Compare commits

...

2 Commits

Author SHA1 Message Date
AesSedai
e463bbdf65 model: Add Kimi-K2.5 support (#19170)
* Move dequant_model to after the text_config merge
Add new kimi-k2.5 keys to mtmd convert
Update V_MMPROJ tensor mapping for new mm_projector.proj keys
Update V_M_IMP_NORM for new mm_projector.pre_norm key

* Fix a couple of oversights

* Add image support for Kimi-K2.5

* Revert changes to KimiVLForConditionalGeneration

* Fix an assert crash

* Fix permute swapping w / h on accident

* Kimi-K2.5: Use merged QKV for vision

* Kimi-K2.5: pre-convert vision QK to use build_rope_2d

* Kimi-K2.5: support non-interleaved rope for vision

* Kimi-K2.5: fix min / max pixel

* Kimi-K2.5: remove v/o permutes, unnecessary

* Kimi-K2.5: update permute name to match

* Update convert_hf_to_gguf.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Kimi-K2.5: replace build_rope_2d ggml_cont with ggml_view_3d pointers

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
2026-02-11 16:47:30 +01:00
Daniel Bevenius
53de59f67d build : fix case in dSYMs path for build-macos [no ci] (#19515)
This commit updates an incorrect dSYMs where the the 's' was uppercase
by mistake.

The motivation for fixing this is that this can cause issues on case
sensitive operating systems.

Refs: https://github.com/ggml-org/whisper.cpp/pull/3630
2026-02-11 14:02:29 +01:00
9 changed files with 317 additions and 14 deletions

View File

@@ -534,7 +534,7 @@ xcodebuild -create-xcframework \
-framework $(pwd)/build-ios-device/framework/llama.framework \
-debug-symbols $(pwd)/build-ios-device/dSYMs/llama.dSYM \
-framework $(pwd)/build-macos/framework/llama.framework \
-debug-symbols $(pwd)/build-macos/dSYMS/llama.dSYM \
-debug-symbols $(pwd)/build-macos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos/framework/llama.framework \
-debug-symbols $(pwd)/build-visionos/dSYMs/llama.dSYM \
-framework $(pwd)/build-visionos-sim/framework/llama.framework \

View File

@@ -160,8 +160,6 @@ class ModelBase:
self.ftype = gguf.LlamaFileType.MOSTLY_F16
logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
self.dequant_model()
# Configure GGUF Writer
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
@@ -527,6 +525,8 @@ class ModelBase:
return ()
def prepare_tensors(self):
self.dequant_model()
# Handle empty tensor_map for models with block_count=0 (like MobileNetV5)
if self.tensor_map.mapping:
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
@@ -1815,7 +1815,7 @@ class MmprojModel(ModelBase):
preprocessor_config: dict[str, Any]
global_config: dict[str, Any]
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers", "vt_num_hidden_layers"]
has_vision_encoder: bool = True # by default
has_audio_encoder: bool = False
@@ -1870,7 +1870,15 @@ class MmprojModel(ModelBase):
preprocessor_config_path = self.dir_model / "preprocessor_config.json"
if preprocessor_config_path.is_file():
with open(preprocessor_config_path, "r", encoding="utf-8") as f:
self.preprocessor_config = json.load(f)
cfg = json.load(f)
# move media_proc_cfg to root level for compat
if "media_proc_cfg" in cfg:
cfg = {
**cfg,
**cfg["media_proc_cfg"],
}
# merge configs
self.preprocessor_config = {**self.preprocessor_config, **cfg}
# prefer processor_config.json if possible
processor_config_path = self.dir_model / "processor_config.json"
@@ -1919,10 +1927,10 @@ class MmprojModel(ModelBase):
self.image_size = self.find_vparam(["image_size"])
self.gguf_writer.add_vision_image_size(self.image_size)
self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size", "vt_hidden_size"]))
self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size", "vt_intermediate_size"]))
self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads", "vt_num_attention_heads"]))
# preprocessor config
image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
@@ -7695,6 +7703,7 @@ class DeepseekModel(TextModel):
"DeepseekV2ForCausalLM",
"DeepseekV3ForCausalLM",
"KimiVLForConditionalGeneration",
"KimiK25ForConditionalGeneration",
"YoutuForCausalLM",
"YoutuVLForConditionalGeneration",
)
@@ -7813,8 +7822,8 @@ class DeepseekV2Model(TextModel):
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# skip vision tensors and remove "language_model." for Kimi-VL
if "vision_tower" in name or "multi_modal_projector" in name:
# skip vision tensors and remove "language_model." for Kimi-VL and Kimi-K2.5
if "vision_tower" in name or "multi_modal_projector" in name or "mm_projector" in name:
return
if name.startswith("siglip2.") or name.startswith("merger."):
return
@@ -11176,6 +11185,103 @@ class KimiVLModel(MmprojModel):
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("KimiK25ForConditionalGeneration")
class KimiK25Model(MmprojModel):
"""Kimi-K2.5 with MoonViT3d vision encoder"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
assert self.hparams_vision is not None, "Kimi-K2.5 requires vision_config in model config"
self.merge_kernel_size = tuple(self.hparams_vision.get("merge_kernel_size", [2, 2]))
self.patch_size = self.hparams_vision.get("patch_size", 14)
# Set image_size for compatibility with base class
# Use position embedding dimensions as image_size reference
pos_emb_h = self.hparams_vision.get("init_pos_emb_height", 64)
self.hparams_vision["image_size"] = pos_emb_h * self.patch_size
def set_gguf_parameters(self):
# Base class MmprojModel.set_gguf_parameters() already writes:
# - vision_block_count, vision_head_count, vision_embedding_length
# - vision_feed_forward_length, vision_patch_size, image_mean, image_std
# via find_vparam() which handles the vt_* prefixed keys in Kimi-K2.5's config
super().set_gguf_parameters()
assert self.hparams_vision is not None
self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIK25)
# Position embedding parameters (for interpolation)
self.gguf_writer.add_uint32("vision.pos_emb_height", self.hparams_vision.get("init_pos_emb_height", 64))
self.gguf_writer.add_uint32("vision.pos_emb_width", self.hparams_vision.get("init_pos_emb_width", 64))
self.gguf_writer.add_uint32("vision.pos_emb_time", self.hparams_vision.get("init_pos_emb_time", 4))
# Projector parameters
self.gguf_writer.add_vision_use_gelu(self.hparams_vision.get("projector_hidden_act", "gelu") == "gelu")
self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("projector_ln_eps", 1e-5))
self.gguf_writer.add_vision_projector_scale_factor(self.merge_kernel_size[0])
# Image size limits
# Note: in_patch_limit is for images, in_patch_limit_each_frame is for video (not supported yet)
in_patch_limit = self.preprocessor_config.get("in_patch_limit", 16384)
min_patches = 8 # reasonable minimum
pixels_per_patch = self.patch_size ** 2
self.gguf_writer.add_vision_min_pixels(min_patches * pixels_per_patch)
self.gguf_writer.add_vision_max_pixels(in_patch_limit * pixels_per_patch)
@staticmethod
def permute(weights: Tensor, n_head: int) -> Tensor:
out_dim, in_dim = weights.shape
head_dim = out_dim // n_head
w = weights.reshape(n_head, head_dim // 4, 2, 2, in_dim)
w = w.permute(0, 2, 1, 3, 4)
return w.reshape(out_dim, in_dim)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# Only process vision and projector tensors
is_vision = any(x in name for x in ["vision_tower", "mm_projector"])
if not is_vision:
return
assert self.hparams_vision is not None
n_head = self.hparams_vision.get("num_attention_heads", 16)
# Permute Q/K weights/biases from interleaved to split RoPE format
# This allows using build_rope_2d at runtime without post-permutation.
if "wqkv" in name:
out_dim = data_torch.shape[0]
qkv_dim = out_dim // 3
head_dim = qkv_dim // n_head
if "weight" in name:
wq, wk, wv = data_torch[:qkv_dim, :], data_torch[qkv_dim:2 * qkv_dim, :], data_torch[2 * qkv_dim:, :]
wq = self.permute(wq, n_head)
wk = self.permute(wk, n_head)
data_torch = torch.cat([wq, wk, wv], dim=0)
elif "bias" in name:
bq, bk, bv = data_torch[:qkv_dim], data_torch[qkv_dim:2 * qkv_dim], data_torch[2 * qkv_dim:]
bq = bq.reshape(n_head, head_dim // 4, 2, 2).permute(0, 2, 1, 3).reshape(-1)
bk = bk.reshape(n_head, head_dim // 4, 2, 2).permute(0, 2, 1, 3).reshape(-1)
data_torch = torch.cat([bq, bk, bv], dim=0)
# Temporal embeddings: (T, 1, C) → (T, C)
if "pos_emb.time_weight" in name:
T, _, C = data_torch.shape
data_torch = data_torch.reshape(T, C)
# PatchMergerMLP tensor name mapping
# proj.0.weight → proj.linear_1.weight
# proj.2.weight → proj.linear_2.weight
if "mm_projector.proj.0." in name:
name = name.replace(".proj.0.", ".proj.linear_1.")
elif "mm_projector.proj.2." in name:
name = name.replace(".proj.2.", ".proj.linear_2.")
yield from super().modify_tensors(data_torch, name, bid)
@ModelBase.register("CogVLMForCausalLM")
class CogVLMVisionModel(MmprojModel):

View File

@@ -3766,6 +3766,7 @@ class VisionProjectorType:
VOXTRAL = "voxtral"
LFM2 = "lfm2"
KIMIVL = "kimivl"
KIMIK25 = "kimik25"
LIGHTONOCR = "lightonocr"
COGVLM = "cogvlm"
JANUS_PRO = "janus_pro"

View File

@@ -1303,6 +1303,7 @@ class TensorNameMap:
MODEL_TENSOR.V_MMPROJ: (
"multi_modal_projector.linear_{bid}",
"mm_projector.proj.linear_{bid}", # Kimi-K2.5
"visual.merger.mlp.{bid}", # qwen2vl
"merger.mlp.{bid}",
),
@@ -1364,6 +1365,7 @@ class TensorNameMap:
MODEL_TENSOR.V_ENC_ATTN_QKV: (
"visual.blocks.{bid}.attn.qkv", # qwen3vl
"model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
"vision_tower.encoder.blocks.{bid}.wqkv" # Kimi-K2.5
),
MODEL_TENSOR.V_ENC_ATTN_Q: (
@@ -1538,6 +1540,7 @@ class TensorNameMap:
"multi_modal_projector.norm",
"multi_modal_projector.layer_norm",
"multi_modal_projector.pre_norm",
"mm_projector.pre_norm", # Kimi-K2.5
"pre_mm_projector_norm",
"model.vision.linear_proj.norm1", # cogvlm
"merger.ln_q",

View File

@@ -19,6 +19,7 @@ add_library(mtmd
models/glm4v.cpp
models/internvl.cpp
models/kimivl.cpp
models/kimik25.cpp
models/llama4.cpp
models/llava.cpp
models/minicpmv.cpp

View File

@@ -235,6 +235,7 @@ enum projector_type {
PROJECTOR_TYPE_LFM2A,
PROJECTOR_TYPE_GLM4V,
PROJECTOR_TYPE_YOUTUVL,
PROJECTOR_TYPE_KIMIK25,
PROJECTOR_TYPE_UNKNOWN,
};
@@ -268,6 +269,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LFM2A, "lfm2a"},
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
{ PROJECTOR_TYPE_YOUTUVL, "youtuvl"},
{ PROJECTOR_TYPE_KIMIK25, "kimik25"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {

View File

@@ -673,8 +673,8 @@ ggml_tensor * clip_graph::build_rope_2d(
{
first = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
cur->nb[1],
cur->nb[2],
0);
first = ggml_rope_ext(
ctx0,
@@ -692,8 +692,8 @@ ggml_tensor * clip_graph::build_rope_2d(
{
second = ggml_view_3d(ctx0, cur,
n_dim/2, n_head, n_pos,
ggml_row_size(cur->type, n_dim),
ggml_row_size(cur->type, n_dim*n_head),
cur->nb[1],
cur->nb[2],
n_dim/2 * ggml_element_size(cur));
second = ggml_rope_ext(
ctx0,
@@ -826,6 +826,10 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
{
builder = std::make_unique<clip_graph_kimivl>(ctx, img);
} break;
case PROJECTOR_TYPE_KIMIK25:
{
builder = std::make_unique<clip_graph_kimik25>(ctx, img);
} break;
case PROJECTOR_TYPE_COGVLM:
{
builder = std::make_unique<clip_graph_cogvlm>(ctx, img);
@@ -1139,6 +1143,22 @@ struct clip_model_loader {
hparams.set_limit_image_tokens(8, 1024);
hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
} break;
case PROJECTOR_TYPE_KIMIK25:
{
hparams.rope_theta = 10000.0f;
get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
int min_pixels = 0, max_pixels = 0;
get_u32(KEY_IMAGE_MIN_PIXELS, min_pixels, false);
get_u32(KEY_IMAGE_MAX_PIXELS, max_pixels, false);
if (min_pixels > 0 && max_pixels > 0) {
hparams.image_min_pixels = min_pixels;
hparams.image_max_pixels = max_pixels;
hparams.warmup_image_size = static_cast<int>(std::sqrt(max_pixels));
} else {
hparams.set_limit_image_tokens(2, 4096);
}
} break;
case PROJECTOR_TYPE_GEMMA3:
{
// default value (used by all model sizes in gemma 3 family)
@@ -1668,6 +1688,7 @@ struct clip_model_loader {
model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
} break;
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_KIMIK25:
{
model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
@@ -3165,6 +3186,23 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
res_imgs->entries.push_back(std::move(res));
} break;
case PROJECTOR_TYPE_KIMIK25:
{
GGML_ASSERT(params.image_min_pixels > 0 && params.image_max_pixels > 0);
const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
original_size,
params.patch_size * params.n_merge,
params.image_min_pixels,
params.image_max_pixels);
const std::array<uint8_t, 3> pad_color = {0, 0, 0};
clip_image_u8 resized_img;
img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BICUBIC, true, pad_color);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
res_imgs->entries.push_back(std::move(res));
} break;
case PROJECTOR_TYPE_MLP:
case PROJECTOR_TYPE_MLP_NORM:
case PROJECTOR_TYPE_LDP:
@@ -3373,6 +3411,7 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
} break;
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_KIMIK25:
{
// dynamic size
int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
@@ -3714,6 +3753,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
} break;
case PROJECTOR_TYPE_PIXTRAL:
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_KIMIK25:
case PROJECTOR_TYPE_LIGHTONOCR:
{
// set the 2D positions
@@ -3850,6 +3890,47 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
}
// Debug: dump final embeddings if MTMD_DEBUG_EMBEDDINGS is set
if (std::getenv("MTMD_DEBUG_EMBEDDINGS") != nullptr) {
const int64_t n_embd = embeddings->ne[0];
const int64_t n_tokens = embeddings->ne[1];
std::vector<float> emb_data(n_embd * n_tokens);
ggml_backend_tensor_get(embeddings, emb_data.data(), 0, ggml_nbytes(embeddings));
LOG_INF("\n=== MTMD_DEBUG_EMBEDDINGS ===\n");
LOG_INF("Shape: [%lld, %lld]\n", (long long)n_embd, (long long)n_tokens);
// Print first few values of first token
LOG_INF("Token 0 (first 16 values): ");
for (int i = 0; i < std::min((int64_t)16, n_embd); i++) {
LOG_INF("%.6f ", emb_data[i]);
}
LOG_INF("\n");
// Print last few values of first token
if (n_embd > 16) {
LOG_INF("Token 0 (last 16 values): ");
for (int64_t i = n_embd - 16; i < n_embd; i++) {
LOG_INF("%.6f ", emb_data[i]);
}
LOG_INF("\n");
}
// Compute and print statistics
float sum = 0.0f, sum_sq = 0.0f, min_val = emb_data[0], max_val = emb_data[0];
for (size_t i = 0; i < emb_data.size(); i++) {
sum += emb_data[i];
sum_sq += emb_data[i] * emb_data[i];
min_val = std::min(min_val, emb_data[i]);
max_val = std::max(max_val, emb_data[i]);
}
float mean = sum / emb_data.size();
float variance = (sum_sq / emb_data.size()) - (mean * mean);
LOG_INF("Stats: mean=%.6f, std=%.6f, min=%.6f, max=%.6f, sum=%.6f\n",
mean, sqrtf(variance), min_val, max_val, sum);
LOG_INF("=== END MTMD_DEBUG_EMBEDDINGS ===\n\n");
}
return true;
}
@@ -3896,6 +3977,7 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_LFM2:
case PROJECTOR_TYPE_KIMIVL:
case PROJECTOR_TYPE_KIMIK25:
return ctx->model.mm_2_w->ne[1];
case PROJECTOR_TYPE_COGVLM:
return ctx->model.mm_4h_to_h_w->ne[1];

View File

@@ -0,0 +1,101 @@
#include "models.h"
#include <cstring>
#include <cmath>
// note: this is similar to clip_graph::resize_position_embeddings, major difference is having
// the w/h in ne[1] and ne[2] instead of assuming with sqrt. Could try storing the tensor in 2D instead
// with a w*h? Also the permute is a bit different at (2, 1, 0, 3) instead of (2, 0, 1, 3).
ggml_tensor * clip_graph_kimik25::resize_position_embeddings_3d(uint32_t interpolation_mode) {
ggml_tensor * pos_embd = model.position_embeddings;
const int height = img.ny / patch_size;
const int width = img.nx / patch_size;
const uint32_t mode = interpolation_mode;
GGML_ASSERT(pos_embd);
const int64_t stored_c = pos_embd->ne[0]; // C = 1152
const int64_t orig_w = pos_embd->ne[1]; // W = 64
const int64_t orig_h = pos_embd->ne[2]; // H = 64
GGML_ASSERT(stored_c == n_embd);
if (height == (int)orig_h && width == (int)orig_w) {
// No interpolation needed, just flatten to [C, H*W]
return ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);
}
pos_embd = ggml_permute(ctx0, pos_embd, 2, 1, 0, 3);
pos_embd = ggml_interpolate(ctx0, pos_embd, height, width, n_embd, 1, mode);
pos_embd = ggml_permute(ctx0, pos_embd, 2, 1, 0, 3);
pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height);
return pos_embd;
}
ggml_cgraph * clip_graph_kimik25::build() {
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * learned_pos_embd = resize_position_embeddings_3d(GGML_SCALE_MODE_BICUBIC);
// Kimi-K2.5 uses interleaved 2D RoPE pattern natively, but
// Q / K are permuted during conversion to use split format.
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
cur = build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
return cur;
};
ggml_tensor * inp = build_inp();
// I don't know why, but doing this in the build_vit lead to the ggml_add not occurring?
// Doing it manually here does work.
inp = ggml_add(ctx0, inp, learned_pos_embd);
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
nullptr,
add_pos);
cb(cur, "vit_out", -1);
{
// patch_merger
const int scale_factor = model.hparams.n_merge;
cur = build_patch_merge_permute(cur, scale_factor);
// projection norm
int proj_inp_dim = cur->ne[0];
int n_merged_patches = cur->ne[1];
cur = ggml_view_2d(ctx0, cur,
n_embd, n_merged_patches * scale_factor * scale_factor,
ggml_row_size(cur->type, n_embd), 0);
cur = ggml_norm(ctx0, cur, hparams.eps);
cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
cur = ggml_view_2d(ctx0, cur,
proj_inp_dim, n_merged_patches,
ggml_row_size(cur->type, proj_inp_dim), 0);
cb(cur, "proj_inp_normed", -1);
// projection mlp
cur = build_ffn(cur,
model.mm_1_w, model.mm_1_b,
nullptr, nullptr,
model.mm_2_w, model.mm_2_b,
FFN_GELU,
-1);
cb(cur, "proj_out", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}

View File

@@ -109,3 +109,10 @@ struct clip_graph_mobilenetv5 : clip_graph {
ggml_tensor * inp,
const mobilenetv5_block & block);
};
struct clip_graph_kimik25 : clip_graph {
clip_graph_kimik25(clip_ctx * ctx, const clip_image_f32 & img) : clip_graph(ctx, img) {}
ggml_cgraph * build() override;
ggml_tensor * resize_position_embeddings_3d(uint32_t interpolation_mode);
};