {
|
||||
const auto& hparams = model->hparams;
|
||||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
@@ -340,7 +293,7 @@ void set_param_model(struct llama_model * model) {
|
||||
}
|
||||
}
|
||||
|
||||
void set_param_model_lora(struct llama_model_lora * model) {
|
||||
static void set_param_model_lora(struct llama_model_lora * model) {
|
||||
const auto& hparams = model->hparams;
|
||||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
@@ -371,69 +324,109 @@ void set_param_model_lora(struct llama_model_lora * model) {
|
||||
}
|
||||
}
|
||||
|
||||
void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
|
||||
static void randomize_model(struct llama_model * model, int seed, float mean, float std, float min, float max) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
struct random_normal_distribution rnd;
|
||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
||||
randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd);
|
||||
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||
|
||||
randomize_tensor_normal(model->tok_embeddings , rnd);
|
||||
randomize_tensor_normal(model->norm , rnd);
|
||||
randomize_tensor_normal(model->output , rnd);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wq, rnd);
|
||||
randomize_tensor_normal(layer.wk, rnd);
|
||||
randomize_tensor_normal(layer.wv, rnd);
|
||||
randomize_tensor_normal(layer.wo, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w1, rnd);
|
||||
randomize_tensor_normal(layer.w2, rnd);
|
||||
randomize_tensor_normal(layer.w3, rnd);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
}
|
||||
|
||||
|
||||
void randomize_model_lora(struct llama_model_lora * model, int seed, float mean, float std, float min, float max) {
|
||||
static void randomize_model_lora(
|
||||
struct llama_model_lora * model, int seed, float mean, float std, float min, float max
|
||||
) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
struct random_normal_distribution rnd;
|
||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
||||
randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd);
|
||||
randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd);
|
||||
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||
|
||||
randomize_tensor_normal(model->tok_embeddings, rnd);
|
||||
randomize_tensor_normal(model->norm , rnd);
|
||||
randomize_tensor_normal(model->outputa , rnd);
|
||||
randomize_tensor_normal(model->outputb , rnd);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wqa, rnd);
|
||||
randomize_tensor_normal(layer.wqb, rnd);
|
||||
randomize_tensor_normal(layer.wka, rnd);
|
||||
randomize_tensor_normal(layer.wkb, rnd);
|
||||
randomize_tensor_normal(layer.wva, rnd);
|
||||
randomize_tensor_normal(layer.wvb, rnd);
|
||||
randomize_tensor_normal(layer.woa, rnd);
|
||||
randomize_tensor_normal(layer.wob, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w1, rnd);
|
||||
randomize_tensor_normal(layer.w2, rnd);
|
||||
randomize_tensor_normal(layer.w3, rnd);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
}
|
||||
|
||||
bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
||||
static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_ctx = hparams.n_ctx;
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
const int64_t n_mem = n_layer*n_ctx*n_batch;
|
||||
const int64_t n_elements = n_embd*n_mem;
|
||||
|
||||
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
||||
|
||||
// struct ggml_init_params params;
|
||||
// params.mem_size = cache.buf.size;
|
||||
// params.mem_buffer = cache.buf.addr;
|
||||
// params.no_alloc = false;
|
||||
if (!cache->ctx) {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
||||
cache->ctx = ggml_init(params);
|
||||
|
||||
if (!cache->ctx) {
|
||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
}
|
||||
|
||||
static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_ctx = hparams.n_ctx;
|
||||
@@ -469,51 +462,15 @@ bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int
|
||||
return true;
|
||||
}
|
||||
|
||||
bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_ctx = hparams.n_ctx;
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
const int64_t n_mem = n_layer*n_ctx*n_batch;
|
||||
const int64_t n_elements = n_embd*n_mem;
|
||||
|
||||
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
||||
|
||||
// struct ggml_init_params params;
|
||||
// params.mem_size = cache.buf.size;
|
||||
// params.mem_buffer = cache.buf.addr;
|
||||
// params.no_alloc = false;
|
||||
if (!cache->ctx) {
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = 2u*n_elements*ggml_type_size(GGML_TYPE_F32) + 2u*1024*1024;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = false;
|
||||
|
||||
cache->ctx = ggml_init(params);
|
||||
|
||||
if (!cache->ctx) {
|
||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * forward(
|
||||
struct llama_model * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past) {
|
||||
|
||||
static struct ggml_tensor * forward(
|
||||
struct llama_model * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past
|
||||
) {
|
||||
const int N = n_tokens;
|
||||
|
||||
struct llama_kv_cache& kv_self = *cache;
|
||||
@@ -530,6 +487,14 @@ struct ggml_tensor * forward(
|
||||
struct ggml_tensor * kc = kv_self.k;
|
||||
struct ggml_tensor * vc = kv_self.v;
|
||||
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
{
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
@@ -542,7 +507,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@@ -557,8 +522,8 @@ struct ggml_tensor * forward(
|
||||
// wk shape [n_embd, n_embd, 1, 1]
|
||||
// Qcur shape [n_embd/n_head, n_head, N, 1]
|
||||
// Kcur shape [n_embd/n_head, n_head, N, 1]
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N), KQ_pos, n_rot, 0, 0);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
@@ -665,7 +630,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@@ -709,7 +674,7 @@ struct ggml_tensor * forward(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@@ -730,42 +695,16 @@ struct ggml_tensor * forward(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
|
||||
GGML_ASSERT(tensor->n_dims == 1);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
}
|
||||
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
|
||||
GGML_ASSERT(tensor->n_dims == 2);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
}
|
||||
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
|
||||
GGML_ASSERT(tensor->n_dims == 3);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
}
|
||||
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
||||
GGML_ASSERT(tensor->n_dims == 4);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
GGML_ASSERT(tensor->ne[3] == ne3);
|
||||
}
|
||||
|
||||
struct ggml_tensor * forward_batch(
|
||||
struct llama_model * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past,
|
||||
const int n_batch) {
|
||||
|
||||
static struct ggml_tensor * forward_batch(
|
||||
struct llama_model * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past,
|
||||
const int n_batch
|
||||
) {
|
||||
const int N = n_tokens;
|
||||
|
||||
struct llama_kv_cache& kv_self = *cache;
|
||||
@@ -784,9 +723,18 @@ struct ggml_tensor * forward_batch(
|
||||
struct ggml_tensor * kc = kv_self.k;
|
||||
struct ggml_tensor * vc = kv_self.v;
|
||||
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
{
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1]
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
@@ -797,7 +745,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@@ -814,8 +762,8 @@ struct ggml_tensor * forward_batch(
|
||||
// wk shape [n_embd, n_embd, 1, 1]
|
||||
// Qcur shape [n_embd/n_head, n_head, N, n_batch]
|
||||
// Kcur shape [n_embd/n_head, n_head, N, n_batch]
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), n_past, n_rot, 0);
|
||||
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wq, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_4d(ctx0, ggml_mul_mat(ctx0, model->layers[il].wk, cur), n_embd/n_head, n_head, N, n_batch), KQ_pos, n_rot, 0, 0);
|
||||
assert_shape_4d(Qcur, n_embd/n_head, n_head, N, n_batch);
|
||||
assert_shape_4d(Kcur, n_embd/n_head, n_head, N, n_batch);
|
||||
|
||||
@@ -961,7 +909,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@@ -1014,7 +962,7 @@ struct ggml_tensor * forward_batch(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@@ -1047,16 +995,15 @@ struct ggml_tensor * forward_batch(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
|
||||
struct ggml_tensor * forward_lora(
|
||||
struct llama_model_lora * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past) {
|
||||
|
||||
static struct ggml_tensor * forward_lora(
|
||||
struct llama_model_lora * model,
|
||||
struct llama_kv_cache * cache,
|
||||
struct ggml_context * ctx0,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_tensor * tokens_input,
|
||||
const int n_tokens,
|
||||
const int n_past
|
||||
) {
|
||||
const int N = n_tokens;
|
||||
|
||||
struct llama_kv_cache& kv_self = *cache;
|
||||
@@ -1074,6 +1021,14 @@ struct ggml_tensor * forward_lora(
|
||||
struct ggml_tensor * kc = kv_self.k;
|
||||
struct ggml_tensor * vc = kv_self.v;
|
||||
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
||||
{
|
||||
int * data = (int *) KQ_pos->data;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
data[i] = n_past + i;
|
||||
}
|
||||
}
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model->tok_embeddings, tokens);
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
@@ -1084,7 +1039,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@@ -1107,7 +1062,7 @@ struct ggml_tensor * forward_lora(
|
||||
model->layers[il].wqb,
|
||||
cur)),
|
||||
n_embd/n_head, n_head, N),
|
||||
n_past, n_rot, 0);
|
||||
KQ_pos, n_rot, 0, 0);
|
||||
struct ggml_tensor * Kcur = ggml_rope(ctx0,
|
||||
ggml_reshape_3d(ctx0,
|
||||
ggml_mul_mat(ctx0,
|
||||
@@ -1116,7 +1071,7 @@ struct ggml_tensor * forward_lora(
|
||||
model->layers[il].wkb,
|
||||
cur)),
|
||||
n_embd/n_head, n_head, N),
|
||||
n_past, n_rot, 0);
|
||||
KQ_pos, n_rot, 0, 0);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
@@ -1231,7 +1186,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@@ -1275,7 +1230,7 @@ struct ggml_tensor * forward_lora(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@@ -1302,7 +1257,7 @@ struct ggml_tensor * forward_lora(
|
||||
return inpL;
|
||||
}
|
||||
|
||||
void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
|
||||
static void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
|
||||
assert(logits->n_dims == 2);
|
||||
assert(probs->n_dims == 2);
|
||||
assert(best_samples->n_dims == 1);
|
||||
@@ -1333,7 +1288,10 @@ void sample_softmax(struct ggml_tensor * logits, struct ggml_tensor * probs, str
|
||||
}
|
||||
}
|
||||
|
||||
void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs, struct ggml_tensor * best_samples) {
|
||||
static void sample_softmax_batch(
|
||||
struct ggml_context * ctx, struct ggml_tensor * logits, struct ggml_tensor * probs,
|
||||
struct ggml_tensor * best_samples
|
||||
) {
|
||||
GGML_ASSERT(best_samples->n_dims == 2);
|
||||
GGML_ASSERT(logits->n_dims == 3);
|
||||
GGML_ASSERT(probs->n_dims == 3);
|
||||
@@ -1367,7 +1325,7 @@ void sample_softmax_batch(struct ggml_context * ctx, struct ggml_tensor * logits
|
||||
}
|
||||
}
|
||||
|
||||
void print_row(struct ggml_tensor * probs, int i) {
|
||||
static void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = ggml_get_f32_1d(probs, i*probs->ne[0] + k);
|
||||
printf(" %.2f", p);
|
||||
@@ -1375,7 +1333,7 @@ void print_row(struct ggml_tensor * probs, int i) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void print_matrix(struct ggml_tensor * probs) {
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
assert(probs->n_dims == 2);
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
@@ -1386,7 +1344,7 @@ void print_matrix(struct ggml_tensor * probs) {
|
||||
}
|
||||
}
|
||||
|
||||
void print_token(int token, int n_vocab) {
|
||||
static void print_token(int token, int n_vocab) {
|
||||
for (int k = 0; k < token; ++k) {
|
||||
printf(" ");
|
||||
}
|
||||
@@ -1397,14 +1355,14 @@ void print_token(int token, int n_vocab) {
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
|
||||
static void print_tokens(struct ggml_tensor * tokens, int n_vocab) {
|
||||
for (int i=0; i<tokens->ne[0]; ++i) {
|
||||
int token = ggml_get_i32_1d(tokens, i);
|
||||
print_token(token, n_vocab);
|
||||
}
|
||||
}
|
||||
|
||||
void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
|
||||
static void get_example_targets(int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
|
||||
int n_tokens = tokens_input->ne[0];
|
||||
int n_vocab = targets->ne[0];
|
||||
float randomness = 0.0f;
|
||||
@@ -1425,7 +1383,9 @@ void get_example_targets(int example_id, struct ggml_tensor * tokens_input, stru
|
||||
}
|
||||
}
|
||||
|
||||
void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets) {
|
||||
static void get_example_targets_batch(
|
||||
struct ggml_context * ctx, int example_id, struct ggml_tensor * tokens_input, struct ggml_tensor * targets
|
||||
) {
|
||||
GGML_ASSERT(tokens_input->n_dims == 2);
|
||||
GGML_ASSERT( targets->n_dims == 3);
|
||||
int n_tokens = tokens_input->ne[0];
|
||||
@@ -1448,7 +1408,7 @@ void get_example_targets_batch(struct ggml_context * ctx, int example_id, struct
|
||||
}
|
||||
}
|
||||
|
||||
void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
|
||||
static void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * targets, int n_shift) {
|
||||
int n_tokens = tokens_input->ne[0];
|
||||
int n_vocab = targets->ne[0];
|
||||
for (int i=0; i<n_tokens-n_shift; ++i) {
|
||||
@@ -1459,13 +1419,17 @@ void lshift_examples(struct ggml_tensor * tokens_input, struct ggml_tensor * tar
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * square_error_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
|
||||
static struct ggml_tensor * square_error_loss(
|
||||
struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
|
||||
) {
|
||||
// todo: instead of a-b: a[1:]-b[:-1]
|
||||
return ggml_sum(ctx, ggml_sqr(ctx, ggml_sub(ctx, a, b)));
|
||||
}
|
||||
|
||||
struct ggml_tensor * cross_entropy_loss(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
|
||||
const float eps = 1e-3;
|
||||
static struct ggml_tensor * cross_entropy_loss(
|
||||
struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b
|
||||
) {
|
||||
const float eps = 1e-3f;
|
||||
return
|
||||
ggml_sum(ctx,
|
||||
ggml_neg(ctx,
|
||||
@@ -1560,6 +1524,8 @@ int main(int argc, char ** argv) {
|
||||
int n_tokens = model.hparams.n_ctx;
|
||||
int n_vocab = model.hparams.n_vocab;
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
for (int ex=0; ex<n_examples; ++ex) {
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ compute_size,
|
||||
@@ -1577,7 +1543,6 @@ int main(int argc, char ** argv) {
|
||||
int n_past = 0;
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
get_example_targets_batch(ctx0, 64*ex+0, tokens_input, targets);
|
||||
|
||||
@@ -1586,23 +1551,18 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * e = square_error_loss(ctx0, targets, logits);
|
||||
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
|
||||
float error_before_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
struct ggml_opt_params opt_params_adam = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
struct ggml_opt_params opt_params_lbfgs = ggml_opt_default_params(GGML_OPT_LBFGS);
|
||||
opt_params_adam.print_forward_graph = false;
|
||||
opt_params_adam.print_backward_graph = false;
|
||||
opt_params_lbfgs.print_forward_graph = false;
|
||||
opt_params_lbfgs.print_backward_graph = false;
|
||||
opt_params_adam.adam.n_iter = 16;
|
||||
opt_params_lbfgs.lbfgs.n_iter = 16;
|
||||
// ggml_opt(ctx0, opt_params_adam, e);
|
||||
ggml_opt(ctx0, opt_params_lbfgs, e);
|
||||
//
|
||||
ggml_build_forward_expand(&gf, e);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
|
||||
float error_after_opt = ggml_get_f32_1d(e, 0);
|
||||
|
||||
@@ -1650,13 +1610,12 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
ggml_cgraph gf = {};
|
||||
gf.n_threads = 1;
|
||||
|
||||
int n_past = 0;
|
||||
struct ggml_tensor * logits = forward(&model, &kv_self, ctx0, &gf, tokens_input, sample_ctx, n_past);
|
||||
|
||||
ggml_build_forward_expand(&gf, logits);
|
||||
ggml_graph_compute(ctx0, &gf);
|
||||
ggml_graph_compute_helper(work_buffer, &gf, /*n_threads*/ 1);
|
||||
|
||||
struct ggml_tensor * best_samples = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, sample_ctx);
|
||||
struct ggml_tensor * probs = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_vocab, sample_ctx);
|
||||
@@ -1678,10 +1637,11 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
print_matrix(model.tok_embeddings);
|
||||
|
||||
printf("done\n");
|
||||
|
||||
// ggml_free(kv_self.ctx);
|
||||
// ggml_free(model_lora.ctx);
|
||||
ggml_free(model.ctx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
5
examples/batched/CMakeLists.txt
Normal file
5
examples/batched/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET batched)
|
||||
add_executable(${TARGET} batched.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
44
examples/batched/README.md
Normal file
44
examples/batched/README.md
Normal file
@@ -0,0 +1,44 @@
|
||||
# llama.cpp/example/batched
|
||||
|
||||
The example demonstrates batched generation from a given prompt
|
||||
|
||||
```bash
|
||||
./batched ./models/llama-7b-v2/ggml-model-f16.gguf "Hello my name is" 4
|
||||
|
||||
...
|
||||
|
||||
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
|
||||
|
||||
Hello my name is
|
||||
|
||||
main: generating 4 sequences ...
|
||||
|
||||
main: stream 0 finished
|
||||
main: stream 1 finished
|
||||
main: stream 2 finished
|
||||
main: stream 3 finished
|
||||
|
||||
sequence 0:
|
||||
|
||||
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
|
||||
|
||||
sequence 1:
|
||||
|
||||
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
|
||||
|
||||
sequence 2:
|
||||
|
||||
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
|
||||
|
||||
sequence 3:
|
||||
|
||||
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
|
||||
|
||||
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
|
||||
|
||||
llama_print_timings: load time = 587.00 ms
|
||||
llama_print_timings: sample time = 2.56 ms / 112 runs ( 0.02 ms per token, 43664.72 tokens per second)
|
||||
llama_print_timings: prompt eval time = 4089.11 ms / 118 tokens ( 34.65 ms per token, 28.86 tokens per second)
|
||||
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
||||
llama_print_timings: total time = 4156.04 ms
|
||||
```
|
||||
255
examples/batched/batched.cpp
Normal file
255
examples/batched/batched.cpp
Normal file
@@ -0,0 +1,255 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [PROMPT] [PARALLEL]\n" , argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_parallel = 1;
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
params.prompt = argv[2];
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
n_parallel = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "Hello my name is";
|
||||
}
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
const int n_len = 32;
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch with size 512
|
||||
// we use this object to submit token data for decoding
|
||||
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0);
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = tokens_list.size();
|
||||
|
||||
for (int32_t i = 0; i < batch.n_tokens; i++) {
|
||||
batch.token[i] = tokens_list[i];
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// assign the system KV cache to all parallel sequences
|
||||
// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
|
||||
for (int32_t i = 1; i < n_parallel; ++i) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
|
||||
}
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
}
|
||||
|
||||
// main loop
|
||||
|
||||
// we will store the parallel decoded sequences in this vector
|
||||
std::vector<std::string> streams(n_parallel);
|
||||
|
||||
// remember the batch index of the last token for each parallel sequence
|
||||
// we need this to determine which logits to sample from
|
||||
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
|
||||
|
||||
int n_cur = batch.n_tokens;
|
||||
int n_decode = 0;
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
while (n_cur <= n_len) {
|
||||
// prepare the next batch
|
||||
batch.n_tokens = 0;
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
if (i_batch[i] < 0) {
|
||||
// the stream has already finished
|
||||
continue;
|
||||
}
|
||||
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int top_k = 40;
|
||||
const float top_p = 0.9f;
|
||||
const float temp = 0.4f;
|
||||
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temp (ctx, &candidates_p, temp);
|
||||
|
||||
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
|
||||
|
||||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
|
||||
// push this new token for next evaluation
|
||||
batch.token [batch.n_tokens] = new_token_id;
|
||||
batch.pos [batch.n_tokens] = n_cur;
|
||||
batch.seq_id[batch.n_tokens] = i;
|
||||
batch.logits[batch.n_tokens] = true;
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
batch.n_tokens += 1;
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
||||
// all streams are finished
|
||||
if (batch.n_tokens == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
n_cur += 1;
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
5
examples/beam-search/CMakeLists.txt
Normal file
5
examples/beam-search/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET beam-search)
|
||||
add_executable(${TARGET} beam-search.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
187
examples/beam-search/beam-search.cpp
Normal file
187
examples/beam-search/beam-search.cpp
Normal file
@@ -0,0 +1,187 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||
#include <signal.h>
|
||||
#include <unistd.h>
|
||||
#elif defined (_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#ifndef NOMINMAX
|
||||
# define NOMINMAX
|
||||
#endif
|
||||
#include <windows.h>
|
||||
#include <signal.h>
|
||||
#endif
|
||||
|
||||
// Used for debugging to print out beam tokens.
|
||||
struct ostream_beam_view {
|
||||
llama_context * ctx;
|
||||
llama_beam_view beam_view;
|
||||
};
|
||||
|
||||
static std::ostream & operator<<(std::ostream & os, const ostream_beam_view & obv) {
|
||||
os << "p(" << obv.beam_view.p << ") eob(" << std::boolalpha << obv.beam_view.eob << ") tokens(";
|
||||
for (size_t i = 0 ; i < obv.beam_view.n_tokens ; ++i) {
|
||||
os << llama_token_to_piece(obv.ctx, obv.beam_view.tokens[i]);
|
||||
}
|
||||
return os << ')';
|
||||
}
|
||||
|
||||
// Put here anything you want back in beam_search_callback().
|
||||
struct beam_search_callback_data {
|
||||
llama_context * ctx;
|
||||
std::vector<llama_token> response;
|
||||
};
|
||||
|
||||
// In this case, end-of-beam (eob) is equivalent to end-of-sentence (eos) but this need not always be the same.
|
||||
// For example, eob can be flagged due to maximum token length, stop words, etc.
|
||||
static bool is_at_eob(const beam_search_callback_data & callback_data, const llama_token * tokens, size_t n_tokens) {
|
||||
return n_tokens && tokens[n_tokens-1] == llama_token_eos(callback_data.ctx);
|
||||
}
|
||||
|
||||
// Function matching type llama_beam_search_callback_fn_t.
|
||||
// Custom callback example is called each time the beams lengths increase:
|
||||
// * Show progress by printing ',' following by number of convergent beam tokens if any.
|
||||
// * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
|
||||
// This is also called when the stop condition is met.
|
||||
// Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
|
||||
static void beam_search_callback(void * callback_data_ptr, llama_beams_state beams_state) {
|
||||
auto& callback_data = *static_cast<beam_search_callback_data*>(callback_data_ptr);
|
||||
// Mark beams as EOS as needed.
|
||||
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
|
||||
llama_beam_view& beam_view = beams_state.beam_views[i];
|
||||
if (!beam_view.eob && is_at_eob(callback_data, beam_view.tokens, beam_view.n_tokens)) {
|
||||
beam_view.eob = true;
|
||||
}
|
||||
}
|
||||
printf(","); // Show progress
|
||||
if (const size_t n = beams_state.common_prefix_length) {
|
||||
callback_data.response.resize(callback_data.response.size() + n);
|
||||
assert(0u < beams_state.n_beams);
|
||||
const llama_token * tokens = beams_state.beam_views[0].tokens;
|
||||
std::copy(tokens, tokens + n, callback_data.response.end() - n);
|
||||
printf("%zu", n);
|
||||
}
|
||||
fflush(stdout);
|
||||
#if 1 // DEBUG: print current beams for this iteration
|
||||
std::cout << "\n\nCurrent beams (last_call=" << beams_state.last_call << "):\n";
|
||||
for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
|
||||
std::cout << "beams["<<i<<"]: " << ostream_beam_view{callback_data.ctx,beams_state.beam_views[i]} << std::endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv)
|
||||
{
|
||||
gpt_params params;
|
||||
//params.n_gpu_layers = 200;
|
||||
|
||||
//---------------------------------
|
||||
// Print help :
|
||||
//---------------------------------
|
||||
|
||||
if ( argc < 2 || argv[1][0] == '-' )
|
||||
{
|
||||
printf( "Usage: %s MODEL_PATH [BEAM_WIDTH=2] [PROMPT]\n" , argv[0] );
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Load parameters :
|
||||
//---------------------------------
|
||||
|
||||
params.model = argv[1];
|
||||
|
||||
params.n_beams = 2 < argc ? std::stoi(argv[2]) : 2;
|
||||
|
||||
if ( argc > 3 )
|
||||
{
|
||||
params.prompt = argv[3];
|
||||
}
|
||||
|
||||
if ( params.prompt.empty() )
|
||||
{
|
||||
params.prompt = "### Request:\nHow many countries are there?\n\n### Response:\n";
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Init LLM :
|
||||
//---------------------------------
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||
|
||||
if ( model == NULL )
|
||||
{
|
||||
fprintf( stderr , "%s: error: unable to load model\n" , __func__ );
|
||||
return 1;
|
||||
}
|
||||
|
||||
//---------------------------------
|
||||
// Tokenize the prompt :
|
||||
//---------------------------------
|
||||
|
||||
std::vector<llama_token> tokens_list = llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const size_t max_context_size = llama_n_ctx( ctx );
|
||||
const size_t max_tokens_list_size = max_context_size - 4 ;
|
||||
|
||||
if (tokens_list.size() > max_tokens_list_size)
|
||||
{
|
||||
fprintf( stderr , "%s: error: prompt too long (%zu tokens, max %zu)\n" ,
|
||||
__func__ , tokens_list.size() , max_tokens_list_size );
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf( stderr, "\n\n" );
|
||||
|
||||
// Print the tokens from the prompt :
|
||||
|
||||
for( auto id : tokens_list )
|
||||
{
|
||||
std::cout << llama_token_to_piece(ctx, id);
|
||||
}
|
||||
std::cout << std::flush;
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
|
||||
{
|
||||
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
|
||||
return 1;
|
||||
}
|
||||
n_past += tokens_list.size();
|
||||
|
||||
beam_search_callback_data callback_data{ctx, {}};
|
||||
size_t const beam_width = static_cast<size_t>(params.n_beams);
|
||||
int const n_predict = 256;
|
||||
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);
|
||||
|
||||
std::cout << "\n\n";
|
||||
for (llama_token const token_id : callback_data.response) {
|
||||
std::cout << llama_token_to_piece(ctx,token_id);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
llama_free( ctx );
|
||||
llama_free_model( model );
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -1,6 +1,8 @@
|
||||
set(TARGET benchmark)
|
||||
add_executable(${TARGET} benchmark-matmult.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "build-info.h"
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <locale.h>
|
||||
#include <assert.h>
|
||||
@@ -16,22 +17,37 @@
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
float sum = 0;
|
||||
if (tensor->type==GGML_TYPE_F32) {
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
double sum = 0;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
for (int k = 0; k < tensor->ne[0]; k++) {
|
||||
sum += ((float *) tensor->data)[j*tensor->ne[0]+k];
|
||||
sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5d x %5d x %5d, nb = (%5li, %5li, %5li) - ", name,
|
||||
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
(int) tensor->ne[0], (int) tensor->ne[1], (int) tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
float sum = tensor_sum_elements(tensor);
|
||||
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||
}
|
||||
@@ -43,7 +59,7 @@ struct benchmark_params_struct {
|
||||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
@@ -84,7 +100,7 @@ int main(int argc, char ** argv) {
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
print_build_info();
|
||||
printf("Starting Test\n");
|
||||
|
||||
// create the ggml context
|
||||
@@ -110,17 +126,20 @@ int main(int argc, char ** argv) {
|
||||
|
||||
//printf("Memsize required = %i\n", sizex*sizex);
|
||||
|
||||
// TODO: perform the bench for all types or for a user specified type
|
||||
const ggml_type qtype = GGML_TYPE_Q4_1;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizez*ggml_type_sizef(GGML_TYPE_F32);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_Q4_0);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(qtype);
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
|
||||
ctx_size += sizex*sizey*ggml_type_sizef(GGML_TYPE_F32); // BLAS
|
||||
ctx_size += 1024*1024*16;
|
||||
|
||||
printf("Allocating Memory of size %li bytes, %li MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
@@ -148,34 +167,34 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
|
||||
ggml_set_f32(m2, 2.0f);
|
||||
|
||||
printf("\n------ Test 1 - Matrix Mult via F32 code ------------------------------------------------------------------------------\n");
|
||||
printf("\n------ Test 1 - Matrix Mult via F32 code\n");
|
||||
// printf("Creating new tensor m11xm2\n");
|
||||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
|
||||
|
||||
gf.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf.n_threads);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
ggml_graph_compute(ctx, &gf);
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(gf.nodes[0]);
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via Q4_0 code ------------------------------------------------------------------------------\n");
|
||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||
|
||||
int32_t nelements = sizex*sizey;
|
||||
int32_t ne[2] = { sizex, sizey };
|
||||
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
|
||||
ggml_quantize_q4_0((const float *) m11->data, q11->data, nelements, ne[0], hist_cur.data());
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data());
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
@@ -183,20 +202,18 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf31 = ggml_build_forward(q31);
|
||||
gf31.n_threads=benchmark_params.n_threads;
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, sizex, sizey);
|
||||
ggml_quantize_q4_0((const float *) m12->data, q12->data, nelements, ne[0], hist_cur.data());
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data());
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf32 = ggml_build_forward(q32);
|
||||
gf32.n_threads=benchmark_params.n_threads;
|
||||
printf("cgraph->n_threads=%i\n",gf31.n_threads);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
const int dimy = sizey;
|
||||
@@ -206,7 +223,7 @@ int main(int argc, char ** argv) {
|
||||
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the q4_0 multiplication
|
||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
@@ -217,14 +234,15 @@ int main(int argc, char ** argv) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute(ctx, &gf31);
|
||||
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads);
|
||||
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||
gflops_sum += gflops;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||
i,
|
||||
gf31.n_threads,
|
||||
benchmark_params.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,gflops);
|
||||
|
||||
@@ -235,7 +253,7 @@ int main(int argc, char ** argv) {
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
|
||||
float delta = abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
if (delta > allowed_delta) {
|
||||
@@ -249,7 +267,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute(ctx, &gf32);
|
||||
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads);
|
||||
}
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
|
||||
@@ -9,7 +9,7 @@ if [[ -z "${PROMPT_CACHE_FILE+x}" || -z "${CHAT_SAVE_DIR+x}" ]]; then
|
||||
exit 1
|
||||
fi
|
||||
|
||||
MODEL="${MODEL:-./models/13B/ggml-model-q4_0.bin}"
|
||||
MODEL="${MODEL:-./models/llama-13b/ggml-model-q4_0.gguf}"
|
||||
PROMPT_TEMPLATE="${PROMPT_TEMPLATE:-./prompts/chat.txt}"
|
||||
USER_NAME="${USER_NAME:-User}"
|
||||
AI_NAME="${AI_NAME:-ChatLLaMa}"
|
||||
@@ -23,8 +23,8 @@ CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
|
||||
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
|
||||
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
|
||||
|
||||
SESSION_SIZE_MSG_PATTERN='main: session file matches \d+ / \d+'
|
||||
SAMPLE_TIME_MSG_PATTERN='sample time =\s+\d+.\d+ ms /\s+\d+'
|
||||
SESSION_SIZE_MSG_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'
|
||||
SAMPLE_TIME_MSG_PATTERN='sample time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
|
||||
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
|
||||
|
||||
CTX_SIZE=2048
|
||||
@@ -61,9 +61,9 @@ fi
|
||||
|
||||
if [[ ! -e "$PROMPT_CACHE_FILE" ]]; then
|
||||
echo 'Prompt cache does not exist, building...'
|
||||
# Default batch_size to 8 here for better user feedback during initial prompt processing
|
||||
# Default batch_size to 64 here for better user feedback during initial prompt processing
|
||||
./main 2>>"$LOG" \
|
||||
--batch_size 8 \
|
||||
--batch_size 64 \
|
||||
"${OPTS[@]}" \
|
||||
--prompt-cache "$PROMPT_CACHE_FILE" \
|
||||
--file "$CUR_PROMPT_FILE" \
|
||||
@@ -132,7 +132,7 @@ while read -e line; do
|
||||
# HACK get num tokens from debug message
|
||||
# TODO get both messages in one go
|
||||
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
|
||||
! sample_time_msg="$( tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
|
||||
echo >&2 "Couldn't get number of tokens from ./main output!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
41
examples/chat-vicuna.sh
Executable file
41
examples/chat-vicuna.sh
Executable file
@@ -0,0 +1,41 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -e
|
||||
|
||||
cd "$(dirname "$0")/.." || exit
|
||||
|
||||
MODEL="${MODEL:-./models/ggml-vic13b-uncensored-q5_0.bin}"
|
||||
PROMPT_TEMPLATE=${PROMPT_TEMPLATE:-./prompts/chat.txt}
|
||||
USER_NAME="### Human"
|
||||
AI_NAME="### Assistant"
|
||||
|
||||
# Adjust to the number of CPU cores you want to use.
|
||||
N_THREAD="${N_THREAD:-8}"
|
||||
# Number of tokens to predict (made it larger than default because we want a long interaction)
|
||||
N_PREDICTS="${N_PREDICTS:-2048}"
|
||||
|
||||
# Note: you can also override the generation options by specifying them on the command line:
|
||||
# For example, override the context size by doing: ./chatLLaMa --ctx_size 1024
|
||||
GEN_OPTIONS="${GEN_OPTIONS:---ctx_size 2048 --temp 0.7 --top_k 40 --top_p 0.5 --repeat_last_n 256 --batch_size 1024 --repeat_penalty 1.17647}"
|
||||
|
||||
DATE_TIME=$(date +%H:%M)
|
||||
DATE_YEAR=$(date +%Y)
|
||||
|
||||
PROMPT_FILE=$(mktemp -t llamacpp_prompt.XXXXXXX.txt)
|
||||
|
||||
sed -e "s/\[\[USER_NAME\]\]/$USER_NAME/g" \
|
||||
-e "s/\[\[AI_NAME\]\]/$AI_NAME/g" \
|
||||
-e "s/\[\[DATE_TIME\]\]/$DATE_TIME/g" \
|
||||
-e "s/\[\[DATE_YEAR\]\]/$DATE_YEAR/g" \
|
||||
$PROMPT_TEMPLATE > $PROMPT_FILE
|
||||
|
||||
# shellcheck disable=SC2086 # Intended splitting of GEN_OPTIONS
|
||||
./bin/main $GEN_OPTIONS \
|
||||
--model "$MODEL" \
|
||||
--threads "$N_THREAD" \
|
||||
--n_predict "$N_PREDICTS" \
|
||||
--color --interactive \
|
||||
--file ${PROMPT_FILE} \
|
||||
--reverse-prompt "### Human:" \
|
||||
--in-prefix ' ' \
|
||||
"$@"
|
||||
@@ -11,6 +11,6 @@ cd ..
|
||||
#
|
||||
# "--keep 48" is based on the contents of prompts/chat-with-bob.txt
|
||||
#
|
||||
./main -m ./models/7B/ggml-model-q4_0.bin -c 512 -b 1024 -n 256 --keep 48 \
|
||||
./main -m ./models/llama-7b/ggml-model-q4_0.gguf -c 512 -b 1024 -n 256 --keep 48 \
|
||||
--repeat_penalty 1.0 --color -i \
|
||||
-r "User:" -f prompts/chat-with-bob.txt
|
||||
|
||||
@@ -1,866 +0,0 @@
|
||||
#include "common.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
|
||||
#if defined(__APPLE__) && defined(__MACH__)
|
||||
#include <sys/types.h>
|
||||
#include <sys/sysctl.h>
|
||||
#endif
|
||||
|
||||
#if defined(_WIN32)
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#define NOMINMAX
|
||||
#include <windows.h>
|
||||
#include <fcntl.h>
|
||||
#include <io.h>
|
||||
#else
|
||||
#include <sys/ioctl.h>
|
||||
#include <unistd.h>
|
||||
#include <wchar.h>
|
||||
#endif
|
||||
|
||||
int32_t get_num_physical_cores() {
|
||||
#ifdef __linux__
|
||||
// enumerate the set of thread siblings, num entries is num cores
|
||||
std::unordered_set<std::string> siblings;
|
||||
for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
|
||||
std::ifstream thread_siblings("/sys/devices/system/cpu"
|
||||
+ std::to_string(cpu) + "/topology/thread_siblings");
|
||||
if (!thread_siblings.is_open()) {
|
||||
break; // no more cpus
|
||||
}
|
||||
std::string line;
|
||||
if (std::getline(thread_siblings, line)) {
|
||||
siblings.insert(line);
|
||||
}
|
||||
}
|
||||
if (siblings.size() > 0) {
|
||||
return static_cast<int32_t>(siblings.size());
|
||||
}
|
||||
#elif defined(__APPLE__) && defined(__MACH__)
|
||||
int32_t num_physical_cores;
|
||||
size_t len = sizeof(num_physical_cores);
|
||||
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
||||
if (result == 0) {
|
||||
return num_physical_cores;
|
||||
}
|
||||
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
|
||||
if (result == 0) {
|
||||
return num_physical_cores;
|
||||
}
|
||||
#elif defined(_WIN32)
|
||||
//TODO: Implement
|
||||
#endif
|
||||
unsigned int n_threads = std::thread::hardware_concurrency();
|
||||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
void process_escapes(std::string& input) {
|
||||
std::size_t input_len = input.length();
|
||||
std::size_t output_idx = 0;
|
||||
|
||||
for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
|
||||
if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
|
||||
switch (input[++input_idx]) {
|
||||
case 'n': input[output_idx++] = '\n'; break;
|
||||
case 'r': input[output_idx++] = '\r'; break;
|
||||
case 't': input[output_idx++] = '\t'; break;
|
||||
case '\'': input[output_idx++] = '\''; break;
|
||||
case '\"': input[output_idx++] = '\"'; break;
|
||||
case '\\': input[output_idx++] = '\\'; break;
|
||||
default: input[output_idx++] = '\\';
|
||||
input[output_idx++] = input[input_idx]; break;
|
||||
}
|
||||
} else {
|
||||
input[output_idx++] = input[input_idx];
|
||||
}
|
||||
}
|
||||
|
||||
input.resize(output_idx);
|
||||
}
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
bool invalid_param = false;
|
||||
bool escape_prompt = false;
|
||||
std::string arg;
|
||||
gpt_params default_params;
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "-s" || arg == "--seed") {
|
||||
#if defined(GGML_USE_CUBLAS)
|
||||
fprintf(stderr, "WARNING: when using cuBLAS generation results are NOT guaranteed to be reproducible.\n");
|
||||
#endif
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.seed = std::stoi(argv[i]);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads = std::stoi(argv[i]);
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.prompt = argv[i];
|
||||
} else if (arg == "-e") {
|
||||
escape_prompt = true;
|
||||
} else if (arg == "--prompt-cache") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.path_prompt_cache = argv[i];
|
||||
} else if (arg == "--prompt-cache-all") {
|
||||
params.prompt_cache_all = true;
|
||||
} else if (arg == "-f" || arg == "--file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::ifstream file(argv[i]);
|
||||
if (!file) {
|
||||
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
||||
if (params.prompt.back() == '\n') {
|
||||
params.prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "-n" || arg == "--n-predict") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_predict = std::stoi(argv[i]);
|
||||
} else if (arg == "--top-k") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_k = std::stoi(argv[i]);
|
||||
} else if (arg == "-c" || arg == "--ctx-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_ctx = std::stoi(argv[i]);
|
||||
} else if (arg == "--memory-f32") {
|
||||
params.memory_f16 = false;
|
||||
} else if (arg == "--top-p") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_p = std::stof(argv[i]);
|
||||
} else if (arg == "--temp") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.temp = std::stof(argv[i]);
|
||||
} else if (arg == "--tfs") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.tfs_z = std::stof(argv[i]);
|
||||
} else if (arg == "--typical") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.typical_p = std::stof(argv[i]);
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_last_n = std::stoi(argv[i]);
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--frequency-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.frequency_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--presence-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.presence_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat = std::stoi(argv[i]);
|
||||
} else if (arg == "--mirostat-lr") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_eta = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat-ent") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_tau = std::stof(argv[i]);
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_batch = std::stoi(argv[i]);
|
||||
params.n_batch = std::min(512, params.n_batch);
|
||||
} else if (arg == "--keep") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_keep = std::stoi(argv[i]);
|
||||
} else if (arg == "-m" || arg == "--model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.model = argv[i];
|
||||
} else if (arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter = argv[i];
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "--embedding") {
|
||||
params.embedding = true;
|
||||
} else if (arg == "--interactive-first") {
|
||||
params.interactive_first = true;
|
||||
} else if (arg == "-ins" || arg == "--instruct") {
|
||||
params.instruct = true;
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--color") {
|
||||
params.use_color = true;
|
||||
} else if (arg == "--mlock") {
|
||||
params.use_mlock = true;
|
||||
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--mtest") {
|
||||
params.mem_test = true;
|
||||
} else if (arg == "--verbose-prompt") {
|
||||
params.verbose_prompt = true;
|
||||
} else if (arg == "-r" || arg == "--reverse-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.antiprompt.push_back(argv[i]);
|
||||
} else if (arg == "--perplexity") {
|
||||
params.perplexity = true;
|
||||
} else if (arg == "--ignore-eos") {
|
||||
params.logit_bias[llama_token_eos()] = -INFINITY;
|
||||
} else if (arg == "--no-penalize-nl") {
|
||||
params.penalize_nl = false;
|
||||
} else if (arg == "-l" || arg == "--logit-bias") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::stringstream ss(argv[i]);
|
||||
llama_token key;
|
||||
char sign;
|
||||
std::string value_str;
|
||||
try {
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
|
||||
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
} else {
|
||||
throw std::exception();
|
||||
}
|
||||
} catch (const std::exception &e) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(0);
|
||||
} else if (arg == "--random-prompt") {
|
||||
params.random_prompt = true;
|
||||
} else if (arg == "--in-prefix") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.input_prefix = argv[i];
|
||||
} else if (arg == "--in-suffix") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.input_suffix = argv[i];
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (params.prompt_cache_all &&
|
||||
(params.interactive || params.interactive_first ||
|
||||
params.instruct)) {
|
||||
fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
|
||||
gpt_print_usage(argc, argv, default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (escape_prompt) {
|
||||
process_escapes(params.prompt);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -i, --interactive run in interactive mode\n");
|
||||
fprintf(stderr, " --interactive-first run in interactive mode and wait for input right away\n");
|
||||
fprintf(stderr, " -ins, --instruct run in instruction mode (use with Alpaca models)\n");
|
||||
fprintf(stderr, " --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
|
||||
fprintf(stderr, " -r PROMPT, --reverse-prompt PROMPT\n");
|
||||
fprintf(stderr, " halt generation at PROMPT, return control in interactive mode\n");
|
||||
fprintf(stderr, " (can be specified more than once for multiple prompts).\n");
|
||||
fprintf(stderr, " --color colorise output to distinguish prompt and user input from generations\n");
|
||||
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
||||
fprintf(stderr, " prompt to start generation with (default: empty)\n");
|
||||
fprintf(stderr, " -e process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
fprintf(stderr, " --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
|
||||
fprintf(stderr, " --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
|
||||
fprintf(stderr, " not supported with --interactive or other interactive options\n");
|
||||
fprintf(stderr, " --random-prompt start with a randomized prompt.\n");
|
||||
fprintf(stderr, " --in-prefix STRING string to prefix user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
|
||||
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
||||
fprintf(stderr, " prompt file to start generation.\n");
|
||||
fprintf(stderr, " -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity)\n", params.n_predict);
|
||||
fprintf(stderr, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
fprintf(stderr, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
fprintf(stderr, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
fprintf(stderr, " --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
|
||||
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
|
||||
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
fprintf(stderr, " --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
|
||||
fprintf(stderr, " --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
|
||||
fprintf(stderr, " --mirostat N use Mirostat sampling.\n");
|
||||
fprintf(stderr, " Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
fprintf(stderr, " (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
|
||||
fprintf(stderr, " --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
|
||||
fprintf(stderr, " --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
|
||||
fprintf(stderr, " -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
|
||||
fprintf(stderr, " modifies the likelihood of token appearing in the completion,\n");
|
||||
fprintf(stderr, " i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||
fprintf(stderr, " or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
|
||||
fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stderr, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||
fprintf(stderr, " --no-penalize-nl do not penalize newline token\n");
|
||||
fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value\n");
|
||||
fprintf(stderr, " --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stderr, " --perplexity compute perplexity over the prompt\n");
|
||||
fprintf(stderr, " --keep number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
|
||||
if (llama_mlock_supported()) {
|
||||
fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
|
||||
fprintf(stderr, " number of layers to store in VRAM\n");
|
||||
fprintf(stderr, " --mtest compute maximum memory usage\n");
|
||||
fprintf(stderr, " --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
||||
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
const int r = rng() % 10;
|
||||
switch (r) {
|
||||
case 0: return "So";
|
||||
case 1: return "Once upon a time";
|
||||
case 2: return "When";
|
||||
case 3: return "The";
|
||||
case 4: return "After";
|
||||
case 5: return "If";
|
||||
case 6: return "import";
|
||||
case 7: return "He";
|
||||
case 8: return "She";
|
||||
case 9: return "They";
|
||||
default: return "To";
|
||||
}
|
||||
|
||||
return "The";
|
||||
}
|
||||
|
||||
// TODO: not great allocating this every time
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
|
||||
// initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
|
||||
std::vector<llama_token> res(text.size() + (int) add_bos);
|
||||
const int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
|
||||
assert(n >= 0);
|
||||
res.resize(n);
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.logits_all = params.perplexity;
|
||||
lparams.embedding = params.embedding;
|
||||
|
||||
llama_context * lctx = llama_init_from_file(params.model.c_str(), lparams);
|
||||
|
||||
if (lctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
int err = llama_apply_lora_from_file(lctx,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
return lctx;
|
||||
}
|
||||
|
||||
void console_init(console_state & con_st) {
|
||||
#if defined(_WIN32)
|
||||
// Windows-specific console initialization
|
||||
DWORD dwMode = 0;
|
||||
con_st.hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
|
||||
if (con_st.hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(con_st.hConsole, &dwMode)) {
|
||||
con_st.hConsole = GetStdHandle(STD_ERROR_HANDLE);
|
||||
if (con_st.hConsole != INVALID_HANDLE_VALUE && (!GetConsoleMode(con_st.hConsole, &dwMode))) {
|
||||
con_st.hConsole = NULL;
|
||||
}
|
||||
}
|
||||
if (con_st.hConsole) {
|
||||
// Enable ANSI colors on Windows 10+
|
||||
if (con_st.use_color && !(dwMode & ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
|
||||
SetConsoleMode(con_st.hConsole, dwMode | ENABLE_VIRTUAL_TERMINAL_PROCESSING);
|
||||
}
|
||||
// Set console output codepage to UTF8
|
||||
SetConsoleOutputCP(CP_UTF8);
|
||||
}
|
||||
HANDLE hConIn = GetStdHandle(STD_INPUT_HANDLE);
|
||||
if (hConIn != INVALID_HANDLE_VALUE && GetConsoleMode(hConIn, &dwMode)) {
|
||||
// Set console input codepage to UTF16
|
||||
_setmode(_fileno(stdin), _O_WTEXT);
|
||||
|
||||
// Turn off ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
||||
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
||||
SetConsoleMode(hConIn, dwMode);
|
||||
}
|
||||
#else
|
||||
// POSIX-specific console initialization
|
||||
struct termios new_termios;
|
||||
tcgetattr(STDIN_FILENO, &con_st.prev_state);
|
||||
new_termios = con_st.prev_state;
|
||||
new_termios.c_lflag &= ~(ICANON | ECHO);
|
||||
new_termios.c_cc[VMIN] = 1;
|
||||
new_termios.c_cc[VTIME] = 0;
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &new_termios);
|
||||
|
||||
con_st.tty = fopen("/dev/tty", "w+");
|
||||
if (con_st.tty != nullptr) {
|
||||
con_st.out = con_st.tty;
|
||||
}
|
||||
|
||||
setlocale(LC_ALL, "");
|
||||
#endif
|
||||
}
|
||||
|
||||
void console_cleanup(console_state & con_st) {
|
||||
// Reset console color
|
||||
console_set_color(con_st, CONSOLE_COLOR_DEFAULT);
|
||||
|
||||
#if !defined(_WIN32)
|
||||
if (con_st.tty != nullptr) {
|
||||
con_st.out = stdout;
|
||||
fclose(con_st.tty);
|
||||
con_st.tty = nullptr;
|
||||
}
|
||||
// Restore the terminal settings on POSIX systems
|
||||
tcsetattr(STDIN_FILENO, TCSANOW, &con_st.prev_state);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Keep track of current color of output, and emit ANSI code if it changes. */
|
||||
void console_set_color(console_state & con_st, console_color_t color) {
|
||||
if (con_st.use_color && con_st.color != color) {
|
||||
fflush(stdout);
|
||||
switch(color) {
|
||||
case CONSOLE_COLOR_DEFAULT:
|
||||
fprintf(con_st.out, ANSI_COLOR_RESET);
|
||||
break;
|
||||
case CONSOLE_COLOR_PROMPT:
|
||||
fprintf(con_st.out, ANSI_COLOR_YELLOW);
|
||||
break;
|
||||
case CONSOLE_COLOR_USER_INPUT:
|
||||
fprintf(con_st.out, ANSI_BOLD ANSI_COLOR_GREEN);
|
||||
break;
|
||||
}
|
||||
con_st.color = color;
|
||||
fflush(con_st.out);
|
||||
}
|
||||
}
|
||||
|
||||
char32_t getchar32() {
|
||||
#if defined(_WIN32)
|
||||
HANDLE hConsole = GetStdHandle(STD_INPUT_HANDLE);
|
||||
wchar_t high_surrogate = 0;
|
||||
|
||||
while (true) {
|
||||
INPUT_RECORD record;
|
||||
DWORD count;
|
||||
if (!ReadConsoleInputW(hConsole, &record, 1, &count) || count == 0) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
if (record.EventType == KEY_EVENT && record.Event.KeyEvent.bKeyDown) {
|
||||
wchar_t wc = record.Event.KeyEvent.uChar.UnicodeChar;
|
||||
if (wc == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
high_surrogate = wc;
|
||||
continue;
|
||||
} else if ((wc >= 0xDC00) && (wc <= 0xDFFF)) { // Check if wc is a low surrogate
|
||||
if (high_surrogate != 0) { // Check if we have a high surrogate
|
||||
return ((high_surrogate - 0xD800) << 10) + (wc - 0xDC00) + 0x10000;
|
||||
}
|
||||
}
|
||||
|
||||
high_surrogate = 0; // Reset the high surrogate
|
||||
return static_cast<char32_t>(wc);
|
||||
}
|
||||
}
|
||||
#else
|
||||
wchar_t wc = getwchar();
|
||||
if (static_cast<wint_t>(wc) == WEOF) {
|
||||
return WEOF;
|
||||
}
|
||||
|
||||
#if WCHAR_MAX == 0xFFFF
|
||||
if ((wc >= 0xD800) && (wc <= 0xDBFF)) { // Check if wc is a high surrogate
|
||||
wchar_t low_surrogate = getwchar();
|
||||
if ((low_surrogate >= 0xDC00) && (low_surrogate <= 0xDFFF)) { // Check if the next wchar is a low surrogate
|
||||
return (static_cast<char32_t>(wc & 0x03FF) << 10) + (low_surrogate & 0x03FF) + 0x10000;
|
||||
}
|
||||
}
|
||||
if ((wc >= 0xD800) && (wc <= 0xDFFF)) { // Invalid surrogate pair
|
||||
return 0xFFFD; // Return the replacement character U+FFFD
|
||||
}
|
||||
#endif
|
||||
|
||||
return static_cast<char32_t>(wc);
|
||||
#endif
|
||||
}
|
||||
|
||||
void pop_cursor(console_state & con_st) {
|
||||
#if defined(_WIN32)
|
||||
if (con_st.hConsole != NULL) {
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &bufferInfo);
|
||||
|
||||
COORD newCursorPosition = bufferInfo.dwCursorPosition;
|
||||
if (newCursorPosition.X == 0) {
|
||||
newCursorPosition.X = bufferInfo.dwSize.X - 1;
|
||||
newCursorPosition.Y -= 1;
|
||||
} else {
|
||||
newCursorPosition.X -= 1;
|
||||
}
|
||||
|
||||
SetConsoleCursorPosition(con_st.hConsole, newCursorPosition);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
putc('\b', con_st.out);
|
||||
}
|
||||
|
||||
int estimateWidth(char32_t codepoint) {
|
||||
#if defined(_WIN32)
|
||||
return 1;
|
||||
#else
|
||||
return wcwidth(codepoint);
|
||||
#endif
|
||||
}
|
||||
|
||||
int put_codepoint(console_state & con_st, const char* utf8_codepoint, size_t length, int expectedWidth) {
|
||||
#if defined(_WIN32)
|
||||
CONSOLE_SCREEN_BUFFER_INFO bufferInfo;
|
||||
if (!GetConsoleScreenBufferInfo(con_st.hConsole, &bufferInfo)) {
|
||||
// go with the default
|
||||
return expectedWidth;
|
||||
}
|
||||
COORD initialPosition = bufferInfo.dwCursorPosition;
|
||||
DWORD nNumberOfChars = length;
|
||||
WriteConsole(con_st.hConsole, utf8_codepoint, nNumberOfChars, &nNumberOfChars, NULL);
|
||||
|
||||
CONSOLE_SCREEN_BUFFER_INFO newBufferInfo;
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &newBufferInfo);
|
||||
|
||||
// Figure out our real position if we're in the last column
|
||||
if (utf8_codepoint[0] != 0x09 && initialPosition.X == newBufferInfo.dwSize.X - 1) {
|
||||
DWORD nNumberOfChars;
|
||||
WriteConsole(con_st.hConsole, &" \b", 2, &nNumberOfChars, NULL);
|
||||
GetConsoleScreenBufferInfo(con_st.hConsole, &newBufferInfo);
|
||||
}
|
||||
|
||||
int width = newBufferInfo.dwCursorPosition.X - initialPosition.X;
|
||||
if (width < 0) {
|
||||
width += newBufferInfo.dwSize.X;
|
||||
}
|
||||
return width;
|
||||
#else
|
||||
// we can trust expectedWidth if we've got one
|
||||
if (expectedWidth >= 0 || con_st.tty == nullptr) {
|
||||
fwrite(utf8_codepoint, length, 1, con_st.out);
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
fputs("\033[6n", con_st.tty); // Query cursor position
|
||||
int x1, x2, y1, y2;
|
||||
int results = 0;
|
||||
results = fscanf(con_st.tty, "\033[%d;%dR", &y1, &x1);
|
||||
|
||||
fwrite(utf8_codepoint, length, 1, con_st.tty);
|
||||
|
||||
fputs("\033[6n", con_st.tty); // Query cursor position
|
||||
results += fscanf(con_st.tty, "\033[%d;%dR", &y2, &x2);
|
||||
|
||||
if (results != 4) {
|
||||
return expectedWidth;
|
||||
}
|
||||
|
||||
int width = x2 - x1;
|
||||
if (width < 0) {
|
||||
// Calculate the width considering text wrapping
|
||||
struct winsize w;
|
||||
ioctl(STDOUT_FILENO, TIOCGWINSZ, &w);
|
||||
width += w.ws_col;
|
||||
}
|
||||
return width;
|
||||
#endif
|
||||
}
|
||||
|
||||
void replace_last(console_state & con_st, char ch) {
|
||||
#if defined(_WIN32)
|
||||
pop_cursor(con_st);
|
||||
put_codepoint(con_st, &ch, 1, 1);
|
||||
#else
|
||||
fprintf(con_st.out, "\b%c", ch);
|
||||
#endif
|
||||
}
|
||||
|
||||
void append_utf8(char32_t ch, std::string & out) {
|
||||
if (ch <= 0x7F) {
|
||||
out.push_back(static_cast<unsigned char>(ch));
|
||||
} else if (ch <= 0x7FF) {
|
||||
out.push_back(static_cast<unsigned char>(0xC0 | ((ch >> 6) & 0x1F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0xFFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xE0 | ((ch >> 12) & 0x0F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else if (ch <= 0x10FFFF) {
|
||||
out.push_back(static_cast<unsigned char>(0xF0 | ((ch >> 18) & 0x07)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 12) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | ((ch >> 6) & 0x3F)));
|
||||
out.push_back(static_cast<unsigned char>(0x80 | (ch & 0x3F)));
|
||||
} else {
|
||||
// Invalid Unicode code point
|
||||
}
|
||||
}
|
||||
|
||||
// Helper function to remove the last UTF-8 character from a string
|
||||
void pop_back_utf8_char(std::string & line) {
|
||||
if (line.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t pos = line.length() - 1;
|
||||
|
||||
// Find the start of the last UTF-8 character (checking up to 4 bytes back)
|
||||
for (size_t i = 0; i < 3 && pos > 0; ++i, --pos) {
|
||||
if ((line[pos] & 0xC0) != 0x80) break; // Found the start of the character
|
||||
}
|
||||
line.erase(pos);
|
||||
}
|
||||
|
||||
bool console_readline(console_state & con_st, std::string & line) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
if (con_st.out != stdout) {
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
line.clear();
|
||||
std::vector<int> widths;
|
||||
bool is_special_char = false;
|
||||
bool end_of_stream = false;
|
||||
|
||||
char32_t input_char;
|
||||
while (true) {
|
||||
fflush(con_st.out); // Ensure all output is displayed before waiting for input
|
||||
input_char = getchar32();
|
||||
|
||||
if (input_char == '\r' || input_char == '\n') {
|
||||
break;
|
||||
}
|
||||
|
||||
if (input_char == (char32_t) WEOF || input_char == 0x04 /* Ctrl+D*/) {
|
||||
end_of_stream = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_special_char) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_USER_INPUT);
|
||||
replace_last(con_st, line.back());
|
||||
is_special_char = false;
|
||||
}
|
||||
|
||||
if (input_char == '\033') { // Escape sequence
|
||||
char32_t code = getchar32();
|
||||
if (code == '[' || code == 0x1B) {
|
||||
// Discard the rest of the escape sequence
|
||||
while ((code = getchar32()) != (char32_t) WEOF) {
|
||||
if ((code >= 'A' && code <= 'Z') || (code >= 'a' && code <= 'z') || code == '~') {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if (input_char == 0x08 || input_char == 0x7F) { // Backspace
|
||||
if (!widths.empty()) {
|
||||
int count;
|
||||
do {
|
||||
count = widths.back();
|
||||
widths.pop_back();
|
||||
// Move cursor back, print space, and move cursor back again
|
||||
for (int i = 0; i < count; i++) {
|
||||
replace_last(con_st, ' ');
|
||||
pop_cursor(con_st);
|
||||
}
|
||||
pop_back_utf8_char(line);
|
||||
} while (count == 0 && !widths.empty());
|
||||
}
|
||||
} else {
|
||||
int offset = line.length();
|
||||
append_utf8(input_char, line);
|
||||
int width = put_codepoint(con_st, line.c_str() + offset, line.length() - offset, estimateWidth(input_char));
|
||||
if (width < 0) {
|
||||
width = 0;
|
||||
}
|
||||
widths.push_back(width);
|
||||
}
|
||||
|
||||
if (!line.empty() && (line.back() == '\\' || line.back() == '/')) {
|
||||
console_set_color(con_st, CONSOLE_COLOR_PROMPT);
|
||||
replace_last(con_st, line.back());
|
||||
is_special_char = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool has_more = con_st.multiline_input;
|
||||
if (is_special_char) {
|
||||
replace_last(con_st, ' ');
|
||||
pop_cursor(con_st);
|
||||
|
||||
char last = line.back();
|
||||
line.pop_back();
|
||||
if (last == '\\') {
|
||||
line += '\n';
|
||||
fputc('\n', con_st.out);
|
||||
has_more = !has_more;
|
||||
} else {
|
||||
// llama will just eat the single space, it won't act as a space
|
||||
if (line.length() == 1 && line.back() == ' ') {
|
||||
line.clear();
|
||||
pop_cursor(con_st);
|
||||
}
|
||||
has_more = false;
|
||||
}
|
||||
} else {
|
||||
if (end_of_stream) {
|
||||
has_more = false;
|
||||
} else {
|
||||
line += '\n';
|
||||
fputc('\n', con_st.out);
|
||||
}
|
||||
}
|
||||
|
||||
fflush(con_st.out);
|
||||
return has_more;
|
||||
}
|
||||
@@ -1,130 +0,0 @@
|
||||
// Various helper functions and utilities
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <random>
|
||||
#include <thread>
|
||||
#include <unordered_map>
|
||||
|
||||
#if !defined (_WIN32)
|
||||
#include <stdio.h>
|
||||
#include <termios.h>
|
||||
#endif
|
||||
|
||||
//
|
||||
// CLI argument parsing
|
||||
//
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
int32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
|
||||
// sampling parameters
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::string model = "models/7B/ggml-model.bin"; // model path
|
||||
std::string prompt = "";
|
||||
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
||||
std::string input_prefix = ""; // string to prefix user inputs with
|
||||
std::string input_suffix = ""; // string to suffix user inputs with
|
||||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
bool use_color = false; // use color to distinguish generations and inputs
|
||||
bool interactive = false; // interactive mode
|
||||
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
||||
|
||||
bool embedding = false; // get only sentence embedding
|
||||
bool interactive_first = false; // wait for user input immediately
|
||||
bool multiline_input = false; // reverse the usage of `\`
|
||||
|
||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool perplexity = false; // compute perplexity over the prompt
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool mem_test = false; // compute maximum memory usage
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
//
|
||||
// Vocab utils
|
||||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_context * llama_init_from_gpt_params(const gpt_params & params);
|
||||
|
||||
//
|
||||
// Console utils
|
||||
//
|
||||
|
||||
#define ANSI_COLOR_RED "\x1b[31m"
|
||||
#define ANSI_COLOR_GREEN "\x1b[32m"
|
||||
#define ANSI_COLOR_YELLOW "\x1b[33m"
|
||||
#define ANSI_COLOR_BLUE "\x1b[34m"
|
||||
#define ANSI_COLOR_MAGENTA "\x1b[35m"
|
||||
#define ANSI_COLOR_CYAN "\x1b[36m"
|
||||
#define ANSI_COLOR_RESET "\x1b[0m"
|
||||
#define ANSI_BOLD "\x1b[1m"
|
||||
|
||||
enum console_color_t {
|
||||
CONSOLE_COLOR_DEFAULT=0,
|
||||
CONSOLE_COLOR_PROMPT,
|
||||
CONSOLE_COLOR_USER_INPUT
|
||||
};
|
||||
|
||||
struct console_state {
|
||||
bool multiline_input = false;
|
||||
bool use_color = false;
|
||||
console_color_t color = CONSOLE_COLOR_DEFAULT;
|
||||
|
||||
FILE* out = stdout;
|
||||
#if defined (_WIN32)
|
||||
void* hConsole;
|
||||
#else
|
||||
FILE* tty = nullptr;
|
||||
termios prev_state;
|
||||
#endif
|
||||
};
|
||||
|
||||
void console_init(console_state & con_st);
|
||||
void console_cleanup(console_state & con_st);
|
||||
void console_set_color(console_state & con_st, console_color_t color);
|
||||
bool console_readline(console_state & con_st, std::string & line);
|
||||
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
5
examples/convert-llama2c-to-ggml/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET convert-llama2c-to-ggml)
|
||||
add_executable(${TARGET} convert-llama2c-to-ggml.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
26
examples/convert-llama2c-to-ggml/README.md
Normal file
26
examples/convert-llama2c-to-ggml/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
## Convert llama2.c model to ggml
|
||||
|
||||
This example reads weights from project [llama2.c](https://github.com/karpathy/llama2.c) and saves them in ggml compatible format. The vocab that is available in `models/ggml-vocab.bin` is used by default.
|
||||
|
||||
To convert the model first download the models from the [llma2.c](https://github.com/karpathy/llama2.c) repository:
|
||||
|
||||
`$ make -j`
|
||||
|
||||
After successful compilation, following usage options are available:
|
||||
```
|
||||
usage: ./convert-llama2c-to-ggml [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
--copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default 'models/7B/ggml-model-f16.gguf')
|
||||
--llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model
|
||||
--llama2c-output-model FNAME model path to save the converted llama2.c model (default ak_llama_model.bin')
|
||||
```
|
||||
|
||||
An example command using a model from [karpathy/tinyllamas](https://huggingface.co/karpathy/tinyllamas) is as follows:
|
||||
|
||||
`$ ./convert-llama2c-to-ggml --copy-vocab-from-model llama-2-7b-chat.gguf.q2_K.bin --llama2c-model stories42M.bin --llama2c-output-model stories42M.gguf.bin`
|
||||
|
||||
Now you can use the model with a command like:
|
||||
|
||||
`$ ./main -m stories42M.gguf.bin -p "One day, Lily met a Shoggoth" -n 500 -c 256`
|
||||
963
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
963
examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp
Normal file
@@ -0,0 +1,963 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <climits>
|
||||
#include <cstring>
|
||||
#include <cstdarg>
|
||||
#include <ctime>
|
||||
#include <random>
|
||||
#include <stdexcept>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
|
||||
// GGUF keys & tensor names.
|
||||
|
||||
#define KV_GENERAL_ARCHITECTURE "general.architecture"
|
||||
#define KV_GENERAL_NAME "general.name"
|
||||
|
||||
#define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
|
||||
#define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
|
||||
#define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
|
||||
#define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
|
||||
#define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
|
||||
#define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
|
||||
#define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
|
||||
#define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
|
||||
#define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
|
||||
#define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
|
||||
|
||||
#define KV_CONTEXT_LENGTH "llama.context_length"
|
||||
#define KV_EMBEDDING_LENGTH "llama.embedding_length"
|
||||
#define KV_BLOCK_COUNT "llama.block_count"
|
||||
#define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
|
||||
#define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
|
||||
#define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
|
||||
#define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
|
||||
#define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
|
||||
|
||||
#define TN_TOKEN_EMBD "token_embd.weight"
|
||||
#define TN_OUTPUT_NORM "output_norm.weight"
|
||||
#define TN_OUTPUT "output.weight"
|
||||
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
||||
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
||||
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
||||
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
||||
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
||||
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
||||
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
||||
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
||||
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
|
||||
#define LLAMA_FILE_VERSION_GGJT_V3 3
|
||||
|
||||
#define TOKENIZER_NAME "llama"
|
||||
#define UNKNOWN_TOKEN_ID 0
|
||||
#define BOS_TOKEN_ID 1
|
||||
#define EOS_TOKEN_ID 2
|
||||
|
||||
//////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
|
||||
typedef struct {
|
||||
int dim; // transformer dimension
|
||||
int hidden_dim; // for ffn layers
|
||||
int n_layers; // number of layers
|
||||
int n_heads; // number of query heads
|
||||
int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
|
||||
int vocab_size; // vocabulary size, usually 256 (byte-level)
|
||||
int seq_len; // max sequence length
|
||||
} Config;
|
||||
|
||||
struct TransformerWeights {
|
||||
// token embedding table
|
||||
float* token_embedding_table; // (vocab_size, dim)
|
||||
// weights for rmsnorms
|
||||
float* rms_att_weight; // (layer, dim) rmsnorm weights
|
||||
float* rms_ffn_weight; // (layer, dim)
|
||||
// weights for matmuls
|
||||
float* wq; // (layer, dim, dim)
|
||||
float* wk; // (layer, dim, dim)
|
||||
float* wv; // (layer, dim, dim)
|
||||
float* wo; // (layer, dim, dim)
|
||||
// weights for ffn
|
||||
float* w1; // (layer, hidden_dim, dim)
|
||||
float* w2; // (layer, dim, hidden_dim)
|
||||
float* w3; // (layer, hidden_dim, dim)
|
||||
// final rmsnorm
|
||||
float* rms_final_weight; // (dim,)
|
||||
// freq_cis for RoPE relatively positional embeddings
|
||||
// float* freq_cis_real; // (seq_len, dim/2)
|
||||
// float* freq_cis_imag; // (seq_len, dim/2)
|
||||
// (optional) classifier weights for the logits, on the last layer
|
||||
float* wcls;
|
||||
|
||||
~TransformerWeights() {
|
||||
delete[] token_embedding_table;
|
||||
delete[] rms_att_weight;
|
||||
delete[] rms_ffn_weight;
|
||||
delete[] wq;
|
||||
delete[] wk;
|
||||
delete[] wv;
|
||||
delete[] wo;
|
||||
delete[] w1;
|
||||
delete[] w2;
|
||||
delete[] w3;
|
||||
delete[] rms_final_weight;
|
||||
delete[] wcls;
|
||||
}
|
||||
};
|
||||
|
||||
static void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
|
||||
// we calloc instead of malloc to keep valgrind happy
|
||||
w->token_embedding_table = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
|
||||
w->rms_att_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->rms_ffn_weight = new float[p->n_layers * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
|
||||
|
||||
w->wq = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wk = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wv = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->wo = new float[p->n_layers * p->dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
|
||||
|
||||
w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
|
||||
|
||||
w->rms_final_weight = new float[p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
|
||||
|
||||
if (shared_weights) {
|
||||
w->wcls = NULL;
|
||||
} else {
|
||||
w->wcls = new float[p->vocab_size * p->dim]();
|
||||
printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
|
||||
}
|
||||
}
|
||||
|
||||
static int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
|
||||
if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
|
||||
if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
|
||||
if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
|
||||
if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
|
||||
if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
|
||||
|
||||
// Skip freq_cis_real & freq_cis_imag
|
||||
int head_size = p->dim / p->n_heads;
|
||||
fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
|
||||
|
||||
if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
|
||||
|
||||
// Check we didn't forget to read anything
|
||||
auto curr = ftell(f);
|
||||
fseek(f, 0, SEEK_END);
|
||||
auto end = ftell(f);
|
||||
if (curr != end) {
|
||||
printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void print_sample_weights(TransformerWeights *w){
|
||||
printf("----- Quick print of first of the weight vales of all the variables\n");
|
||||
printf("%f\n", w->token_embedding_table[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
printf("%f\n", w->rms_ffn_weight[0]);
|
||||
|
||||
printf("%f\n", w->wq[0]);
|
||||
printf("%f\n", w->wk[0]);
|
||||
printf("%f\n", w->wv[0]);
|
||||
printf("%f\n", w->wo[0]);
|
||||
printf("%f\n", w->w1[0]);
|
||||
printf("%f\n", w->w2[0]);
|
||||
printf("%f\n", w->w3[0]);
|
||||
printf("%f\n", w->rms_att_weight[0]);
|
||||
if (w->wcls) printf("%f\n", w->wcls[0]);
|
||||
}
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
//////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
|
||||
|
||||
struct llama_vocab {
|
||||
using id = int32_t;
|
||||
using token = std::string;
|
||||
using ttype = llama_token_type;
|
||||
|
||||
struct token_data {
|
||||
token text;
|
||||
float score;
|
||||
ttype type;
|
||||
};
|
||||
|
||||
std::unordered_map<token, id> token_to_id;
|
||||
std::vector<token_data> id_to_token;
|
||||
};
|
||||
|
||||
struct my_llama_hparams {
|
||||
uint32_t n_vocab = 32000;
|
||||
uint32_t n_ctx = 512; // this is provided as user input?
|
||||
uint32_t n_embd = 4096;
|
||||
uint32_t n_ff = 11008;
|
||||
uint32_t n_mult = 4;
|
||||
uint32_t n_head = 32;
|
||||
uint32_t n_layer = 32;
|
||||
uint32_t n_rot = 64;
|
||||
bool operator!=(const my_llama_hparams& other) const {
|
||||
return memcmp(this, &other, sizeof(my_llama_hparams));
|
||||
}
|
||||
};
|
||||
|
||||
struct my_llama_layer {
|
||||
// normalization
|
||||
struct ggml_tensor * attention_norm;
|
||||
|
||||
// attention
|
||||
struct ggml_tensor * wq;
|
||||
struct ggml_tensor * wk;
|
||||
struct ggml_tensor * wv;
|
||||
struct ggml_tensor * wo;
|
||||
|
||||
// normalization
|
||||
struct ggml_tensor * ffn_norm;
|
||||
|
||||
// ff
|
||||
struct ggml_tensor * w1;
|
||||
struct ggml_tensor * w2;
|
||||
struct ggml_tensor * w3;
|
||||
};
|
||||
|
||||
struct my_llama_model {
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
||||
std::string name;
|
||||
|
||||
my_llama_hparams hparams;
|
||||
|
||||
struct ggml_tensor * tok_embeddings;
|
||||
|
||||
struct ggml_tensor * norm;
|
||||
struct ggml_tensor * output;
|
||||
|
||||
std::vector<my_llama_layer> layers;
|
||||
|
||||
uint32_t train_its = 0;
|
||||
uint32_t train_samples = 0;
|
||||
uint32_t train_tokens = 0;
|
||||
};
|
||||
|
||||
struct train_params {
|
||||
const char * fn_vocab_model;
|
||||
const char * fn_llama2c_model;
|
||||
const char * fn_llama2c_output_model;
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * fn_model_out;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_embd;
|
||||
int n_mult;
|
||||
int n_head;
|
||||
int n_layer;
|
||||
int n_rotmax;
|
||||
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_examples;
|
||||
int n_predict;
|
||||
|
||||
int print_info_interval;
|
||||
int print_details_interval;
|
||||
|
||||
bool samples_start_after_nl;
|
||||
bool use_adam;
|
||||
bool use_flash;
|
||||
bool use_scratch;
|
||||
|
||||
// only adam
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_alpha;
|
||||
|
||||
int lbfgs_n_iter;
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_decay;
|
||||
|
||||
int mem_model_gb;
|
||||
int mem_compute_gb;
|
||||
int mem_compute0_gb;
|
||||
int mem_compute1_gb;
|
||||
};
|
||||
|
||||
static void print_params(struct my_llama_hparams * params) {
|
||||
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
||||
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
||||
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
||||
printf("%s: n_mult: %d\n", __func__, params->n_mult);
|
||||
printf("%s: n_head: %d\n", __func__, params->n_head);
|
||||
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
||||
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
||||
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
||||
}
|
||||
|
||||
static void init_model(struct my_llama_model * model) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_embd = hparams.n_embd;
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
struct ggml_context * ctx = model->ctx;
|
||||
|
||||
model->train_its = 0;
|
||||
model->train_samples = 0;
|
||||
model->train_tokens = 0;
|
||||
|
||||
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
|
||||
|
||||
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
|
||||
|
||||
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
|
||||
|
||||
// printing the per-layer allocations here so we dont print in the for loop.
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
|
||||
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
|
||||
printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
|
||||
|
||||
ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
|
||||
ggml_set_name(model->norm, "norm.weight");
|
||||
ggml_set_name(model->output, "output.weight");
|
||||
|
||||
model->layers.resize(n_layer);
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
|
||||
std::string layers_i = "layers." + std::to_string(i);
|
||||
|
||||
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
||||
|
||||
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
||||
|
||||
layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
||||
layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
||||
|
||||
ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
|
||||
|
||||
ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
|
||||
ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
|
||||
ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
|
||||
ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
|
||||
|
||||
ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
|
||||
|
||||
ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
|
||||
ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
|
||||
}
|
||||
}
|
||||
|
||||
static float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
static int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
|
||||
int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
|
||||
return *ptr;
|
||||
}
|
||||
|
||||
static void print_row(struct ggml_tensor * probs, int i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %f", p);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void print_matrix(struct ggml_tensor * probs) {
|
||||
assert(probs->n_dims == 2);
|
||||
for (int i = 0; i < probs->ne[1]; ++i) {
|
||||
for (int k = 0; k < probs->ne[0]; ++k) {
|
||||
float p = get_f32_2d(probs, k, i);
|
||||
printf(" %.2f", p);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef __GNUC__
|
||||
#ifdef __MINGW32__
|
||||
__attribute__((format(gnu_printf, 1, 2)))
|
||||
#else
|
||||
__attribute__((format(printf, 1, 2)))
|
||||
#endif
|
||||
#endif
|
||||
static std::string format(const char * fmt, ...) {
|
||||
va_list ap, ap2;
|
||||
va_start(ap, fmt);
|
||||
va_copy(ap2, ap);
|
||||
int size = vsnprintf(NULL, 0, fmt, ap);
|
||||
GGML_ASSERT(size >= 0 && size < INT_MAX);
|
||||
std::vector<char> buf(size + 1);
|
||||
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
|
||||
GGML_ASSERT(size2 == size);
|
||||
va_end(ap2);
|
||||
va_end(ap);
|
||||
return std::string(buf.data(), size);
|
||||
}
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
} else {
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
die_fmt("fread failed: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
std::float_t read_f32() {
|
||||
std::float_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static bool is_ggml_file(const char * filename) {
|
||||
llama_file file(filename, "rb");
|
||||
if (file.size < 4) {
|
||||
return false;
|
||||
}
|
||||
uint32_t magic = file.read_u32();
|
||||
return magic == GGUF_MAGIC;
|
||||
}
|
||||
|
||||
static std::string llama_escape_whitespaces(const std::string & text) {
|
||||
std::ostringstream out;
|
||||
for (char c : text) {
|
||||
if (c == ' ') out << "\xe2\x96\x81";
|
||||
else out << c;
|
||||
}
|
||||
return out.str();
|
||||
}
|
||||
|
||||
static void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
|
||||
if (is_ggml_file(filename)) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ &ctx_data,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(filename, params);
|
||||
GGML_ASSERT(ctx != NULL);
|
||||
|
||||
const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
|
||||
GGML_ASSERT(model_idx >= 0);
|
||||
std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
|
||||
GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
|
||||
|
||||
const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
|
||||
GGML_ASSERT(token_idx >= 0);
|
||||
|
||||
const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
|
||||
GGML_ASSERT(score_idx >= 0);
|
||||
const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
|
||||
|
||||
const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
|
||||
GGML_ASSERT(toktype_idx >= 0);
|
||||
const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
|
||||
|
||||
const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
|
||||
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
|
||||
for (uint32_t i = 0; i < n_vocab; i++) {
|
||||
std::string word = gguf_get_arr_str(ctx, token_idx, i);
|
||||
|
||||
vocab->token_to_id[word] = i;
|
||||
|
||||
auto & token_data = vocab->id_to_token[i];
|
||||
token_data.text = std::move(word);
|
||||
token_data.score = scores[i];
|
||||
token_data.type = (llama_token_type) toktypes[i];
|
||||
}
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
} else {
|
||||
// assume llama2.c vocabulary
|
||||
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
|
||||
llama_file file(filename, "rb");
|
||||
if (!file.fp) {
|
||||
die_fmt("%s: %s", strerror(errno), filename);
|
||||
}
|
||||
const int n_vocab = config->vocab_size;
|
||||
/* uint32_t max_token_length = */ file.read_u32(); // unused
|
||||
vocab->id_to_token.resize(n_vocab);
|
||||
for (llama_vocab::id id=0; id<n_vocab; ++id) {
|
||||
float_t score = file.read_f32();
|
||||
uint32_t len = file.read_u32();
|
||||
std::string text = file.read_string(len);
|
||||
|
||||
unsigned char byte_val;
|
||||
llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
|
||||
if (id == UNKNOWN_TOKEN_ID) {
|
||||
text = "<unk>";
|
||||
type = LLAMA_TOKEN_TYPE_UNKNOWN;
|
||||
} else if (id == BOS_TOKEN_ID) {
|
||||
text = "<s>";
|
||||
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||
} else if (id == EOS_TOKEN_ID) {
|
||||
text = "</s>";
|
||||
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||
} else if (text.empty()) {
|
||||
type = LLAMA_TOKEN_TYPE_CONTROL;
|
||||
} else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
|
||||
// Text of byte tokens is already in the expected format.
|
||||
type = LLAMA_TOKEN_TYPE_BYTE;
|
||||
} else {
|
||||
type = LLAMA_TOKEN_TYPE_NORMAL;
|
||||
}
|
||||
text = llama_escape_whitespaces(text);
|
||||
|
||||
vocab->id_to_token[id].text = text;
|
||||
vocab->id_to_token[id].score = score;
|
||||
vocab->id_to_token[id].type = type;
|
||||
vocab->token_to_id.emplace(text, id);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
|
||||
int ct;
|
||||
switch (gg_weights->n_dims){
|
||||
case 1:
|
||||
ct = 0;
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
ct = 0;
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
ct = 0;
|
||||
for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
|
||||
float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
|
||||
*ptr = karpathy_weights[ct];
|
||||
ct++;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void save_as_llama_model(
|
||||
struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename
|
||||
) {
|
||||
// convert AK weights into GG weights one by one.
|
||||
// w->token_embedding_table -> model->tok_embeddings
|
||||
// float* -> struct ggml_tensor
|
||||
convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
|
||||
convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
|
||||
|
||||
convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
|
||||
//print_row(model->norm, 0);
|
||||
|
||||
// for rms-att-weight
|
||||
int row_length = model->hparams.n_embd;
|
||||
int n_ff = model->hparams.n_ff;
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
|
||||
auto & layer = model->layers[i];
|
||||
// 1d
|
||||
convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
|
||||
convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
|
||||
|
||||
// from 3d matrix layer x dim x dim to 2d matrix dim x dim
|
||||
convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
|
||||
convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
|
||||
|
||||
convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
|
||||
convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
|
||||
convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
|
||||
}
|
||||
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
std::vector<const char*> tokens;
|
||||
std::vector<float> scores;
|
||||
std::vector<llama_token_type> token_types;
|
||||
for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
|
||||
tokens.push_back(token_data.text.c_str());
|
||||
scores.push_back(token_data.score);
|
||||
token_types.push_back(token_data.type);
|
||||
}
|
||||
gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
|
||||
gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
|
||||
gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
|
||||
|
||||
gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
|
||||
|
||||
gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
|
||||
gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
|
||||
|
||||
// special tokens
|
||||
gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
|
||||
gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
|
||||
gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
|
||||
gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
|
||||
gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
|
||||
|
||||
gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
|
||||
gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
|
||||
gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
|
||||
gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
|
||||
// n_head_kv is optional, default to n_head
|
||||
// gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
|
||||
gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
|
||||
gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
|
||||
gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
|
||||
|
||||
// write tensors
|
||||
ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
|
||||
gguf_add_tensor(ctx, model->tok_embeddings);
|
||||
|
||||
ggml_set_name(model->norm, TN_OUTPUT_NORM);
|
||||
gguf_add_tensor(ctx, model->norm);
|
||||
|
||||
ggml_set_name(model->output, TN_OUTPUT);
|
||||
gguf_add_tensor(ctx, model->output);
|
||||
|
||||
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
|
||||
ggml_format_name(layer.wq, TN_ATTN_Q, i);
|
||||
gguf_add_tensor(ctx, layer.wq);
|
||||
|
||||
ggml_format_name(layer.wk, TN_ATTN_K, i);
|
||||
gguf_add_tensor(ctx, layer.wk);
|
||||
|
||||
ggml_format_name(layer.wv, TN_ATTN_V, i);
|
||||
gguf_add_tensor(ctx, layer.wv);
|
||||
|
||||
ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
|
||||
gguf_add_tensor(ctx, layer.wo);
|
||||
|
||||
ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
|
||||
gguf_add_tensor(ctx, layer.attention_norm);
|
||||
|
||||
ggml_format_name(layer.w1, TN_FFN_GATE, i);
|
||||
gguf_add_tensor(ctx, layer.w1);
|
||||
|
||||
ggml_format_name(layer.w2, TN_FFN_DOWN, i);
|
||||
gguf_add_tensor(ctx, layer.w2);
|
||||
|
||||
ggml_format_name(layer.w3, TN_FFN_UP, i);
|
||||
gguf_add_tensor(ctx, layer.w3);
|
||||
|
||||
ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
|
||||
gguf_add_tensor(ctx, layer.ffn_norm);
|
||||
}
|
||||
|
||||
gguf_write_to_file(ctx, filename, false);
|
||||
gguf_free(ctx);
|
||||
}
|
||||
|
||||
static struct train_params get_default_train_params() {
|
||||
struct train_params params;
|
||||
params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
|
||||
params.fn_llama2c_output_model = "ak_llama_model.bin";
|
||||
params.fn_train_data = "shakespeare.txt";
|
||||
params.fn_checkpoint_in = "checkpoint.bin";
|
||||
params.fn_checkpoint_out = "checkpoint.bin";
|
||||
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
||||
|
||||
params.seed = -1;
|
||||
|
||||
params.n_ctx = 128;
|
||||
params.n_embd = 256;
|
||||
params.n_mult = 256;
|
||||
params.n_head = 8;
|
||||
params.n_layer = 16;
|
||||
params.n_rotmax = 64;
|
||||
|
||||
params.n_threads = 6;
|
||||
params.n_batch = 8;
|
||||
params.n_examples = 8;
|
||||
params.n_predict = 1024;
|
||||
|
||||
params.print_info_interval = 1;
|
||||
params.print_details_interval = 2;
|
||||
|
||||
params.samples_start_after_nl = false;
|
||||
params.use_adam = true;
|
||||
params.use_flash = true;
|
||||
params.use_scratch = true;
|
||||
|
||||
// only adam
|
||||
params.warmup = 100;
|
||||
params.cos_decay_steps = 1000;
|
||||
params.cos_decay_restart = 1.1f;
|
||||
params.cos_decay_alpha = 0.0f;
|
||||
|
||||
params.lbfgs_n_iter = 16;
|
||||
params.adam_n_iter = 16;
|
||||
params.adam_alpha = 1e-3f;
|
||||
params.adam_decay = 1e-3f;
|
||||
|
||||
params.mem_model_gb = 2;
|
||||
params.mem_compute_gb = 24;
|
||||
params.mem_compute0_gb = 8;
|
||||
params.mem_compute1_gb = 2;
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
static void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
|
||||
fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
|
||||
fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
static bool params_parse(int argc, char ** argv, struct train_params * params) {
|
||||
bool invalid_param = false;
|
||||
bool reqd_param_found = false;
|
||||
std::string arg;
|
||||
struct train_params default_params = get_default_train_params();
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "--copy-vocab-from-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_vocab_model = argv[i];
|
||||
} else if (arg == "--llama2c-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
reqd_param_found = true;
|
||||
params->fn_llama2c_model = argv[i];
|
||||
} else if (arg == "--llama2c-output-model") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_llama2c_output_model = argv[i];
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(0);
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (!reqd_param_found){
|
||||
fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
|
||||
print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static std::string basename(const std::string &path) {
|
||||
size_t pos = path.find_last_of("/\\");
|
||||
if (pos == std::string::npos) {
|
||||
return path;
|
||||
}
|
||||
return path.substr(pos + 1);
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct train_params params = get_default_train_params();
|
||||
if (!params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
Config config;
|
||||
TransformerWeights weights = {};
|
||||
{
|
||||
FILE *file = fopen(params.fn_llama2c_model, "rb");
|
||||
if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
|
||||
// read in the config header
|
||||
if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
|
||||
auto shared_weights = config.vocab_size > 0;
|
||||
config.vocab_size = abs(config.vocab_size);
|
||||
|
||||
// read in the Transformer weights
|
||||
malloc_weights(&weights, &config, shared_weights);
|
||||
if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
|
||||
fclose(file);
|
||||
}
|
||||
|
||||
struct llama_vocab vocab;
|
||||
load_vocab(params.fn_vocab_model, &config, &vocab);
|
||||
|
||||
struct my_llama_model model;
|
||||
model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
|
||||
model.hparams.n_ctx = params.n_ctx;
|
||||
model.hparams.n_embd = config.dim; //params.n_embd;
|
||||
model.hparams.n_ff = config.hidden_dim;
|
||||
model.hparams.n_mult = 32;//params.n_mult;
|
||||
model.hparams.n_head = config.n_heads; //params.n_head;
|
||||
model.hparams.n_layer = config.n_layers; //params.n_layer;
|
||||
model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
|
||||
print_params(&model.hparams);
|
||||
struct ggml_init_params lcparams;
|
||||
lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
|
||||
lcparams.mem_buffer = NULL;
|
||||
lcparams.no_alloc = false;
|
||||
|
||||
model.ctx = ggml_init(lcparams);
|
||||
|
||||
init_model(&model);
|
||||
model.name = basename(params.fn_llama2c_model);
|
||||
save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
|
||||
|
||||
printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
|
||||
|
||||
ggml_free(model.ctx);
|
||||
return 0;
|
||||
}
|
||||
4
examples/embd-input/.gitignore
vendored
Normal file
4
examples/embd-input/.gitignore
vendored
Normal file
@@ -0,0 +1,4 @@
|
||||
PandaGPT
|
||||
MiniGPT-4
|
||||
*.pth
|
||||
|
||||
17
examples/embd-input/CMakeLists.txt
Normal file
17
examples/embd-input/CMakeLists.txt
Normal file
@@ -0,0 +1,17 @@
|
||||
set(TARGET embdinput)
|
||||
add_library(${TARGET} embd-input-lib.cpp embd-input.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET embd-input-test)
|
||||
add_executable(${TARGET} embd-input-test.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama embdinput ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
63
examples/embd-input/README.md
Normal file
63
examples/embd-input/README.md
Normal file
@@ -0,0 +1,63 @@
|
||||
### Examples for input embedding directly
|
||||
|
||||
## Requirement
|
||||
build `libembdinput.so`
|
||||
run the following comman in main dir (../../).
|
||||
```
|
||||
make
|
||||
```
|
||||
|
||||
## [LLaVA](https://github.com/haotian-liu/LLaVA/) example (llava.py)
|
||||
|
||||
1. Obtian LLaVA model (following https://github.com/haotian-liu/LLaVA/ , use https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/).
|
||||
2. Convert it to ggml format.
|
||||
3. `llava_projection.pth` is [pytorch_model-00003-of-00003.bin](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin).
|
||||
|
||||
```
|
||||
import torch
|
||||
|
||||
bin_path = "../LLaVA-13b-delta-v1-1/pytorch_model-00003-of-00003.bin"
|
||||
pth_path = "./examples/embd-input/llava_projection.pth"
|
||||
|
||||
dic = torch.load(bin_path)
|
||||
used_key = ["model.mm_projector.weight","model.mm_projector.bias"]
|
||||
torch.save({k: dic[k] for k in used_key}, pth_path)
|
||||
```
|
||||
4. Check the path of LLaVA model and `llava_projection.pth` in `llava.py`.
|
||||
|
||||
|
||||
## [PandaGPT](https://github.com/yxuansu/PandaGPT) example (panda_gpt.py)
|
||||
|
||||
1. Obtian PandaGPT lora model from https://github.com/yxuansu/PandaGPT. Rename the file to `adapter_model.bin`. Use [convert-lora-to-ggml.py](../../convert-lora-to-ggml.py) to convert it to ggml format.
|
||||
The `adapter_config.json` is
|
||||
```
|
||||
{
|
||||
"peft_type": "LORA",
|
||||
"fan_in_fan_out": false,
|
||||
"bias": null,
|
||||
"modules_to_save": null,
|
||||
"r": 32,
|
||||
"lora_alpha": 32,
|
||||
"lora_dropout": 0.1,
|
||||
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"]
|
||||
}
|
||||
```
|
||||
2. Papare the `vicuna` v0 model.
|
||||
3. Obtain the [ImageBind](https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth) model.
|
||||
4. Clone the PandaGPT source.
|
||||
```
|
||||
git clone https://github.com/yxuansu/PandaGPT
|
||||
```
|
||||
5. Install the requirement of PandaGPT.
|
||||
6. Check the path of PandaGPT source, ImageBind model, lora model and vicuna model in panda_gpt.py.
|
||||
|
||||
## [MiniGPT-4](https://github.com/Vision-CAIR/MiniGPT-4/) example (minigpt4.py)
|
||||
|
||||
1. Obtain MiniGPT-4 model from https://github.com/Vision-CAIR/MiniGPT-4/ and put it in `embd-input`.
|
||||
2. Clone the MiniGPT-4 source.
|
||||
```
|
||||
git clone https://github.com/Vision-CAIR/MiniGPT-4/
|
||||
```
|
||||
3. Install the requirement of PandaGPT.
|
||||
4. Papare the `vicuna` v0 model.
|
||||
5. Check the path of MiniGPT-4 source, MiniGPT-4 model and vicuna model in `minigpt4.py`.
|
||||
220
examples/embd-input/embd-input-lib.cpp
Normal file
220
examples/embd-input/embd-input-lib.cpp
Normal file
@@ -0,0 +1,220 @@
|
||||
#include "build-info.h"
|
||||
#include "common.h"
|
||||
#include "embd-input.h"
|
||||
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static llama_context ** g_ctx;
|
||||
|
||||
extern "C" {
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = uint32_t(time(NULL));
|
||||
}
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
g_ctx = &ctx;
|
||||
|
||||
// load the model and apply lora adapter, if any
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
struct MyModel * ret = new MyModel();
|
||||
ret->ctx = ctx;
|
||||
ret->params = params;
|
||||
ret->n_past = 0;
|
||||
// printf("ctx: %d\n", ret->ctx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void free_mymodel(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
delete mymodel;
|
||||
}
|
||||
|
||||
|
||||
bool eval_float(void * model, float * input, int N){
|
||||
MyModel * mymodel = (MyModel*)model;
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_emb = llama_n_embd(llama_get_model(ctx));
|
||||
int n_past = mymodel->n_past;
|
||||
int n_batch = N; // params.n_batch;
|
||||
|
||||
for (int i = 0; i < (int) N; i += n_batch) {
|
||||
int n_eval = (int) N - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
||||
MyModel * mymodel = (MyModel* )model;
|
||||
llama_context * ctx;
|
||||
ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_past = mymodel->n_past;
|
||||
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
n_past += n_eval;
|
||||
}
|
||||
mymodel->n_past = n_past;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool eval_id(struct MyModel* mymodel, int id) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(mymodel, tokens);
|
||||
}
|
||||
|
||||
bool eval_string(struct MyModel * mymodel,const char* str){
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
||||
eval_tokens(mymodel, embd_inp);
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_token sampling_id(struct MyModel* mymodel) {
|
||||
llama_context* ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
// const float repeat_penalty = params.repeat_penalty;
|
||||
// const float alpha_presence = params.presence_penalty;
|
||||
// const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
// const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temp(ctx, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx, &candidates_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
const char * sampling(struct MyModel * mymodel) {
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
int id = sampling_id(mymodel);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(ctx)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx, id);
|
||||
}
|
||||
eval_id(mymodel, id);
|
||||
return ret.c_str();
|
||||
}
|
||||
|
||||
}
|
||||
35
examples/embd-input/embd-input-test.cpp
Normal file
35
examples/embd-input/embd-input-test.cpp
Normal file
@@ -0,0 +1,35 @@
|
||||
#include "embd-input.h"
|
||||
#include <stdlib.h>
|
||||
#include <random>
|
||||
#include <string.h>
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
||||
auto mymodel = create_mymodel(argc, argv);
|
||||
int N = 10;
|
||||
int max_tgt_len = 500;
|
||||
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
|
||||
|
||||
// add random float embd to test evaluation
|
||||
float * data = new float[N*n_embd];
|
||||
std::default_random_engine e;
|
||||
std::uniform_real_distribution<float> u(0,1);
|
||||
for (int i=0;i<N*n_embd;i++) {
|
||||
data[i] = u(e);
|
||||
}
|
||||
|
||||
eval_string(mymodel, "user: what is the color of the flag of UN?");
|
||||
eval_float(mymodel, data, N);
|
||||
eval_string(mymodel, "assistant:");
|
||||
eval_string(mymodel, mymodel->params.prompt.c_str());
|
||||
const char* tmp;
|
||||
for (int i=0; i<max_tgt_len; i++) {
|
||||
tmp = sampling(mymodel);
|
||||
if (strcmp(tmp, "</s>")==0) break;
|
||||
printf("%s", tmp);
|
||||
fflush(stdout);
|
||||
}
|
||||
printf("\n");
|
||||
free_mymodel(mymodel);
|
||||
return 0;
|
||||
}
|
||||
27
examples/embd-input/embd-input.h
Normal file
27
examples/embd-input/embd-input.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#ifndef _EMBD_INPUT_H_
|
||||
#define _EMBD_INPUT_H_ 1
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
extern "C" {
|
||||
|
||||
typedef struct MyModel {
|
||||
llama_context* ctx;
|
||||
gpt_params params;
|
||||
int n_past = 0;
|
||||
} MyModel;
|
||||
|
||||
struct MyModel* create_mymodel(int argc, char ** argv);
|
||||
|
||||
bool eval_float(void* model, float* input, int N);
|
||||
bool eval_tokens(void* model, std::vector<llama_token> tokens);
|
||||
bool eval_id(struct MyModel* mymodel, int id);
|
||||
bool eval_string(struct MyModel* mymodel, const char* str);
|
||||
const char * sampling(struct MyModel* mymodel);
|
||||
llama_token sampling_id(struct MyModel* mymodel);
|
||||
void free_mymodel(struct MyModel* mymodel);
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
72
examples/embd-input/embd_input.py
Executable file
72
examples/embd-input/embd_input.py
Executable file
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python3
|
||||
import ctypes
|
||||
from ctypes import cdll, c_char_p, c_void_p, POINTER, c_float, c_int
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
libc = cdll.LoadLibrary("./libembdinput.so")
|
||||
libc.sampling.restype=c_char_p
|
||||
libc.create_mymodel.restype=c_void_p
|
||||
libc.eval_string.argtypes=[c_void_p, c_char_p]
|
||||
libc.sampling.argtypes=[c_void_p]
|
||||
libc.eval_float.argtypes=[c_void_p, POINTER(c_float), c_int]
|
||||
|
||||
|
||||
class MyModel:
|
||||
def __init__(self, args):
|
||||
argc = len(args)
|
||||
c_str = [c_char_p(i.encode()) for i in args]
|
||||
args_c = (c_char_p * argc)(*c_str)
|
||||
self.model = c_void_p(libc.create_mymodel(argc, args_c))
|
||||
self.max_tgt_len = 512
|
||||
self.print_string_eval = True
|
||||
|
||||
def __del__(self):
|
||||
libc.free_mymodel(self.model)
|
||||
|
||||
def eval_float(self, x):
|
||||
libc.eval_float(self.model, x.astype(np.float32).ctypes.data_as(POINTER(c_float)), x.shape[1])
|
||||
|
||||
def eval_string(self, x):
|
||||
libc.eval_string(self.model, x.encode()) # c_char_p(x.encode()))
|
||||
if self.print_string_eval:
|
||||
print(x)
|
||||
|
||||
def eval_token(self, x):
|
||||
libc.eval_id(self.model, x)
|
||||
|
||||
def sampling(self):
|
||||
s = libc.sampling(self.model)
|
||||
return s
|
||||
|
||||
def stream_generate(self, end="</s>"):
|
||||
ret = b""
|
||||
end = end.encode()
|
||||
for _ in range(self.max_tgt_len):
|
||||
tmp = self.sampling()
|
||||
ret += tmp
|
||||
yield tmp
|
||||
if ret.endswith(end):
|
||||
break
|
||||
|
||||
def generate_with_print(self, end="</s>"):
|
||||
ret = b""
|
||||
for i in self.stream_generate(end=end):
|
||||
ret += i
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
||||
print("")
|
||||
return ret.decode(errors="replace")
|
||||
|
||||
|
||||
def generate(self, end="</s>"):
|
||||
text = b"".join(self.stream_generate(end=end))
|
||||
return text.decode(errors="replace")
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = MyModel(["main", "--model", "../llama.cpp/models/ggml-vic13b-q4_1.bin", "-c", "2048"])
|
||||
model.eval_string("""user: what is the color of the flag of UN?""")
|
||||
x = np.random.random((5120,10))# , dtype=np.float32)
|
||||
model.eval_float(x)
|
||||
model.eval_string("""assistant:""")
|
||||
for i in model.generate():
|
||||
print(i.decode(errors="replace"), end="", flush=True)
|
||||
71
examples/embd-input/llava.py
Executable file
71
examples/embd-input/llava.py
Executable file
@@ -0,0 +1,71 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor
|
||||
from PIL import Image
|
||||
|
||||
# model parameters from 'liuhaotian/LLaVA-13b-delta-v1-1'
|
||||
vision_tower = "openai/clip-vit-large-patch14"
|
||||
select_hidden_state_layer = -2
|
||||
# (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
image_token_len = (224//14)**2
|
||||
|
||||
class Llava:
|
||||
def __init__(self, args):
|
||||
self.image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||
self.vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||
self.mm_projector = nn.Linear(1024, 5120)
|
||||
self.model = MyModel(["main", *args])
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)
|
||||
self.mm_projector.load_state_dict({
|
||||
"weight": state["model.mm_projector.weight"],
|
||||
"bias": state["model.mm_projector.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
image_forward_out = self.vision_tower(embd_image.unsqueeze(0), output_hidden_states=True)
|
||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||
image_feature = select_hidden_state[:, 1:]
|
||||
embd_image = self.mm_projector(image_feature)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("user: ")
|
||||
self.model.eval_token(32003-2) # im_start
|
||||
self.model.eval_float(embd_image.T)
|
||||
for i in range(image_token_len-embd_image.shape[0]):
|
||||
self.model.eval_token(32003-3) # im_patch
|
||||
self.model.eval_token(32003-1) # im_end
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\nassistant: ")
|
||||
return self.model.generate_with_print()
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
# model form liuhaotian/LLaVA-13b-delta-v1-1
|
||||
a = Llava(["--model", "./models/ggml-llava-13b-v1.1.bin", "-c", "2048"])
|
||||
# Extract from https://huggingface.co/liuhaotian/LLaVA-13b-delta-v1-1/blob/main/pytorch_model-00003-of-00003.bin.
|
||||
# Also here can use pytorch_model-00003-of-00003.bin directly.
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"llava_projection.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
respose
|
||||
a.chat("what is the color of it?")
|
||||
|
||||
|
||||
|
||||
129
examples/embd-input/minigpt4.py
Executable file
129
examples/embd-input/minigpt4.py
Executable file
@@ -0,0 +1,129 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
minigpt4_path = os.path.join(os.path.dirname(__file__), "MiniGPT-4")
|
||||
sys.path.insert(0, minigpt4_path)
|
||||
from minigpt4.models.blip2 import Blip2Base
|
||||
from minigpt4.processors.blip_processors import Blip2ImageEvalProcessor
|
||||
|
||||
|
||||
class MiniGPT4(Blip2Base):
|
||||
"""
|
||||
MiniGPT4 model from https://github.com/Vision-CAIR/MiniGPT-4
|
||||
"""
|
||||
def __init__(self,
|
||||
args,
|
||||
vit_model="eva_clip_g",
|
||||
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
||||
img_size=224,
|
||||
drop_path_rate=0,
|
||||
use_grad_checkpoint=False,
|
||||
vit_precision="fp32",
|
||||
freeze_vit=True,
|
||||
freeze_qformer=True,
|
||||
num_query_token=32,
|
||||
llama_model="",
|
||||
prompt_path="",
|
||||
prompt_template="",
|
||||
max_txt_len=32,
|
||||
end_sym='\n',
|
||||
low_resource=False, # use 8 bit and put vit in cpu
|
||||
device_8bit=0
|
||||
):
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
self.low_resource = low_resource
|
||||
self.preprocessor = Blip2ImageEvalProcessor(img_size)
|
||||
|
||||
print('Loading VIT')
|
||||
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
||||
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
|
||||
)
|
||||
print('Loading VIT Done')
|
||||
print('Loading Q-Former')
|
||||
self.Qformer, self.query_tokens = self.init_Qformer(
|
||||
num_query_token, self.visual_encoder.num_features
|
||||
)
|
||||
self.Qformer.cls = None
|
||||
self.Qformer.bert.embeddings.word_embeddings = None
|
||||
self.Qformer.bert.embeddings.position_embeddings = None
|
||||
for layer in self.Qformer.bert.encoder.layer:
|
||||
layer.output = None
|
||||
layer.intermediate = None
|
||||
self.load_from_pretrained(url_or_filename=q_former_model)
|
||||
print('Loading Q-Former Done')
|
||||
self.llama_proj = nn.Linear(
|
||||
self.Qformer.config.hidden_size, 5120 # self.llama_model.config.hidden_size
|
||||
)
|
||||
self.max_txt_len = max_txt_len
|
||||
self.end_sym = end_sym
|
||||
self.model = MyModel(["main", *args])
|
||||
# system prompt
|
||||
self.model.eval_string("Give the following image: <Img>ImageContent</Img>. "
|
||||
"You will be able to see the image once I provide it to you. Please answer my questions."
|
||||
"###")
|
||||
|
||||
def encode_img(self, image):
|
||||
image = self.preprocessor(image)
|
||||
image = image.unsqueeze(0)
|
||||
device = image.device
|
||||
if self.low_resource:
|
||||
self.vit_to_cpu()
|
||||
image = image.to("cpu")
|
||||
|
||||
with self.maybe_autocast():
|
||||
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
||||
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
||||
|
||||
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
||||
query_output = self.Qformer.bert(
|
||||
query_embeds=query_tokens,
|
||||
encoder_hidden_states=image_embeds,
|
||||
encoder_attention_mask=image_atts,
|
||||
return_dict=True,
|
||||
)
|
||||
|
||||
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
||||
# atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
||||
return inputs_llama
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path)["model"]
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def chat(self, question):
|
||||
self.model.eval_string("Human: ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
def chat_with_image(self, image, question):
|
||||
with torch.no_grad():
|
||||
embd_image = self.encode_img(image)
|
||||
embd_image = embd_image.cpu().numpy()[0]
|
||||
self.model.eval_string("Human: <Img>")
|
||||
self.model.eval_float(embd_image.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
return self.model.generate_with_print(end="###")
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = MiniGPT4(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048"])
|
||||
a.load_projection(os.path.join(
|
||||
os.path.dirname(__file__) ,
|
||||
"pretrained_minigpt4.pth"))
|
||||
respose = a.chat_with_image(
|
||||
Image.open("./media/llama1-logo.png").convert('RGB'),
|
||||
"what is the text in the picture?")
|
||||
a.chat("what is the color of it?")
|
||||
99
examples/embd-input/panda_gpt.py
Executable file
99
examples/embd-input/panda_gpt.py
Executable file
@@ -0,0 +1,99 @@
|
||||
#!/usr/bin/env python3
|
||||
import sys
|
||||
import os
|
||||
sys.path.insert(0, os.path.dirname(__file__))
|
||||
from embd_input import MyModel
|
||||
import numpy as np
|
||||
from torch import nn
|
||||
import torch
|
||||
|
||||
# use PandaGPT path
|
||||
panda_gpt_path = os.path.join(os.path.dirname(__file__), "PandaGPT")
|
||||
imagebind_ckpt_path = "./models/panda_gpt/"
|
||||
|
||||
sys.path.insert(0, os.path.join(panda_gpt_path,"code","model"))
|
||||
from ImageBind.models import imagebind_model
|
||||
from ImageBind import data
|
||||
|
||||
ModalityType = imagebind_model.ModalityType
|
||||
max_tgt_len = 400
|
||||
|
||||
class PandaGPT:
|
||||
def __init__(self, args):
|
||||
self.visual_encoder,_ = imagebind_model.imagebind_huge(pretrained=True, store_path=imagebind_ckpt_path)
|
||||
self.visual_encoder.eval()
|
||||
self.llama_proj = nn.Linear(1024, 5120) # self.visual_hidden_size, 5120)
|
||||
self.max_tgt_len = max_tgt_len
|
||||
self.model = MyModel(["main", *args])
|
||||
self.generated_text = ""
|
||||
self.device = "cpu"
|
||||
|
||||
def load_projection(self, path):
|
||||
state = torch.load(path, map_location="cpu")
|
||||
self.llama_proj.load_state_dict({
|
||||
"weight": state["llama_proj.weight"],
|
||||
"bias": state["llama_proj.bias"]})
|
||||
|
||||
def eval_inputs(self, inputs):
|
||||
self.model.eval_string("<Img>")
|
||||
embds = self.extract_multimoal_feature(inputs)
|
||||
for i in embds:
|
||||
self.model.eval_float(i.T)
|
||||
self.model.eval_string("</Img> ")
|
||||
|
||||
def chat(self, question):
|
||||
return self.chat_with_image(None, question)
|
||||
|
||||
def chat_with_image(self, inputs, question):
|
||||
if self.generated_text == "":
|
||||
self.model.eval_string("###")
|
||||
self.model.eval_string(" Human: ")
|
||||
if inputs:
|
||||
self.eval_inputs(inputs)
|
||||
self.model.eval_string(question)
|
||||
self.model.eval_string("\n### Assistant:")
|
||||
ret = self.model.generate_with_print(end="###")
|
||||
self.generated_text += ret
|
||||
return ret
|
||||
|
||||
def extract_multimoal_feature(self, inputs):
|
||||
features = []
|
||||
for key in ["image", "audio", "video", "thermal"]:
|
||||
if key + "_paths" in inputs:
|
||||
embeds = self.encode_data(key, inputs[key+"_paths"])
|
||||
features.append(embeds)
|
||||
return features
|
||||
|
||||
def encode_data(self, data_type, data_paths):
|
||||
|
||||
type_map = {
|
||||
"image": ModalityType.VISION,
|
||||
"audio": ModalityType.AUDIO,
|
||||
"video": ModalityType.VISION,
|
||||
"thermal": ModalityType.THERMAL,
|
||||
}
|
||||
load_map = {
|
||||
"image": data.load_and_transform_vision_data,
|
||||
"audio": data.load_and_transform_audio_data,
|
||||
"video": data.load_and_transform_video_data,
|
||||
"thermal": data.load_and_transform_thermal_data
|
||||
}
|
||||
|
||||
load_function = load_map[data_type]
|
||||
key = type_map[data_type]
|
||||
|
||||
inputs = {key: load_function(data_paths, self.device)}
|
||||
with torch.no_grad():
|
||||
embeddings = self.visual_encoder(inputs)
|
||||
embeds = embeddings[key]
|
||||
embeds = self.llama_proj(embeds).cpu().numpy()
|
||||
return embeds
|
||||
|
||||
|
||||
if __name__=="__main__":
|
||||
a = PandaGPT(["--model", "./models/ggml-vicuna-13b-v0-q4_1.bin", "-c", "2048", "--lora", "./models/panda_gpt/ggml-adapter-model.bin","--temp", "0"])
|
||||
a.load_projection("./models/panda_gpt/adapter_model.bin")
|
||||
a.chat_with_image(
|
||||
{"image_paths": ["./media/llama1-logo.png"]},
|
||||
"what is the text in the picture? 'llama' or 'lambda'?")
|
||||
a.chat("what is the color of it?")
|
||||
@@ -1,5 +1,6 @@
|
||||
set(TARGET embedding)
|
||||
add_executable(${TARGET} embedding.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
|
||||
@@ -1,3 +1,21 @@
|
||||
# embedding
|
||||
# llama.cpp/example/embedding
|
||||
|
||||
TODO
|
||||
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
|
||||
|
||||
## Quick Start
|
||||
|
||||
To get started right away, run the following command, making sure to use the correct path for the model you have:
|
||||
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
|
||||
```bash
|
||||
./embedding -m ./path/to/model --log-disable -p "Hello World!" 2>/dev/null
|
||||
```
|
||||
|
||||
### Windows:
|
||||
|
||||
```powershell
|
||||
embedding.exe -m ./path/to/model --log-disable -p "Hello World!" 2>$null
|
||||
```
|
||||
|
||||
The above command will output space-separated float values.
|
||||
|
||||
@@ -1,59 +1,63 @@
|
||||
#include "build-info.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "build-info.h"
|
||||
|
||||
#include <ctime>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (gpt_params_parse(argc, argv, params) == false) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
params.embedding = true;
|
||||
|
||||
if (params.n_ctx > 2048) {
|
||||
fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
|
||||
"expect poor results\n", __func__, params.n_ctx);
|
||||
}
|
||||
print_build_info();
|
||||
|
||||
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
||||
if (params.seed < 0) {
|
||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||
params.seed = time(NULL);
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
||||
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
||||
|
||||
std::mt19937 rng(params.seed);
|
||||
if (params.random_prompt) {
|
||||
params.prompt = gpt_random_prompt(rng);
|
||||
}
|
||||
|
||||
llama_init_backend();
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
// load the model
|
||||
ctx = llama_init_from_gpt_params(params);
|
||||
if (ctx == NULL) {
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
// Add a space in front of the first character to match OG llama tokenizer behavior
|
||||
params.prompt.insert(0, 1, ' ');
|
||||
|
||||
// tokenize the prompt
|
||||
auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
@@ -62,30 +66,40 @@ int main(int argc, char ** argv) {
|
||||
fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
|
||||
fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
if (params.embedding){
|
||||
if (embd_inp.size() > 0) {
|
||||
if (llama_eval(ctx, embd_inp.data(), embd_inp.size(), n_past, params.n_threads)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
}
|
||||
printf("\n");
|
||||
if (embd_inp.size() > (size_t)n_ctx) {
|
||||
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
||||
__func__, embd_inp.size(), n_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
while (!embd_inp.empty()) {
|
||||
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
||||
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
n_past += n_tokens;
|
||||
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const auto * embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
llama_print_timings(ctx);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
5
examples/export-lora/CMakeLists.txt
Normal file
5
examples/export-lora/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET export-lora)
|
||||
add_executable(${TARGET} export-lora.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
26
examples/export-lora/README.md
Normal file
26
examples/export-lora/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# export-lora
|
||||
|
||||
Apply LORA adapters to base model and export the resulting model.
|
||||
|
||||
```
|
||||
usage: export-lora [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-m FNAME, --model-base FNAME model path from which to load base model (default '')
|
||||
-o FNAME, --model-out FNAME path to save exported model (default '')
|
||||
-l FNAME, --lora FNAME apply LoRA adapter
|
||||
-s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
./bin/export-lora \
|
||||
-m open-llama-3b-v2-q8_0.gguf \
|
||||
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
||||
-l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
|
||||
```
|
||||
|
||||
Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters.
|
||||
474
examples/export-lora/export-lora.cpp
Normal file
474
examples/export-lora/export-lora.cpp
Normal file
@@ -0,0 +1,474 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct lora_info {
|
||||
std::string filename;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct export_lora_params {
|
||||
std::string fn_model_base;
|
||||
std::string fn_model_out;
|
||||
std::vector<struct lora_info> lora;
|
||||
int n_threads;
|
||||
};
|
||||
|
||||
struct lora_data {
|
||||
struct lora_info info;
|
||||
std::vector<uint8_t> data;
|
||||
struct ggml_context * ctx;
|
||||
|
||||
uint32_t lora_r;
|
||||
uint32_t lora_alpha;
|
||||
};
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
} else {
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
die_fmt("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
die_fmt("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
bool eof() {
|
||||
return tell() >= size;
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static struct export_lora_params get_default_export_lora_params() {
|
||||
struct export_lora_params result;
|
||||
result.fn_model_base = "";
|
||||
result.fn_model_out = "";
|
||||
result.n_threads = GGML_DEFAULT_N_THREADS;
|
||||
return result;
|
||||
}
|
||||
|
||||
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
||||
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
||||
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
||||
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
||||
}
|
||||
|
||||
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
struct export_lora_params default_params = get_default_export_lora_params();
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "-m" || arg == "--model-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_base = argv[i];
|
||||
} else if (arg == "-o" || arg == "--model-out") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_out = argv[i];
|
||||
} else if (arg == "-l" || arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
lora.scale = 1.0f;
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-s" || arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
lora.scale = std::stof(argv[i]);
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_threads = std::stoi(argv[i]);
|
||||
if (params->n_threads <= 0) {
|
||||
params->n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (params->fn_model_base == default_params.fn_model_base) {
|
||||
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (params->fn_model_out == default_params.fn_model_out) {
|
||||
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void free_lora(struct lora_data * lora) {
|
||||
if (lora->ctx != NULL) {
|
||||
ggml_free(lora->ctx);
|
||||
}
|
||||
delete lora;
|
||||
}
|
||||
|
||||
static struct lora_data * load_lora(struct lora_info * info) {
|
||||
struct lora_data * result = new struct lora_data;
|
||||
result->info = *info;
|
||||
result->ctx = NULL;
|
||||
result->lora_r = 1;
|
||||
result->lora_alpha = 1;
|
||||
|
||||
struct llama_file file(info->filename.c_str(), "rb");
|
||||
if (file.fp == NULL) {
|
||||
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
||||
info->filename.c_str());
|
||||
free_lora(result);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_init_params params_ggml;
|
||||
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
||||
params_ggml.mem_buffer = NULL;
|
||||
params_ggml.no_alloc = true;
|
||||
result->ctx = ggml_init(params_ggml);
|
||||
|
||||
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||||
uint32_t magic = file.read_u32();
|
||||
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
||||
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||||
}
|
||||
uint32_t version = file.read_u32();
|
||||
if (version != 1) {
|
||||
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
||||
}
|
||||
result->lora_r = file.read_u32();
|
||||
result->lora_alpha = file.read_u32();
|
||||
// read tensor infos from file
|
||||
std::vector<char> name_buf;
|
||||
std::vector<struct ggml_tensor *> tensors;
|
||||
std::vector<size_t> tensors_offset;
|
||||
size_t total_nbytes_pad = 0;
|
||||
while(!file.eof()) {
|
||||
int64_t ne[4] = {1,1,1,1};
|
||||
uint32_t n_dims = file.read_u32();
|
||||
uint32_t namelen = file.read_u32();
|
||||
uint32_t type = file.read_u32();
|
||||
for (uint32_t k = 0; k < n_dims; ++k) {
|
||||
ne[k] = (int64_t)file.read_u32();
|
||||
}
|
||||
name_buf.clear();
|
||||
name_buf.resize(namelen + 1, '\0');
|
||||
file.read_raw(name_buf.data(), namelen);
|
||||
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
||||
size_t offset = file.tell();
|
||||
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
||||
ggml_set_name(tensor, name_buf.data());
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
total_nbytes_pad += nbytes_pad;
|
||||
tensors.push_back(tensor);
|
||||
tensors_offset.push_back(offset);
|
||||
file.seek(nbytes, SEEK_CUR);
|
||||
}
|
||||
// read tensor data
|
||||
result->data.resize(total_nbytes_pad);
|
||||
size_t data_offset = 0;
|
||||
for (size_t i = 0; i < tensors.size(); ++i) {
|
||||
struct ggml_tensor * tensor = tensors[i];
|
||||
size_t offset = tensors_offset[i];
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
file.seek(offset, SEEK_SET);
|
||||
tensor->data = result->data.data() + data_offset;
|
||||
file.read_raw(tensor->data, nbytes);
|
||||
data_offset += nbytes_pad;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static struct ggml_cgraph * build_graph_lora(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor,
|
||||
struct ggml_tensor * lora_a,
|
||||
struct ggml_tensor * lora_b,
|
||||
float scaling
|
||||
) {
|
||||
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||
if (scaling != 1.0f) {
|
||||
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||||
}
|
||||
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand (gf, res);
|
||||
return gf;
|
||||
}
|
||||
|
||||
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
||||
if (lora->ctx == NULL) {
|
||||
return false;
|
||||
}
|
||||
std::string name = ggml_get_name(tensor);
|
||||
std::string name_a = name + std::string(".loraA");
|
||||
std::string name_b = name + std::string(".loraB");
|
||||
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
||||
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
||||
if (lora_a == NULL || lora_b == NULL) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
|
||||
static std::vector<uint8_t> data_compute;
|
||||
data_compute.resize(alloc_size + tensor_alignment);
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||
static std::vector<uint8_t> data_work;
|
||||
data_work.resize(cplan.work_size);
|
||||
cplan.work_data = data_work.data();
|
||||
|
||||
ggml_graph_compute(gf, &cplan);
|
||||
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void export_lora(struct export_lora_params * params) {
|
||||
// load all loras
|
||||
std::vector<struct lora_data *> loras;
|
||||
for (size_t i = 0; i < params->lora.size(); ++i) {
|
||||
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
||||
if (lora != NULL) {
|
||||
loras.push_back(lora);
|
||||
}
|
||||
}
|
||||
if (loras.size() == 0) {
|
||||
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
||||
}
|
||||
|
||||
// open input file
|
||||
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
||||
if (!fin.fp) {
|
||||
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
||||
}
|
||||
|
||||
// open base model gguf, read tensors without their data
|
||||
struct ggml_context * ctx_in;
|
||||
struct gguf_init_params params_gguf;
|
||||
params_gguf.no_alloc = true;
|
||||
params_gguf.ctx = &ctx_in;
|
||||
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
||||
|
||||
// create new gguf
|
||||
struct gguf_context * gguf_out = gguf_init_empty();
|
||||
|
||||
// copy meta data from base model: kv and tensors
|
||||
gguf_set_kv(gguf_out, gguf_in);
|
||||
int n_tensors = gguf_get_n_tensors(gguf_in);
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
gguf_add_tensor(gguf_out, tensor);
|
||||
}
|
||||
|
||||
// create output file
|
||||
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
||||
if (!fout.fp) {
|
||||
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
||||
}
|
||||
|
||||
// write gguf meta data
|
||||
std::vector<uint8_t> meta;
|
||||
meta.resize(gguf_get_meta_size(gguf_out));
|
||||
gguf_get_meta_data(gguf_out, meta.data());
|
||||
fout.write_raw(meta.data(), meta.size());
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
std::vector<uint8_t> padding;
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
|
||||
// read tensor data
|
||||
data.resize(ggml_nbytes(tensor));
|
||||
tensor->data = data.data();
|
||||
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
||||
fin.seek(offset + meta.size(), SEEK_SET);
|
||||
fin.read_raw(data.data(), data.size());
|
||||
|
||||
// apply all loras
|
||||
for (size_t k = 0; k < loras.size(); ++k) {
|
||||
apply_lora(tensor, loras[k], params->n_threads);
|
||||
}
|
||||
|
||||
// write tensor data + padding
|
||||
padding.clear();
|
||||
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
||||
|
||||
GGML_ASSERT(fout.tell() == offset + meta.size());
|
||||
// fout.seek(offset + meta.size(), SEEK_SET);
|
||||
fout.write_raw(data.data(), data.size());
|
||||
fout.write_raw(padding.data(), padding.size());
|
||||
|
||||
if (i % 2 == 0) {
|
||||
printf(".");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// close gguf
|
||||
gguf_free(gguf_out);
|
||||
gguf_free(gguf_in);
|
||||
|
||||
// free loras
|
||||
for (size_t i = 0; i < loras.size(); ++i) {
|
||||
free_lora(loras[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct export_lora_params params = get_default_export_lora_params();
|
||||
|
||||
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
export_lora(¶ms);
|
||||
|
||||
return 0;
|
||||
}
|
||||
5
examples/finetune/CMakeLists.txt
Normal file
5
examples/finetune/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET finetune)
|
||||
add_executable(${TARGET} finetune.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
90
examples/finetune/README.md
Normal file
90
examples/finetune/README.md
Normal file
@@ -0,0 +1,90 @@
|
||||
# finetune
|
||||
|
||||
Basic usage instructions:
|
||||
|
||||
```bash
|
||||
# get training data
|
||||
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
|
||||
|
||||
# finetune LORA adapter
|
||||
./bin/finetune \
|
||||
--model-base open-llama-3b-v2-q8_0.gguf \
|
||||
--checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
|
||||
--checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
|
||||
--lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
|
||||
--train-data "shakespeare.txt" \
|
||||
--save-every 10 \
|
||||
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
|
||||
--use-checkpointing
|
||||
|
||||
# predict
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
```
|
||||
|
||||
Finetune output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
|
||||
So in above example after 10 iterations these files will be written:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
After 10 more iterations:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
|
||||
|
||||
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
|
||||
These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above.
|
||||
|
||||
In `main` you can also load multiple LORA adapters, which will then be mixed together.
|
||||
|
||||
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
|
||||
|
||||
```bash
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
|
||||
--lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
|
||||
```
|
||||
|
||||
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
|
||||
|
||||
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
|
||||
|
||||
```bash
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
|
||||
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
|
||||
```
|
||||
|
||||
The scale numbers don't need to add up to one, and you can also use numbers greater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
|
||||
|
||||
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||
|
||||
The default LORA rank can be specified with `--lora-r N`.
|
||||
The LORA rank can be configured for each model tensor type separately with these command line options:
|
||||
|
||||
```bash
|
||||
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
|
||||
--rank-att-norm N LORA rank for attention norm tensor (default 1)
|
||||
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
|
||||
--rank-out-norm N LORA rank for output norm tensor (default 1)
|
||||
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
|
||||
--rank-out N LORA rank for output tensor (default 4)
|
||||
--rank-wq N LORA rank for wq tensor (default 4)
|
||||
--rank-wk N LORA rank for wk tensor (default 4)
|
||||
--rank-wv N LORA rank for wv tensor (default 4)
|
||||
--rank-wo N LORA rank for wo tensor (default 4)
|
||||
--rank-w1 N LORA rank for w1 tensor (default 4)
|
||||
--rank-w2 N LORA rank for w2 tensor (default 4)
|
||||
--rank-w3 N LORA rank for w3 tensor (default 4)
|
||||
```
|
||||
|
||||
The LORA rank of 'norm' tensors should always be 1.
|
||||
|
||||
To see all available options use `finetune --help`.
|
||||
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
@@ -0,0 +1,489 @@
|
||||
#!/usr/bin/env python3
|
||||
# finetune checkpoint --> gguf conversion
|
||||
|
||||
import argparse
|
||||
import gguf
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
# gguf constants
|
||||
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
||||
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
||||
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
||||
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
||||
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
||||
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
||||
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
||||
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||
|
||||
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||
LLM_KV_TRAINING_TYPE = "training.type"
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
|
||||
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, dtype='f', ne=None):
|
||||
if ne is None:
|
||||
ne = []
|
||||
self.dtype = dtype
|
||||
self.ne = ne
|
||||
self.nbytes = 0
|
||||
if self.dtype == 'f':
|
||||
if len(self.ne) == 0:
|
||||
self.nbytes = 0
|
||||
else:
|
||||
self.nbytes = int(np.product(self.ne)) * 4
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
def load(self, data, offset):
|
||||
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
assert(nd == len(self.ne))
|
||||
ne = []
|
||||
for d in range(nd):
|
||||
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
ne.append(n)
|
||||
|
||||
if tuple(ne) != tuple(self.ne):
|
||||
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
|
||||
|
||||
if self.dtype == 'f':
|
||||
assert(dtype == 0)
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
||||
# 32-byte alignment
|
||||
offset += (0 - offset) & 31
|
||||
self.data = data[offset:offset+self.nbytes]
|
||||
offset += self.nbytes
|
||||
return offset
|
||||
|
||||
def max_storage_size(self):
|
||||
result = 0
|
||||
result += 4 # nd
|
||||
result += 4 # namelen
|
||||
result += 4 # dtype
|
||||
result += len(self.ne)*8 # ne
|
||||
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
||||
result += 31 # 32-byte alignment
|
||||
result += self.nbytes
|
||||
return result
|
||||
|
||||
def save_gguf(self, gguf_writer, name):
|
||||
gguf_writer.add_tensor(
|
||||
name=name,
|
||||
tensor=self.data,
|
||||
raw_shape=np.array(list(reversed(self.ne))),
|
||||
raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||
|
||||
class OptimizationContext:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
||||
offset += 4
|
||||
|
||||
if self.version != 1:
|
||||
raise ValueError('Invalid version of optimization context in checkpoint file')
|
||||
|
||||
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||
|
||||
self.adam_m = Tensor('f', [self.nx])
|
||||
self.adam_v = Tensor('f', [self.nx])
|
||||
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
|
||||
self.lbfgs_x = Tensor('f', [self.nx])
|
||||
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||
self.lbfgs_g = Tensor('f', [self.nx])
|
||||
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||
self.lbfgs_d = Tensor('f', [self.nx])
|
||||
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
|
||||
# forgot to save type in version 1:
|
||||
# guess self.type from number of remaining bytes
|
||||
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
||||
[self.adam_m, self.adam_v]
|
||||
+([self.adam_pf] if (self.past > 0) else [])])
|
||||
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
||||
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
||||
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
||||
self.lbfgs_lmal, self.lbfgs_lmys,
|
||||
self.lbfgs_lms, self.lbfgs_lmy]
|
||||
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
||||
# due to alignment padding the size might not by exact
|
||||
# but the difference in size for both types is significant,
|
||||
# so we can just use whichever is closest
|
||||
remaining = len(data) - offset
|
||||
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
||||
self.type = 0
|
||||
else:
|
||||
self.type = 1
|
||||
|
||||
if self.type == 0:
|
||||
offset = self.adam_m.load(data, offset)
|
||||
offset = self.adam_v.load(data, offset)
|
||||
offset = self.adam_pf.load(data,offset)
|
||||
|
||||
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
elif self.type == 1:
|
||||
offset = self.lbfgs_x.load(data, offset)
|
||||
offset = self.lbfgs_xp.load(data, offset)
|
||||
offset = self.lbfgs_g.load(data, offset)
|
||||
offset = self.lbfgs_gp.load(data, offset)
|
||||
offset = self.lbfgs_d.load(data, offset)
|
||||
offset = self.lbfgs_pf.load(data, offset)
|
||||
offset = self.lbfgs_lmal.load(data, offset)
|
||||
offset = self.lbfgs_lmys.load(data, offset)
|
||||
offset = self.lbfgs_lms.load(data, offset)
|
||||
offset = self.lbfgs_lmy.load(data, offset)
|
||||
|
||||
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid optimizer type '{self.type}'")
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
||||
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
||||
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
||||
|
||||
if self.type == 0:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
||||
|
||||
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
||||
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
||||
if self.past > 0:
|
||||
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
||||
|
||||
elif self.type == 1:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
||||
|
||||
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
||||
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
||||
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
||||
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
||||
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
||||
if self.past > 0:
|
||||
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
||||
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
||||
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
||||
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
||||
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
||||
else:
|
||||
raise ValueError('Unknown optimizer type')
|
||||
|
||||
class LoraParams:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
|
||||
|
||||
class ModelParams:
|
||||
def __init__(self, n_ff = None):
|
||||
self.n_ff = n_ff
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def get_n_ff(self):
|
||||
if self.n_ff is None:
|
||||
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
||||
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
||||
else:
|
||||
return self.n_ff
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
# self.n_vocab not saved
|
||||
gguf_writer.add_embedding_length(self.n_embd)
|
||||
gguf_writer.add_head_count(self.n_head)
|
||||
gguf_writer.add_block_count(self.n_layer)
|
||||
gguf_writer.add_rope_dimension_count(self.n_rot)
|
||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||
|
||||
def tensor_name(key, bid=None, suffix=".weight"):
|
||||
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
|
||||
|
||||
class Layer:
|
||||
def __init__(self, params, lora_params, bid):
|
||||
self.bid = bid
|
||||
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
|
||||
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
|
||||
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
|
||||
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
|
||||
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
|
||||
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
|
||||
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
|
||||
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
|
||||
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
|
||||
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.att_norm_a.load(data, offset)
|
||||
offset = self.att_norm_b.load(data, offset)
|
||||
offset = self.wq_a.load(data, offset)
|
||||
offset = self.wq_b.load(data, offset)
|
||||
offset = self.wk_a.load(data, offset)
|
||||
offset = self.wk_b.load(data, offset)
|
||||
offset = self.wv_a.load(data, offset)
|
||||
offset = self.wv_b.load(data, offset)
|
||||
offset = self.wo_a.load(data, offset)
|
||||
offset = self.wo_b.load(data, offset)
|
||||
offset = self.ffn_norm_a.load(data, offset)
|
||||
offset = self.ffn_norm_b.load(data, offset)
|
||||
offset = self.w1_a.load(data, offset)
|
||||
offset = self.w1_b.load(data, offset)
|
||||
offset = self.w2_a.load(data, offset)
|
||||
offset = self.w2_b.load(data, offset)
|
||||
offset = self.w3_a.load(data, offset)
|
||||
offset = self.w3_b.load(data, offset)
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
|
||||
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
|
||||
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
|
||||
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
|
||||
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
|
||||
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
|
||||
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
|
||||
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
|
||||
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
|
||||
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
|
||||
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
|
||||
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
|
||||
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
|
||||
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
|
||||
|
||||
class LoraModel:
|
||||
def __init__(self, n_ff = None):
|
||||
self.params = ModelParams(n_ff = n_ff)
|
||||
self.lora_params = LoraParams()
|
||||
self.layers = []
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.params.load(data, offset)
|
||||
offset = self.lora_params.load(data, offset)
|
||||
|
||||
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
|
||||
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
|
||||
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
|
||||
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
|
||||
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
|
||||
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
|
||||
|
||||
offset = self.tok_embd_a.load(data, offset)
|
||||
offset = self.tok_embd_b.load(data, offset)
|
||||
offset = self.norm_a.load(data, offset)
|
||||
offset = self.norm_b.load(data, offset)
|
||||
offset = self.output_a.load(data, offset)
|
||||
offset = self.output_b.load(data, offset)
|
||||
|
||||
self.layers.clear()
|
||||
for bid in range(self.params.n_layer):
|
||||
layer = Layer(self.params, self.lora_params, bid)
|
||||
offset = layer.load(data, offset)
|
||||
self.layers.append(layer)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.params.save_gguf(gguf_writer)
|
||||
self.lora_params.save_gguf(gguf_writer)
|
||||
|
||||
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
|
||||
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
|
||||
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
|
||||
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
|
||||
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
|
||||
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
|
||||
|
||||
for layer in self.layers:
|
||||
layer.save_gguf(gguf_writer)
|
||||
|
||||
class LoraCheckpoint:
|
||||
def __init__(self, n_ff = None):
|
||||
self.model = LoraModel(n_ff = n_ff)
|
||||
self.opt_ctx = OptimizationContext()
|
||||
|
||||
def load(self, data, offset):
|
||||
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
||||
if magic != b'ggcl':
|
||||
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
|
||||
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
if self.version != 0:
|
||||
raise ValueError('Invalid version of checkpoint file')
|
||||
|
||||
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
offset = self.model.load(data, offset)
|
||||
offset = self.opt_ctx.load(data, offset)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||
self.model.save_gguf(gguf_writer)
|
||||
self.opt_ctx.save_gguf(gguf_writer)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
|
||||
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
|
||||
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(cfg)
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
chk = LoraCheckpoint(n_ff = cfg.ff)
|
||||
offset = 0
|
||||
offset = chk.load(data, offset)
|
||||
# we should have read all available data
|
||||
assert(offset == len(data))
|
||||
|
||||
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||
chk.save_gguf(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
1940
examples/finetune/finetune.cpp
Normal file
1940
examples/finetune/finetune.cpp
Normal file
File diff suppressed because it is too large
Load Diff
5
examples/gguf/CMakeLists.txt
Normal file
5
examples/gguf/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET gguf)
|
||||
add_executable(${TARGET} gguf.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
249
examples/gguf/gguf.cpp
Normal file
249
examples/gguf/gguf.cpp
Normal file
@@ -0,0 +1,249 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
|
||||
template <typename T>
|
||||
static std::string to_string(const T & val) {
|
||||
std::stringstream ss;
|
||||
ss << val;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
static bool gguf_ex_write(const std::string & fname) {
|
||||
struct gguf_context * ctx = gguf_init_empty();
|
||||
|
||||
gguf_set_val_u8 (ctx, "some.parameter.uint8", 0x12);
|
||||
gguf_set_val_i8 (ctx, "some.parameter.int8", -0x13);
|
||||
gguf_set_val_u16 (ctx, "some.parameter.uint16", 0x1234);
|
||||
gguf_set_val_i16 (ctx, "some.parameter.int16", -0x1235);
|
||||
gguf_set_val_u32 (ctx, "some.parameter.uint32", 0x12345678);
|
||||
gguf_set_val_i32 (ctx, "some.parameter.int32", -0x12345679);
|
||||
gguf_set_val_f32 (ctx, "some.parameter.float32", 0.123456789f);
|
||||
gguf_set_val_u64 (ctx, "some.parameter.uint64", 0x123456789abcdef0ull);
|
||||
gguf_set_val_i64 (ctx, "some.parameter.int64", -0x123456789abcdef1ll);
|
||||
gguf_set_val_f64 (ctx, "some.parameter.float64", 0.1234567890123456789);
|
||||
gguf_set_val_bool(ctx, "some.parameter.bool", true);
|
||||
gguf_set_val_str (ctx, "some.parameter.string", "hello world");
|
||||
|
||||
gguf_set_arr_data(ctx, "some.parameter.arr.i16", GGUF_TYPE_INT16, std::vector<int16_t>{ 1, 2, 3, 4, }.data(), 4);
|
||||
gguf_set_arr_data(ctx, "some.parameter.arr.f32", GGUF_TYPE_FLOAT32, std::vector<float>{ 3.145f, 2.718f, 1.414f, }.data(), 3);
|
||||
gguf_set_arr_str (ctx, "some.parameter.arr.str", std::vector<const char *>{ "hello", "world", "!" }.data(), 3);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ 128ull*1024ull*1024ull,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx_data = ggml_init(params);
|
||||
|
||||
const int n_tensors = 10;
|
||||
|
||||
// tensor infos
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const std::string name = "tensor_" + to_string(i);
|
||||
|
||||
int64_t ne[GGML_MAX_DIMS] = { 1 };
|
||||
int32_t n_dims = rand() % GGML_MAX_DIMS + 1;
|
||||
|
||||
for (int j = 0; j < n_dims; ++j) {
|
||||
ne[j] = rand() % 10 + 1;
|
||||
}
|
||||
|
||||
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, GGML_TYPE_F32, n_dims, ne);
|
||||
ggml_set_name(cur, name.c_str());
|
||||
|
||||
{
|
||||
float * data = (float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
data[j] = 100 + i;
|
||||
}
|
||||
}
|
||||
|
||||
gguf_add_tensor(ctx, cur);
|
||||
}
|
||||
|
||||
gguf_write_to_file(ctx, fname.c_str(), false);
|
||||
|
||||
printf("%s: wrote file '%s;\n", __func__, fname.c_str());
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// just read tensor info
|
||||
static bool gguf_ex_read_0(const std::string & fname) {
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ NULL,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
printf("%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// find kv string
|
||||
{
|
||||
const char * findkey = "some.parameter.string";
|
||||
|
||||
const int keyidx = gguf_find_key(ctx, findkey);
|
||||
if (keyidx == -1) {
|
||||
printf("%s: find key: %s not found.\n", __func__, findkey);
|
||||
} else {
|
||||
const char * key_value = gguf_get_val_str(ctx, keyidx);
|
||||
printf("%s: find key: %s found, kv[%d] value = %s\n", __func__, findkey, keyidx, key_value);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// read and create ggml_context containing the tensors and their data
|
||||
static bool gguf_ex_read_1(const std::string & fname) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
|
||||
struct gguf_init_params params = {
|
||||
/*.no_alloc = */ false,
|
||||
/*.ctx = */ &ctx_data,
|
||||
};
|
||||
|
||||
struct gguf_context * ctx = gguf_init_from_file(fname.c_str(), params);
|
||||
|
||||
printf("%s: version: %d\n", __func__, gguf_get_version(ctx));
|
||||
printf("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
|
||||
printf("%s: data offset: %zu\n", __func__, gguf_get_data_offset(ctx));
|
||||
|
||||
// kv
|
||||
{
|
||||
const int n_kv = gguf_get_n_kv(ctx);
|
||||
|
||||
printf("%s: n_kv: %d\n", __func__, n_kv);
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
const char * key = gguf_get_key(ctx, i);
|
||||
|
||||
printf("%s: kv[%d]: key = %s\n", __func__, i, key);
|
||||
}
|
||||
}
|
||||
|
||||
// tensor info
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
printf("%s: n_tensors: %d\n", __func__, n_tensors);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
}
|
||||
}
|
||||
|
||||
// data
|
||||
{
|
||||
const int n_tensors = gguf_get_n_tensors(ctx);
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
printf("%s: reading tensor %d data\n", __func__, i);
|
||||
|
||||
const char * name = gguf_get_tensor_name(ctx, i);
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
||||
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, cur->n_dims, cur->name, cur->data);
|
||||
|
||||
// print first 10 elements
|
||||
const float * data = (const float *) cur->data;
|
||||
|
||||
printf("%s data[:10] : ", name);
|
||||
for (int j = 0; j < MIN(10, ggml_nelements(cur)); ++j) {
|
||||
printf("%f ", data[j]);
|
||||
}
|
||||
printf("\n\n");
|
||||
|
||||
// check data
|
||||
{
|
||||
const float * data = (const float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
if (data[j] != 100 + i) {
|
||||
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printf("%s: ctx_data size: %zu\n", __func__, ggml_get_mem_size(ctx_data));
|
||||
|
||||
ggml_free(ctx_data);
|
||||
gguf_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
if (argc < 3) {
|
||||
printf("usage: %s data.gguf r|w\n", argv[0]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
const std::string fname(argv[1]);
|
||||
const std::string mode (argv[2]);
|
||||
|
||||
GGML_ASSERT((mode == "r" || mode == "w") && "mode must be r or w");
|
||||
|
||||
if (mode == "w") {
|
||||
GGML_ASSERT(gguf_ex_write(fname) && "failed to write gguf file");
|
||||
} else if (mode == "r") {
|
||||
GGML_ASSERT(gguf_ex_read_0(fname) && "failed to read gguf file");
|
||||
GGML_ASSERT(gguf_ex_read_1(fname) && "failed to read gguf file");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
1133
examples/gptneox-wip/cmpnct_gpt2bpe.hpp
Normal file
1133
examples/gptneox-wip/cmpnct_gpt2bpe.hpp
Normal file
File diff suppressed because it is too large
Load Diff
1111
examples/gptneox-wip/falcon-main.cpp
Normal file
1111
examples/gptneox-wip/falcon-main.cpp
Normal file
File diff suppressed because it is too large
Load Diff
1083
examples/gptneox-wip/gptneox-main.cpp
Normal file
1083
examples/gptneox-wip/gptneox-main.cpp
Normal file
File diff suppressed because it is too large
Load Diff
8
examples/infill/CMakeLists.txt
Normal file
8
examples/infill/CMakeLists.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
set(TARGET infill)
|
||||
add_executable(${TARGET} infill.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user