mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2026-02-05 13:53:23 +02:00
Compare commits
35 Commits
alloc-asse
...
b1391
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
40e5ce054f | ||
|
|
a5e8c1d8c7 | ||
|
|
e74c705e15 | ||
|
|
3ad1e3f1a1 | ||
|
|
1142013da4 | ||
|
|
5fe268a4d9 | ||
|
|
1a159553f9 | ||
|
|
281ef73c25 | ||
|
|
940efa95fe | ||
|
|
11bff29045 | ||
|
|
11dc1091f6 | ||
|
|
2a4bcbacea | ||
|
|
424b6381c4 | ||
|
|
1e0e873c37 | ||
|
|
370359e5ba | ||
|
|
9e24cc6e2e | ||
|
|
d28e572c02 | ||
|
|
f3040beaab | ||
|
|
1a8c8795d6 | ||
|
|
b016596d90 | ||
|
|
6b3ae4da92 | ||
|
|
57dd55e2c7 | ||
|
|
b8fe4b5cc9 | ||
|
|
a8bdd65525 | ||
|
|
70c29da118 | ||
|
|
8c70a5ff25 | ||
|
|
24ba3d829e | ||
|
|
9f6ede19f3 | ||
|
|
233fc1c69f | ||
|
|
c5b49360d0 | ||
|
|
02d2875def | ||
|
|
0aa6595ae0 | ||
|
|
f5f9121de1 | ||
|
|
11ea5c7d96 | ||
|
|
95bd60a0a6 |
5
.github/workflows/build.yml
vendored
5
.github/workflows/build.yml
vendored
@@ -276,6 +276,11 @@ jobs:
|
||||
run: |
|
||||
xcodebuild -scheme llama -destination "${{ matrix.destination }}"
|
||||
|
||||
- name: Build Swift Example
|
||||
id: make_build_swift_example
|
||||
run: |
|
||||
make swift
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -44,6 +44,7 @@ models-mnt
|
||||
/infill
|
||||
/libllama.so
|
||||
/llama-bench
|
||||
/llava
|
||||
/main
|
||||
/metal
|
||||
/perplexity
|
||||
@@ -55,6 +56,7 @@ models-mnt
|
||||
/server
|
||||
/simple
|
||||
/batched
|
||||
/batched-bench
|
||||
/export-lora
|
||||
/finetune
|
||||
/speculative
|
||||
|
||||
@@ -422,8 +422,7 @@ endif()
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||
-Werror=implicit-function-declaration)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration)
|
||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||
set(host_cxx_flags "")
|
||||
|
||||
@@ -455,7 +454,8 @@ if (LLAMA_ALL_WARNINGS)
|
||||
set(c_flags ${c_flags} ${warning_flags})
|
||||
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${host_cxx_flags}>")
|
||||
|
||||
endif()
|
||||
|
||||
|
||||
109
Makefile
109
Makefile
@@ -1,8 +1,14 @@
|
||||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
BUILD_TARGETS = \
|
||||
main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server embd-input-test gguf llama-bench llava baby-llama beam-search \
|
||||
speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||
TEST_TARGETS = \
|
||||
tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt \
|
||||
tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama \
|
||||
tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama tests/test-tokenizer-1-bpe
|
||||
|
||||
# Code coverage output files
|
||||
COV_TARGETS = *.gcno tests/*.gcno *.gcda tests/*.gcda *.gcov tests/*.gcov lcov-report gcovr-report
|
||||
@@ -172,6 +178,24 @@ else
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_THREAD
|
||||
MK_CFLAGS += -fsanitize=thread -g
|
||||
MK_CXXFLAGS += -fsanitize=thread -g
|
||||
MK_LDFLAGS += -fsanitize=thread -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_ADDRESS
|
||||
MK_CFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
MK_CXXFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
MK_LDFLAGS += -fsanitize=address -fno-omit-frame-pointer -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SANITIZE_UNDEFINED
|
||||
MK_CFLAGS += -fsanitize=undefined -g
|
||||
MK_CXXFLAGS += -fsanitize=undefined -g
|
||||
MK_LDFLAGS += -fsanitize=undefined -g
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
@@ -520,7 +544,13 @@ OBJS += ggml-alloc.o ggml-backend.o
|
||||
llama.o: llama.cpp ggml.h ggml-alloc.h ggml-backend.h ggml-cuda.h ggml-metal.h llama.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
common.o: common/common.cpp common/common.h build-info.h common/log.h
|
||||
COMMON_H_DEPS = common/common.h common/sampling.h build-info.h common/log.h
|
||||
COMMON_DEPS = $(COMMON_H_DEPS) common.o sampling.o
|
||||
|
||||
common.o: common/common.cpp $(COMMON_H_DEPS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
sampling.o: common/sampling.cpp $(COMMON_H_DEPS)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
console.o: common/console.cpp common/console.h
|
||||
@@ -542,19 +572,22 @@ clean:
|
||||
# Examples
|
||||
#
|
||||
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
main: examples/main/main.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
@echo
|
||||
@echo '==== Run ./main -h for help. ===='
|
||||
@echo
|
||||
|
||||
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) console.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
batched: examples/batched/batched.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
batched-bench: examples/batched-bench/batched-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
quantize: examples/quantize/quantize.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
@@ -563,53 +596,56 @@ quantize: examples/quantize/quantize.cpp build-info.h ggml.
|
||||
quantize-stats: examples/quantize-stats/quantize-stats.cpp build-info.h ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
perplexity: examples/perplexity/perplexity.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
embedding: examples/embedding/embedding.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) --shared $(CXXFLAGS) $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS)
|
||||
|
||||
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-test.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %$(DSO_EXT),$(filter-out %.h,$(filter-out %.hpp,$^))) -o $@ $(LDFLAGS) -L. -lembdinput
|
||||
|
||||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
llava: examples/llava/llava.cpp examples/llava/llava-utils.h examples/llava/clip.cpp examples/llava/clip.h common/stb_image.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS) -Wno-cast-qual
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS)
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
parallel: examples/parallel/parallel.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
ifdef LLAMA_METAL
|
||||
@@ -617,6 +653,11 @@ metal: examples/metal/metal.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
endif
|
||||
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
swift: examples/batched.swift
|
||||
(cd examples/batched.swift; make build)
|
||||
endif
|
||||
|
||||
build-info.h: $(wildcard .git/index) scripts/build-info.sh
|
||||
@sh scripts/build-info.sh $(CC) > $@.tmp
|
||||
@if ! cmp -s $@.tmp $@; then \
|
||||
@@ -637,7 +678,7 @@ benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o
|
||||
run-benchmark-matmult: benchmark-matmult
|
||||
./$@
|
||||
|
||||
.PHONY: run-benchmark-matmult
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
@@ -645,40 +686,40 @@ vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
tests/test-grammar-parser: tests/test-grammar-parser.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-double-float: tests/test-double-float.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-grad0: tests/test-grad0.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-opt: tests/test-opt.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-quantize-fns: tests/test-quantize-fns.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-quantize-perf: tests/test-quantize-perf.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-sampling: tests/test-sampling.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-0-falcon: tests/test-tokenizer-0-falcon.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-0-llama: tests/test-tokenizer-0-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-1-bpe: tests/test-tokenizer-1-bpe.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
tests/test-tokenizer-1-llama: tests/test-tokenizer-1-llama.cpp build-info.h ggml.o llama.o $(COMMON_DEPS) $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-c.o: tests/test-c.c llama.h
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
// swift-tools-version:5.3
|
||||
// swift-tools-version:5.5
|
||||
|
||||
import PackageDescription
|
||||
|
||||
#if arch(arm) || arch(arm64)
|
||||
let platforms: [SupportedPlatform]? = [
|
||||
.macOS(.v11),
|
||||
.macOS(.v12),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
@@ -41,12 +41,13 @@ let package = Package(
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"ggml-backend.c",
|
||||
"k_quants.c",
|
||||
] + additionalSources,
|
||||
resources: resources,
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
|
||||
.define("GGML_USE_K_QUANTS"),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
// NOTE: NEW_LAPACK will required iOS version 16.4+
|
||||
|
||||
@@ -93,9 +93,12 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
- [X] [WizardLM](https://github.com/nlpxucan/WizardLM)
|
||||
- [X] [Baichuan-7B](https://huggingface.co/baichuan-inc/baichuan-7B) and its derivations (such as [baichuan-7b-sft](https://huggingface.co/hiyouga/baichuan-7b-sft))
|
||||
- [X] [Aquila-7B](https://huggingface.co/BAAI/Aquila-7B) / [AquilaChat-7B](https://huggingface.co/BAAI/AquilaChat-7B)
|
||||
- [X] [Aquila2-7B](https://huggingface.co/BAAI/Aquila2-7B) / [AquilaChat2-7B](https://huggingface.co/BAAI/AquilaChat2-7B) / [AquilaChat2-34B](https://huggingface.co/BAAI/AquilaChat2-34B) / [Aquila2-34B](https://huggingface.co/BAAI/Aquila2-34B)
|
||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||
- [X] [Mistral AI v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||
|
||||
**Bindings:**
|
||||
|
||||
@@ -277,7 +280,7 @@ In order to build llama.cpp you have three different options.
|
||||
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
|
||||
To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or the `LLAMA_METAL=OFF` cmake option.
|
||||
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--gpu-layers|-ngl 0` command-line
|
||||
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
||||
argument.
|
||||
|
||||
### MPI Build
|
||||
|
||||
@@ -128,17 +128,18 @@ pub fn build(b: *std.build.Builder) !void {
|
||||
const llama = make.obj("llama", "llama.cpp");
|
||||
const common = make.obj("common", "common/common.cpp");
|
||||
const console = make.obj("console", "common/console.cpp");
|
||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
||||
const train = make.obj("train", "common/train.cpp");
|
||||
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, console, grammar_parser });
|
||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, console, grammar_parser });
|
||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common });
|
||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, train });
|
||||
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, grammar_parser });
|
||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, ggml_backend, llama, common, sampling, grammar_parser });
|
||||
if (server.target.isWindows()) {
|
||||
server.linkSystemLibrary("ws2_32");
|
||||
}
|
||||
|
||||
16
ci/run.sh
16
ci/run.sh
@@ -208,6 +208,8 @@ function gg_run_open_llama_3b_v2 {
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 2 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
@@ -296,6 +298,7 @@ function gg_sum_open_llama_3b_v2 {
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
@@ -382,6 +385,8 @@ function gg_run_open_llama_7b_v2 {
|
||||
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
|
||||
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
|
||||
|
||||
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
|
||||
|
||||
function check_ppl {
|
||||
qnt="$1"
|
||||
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
|
||||
@@ -470,6 +475,7 @@ function gg_sum_open_llama_7b_v2 {
|
||||
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
|
||||
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
|
||||
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
|
||||
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
|
||||
gg_printf '- shakespeare (f16):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-f16.log)"
|
||||
gg_printf '- shakespeare (f16 lora):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-lora-f16.log)"
|
||||
#gg_printf '- shakespeare (q8_0):\n```\n%s\n```\n' "$(cat $OUT/${ci}-ppl-shakespeare-q8_0.log)"
|
||||
@@ -496,10 +502,12 @@ test $ret -eq 0 && gg_run ctest_debug
|
||||
test $ret -eq 0 && gg_run ctest_release
|
||||
|
||||
if [ -z ${GG_BUILD_LOW_PERF} ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
|
||||
if [ -z ${GG_BUILD_CUDA} ]; then
|
||||
test $ret -eq 0 && gg_run open_llama_3b_v2
|
||||
else
|
||||
test $ret -eq 0 && gg_run open_llama_7b_v2
|
||||
fi
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
@@ -5,6 +5,8 @@ set(TARGET common)
|
||||
add_library(${TARGET} OBJECT
|
||||
common.h
|
||||
common.cpp
|
||||
sampling.h
|
||||
sampling.cpp
|
||||
console.h
|
||||
console.cpp
|
||||
grammar-parser.h
|
||||
|
||||
@@ -107,6 +107,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
std::string arg;
|
||||
gpt_params default_params;
|
||||
const std::string arg_prefix = "--";
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
@@ -184,7 +185,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_k = std::stoi(argv[i]);
|
||||
sparams.top_k = std::stoi(argv[i]);
|
||||
} else if (arg == "-c" || arg == "--ctx-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -216,73 +217,73 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.top_p = std::stof(argv[i]);
|
||||
sparams.top_p = std::stof(argv[i]);
|
||||
} else if (arg == "--temp") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.temp = std::stof(argv[i]);
|
||||
sparams.temp = std::stof(argv[i]);
|
||||
} else if (arg == "--tfs") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.tfs_z = std::stof(argv[i]);
|
||||
sparams.tfs_z = std::stof(argv[i]);
|
||||
} else if (arg == "--typical") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.typical_p = std::stof(argv[i]);
|
||||
sparams.typical_p = std::stof(argv[i]);
|
||||
} else if (arg == "--repeat-last-n") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_last_n = std::stoi(argv[i]);
|
||||
sparams.repeat_last_n = std::stoi(argv[i]);
|
||||
} else if (arg == "--repeat-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.repeat_penalty = std::stof(argv[i]);
|
||||
sparams.repeat_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--frequency-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.frequency_penalty = std::stof(argv[i]);
|
||||
sparams.frequency_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--presence-penalty") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.presence_penalty = std::stof(argv[i]);
|
||||
sparams.presence_penalty = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat = std::stoi(argv[i]);
|
||||
sparams.mirostat = std::stoi(argv[i]);
|
||||
} else if (arg == "--mirostat-lr") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_eta = std::stof(argv[i]);
|
||||
sparams.mirostat_eta = std::stof(argv[i]);
|
||||
} else if (arg == "--mirostat-ent") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mirostat_tau = std::stof(argv[i]);
|
||||
sparams.mirostat_tau = std::stof(argv[i]);
|
||||
} else if (arg == "--cfg-negative-prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_negative_prompt = argv[i];
|
||||
sparams.cfg_negative_prompt = argv[i];
|
||||
} else if (arg == "--cfg-negative-prompt-file") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -294,16 +295,16 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
|
||||
if (!params.cfg_negative_prompt.empty() && params.cfg_negative_prompt.back() == '\n') {
|
||||
params.cfg_negative_prompt.pop_back();
|
||||
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(sparams.cfg_negative_prompt));
|
||||
if (!sparams.cfg_negative_prompt.empty() && sparams.cfg_negative_prompt.back() == '\n') {
|
||||
sparams.cfg_negative_prompt.pop_back();
|
||||
}
|
||||
} else if (arg == "--cfg-scale") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.cfg_scale = std::stof(argv[i]);
|
||||
sparams.cfg_scale = std::stof(argv[i]);
|
||||
} else if (arg == "-b" || arg == "--batch-size") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -383,6 +384,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.lora_base = argv[i];
|
||||
} else if (arg == "--mmproj") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.mmproj = argv[i];
|
||||
} else if (arg == "--image") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.image = argv[i];
|
||||
} else if (arg == "-i" || arg == "--interactive") {
|
||||
params.interactive = true;
|
||||
} else if (arg == "--embedding") {
|
||||
@@ -512,7 +525,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
} else if (arg == "--ignore-eos") {
|
||||
params.ignore_eos = true;
|
||||
} else if (arg == "--no-penalize-nl") {
|
||||
params.penalize_nl = false;
|
||||
sparams.penalize_nl = false;
|
||||
} else if (arg == "-l" || arg == "--logit-bias") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@@ -524,7 +537,7 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
std::string value_str;
|
||||
try {
|
||||
if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
|
||||
params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
sparams.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
|
||||
} else {
|
||||
throw std::exception();
|
||||
}
|
||||
@@ -627,6 +640,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
}
|
||||
|
||||
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
const llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
printf("usage: %s [options]\n", argv[0]);
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
@@ -659,19 +674,19 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
|
||||
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
|
||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
|
||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", sparams.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)sparams.top_p);
|
||||
printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)sparams.tfs_z);
|
||||
printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)sparams.typical_p);
|
||||
printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", sparams.repeat_last_n);
|
||||
printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)sparams.repeat_penalty);
|
||||
printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.presence_penalty);
|
||||
printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)sparams.frequency_penalty);
|
||||
printf(" --mirostat N use Mirostat sampling.\n");
|
||||
printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
|
||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
|
||||
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
|
||||
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
|
||||
printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", sparams.mirostat);
|
||||
printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)sparams.mirostat_eta);
|
||||
printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)sparams.mirostat_tau);
|
||||
printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
|
||||
printf(" modifies the likelihood of token appearing in the completion,\n");
|
||||
printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
|
||||
@@ -682,7 +697,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" negative prompt to use for guidance. (default: empty)\n");
|
||||
printf(" --cfg-negative-prompt-file FNAME\n");
|
||||
printf(" negative prompt file to use for guidance. (default: empty)\n");
|
||||
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||
printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", sparams.cfg_scale);
|
||||
printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale\n");
|
||||
printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency linear scaling factor (default: loaded from model)\n");
|
||||
@@ -690,7 +705,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --no-penalize-nl do not penalize newline token\n");
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)params.temp);
|
||||
printf(" --temp N temperature (default: %.1f)\n", (double)sparams.temp);
|
||||
printf(" --logits-all return logits for all tokens in the batch (default: disabled)\n");
|
||||
printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
|
||||
printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
|
||||
@@ -700,6 +715,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" -np N, --parallel N number of parallel sequences to decode (default: %d)\n", params.n_parallel);
|
||||
printf(" -ns N, --sequences N number of sequences to decode (default: %d)\n", params.n_sequences);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
|
||||
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
|
||||
if (llama_mlock_supported()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
@@ -840,7 +857,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
}
|
||||
|
||||
if (params.ignore_eos) {
|
||||
params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
params.sampling_params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
{
|
||||
@@ -862,21 +879,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_bos);
|
||||
bool add_bos,
|
||||
bool special) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_bos, special);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
bool add_bos,
|
||||
bool special) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + add_bos;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
@@ -932,127 +951,6 @@ std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_to
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
// printf("`%d`", candidates_p.size);
|
||||
|
||||
if (grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
@@ -1204,6 +1102,8 @@ std::string get_sortable_timestamp() {
|
||||
|
||||
void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
|
||||
const llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
|
||||
fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
|
||||
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
|
||||
@@ -1250,21 +1150,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
|
||||
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
|
||||
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
|
||||
dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
|
||||
fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
|
||||
dump_string_yaml_multiline(stream, "cfg_negative_prompt", sparams.cfg_negative_prompt.c_str());
|
||||
fprintf(stream, "cfg_scale: %f # default: 1.0\n", sparams.cfg_scale);
|
||||
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
|
||||
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
|
||||
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
|
||||
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
|
||||
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
|
||||
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.frequency_penalty);
|
||||
dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
|
||||
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
|
||||
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
|
||||
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
|
||||
|
||||
const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
const auto logit_bias_eos = sparams.logit_bias.find(llama_token_eos(lctx));
|
||||
const bool ignore_eos = logit_bias_eos != sparams.logit_bias.end() && logit_bias_eos->second == -INFINITY;
|
||||
fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
|
||||
|
||||
dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
|
||||
@@ -1277,7 +1177,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
|
||||
|
||||
fprintf(stream, "logit_bias:\n");
|
||||
for (std::pair<llama_token, float> lb : params.logit_bias) {
|
||||
for (std::pair<llama_token, float> lb : sparams.logit_bias) {
|
||||
if (ignore_eos && lb.first == logit_bias_eos->first) {
|
||||
continue;
|
||||
}
|
||||
@@ -1301,30 +1201,30 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
|
||||
fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
|
||||
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
|
||||
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
|
||||
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
|
||||
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
|
||||
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
|
||||
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
|
||||
fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "no_penalize_nl: %s # default: false\n", !sparams.penalize_nl ? "true" : "false");
|
||||
fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
|
||||
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
|
||||
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
|
||||
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.presence_penalty);
|
||||
dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
|
||||
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
|
||||
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
|
||||
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
|
||||
dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
|
||||
fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
|
||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);
|
||||
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.repeat_penalty);
|
||||
|
||||
fprintf(stream, "reverse_prompt:\n");
|
||||
for (std::string ap : params.antiprompt) {
|
||||
@@ -1342,15 +1242,15 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
||||
fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
|
||||
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
|
||||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", params.temp);
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
|
||||
fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
|
||||
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
|
||||
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
|
||||
fprintf(stream, "typical_p: %f # default: 1.0\n", sparams.typical_p);
|
||||
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
|
||||
}
|
||||
|
||||
@@ -4,6 +4,8 @@
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include "sampling.h"
|
||||
|
||||
#define LOG_NO_FILE_LINE_FUNCTION
|
||||
#include "log.h"
|
||||
|
||||
@@ -49,31 +51,12 @@ struct gpt_params {
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
|
||||
// sampling parameters
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sampling_params;
|
||||
|
||||
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
||||
std::string model_draft = ""; // draft model for speculative decoding
|
||||
@@ -115,13 +98,16 @@ struct gpt_params {
|
||||
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
||||
bool ignore_eos = false; // ignore generated EOS tokens
|
||||
bool instruct = false; // instruction mode (used for Alpaca models)
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
bool logits_all = false; // return logits for all tokens in the batch
|
||||
bool use_mmap = true; // use mmap for faster loads
|
||||
bool use_mlock = false; // use mlock to keep model in memory
|
||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||
bool verbose_prompt = false; // print prompt tokens before generation
|
||||
bool infill = false; // use infill mode
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||
@@ -151,12 +137,14 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
bool add_bos,
|
||||
bool special = false);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
bool add_bos,
|
||||
bool special = false);
|
||||
|
||||
// tokenizes a token into a piece
|
||||
// should work similar to Python's `tokenizer.id_to_piece`
|
||||
@@ -180,36 +168,6 @@ std::string llama_detokenize_bpe(
|
||||
llama_context * ctx,
|
||||
const std::vector<llama_token> & tokens);
|
||||
|
||||
//
|
||||
// Sampling utils
|
||||
//
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - params: sampling parameters
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - grammar: grammar to use for sampling, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_grammar * grammar,
|
||||
const struct gpt_params & params,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
int idx = 0);
|
||||
|
||||
//
|
||||
// YAML utils
|
||||
//
|
||||
|
||||
166
common/sampling.cpp
Normal file
166
common/sampling.cpp
Normal file
@@ -0,0 +1,166 @@
|
||||
#include "sampling.h"
|
||||
|
||||
llama_sampling_context::~llama_sampling_context() {
|
||||
for (auto & it : sequence_contexts) {
|
||||
if (it.second.grammar != NULL) {
|
||||
llama_grammar_free(it.second.grammar);
|
||||
it.second.grammar = NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar) {
|
||||
llama_sampling_context result;
|
||||
|
||||
result.params = params.sampling_params;
|
||||
result.grammar = grammar;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Note: Creates the context if it doesn't exist, so this always return something.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it != ctx_sampling.sequence_contexts.end()) {
|
||||
return it->second;
|
||||
}
|
||||
llama_sampler_sequence_context new_ctx = {
|
||||
2.0f * ctx_sampling.params.mirostat_tau,
|
||||
ctx_sampling.grammar != NULL ? llama_grammar_copy(ctx_sampling.grammar) : NULL,
|
||||
};
|
||||
return ctx_sampling.sequence_contexts.insert({seq, new_ctx}).first->second;
|
||||
}
|
||||
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq) {
|
||||
const auto it = ctx_sampling.sequence_contexts.find(seq);
|
||||
if (it == ctx_sampling.sequence_contexts.end()) return false;
|
||||
if (it->second.grammar != NULL) {
|
||||
llama_grammar_free(it->second.grammar);
|
||||
it->second.grammar = NULL;
|
||||
}
|
||||
ctx_sampling.sequence_contexts.erase(it);
|
||||
return true;
|
||||
}
|
||||
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx,
|
||||
llama_seq_id seq) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const llama_sampling_params & params = ctx_sampling.params;
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
|
||||
float * logits = llama_get_logits_ith(ctx, idx);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
candidates.clear();
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
if (ctx_guidance) {
|
||||
llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
|
||||
}
|
||||
|
||||
// apply penalties
|
||||
if (!last_tokens.empty()) {
|
||||
const float nl_logit = logits[llama_token_nl(ctx)];
|
||||
const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
|
||||
|
||||
llama_sample_repetition_penalty(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
|
||||
last_tokens.data() + last_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, alpha_frequency, alpha_presence);
|
||||
|
||||
if (!penalize_nl) {
|
||||
for (size_t idx = 0; idx < cur_p.size; idx++) {
|
||||
if (cur_p.data[idx].id == llama_token_nl(ctx)) {
|
||||
cur_p.data[idx].logit = nl_logit;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_sampler_sequence_context & ctx_seq = llama_sampling_get_sequence_context(ctx_sampling, seq);
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_sample_grammar(ctx, &cur_p, ctx_seq.grammar);
|
||||
}
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx, &cur_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &ctx_seq.mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &ctx_seq.mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
size_t min_keep = std::max(1, params.n_probs);
|
||||
llama_sample_top_k (ctx, &cur_p, top_k, min_keep);
|
||||
llama_sample_tail_free (ctx, &cur_p, tfs_z, min_keep);
|
||||
llama_sample_typical (ctx, &cur_p, typical_p, min_keep);
|
||||
llama_sample_top_p (ctx, &cur_p, top_p, min_keep);
|
||||
llama_sample_temp(ctx, &cur_p, temp);
|
||||
|
||||
{
|
||||
const int n_top = 10;
|
||||
LOG("top %d candidates:\n", n_top);
|
||||
|
||||
for (int i = 0; i < n_top; i++) {
|
||||
const llama_token id = cur_p.data[i].id;
|
||||
(void)id; // To avoid a warning that id is unused when logging is disabled.
|
||||
LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
|
||||
}
|
||||
}
|
||||
|
||||
id = llama_sample_token(ctx, &cur_p);
|
||||
|
||||
LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
}
|
||||
|
||||
if (ctx_seq.grammar != NULL) {
|
||||
llama_grammar_accept_token(ctx, ctx_seq.grammar, id);
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
108
common/sampling.h
Normal file
108
common/sampling.h
Normal file
@@ -0,0 +1,108 @@
|
||||
#pragma once
|
||||
|
||||
#include "llama.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
// sampling parameters
|
||||
typedef struct llama_sampling_params {
|
||||
int32_t top_k = 40; // <= 0 to use vocab size
|
||||
float top_p = 0.95f; // 1.0 = disabled
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // 1.0 = disabled
|
||||
float repeat_penalty = 1.10f; // 1.0 = disabled
|
||||
int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float frequency_penalty = 0.00f; // 0.0 = disabled
|
||||
float presence_penalty = 0.00f; // 0.0 = disabled
|
||||
int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
|
||||
float mirostat_tau = 5.00f; // target entropy
|
||||
float mirostat_eta = 0.10f; // learning rate
|
||||
|
||||
bool penalize_nl = true; // consider newlines as a repeatable token
|
||||
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
|
||||
// Classifier-Free Guidance
|
||||
// https://arxiv.org/abs/2306.17806
|
||||
std::string cfg_negative_prompt; // string to help guidance
|
||||
float cfg_scale = 1.f; // How strong is guidance
|
||||
|
||||
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
|
||||
|
||||
} llama_sampling_params;
|
||||
|
||||
// per-sequence sampler context
|
||||
typedef struct llama_sampler_sequence_context {
|
||||
float mirostat_mu; // mirostat sampler state
|
||||
llama_grammar * grammar;
|
||||
} llama_sampler_sequence_context;
|
||||
|
||||
// general sampler context
|
||||
typedef struct llama_sampling_context {
|
||||
~llama_sampling_context();
|
||||
|
||||
// parameters that will be used for sampling and when creating
|
||||
// new llama_sampler_sequence_context instances
|
||||
llama_sampling_params params;
|
||||
|
||||
// map of sequence ids to sampler contexts
|
||||
std::unordered_map<llama_seq_id, llama_sampler_sequence_context> sequence_contexts;
|
||||
|
||||
// when non-NULL, new instances of llama_sampler_sequence_context
|
||||
// will get a copy of the grammar here
|
||||
// note: only the pointer is stored here, it is not a copy of
|
||||
// the grammar and shouldn't be freed
|
||||
llama_grammar * grammar;
|
||||
} llama_sampling_context;
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Create a new sampling context instance.
|
||||
llama_sampling_context llama_sampling_context_init(
|
||||
const struct gpt_params & params,
|
||||
llama_grammar * grammar = NULL);
|
||||
|
||||
// Fetches the sampler context for the specified sequence id (defaults to 0).
|
||||
// If the context for that sequence id doesn't already exist, it will be created with
|
||||
// default values based on the parameters in the ctx_sampling argument.
|
||||
llama_sampler_sequence_context & llama_sampling_get_sequence_context(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
|
||||
// Reset the sampler context for the supplied sequence id (defaults to 0).
|
||||
// This is necessary to reuse a sequence id or free memory used by sequences
|
||||
// that are no longer required.
|
||||
bool llama_sampling_context_reset(
|
||||
llama_sampling_context & ctx_sampling,
|
||||
const llama_seq_id seq = 0);
|
||||
|
||||
// this is a common sampling function used across the examples for convenience
|
||||
// it can serve as a starting point for implementing your own sampling function
|
||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||
// llama_sampling_context_reset when a sequence ends
|
||||
//
|
||||
// required:
|
||||
// - ctx: context to use for sampling
|
||||
// - ctx_sampling: sampling-specific context
|
||||
//
|
||||
// optional:
|
||||
// - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
|
||||
// - last_tokens: needed for repetition penalty, ignore if empty
|
||||
// - idx: sample from llama_get_logits_ith(ctx, idx)
|
||||
// - seq: sequence id to associate sampler state with
|
||||
//
|
||||
// returns:
|
||||
// - token: sampled token
|
||||
// - candidates: vector of candidate tokens
|
||||
//
|
||||
llama_token llama_sampling_sample(
|
||||
struct llama_context * ctx,
|
||||
struct llama_context * ctx_guidance,
|
||||
struct llama_sampling_context & ctx_sampling,
|
||||
const std::vector<llama_token> & last_tokens,
|
||||
std::vector<llama_token_data> & candidates,
|
||||
const int idx = 0,
|
||||
llama_seq_id seq = 0);
|
||||
8396
common/stb_image.h
Normal file
8396
common/stb_image.h
Normal file
File diff suppressed because it is too large
Load Diff
@@ -863,7 +863,7 @@ size_t tokenize_file(
|
||||
(int) buf.size(),
|
||||
out_tokens.data(),
|
||||
(int) out_tokens.size(),
|
||||
false);
|
||||
false, false);
|
||||
if (n_tokens < 0) {
|
||||
out_tokens.resize(-n_tokens);
|
||||
n_tokens = llama_tokenize(
|
||||
@@ -872,7 +872,7 @@ size_t tokenize_file(
|
||||
(int) buf.size(),
|
||||
out_tokens.data(),
|
||||
(int) out_tokens.size(),
|
||||
false);
|
||||
false, false);
|
||||
}
|
||||
if (n_tokens >= 0) {
|
||||
out_tokens.resize(n_tokens);
|
||||
@@ -966,7 +966,7 @@ size_t tokenize_file(
|
||||
(int) buf_sample.size(),
|
||||
tok_sample.data(),
|
||||
(int) tok_sample.size(),
|
||||
false);
|
||||
false, false);
|
||||
if (n_tokens < 0) {
|
||||
tok_sample.resize(-n_tokens);
|
||||
n_tokens = llama_tokenize(llama_get_model(lctx),
|
||||
@@ -974,7 +974,7 @@ size_t tokenize_file(
|
||||
(int) buf_sample.size(),
|
||||
tok_sample.data(),
|
||||
(int) tok_sample.size(),
|
||||
false);
|
||||
false, false);
|
||||
GGML_ASSERT(n_tokens >= 0);
|
||||
}
|
||||
GGML_ASSERT(n_tokens <= (int) tok_sample.size());
|
||||
|
||||
238
convert-bloom-hf-to-gguf.py
Executable file
238
convert-bloom-hf-to-gguf.py
Executable file
@@ -0,0 +1,238 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF bloom --> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
# Supported Models:
|
||||
# https://huggingface.co/bigscience/bloom-1b7
|
||||
# https://huggingface.co/bigscience/bloom-3b
|
||||
# https://huggingface.co/bigscience/bloom-7b1
|
||||
# https://huggingface.co/Langboat/bloom-1b4-zh
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert a Bloom model to a GGML compatible file")
|
||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||
parser.add_argument("ftype", type=int, help="output format - use 0 for float32, 1 for float16", choices=[0, 1], default = 1)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "BloomForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
sys.exit(1)
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.BLOOM
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layer"]
|
||||
|
||||
gguf_writer.add_name("Bloom")
|
||||
n_embed = hparams.get("hidden_size", hparams.get("n_embed"))
|
||||
n_head = hparams.get("n_head", hparams.get("num_attention_heads"))
|
||||
gguf_writer.add_context_length(hparams.get("seq_length", n_embed))
|
||||
gguf_writer.add_embedding_length(n_embed)
|
||||
gguf_writer.add_feed_forward_length(4 * n_embed)
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_head_count(n_head)
|
||||
gguf_writer.add_head_count_kv(n_head)
|
||||
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
||||
gguf_writer.add_file_type(ftype)
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
||||
# This causes downstream issues with mismatched tensor sizes when running the inference
|
||||
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH, block_count)
|
||||
|
||||
# params for qkv transform
|
||||
n_head_kv = hparams.get("n_head_kv", n_head)
|
||||
head_dim = n_embed // n_head
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||
|
||||
has_lm_head = True
|
||||
if "lm_head.weight" not in model_part.keys() and "output.weight" not in model_part.keys():
|
||||
has_lm_head = False
|
||||
|
||||
for original_name in model_part.keys():
|
||||
data = model_part[original_name]
|
||||
name = re.sub(r'transformer\.', '', original_name)
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
|
||||
# Map bloom-style qkv_linear to gpt-style qkv_linear
|
||||
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
|
||||
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
|
||||
qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
|
||||
data = np.concatenate(
|
||||
(qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
|
||||
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
|
||||
qkv_weights[:, 2, :, :].reshape((-1, n_embed))),
|
||||
axis=0
|
||||
)
|
||||
print("re-format attention.linear_qkv.weight")
|
||||
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
|
||||
qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
|
||||
data = np.concatenate(
|
||||
(qkv_bias[:, 0, :].reshape((n_embed,)),
|
||||
qkv_bias[:, 1, :].reshape((n_embed,)),
|
||||
qkv_bias[:, 2, :].reshape((n_embed,))),
|
||||
axis=0
|
||||
)
|
||||
print("re-format attention.linear_qkv.bias")
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Can not map tensor '" + name + "'")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(name, "=>", new_name + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
if not has_lm_head and name == "word_embeddings.weight":
|
||||
gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, "=>", "output.weight" + ", shape = " + str(data.shape) + ", " + str(old_dtype) + " --> " + str(data.dtype)) # noqa
|
||||
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
218
convert-mpt-hf-to-gguf.py
Executable file
218
convert-mpt-hf-to-gguf.py
Executable file
@@ -0,0 +1,218 @@
|
||||
#!/usr/bin/env python3
|
||||
# HF mpt--> gguf conversion
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import AutoTokenizer # type: ignore[import]
|
||||
|
||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
||||
import gguf
|
||||
|
||||
|
||||
def count_model_parts(dir_model: Path) -> int:
|
||||
num_parts = 0
|
||||
for filename in os.listdir(dir_model):
|
||||
if filename.startswith("pytorch_model-"):
|
||||
num_parts += 1
|
||||
|
||||
if num_parts > 0:
|
||||
print("gguf: found " + str(num_parts) + " model parts")
|
||||
return num_parts
|
||||
|
||||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(description="Convert an MPT model to a GGML compatible file")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--outfile", type=Path,
|
||||
help="path to write to; default: based on input",
|
||||
)
|
||||
parser.add_argument(
|
||||
"model", type=Path,
|
||||
help="directory containing model file, or model file itself (*.bin)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
||||
help="output format - use 0 for float32, 1 for float16",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
args = parse_args()
|
||||
|
||||
dir_model = args.model
|
||||
ftype = args.ftype
|
||||
if not dir_model.is_dir():
|
||||
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
# possible tensor data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
if args.outfile is not None:
|
||||
fname_out = args.outfile
|
||||
else:
|
||||
# output in the same directory as the model by default
|
||||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||
|
||||
print("gguf: loading model "+dir_model.name)
|
||||
|
||||
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||
hparams = json.load(f)
|
||||
|
||||
if hparams["architectures"][0] != "MPTForCausalLM":
|
||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||
|
||||
sys.exit()
|
||||
|
||||
# get number of model parts
|
||||
num_parts = count_model_parts(dir_model)
|
||||
|
||||
ARCH=gguf.MODEL_ARCH.MPT
|
||||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
||||
|
||||
print("gguf: get model metadata")
|
||||
|
||||
block_count = hparams["n_layers"]
|
||||
|
||||
gguf_writer.add_name(dir_model.name)
|
||||
gguf_writer.add_context_length(hparams["max_seq_len"])
|
||||
gguf_writer.add_embedding_length(hparams["d_model"])
|
||||
gguf_writer.add_block_count(block_count)
|
||||
gguf_writer.add_feed_forward_length(4 * hparams["d_model"])
|
||||
gguf_writer.add_head_count(hparams["n_heads"])
|
||||
if kv_n_heads := hparams["attn_config"].get("kv_n_heads"):
|
||||
gguf_writer.add_head_count_kv(kv_n_heads)
|
||||
gguf_writer.add_layer_norm_eps(1e-05)
|
||||
if hparams["attn_config"]["clip_qkv"] is not None:
|
||||
gguf_writer.add_clamp_kqv(hparams["attn_config"]["clip_qkv"])
|
||||
gguf_writer.add_max_alibi_bias(hparams["attn_config"]["alibi_bias_max"])
|
||||
|
||||
# TOKENIZATION
|
||||
|
||||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
# gpt2 tokenizer
|
||||
gguf_writer.add_tokenizer_model("gpt2")
|
||||
|
||||
print("gguf: get gpt2 tokenizer vocab")
|
||||
|
||||
# MPT token embedding tensors have dimension 50432 (hparams["vocab_size"]), but
|
||||
# there are only 50254 (len(tokenizer.vocab)) tokens in the vocab, presumably to
|
||||
# accomodate some "reserved" tokens; this is causing problems down the line in
|
||||
# llama.cpp, so we pad the vocab with dummy tokens:
|
||||
|
||||
vocab_size = hparams["vocab_size"]
|
||||
|
||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||
|
||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||
|
||||
for i in range(vocab_size):
|
||||
tokens.append(reverse_vocab[i] if i in reverse_vocab else f"[PAD{i}]")
|
||||
scores.append(0.0) # dummy
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
||||
# TENSORS
|
||||
|
||||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
||||
|
||||
# tensor info
|
||||
print("gguf: get tensor metadata")
|
||||
|
||||
if num_parts == 0:
|
||||
part_names = iter(("pytorch_model.bin",))
|
||||
else:
|
||||
part_names = (
|
||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
||||
)
|
||||
|
||||
for part_name in part_names:
|
||||
if args.vocab_only:
|
||||
break
|
||||
print("gguf: loading model part '" + part_name + "'")
|
||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
||||
|
||||
for name in model_part.keys():
|
||||
data = model_part[name]
|
||||
|
||||
old_dtype = data.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
||||
data = data.to(torch.float32)
|
||||
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print("Cannot map tensor '" + name + "'")
|
||||
continue # for the sake of compatibility with some old published models, don't quit
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||
|
||||
gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
# note: MPT output is tied to (same as) wte in original model;
|
||||
# for easier implementation in llama.cpp it's duplicated in GGUF, though :/
|
||||
if new_name == "token_embd.weight":
|
||||
gguf_writer.add_tensor("output.weight", data)
|
||||
|
||||
print("gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print("gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
if not args.vocab_only:
|
||||
print("gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
|
||||
gguf_writer.close()
|
||||
|
||||
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||
print("")
|
||||
@@ -49,7 +49,7 @@ According to the BLIS documentation, we could set the following
|
||||
environment variables to modify the behavior of openmp:
|
||||
|
||||
```bash
|
||||
export GOMP_GPU_AFFINITY="0-19"
|
||||
export GOMP_CPU_AFFINITY="0-19"
|
||||
export BLIS_NUM_THREADS=14
|
||||
```
|
||||
|
||||
|
||||
@@ -25,9 +25,11 @@ else()
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(speculative)
|
||||
add_subdirectory(parallel)
|
||||
add_subdirectory(embd-input)
|
||||
add_subdirectory(llava)
|
||||
add_subdirectory(llama-bench)
|
||||
add_subdirectory(beam-search)
|
||||
if (LLAMA_METAL)
|
||||
|
||||
5
examples/batched-bench/CMakeLists.txt
Normal file
5
examples/batched-bench/CMakeLists.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
set(TARGET batched-bench)
|
||||
add_executable(${TARGET} batched-bench.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
51
examples/batched-bench/README.md
Normal file
51
examples/batched-bench/README.md
Normal file
@@ -0,0 +1,51 @@
|
||||
# llama.cpp/example/batched-bench
|
||||
|
||||
Benchmark the batched decoding performance of `llama.cpp`
|
||||
|
||||
## Usage
|
||||
|
||||
There are 2 modes of operation:
|
||||
|
||||
- `prompt not shared` - each batch has a separate prompt of size `PP` (i.e. `N_KV = B*(PP + TG)`)
|
||||
- `prompt is shared` - there is a common prompt of size `PP` used by all batches (i.e. `N_KV = PP + B*TG`)
|
||||
|
||||
```bash
|
||||
./batched-bench MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>
|
||||
|
||||
# LLaMA 7B, F16, N_KV_MAX = 16384 (8GB), prompt not shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-f16.gguf 16384 0 99
|
||||
|
||||
# LLaMA 7B, Q8_0, N_KV_MAX = 16384 (8GB), prompt is shared
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 16384 1 99
|
||||
|
||||
# custom set of batches
|
||||
./batched-bench ./models/llama-7b/ggml-model-q8_0.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32
|
||||
```
|
||||
|
||||
## Sample results
|
||||
|
||||
- `PP` - prompt tokens per batch
|
||||
- `TG` - generated tokens per batch
|
||||
- `B` - number of batches
|
||||
- `N_KV` - required KV cache size
|
||||
- `T_PP` - prompt processing time (i.e. time to first token)
|
||||
- `S_PP` - prompt processing speed (`(B*PP)/T_PP` or `PP/T_PP`)
|
||||
- `T_TG` - time to generate all batches
|
||||
- `S_TG` - text generation speed (`(B*TG)/T_TG`)
|
||||
- `T` - total time
|
||||
- `S` - total speed (i.e. all tokens / total time)
|
||||
|
||||
| PP | TG | B | N_KV | T_PP s | S_PP t/s | T_TG s | S_TG t/s | T s | S t/s |
|
||||
|-------|--------|------|--------|----------|----------|----------|----------|----------|----------|
|
||||
| 128 | 128 | 1 | 256 | 0.108 | 1186.64 | 3.079 | 41.57 | 3.187 | 80.32 |
|
||||
| 128 | 128 | 2 | 512 | 0.198 | 1295.19 | 5.029 | 50.90 | 5.227 | 97.95 |
|
||||
| 128 | 128 | 4 | 1024 | 0.373 | 1373.96 | 6.878 | 74.44 | 7.251 | 141.23 |
|
||||
| 128 | 128 | 8 | 2048 | 0.751 | 1363.27 | 7.344 | 139.43 | 8.095 | 252.99 |
|
||||
| 128 | 128 | 16 | 4096 | 1.570 | 1304.68 | 8.455 | 242.23 | 10.024 | 408.60 |
|
||||
| 128 | 128 | 32 | 8192 | 3.408 | 1201.73 | 8.801 | 465.40 | 12.209 | 670.96 |
|
||||
| 128 | 256 | 1 | 384 | 0.107 | 1196.70 | 6.329 | 40.45 | 6.436 | 59.67 |
|
||||
| 128 | 256 | 2 | 768 | 0.194 | 1317.45 | 10.239 | 50.00 | 10.433 | 73.61 |
|
||||
| 128 | 256 | 4 | 1536 | 0.366 | 1399.03 | 13.960 | 73.35 | 14.326 | 107.22 |
|
||||
| 128 | 256 | 8 | 3072 | 0.751 | 1363.92 | 15.110 | 135.54 | 15.861 | 193.69 |
|
||||
| 128 | 256 | 16 | 6144 | 1.569 | 1304.93 | 18.073 | 226.64 | 19.642 | 312.80 |
|
||||
| 128 | 256 | 32 | 12288 | 3.409 | 1201.35 | 19.223 | 426.15 | 22.633 | 542.93 |
|
||||
251
examples/batched-bench/batched-bench.cpp
Normal file
251
examples/batched-bench/batched-bench.cpp
Normal file
@@ -0,0 +1,251 @@
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
// mutates the input string
|
||||
static std::vector<int> parse_list(char * p) {
|
||||
std::vector<int> ret;
|
||||
|
||||
char * q = p;
|
||||
|
||||
while (*p) {
|
||||
if (*p == ',') {
|
||||
*p = '\0';
|
||||
ret.push_back(std::atoi(q));
|
||||
q = p + 1;
|
||||
}
|
||||
|
||||
++p;
|
||||
}
|
||||
|
||||
ret.push_back(std::atoi(q));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
if (argc == 1 || argv[1][0] == '-') {
|
||||
printf("usage: %s MODEL_PATH [N_KV_MAX] [IS_PP_SHARED] [NGL] [MMQ] <PP> <TG> <PL>\n" , argv[0]);
|
||||
printf(" <PP>, <TG> and PL are comma-separated lists of numbers without spaces\n\n");
|
||||
printf(" example: %s ggml-model-f16.gguf 2048 0 999 0 128,256,512 128,256 1,2,4,8,16,32\n\n", argv[0]);
|
||||
return 1 ;
|
||||
}
|
||||
|
||||
int n_kv_max = 2048;
|
||||
int is_pp_shared = 0;
|
||||
int n_gpu_layers = 0;
|
||||
int mmq = 0;
|
||||
|
||||
std::vector<int> n_pp = { 128, 256, 512, 1024, 2048, 3584, 7680, };
|
||||
std::vector<int> n_tg = { 128, 256, };
|
||||
std::vector<int> n_pl = { 1, 2, 4, 8, 16, 32, };
|
||||
//std::vector<int> n_pl = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32, };
|
||||
|
||||
if (argc >= 2) {
|
||||
params.model = argv[1];
|
||||
}
|
||||
|
||||
if (argc >= 3) {
|
||||
n_kv_max = std::atoi(argv[2]);
|
||||
}
|
||||
|
||||
if (argc >= 4) {
|
||||
is_pp_shared = std::atoi(argv[3]);
|
||||
}
|
||||
|
||||
if (argc >= 5) {
|
||||
n_gpu_layers = std::atoi(argv[4]);
|
||||
}
|
||||
|
||||
if (argc >= 6) {
|
||||
mmq = std::atoi(argv[5]);
|
||||
}
|
||||
|
||||
if (argc >= 7) {
|
||||
n_pp = parse_list(argv[6]);
|
||||
}
|
||||
|
||||
if (argc >= 8) {
|
||||
n_tg = parse_list(argv[7]);
|
||||
}
|
||||
|
||||
if (argc >= 9) {
|
||||
n_pl = parse_list(argv[8]);
|
||||
}
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_max;
|
||||
ctx_params.n_batch = 512;
|
||||
ctx_params.mul_mat_q = mmq;
|
||||
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_batch batch = llama_batch_init(n_kv_max, 0);
|
||||
|
||||
// decode in batches of ctx_params.n_batch tokens
|
||||
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
||||
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
||||
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
||||
|
||||
llama_batch batch_view = {
|
||||
n_tokens,
|
||||
batch.token + i,
|
||||
nullptr,
|
||||
batch.pos + i,
|
||||
batch.seq_id + i,
|
||||
batch.logits + i,
|
||||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
};
|
||||
|
||||
// warm up
|
||||
{
|
||||
batch.n_tokens = 16;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "B", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s", "T s", "S t/s");
|
||||
LOG_TEE("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "----", "------", "--------", "--------", "--------", "--------", "--------", "--------");
|
||||
|
||||
for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) {
|
||||
for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) {
|
||||
for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) {
|
||||
const int pp = n_pp[i_pp];
|
||||
const int tg = n_tg[i_tg];
|
||||
const int pl = n_pl[i_pl];
|
||||
|
||||
const int n_ctx_req = is_pp_shared ? pp + pl*tg : pl*(pp + tg);
|
||||
|
||||
if (n_ctx_req > n_kv_max) {
|
||||
continue;
|
||||
}
|
||||
|
||||
batch.n_tokens = is_pp_shared ? pp : pl*pp;
|
||||
|
||||
for (int i = 0; i < batch.n_tokens; ++i) {
|
||||
batch.token[i] = 0;
|
||||
batch.pos[i] = i;
|
||||
batch.seq_id[i] = 0;
|
||||
batch.logits[i] = false;
|
||||
}
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
const auto t_pp_start = ggml_time_us();
|
||||
|
||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (is_pp_shared) {
|
||||
for (int32_t i = 1; i < pl; ++i) {
|
||||
llama_kv_cache_seq_cp(ctx, 0, i, 0, pp);
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_pp_end = ggml_time_us();
|
||||
|
||||
const auto t_tg_start = ggml_time_us();
|
||||
|
||||
for (int i = 0; i < tg; ++i) {
|
||||
batch.n_tokens = pl;
|
||||
|
||||
for (int j = 0; j < pl; ++j) {
|
||||
batch.token[j] = 0;
|
||||
batch.pos[j] = pp + i;
|
||||
batch.seq_id[j] = j;
|
||||
batch.logits[j] = true;
|
||||
}
|
||||
|
||||
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_tg_end = ggml_time_us();
|
||||
|
||||
const int32_t n_kv = n_ctx_req;
|
||||
|
||||
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f;
|
||||
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f;
|
||||
const float t = t_pp + t_tg;
|
||||
|
||||
const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp;
|
||||
const float speed_tg = pl*tg / t_tg;
|
||||
const float speed = n_kv / t;
|
||||
|
||||
LOG_TEE("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
fprintf(stderr, "\n\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
9
examples/batched.swift/.gitignore
vendored
Normal file
9
examples/batched.swift/.gitignore
vendored
Normal file
@@ -0,0 +1,9 @@
|
||||
.DS_Store
|
||||
/.build
|
||||
/Packages
|
||||
xcuserdata/
|
||||
DerivedData/
|
||||
.swiftpm/configuration/registries.json
|
||||
.swiftpm/xcode/package.xcworkspace/contents.xcworkspacedata
|
||||
.netrc
|
||||
batched_swift
|
||||
6
examples/batched.swift/Makefile
Executable file
6
examples/batched.swift/Makefile
Executable file
@@ -0,0 +1,6 @@
|
||||
.PHONY: build
|
||||
|
||||
build:
|
||||
xcodebuild -scheme batched_swift -destination "generic/platform=macOS" -derivedDataPath build
|
||||
rm -f ./batched_swift
|
||||
ln -s ./build/Build/Products/Debug/batched_swift ./batched_swift
|
||||
22
examples/batched.swift/Package.swift
Normal file
22
examples/batched.swift/Package.swift
Normal file
@@ -0,0 +1,22 @@
|
||||
// swift-tools-version: 5.5
|
||||
// The swift-tools-version declares the minimum version of Swift required to build this package.
|
||||
|
||||
import PackageDescription
|
||||
|
||||
let package = Package(
|
||||
name: "batched_swift",
|
||||
platforms: [.macOS(.v12)],
|
||||
dependencies: [
|
||||
.package(name: "llama", path: "../../"),
|
||||
],
|
||||
targets: [
|
||||
// Targets are the basic building blocks of a package, defining a module or a test suite.
|
||||
// Targets can depend on other targets in this package and products from dependencies.
|
||||
.executableTarget(
|
||||
name: "batched_swift",
|
||||
dependencies: ["llama"],
|
||||
path: "Sources",
|
||||
linkerSettings: [.linkedFramework("Foundation"), .linkedFramework("AppKit")]
|
||||
),
|
||||
]
|
||||
)
|
||||
4
examples/batched.swift/README.md
Normal file
4
examples/batched.swift/README.md
Normal file
@@ -0,0 +1,4 @@
|
||||
This is a swift clone of `examples/batched`.
|
||||
|
||||
$ `make`
|
||||
$ `./swift MODEL_PATH [PROMPT] [PARALLEL]`
|
||||
255
examples/batched.swift/Sources/main.swift
Normal file
255
examples/batched.swift/Sources/main.swift
Normal file
@@ -0,0 +1,255 @@
|
||||
import Foundation
|
||||
import llama
|
||||
|
||||
let arguments = CommandLine.arguments
|
||||
|
||||
// Check that we have at least one argument (the model path)
|
||||
guard arguments.count > 1 else {
|
||||
print("Usage: swift MODEL_PATH [PROMPT] [PARALLEL]")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
let modelPath: String = arguments[1]
|
||||
let prompt: String = arguments.count > 2 ? arguments[2] : "Hello my name is"
|
||||
let n_parallel: Int = arguments.count > 3 && Int(arguments[3]) != nil ? Int(arguments[3])! : 1
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
let n_len: Int = 32
|
||||
|
||||
// init LLM
|
||||
llama_backend_init(false)
|
||||
defer {
|
||||
llama_backend_free()
|
||||
}
|
||||
|
||||
let model_params = llama_model_default_params()
|
||||
guard let model = llama_load_model_from_file(modelPath.cString(using: .utf8), model_params) else {
|
||||
print("Failed to load model")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
defer {
|
||||
llama_free_model(model)
|
||||
}
|
||||
|
||||
var tokens = tokenize(text: prompt, add_bos: true)
|
||||
|
||||
let n_kv_req = UInt32(tokens.count) + UInt32((n_len - Int(tokens.count)) * n_parallel)
|
||||
|
||||
var context_params = llama_context_default_params()
|
||||
context_params.seed = 1234
|
||||
context_params.n_ctx = n_kv_req
|
||||
context_params.n_batch = UInt32(max(n_len, n_parallel))
|
||||
context_params.n_threads = 8
|
||||
context_params.n_threads_batch = 8
|
||||
|
||||
let context = llama_new_context_with_model(model, context_params)
|
||||
guard context != nil else {
|
||||
print("Failed to initialize context")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
defer {
|
||||
llama_free(context)
|
||||
}
|
||||
|
||||
let n_ctx = llama_n_ctx(context)
|
||||
|
||||
print("\nn_len = \(n_len), n_ctx = \(n_ctx), n_batch = \(context_params.n_batch), n_parallel = \(n_parallel), n_kv_req = \(n_kv_req)\n")
|
||||
|
||||
if n_kv_req > n_ctx {
|
||||
print("error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", n_kv_req)
|
||||
exit(1)
|
||||
}
|
||||
|
||||
var buffer: [CChar] = []
|
||||
for id: llama_token in tokens {
|
||||
print(token_to_piece(token: id, buffer: &buffer) ?? "", terminator: "")
|
||||
}
|
||||
|
||||
print("\n")
|
||||
|
||||
var batch = llama_batch_init(max(Int32(tokens.count), Int32(n_parallel)), 0)
|
||||
defer {
|
||||
llama_batch_free(batch)
|
||||
}
|
||||
|
||||
// evaluate the initial prompt
|
||||
batch.n_tokens = Int32(tokens.count)
|
||||
|
||||
for (i, token) in tokens.enumerated() {
|
||||
batch.token[i] = token
|
||||
batch.pos[i] = Int32(i)
|
||||
batch.seq_id[i] = 0
|
||||
batch.logits[i] = 0
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[Int(batch.n_tokens) - 1] = 1
|
||||
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("llama_decode() failed")
|
||||
exit(1)
|
||||
}
|
||||
|
||||
for i in 1 ..< n_parallel {
|
||||
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
print("generating \(n_parallel) sequences ...\n")
|
||||
}
|
||||
|
||||
var streams: [String] = .init(repeating: "", count: n_parallel)
|
||||
var streamBuffers: [[CChar]] = .init(repeating: [], count: n_parallel)
|
||||
var i_batch = [Int32](repeating: batch.n_tokens - 1, count: n_parallel)
|
||||
|
||||
var n_cur = batch.n_tokens
|
||||
var n_decode = 0
|
||||
|
||||
let t_main_start = ggml_time_us()
|
||||
|
||||
while n_cur <= n_len {
|
||||
// prepare the next batch
|
||||
batch.n_tokens = 0
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for i in 0 ..< n_parallel {
|
||||
if i_batch[i] < 0 {
|
||||
// the stream has already finished
|
||||
continue
|
||||
}
|
||||
|
||||
var n_vocab = llama_n_vocab(model)
|
||||
var logits = llama_get_logits_ith(context, i_batch[i])
|
||||
|
||||
var candidates: [llama_token_data] = .init(repeating: llama_token_data(), count: Int(n_vocab))
|
||||
|
||||
for token_id in 0 ..< n_vocab {
|
||||
candidates.append(llama_token_data(id: token_id, logit: logits![Int(token_id)], p: 0.0))
|
||||
}
|
||||
|
||||
var candidates_p: llama_token_data_array = .init(
|
||||
data: &candidates,
|
||||
size: candidates.count,
|
||||
sorted: false
|
||||
)
|
||||
|
||||
let top_k: Int32 = 40
|
||||
let top_p: Float = 0.9
|
||||
let temp: Float = 0.4
|
||||
|
||||
llama_sample_top_k(context, &candidates_p, top_k, 1)
|
||||
llama_sample_top_p(context, &candidates_p, top_p, 1)
|
||||
llama_sample_temp(context, &candidates_p, temp)
|
||||
|
||||
let new_token_id = llama_sample_token(context, &candidates_p)
|
||||
|
||||
// const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of stream? -> mark the stream as finished
|
||||
if new_token_id == llama_token_eos(context) || n_cur == n_len {
|
||||
i_batch[i] = -1
|
||||
// print("")
|
||||
if n_parallel > 1 {
|
||||
print("stream \(i) finished at n_cur = \(n_cur)")
|
||||
}
|
||||
|
||||
continue
|
||||
}
|
||||
|
||||
let nextStringPiece = token_to_piece(token: new_token_id, buffer: &streamBuffers[i]) ?? ""
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if n_parallel == 1 {
|
||||
print(nextStringPiece, terminator: "")
|
||||
}
|
||||
streams[i] += nextStringPiece
|
||||
|
||||
// push this new token for next evaluation
|
||||
batch.token[Int(batch.n_tokens)] = new_token_id
|
||||
batch.pos[Int(batch.n_tokens)] = n_cur
|
||||
batch.seq_id[Int(batch.n_tokens)] = Int32(i)
|
||||
batch.logits[Int(batch.n_tokens)] = 1
|
||||
|
||||
i_batch[i] = batch.n_tokens
|
||||
|
||||
batch.n_tokens += 1
|
||||
|
||||
n_decode += 1
|
||||
}
|
||||
|
||||
// all streams are finished
|
||||
if batch.n_tokens == 0 {
|
||||
break
|
||||
}
|
||||
|
||||
n_cur += 1
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if llama_decode(context, batch) != 0 {
|
||||
print("llama_decode() failed")
|
||||
exit(1)
|
||||
}
|
||||
}
|
||||
|
||||
if n_parallel > 1 {
|
||||
print("\n")
|
||||
for (i, stream) in streams.enumerated() {
|
||||
print("sequence \(i):\n\n\(prompt)\(stream)\n")
|
||||
}
|
||||
}
|
||||
|
||||
let t_main_end = ggml_time_us()
|
||||
|
||||
print("decoded \(n_decode) tokens in \(String(format: "%.2f", Double(t_main_end - t_main_start) / 1_000_000.0)) s, speed: \(String(format: "%.2f", Double(n_decode) / (Double(t_main_end - t_main_start) / 1_000_000.0))) t/s\n")
|
||||
|
||||
llama_print_timings(context)
|
||||
|
||||
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {
|
||||
let n_tokens = text.count + (add_bos ? 1 : 0)
|
||||
let tokens = UnsafeMutablePointer<llama_token>.allocate(capacity: n_tokens)
|
||||
let tokenCount = llama_tokenize(model, text, Int32(text.count), tokens, Int32(n_tokens), add_bos, /*special tokens*/ false)
|
||||
var swiftTokens: [llama_token] = []
|
||||
for i in 0 ..< tokenCount {
|
||||
swiftTokens.append(tokens[Int(i)])
|
||||
}
|
||||
tokens.deallocate()
|
||||
return swiftTokens
|
||||
}
|
||||
|
||||
private func token_to_piece(token: llama_token, buffer: inout [CChar]) -> String? {
|
||||
var result = [CChar](repeating: 0, count: 8)
|
||||
let nTokens = llama_token_to_piece(model, token, &result, Int32(result.count))
|
||||
if nTokens < 0 {
|
||||
if result.count >= -Int(nTokens) {
|
||||
result.removeLast(-Int(nTokens))
|
||||
} else {
|
||||
result.removeAll()
|
||||
}
|
||||
let check = llama_token_to_piece(
|
||||
model,
|
||||
token,
|
||||
&result,
|
||||
Int32(result.count)
|
||||
)
|
||||
assert(check == nTokens)
|
||||
} else {
|
||||
result.removeLast(result.count - Int(nTokens))
|
||||
}
|
||||
if buffer.isEmpty, let utfString = String(cString: result + [0], encoding: .utf8) {
|
||||
return utfString
|
||||
} else {
|
||||
buffer.append(contentsOf: result)
|
||||
let data = Data(buffer.map { UInt8(bitPattern: $0) })
|
||||
if buffer.count >= 4 { // 4 bytes is the max length of a utf8 character so if we're here we need to reset the buffer
|
||||
buffer = []
|
||||
}
|
||||
guard let bufferString = String(data: data, encoding: .utf8) else {
|
||||
return nil
|
||||
}
|
||||
buffer = []
|
||||
return bufferString
|
||||
}
|
||||
return nil
|
||||
}
|
||||
@@ -66,7 +66,7 @@ int main(int argc, char ** argv) {
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
@@ -128,21 +128,22 @@ bool eval_string(struct MyModel * mymodel,const char* str){
|
||||
llama_token sampling_id(struct MyModel* mymodel) {
|
||||
llama_context* ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
// int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const float temp = sparams.temp;
|
||||
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
|
||||
const float top_p = sparams.top_p;
|
||||
const float tfs_z = sparams.tfs_z;
|
||||
const float typical_p = sparams.typical_p;
|
||||
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
// const float repeat_penalty = params.repeat_penalty;
|
||||
// const float alpha_presence = params.presence_penalty;
|
||||
// const float alpha_frequency = params.frequency_penalty;
|
||||
const int mirostat = params.mirostat;
|
||||
const float mirostat_tau = params.mirostat_tau;
|
||||
const float mirostat_eta = params.mirostat_eta;
|
||||
const int mirostat = sparams.mirostat;
|
||||
const float mirostat_tau = sparams.mirostat_tau;
|
||||
const float mirostat_eta = sparams.mirostat_eta;
|
||||
// const bool penalize_nl = params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
@@ -151,7 +152,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
|
||||
@@ -529,13 +529,14 @@ static void init_lora(const struct my_llama_model * model, struct my_llama_lora
|
||||
set_param_lora(lora);
|
||||
|
||||
// measure data size
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
lora->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
|
||||
ggml_allocr_free(alloc);
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
lora->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
|
||||
alloc_lora(alloc, lora);
|
||||
ggml_allocr_free(alloc);
|
||||
@@ -1714,11 +1715,9 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_allocr_alloc(alloc, tokens_input);
|
||||
ggml_allocr_alloc(alloc, target_probs);
|
||||
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
ggml_allocr_free(alloc);
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
|
||||
@@ -104,6 +104,7 @@ static void sigint_handler(int signo) {
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
g_params = ¶ms;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
@@ -206,7 +207,7 @@ int main(int argc, char ** argv) {
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
@@ -233,10 +234,22 @@ int main(int argc, char ** argv) {
|
||||
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
bool suff_rm_leading_spc = params.escape;
|
||||
if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
std::vector<llama_token> embd_inp;
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
const int space_token = 29871;
|
||||
if (suff_rm_leading_spc && inp_sfx[0] == space_token) {
|
||||
inp_sfx.erase(inp_sfx.begin());
|
||||
}
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||
if (add_bos) {
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx));
|
||||
}
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
@@ -257,9 +270,9 @@ int main(int argc, char ** argv) {
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
@@ -300,7 +313,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
@@ -346,7 +359,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
@@ -364,8 +377,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
@@ -422,6 +435,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
@@ -540,7 +554,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
@@ -627,10 +641,27 @@ int main(int argc, char ** argv) {
|
||||
buffer.clear();
|
||||
// done taking input, reset color
|
||||
console::set_display(console::reset);
|
||||
|
||||
if (params.escape) {
|
||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||
process_escapes(params.input_prefix);
|
||||
process_escapes(params.input_suffix);
|
||||
}
|
||||
suff_rm_leading_spc = params.escape;
|
||||
if (suff_rm_leading_spc && params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
// tokenize new prefix and suffix
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, false);
|
||||
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, false);
|
||||
if (suff_rm_leading_spc && inp_sfx[0] == space_token) {
|
||||
inp_sfx.erase(inp_sfx.begin());
|
||||
}
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||
if (add_bos) {
|
||||
inp_pfx.insert(inp_pfx.begin(), llama_token_bos(ctx));
|
||||
}
|
||||
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||
embd_inp = inp_pfx;
|
||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||
|
||||
20
examples/llava/CMakeLists.txt
Normal file
20
examples/llava/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
set(TARGET clip)
|
||||
add_library(${TARGET} clip.cpp clip.h)
|
||||
install(TARGETS ${TARGET} LIBRARY)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if (NOT MSVC)
|
||||
target_compile_options(${TARGET} PRIVATE -Wno-cast-qual) # stb_image.h
|
||||
endif()
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
|
||||
set(TARGET llava)
|
||||
add_executable(${TARGET} llava.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
if(TARGET BUILD_INFO)
|
||||
add_dependencies(${TARGET} BUILD_INFO)
|
||||
endif()
|
||||
57
examples/llava/README.md
Normal file
57
examples/llava/README.md
Normal file
@@ -0,0 +1,57 @@
|
||||
# LLaVA
|
||||
|
||||
Currently this implementation supports [llava-v1.5](https://huggingface.co/liuhaotian/llava-v1.5-7b) variants.
|
||||
|
||||
The pre-converted [7b](https://huggingface.co/mys/ggml_llava-v1.5-7b)
|
||||
and [13b](https://huggingface.co/mys/ggml_llava-v1.5-13b)
|
||||
models are available.
|
||||
|
||||
After API is confirmed, more models will be supported / uploaded.
|
||||
|
||||
## Usage
|
||||
Build with cmake or run `make llava` to build it.
|
||||
|
||||
After building, run: `./llava` to see the usage. For example:
|
||||
|
||||
```sh
|
||||
./llava -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
|
||||
```
|
||||
|
||||
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
|
||||
|
||||
## Model conversion
|
||||
|
||||
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
|
||||
|
||||
```sh
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
|
||||
|
||||
git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
||||
```
|
||||
|
||||
2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
||||
```sh
|
||||
python ./convert.py ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support server mode.
|
||||
- [ ] Support non-CPU backend for the image encoding part.
|
||||
- [ ] Support different sampling methods.
|
||||
- [ ] Support more model variants.
|
||||
1062
examples/llava/clip.cpp
Normal file
1062
examples/llava/clip.cpp
Normal file
File diff suppressed because it is too large
Load Diff
73
examples/llava/clip.h
Normal file
73
examples/llava/clip.h
Normal file
@@ -0,0 +1,73 @@
|
||||
#ifndef CLIP_H
|
||||
#define CLIP_H
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
struct clip_ctx;
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct clip_vision_hparams {
|
||||
int32_t image_size;
|
||||
int32_t patch_size;
|
||||
int32_t hidden_size;
|
||||
int32_t n_intermediate;
|
||||
int32_t projection_dim;
|
||||
int32_t n_head;
|
||||
int32_t n_layer;
|
||||
float eps;
|
||||
};
|
||||
|
||||
struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
|
||||
|
||||
void clip_free(struct clip_ctx * ctx);
|
||||
|
||||
size_t clip_embd_nbytes(struct clip_ctx * ctx);
|
||||
int clip_n_patches(struct clip_ctx * ctx);
|
||||
int clip_n_mmproj_embd(struct clip_ctx * ctx);
|
||||
|
||||
// RGB uint8 image
|
||||
struct clip_image_u8 {
|
||||
int nx;
|
||||
int ny;
|
||||
uint8_t * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
// RGB float32 image (NHWC)
|
||||
// Memory layout: RGBRGBRGB...
|
||||
struct clip_image_f32 {
|
||||
int nx;
|
||||
int ny;
|
||||
float * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_u8_batch {
|
||||
struct clip_image_u8 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_f32_batch {
|
||||
struct clip_image_f32 * data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
struct clip_image_u8 * make_clip_image_u8();
|
||||
struct clip_image_f32 * make_clip_image_f32();
|
||||
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res, const bool pad2square);
|
||||
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec);
|
||||
|
||||
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
|
||||
float * vec);
|
||||
|
||||
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // CLIP_H
|
||||
250
examples/llava/convert-image-encoder-to-gguf.py
Normal file
250
examples/llava/convert-image-encoder-to-gguf.py
Normal file
@@ -0,0 +1,250 @@
|
||||
import argparse
|
||||
import os
|
||||
import json
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
from gguf import *
|
||||
from transformers import CLIPModel, CLIPProcessor
|
||||
|
||||
TEXT = "clip.text"
|
||||
VISION = "clip.vision"
|
||||
|
||||
|
||||
def k(raw_key: str, arch: str) -> str:
|
||||
return raw_key.format(arch=arch)
|
||||
|
||||
|
||||
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
|
||||
if name in (
|
||||
"logit_scale",
|
||||
"text_model.embeddings.position_ids",
|
||||
"vision_model.embeddings.position_ids",
|
||||
):
|
||||
return True
|
||||
|
||||
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
|
||||
return True
|
||||
|
||||
if name.startswith("v") and not has_vision:
|
||||
return True
|
||||
|
||||
if name.startswith("t") and not has_text:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def get_tensor_name(name: str) -> str:
|
||||
if "projection" in name:
|
||||
return name
|
||||
|
||||
if "mm_projector" in name:
|
||||
return name.replace("model.mm_projector", "mm")
|
||||
|
||||
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||
|
||||
|
||||
def bytes_to_unicode():
|
||||
"""
|
||||
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||
The reversible bpe codes work on unicode strings.
|
||||
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||
"""
|
||||
bs = (
|
||||
list(range(ord("!"), ord("~") + 1))
|
||||
+ list(range(ord("¡"), ord("¬") + 1))
|
||||
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||
)
|
||||
cs = bs[:]
|
||||
n = 0
|
||||
for b in range(2**8):
|
||||
if b not in bs:
|
||||
bs.append(b)
|
||||
cs.append(2**8 + n)
|
||||
n += 1
|
||||
cs = [chr(n) for n in cs]
|
||||
return dict(zip(bs, cs))
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
|
||||
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||
ap.add_argument("--text-only", action="store_true", required=False,
|
||||
help="Save a text-only model. It can't be used to encode images")
|
||||
ap.add_argument("--vision-only", action="store_true", required=False,
|
||||
help="Save a vision-only model. It can't be used to encode texts")
|
||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
|
||||
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
|
||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||
|
||||
args = ap.parse_args()
|
||||
|
||||
|
||||
if args.text_only and args.vision_only:
|
||||
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||
exit(1)
|
||||
|
||||
if args.use_f32:
|
||||
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||
|
||||
# output in the same directory as the model if output_dir is None
|
||||
dir_model = args.model_dir
|
||||
|
||||
|
||||
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||
vocab = json.load(f)
|
||||
tokens = [key for key in vocab]
|
||||
|
||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||
config = json.load(f)
|
||||
v_hparams = config["vision_config"]
|
||||
t_hparams = config["text_config"]
|
||||
|
||||
# possible data types
|
||||
# ftype == 0 -> float32
|
||||
# ftype == 1 -> float16
|
||||
#
|
||||
# map from ftype to string
|
||||
ftype_str = ["f32", "f16"]
|
||||
|
||||
ftype = 1
|
||||
if args.use_f32:
|
||||
ftype = 0
|
||||
|
||||
|
||||
model = CLIPModel.from_pretrained(dir_model)
|
||||
processor = CLIPProcessor.from_pretrained(dir_model)
|
||||
|
||||
fname_middle = None
|
||||
has_text_encoder = True
|
||||
has_vision_encoder = True
|
||||
has_llava_projector = False
|
||||
if args.text_only:
|
||||
fname_middle = "text-"
|
||||
has_vision_encoder = False
|
||||
elif args.vision_only:
|
||||
fname_middle = "vision-"
|
||||
has_text_encoder = False
|
||||
elif args.llava_projector is not None:
|
||||
fname_middle = "mmproj-"
|
||||
has_text_encoder = False
|
||||
has_llava_projector = True
|
||||
else:
|
||||
fname_middle = ""
|
||||
|
||||
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||
|
||||
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||
fout.add_bool("clip.has_llava_projector", has_llava_projector)
|
||||
fout.add_file_type(ftype)
|
||||
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
|
||||
fout.add_name(model_name)
|
||||
if args.text_only:
|
||||
fout.add_description("text-only CLIP model")
|
||||
elif args.vision_only and not has_llava_projector:
|
||||
fout.add_description("vision-only CLIP model")
|
||||
elif has_llava_projector:
|
||||
fout.add_description("image encoder for LLaVA")
|
||||
else:
|
||||
fout.add_description("two-tower CLIP model")
|
||||
|
||||
if has_text_encoder:
|
||||
# text_model hparams
|
||||
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||
fout.add_token_list(tokens)
|
||||
|
||||
if has_vision_encoder:
|
||||
# vision_model hparams
|
||||
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
||||
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||
|
||||
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
|
||||
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
|
||||
fout.add_array("clip.vision.image_mean", image_mean)
|
||||
fout.add_array("clip.vision.image_std", image_std)
|
||||
|
||||
use_gelu = v_hparams["hidden_act"] == "gelu"
|
||||
fout.add_bool("clip.use_gelu", use_gelu)
|
||||
|
||||
|
||||
if has_llava_projector:
|
||||
model.vision_model.encoder.layers.pop(-1)
|
||||
projector = torch.load(args.llava_projector)
|
||||
for name, data in projector.items():
|
||||
name = get_tensor_name(name)
|
||||
if data.ndim == 2:
|
||||
data = data.squeeze().numpy().astype(np.float16)
|
||||
else:
|
||||
data = data.squeeze().numpy().astype(np.float32)
|
||||
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
print("Projector tensors added\n")
|
||||
|
||||
state_dict = model.state_dict()
|
||||
for name, data in state_dict.items():
|
||||
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
|
||||
# we don't need this
|
||||
print(f"skipping parameter: {name}")
|
||||
continue
|
||||
|
||||
name = get_tensor_name(name)
|
||||
data = data.squeeze().numpy()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
|
||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||
ftype_cur = 0
|
||||
if n_dims == 4:
|
||||
print(f"tensor {name} is always saved in f16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
elif ftype == 1:
|
||||
if name[-7:] == ".weight" and n_dims == 2:
|
||||
print(" Converting to float16")
|
||||
data = data.astype(np.float16)
|
||||
ftype_cur = 1
|
||||
else:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
else:
|
||||
if data.dtype != np.float32:
|
||||
print(" Converting to float32")
|
||||
data = data.astype(np.float32)
|
||||
ftype_cur = 0
|
||||
|
||||
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||
fout.add_tensor(name, data)
|
||||
|
||||
|
||||
fout.write_header_to_file()
|
||||
fout.write_kv_data_to_file()
|
||||
fout.write_tensors_to_file()
|
||||
fout.close()
|
||||
|
||||
print("Done. Output file: " + fname_out)
|
||||
30
examples/llava/llava-surgery.py
Normal file
30
examples/llava/llava-surgery.py
Normal file
@@ -0,0 +1,30 @@
|
||||
import argparse
|
||||
import glob
|
||||
import os
|
||||
import torch
|
||||
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
|
||||
args = ap.parse_args()
|
||||
|
||||
# find the model part that includes the the multimodal projector weights
|
||||
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
|
||||
checkpoint = torch.load(path)
|
||||
|
||||
# get a list of mm tensor names
|
||||
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
|
||||
|
||||
# store these tensors in a new dictionary and torch.save them
|
||||
projector = {name: checkpoint[name] for name in mm_tensors}
|
||||
torch.save(projector, f"{args.model}/llava.projector")
|
||||
|
||||
# remove these tensors from the checkpoint and save it again
|
||||
for name in mm_tensors:
|
||||
del checkpoint[name]
|
||||
|
||||
torch.save(checkpoint, path)
|
||||
|
||||
print("Done!")
|
||||
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
||||
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|
||||
145
examples/llava/llava-utils.h
Normal file
145
examples/llava/llava-utils.h
Normal file
@@ -0,0 +1,145 @@
|
||||
#pragma once
|
||||
|
||||
// this one and clip lib will be eventually merged to a single lib, let's keep it this way for now
|
||||
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
inline bool eval_image_embd(llama_context * ctx_llama, float * embd, int N, int n_batch, int * n_past) {
|
||||
int n_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = N - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = {int32_t(n_eval), nullptr, (embd+i*n_embd), nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
||||
if (llama_decode(ctx_llama, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past) {
|
||||
int N = (int) tokens.size();
|
||||
for (int i = 0; i < N; i += n_batch) {
|
||||
int n_eval = (int) tokens.size() - i;
|
||||
if (n_eval > n_batch) {
|
||||
n_eval = n_batch;
|
||||
}
|
||||
if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
*n_past += n_eval;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
||||
std::vector<llama_token> tokens;
|
||||
tokens.push_back(id);
|
||||
return eval_tokens(ctx_llama, tokens, 1, n_past);
|
||||
}
|
||||
|
||||
inline bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
||||
std::string str2 = str;
|
||||
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos);
|
||||
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
||||
return true;
|
||||
}
|
||||
|
||||
// TODO: use common/sampling.h
|
||||
inline llama_token sample_id(llama_context * ctx_llama, gpt_params & params) {
|
||||
// out of user input, sample next token
|
||||
const float temp = params.sampling_params.temp;
|
||||
const int32_t top_k = params.sampling_params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx_llama)) : params.sampling_params.top_k;
|
||||
const float top_p = params.sampling_params.top_p;
|
||||
const float tfs_z = params.sampling_params.tfs_z;
|
||||
const float typical_p = params.sampling_params.typical_p;
|
||||
// const int32_t repeat_last_n = params.sampling_params.repeat_last_n < 0 ? n_ctx : params.sampling_params.repeat_last_n;
|
||||
// const float repeat_penalty = params.sampling_params.repeat_penalty;
|
||||
// const float alpha_presence = params.sampling_params.presence_penalty;
|
||||
// const float alpha_frequency = params.sampling_params.frequency_penalty;
|
||||
const int mirostat = params.sampling_params.mirostat;
|
||||
const float mirostat_tau = params.sampling_params.mirostat_tau;
|
||||
const float mirostat_eta = params.sampling_params.mirostat_eta;
|
||||
// const bool penalize_nl = params.sampling_params.penalize_nl;
|
||||
|
||||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx_llama);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx_llama));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.sampling_params.logit_bias.begin(); it != params.sampling_params.logit_bias.end(); it++) {
|
||||
logits[it->first] += it->second;
|
||||
}
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
// TODO: Apply penalties
|
||||
// float nl_logit = logits[llama_token_nl(ctx)];
|
||||
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, repeat_penalty);
|
||||
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
||||
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
// last_n_repeat, alpha_frequency, alpha_presence);
|
||||
// if (!penalize_nl) {
|
||||
// logits[llama_token_nl(ctx)] = nl_logit;
|
||||
// }
|
||||
|
||||
if (temp <= 0) {
|
||||
// Greedy sampling
|
||||
id = llama_sample_token_greedy(ctx_llama, &candidates_p);
|
||||
} else {
|
||||
if (mirostat == 1) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
const int mirostat_m = 100;
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
||||
} else if (mirostat == 2) {
|
||||
static float mirostat_mu = 2.0f * mirostat_tau;
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token_mirostat_v2(ctx_llama, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
||||
} else {
|
||||
// Temperature sampling
|
||||
llama_sample_top_k(ctx_llama, &candidates_p, top_k, 1);
|
||||
llama_sample_tail_free(ctx_llama, &candidates_p, tfs_z, 1);
|
||||
llama_sample_typical(ctx_llama, &candidates_p, typical_p, 1);
|
||||
llama_sample_top_p(ctx_llama, &candidates_p, top_p, 1);
|
||||
llama_sample_temp(ctx_llama, &candidates_p, temp);
|
||||
id = llama_sample_token(ctx_llama, &candidates_p);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
inline const char * sample(struct llama_context * ctx_llama, gpt_params & params, int * n_past) {
|
||||
int id = sample_id(ctx_llama, params);
|
||||
static std::string ret;
|
||||
if (id == llama_token_eos(ctx_llama)) {
|
||||
ret = "</s>";
|
||||
} else {
|
||||
ret = llama_token_to_piece(ctx_llama, id);
|
||||
}
|
||||
eval_id(ctx_llama, id, n_past);
|
||||
return ret.c_str();
|
||||
}
|
||||
164
examples/llava/llava.cpp
Normal file
164
examples/llava/llava.cpp
Normal file
@@ -0,0 +1,164 @@
|
||||
#include "clip.h"
|
||||
#include "llava-utils.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <vector>
|
||||
|
||||
static void show_additional_info(int /*argc*/, char ** argv) {
|
||||
printf("\n example usage: %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
|
||||
printf(" note: a lower temperature value like 0.1 is recommended for better quality.\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_time_init();
|
||||
|
||||
gpt_params params;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (params.mmproj.empty() || params.image.empty()) {
|
||||
gpt_print_usage(argc, argv, params);
|
||||
show_additional_info(argc, argv);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const char * clip_path = params.mmproj.c_str();
|
||||
const char * img_path = params.image.c_str();
|
||||
|
||||
if (params.prompt.empty()) {
|
||||
params.prompt = "describe the image in detail.";
|
||||
}
|
||||
|
||||
auto ctx_clip = clip_model_load(clip_path, /*verbosity=*/ 1);
|
||||
|
||||
// load and preprocess the image
|
||||
clip_image_u8 img;
|
||||
clip_image_f32 img_res;
|
||||
|
||||
if (!clip_image_load_from_file(img_path, &img)) {
|
||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, img_path);
|
||||
|
||||
clip_free(ctx_clip);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (!clip_image_preprocess(ctx_clip, &img, &img_res, /*pad2square =*/ true)) {
|
||||
fprintf(stderr, "%s: unable to preprocess %s\n", __func__, img_path);
|
||||
|
||||
clip_free(ctx_clip);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int n_img_pos = clip_n_patches(ctx_clip);
|
||||
int n_img_embd = clip_n_mmproj_embd(ctx_clip);
|
||||
|
||||
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip));
|
||||
|
||||
if (!image_embd) {
|
||||
fprintf(stderr, "Unable to allocate memory for image embeddings\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int64_t t_img_enc_start_us = ggml_time_us();
|
||||
if (!clip_image_encode(ctx_clip, params.n_threads, &img_res, image_embd)) {
|
||||
fprintf(stderr, "Unable to encode image\n");
|
||||
|
||||
return 1;
|
||||
}
|
||||
const int64_t t_img_enc_end_us = ggml_time_us();
|
||||
|
||||
// we get the embeddings, free up the memory required for CLIP
|
||||
clip_free(ctx_clip);
|
||||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
model_params.n_gpu_layers = params.n_gpu_layers;
|
||||
model_params.main_gpu = params.main_gpu;
|
||||
model_params.tensor_split = params.tensor_split;
|
||||
model_params.use_mmap = params.use_mmap;
|
||||
model_params.use_mlock = params.use_mlock;
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.n_ctx = params.n_ctx < 2048 ? 2048 : params.n_ctx; // we need a longer context size to process image embeddings
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
ctx_params.seed = params.seed;
|
||||
|
||||
llama_context * ctx_llama = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx_llama == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// make sure that the correct mmproj was used, i.e., compare apples to apples
|
||||
const int n_llama_embd = llama_n_embd(llama_get_model(ctx_llama));
|
||||
|
||||
if (n_img_embd != n_llama_embd) {
|
||||
printf("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_img_embd, n_llama_embd);
|
||||
|
||||
llama_free(ctx_llama);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
free(image_embd);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// process the prompt
|
||||
// llava chat format is "<system_prompt>USER: <image_embeddings>\n<textual_prompt>\nASSISTANT:"
|
||||
|
||||
int n_past = 0;
|
||||
|
||||
const int max_tgt_len = params.n_predict < 0 ? 256 : params.n_predict;
|
||||
|
||||
eval_string(ctx_llama, "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\nUSER:", params.n_batch, &n_past, true);
|
||||
eval_image_embd(ctx_llama, image_embd, n_img_pos, params.n_batch, &n_past);
|
||||
eval_string(ctx_llama, (params.prompt + "\nASSISTANT:").c_str(), params.n_batch, &n_past, false);
|
||||
|
||||
// generate the response
|
||||
|
||||
printf("\n");
|
||||
printf("prompt: '%s'\n", params.prompt.c_str());
|
||||
printf("\n");
|
||||
|
||||
for (int i = 0; i < max_tgt_len; i++) {
|
||||
const char * tmp = sample(ctx_llama, params, &n_past);
|
||||
if (strcmp(tmp, "</s>") == 0) break;
|
||||
|
||||
printf("%s", tmp);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
printf("\n");
|
||||
|
||||
{
|
||||
const float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
|
||||
|
||||
printf("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / n_img_pos);
|
||||
}
|
||||
|
||||
llama_print_timings(ctx_llama);
|
||||
|
||||
llama_free(ctx_llama);
|
||||
llama_free_model(model);
|
||||
llama_backend_free();
|
||||
free(image_embd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -109,6 +109,7 @@ int main(int argc, char ** argv) {
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
return 1;
|
||||
}
|
||||
llama_sampling_params & sparams = params.sampling_params;
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_set_target(log_filename_generator("main", "log"));
|
||||
@@ -179,7 +180,7 @@ int main(int argc, char ** argv) {
|
||||
// load the model and apply lora adapter, if any
|
||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (params.cfg_scale > 1.f) {
|
||||
if (sparams.cfg_scale > 1.f) {
|
||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||
}
|
||||
@@ -237,7 +238,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
||||
LOG("tokenize the prompt\n");
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
} else {
|
||||
LOG("use session tokens\n");
|
||||
embd_inp = session_tokens;
|
||||
@@ -257,12 +258,12 @@ int main(int argc, char ** argv) {
|
||||
int guidance_offset = 0;
|
||||
int original_prompt_len = 0;
|
||||
if (ctx_guidance) {
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
||||
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||
|
||||
original_prompt_len = original_inp.size();
|
||||
@@ -296,6 +297,9 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
|
||||
__func__, n_matching_session_tokens, embd_inp.size());
|
||||
}
|
||||
|
||||
// remove any "future" tokens that we might have inherited from the previous session
|
||||
llama_kv_cache_tokens_rm(ctx, n_matching_session_tokens, -1);
|
||||
}
|
||||
|
||||
LOGLN(
|
||||
@@ -316,8 +320,8 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// prefix & suffix for instruct mode
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
|
||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
||||
|
||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||
@@ -343,7 +347,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (ctx_guidance) {
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||
@@ -379,6 +383,12 @@ int main(int argc, char ** argv) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
for (const auto & antiprompt : params.antiprompt) {
|
||||
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -388,14 +398,26 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
if (params.verbose_prompt) {
|
||||
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||
sparams.repeat_last_n, sparams.repeat_penalty, sparams.presence_penalty, sparams.frequency_penalty, sparams.top_k, sparams.tfs_z, sparams.top_p, sparams.typical_p, sparams.temp, sparams.mirostat, sparams.mirostat_eta, sparams.mirostat_tau);
|
||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||
LOG_TEE("\n\n");
|
||||
|
||||
@@ -413,8 +435,8 @@ int main(int argc, char ** argv) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = sparams.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != sparams.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||
}
|
||||
}
|
||||
@@ -469,6 +491,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
@@ -543,9 +566,6 @@ int main(int argc, char ** argv) {
|
||||
if (i > 0) {
|
||||
embd.erase(embd.begin(), embd.begin() + i);
|
||||
}
|
||||
|
||||
// remove any "future" tokens that we might have inherited from the session from the KV cache
|
||||
llama_kv_cache_tokens_rm(ctx, n_past, -1);
|
||||
}
|
||||
|
||||
// evaluate tokens in batches
|
||||
@@ -625,7 +645,7 @@ int main(int argc, char ** argv) {
|
||||
LOG("saved session to %s\n", path_session.c_str());
|
||||
}
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||
const llama_token id = llama_sampling_sample(ctx, ctx_guidance, ctx_sampling, last_tokens, candidates);
|
||||
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
last_tokens.push_back(id);
|
||||
@@ -715,7 +735,7 @@ int main(int argc, char ** argv) {
|
||||
if (params.interactive) {
|
||||
if (!params.antiprompt.empty()) {
|
||||
// tokenize and inject first reverse prompt
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
|
||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
|
||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
||||
is_antiprompt = true;
|
||||
}
|
||||
@@ -742,8 +762,7 @@ int main(int argc, char ** argv) {
|
||||
std::string buffer;
|
||||
if (!params.input_prefix.empty()) {
|
||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||
buffer += params.input_prefix;
|
||||
printf("%s", buffer.c_str());
|
||||
printf("%s", params.input_prefix.c_str());
|
||||
}
|
||||
|
||||
// color user input only
|
||||
@@ -765,7 +784,6 @@ int main(int argc, char ** argv) {
|
||||
// append input suffix if any
|
||||
if (!params.input_suffix.empty()) {
|
||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||
buffer += params.input_suffix;
|
||||
printf("%s", params.input_suffix.c_str());
|
||||
}
|
||||
|
||||
@@ -780,10 +798,14 @@ int main(int argc, char ** argv) {
|
||||
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
||||
}
|
||||
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||
|
||||
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
|
||||
|
||||
// instruct mode: insert response suffix
|
||||
if (params.instruct) {
|
||||
|
||||
@@ -125,6 +125,8 @@ int main(int argc, char ** argv) {
|
||||
params.logits_all = true;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
|
||||
// load the prompts from an external file if there are any
|
||||
if (params.prompt.empty()) {
|
||||
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
|
||||
@@ -339,7 +341,7 @@ int main(int argc, char ** argv) {
|
||||
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
|
||||
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
|
||||
|
||||
const llama_token id = llama_sample_token(ctx, NULL, NULL, params, client.tokens_prev, candidates, client.i_batch - i);
|
||||
const llama_token id = llama_sampling_sample(ctx, NULL, ctx_sampling, client.tokens_prev, candidates, client.i_batch - i, client.seq_id);
|
||||
|
||||
if (client.n_decoded == 1) {
|
||||
// start measuring generation time after the first token to make sure all concurrent clients
|
||||
@@ -384,7 +386,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
n_total_prompt += client.n_prompt;
|
||||
n_total_gen += client.n_decoded;
|
||||
|
||||
llama_sampling_context_reset(ctx_sampling, client.seq_id);
|
||||
client.seq_id = -1;
|
||||
}
|
||||
|
||||
|
||||
@@ -8,9 +8,7 @@
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
params.seed = 42;
|
||||
params.n_threads = 4;
|
||||
params.repeat_last_n = 64;
|
||||
|
||||
params.prompt = "The quick brown fox";
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
@@ -24,56 +22,49 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
auto n_past = 0;
|
||||
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
||||
|
||||
std::string result0;
|
||||
std::string result1;
|
||||
|
||||
// init
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||
if (model == nullptr) {
|
||||
return 1;
|
||||
}
|
||||
if (ctx == nullptr) {
|
||||
llama_free_model(model);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
if (model == nullptr || ctx == nullptr) {
|
||||
fprintf(stderr, "%s : failed to init\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize prompt
|
||||
auto tokens = llama_tokenize(ctx, params.prompt, true);
|
||||
auto n_prompt_tokens = tokens.size();
|
||||
if (n_prompt_tokens < 1) {
|
||||
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// evaluate prompt
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
|
||||
n_past += tokens.size();
|
||||
|
||||
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
||||
n_past += n_prompt_tokens;
|
||||
|
||||
const size_t state_size = llama_get_state_size(ctx);
|
||||
uint8_t * state_mem = new uint8_t[state_size];
|
||||
|
||||
// Save state (rng, logits, embedding and kv_cache) to file
|
||||
// save state (rng, logits, embedding and kv_cache) to file
|
||||
{
|
||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||
llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
|
||||
fwrite(state_mem, 1, state_size, fp_write);
|
||||
fclose(fp_write);
|
||||
std::vector<uint8_t> state_mem(llama_get_state_size(ctx));
|
||||
|
||||
{
|
||||
FILE *fp_write = fopen("dump_state.bin", "wb");
|
||||
llama_copy_state_data(ctx, state_mem.data()); // could also copy directly to memory mapped file
|
||||
fwrite(state_mem.data(), 1, state_mem.size(), fp_write);
|
||||
fclose(fp_write);
|
||||
}
|
||||
}
|
||||
|
||||
// save state (last tokens)
|
||||
const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
|
||||
const auto n_past_saved = n_past;
|
||||
|
||||
// first run
|
||||
printf("\n%s", params.prompt.c_str());
|
||||
printf("\nfirst run: %s", params.prompt.c_str());
|
||||
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto * logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
@@ -82,9 +73,10 @@ int main(int argc, char ** argv) {
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx, next_token);
|
||||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
result0 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx);
|
||||
@@ -102,32 +94,28 @@ int main(int argc, char ** argv) {
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
// Load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
FILE *fp_read = fopen("dump_state.bin", "rb");
|
||||
if (state_size != llama_get_state_size(ctx2)) {
|
||||
fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
printf("\nsecond run: %s", params.prompt.c_str());
|
||||
|
||||
const size_t ret = fread(state_mem, 1, state_size, fp_read);
|
||||
if (ret != state_size) {
|
||||
// load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
std::vector<uint8_t> state_mem(llama_get_state_size(ctx2));
|
||||
|
||||
FILE * fp_read = fopen("dump_state.bin", "rb");
|
||||
|
||||
const size_t ret = fread(state_mem.data(), 1, state_mem.size(), fp_read);
|
||||
if (ret != state_mem.size()) {
|
||||
fprintf(stderr, "\n%s : failed to read state\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
|
||||
llama_set_state_data(ctx2, state_mem.data());
|
||||
|
||||
fclose(fp_read);
|
||||
}
|
||||
|
||||
delete[] state_mem;
|
||||
|
||||
// restore state (last tokens)
|
||||
last_n_tokens_data = last_n_tokens_data_saved;
|
||||
n_past = n_past_saved;
|
||||
|
||||
// second run
|
||||
@@ -142,10 +130,11 @@ int main(int argc, char ** argv) {
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
auto next_token = llama_sample_token(ctx2, &candidates_p);
|
||||
auto next_token_str = llama_token_to_piece(ctx2, next_token);
|
||||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
result1 += next_token_str;
|
||||
|
||||
if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
@@ -154,10 +143,17 @@ int main(int argc, char ** argv) {
|
||||
n_past += 1;
|
||||
}
|
||||
|
||||
printf("\n\n");
|
||||
printf("\n");
|
||||
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
|
||||
if (result0 != result1) {
|
||||
fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
fprintf(stderr, "\n%s : success\n", __func__);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -106,25 +106,25 @@ node index.js
|
||||
|
||||
## API Endpoints
|
||||
|
||||
- **POST** `/completion`: Given a prompt, it returns the predicted completion.
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
*Options:*
|
||||
|
||||
`prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. If the prompt is a string or an array with the first element given as a string, a `bos` token is inserted in the front like `main` does.
|
||||
|
||||
`temperature`: Adjust the randomness of the generated text (default: 0.8).
|
||||
|
||||
`top_k`: Limit the next token selection to the K most probable tokens (default: 40).
|
||||
|
||||
`top_p`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.95).
|
||||
|
||||
`n_predict`: Set the number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||
`n_predict`: Set the maximum number of tokens to predict when generating text. **Note:** May exceed the set limit slightly if the last token is a partial multibyte character. When 0, no tokens will be generated but the prompt is evaluated into the cache. (default: -1, -1 = infinity).
|
||||
|
||||
`n_keep`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context.
|
||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
|
||||
`n_keep`: Specify the number of tokens from the prompt to retain when the context size is exceeded and tokens need to be discarded.
|
||||
By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the prompt.
|
||||
|
||||
`stream`: It allows receiving each predicted token in real-time instead of waiting for the completion to finish. To enable this, set to `true`.
|
||||
|
||||
`prompt`: Provide a prompt as a string, or as an array of strings and numbers representing tokens. Internally, the prompt is compared, and it detects if a part has already been evaluated, and the remaining part will be evaluate. If the prompt is a string, or an array with the first element given as a string, a space is inserted in the front like main.cpp does.
|
||||
|
||||
`stop`: Specify a JSON array of stopping strings.
|
||||
These words will not be included in the completion, so make sure to add them to the prompt for the next iteration (default: []).
|
||||
|
||||
@@ -158,6 +158,36 @@ node index.js
|
||||
|
||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||
|
||||
*Result JSON:*
|
||||
|
||||
Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
`content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||
|
||||
`stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options)
|
||||
|
||||
`generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`
|
||||
|
||||
`model`: The path to the model loaded with `-m`
|
||||
|
||||
`prompt`: The provided `prompt`
|
||||
|
||||
`stopped_eos`: Indicating whether the completion has stopped because it encountered the EOS token
|
||||
|
||||
`stopped_limit`: Indicating whether the completion stopped because `n_predict` tokens were generated before stop words or EOS was encountered
|
||||
|
||||
`stopped_word`: Indicating whether the completion stopped due to encountering a stopping word from `stop` JSON array provided
|
||||
|
||||
`stopping_word`: The stopping word encountered which stopped the generation (or "" if not stopped due to a stopping word)
|
||||
|
||||
`timings`: Hash of timing information about the completion such as the number of tokens `predicted_per_second`
|
||||
|
||||
`tokens_cached`: Number of tokens from the prompt which could be re-used from previous completion (`n_past`)
|
||||
|
||||
`tokens_evaluated`: Number of tokens evaluated in total from the prompt
|
||||
|
||||
`truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
|
||||
|
||||
- **POST** `/tokenize`: Tokenize a given text.
|
||||
|
||||
*Options:*
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -136,6 +136,11 @@
|
||||
display: block;
|
||||
}
|
||||
|
||||
fieldset label.slim {
|
||||
margin: 0 0.5em;
|
||||
display: inline;
|
||||
}
|
||||
|
||||
header, footer {
|
||||
text-align: center;
|
||||
}
|
||||
@@ -145,6 +150,14 @@
|
||||
color: #888;
|
||||
}
|
||||
|
||||
.mode-chat textarea[name=prompt] {
|
||||
height: 4.5em;
|
||||
}
|
||||
|
||||
.mode-completion textarea[name=prompt] {
|
||||
height: 10em;
|
||||
}
|
||||
|
||||
|
||||
@keyframes loading-bg-wipe {
|
||||
0% {
|
||||
@@ -187,7 +200,7 @@
|
||||
template: "{{prompt}}\n\n{{history}}\n{{char}}:",
|
||||
historyTemplate: "{{name}}: {{message}}",
|
||||
transcript: [],
|
||||
type: "chat",
|
||||
type: "chat", // "chat" | "completion"
|
||||
char: "Llama",
|
||||
user: "User",
|
||||
})
|
||||
@@ -365,13 +378,44 @@
|
||||
return String(str).replaceAll(/\{\{(.*?)\}\}/g, (_, key) => template(settings[key]));
|
||||
}
|
||||
|
||||
async function runLlama(prompt, llamaParams, char) {
|
||||
const currentMessages = [];
|
||||
const history = session.value.transcript;
|
||||
if (controller.value) {
|
||||
throw new Error("already running");
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
for await (const chunk of llama(prompt, llamaParams, {controller: controller.value})) {
|
||||
const data = chunk.data;
|
||||
|
||||
if (data.stop) {
|
||||
while (
|
||||
currentMessages.length > 0 &&
|
||||
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
|
||||
) {
|
||||
currentMessages.pop();
|
||||
}
|
||||
transcriptUpdate([...history, [char, currentMessages]])
|
||||
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
|
||||
} else {
|
||||
currentMessages.push(data);
|
||||
transcriptUpdate([...history, [char, currentMessages]])
|
||||
}
|
||||
|
||||
if (data.timings) {
|
||||
llamaStats.value = data.timings;
|
||||
}
|
||||
}
|
||||
|
||||
controller.value = null;
|
||||
}
|
||||
|
||||
// send message to server
|
||||
const chat = async (msg) => {
|
||||
if (controller.value) {
|
||||
console.log('already running...');
|
||||
return;
|
||||
}
|
||||
controller.value = new AbortController();
|
||||
|
||||
transcriptUpdate([...session.value.transcript, ["{{user}}", msg]])
|
||||
|
||||
@@ -391,55 +435,41 @@
|
||||
).join("\n"),
|
||||
});
|
||||
|
||||
const currentMessages = [];
|
||||
const history = session.value.transcript
|
||||
|
||||
const llamaParams = {
|
||||
await runLlama(prompt, {
|
||||
...params.value,
|
||||
stop: ["</s>", template("{{char}}:"), template("{{user}}:")],
|
||||
}, "{{char}}");
|
||||
}
|
||||
|
||||
const runCompletion = async () => {
|
||||
if (controller.value) {
|
||||
console.log('already running...');
|
||||
return;
|
||||
}
|
||||
const {prompt} = session.value;
|
||||
transcriptUpdate([...session.value.transcript, ["", prompt]]);
|
||||
await runLlama(prompt, {
|
||||
...params.value,
|
||||
stop: [],
|
||||
}, "");
|
||||
}
|
||||
|
||||
for await (const chunk of llama(prompt, llamaParams, { controller: controller.value })) {
|
||||
const data = chunk.data;
|
||||
|
||||
if (data.stop) {
|
||||
while (
|
||||
currentMessages.length > 0 &&
|
||||
currentMessages[currentMessages.length - 1].content.match(/\n$/) != null
|
||||
) {
|
||||
currentMessages.pop();
|
||||
}
|
||||
transcriptUpdate([...history, ["{{char}}", currentMessages]])
|
||||
console.log("Completion finished: '", currentMessages.map(msg => msg.content).join(''), "', summary: ", data);
|
||||
} else {
|
||||
currentMessages.push(data);
|
||||
transcriptUpdate([...history, ["{{char}}", currentMessages]])
|
||||
}
|
||||
|
||||
if (data.timings) {
|
||||
llamaStats.value = data.timings;
|
||||
}
|
||||
const stop = (e) => {
|
||||
e.preventDefault();
|
||||
if (controller.value) {
|
||||
controller.value.abort();
|
||||
controller.value = null;
|
||||
}
|
||||
}
|
||||
|
||||
controller.value = null;
|
||||
const reset = (e) => {
|
||||
stop(e);
|
||||
transcriptUpdate([]);
|
||||
}
|
||||
|
||||
function MessageInput() {
|
||||
const message = useSignal("")
|
||||
|
||||
const stop = (e) => {
|
||||
e.preventDefault();
|
||||
if (controller.value) {
|
||||
controller.value.abort();
|
||||
controller.value = null;
|
||||
}
|
||||
}
|
||||
|
||||
const reset = (e) => {
|
||||
stop(e);
|
||||
transcriptUpdate([]);
|
||||
}
|
||||
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
chat(message.value);
|
||||
@@ -474,6 +504,19 @@
|
||||
`
|
||||
}
|
||||
|
||||
function CompletionControls() {
|
||||
const submit = (e) => {
|
||||
stop(e);
|
||||
runCompletion();
|
||||
}
|
||||
return html`
|
||||
<div>
|
||||
<button onclick=${submit} type="button" disabled=${generating.value}>Start</button>
|
||||
<button onclick=${stop} disabled=${!generating.value}>Stop</button>
|
||||
<button onclick=${reset}>Reset</button>
|
||||
</div>`;
|
||||
}
|
||||
|
||||
const ChatLog = (props) => {
|
||||
const messages = session.value.transcript;
|
||||
const container = useRef(null)
|
||||
@@ -497,7 +540,11 @@
|
||||
data;
|
||||
message = html`<${Markdownish} text=${template(text)} />`
|
||||
}
|
||||
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
|
||||
if(user) {
|
||||
return html`<p key=${index}><strong>${template(user)}:</strong> ${message}</p>`
|
||||
} else {
|
||||
return html`<p key=${index}>${message}</p>`
|
||||
}
|
||||
};
|
||||
|
||||
return html`
|
||||
@@ -574,18 +621,31 @@
|
||||
userTemplateAutosave()
|
||||
}, [session.value, params.value])
|
||||
|
||||
return html`
|
||||
<form>
|
||||
<fieldset>
|
||||
<${UserTemplateResetButton}/>
|
||||
</fieldset>
|
||||
const GrammarControl = () => (
|
||||
html`
|
||||
<div>
|
||||
<label for="template">Grammar</label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
</div>
|
||||
`
|
||||
);
|
||||
|
||||
<fieldset>
|
||||
<div>
|
||||
<label for="prompt">Prompt</label>
|
||||
<textarea type="text" name="prompt" value="${session.value.prompt}" rows=4 oninput=${updateSession}/>
|
||||
</div>
|
||||
</fieldset>
|
||||
const PromptControlFieldSet = () => (
|
||||
html`
|
||||
<fieldset>
|
||||
<div>
|
||||
<label htmlFor="prompt">Prompt</label>
|
||||
<textarea type="text" name="prompt" value="${session.value.prompt}" oninput=${updateSession}/>
|
||||
</div>
|
||||
</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
const ChatConfigForm = () => (
|
||||
html`
|
||||
${PromptControlFieldSet()}
|
||||
|
||||
<fieldset class="two">
|
||||
<div>
|
||||
@@ -609,15 +669,30 @@
|
||||
<label for="template">Chat history template</label>
|
||||
<textarea id="template" name="historyTemplate" value="${session.value.historyTemplate}" rows=1 oninput=${updateSession}/>
|
||||
</div>
|
||||
${GrammarControl()}
|
||||
</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
const CompletionConfigForm = () => (
|
||||
html`
|
||||
${PromptControlFieldSet()}
|
||||
<fieldset>${GrammarControl()}</fieldset>
|
||||
`
|
||||
);
|
||||
|
||||
return html`
|
||||
<form>
|
||||
<fieldset class="two">
|
||||
<${UserTemplateResetButton}/>
|
||||
<div>
|
||||
<label for="template">Grammar</label>
|
||||
<textarea id="grammar" name="grammar" placeholder="Use gbnf or JSON Schema+convert" value="${params.value.grammar}" rows=4 oninput=${updateParams}/>
|
||||
<input type="text" name="prop-order" placeholder="order: prop1,prop2,prop3" oninput=${updateGrammarJsonSchemaPropOrder} />
|
||||
<button type="button" onclick=${convertJSONSchemaGrammar}>Convert JSON Schema</button>
|
||||
<label class="slim"><input type="radio" name="type" value="chat" checked=${session.value.type === "chat"} oninput=${updateSession} /> Chat</label>
|
||||
<label class="slim"><input type="radio" name="type" value="completion" checked=${session.value.type === "completion"} oninput=${updateSession} /> Completion</label>
|
||||
</div>
|
||||
</fieldset>
|
||||
|
||||
${session.value.type === 'chat' ? ChatConfigForm() : CompletionConfigForm()}
|
||||
|
||||
<fieldset class="two">
|
||||
${IntField({label: "Predictions", max: 2048, min: -1, name: "n_predict", value: params.value.n_predict})}
|
||||
${FloatField({label: "Temperature", max: 1.5, min: 0.0, name: "temperature", step: 0.01, value: params.value.temperature})}
|
||||
@@ -851,7 +926,7 @@
|
||||
function App(props) {
|
||||
|
||||
return html`
|
||||
<div>
|
||||
<div class="mode-${session.value.type}">
|
||||
<header>
|
||||
<h1>llama.cpp</h1>
|
||||
</header>
|
||||
@@ -861,7 +936,7 @@
|
||||
</main>
|
||||
|
||||
<section id="write">
|
||||
<${MessageInput} />
|
||||
<${session.value.type === 'chat' ? MessageInput : CompletionControls} />
|
||||
</section>
|
||||
|
||||
<footer>
|
||||
|
||||
@@ -200,6 +200,7 @@ struct llama_server_context
|
||||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
gpt_params params;
|
||||
llama_sampling_context ctx_sampling;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
@@ -254,6 +255,7 @@ struct llama_server_context
|
||||
if (grammar != nullptr) {
|
||||
llama_grammar_free(grammar);
|
||||
grammar = nullptr;
|
||||
ctx_sampling = llama_sampling_context_init(params, NULL);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -329,8 +331,8 @@ struct llama_server_context
|
||||
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||
|
||||
{
|
||||
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||
auto it = params.sampling_params.logit_bias.find(llama_token_eos(ctx));
|
||||
if (it != params.sampling_params.logit_bias.end() && it->second == -INFINITY) {
|
||||
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||
}
|
||||
}
|
||||
@@ -339,14 +341,26 @@ struct llama_server_context
|
||||
grammar = llama_grammar_init(
|
||||
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
ctx_sampling = llama_sampling_context_init(params, grammar);
|
||||
return true;
|
||||
}
|
||||
|
||||
void loadInfill()
|
||||
{
|
||||
auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
|
||||
auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
|
||||
bool suff_rm_leading_spc = true;
|
||||
if (params.input_suffix.find_first_of(" ") == 0 && params.input_suffix.size() > 1) {
|
||||
params.input_suffix.erase(0, 1);
|
||||
suff_rm_leading_spc = false;
|
||||
}
|
||||
|
||||
auto prefix_tokens = tokenize(params.input_prefix, false);
|
||||
auto suffix_tokens = tokenize(params.input_suffix, false);
|
||||
const int space_token = 29871;
|
||||
if (suff_rm_leading_spc && suffix_tokens[0] == space_token) {
|
||||
suffix_tokens.erase(suffix_tokens.begin());
|
||||
}
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(ctx)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||
@@ -391,6 +405,7 @@ struct llama_server_context
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
embd = prompt_tokens;
|
||||
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
// we have to evaluate at least 1 token to generate logits.
|
||||
@@ -398,6 +413,9 @@ struct llama_server_context
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", n_past},
|
||||
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||
@@ -447,9 +465,6 @@ struct llama_server_context
|
||||
// compare the evaluated prompt with the new prompt
|
||||
n_past = common_part(embd, prompt_tokens);
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
embd = prompt_tokens;
|
||||
if (n_past == num_prompt_tokens)
|
||||
{
|
||||
@@ -457,6 +472,9 @@ struct llama_server_context
|
||||
n_past--;
|
||||
}
|
||||
|
||||
// since #3228 we now have to manually manage the KV cache
|
||||
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", n_past},
|
||||
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||
@@ -539,12 +557,12 @@ struct llama_server_context
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(llama_n_vocab(model));
|
||||
|
||||
result.tok = llama_sample_token(ctx, NULL, grammar, params, last_n_tokens, candidates);
|
||||
result.tok = llama_sampling_sample(ctx, NULL, ctx_sampling, last_n_tokens, candidates);
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int32_t n_probs = params.n_probs;
|
||||
if (params.temp <= 0 && n_probs > 0)
|
||||
const int32_t n_probs = params.sampling_params.n_probs;
|
||||
if (params.sampling_params.temp <= 0 && n_probs > 0)
|
||||
{
|
||||
// For llama_sample_token_greedy we need to sort candidates
|
||||
llama_sample_softmax(ctx, &candidates_p);
|
||||
@@ -619,7 +637,7 @@ struct llama_server_context
|
||||
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
|
||||
generated_text += token_text;
|
||||
|
||||
if (params.n_probs > 0)
|
||||
if (params.sampling_params.n_probs > 0)
|
||||
{
|
||||
generated_token_probs.push_back(token_with_probs);
|
||||
}
|
||||
@@ -700,15 +718,16 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf("usage: %s [options]\n", argv0);
|
||||
printf("\n");
|
||||
printf("options:\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
printf(" -h, --help show this help message and exit\n");
|
||||
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
||||
printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
@@ -853,6 +872,15 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
}
|
||||
params.n_threads = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "--threads-batch" || arg == "-tb")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
}
|
||||
else if (arg == "-b" || arg == "--batch-size")
|
||||
{
|
||||
if (++i >= argc)
|
||||
@@ -1007,34 +1035,35 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
||||
|
||||
static json format_generation_settings(llama_server_context &llama)
|
||||
{
|
||||
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
|
||||
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
|
||||
const auto & sparams = llama.params.sampling_params;
|
||||
const auto eos_bias = sparams.logit_bias.find(llama_token_eos(llama.ctx));
|
||||
const bool ignore_eos = eos_bias != sparams.logit_bias.end() &&
|
||||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||
|
||||
return json{
|
||||
{"n_ctx", llama.n_ctx},
|
||||
{"model", llama.params.model_alias},
|
||||
{"seed", llama.params.seed},
|
||||
{"temp", llama.params.temp},
|
||||
{"top_k", llama.params.top_k},
|
||||
{"top_p", llama.params.top_p},
|
||||
{"tfs_z", llama.params.tfs_z},
|
||||
{"typical_p", llama.params.typical_p},
|
||||
{"repeat_last_n", llama.params.repeat_last_n},
|
||||
{"repeat_penalty", llama.params.repeat_penalty},
|
||||
{"presence_penalty", llama.params.presence_penalty},
|
||||
{"frequency_penalty", llama.params.frequency_penalty},
|
||||
{"mirostat", llama.params.mirostat},
|
||||
{"mirostat_tau", llama.params.mirostat_tau},
|
||||
{"mirostat_eta", llama.params.mirostat_eta},
|
||||
{"penalize_nl", llama.params.penalize_nl},
|
||||
{"temp", sparams.temp},
|
||||
{"top_k", sparams.top_k},
|
||||
{"top_p", sparams.top_p},
|
||||
{"tfs_z", sparams.tfs_z},
|
||||
{"typical_p", sparams.typical_p},
|
||||
{"repeat_last_n", sparams.repeat_last_n},
|
||||
{"repeat_penalty", sparams.repeat_penalty},
|
||||
{"presence_penalty", sparams.presence_penalty},
|
||||
{"frequency_penalty", sparams.frequency_penalty},
|
||||
{"mirostat", sparams.mirostat},
|
||||
{"mirostat_tau", sparams.mirostat_tau},
|
||||
{"mirostat_eta", sparams.mirostat_eta},
|
||||
{"penalize_nl", sparams.penalize_nl},
|
||||
{"stop", llama.params.antiprompt},
|
||||
{"n_predict", llama.params.n_predict},
|
||||
{"n_keep", llama.params.n_keep},
|
||||
{"ignore_eos", ignore_eos},
|
||||
{"stream", llama.stream},
|
||||
{"logit_bias", llama.params.logit_bias},
|
||||
{"n_probs", llama.params.n_probs},
|
||||
{"logit_bias", sparams.logit_bias},
|
||||
{"n_probs", sparams.n_probs},
|
||||
{"grammar", llama.params.grammar},
|
||||
};
|
||||
}
|
||||
@@ -1083,7 +1112,7 @@ static json format_final_response(llama_server_context &llama, const std::string
|
||||
{"timings", format_timings(llama)},
|
||||
};
|
||||
|
||||
if (llama.params.n_probs > 0)
|
||||
if (llama.params.sampling_params.n_probs > 0)
|
||||
{
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
@@ -1099,7 +1128,7 @@ static json format_partial_response(
|
||||
{"stop", false},
|
||||
};
|
||||
|
||||
if (llama.params.n_probs > 0)
|
||||
if (llama.params.sampling_params.n_probs > 0)
|
||||
{
|
||||
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
||||
}
|
||||
@@ -1131,26 +1160,28 @@ static T json_value(const json &body, const std::string &key, const T &default_v
|
||||
static void parse_options_completion(const json &body, llama_server_context &llama)
|
||||
{
|
||||
gpt_params default_params;
|
||||
const auto & default_sparams = default_params.sampling_params;
|
||||
auto & sparams = llama.params.sampling_params;
|
||||
|
||||
llama.stream = json_value(body, "stream", false);
|
||||
llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
|
||||
llama.params.top_k = json_value(body, "top_k", default_params.top_k);
|
||||
llama.params.top_p = json_value(body, "top_p", default_params.top_p);
|
||||
llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
|
||||
llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
|
||||
llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
|
||||
llama.params.temp = json_value(body, "temperature", default_params.temp);
|
||||
llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
|
||||
llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
|
||||
llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
|
||||
llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
|
||||
llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
|
||||
llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
|
||||
llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
|
||||
sparams.top_k = json_value(body, "top_k", default_sparams.top_k);
|
||||
sparams.top_p = json_value(body, "top_p", default_sparams.top_p);
|
||||
sparams.tfs_z = json_value(body, "tfs_z", default_sparams.tfs_z);
|
||||
sparams.typical_p = json_value(body, "typical_p", default_sparams.typical_p);
|
||||
sparams.repeat_last_n = json_value(body, "repeat_last_n", default_sparams.repeat_last_n);
|
||||
sparams.temp = json_value(body, "temperature", default_sparams.temp);
|
||||
sparams.repeat_penalty = json_value(body, "repeat_penalty", default_sparams.repeat_penalty);
|
||||
sparams.presence_penalty = json_value(body, "presence_penalty", default_sparams.presence_penalty);
|
||||
sparams.frequency_penalty = json_value(body, "frequency_penalty", default_sparams.frequency_penalty);
|
||||
sparams.mirostat = json_value(body, "mirostat", default_sparams.mirostat);
|
||||
sparams.mirostat_tau = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
|
||||
sparams.mirostat_eta = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
|
||||
sparams.penalize_nl = json_value(body, "penalize_nl", default_sparams.penalize_nl);
|
||||
llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
|
||||
llama.params.seed = json_value(body, "seed", default_params.seed);
|
||||
llama.params.grammar = json_value(body, "grammar", default_params.grammar);
|
||||
llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
|
||||
sparams.n_probs = json_value(body, "n_probs", default_sparams.n_probs);
|
||||
|
||||
if (body.count("prompt") != 0)
|
||||
{
|
||||
@@ -1161,10 +1192,10 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||
llama.prompt = "";
|
||||
}
|
||||
|
||||
llama.params.logit_bias.clear();
|
||||
sparams.logit_bias.clear();
|
||||
if (json_value(body, "ignore_eos", false))
|
||||
{
|
||||
llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
sparams.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
|
||||
}
|
||||
|
||||
const auto &logit_bias = body.find("logit_bias");
|
||||
@@ -1180,11 +1211,11 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||
{
|
||||
if (el[1].is_number())
|
||||
{
|
||||
llama.params.logit_bias[tok] = el[1].get<float>();
|
||||
sparams.logit_bias[tok] = el[1].get<float>();
|
||||
}
|
||||
else if (el[1].is_boolean() && !el[1].get<bool>())
|
||||
{
|
||||
llama.params.logit_bias[tok] = -INFINITY;
|
||||
sparams.logit_bias[tok] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1204,6 +1235,8 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||
}
|
||||
}
|
||||
|
||||
llama.ctx_sampling = llama_sampling_context_init(llama.params, llama.grammar);
|
||||
|
||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||
}
|
||||
|
||||
@@ -1412,7 +1445,7 @@ int main(int argc, char **argv)
|
||||
}
|
||||
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
if (llama.params.sampling_params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
@@ -1464,7 +1497,7 @@ int main(int argc, char **argv)
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
if (llama.params.sampling_params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
@@ -1585,7 +1618,7 @@ int main(int argc, char **argv)
|
||||
|
||||
std::vector<completion_token_output> probs_output = {};
|
||||
|
||||
if (llama.params.n_probs > 0) {
|
||||
if (llama.params.sampling_params.n_probs > 0) {
|
||||
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||
|
||||
@@ -125,6 +125,8 @@ int main(int argc, char ** argv) {
|
||||
grammar_tgt = llama_grammar_init(grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||
}
|
||||
|
||||
llama_sampling_context ctx_sampling = llama_sampling_context_init(params, grammar_tgt);
|
||||
|
||||
const auto t_dec_start = ggml_time_us();
|
||||
|
||||
while (true) {
|
||||
@@ -134,7 +136,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
while (true) {
|
||||
// sample from the target model
|
||||
llama_token id = llama_sample_token(ctx_tgt, NULL, grammar_tgt, params, last_tokens, candidates, i_dft);
|
||||
llama_token id = llama_sampling_sample(ctx_tgt, NULL, ctx_sampling, last_tokens, candidates, i_dft);
|
||||
|
||||
// remember which tokens were sampled - used for repetition penalties during sampling
|
||||
last_tokens.erase(last_tokens.begin());
|
||||
@@ -211,7 +213,13 @@ int main(int argc, char ** argv) {
|
||||
if (grammar_dft) {
|
||||
llama_grammar_free(grammar_dft);
|
||||
}
|
||||
grammar_dft = llama_grammar_copy(grammar_tgt);
|
||||
// Note: Hardcoded to sequence id 0, if this ever supports parallel generation
|
||||
// that will need to change.
|
||||
auto it = ctx_sampling.sequence_contexts.find(0);
|
||||
GGML_ASSERT(it != ctx_sampling.sequence_contexts.end());
|
||||
// This is necessary because each sequence id in sequence_contexts
|
||||
// uses a copy of the original grammar.
|
||||
grammar_dft = llama_grammar_copy(it->second.grammar);
|
||||
|
||||
LOG("copied target grammar to draft grammar\n");
|
||||
}
|
||||
|
||||
@@ -253,13 +253,14 @@ static void init_model(struct my_llama_model * model) {
|
||||
set_param_model(model);
|
||||
|
||||
// measure data size
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
alloc_model(alloc, model);
|
||||
size_t size = 0;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
|
||||
}
|
||||
|
||||
// allocate data
|
||||
model->data.resize(ggml_allocr_max_size(alloc) + tensor_alignment);
|
||||
ggml_allocr_free(alloc);
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
model->data.resize(size + tensor_alignment);
|
||||
alloc = ggml_allocr_new(model->data.data(), model->data.size(), tensor_alignment);
|
||||
alloc_model(alloc, model);
|
||||
ggml_allocr_free(alloc);
|
||||
@@ -1094,11 +1095,9 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
||||
|
||||
// measure required memory for input tensors
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
ggml_allocr_alloc(alloc, tokens_input);
|
||||
ggml_allocr_alloc(alloc, target_probs);
|
||||
size_t max_input_size = ggml_allocr_max_size(alloc) + tensor_alignment;
|
||||
ggml_allocr_free(alloc);
|
||||
size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
|
||||
GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
|
||||
tensor_alignment;
|
||||
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
||||
|
||||
// allocate input tensors
|
||||
|
||||
@@ -386,7 +386,7 @@ static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
|
||||
|
||||
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
||||
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
||||
assert(ggml_allocr_is_measure(alloc) || view->buffer->backend == alloc->buffer->backend);
|
||||
assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||
}
|
||||
|
||||
|
||||
47
ggml-cuda.cu
47
ggml-cuda.cu
@@ -415,6 +415,7 @@ static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_
|
||||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_CPY_BLOCK_SIZE 32
|
||||
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||
#define CUDA_CLAMP_BLOCK_SIZE 256
|
||||
#define CUDA_ROPE_BLOCK_SIZE 256
|
||||
#define CUDA_ALIBI_BLOCK_SIZE 32
|
||||
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
||||
@@ -4585,6 +4586,15 @@ static __global__ void scale_f32(const float * x, float * dst, const float scale
|
||||
dst[i] = scale * x[i];
|
||||
}
|
||||
|
||||
static __global__ void clamp_f32(const float * x, float * dst, const float min, const float max, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
|
||||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
||||
@@ -5475,6 +5485,11 @@ static void scale_f32_cuda(const float * x, float * dst, const float scale, cons
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||
}
|
||||
|
||||
static void clamp_f32_cuda(const float * x, float * dst, const float min, const float max, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_CLAMP_BLOCK_SIZE - 1) / CUDA_CLAMP_BLOCK_SIZE;
|
||||
clamp_f32<<<num_blocks, CUDA_CLAMP_BLOCK_SIZE, 0, stream>>>(x, dst, min, max, k);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
static void rope_cuda(const T * x, T * dst, const int ncols, const int nrows, const int32_t * pos, const float freq_scale,
|
||||
const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
|
||||
@@ -6419,12 +6434,12 @@ inline void ggml_cuda_op_alibi(
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
const int64_t nrows = ggml_nrows(src0);
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
GGML_ASSERT(ne01 + n_past == ne00);
|
||||
//GGML_ASSERT(ne01 + n_past == ne00);
|
||||
GGML_ASSERT(n_head == ne02);
|
||||
|
||||
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
|
||||
@@ -6500,6 +6515,24 @@ inline void ggml_cuda_op_scale(
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
inline void ggml_cuda_op_clamp(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const float min = ((float *) dst->op_params)[0];
|
||||
const float max = ((float *) dst->op_params)[1];
|
||||
|
||||
clamp_f32_cuda(src0_dd, dst_dd, min, max, ggml_nelements(src0), main_stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_cuda_op_flatten_t op) {
|
||||
const int64_t nrows0 = ggml_nrows(src0);
|
||||
|
||||
@@ -7061,6 +7094,10 @@ static void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1,
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_scale);
|
||||
}
|
||||
|
||||
static void ggml_cuda_clamp(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_clamp);
|
||||
}
|
||||
|
||||
static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const int64_t ne = ggml_nelements(src0);
|
||||
GGML_ASSERT(ne == ggml_nelements(src1));
|
||||
@@ -7470,6 +7507,12 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
|
||||
case GGML_OP_SCALE:
|
||||
func = ggml_cuda_scale;
|
||||
break;
|
||||
case GGML_OP_CLAMP:
|
||||
if (!any_on_device) {
|
||||
return false;
|
||||
}
|
||||
func = ggml_cuda_clamp;
|
||||
break;
|
||||
case GGML_OP_CPY:
|
||||
func = ggml_cuda_cpy;
|
||||
break;
|
||||
|
||||
@@ -1299,7 +1299,7 @@ void ggml_metal_graph_compute(
|
||||
|
||||
const int nth = MIN(1024, ne00);
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
@@ -19,7 +19,7 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
#define CL_DMMV_BLOCK_SIZE 32
|
||||
#define CL_DMMV_LOCAL_SIZE 32
|
||||
|
||||
#ifndef K_QUANTS_PER_ITERATION
|
||||
#define K_QUANTS_PER_ITERATION 1
|
||||
@@ -338,7 +338,7 @@ __kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q2_K * x = xx + ib0;
|
||||
|
||||
@@ -413,7 +413,7 @@ __kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q3_K * x = xx + ib0;
|
||||
|
||||
@@ -489,7 +489,7 @@ __kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
|
||||
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
|
||||
@@ -562,7 +562,7 @@ __kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx,
|
||||
|
||||
const int row = get_group_id(0);
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
const int tid = get_local_id(0)/2; // 0...15
|
||||
const int ix = get_local_id(0)%2;
|
||||
@@ -641,7 +641,7 @@ __kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx,
|
||||
const int row = get_group_id(0);
|
||||
|
||||
const int num_blocks_per_row = ncols / QK_K;
|
||||
const int ib0 = row*num_blocks_per_row;
|
||||
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
||||
|
||||
__global const struct block_q6_K * x = xx + ib0;
|
||||
|
||||
@@ -745,19 +745,21 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
||||
|
||||
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
||||
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
||||
const int block_size = get_local_size(0);
|
||||
const int local_size = get_local_size(0);
|
||||
const int row = get_group_id(0);
|
||||
const int tid = get_local_id(0);
|
||||
|
||||
const uint qk = QUANT_K;
|
||||
const uint qr = QUANT_R;
|
||||
|
||||
const int col_step = local_size * 2;
|
||||
const int y_offset = qr == 1 ? 1 : qk/2;
|
||||
|
||||
x += get_global_offset(0);
|
||||
|
||||
tmp[tid] = 0;
|
||||
|
||||
for (int i = 0; i < ncols/block_size; i += 2) {
|
||||
const int col = i*block_size + 2*tid;
|
||||
for (int col = tid*2; col < ncols; col += col_step) {
|
||||
const int ib = (row*ncols + col)/qk; // block index
|
||||
const int iqs = (col%qk)/qr; // quant index
|
||||
const int iybs = col - col%qk; // y block start index
|
||||
@@ -773,7 +775,7 @@ __kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float
|
||||
|
||||
// sum up partial sums and write back result
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
for (int s=block_size/2; s>0; s>>=1) {
|
||||
for (int s=local_size/2; s>0; s>>=1) {
|
||||
if (tid < s) {
|
||||
tmp[tid] += tmp[tid + s];
|
||||
}
|
||||
@@ -1566,7 +1568,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
ggml_cl_pool_free(d_D, d_size);
|
||||
}
|
||||
|
||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
|
||||
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
||||
GGML_ASSERT(fp16_support);
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
@@ -1596,6 +1598,10 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
const int y_ne = ne11 * ne10;
|
||||
const int d_ne = ne11 * ne01;
|
||||
|
||||
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
|
||||
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
|
||||
|
||||
size_t x_size;
|
||||
size_t y_size;
|
||||
size_t d_size;
|
||||
@@ -1632,7 +1638,6 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||
|
||||
// convert src1 to fp16
|
||||
// TODO: use multiple threads
|
||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
|
||||
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
||||
if (src1_cont_rows) {
|
||||
if (src1_cont_cols) {
|
||||
@@ -1704,7 +1709,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
const int nb2 = dst->nb[2];
|
||||
const int nb3 = dst->nb[3];
|
||||
const ggml_type type = src0->type;
|
||||
const bool mul_mat_vec = ne11 == 1;
|
||||
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
|
||||
|
||||
const int64_t r2 = ne12 / ne02;
|
||||
const int64_t r3 = ne13 / ne03;
|
||||
@@ -1737,7 +1742,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
GGML_ASSERT(to_fp32_cl != nullptr);
|
||||
|
||||
const size_t global_denom = ggml_cl_global_denom(type);
|
||||
const size_t local = ggml_cl_local_size(type);
|
||||
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
|
||||
|
||||
size_t ev_idx = 0;
|
||||
std::vector<cl_event> events;
|
||||
@@ -1770,8 +1775,8 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||
|
||||
// compute
|
||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||
const size_t local = CL_DMMV_BLOCK_SIZE;
|
||||
const size_t global = ne01 * local;
|
||||
const size_t offset = src0->backend == GGML_BACKEND_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
||||
const cl_int ncols = ne00;
|
||||
events.emplace_back();
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
||||
@@ -1779,7 +1784,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
||||
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
||||
} else { // general dequantization kernel + CLBlast matrix matrix multiplication
|
||||
// convert src0 to fp32 on device
|
||||
const size_t global = x_ne / global_denom;
|
||||
@@ -1895,8 +1900,8 @@ void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor *
|
||||
}
|
||||
|
||||
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
||||
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return ggml_nelements(src1) * sizeof(ggml_fp16_t);
|
||||
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
||||
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
40
ggml.c
40
ggml.c
@@ -5494,6 +5494,39 @@ struct ggml_tensor * ggml_view_tensor(
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
|
||||
struct ggml_object * obj = ctx->objects_begin;
|
||||
|
||||
char * const mem_buffer = ctx->mem_buffer;
|
||||
|
||||
while (obj != NULL) {
|
||||
if (obj->type == GGML_OBJECT_TENSOR) {
|
||||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||||
}
|
||||
|
||||
obj = obj->next;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
|
||||
struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
|
||||
obj = obj->next;
|
||||
|
||||
char * const mem_buffer = ctx->mem_buffer;
|
||||
|
||||
while (obj != NULL) {
|
||||
if (obj->type == GGML_OBJECT_TENSOR) {
|
||||
return (struct ggml_tensor *)(mem_buffer + obj->offs);
|
||||
}
|
||||
|
||||
obj = obj->next;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
|
||||
struct ggml_object * obj = ctx->objects_begin;
|
||||
|
||||
@@ -8647,6 +8680,7 @@ void ggml_set_param(
|
||||
|
||||
GGML_ASSERT(tensor->grad == NULL);
|
||||
tensor->grad = ggml_dup_tensor(ctx, tensor);
|
||||
ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_dup
|
||||
@@ -13059,13 +13093,11 @@ static void ggml_compute_forward_alibi_f32(
|
||||
return;
|
||||
}
|
||||
|
||||
const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
|
||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||
const int n_head = ((int32_t *) dst->op_params)[1];
|
||||
float max_bias;
|
||||
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
|
||||
|
||||
assert(n_past >= 0);
|
||||
|
||||
const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
|
||||
const int64_t ne1 = src0->ne[1]; // seq_len_without_past
|
||||
const int64_t ne2 = src0->ne[2]; // n_head -> this is k
|
||||
@@ -14430,7 +14462,7 @@ static void ggml_compute_forward_conv_2d_f16_f32(
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
3
ggml.h
3
ggml.h
@@ -704,6 +704,9 @@ extern "C" {
|
||||
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
||||
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
||||
|
||||
// Context tensor enumeration and lookup
|
||||
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
|
||||
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
||||
|
||||
@@ -88,29 +88,31 @@ class MODEL_ARCH(IntEnum):
|
||||
PERSIMMON : int = auto()
|
||||
REFACT : int = auto()
|
||||
BERT : int = auto()
|
||||
BLOOM : int = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
TOKEN_EMBD : int = auto()
|
||||
TOKEN_TYPES : int = auto()
|
||||
POS_EMBD : int = auto()
|
||||
OUTPUT : int = auto()
|
||||
OUTPUT_NORM : int = auto()
|
||||
ROPE_FREQS : int = auto()
|
||||
ATTN_Q : int = auto()
|
||||
ATTN_K : int = auto()
|
||||
ATTN_V : int = auto()
|
||||
ATTN_QKV : int = auto()
|
||||
ATTN_OUT : int = auto()
|
||||
ATTN_NORM : int = auto()
|
||||
ATTN_NORM_2 : int = auto()
|
||||
ATTN_ROT_EMBD: int = auto()
|
||||
FFN_GATE : int = auto()
|
||||
FFN_DOWN : int = auto()
|
||||
FFN_UP : int = auto()
|
||||
FFN_NORM : int = auto()
|
||||
ATTN_Q_NORM : int = auto()
|
||||
ATTN_K_NORM : int = auto()
|
||||
TOKEN_EMBD : int = auto()
|
||||
TOKEN_EMBD_NORM : int = auto()
|
||||
TOKEN_TYPES : int = auto()
|
||||
POS_EMBD : int = auto()
|
||||
OUTPUT : int = auto()
|
||||
OUTPUT_NORM : int = auto()
|
||||
ROPE_FREQS : int = auto()
|
||||
ATTN_Q : int = auto()
|
||||
ATTN_K : int = auto()
|
||||
ATTN_V : int = auto()
|
||||
ATTN_QKV : int = auto()
|
||||
ATTN_OUT : int = auto()
|
||||
ATTN_NORM : int = auto()
|
||||
ATTN_NORM_2 : int = auto()
|
||||
ATTN_ROT_EMBD : int = auto()
|
||||
FFN_GATE : int = auto()
|
||||
FFN_DOWN : int = auto()
|
||||
FFN_UP : int = auto()
|
||||
FFN_NORM : int = auto()
|
||||
ATTN_Q_NORM : int = auto()
|
||||
ATTN_K_NORM : int = auto()
|
||||
|
||||
|
||||
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
@@ -125,29 +127,31 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.PERSIMMON: "persimmon",
|
||||
MODEL_ARCH.REFACT: "refact",
|
||||
MODEL_ARCH.BERT: "bert",
|
||||
MODEL_ARCH.BLOOM: "bloom",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
MODEL_TENSOR.OUTPUT: "output",
|
||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
||||
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||
MODEL_TENSOR.OUTPUT: "output",
|
||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||
}
|
||||
|
||||
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
@@ -282,6 +286,18 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.BLOOM: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.GPT2: [
|
||||
# TODO
|
||||
],
|
||||
@@ -311,6 +327,7 @@ class TensorNameMap:
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf
|
||||
"tok_embeddings", # llama-pth
|
||||
"embeddings.word_embeddings", # bert
|
||||
@@ -322,6 +339,11 @@ class TensorNameMap:
|
||||
"embeddings.token_type_embeddings", # bert
|
||||
),
|
||||
|
||||
# Normalization of token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD_NORM: (
|
||||
"word_embeddings_layernorm", # bloom
|
||||
),
|
||||
|
||||
# Position embeddings
|
||||
MODEL_TENSOR.POS_EMBD: (
|
||||
"transformer.wpe", # gpt2
|
||||
@@ -332,7 +354,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
||||
"output", # llama-pth
|
||||
"output", # llama-pth bloom
|
||||
"word_embeddings_for_head", # persimmon
|
||||
),
|
||||
|
||||
@@ -344,7 +366,7 @@ class TensorNameMap:
|
||||
"norm", # llama-pth
|
||||
"embeddings.LayerNorm", # bert
|
||||
"transformer.norm_f", # mpt
|
||||
"ln_f", # refact
|
||||
"ln_f", # refact bloom
|
||||
"language_model.encoder.final_layernorm", # persimmon
|
||||
),
|
||||
|
||||
@@ -361,6 +383,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.ln_1", # gpt2 gpt-j refact
|
||||
"transformer.blocks.{bid}.norm_1", # mpt
|
||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||
"h.{bid}.input_layernorm", # bloom
|
||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||
"layers.{bid}.attention_norm", # llama-pth
|
||||
@@ -379,6 +402,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2
|
||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||
"h.{bid}.self_attention.query_key_value", # bloom
|
||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||
),
|
||||
|
||||
@@ -412,6 +436,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
@@ -429,6 +454,7 @@ class TensorNameMap:
|
||||
MODEL_TENSOR.FFN_NORM: (
|
||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||
"transformer.h.{bid}.ln_2", # gpt2 refact
|
||||
"h.{bid}.post_attention_layernorm", # bloom
|
||||
"transformer.blocks.{bid}.norm_2", # mpt
|
||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||
"layers.{bid}.ffn_norm", # llama-pth
|
||||
@@ -442,6 +468,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||
"h.{bid}.mlp.dense_h_to_4h", # bloom
|
||||
"model.layers.{bid}.mlp.up_proj", # llama-hf refact
|
||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||
@@ -461,6 +488,7 @@ class TensorNameMap:
|
||||
"transformer.h.{bid}.mlp.c_proj", # gpt2 refact
|
||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||
"h.{bid}.mlp.dense_4h_to_h", # bloom
|
||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||
"encoder.layer.{bid}.output.dense", # bert
|
||||
|
||||
30
k_quants.c
30
k_quants.c
@@ -462,12 +462,9 @@ void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
const int nb = k / QK_K;
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
// TODO - collect histograms - although, at a second thought, I don't really care about them
|
||||
(void)hist;
|
||||
|
||||
for (int j = 0; j < nb; j += k) {
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
|
||||
quantize_row_q2_K_reference(src + j, y, k);
|
||||
}
|
||||
@@ -678,12 +675,9 @@ void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
const int nb = k / QK_K;
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
// TODO - collect histograms - although, at a second thought, I don't really care about them
|
||||
(void)hist;
|
||||
|
||||
for (int j = 0; j < nb; j += k) {
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
|
||||
quantize_row_q3_K_reference(src + j, y, k);
|
||||
}
|
||||
@@ -846,9 +840,9 @@ void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
(void)hist; // TODO: collect histograms
|
||||
for (int j = 0; j < nb; j += k) {
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
|
||||
quantize_row_q4_K_reference(src + j, y, k);
|
||||
}
|
||||
@@ -1052,9 +1046,9 @@ void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
(void)hist;
|
||||
for (int j = 0; j < nb; j += k) {
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
|
||||
quantize_row_q5_K_reference(src + j, y, k);
|
||||
}
|
||||
@@ -1200,11 +1194,9 @@ void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
(void)hist; // TODO
|
||||
|
||||
for (int j = 0; j < nb; j += k) {
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
|
||||
quantize_row_q6_K_reference(src + j, y, k);
|
||||
}
|
||||
|
||||
13
llama.h
13
llama.h
@@ -511,17 +511,20 @@ extern "C" {
|
||||
// Tokenization
|
||||
//
|
||||
|
||||
// Convert the provided text into tokens.
|
||||
// The tokens pointer must be large enough to hold the resulting tokens.
|
||||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
/// @details Convert the provided text into tokens.
|
||||
/// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
|
||||
/// @return Returns the number of tokens on success, no more than n_max_tokens
|
||||
/// @return Returns a negative number on failure - the number of tokens that would have been returned
|
||||
/// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
|
||||
/// Does not insert a leading space.
|
||||
LLAMA_API int llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
int text_len,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
bool add_bos,
|
||||
bool special);
|
||||
|
||||
// Token Id -> Piece.
|
||||
// Uses the vocabulary in the provided context.
|
||||
|
||||
93
prompts/mnemonics.txt
Normal file
93
prompts/mnemonics.txt
Normal file
@@ -0,0 +1,93 @@
|
||||
For each kanji character, write a Markdown‐formatted mnemonic that uses its keyword and the keyword of all its components.
|
||||
|
||||
Kanji: 欠 (lack of)
|
||||
Components: 𠂊 (hook claw), 人 (person)
|
||||
Mnemonic: This **person** is a pirate. He lost his hand to a crocodile many years ago. Nowadays, the ***lack of*** a hand does not bother him too much. In fact, the **hook claw** that replaces it is the mark of a true pirate, so he is quite proud of it!
|
||||
|
||||
Kanji: 類 (kind (of something))
|
||||
Components: 米 (rice), 大 (large), 頁 (page)
|
||||
Mnemonic: The waiter at a Chinese restaurant hands you a **large** menu. Each **page** has all ***kinds*** of **rice** on offer!
|
||||
|
||||
Kanji: 燃 (burn)
|
||||
Components: 火 (fire), 然 (sort of thing)
|
||||
Mnemonic: ***Burning*** things up with **fire** is just my **sort of thing**. (Spoken like a true pyromaniac.)
|
||||
|
||||
Kanji: 頂 (top of)
|
||||
Components: 丁 (street), 頁 (page)
|
||||
Mnemonic: To be at the ***top of*** your game, you need both practical knowledge (**street** smarts) and theoretical knowledge (having read many **pages**).
|
||||
|
||||
Kanji: 険 (risky and steep)
|
||||
Components: 阝 (small village), 㑒 (consensus)
|
||||
Mnemonic: Everyone agrees (there is **consensus**) that the path to the **small village** is ***risky and steep***.
|
||||
|
||||
Kanji: 困 (distressed)
|
||||
Components: 囗 (closed box), 木 (tree)
|
||||
Mnemonic: You would feel ***distressed*** too if you were a **tree** trapped in a **closed box**! I have no place to grow!
|
||||
|
||||
Kanji: 頭 (head)
|
||||
Components: 豆 (bean), 頁 (page)
|
||||
Mnemonic: What do you have in that ***head*** of yours? A **bean** for a brain? Go read more **pages** and become more knowledgeable about the world!
|
||||
|
||||
Kanji: 確 (certain)
|
||||
Components: 石 (stone), 冖 (roof without a chimney), 隹 (old bird)
|
||||
Mnemonic: An **old bird** has made a nest on your **roof**. What do you do? You call Misaka from a <cite>A ***Certain*** Scientific Railgun</cite> to get rid of it, of course! But she doesn’t really want to vaporize the poor thing, so she just throws a **stone** to scare it away. (What was the point of calling her, then‽)
|
||||
|
||||
Kanji: 魚 (fish)
|
||||
Components: 𠂊 (hook claw), 田 (rice field), 灬 (fire sparks)
|
||||
Mnemonic: Catch ***fish*** with a **hook**, collect rice from the **rice field**, cook them with **fire**… And my meal is ready!
|
||||
|
||||
Kanji: 警 (to police (something))
|
||||
Components: 敬 (respect), 言 (say)
|
||||
Mnemonic: ***To police something*** is to make people **respect** what the law **says**.
|
||||
|
||||
Kanji: 筆 (writing brush)
|
||||
Components: 竹 (bamboo), 聿 (brush)
|
||||
Mnemonic: A traditional ***writing brush*** is a **brush** made of **bamboo**.
|
||||
|
||||
Kanji: 獄 (prison)
|
||||
Components: 犭 (animal), 言 (say), 犬 (dog)
|
||||
Mnemonic: In ***prison***, like in the **animal** kingdom, only the toughest survive. You have to watch what you **say**. It’s a **dog**‐eat‐dog world.
|
||||
|
||||
Kanji: 新 (new)
|
||||
Components: 立 (standing up), 木 (tree), 斤 (axe)
|
||||
Mnemonic: In order for a ***new*** construction to be made, an empty lot is needed. If there are any **trees** **standing up**, they must be cut down with an **axe**.
|
||||
|
||||
Kanji: 怪 (suspicious)
|
||||
Components: 忄 (weak heart), 圣 (sacred)
|
||||
Mnemonic: That painting of the **Sacred** **Heart** of Jesus looks ***suspicious***. I think it might be a forgery.
|
||||
|
||||
Kanji: 温 (warm (to the touch))
|
||||
Components: 氵 (water drops), 日 (sun), 皿 (dish)
|
||||
Mnemonic: If you leave **water** on a **dish** in the **sun**, it will get ***warm***.
|
||||
|
||||
Kanji: 階 (floor (of a building))
|
||||
Components: 阝 (small village), 皆 (all)
|
||||
Mnemonic: It might be a **small village**, but, despite that, **all** of its buildings have many ***floors***. It’s a village of skyscrapers!
|
||||
|
||||
Kanji: 多 (many)
|
||||
Components: 夕 (evening (before sunset)), 夕 (evening (before sunset))
|
||||
Mnemonic: Two **evenings** in a day would be one too ***many***.
|
||||
|
||||
Kanji: 別 (separate)
|
||||
Components: 口 (mouth), 万 (ten thousand), 刂 (knife)
|
||||
Mnemonic: Tom Six is at it again. For his next flick, he wants to stitch together **ten thousand** people, **mouth**‐to‐anus. One of the most graphic and disturbing scenes will feature one of the victims using a **knife** to ***separate*** perself.
|
||||
|
||||
Kanji: 並 (line up)
|
||||
Components: 䒑 (antlers on a wall), 业 (runway)
|
||||
Mnemonic: In order to land a plane you have to ***line up*** properly with the **runway**. The things that look like **antlers** at the end of the runway are the control towers; you should follow their instructions.
|
||||
|
||||
Kanji: 姿 (figure)
|
||||
Components: 次 (next), 女 (woman)
|
||||
Mnemonic: The **next** **woman** that I date will have a perfect **figure**. Because I’m done with 3D women—it will *literally* be an anime figure!
|
||||
|
||||
Kanji: 実 (real)
|
||||
Components: 宀 (roof with a chimney), 𡗗 (three people)
|
||||
Mnemonic: Living under a **roof with a chimney** with **three people** (a wife and two children)—a happy family life—is not something I could have ever imagined. It does not feel ***real***.
|
||||
|
||||
Kanji: 謝 (apologize)
|
||||
Components: 言 (say), 射 (shoot)
|
||||
Mnemonic: **Shot** first, ***apologize*** (**say** you are sorry) later.
|
||||
|
||||
Kanji: 提 (propose)
|
||||
Components: 扌 (left hand), 是 (go with)
|
||||
Mnemonic:
|
||||
@@ -36,6 +36,8 @@ static const std::map<std::string, std::vector<llama_token>> & k_tests() {
|
||||
{ " Hello" , { 258, 23090, }, },
|
||||
{ " Hello" , { 466, 23090, }, },
|
||||
{ " Hello\n Hello" , { 466, 23090, 742, 23090, }, },
|
||||
{ "\n =" , { 1212, 40, }, },
|
||||
{ "' era" , { 18, 4932, }, },
|
||||
};
|
||||
|
||||
return _k_tests;
|
||||
@@ -155,7 +157,7 @@ int main(int argc, char **argv) {
|
||||
|
||||
fprintf(stderr, "%s : text size: %zu\n", __func__, text.size());
|
||||
|
||||
const std::vector<llama_token> res = llama_tokenize(ctx, text, true);
|
||||
const std::vector<llama_token> res = llama_tokenize(ctx, text, false);
|
||||
|
||||
fprintf(stderr, "%s : tokens: %zu\n", __func__, res.size());
|
||||
|
||||
@@ -169,10 +171,8 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
for (const auto & tok : res) {
|
||||
ofs << tok << " ";
|
||||
ofs << tok << " '" << llama_detokenize_bpe(ctx, std::vector<int>{tok}) << "'" << std::endl;
|
||||
}
|
||||
|
||||
ofs << "\n";
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str());
|
||||
|
||||
@@ -41,6 +41,8 @@ tests = [
|
||||
" Hello",
|
||||
" Hello",
|
||||
" Hello\n Hello",
|
||||
"\n =",
|
||||
"' era",
|
||||
]
|
||||
|
||||
for text in tests:
|
||||
@@ -69,15 +71,14 @@ fname_tok = args.fname_tok
|
||||
if fname_tok:
|
||||
print('tokenizing file: ', fname_tok)
|
||||
fname_out = fname_tok + '.tok'
|
||||
with open(fname_tok, 'r') as f:
|
||||
with open(fname_tok, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
s = ''.join(lines)
|
||||
res = tokenizer.encode(s)
|
||||
# write to file
|
||||
with open(fname_out, 'w') as f:
|
||||
with open(fname_out, 'w', encoding='utf-8') as f:
|
||||
for x in res:
|
||||
f.write(str(x) + ' ')
|
||||
f.write('\n')
|
||||
f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
|
||||
print('len(res): ', len(res))
|
||||
print('len(lines): ', len(lines))
|
||||
print('results written to: ', fname_out)
|
||||
|
||||
@@ -174,10 +174,8 @@ int main(int argc, char **argv) {
|
||||
}
|
||||
|
||||
for (const auto & tok : res) {
|
||||
ofs << tok << " ";
|
||||
ofs << tok << " '" << llama_detokenize_spm(ctx, std::vector<int>{tok}) << "'" << std::endl;
|
||||
}
|
||||
|
||||
ofs << "\n";
|
||||
}
|
||||
|
||||
fprintf(stderr, "%s : tokens written to '%s'\n", __func__, (fname_text + ".tokcpp").c_str());
|
||||
|
||||
@@ -81,15 +81,14 @@ fname_tok = args.fname_tok
|
||||
if fname_tok:
|
||||
print('tokenizing file: ', fname_tok)
|
||||
fname_out = fname_tok + '.tok'
|
||||
with open(fname_tok, 'r') as f:
|
||||
with open(fname_tok, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
s = ''.join(lines)
|
||||
res = tokenizer.encode(s, add_bos=True)
|
||||
# write to file
|
||||
with open(fname_out, 'w') as f:
|
||||
with open(fname_out, 'w', encoding='utf-8') as f:
|
||||
for x in res:
|
||||
f.write(str(x) + ' ')
|
||||
f.write('\n')
|
||||
f.write(str(x) + ' \'' + tokenizer.decode(x) + '\'\n')
|
||||
print('len(res): ', len(res))
|
||||
print('len(lines): ', len(lines))
|
||||
print('results written to: ', fname_out)
|
||||
|
||||
Reference in New Issue
Block a user